WorldWideScience

Sample records for butyrate dependent bacterial

  1. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  2. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.

  3. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-01-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  4. Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract.

    Science.gov (United States)

    Metzler-Zebeli, Barbara U; Hooda, Seema; Pieper, Robert; Zijlstra, Ruurd T; van Kessel, Andrew G; Mosenthin, Rainer; Gänzle, Michael G

    2010-06-01

    The impact of nonstarch polysaccharides (NSP) differing in their functional properties on intestinal bacterial community composition, prevalence of butyrate production pathway genes, and occurrence of Escherichia coli virulence factors was studied for eight ileum-cannulated growing pigs by use of terminal restriction fragment length polymorphism (TRFLP) and quantitative PCR. A cornstarch- and casein-based diet was supplemented with low-viscosity, low-fermentability cellulose (CEL), with high-viscosity, low-fermentability carboxymethylcellulose (CMC), with low-viscosity, high-fermentability oat beta-glucan (LG), and with high-viscosity, high-fermentability oat beta-glucan (HG). Only minor effects of NSP fractions on the ileal bacterial community were observed, but NSP clearly changed the digestion in the small intestine. Compared to what was observed for CMC, more fermentable substrate was transferred into the large intestine with CEL, LG, and HG, resulting in higher levels of postileal dry-matter disappearance. Linear discriminant analysis of NSP and TRFLP profiles and 16S rRNA gene copy numbers for major bacterial groups revealed that CMC resulted in a distinctive bacterial community in comparison to the other NSP, which was characterized by higher gene copy numbers for total bacteria, Bacteroides-Prevotella-Porphyromonas, Clostridium cluster XIVa, and Enterobacteriaceae and increased prevalences of E. coli virulence factors in feces. The numbers of butyryl-coenzyme A (CoA) CoA transferase gene copies were higher than those of butyrate kinase gene copies in feces, and these quantities were affected by NSP. The present results suggest that the NSP fractions clearly and distinctly affected the taxonomic composition and metabolic features of the fecal microbiota. However, the effects were more linked to the individual NSP and to their effect on nutrient flow into the large intestine than to their shared functional properties.

  5. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis.

    Science.gov (United States)

    Rajendran, Vazhaikkurichi M; Nanda Kumar, Navalpur S; Tse, Chung M; Binder, Henry J

    2015-10-16

    Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na(+) absorption. Although colonic Na(+) absorption is mediated by both epithelial Na(+) channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na(+) absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na(+) absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na(+) fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3 (-)-dependent Na(+) absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3 (-)-dependent) Na(+) absorption. In in vivo loop studies HCO3 (-)-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3 (-)-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na(+) absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea.

  6. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon.

    Science.gov (United States)

    Louis, Petra; Duncan, Sylvia H; McCrae, Sheila I; Millar, Jacqueline; Jackson, Michelle S; Flint, Harry J

    2004-04-01

    The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate.

  7. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors.

    Science.gov (United States)

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-08-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy.

  8. Wzy-dependent bacterial capsules as potential drug targets.

    Science.gov (United States)

    Ericsson, Daniel J; Standish, Alistair; Kobe, Bostjan; Morona, Renato

    2012-10-01

    The bacterial capsule is a recognized virulence factor in pathogenic bacteria. It likely works as an antiphagocytic barrier by minimizing complement deposition on the bacterial surface. With the continual rise of bacterial pathogens resistant to multiple antibiotics, there is an increasing need for novel drugs. In the Wzy-dependent pathway, the biosynthesis of capsular polysaccharide (CPS) is regulated by a phosphoregulatory system, whose main components consist of bacterial-tyrosine kinases (BY-kinases) and their cognate phosphatases. The ability to regulate capsule biosynthesis has been shown to be vital for pathogenicity, because different stages of infection require a shift in capsule thickness, making the phosphoregulatory proteins suitable as drug targets. Here, we review the role of regulatory proteins focusing on Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli and discuss their suitability as targets in structure-based drug design.

  9. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy.

  10. Discoloration of Polyvinyl Butyral

    Science.gov (United States)

    Kim, Q.; Shumka, A.

    1986-01-01

    Report presents results of study of discoloration in polyvinyl butyral (PVB). Clear PVB gradually turns yellowish brown in simulated-aging tests and outdoor environmental tests. Discoloration severely reduces solar-cell output. Using methods of modern analytical chemistry - transmission absorption, Fourier transform infrared absorption, atomic absorption spectroscopy, and scanning-electron microscopy - study uncovered major cause of yellowing.

  11. Temperature dependent bacteriophages of a tropical bacterial pathogen

    Directory of Open Access Journals (Sweden)

    Martha Rebecca Jane Clokie

    2014-11-01

    Full Text Available There is an increasing awareness of the multiple ways that bacteriophages (phages influence bacterial evolution, population dynamics, physiology and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model Burkholderia thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C, the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C, the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial life, and on our ability to culture and correctly enumerate viable bacteria.

  12. Temperature dependent bacteriophages of a tropical bacterial pathogen

    Science.gov (United States)

    Shan, Jinyu; Korbsrisate, Sunee; Withatanung, Patoo; Adler, Natalie Lazar; Clokie, Martha R. J.; Galyov, Edouard E.

    2014-01-01

    There is an increasing awareness of the multiple ways that bacteriophages (phages) influence bacterial evolution, population dynamics, physiology, and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model B. thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C), the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C), the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial biology, and on our ability to culture and correctly enumerate viable bacteria. PMID:25452746

  13. Protease-dependent mechanisms of complement evasion by bacterial pathogens.

    Science.gov (United States)

    Potempa, Michal; Potempa, Jan

    2012-09-01

    The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.

  14. Enzymology of butyrate formation by Butyrivibrio fibrisolvens.

    Science.gov (United States)

    Miller, T L; Jenesel, S E

    1979-04-01

    Butyrivibrio fibrisolvens is a major butyrate-forming species in the bovine and ovine rumen. The enzymology of butyrate formation from pyruvate was investigated in cell-free extracts of B. fibrisolvens D1. Pyruvate owas oxidized to acetylcoenzyme A (CoA) in the presence of CoA.SH and benzyl viologen or flavin nucleotides. The bacterium uses thiolase, beta-hydroxybutyryl-CoA dehydrogenase, crotonase, and crotonyl-CoA reductase to form butyryl-CoA from acetyl-CoA. Reduction of acetoacetyl-CoA to beta-hydroxybutyryl-CoA was faster with NADH than with NADPH. Crotonyl-CoA was reduced to butyryl-CoA by NADH, but not by NADPH, only in the presence of flavin nucleotides. Reduction of flavin nucleotides by NADH was much slower than the flavin-dependent reduction of crotonyl-CoA. This indicates that flavoproteins rather than free flavin participated in the reduction of crotonyl-CoA. Butyryl-CoA was converted to butyrate by phosphate butyryl transferase and butyrate kinase.

  15. Effect of butyrate on immune response of a chicken macrophage cell line

    Science.gov (United States)

    Butyric acid is a major short chain fatty acid (SCFA) produced in the gastrointestinal tract by anaerobic bacterial fermentation which has been demonstrated to have beneficial health effects in many species including poultry. To understand the immunomodulating effects of butyrate on chicken macropha...

  16. Medium-dependent control of the bacterial growth rate.

    Science.gov (United States)

    Ehrenberg, Måns; Bremer, Hans; Dennis, Patrick P

    2013-04-01

    By combining results from previous studies of nutritional up-shifts we here re-investigate how bacteria adapt to different nutritional environments by adjusting their macromolecular composition for optimal growth. We demonstrate that, in contrast to a commonly held view the macromolecular composition of bacteria does not depend on the growth rate as an independent variable, but on three factors: (i) the genetic background (i.e. the strain used), (ii) the physiological history of the bacteria used for inoculation of a given growth medium, and (iii) the kind of nutrients in the growth medium. These factors determine the ribosome concentration and the average rate of protein synthesis per ribosome, and thus the growth rate. Immediately after a nutritional up-shift, the average number of ribosomes in the bacterial population increases exponentially with time at a rate which eventually is attained as the final post-shift growth rate of all cell components. After a nutritional up-shift from one minimal medium to another minimal medium of higher nutritional quality, ribosome and RNA polymerase syntheses are co-regulated and immediately increase by the same factor equal to the increase in the final growth rate. However, after an up-shift from a minimal medium to a medium containing all 20 amino acids, RNA polymerase and ribosome syntheses are no longer coregulated; a smaller rate of synthesis of RNA polymerase is compensated by a gradual increase in the fraction of free RNA polymerase, possibly due to a gradual saturation of mRNA promoters. We have also analyzed data from a recent publication, in which it was concluded that the macromolecular composition in terms of RNA/protein and RNA/DNA ratios is solely determined by the effector molecule ppGpp. Our analysis indicates that this is true only in special cases and that, in general, medium adaptation also depends on factors other than ppGpp.

  17. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.

    Science.gov (United States)

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D

    2016-04-01

    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs.

  18. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam

    2015-03-02

    We fabricate a pentacene/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO{sub 2} gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time.

  19. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs.

    Science.gov (United States)

    Pieper, R; Vahjen, W; Neumann, K; Van Kessel, A G; Zentek, J

    2012-10-01

    Pharmacological levels of zinc oxide (ZnO) can improve the health of weaning piglets and influence the intestinal microbiota. This experiment aimed at studying the dose-response effect of five dietary concentrations of ZnO on small intestinal bacteria and metabolite profiles. Fifteen piglets, weaned at 25 ± 1 days of age, were allocated into five groups according to body weight and litter. Diets were formulated to contain 50 (basal diet), 150, 250, 1000 and 2500 mg zinc/kg by adding analytical-grade (>98% purity) ZnO to the basal diet and fed ad libitum for 14 days after a 7-day adaptation period on the basal diet. Ileal bacterial community profiles were analysed by denaturing gradient gel electrophoresis and selected bacterial groups quantified by real-time PCR. Concentrations of ileal volatile fatty acids (VFA), D- and L-lactate and ammonia were determined. Species richness, Shannon diversity and evenness were significantly higher at high ZnO levels. Quantitative PCR revealed lowest total bacterial counts in the 50 mg/kg group. Increasing ZnO levels led to an increase (p = 0.017) in enterobacteria from log 4.0 cfu/g digesta (50 mg/kg) to log 6.7 cfu/g digesta (2500 mg/kg). Lactic acid bacteria were not influenced (p = 0.687) and clostridial cluster XIVa declined (p = 0.035) at highest ZnO level. Concentration of total, D- and L-lactate and propionate was not affected (p = 0.736, p = 0.290 and p = 0.630), but concentrations of ileal total VFA, acetate and butyrate increased markedly from 50 to 150 mg/kg and decreased with further increasing zinc levels and reached low levels again at 2500 mg/kg (p = 0.048, p = 0.048 and p = 0.097). Ammonia decreased (p < 0.006) with increasing dietary ZnO level. In conclusion, increasing levels of dietary ZnO had strong and dose-dependent effects on ileal bacterial community composition and activity, suggesting taxonomic variation in metabolic response to ZnO.

  20. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  1. Colonic mucin synthesis is increased by sodium butyrate.

    Science.gov (United States)

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis.

  2. Modeling of Scale-Dependent Bacterial Growth by Chemical Kinetics Approach

    Directory of Open Access Journals (Sweden)

    Haydee Martínez

    2014-01-01

    Full Text Available We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli  JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  3. Bacterial endophytic communities in the grapevine depend on pest management.

    Science.gov (United States)

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.

  4. Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose

    Directory of Open Access Journals (Sweden)

    Karol Fijałkowski

    2016-01-01

    Full Text Available The aim of the study was to assess the influence of rotating magnetic field (RMF on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest water retention capacity as compared to the samples exposed for 5 and 7 days. The observation was confirmed for both the control and RMF exposed BC. It was proved that the BC exposed samples showed up to 26% higher water retention capacity as compared to the control samples. These samples also required the highest temperature to release the water molecules. Such findings agreed with the observation via SEM examination which revealed that the structure of BC synthesized for 7 days was more compacted than the sample exposed to RMF for 3 days. Furthermore, the analysis of 2D correlation of Fourier transform infrared spectra demonstrated the impact of RMF exposure on the dynamics of BC microfibers crystallinity formation.

  5. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    Science.gov (United States)

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis.

  6. Involvement of Sp1 in Butyric Acid-Induced HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Kenichi Imai

    2015-09-01

    Full Text Available Background/Aims: The ability of human immunodeficiency virus-1(HIV-1 to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs, could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Methods: Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. Results: We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP was required for butyric acid-induced HIV-1 activation. Conclusions: These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria.

  7. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson, K.G.; Riesenfeld, J.; Lindahl, U.

    1985-10-05

    Murine mastocytoma cells were incubated in vitro with inorganic (TVS)sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion of components with high affinity for antithrombin. Structural analysis of heparin labeled with (TH) glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. A polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-(TH)glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell.

  8. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression.

    Directory of Open Access Journals (Sweden)

    Lakshmi T Sunkara

    Full Text Available Host defense peptides (HDPs constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance.

  9. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens

    Directory of Open Access Journals (Sweden)

    Swadha Anand

    2016-12-01

    Full Text Available Biosynthesis of butyrate by commensal bacteria plays a crucial role in maintenance of human gut health while dysbiosis in gut microbiome has been linked to several enteric disorders. Contrastingly, butyrate shows cytotoxic effects in patients with oral diseases like periodontal infections and oral cancer. In addition to these host associations, few syntrophic bacteria couple butyrate degradation with sulfate reduction and methane production. Thus, it becomes imperative to understand the distribution of butyrate metabolism pathways and delineate differences in substrate utilization between pathogens and commensals.The bacteria utilize four pathways for butyrate production with different initial substrates (Pyruvate, 4-aminobutyrate, Glutarate and Lysine which follow a polyphyletic distribution. A comprehensive mining of complete/draft bacterial genomes indicated conserved juxtaposed genomic arrangement in all these pathways. This gene context information was utilized for an accurate annotation of butyrate production pathways in bacterial genomes. Interestingly, our analysis showed that inspite of a beneficial impact of butyrate in gut, not only commensals, but a few gut pathogens also possess butyrogenic pathways. The results further illustrated that all the gut commensal bacteria (Faecalibacterium, Roseburia, Butyrivibrio, commensal species of Clostridia etc ferment pyruvate for butyrate production. On the contrary, the butyrogenic gut pathogen Fusobacterium utilizes different amino acid metabolism pathways like those for Glutamate (4-aminobutyrate and Glutarate and Lysine for butyrogenesis which leads to a concomitant release of harmful by-products like ammonia in the process. The findings in this study indicate that commensals and pathogens in gut have divergently evolved to produce butyrate using distinct pathways. No such evolutionary selection was observed in oral pathogens (Porphyromonas and Filifactor which showed presence of pyruvate as

  10. Comparative In silico Analysis of Butyrate Production Pathways in Gut Commensals and Pathogens

    Science.gov (United States)

    Anand, Swadha; Kaur, Harrisham; Mande, Sharmila S.

    2016-01-01

    Biosynthesis of butyrate by commensal bacteria plays a crucial role in maintenance of human gut health while dysbiosis in gut microbiome has been linked to several enteric disorders. Contrastingly, butyrate shows cytotoxic effects in patients with oral diseases like periodontal infections and oral cancer. In addition to these host associations, few syntrophic bacteria couple butyrate degradation with sulfate reduction and methane production. Thus, it becomes imperative to understand the distribution of butyrate metabolism pathways and delineate differences in substrate utilization between pathogens and commensals. The bacteria utilize four pathways for butyrate production with different initial substrates (Pyruvate, 4-aminobutyrate, Glutarate and Lysine) which follow a polyphyletic distribution. A comprehensive mining of complete/draft bacterial genomes indicated conserved juxtaposed genomic arrangement in all these pathways. This gene context information was utilized for an accurate annotation of butyrate production pathways in bacterial genomes. Interestingly, our analysis showed that inspite of a beneficial impact of butyrate in gut, not only commensals, but a few gut pathogens also possess butyrogenic pathways. The results further illustrated that all the gut commensal bacteria (Faecalibacterium, Roseburia, Butyrivibrio, and commensal species of Clostridia etc) ferment pyruvate for butyrate production. On the contrary, the butyrogenic gut pathogen Fusobacterium utilizes different amino acid metabolism pathways like those for Glutamate (4-aminobutyrate and Glutarate) and Lysine for butyrogenesis which leads to a concomitant release of harmful by-products like ammonia in the process. The findings in this study indicate that commensals and pathogens in gut have divergently evolved to produce butyrate using distinct pathways. No such evolutionary selection was observed in oral pathogens (Porphyromonas and Filifactor) which showed presence of pyruvate as well as

  11. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kasturi Ranganna

    2012-09-01

    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  12. Sodium butyrate and its synthetic amide derivative modulate nociceptive behaviors in mice.

    Science.gov (United States)

    Russo, Roberto; De Caro, Carmen; Avagliano, Carmen; Cristiano, Claudia; La Rana, Giovanna; Mattace Raso, Giuseppina; Berni Canani, Roberto; Meli, Rosaria; Calignano, Antonio

    2016-01-01

    In the present study we investigated the role of sodium butyrate (butyrate), and its more palatable derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), in animal models of acute and chronic pain. We found that oral administrations of butyrate (10-200mg/Kg) or equimolecular FBA (21.2-424mg/Kg) reduced visceral pain in a dose- and time-dependent manner. Both drugs were also effective in the formalin test, showing an antinociceptive effect. This analgesic effect was blocked by glibenclamide, suggesting the involvement of ATP-dependent K(+) channels. Moreover, following repeated administration butyrate (100-200mg/Kg) and FBA (212-424mg/Kg) retained their analgesic properties in a model of neuropathic pain, reducing mechanical and thermal hyperalgesia in the chronic constriction injury (CCI) model. The involvement of peroxisome proliferator-activated receptor (PPAR) -α and -γ for the analgesic effect of butyrate was also investigated by using PPAR-α null mice or the PPAR-γ antagonist GW9662. Western blot analysis, confirmed the role of peroxisome receptors in butyrate effects, evidencing the increase of PPAR-α and -γ expression, associated to the reduction of inflammatory markers (COX-2, iNOS, TNF-α and cFOS). In conclusion, we describe the role of butyrate-based drugs in pain, identifying different and converging non-genomic and genomic mechanisms of action, which cooperate in nociception maintenance.

  13. Culture-dependent and -independent molecular analysis of the bacterial community within uranium ore.

    Science.gov (United States)

    Islam, Ekramul; Sar, Pinaki

    2011-08-01

    The bacterial community structure within a uranium ore was investigated using culture-dependent and -independent clone library analysis and denaturing gradient gel electrophoresis of 16S rRNA genes. The major aerobic heterotrophic bacteria were isolated and identified, and their resistance to uranium and other heavy metals was characterized. Together with near neutral pH, moderate organic carbon content, elevated U and other heavy metals (V, Ni, Mn, Cu, etc.), the ore showed high microbial counts and phylotype richness. The bacterial community mainly consisted of uncultured Proteobacteria, with the predominance of γ - over β - and α -subdivisions, along with Actinobacteria and Firmicutes. A phylogenetic study revealed that nearly one-third of the community was affiliated to as yet uncultured and unidentified bacteria having a closer relationship to Pseudomonas. Lineages of Burkholderiaceae and Moraxellaceae were relatively more abundant in the total community, while genera affiliated to Xanthomonadaceae and Microbacteriaceae and Exiguobacterium were detected in the culturable fraction. More than 50% of the bacterial isolates affiliated to Stenotrophomonas, Microbacterium, Acinetobacter, Pseudomonas and Enterobacter showed resistance to uranium and other heavy metals. The study showed for the first time that uranium ore harbors major bacterial groups related to organisms having a wide range of environmentally significant functional attributes, and the most abundant members are possibly new groups/taxa. These findings provide new insights into U-ore geomicrobiology that could be useful in biohydrometallurgy and bioremediation applications.

  14. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin.

    Science.gov (United States)

    Leung, Carl; Dudkina, Natalya V; Lukoyanova, Natalya; Hodel, Adrian W; Farabella, Irene; Pandurangan, Arun P; Jahan, Nasrin; Pires Damaso, Mafalda; Osmanović, Dino; Reboul, Cyril F; Dunstone, Michelle A; Andrew, Peter W; Lonnen, Rana; Topf, Maya; Saibil, Helen R; Hoogenboom, Bart W

    2014-12-02

    Membrane attack complex/perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins constitute a major superfamily of pore-forming proteins that act as bacterial virulence factors and effectors in immune defence. Upon binding to the membrane, they convert from the soluble monomeric form to oligomeric, membrane-inserted pores. Using real-time atomic force microscopy (AFM), electron microscopy (EM), and atomic structure fitting, we have mapped the structure and assembly pathways of a bacterial CDC in unprecedented detail and accuracy, focussing on suilysin from Streptococcus suis. We show that suilysin assembly is a noncooperative process that is terminated before the protein inserts into the membrane. The resulting ring-shaped pores and kinetically trapped arc-shaped assemblies are all seen to perforate the membrane, as also visible by the ejection of its lipids. Membrane insertion requires a concerted conformational change of the monomeric subunits, with a marked expansion in pore diameter due to large changes in subunit structure and packing.

  15. Presence of insulin receptors in cultured glial C6 cells. Regulation by butyrate.

    Science.gov (United States)

    Montiel, F; Ortiz-Caro, J; Villa, A; Pascual, A; Aranda, A

    1989-01-01

    The presence of insulin receptor and its regulation by butyrate and other short-chain fatty acids was studied in C6 cells, a rat glioma cell line. Intact C6 cells bind 125I-insulin in a rapid, reversible and specific manner. Scatchard analysis of the binding data gives typical curvilinear plots with apparent affinities of approx. 6 nM and 70 nM for the low-affinity (approx. 90% of total) and high-affinity (approx. 10% of total) sites respectively. Incubation with butyrate results in a time- and dose-dependent decrease of insulin binding to C6 cells. A maximal effect was found with 2 mM-butyrate that decreased the receptor by 40-70% after 48 h. Butyrate decreased numbers of receptors of both classes, but did not significantly alter receptor affinity. Other short-chain fatty acids, as well as keto acids, had a similar effect, but with a lower potency. Cycloheximide caused an accumulation of insulin receptors at the cell surface, since insulin binding increased and receptor affinity did not change after incubation with the inhibitor. Simultaneous addition of butyrate and cycloheximide abolished the loss of receptors produced by the fatty acid. In cells preincubated with butyrate, cycloheximide also produced a large increase in receptor numbers, showing that in the absence of new receptor synthesis a large pool of receptors re-appears at the surface of butyrate-treated cells. PMID:2930502

  16. Repair of a Bacterial Small β-Barrel Toxin Pore Depends on Channel Width.

    Science.gov (United States)

    von Hoven, Gisela; Rivas, Amable J; Neukirch, Claudia; Meyenburg, Martina; Qin, Qianqian; Parekh, Sapun; Hellmann, Nadja; Husmann, Matthias

    2017-02-14

    Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca(2+)-dependent repair following attack by a small β-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair. Mutational analysis uncovered a role of channel width in toxicity and repair. Thus, the replacement of serine at phobalysin´s presumed channel narrow point with the bulkier tryptophan, the corresponding residue in Vibrio cholerae cytolysin (W318), modulated Ca(2+) influx, lysosomal exocytosis, and membrane repair. And yet, replacing tryptophan (W318) with serine in Vibrio cholerae cytolysin enhanced toxicity. The data reveal divergent strategies evolved by two related small β-pore-forming toxins to manipulate target cells: phobalysin leads to fulminant perturbation of ion concentrations, closely followed by Ca(2+) influx-dependent membrane repair. In contrast, V. cholerae cytolysin causes insidious perturbations and escapes control by the cellular wounded membrane repair-like response.IMPORTANCE Previous studies demonstrated that large transmembrane pores, such as those formed by perforin or bacterial toxins of the cholesterol-dependent cytolysin family, trigger rapid, Ca(2+) influx-dependent repair mechanisms. In contrast, recovery from attack by the small β-pore-forming Staphylococcus aureus alpha-toxin or aerolysin is slow in comparison and does not depend on extracellular Ca(2+) To further elucidate the scope of Ca(2+) influx-dependent repair and understand its limitations, we compared the cellular responses to phobalysin and V. cholerae cytolysin, two related small β-pore-forming toxins which create membrane pores of slightly different sizes. The data indicate that the channel width of a small β-pore-forming toxin is a critical determinant of both primary

  17. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells.

    Directory of Open Access Journals (Sweden)

    Hui Yan

    Full Text Available Short chain fatty acids (SCFA, products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity.

  18. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells.

    Science.gov (United States)

    Yan, Hui; Ajuwon, Kolapo M

    2015-01-01

    Short chain fatty acids (SCFA), products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity.

  19. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    Science.gov (United States)

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication.

  20. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention.

    Science.gov (United States)

    Khan, Sabbir; Jena, Gopabandhu

    2015-01-01

    The contribution of epigenetic mechanisms in diabetes mellitus (DM), β-cell reprogramming and its complications is an emerging concept. Recent evidence suggests that there is a link between DM and histone deacetylases (HDACs), because HDAC inhibitors promote β-cell differentiation, proliferation, function and improve insulin resistance. Moreover, gut microbes and diet-derived products can alter the host epigenome. Furthermore, butyrate and butyrate-producing microbes are decreased in DM. Butyrate is a short-chain fatty acid produced from the fermentation of dietary fibers by microbiota and has been proven as an HDAC inhibitor. The present review provides a pragmatic interpretation of chromatin-dependent and independent complex signaling/mechanisms of butyrate for the treatment of Type 1 and Type 2 DM, with an emphasis on the promising strategies for its drugability and therapeutic implication.

  1. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    Directory of Open Access Journals (Sweden)

    S. Farjana

    2013-01-01

    Full Text Available This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs and multiwalled carbon nanotubes (MWCNTs. The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, and for BNC pellicles modified with MWCNTs it was from 0.12 S·cm−1 to 1.6 S·cm−1. The strain-induced electromechanical response, resistance versus strain, was monitored during the application of tensile force in order to study the sensitivity of the modified nanocellulose. A maximum gauge factor of 252 was found from the highest conductive sample treated by MWCNT. It has been observed that the sensitivity of the sample depends on the conductivity of the modified cellulose.

  2. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways.

    Science.gov (United States)

    Willis, Lisa M; Whitfield, Chris

    2013-08-30

    Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.

  3. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  4. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    Science.gov (United States)

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-05-31

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

  5. Fat coating of Ca butyrate results in extended butyrate release in the gastrointestinal tract of broilers

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.; Heetkamp, M.J.W.; Buyse, J.; Niewold, T.A.

    2015-01-01

    Based on its described beneficial effects on small and large intestinal epithelium, butyrate can be a very good alternative to antimicrobial growth promoters. Effective dietary application requires coating because the majority of uncoated butyrate is purportedly absorbed before reaching the proximal

  6. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    Science.gov (United States)

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  7. Antagonistic Effects of Sodium Butyrate and N-(4-Hydroxyphenyl-retinamide on Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Rainer Kuefer

    2007-03-01

    Full Text Available Butyrates and retinoids are promising antineoplastic agents. Here we analyzed effects of sodium butyrate and N-(4-hydroxyphenyl-retinamide (4-HPR on prostate cancer cells as monotherapy or in combination in vitro and in vivo. Sodium butyrate and 4-HPR induced concentration-dependent growth inhibition in prostate cancer cells in vitro. The isobologram analysis revealed that sodium butyrate and 4-HPR administered together antagonize effects of each other. For the in vivo studies, a water-soluble complex (4-HPR with a cyclodextrin was created. A single dose of sodium butyrate and 4-HPR showed a peak level in chicken plasma within 30 minutes. Both compounds induced inhibition of proliferation and apoptosis in xenografts of the chicken chorioallantoic membrane. Analysis of the cytotoxic effects of the drugs used in combination demonstrated an antagonistic effect on inhibition of proliferation and on induction of apoptosis. Prolonged jun N-terminal kinase phosphorylation induced by sodium butyrate and 4-HPR was strongly attenuated when both compounds were used in combination. Both compounds induced inhibition of NF-κ,B. This effect was strongly antagonized in LNCaP cells when the compounds were used in combination. These results indicate that combinational therapies have to be carefully investigated due to potential antagonistic effects in the clinical setting despite promising results of a monotherapy.

  8. Bacterial Muramyl Dipeptide (MDP) Restricts Human Cytomegalovirus Replication via an IFN-β-Dependent Pathway.

    Science.gov (United States)

    Kapoor, Arun; Fan, Yi-Hsin; Arav-Boger, Ravit

    2016-02-02

    We recently reported that induction of NOD2 by human Cytomegalovirus (HCMV) resulted in virus inhibition and upregulation of antiviral and inflammatory cytokines. Here we investigated the effects of muramyl dipeptide (MDP), a bacterial cell wall component that activates NOD2, on HCMV replication and antiviral responses. HCMV infection of human foreskin fibroblasts induced NOD2, the downstream receptor-interacting serine/threonine-protein kinase 2 (RIPK2), resulting in phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). MDP treatment following infection at low multiplicity (MOI = 0.1 PFU/cell) inhibited HCMV in a dose-dependent manner and further induced phosphorylation of TBK1, IRF3 and expression of IFN-β. None of these effects of MDP were observed following infection at multiplicity of 1. In infected NOD2 knocked-down cells MDP did not induce IFN-β, irrespective of MOI. Treatment with MDP before infection also inhibited HCMV, an effect augmented with treatment duration. Treatment with an IFN-β receptor blocking antibody or knockdown of IFN-β significantly attenuated the inhibitory effect of MDP on HCMV. MDP treatment before or after infection with herpesvirus 1 did not inhibit its replication. Summarized, NOD2 activation exerts anti-HCMV activities predominantly via IFN-β. Since MDP is a bacterial cell wall component, ongoing microbial exposure may influence HCMV replication.

  9. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    Science.gov (United States)

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  10. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    Directory of Open Access Journals (Sweden)

    Igor Buzalewicz

    Full Text Available The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH, which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an

  11. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Hike Nikiyan

    2010-01-01

    Full Text Available The effect of a relative humidity (RH in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.

  12. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V

    2016-05-01

    This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates.

  13. Comparison of culture-dependent and -independent methods for bacterial community monitoring during Montasio cheese manufacturing.

    Science.gov (United States)

    Carraro, Lisa; Maifreni, Michela; Bartolomeoli, Ingrid; Martino, Maria Elena; Novelli, Enrico; Frigo, Francesca; Marino, Marilena; Cardazzo, Barbara

    2011-04-01

    The microbial community in milk is of great importance in the manufacture of traditional cheeses produced using raw milk and natural cultures. During milk curdling and cheese ripening, complex interactions occur in the microbial community, and accurate identification of the microorganisms involved provides essential information for understanding their role in these processes and in flavor production. Recent improvements in molecular biological methods have led to their application to food matrices, and thereby opened new perspectives for the study of microbial communities in fermented foods. In this study, a description of microbial community composition during the manufacture and ripening of Montasio cheese was provided. A combined approach using culture-dependent and -independent methods was applied. Culture-dependent identification was compared with 16S clone libraries sequencing data obtained from both DNA and reverse-transcribed RNA (cDNA) amplification and real-time quantitative PCR (qPCR) assays developed to detect and quantify specific bacterial species/genera (Streptococcus thermophilus, Lactobacillus casei, Pediococcus pentosaceus, Enterococcus spp., Pseudomonas spp.). S. thermophilus was the predominant LAB species throughout the entire ripening period of Montasio cheese. The culture-independent method demonstrates the relevant presence of Pseudomonas spp. and Lactococcus piscium at the beginning of ripening. The culture-dependent approach and the two culture-independent approaches produced complementary information, together generating a general view of cheese microbial ecology.

  14. Severe bacterial infections in patients with non-transfusion-dependent thalassemia: prevalence and clinical risk factors

    Directory of Open Access Journals (Sweden)

    Nattiya Teawtrakul

    2015-10-01

    Conclusion: The prevalence of bacterial infection in patients with NTDT was found to be moderate. Time after splenectomy >10 years, deferoxamine therapy, and iron overload may be clinical risk factors for severe bacterial infection in patients with NTDT. Bacterial infection should be recognized in splenectomized patients with NTDT, particularly those who have an iron overload.

  15. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  16. Repair of a Bacterial Small β-Barrel Toxin Pore Depends on Channel Width

    Science.gov (United States)

    von Hoven, Gisela; Rivas, Amable J.; Neukirch, Claudia; Meyenburg, Martina; Qin, Qianqian; Parekh, Sapun

    2017-01-01

    ABSTRACT Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca2+-dependent repair following attack by a small β-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae. In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair. Mutational analysis uncovered a role of channel width in toxicity and repair. Thus, the replacement of serine at phobalysin´s presumed channel narrow point with the bulkier tryptophan, the corresponding residue in Vibrio cholerae cytolysin (W318), modulated Ca2+ influx, lysosomal exocytosis, and membrane repair. And yet, replacing tryptophan (W318) with serine in Vibrio cholerae cytolysin enhanced toxicity. The data reveal divergent strategies evolved by two related small β-pore-forming toxins to manipulate target cells: phobalysin leads to fulminant perturbation of ion concentrations, closely followed by Ca2+ influx-dependent membrane repair. In contrast, V. cholerae cytolysin causes insidious perturbations and escapes control by the cellular wounded membrane repair-like response. PMID:28196960

  17. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane.

    Science.gov (United States)

    Jordan, Lorne D; Zhou, Yongyao; Smallwood, Chuck R; Lill, Yoriko; Ritchie, Ken; Yip, Wai Tak; Newton, Salete M; Klebba, Phillip E

    2013-07-09

    Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB-ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism.

  18. IL-22 Controls Iron-Dependent Nutritional Immunity Against Systemic Bacterial Infections

    Science.gov (United States)

    Sakamoto, Kei; Kim, Yun-Gi; Hara, Hideki; Kamada, Nobuhiko; Caballero-Flores, Gustavo; Tolosano, Emanuela; Soares, Miguel P.; Puente, José L.; Inohara, Naohiro; Núñez, Gabriel

    2017-01-01

    Host immunity limits iron availability to pathogenic bacteria, but whether immunity limits pathogenic bacteria from accessing host heme, the major source of iron in the body, remains unclear. Using Citrobacter rodentium, a mouse enteric pathogen and Escherichia coli, a major cause of sepsis in humans as models, we find that interleukin-22, a cytokine best known for its ability to promote epithelial barrier function, also suppresses the systemic growth of bacteria by limiting iron availability to the pathogen. Using an unbiased proteomic approach to understand the mechanistic basis of IL-22 dependent iron retention in the host, we have identified that IL-22 induces the production of the plasma hemoglobin scavenger haptoglobin and heme scavenger hemopexin. Moreover, the anti-microbial effect of IL-22 depends on the induction of hemopexin expression, while haptogloblin is dispensable. Impaired pathogen clearance in infected Il22−/− mice was restored by hemopexin administration and hemopexin-deficient mice had increased pathogen loads after infection. These studies reveal a previously unrecognized host defense mechanism regulated by IL-22 that relies on the induction of hemopexin to limit heme availability to bacteria leading to suppression of bacterial growth during systemic infections. PMID:28286877

  19. Kinetics of syntrophic cultures: a theoretical treatise on butyrate fermentation.

    Science.gov (United States)

    Kleerebezem, R; Stams, A J

    2000-03-01

    Numerous microbial conversions in methanogenic environments proceed at (Gibbs) free energy changes close to thermodynamic equilibrium. In this paper we attempt to describe the consequences of this thermodynamic boundary condition on the kinetics of anaerobic conversions in methanogenic environments. The anaerobic fermentation of butyrate is used as an example. Based on a simple metabolic network stoichiometry, the free energy change based balances in the cell, and the flux of substrates and products in the catabolic and anabolic reactions are coupled. In butyrate oxidation, a mechanism of ATP-dependent reversed electron transfer has been proposed to drive the unfavorable oxidation of butyryl-CoA to crotonyl-CoA. A major assumption in our model is that ATP-consumption and electron translocation across the cytoplasmic membrane do not proceed according to a fixed stoichiometry, but depend on the cellular concentration ratio of ATP and ADP. The energetic and kinetic impact of product inhibition by acetate and hydrogen are described. A major consequence of the derived model is that Monod-based kinetic description of this type of conversions is not feasible, because substrate conversion and biomass growth are proposed to be uncoupled. It furthermore suggests that the specific substrate conversion rate cannot be described as a single function of the driving force of the catabolic reaction but depends on the actual substrate and product concentrations. By using nonfixed stoichiometries for the membrane associated processes, the required flexibility of anaerobic bacteria to adapt to varying environmental conditions can be described.

  20. Function and phylogeny of bacterial butyryl-CoA:acetate transferases and their diversity in the proximal colon of swine

    Science.gov (United States)

    Studying the host-associated butyrate-producing bacterial community is important because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl-coA:acetate transferase (2.3.8.3) as a the main gene for butyrate production in intestinal ecosystems; h...

  1. Butyrate-induced transcriptional changes in human colonic mucosa

    NARCIS (Netherlands)

    Vanhoutvin, S.A.L.W.; Troost, F.J.; Hamer, H.M.; Lindsey, P.J.; Koek, G.H.; Jonkers, D.M.A.E.; Kodde, A.; Venema, K.; Brummer, R.J.M.

    2009-01-01

    Background: Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on

  2. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    Directory of Open Access Journals (Sweden)

    Eric Drago

    Full Text Available Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC, and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  3. Decoupling Environment-Dependent and Independent Genetic Robustness across Bacterial Species.

    Directory of Open Access Journals (Sweden)

    Shiri Freilich

    2010-02-01

    Full Text Available The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species' lifestyle (specialized/generalist; the second, environmental-independent, is associated (correlation = approximately 0.6 with the intrinsic metabolic capacities of a species-higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets.

  4. ATP-dependent transcriptional activation by bacterial PspF AAA+protein.

    Science.gov (United States)

    Schumacher, Jörg; Zhang, Xiaodong; Jones, Susan; Bordes, Patricia; Buck, Martin

    2004-05-14

    Transcription activation by bacterial sigma(54)-dependent enhancer-binding proteins (EBPs) requires their tri-nucleotide hydrolysis to restructure the sigma(54) RNA polymerase (RNAP). EBPs share sequence similarity with guanine nucleotide binding-proteins and ATPases associated with various cellular activities (AAA) proteins, especially in the mononucleotide binding P-loop fold. Using the phage shock protein F (PspF) EBP, we identify P-loop residues responsible for nucleotide binding and hydrolysis, consistent with their roles in other P-loop NTPases. We show the refined low-resolution structure of an EBP, PspF, revealing a hexameric ring organisation characteristic of AAA proteins. Functioning of EBPs involves ATP binding, higher oligomer formation and ATP hydrolysis coupled to the restructuring of the RNAP. This is thought to be a highly coordinated multi-step process, but the nucleotide-driven mechanism of oligomerisation and ATP hydrolysis is little understood. Our kinetic and structural data strongly suggest that three PspF dimers assemble to form a hexamer upon nucleotide binding. During the ATP hydrolysis cycle, both ATP and ADP are bound to oligomeric PspF, in line with a sequential hydrolysis cycle. We identify a putative R-finger, and show its involvement in ATP hydrolysis. Substitution of this arginine residue results in nucleotide-independent formation of hexameric rings, structurally linking the putative R-finger and, by inference, a specific nucleotide interaction to the control of PspF oligomerisation.

  5. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms.

    Science.gov (United States)

    Liu, Jiaming; Wang, Fangyan; Luo, Haihua; Liu, Aihua; Li, Kangxin; Li, Cui; Jiang, Yong

    2016-01-01

    Gastric ulcers (GUs) are a common type of peptic ulcer. Alcohol overdose is one of the main causes of GU, which is difficult to prevent. Although the protective effect of butyrate on inflammation-related diseases is well understood, its effect on GUs has not been reported. We investigated the protective effects of butyrate against ethanol-induced lesions to the gastric mucosa in mice and the underlying mechanisms. BALB/c mice were orally pretreated with butyrate for 30min prior to the establishment of the GU model by challenge with absolute ethanol. Ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas butyrate pretreatment reduced the gastric mucosal injuries in a dose-dependent manner. Butyrate pretreatment also significantly ameliorated contents of malondialdehyde (MDA) and carbonyl proteins, and decreased levels of IL-1β, TNF-α and IL-6. The Western blot results consistently demonstrated that butyrate pretreatment attenuated the phosphorylation of NF-κB p65, p38 MAPK and ERKs in the gastric tissues. Additionally, gastric wall mucus (GWM), a parameter reflecting mucosal defense, was clearly increased by butyrate pretreatment. Butyrate pretreatment protects the gastric mucosa against ethanol-induced lesions by strengthening the mucosal defense and anti-oxidant and anti-inflammatory activities. As a necessary substance for the body, butyrate may be applied to the prevention and treatment of GUs.

  6. Biogas Production on Demand Regulated by Butyric Acid Addition

    Science.gov (United States)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  7. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites

    Science.gov (United States)

    Nogi, Masaya; Ifuku, Shinsuke; Abe, Kentaro; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2006-03-01

    We produced transparent nanocomposite reinforced with bacterial cellulose having a wide range of fiber contents, from 7.4to66.1wt%, by the combination of heat drying and organic solvent exchange methods. The addition of only 7.4wt% of bacterial cellulose nanofibers, which deteriorated light transmittance by only 2.4%, was able to reduce the coefficient of thermal expansion of acrylic resin from 86×10-6to38×10-6K-1. As such, the nanofiber network of bacterial cellulose has an extraordinary potential as a reinforcement to obtain optically transparent and low thermal expansion materials.

  8. Dependency of cerebral blood flow upon mean arterial pressure in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Larsen, Fin Stolze; Qvist, Jesper;

    2000-01-01

    OBJECTIVE: Patients with acute bacterial meningitis are often treated with sympathomimetics to maintain an adequate mean arterial pressure (MAP). We studied the influence of such therapy on cerebral blood flow (CBF). DESIGN: Prospective physiologic trial. SETTING: The Department of Infectious...... Diseases, Copenhagen University Hospital, Denmark. PATIENTS: Sixteen adult patients with acute bacterial meningitis. INTERVENTION: Infusion of norepinephrine to increase MAP. MEASUREMENTS: During a rise in MAP induced by norepinephrine infusion, we measured relative changes in CBF by transcranial Doppler...... bacterial meningitis, CBF autoregulation is impaired. With recovery from meningitis, the cerebral vasculature regains the ability to maintain cerebral perfusion at a constant level despite variations in MAP....

  9. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    Institute of Scientific and Technical Information of China (English)

    Roberto Berni Canani; Margherita Di Costanzo; Ludovica Leone; Monica Pedata; Rosaria Meli; Antonio Calignano

    2011-01-01

    The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from nonabsorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport,ameliorates mucosal inflammation and oxidative status,reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition,a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases,hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different;many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine.

  10. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary MRSA infection

    Science.gov (United States)

    Sun, Keer; Metzger, Dennis W.

    2014-01-01

    Methicillin-resistant S. aureus (MRSA) has emerged as a leading contributor to mortality during recent influenza pandemics. The mechanism for this influenza-induced susceptibility to secondary S. aureus infection is poorly understood. Here we show that innate antibacterial immunity was significantly suppressed during the recovery stage of influenza infection, despite the fact that MRSA super-infection had no significant effect on viral burdens. Compared to mice infected with bacteria alone, post-influenza MRSA infected mice exhibited impaired bacterial clearance, which was not due to defective phagocyte recruitment, but rather coincided with reduced intracellular reactive oxygen species (ROS) levels in alveolar macrophages and neutrophils. NADPH oxidase is responsible for ROS production during phagocytic bacterial killing, a process also known as oxidative burst. We found that gp91phox-containing NADPH oxidase activity in macrophages and neutrophils was essential for optimal bacterial clearance during respiratory MRSA infections. In contrast to WT animals, gp91phox−/− mice exhibited similar defects in MRSA clearance before and after influenza infection. Using gp91phox+/− mosaic mice, we further demonstrate that influenza infection inhibits a cell-intrinsic contribution of NADPH oxidase to phagocyte bactericidal activity. Together, our results establish that influenza infection suppresses NADPH oxidase-dependent bacterial clearance and leads to susceptibility to secondary MRSA infection. PMID:24563256

  11. Biochemical and structural characterization of a novel bacterial manganese-dependent hydroxynitrile lyase.

    NARCIS (Netherlands)

    Hajnal, I.; Lyskowski, A.; Hanefeld, U.; Gruber, K.; Schwab, H.; Steiner, K.

    2013-01-01

    Hydroxynitrile lyases (HNLs), which catalyse the decomposition of cyanohydrins, are found mainly in plants. In vitro, they are able to catalyse the synthesis of enantiopure cyanohydrins, which are versatile building blocks in the chemical industry. Recently, HNLs have also been discovered in bacteri

  12. Dielectric relaxation studies in polyvinyl butyral

    Science.gov (United States)

    Mehendru, P. C.; Kumar, Naresh; Arora, V. P.; Gupta, N. P.

    1982-10-01

    Dielectric measurements have been made in thick films (˜100 μm) of polyvinyl butyral (PVB) having degree of polymerization n=1600, in the frequency range 100 Hz-100 KHz and temperature range 300-373 K. The results indicated that PVB was in the amorphous phase and observed dielectric dispersion has been assigned as the β-relaxation process. The β relaxation is of Debye type with symmetrical distribution of relaxation times. The dielectric relaxation strength Δɛ and the distribution parameters β¯ increase with temperature. The results can be qualitatively explained by assuming the hindered rotation of the side groups involving hydroxyl/acetate groups.

  13. Controlled Morphology of Porous Polyvinyl Butyral Nanofibers

    OpenAIRE

    2011-01-01

    A simple and effective method for the fabrication of porous nanofibers based on the solvent evaporation methods in one-step electrospinning process from the commercial polyvinyl butyral (PVB) is presented. The obtained nanofibers are prevalently amorphous with diameters ranging from 150 to 4350 nm and specific surface area of approximately 2–20 m2/g. Pore size with irregular shape of the porous PVB fibers ranged approximately from 50 to 200 nm. The effects of polymer solution concentration,...

  14. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    John M. Rumberger

    2014-10-01

    Full Text Available We determined the effect of butyrate and other short-chain fatty acids (SCFA on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 µM also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and tumor necrosis factor-alpha-(TNF-α mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α– , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC.

  15. Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens.

    Science.gov (United States)

    Wang, Zheng; Zhao, Qi; Zhang, Dongxia; Sun, Chengming; Bao, Cuixia; Yi, Maoli; Xing, Li; Luo, Deyan

    2016-09-01

    Emerging evidence from animal models suggests that platelets may participate in a wide variety of processes including the immune response against infection. More than 200 whole blood samples from patients and healthy controls were run in the System XE-5000 analyzer, and plasma fractions were separated for the following tests by ELISA, Luminex and light scattering. We describe two mechanisms by which platelets may contribute to immune function against various bacterial pathogens based on increased mean platelet volume in gram-positive bacterial infections and increased platelet counts in gram-negative bacterial infections. Gram-negative bacteria activate platelets to recruit neutrophils, which participate in the immune response against infection. During this process, fractalkine, macrophage inflammatory protein-1β, interleukin-17A, tumor necrosis factor-α and platelet-activating factor were higher in patients infected with Escherichia coli; additionally, giant platelets were observed under the microscope. Meanwhile, we found that platelets played a different role in gram-positive bacterial infections. Specifically, they could actively adhere to gram-positive bacteria in circulation and transfer them to immune sites to promote antibacterial lymphocyte expansion. During this process, complement C3 and factor XI were more highly expressed in patients infected with Staphylococcus aureus; additionally, we detected more small platelets under the microscope. Platelets participate in the immune response against both gram-negative and gram-positive bacteria, although the mechanisms differ. These results will help us understand the complex roles of platelets during infections, and direct our use of antibiotics based on clinical platelet data.

  16. Depletion of Shine-Dalgarno Sequences Within Bacterial Coding Regions Is Expression Dependent

    Directory of Open Access Journals (Sweden)

    Chuyue Yang

    2016-11-01

    Full Text Available Efficient and accurate protein synthesis is crucial for organismal survival in competitive environments. Translation efficiency (the number of proteins translated from a single mRNA in a given time period is the combined result of differential translation initiation, elongation, and termination rates. Previous research identified the Shine-Dalgarno (SD sequence as a modulator of translation initiation in bacterial genes, while codon usage biases are frequently implicated as a primary determinant of elongation rate variation. Recent studies have suggested that SD sequences within coding sequences may negatively affect translation elongation speed, but this claim remains controversial. Here, we present a metric to quantify the prevalence of SD sequences in coding regions. We analyze hundreds of bacterial genomes and find that the coding sequences of highly expressed genes systematically contain fewer SD sequences than expected, yielding a robust correlation between the normalized occurrence of SD sites and protein abundances across a range of bacterial taxa. We further show that depletion of SD sequences within ribosomal protein genes is correlated with organismal growth rates, supporting the hypothesis of strong selection against the presence of these sequences in coding regions and suggesting their association with translation efficiency in bacteria.

  17. Study on the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Tang Chunsheng; Rong Fengnian

    2005-01-01

    Objective:To investigate the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells in vitro.Methods:Human ovarian epithelial cancer 3AO cells were cultured in vitro and treated with sodium butyrate of different concentration for different time. The characters of apoptosis were assessed through light microscopy and DNA ladder analysis. The morphological changes of mitochondria were detected through electron and epifluorescence microscopy. The functional changes of mitochondria and the expression of Bcl-2/Bax protein were analyzed by flow cytometry.Results:As the concentration of sodium butyrate rose to 4mmol/L, the morphologic characters of apoptosis were found by light microscopy, DNA ladder was observed. Under epifluorescence microscope the fluorescence of the control group was stronger than that of the experimental group. Under electron microscope swelled mitochondria was detected. Flow cytometry analysis showed mitochondria transmembrane potentials decreased and there were down-regulate of Bcl-2 protein and up-regulate of the Bax protein(P<0.05).Conclusion:Sodium butyrate can induce apoptosis of 3AO cells in a time-dose dependent manner. Mitochondrion may play a key role in the procedure of apoptosis of ovarian cancer cells.

  18. Synthesis and Ionic Conductivity of Siloxane Based Polymer Electrolytes with Propyl Butyrate Pendant Groups

    Energy Technology Data Exchange (ETDEWEB)

    Jalagonia, Natia; Tatrishvili, Tamara; Markarashvili, Eliza; Aneli, Jimsher; Mukbaniani, Omar [Javakhishvili Tbilisi State University, Tbilisi (Georgia); Grazulevicius, Jouzas Vidas [Kaunas University of Technology, Kaunas (Lithuania)

    2016-02-15

    Hydrosilylation reactions of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl butyrate catalyzed by Karstedt's, H2PtCl6 and Pt/C catalyst were studied and 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane was obtained. The reaction order, activation energies and rate constants were determined. Ringopening polymerization of 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane in the presence of CaF2, LiF, KF and anhydrous potassium hydroxide in 60-70 .deg. C temperature range was carried out and methylsiloxane oligomers with regular arrangement of propyl butyrate pendant groups were obtained. The synthesized products were studied by FTIR and NMR spectroscopy. The polysiloxanes were characterized by wide-angle X-ray, gel-permeation chromatography and DSC analyses. Via sol-gel processes of oligomers doped with lithium trifluoromethylsulfonate or lithium bis (trifluoromethylsulfonyl)imide, solid polymer electrolyte membranes were obtained. The dependences of ionic conductivity of obtained polyelectrolytes on temperature and salt concentration were investigated, and it was shown that electric conductivity of the polymer electrolyte membranes at room temperature changed in the range 3.5x10{sup -4} - 6.4xa0{sup -7} S/cm.

  19. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane.

    Science.gov (United States)

    Amarasiri, Mohan; Hashiba, Satoshi; Miura, Takayuki; Nakagomi, Toyoko; Nakagomi, Osamu; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-05-15

    We demonstrated the genotype-dependent removal of human norovirus particles with a microfiltration (MF) membrane in the presence of bacteria bearing histo-blood group antigens (HBGAs). Three genotypes (GII.3, GII.4, and GII.6) of norovirus-like particles (NoVLPs) were mixed with three bacterial strains (Enterobacter sp. SENG-6, Escherichia coli O86:K61:B7, and Staphylococcus epidermidis), respectively, and the mixture was filtered with an MF membrane having a nominal pore size of 0.45 μm. All NoVLP genotypes were rejected by the MF membrane in the presence of Enterobacter sp. SENG-6, which excreted HBGAs as extracellular polymeric substances (EPS). This MF membrane removal of NoVLPs was not significant when EPS was removed from cells of Enterobacter sp. SENG-6. GII.6 NoVLP was not rejected with the MF membrane in the presence of E. coli O86:K61:B7, but the removal of EPS of E. coli O86:K61:B7 increased the removal efficiency due to the interaction of NoVLPs with the exposed B-antigen in lipopolysaccharide (LPS) of E. coli O86:K61:B7. No MF membrane removal of all three genotypes was observed when S. epidermidis, an HBGA-negative strain, was mixed with NoVLPs. These results demonstrate that the location of HBGAs on bacterial cells is an important factor in determining the genotype-dependent removal efficiency of norovirus particles with the MF membrane. The presence of HBGAs in mixed liquor suspended solids from a membrane bioreactor (MBR) pilot plant was confirmed by immune-transmission electron microscopy, which implies that bacterial HBGAs can contribute to the genotype-dependent removal of human noroviruses with MBR using MF membrane.

  20. Review article: The role of butyrate on colonic function

    NARCIS (Netherlands)

    Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J.

    2008-01-01

    Background: Butyrate, a short-chain fatty acid, is a main end-product of intestinal microbial fermentation of mainly dietary fibre. Butyrate is an important energy source for intestinal epithelial cells and plays a role in the maintenance of colonic homeostasis. Aim: To provide an overview on the pr

  1. Butyrate-induced transcriptional changes in human colonic mucosa.

    Directory of Open Access Journals (Sweden)

    Steven A L W Vanhoutvin

    Full Text Available BACKGROUND: Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate. Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Five hundred genes were found to be differentially expressed after a two week daily butyrate administration with enemas. Pathway analysis showed that the butyrate intervention mainly resulted in an increased transcriptional regulation of the pathways representing fatty acid oxidation, electron transport chain and oxidative stress. In addition, several genes associated with epithelial integrity and apoptosis, were found to be differentially expressed after the butyrate intervention. CONCLUSIONS/SIGNIFICANCE: Colonic administration of butyrate in concentrations that can be achieved by consumption of a high-fiber diet enhances the maintenance of colonic homeostasis in healthy subjects, by regulating fatty acid metabolism, electron transport and oxidative stress pathways on the transcriptional level and provide for the first time, detailed molecular insight in the transcriptional response of gut mucosa to butyrate.

  2. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Husen Zhang

    Full Text Available Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  3. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species

    Directory of Open Access Journals (Sweden)

    Jennifer Tsang

    2014-01-01

    Full Text Available Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ54 (also known as RpoN to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni, Gammaproteobacteria (e.g., Vibrio and Pseudomonas species, and Alphaproteobacteria (e.g., Caulobacter crescentus. This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.

  4. Two-component system YvqEC-dependent bacterial resistance against vancomycin in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Shumeng; Hu, Yimin; Fan, Qingyun; Wang, Xun; He, Jin

    2015-08-01

    YvqEC is one of the two-component signal transduction systems that may respond to cell envelope stress and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvqE and a response regulator YvqC. In this study, we separately constructed a single gene mutant ΔyvqE and a double gene mutant ΔyvqEC in Bacillus thuringiensis BMB171 through a homing endonucleases I-SceI mediated markerless gene deletion method. We found that the deletion of either yvqE or yvqEC weakened the resistance of B. thuringiensis against vancomycin. We also identified nine operons that may be involved in the cellular metabolism regulated by YvqC. This study not only enriches our understanding of bacterial resistance mechanisms against vancomycin, but also helps investigate the functions of YvqEC.

  5. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity.

    Science.gov (United States)

    Leclercq, Sophie; Matamoros, Sébastien; Cani, Patrice D; Neyrinck, Audrey M; Jamar, François; Stärkel, Peter; Windey, Karen; Tremaroli, Valentina; Bäckhed, Fredrik; Verbeke, Kristin; de Timary, Philippe; Delzenne, Nathalie M

    2014-10-21

    Alcohol dependence has traditionally been considered a brain disorder. Alteration in the composition of the gut microbiota has recently been shown to be present in psychiatric disorders, which suggests the possibility of gut-to-brain interactions in the development of alcohol dependence. The aim of the present study was to explore whether changes in gut permeability are linked to gut-microbiota composition and activity in alcohol-dependent subjects. We also investigated whether gut dysfunction is associated with the psychological symptoms of alcohol dependence. Finally, we tested the reversibility of the biological and behavioral parameters after a short-term detoxification program. We found that some, but not all, alcohol-dependent subjects developed gut leakiness, which was associated with higher scores of depression, anxiety, and alcohol craving after 3 wk of abstinence, which may be important psychological factors of relapse. Moreover, subjects with increased gut permeability also had altered composition and activity of the gut microbiota. These results suggest the existence of a gut-brain axis in alcohol dependence, which implicates the gut microbiota as an actor in the gut barrier and in behavioral disorders. Thus, the gut microbiota seems to be a previously unidentified target in the management of alcohol dependence.

  6. Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti.

    Science.gov (United States)

    Galardini, Marco; Pini, Francesco; Bazzicalupo, Marco; Biondi, Emanuele G; Mengoni, Alessio

    2013-01-01

    Many bacterial species, such as the alphaproteobacterium Sinorhizobium meliloti, are characterized by open pangenomes and contain multipartite genomes consisting of a chromosome and other large-sized replicons, such as chromids, megaplasmids, and plasmids. The evolutionary forces in both functional and structural aspects that shape the pangenome of species with multipartite genomes are still poorly understood. Therefore, we sequenced the genomes of 10 new S. meliloti strains, analyzed with four publicly available additional genomic sequences. Results indicated that the three main replicons present in these strains (a chromosome, a chromid, and a megaplasmid) partly show replicon-specific behaviors related to strain differentiation. In particular, the pSymB chromid was shown to be a hot spot for positively selected genes, and, unexpectedly, genes resident in the pSymB chromid were also found to be more widespread in distant taxa than those located in the other replicons. Moreover, through the exploitation of a DNA proximity network, a series of conserved "DNA backbones" were found to shape the evolution of the genome structure, with the rest of the genome experiencing rearrangements. The presented data allow depicting a scenario where the pSymB chromid has a distinctive role in intraspecies differentiation and in evolution through positive selection, whereas the pSymA megaplasmid mostly contributes to structural fluidity and to the emergence of new functions, indicating a specific evolutionary role for each replicon in the pangenome evolution.

  7. Susceptibility of Caenorhabditis elegans to Burkholderia infection depends on prior diet and secreted bacterial attractants.

    Directory of Open Access Journals (Sweden)

    Vaughn S Cooper

    Full Text Available The nematode Caenorhabditis elegans may be killed by certain pathogenic bacteria and thus is a model organism for studying interactions between bacteria and animal hosts. However, growing nematodes on prey bacteria may influence their susceptibility to potential pathogens. A method of axenic nematode culture was developed to isolate and quantify interactions between C. elegans and potentially pathogenic strains of the Burkholderia cepacia complex. Studying these dynamics in liquid solution rather than on agar surfaces minimized nematode avoidance behavior and resolved more differences among isolates. Most isolates of B. cenocepacia, B. ambifaria and B. cepacia caused 60-80% mortality of nematodes after 7 days, whereas isolates of B. multivorans caused less mortality (<25% and supported nematode reproduction. However, some B. cenocepacia isolates recovered from chronic infections were much less virulent (5-28% mortality. As predicted, prior diet altered the outcome of interactions between nematodes and bacteria. When given the choice between Burkholderia and E. coli as prey on agar, axenically raised nematodes initially preferred most lethal Burkholderia isolates to E. coli as a food source, but this was not the case for nematodes fed E. coli, which avoided toxic Burkholderia. This food preference was associated with the cell-free supernatant and thus secreted compounds likely mediated bacterial-nematode interactions. This model, which isolates interactions between bacteria and nematodes from the effects of prior feeding, demonstrates that bacteria can influence nematode behavior and their susceptibility to pathogens.

  8. Analysis of bacterial community in bulking sludge using culture-dependent and -independent approaches

    Institute of Scientific and Technical Information of China (English)

    Decai Jin; Ping Wang; Zhihui Bai; Xinxin Wang; Hong Peng; Rong Qi; Zhisheng Yu; Guoqiang Zhuang

    2011-01-01

    The bacterial community of a bulking sludge from a municipal wastewater treatment plant with anoxic-anaerobic-oxic process was investigated by combination of cultivation and 16S rRNA gene clone library analysis for understanding the causes of bulking.A total of 28 species were obtained from 63 isolates collected from six culture media.The most cultivable species belonged to γ-Proteobacteria including Klebsiella sp.,Pseudomonas sp.,Aeromonas sp.and Acinetobacter sp.Further analysis of these strains by repetitive sequence based on polymerase chain reaction (rep-PCR) technology showed that rep-PCR yielded discriminatory banding patterns within the same genus using REP and BOX primer sets.While the culture-independent assessment revealed that β-Proteobacteria was the dominant group in the bulking sample.Sequence analysis revealed that the highest proportion (14.7%) of operational taxonomic units was 98% similar to Candidatus Accumulibacter phosphatis,which is used to remove phosphorous from wastewater.Our results indicated that combining different approaches can produce complementary information,thus generate a more accurate view of microbial community in bulking sludge.

  9. Enhancement of Methacholine-Evoked Tracheal Contraction Induced by Bacterial Lipopolysaccharides Depends on Epithelium and Tumor Necrosis Factor

    Directory of Open Access Journals (Sweden)

    T. Secher

    2012-01-01

    Full Text Available Inhaled bacterial lipopolysaccharides (LPSs induce an acute tumour necrosis factor-alpha (TNF-α- dependent inflammatory response in the murine airways mediated by Toll-like receptor 4 (TLR4 via the myeloid differentiation MyD88 adaptor protein pathway. However, the contractile response of the bronchial smooth muscle and the role of endogenous TNFα in this process have been elusive. We determined the in vivo respiratory pattern of C57BL/6 mice after intranasal LPS administration with or without the presence of increasing doses of methacholine (MCh. We found that LPS administration altered the basal and MCh-evoked respiratory pattern that peaked at 90 min and decreased thereafter in the next 48 h, reaching basal levels 7 days later. We investigated in controlled ex vivo condition the isometric contraction of isolated tracheal rings in response to MCh cholinergic stimulation. We observed that preincubation of the tracheal rings with LPS for 90 min enhanced the subsequent MCh-induced contractile response (hyperreactivity, which was prevented by prior neutralization of TNFα with a specific antibody. Furthermore, hyperreactivity induced by LPS depended on an intact epithelium, whereas hyperreactivity induced by TNFα was well maintained in the absence of epithelium. Finally, the enhanced contractile response to MCh induced by LPS when compared with control mice was not observed in tracheal rings from TLR4- or TNF- or TNF-receptor-deficient mice. We conclude that bacterial endotoxin-mediated hyperreactivity of isolated tracheal rings to MCh depends upon TLR4 integrity that signals the activation of epithelium, which release endogenous TNFα.

  10. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner.

    Science.gov (United States)

    Dulek, Daniel E; Newcomb, Dawn C; Goleniewska, Kasia; Cephus, Jaqueline; Zhou, Weisong; Reiss, Sara; Toki, Shinji; Ye, Fei; Zaynagetdinov, Rinat; Sherrill, Taylor P; Blackwell, Timothy S; Moore, Martin L; Boyd, Kelli L; Kolls, Jay K; Peebles, R Stokes

    2014-09-01

    The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.

  11. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection.

    Directory of Open Access Journals (Sweden)

    Marco A Ataide

    2014-01-01

    Full Text Available Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1β. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1β expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1β upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14(+CD16(-Caspase-1(+ and CD14(dimCD16(+Caspase-1(+ monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1β after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1β and hypersensitivity to secondary bacterial infection during malaria.

  12. Interaction of Gram-negative bacteria with cationic proteins: Dependence on the surface characteristics of the bacterial cell

    Directory of Open Access Journals (Sweden)

    Isabella R Prokhorenko

    2009-03-01

    Full Text Available Isabella R Prokhorenko1, Svetlana V Zubova1, Alexandr Yu Ivanov2, Sergey V Grachev31Laboratory of Molecular Biomedicine, Institute of Basic Biological Problems; 2Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia; 3I.M. Sechenov’s Moscow Medical Academy, Moscow, Russia Abstract: Gram-negative bacteria can enter the bloodstream and interact with serum cationic proteins. The character of interaction will depend on the surface characteristics of bacterial cells, which are determined by bacterial chemotype and density of lipopolysaccharide (LPS packing in the cell wall. It was shown that the lysozyme treatment resulted in the increase sensitivity to hypotonic shock. Signifi cant differences to this effect were found between Escherichia coli strain D21 and D21f2 under treatment with physiological protein concentration. On the basis of electrokinetic measurements and studies of the interaction of cells with lysozyme, the hypothesis was formed that the cell wall of the E. coli strain D21f2 contains more LPS and has a higher density of their packing than the cell wall of the E. coli D21 cells. The effect of lysozyme and lactoferrin on the viability of E. coli cells of two different strains was examined. Lysozyme was found to more effectively inhibit the growth of the E. coli D21 bacteria, and lactoferrin suppressed mainly the growth of the E. coli D21f2 bacteria. These results indicate that the differences in LPS core structure of bacterial R-chemotype, which determines surface charge and density of LPS packing, plays an essential role in the mechanisms of interaction of the cationic proteins with the cell wall.Keywords: lipopolysaccharide, Escherichia coli, chemotype, lysozyme, lactoferrin, colony-forming units

  13. Mutational Analysis of Bacterial NAD+-dependent DNA Ligase:Role of Motif Ⅳ in Ligation Catalysis

    Institute of Scientific and Technical Information of China (English)

    Hong FENG

    2007-01-01

    The bacterial DNA ligase as a multiple domain protein is involved in DNA replication, repair and recombination. Its catalysis of ligation can be divided into three steps. To delineate the roles of amino acid residues in motif Ⅳ in ligation catalysis, site-directed mutants were constructed in a bacterial NAD+-dependent DNA ligase from Thermus sp. TAK16D. It was shown that four conserved residues (D286, G287, V289 and K291) in motif Ⅳ had significant roles on the overall ligation. Under single turnover conditions, the observed apparent rates of D286E, G287A, V289I and K291R mutants were clearly reduced compared with that of WT ligase on both match and mismatch nicked substrates. The effects of D286E mutation on overall ligation may not only be ascribed to the third step. The G287A mutation has a major effect on the second step. The effects of V289I and K291R mutation on overall ligation are not on the third step, perhaps other aspects, such as conformation change of ligase protein in ligation catalysis, are involved. Moreover, the amino acid substitutions of above four residues were more sensitive on mismatch nicked substrate, indicating an enhanced ligation fidelity.

  14. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    Science.gov (United States)

    Kasper, Katherine J; Zeppa, Joseph J; Wakabayashi, Adrienne T; Xu, Stacey X; Mazzuca, Delfina M; Welch, Ian; Baroja, Miren L; Kotb, Malak; Cairns, Ewa; Cleary, P Patrick; Haeryfar, S M Mansour; McCormick, John K

    2014-05-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  15. MHC class I expression dependent on bacterial infection and parental factors in whitefish embryos (Salmonidae).

    Science.gov (United States)

    Clark, Emily S; Wilkins, Laetitia G E; Wedekind, Claus

    2013-10-01

    Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down-regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade-offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.

  16. Controlled Morphology of Porous Polyvinyl Butyral Nanofibers

    Directory of Open Access Journals (Sweden)

    Daniela Lubasova

    2011-01-01

    Full Text Available A simple and effective method for the fabrication of porous nanofibers based on the solvent evaporation methods in one-step electrospinning process from the commercial polyvinyl butyral (PVB is presented. The obtained nanofibers are prevalently amorphous with diameters ranging from 150 to 4350 nm and specific surface area of approximately 2–20 m2/g. Pore size with irregular shape of the porous PVB fibers ranged approximately from 50 to 200 nm. The effects of polymer solution concentration, composition of the solvents mixture, and applied voltage on fiber diameter and morphology were investigated. The theoretical approach for the choice of poor and good solvents for PVB was explained by the application Hansen solubility parameter (HSP and two-dimensional graph. Three basic conditions for the production of porous PVB nanofibers were defined: (i application of good/poor solvent mixture for spinning solution, (ii differences of the evaporation rate between good/poor solvent, and (iii correct ratios of good/poor solvent (v/v. The diameter of prepared porous PVB fibers decreased as the polymer concentration was lowered and with higher applied voltage. These nanofiber sheets with porous PVB fibers could be a good candidate for high-efficiency filter materials in comparison to smooth fibers without pores.

  17. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  18. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth

    Science.gov (United States)

    Rickard, A.H.; Palmer, R.J.; Blehert, D.S.; Campagna, S.R.; Semmelhack, M.F.; Egland, P.G.; Bassler, B.L.; Kolenbrander, P.E.

    2006-01-01

    4,5-dihydroxy-2,3-pentanedione (DPD), a product of the LuxS enzyme in the catabolism of S-ribosylhomocysteine, spontaneously cyclizes to form autoinducer 2 (AI-2). AI-2 is proposed to be a universal signal molecule mediating interspecies communication among bacteria. We show that mutualistic and abundant biofilm growth in flowing saliva of two human oral commensal bacteria, Actinomyces naeslundii T14V and Streptococcus oralis 34, is dependent upon production of AI-2 by S. oralis 34. A luxS mutant of S. oralis 34 was constructed which did not produce AI-2. Unlike wild-type dual-species biofilms, A. naeslundii T14V and an S. oralis 34 luxS mutant did not exhibit mutualism and generated only sparse biofilms which contained a 10-fold lower biomass of each species. Restoration of AI-2 levels by genetic or chemical (synthetic AI-2 in the form of DPD) complementation re-established the mutualistic growth and high biomass characteristic for the wild-type dual-species biofilm. Furthermore, an optimal concentration of DPD was determined, above and below which biofilm formation was suppressed. The optimal concentration was 100-fold lower than the detection limit of the currently accepted AI-2 assay. Thus, AI-2 acts as an interspecies signal and its concentration is critical for mutualism between two species of oral bacteria grown under conditions that are representative of the human oral cavity. ?? 2006 Blackwell Publishing Ltd.

  19. Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches

    Directory of Open Access Journals (Sweden)

    Delavat François

    2012-09-01

    Full Text Available Abstract Background Acid Mine Drainages (AMDs are extreme environments characterized by very acid conditions and heavy metal contaminations. In these ecosystems, the bacterial diversity is considered to be low. Previous culture-independent approaches performed in the AMD of Carnoulès (France confirmed this low species richness. However, very little is known about the cultured bacteria in this ecosystem. The aims of the study were firstly to apply novel culture methods in order to access to the largest cultured bacterial diversity, and secondly to better define the robustness of the community for 3 important functions: As(III oxidation, cellulose degradation and cobalamine biosynthesis. Results Despite the oligotrophic and acidic conditions found in AMDs, the newly designed media covered a large range of nutrient concentrations and a pH range from 3.5 to 9.8, in order to target also non-acidophilic bacteria. These approaches generated 49 isolates representing 19 genera belonging to 4 different phyla. Importantly, overall diversity gained 16 extra genera never detected in Carnoulès. Among the 19 genera, 3 were previously uncultured, one of them being novel in databases. This strategy increased the overall diversity in the Carnoulès sediment by 70% when compared with previous culture-independent approaches, as specific phylogenetic groups (e.g. the subclass Actinobacteridae or the order Rhizobiales were only detected by culture. Cobalamin auxotrophy, cellulose degradation and As(III-oxidation are 3 crucial functions in this ecosystem, and a previous meta- and proteo-genomic work attributed each function to only one taxon. Here, we demonstrate that other members of this community can also assume these functions, thus increasing the overall community robustness. Conclusions This work highlights that bacterial diversity in AMDs is much higher than previously envisaged, thus pointing out that the AMD system is functionally more robust than expected

  20. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana.

    Science.gov (United States)

    Saur, Isabel M L; Kadota, Yasuhiro; Sklenar, Jan; Holton, Nicholas J; Smakowska, Elwira; Belkhadir, Youssef; Zipfel, Cyril; Rathjen, John P

    2016-03-22

    Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.

  1. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    Directory of Open Access Journals (Sweden)

    Katherine J Kasper

    2014-05-01

    Full Text Available Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS, how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6 mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  2. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    Science.gov (United States)

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  3. High pressure and anesthesia: pressure stimulates or inhibits bacterial bioluminescence depending upon temperature.

    Science.gov (United States)

    Nosaka, S; Kamaya, H; Ueda, I

    1988-10-01

    Although high pressure is often viewed as a nonspecific stimulus counteracting anesthesia, pressure can either excite or inhibit biological activity depending on the temperature at application. Temperature and pressure are two independent variables that determine equilibrium quantity, e.g., the state of organisms in terms of activity and anesthesia depth. We used the light intensity of luminous bacteria (Vibrio fischeri) as an activity parameter, and studied the effects of pressure and anesthetics on the bacteria's light intensity at various temperatures. The light intensity was greatest at about 30 degrees C at ambient pressure. When the system was pressurized up to 204 atm, the temperature for maximum light intensity was shifted to higher temperatures. Above the optimal temperature for the maximal light intensity, high pressure increased the light intensity. Below the optimal temperature, pressure decreased light intensity. Pressure only shifts the reaction equilibrium to the lower volume state (Le Chatelier's principle). When the volume of the excited state is larger than the resting state, high pressure inhibits excitation, and vice versa. Halothane 0.008 atm and isoflurane 0.021 atm inhibited the light intensity both above and below the optimal temperature. When pressurized, the light intensity increased in the high temperature range but decreased in the low temperature range, as in the control. Thus, high pressure seemingly potentiated the anesthetic action at low temperatures. When the ratio of the light intensity in bacteria exposed to anesthesia and those not exposed to anesthesia was plotted against the pressure, however, the value approached unity in proportion to the pressure increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors.

    Science.gov (United States)

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-09-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23-0.99 U mg(-1) protein), butyrate kinase (Buk, < 0.03 U mg(-1) protein) and butyryl-CoA:acetate-CoA transferase (But, 3.24-7.64 U mg(-1) protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH₃ and NH₄(+)-N), and a negative dependency can be postulated. Thus, high concentrations of NH₃ and NH₄(+)-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities.

  5. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-07-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 M Oves,3 MS Khan,3 Adnan Memic11Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Center of Excellence in Materials Science (Nanomaterials, Department of Applied Physics, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: CuO is one of the most important transition metal oxides due to its captivating properties. It is used in various technological applications such as high critical temperature superconductors, gas sensors, in photoconductive applications, and so on. Recently, it has been used as an antimicrobial agent against various bacterial species. Here we synthesized different sized CuO nanoparticles and explored the size-dependent antibacterial activity of each CuO nanoparticles preparation.Methods: CuO nanoparticles were synthesized using a gel combustion method. In this approach, cupric nitrate trihydrate and citric acid were dissolved in distilled water with a molar ratio of 1:1. The resulting solution was stirred at 100°C, until gel was formed. The gel was allowed to burn at 200°C to obtain amorphous powder, which was further annealed at different temperatures to obtain different size CuO nanoparticles. We then tested the antibacterial properties using well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration methods.Results: XRD spectra confirmed the formation of single phase CuO nanoparticles. Crystallite size was found to increase with an increase in annealing temperature due to atomic diffusion. A minimum crystallite size of 20 nm was observed in the case of CuO nanoparticles annealed at 400°C. Transmission electron microscopy results corroborate well with XRD results. All CuO nanoparticles exhibited inhibitory effects against both Gram-positive and -negative bacteria. The size of the particles was correlated with its antibacterial activity.Conclusion: The antibacterial activity of CuO nanoparticles

  6. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    Science.gov (United States)

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis.

  7. Polyphasic approach to bacterial dynamics during the ripening of Spanish farmhouse cheese, using culture-dependent and -independent methods.

    Science.gov (United States)

    Martín-Platero, Antonio M; Valdivia, Eva; Maqueda, Mercedes; Martín-Sánchez, Inés; Martínez-Bueno, Manuel

    2008-09-01

    We studied the dynamics of the microbial population during ripening of Cueva de la Magahá cheese using a combination of classical and molecular techniques. Samples taken during ripening of this Spanish goat's milk cheese in which Lactococcus lactis and Streptococcus thermophilus were used as starter cultures were analyzed. All bacterial isolates were clustered by using randomly amplified polymorphic DNA (RAPD) and identified by 16S rRNA gene sequencing, species-specific PCR, and multiplex PCR. Our results indicate that the majority of the 225 strains isolated and enumerated on solid media during the ripening period were nonstarter lactic acid bacteria, and Lactobacillus paracasei was the most abundant species. Other Lactobacillus species, such as Lactobacillus plantarum and Lactobacillus parabuchneri, were also detected at the beginning and end of ripening, respectively. Non-lactic-acid bacteria, mainly Kocuria and Staphylococcus strains, were also detected at the end of the ripening period. Microbial community dynamics determined by temporal temperature gradient gel electrophoresis provided a more precise estimate of the distribution of bacteria and enabled us to detect Lactobacillus curvatus and the starter bacteria S. thermophilus and L. lactis, which were not isolated. Surprisingly, the bacterium most frequently found using culture-dependent analysis, L. paracasei, was scarcely detected by this molecular approach. Finally, we studied the composition of the lactobacilli and their evolution by using length heterogeneity PCR.

  8. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    Science.gov (United States)

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  9. The pH dependence of polymerization and bundling by the essential bacterial cytoskeletal protein FtsZ.

    Directory of Open Access Journals (Sweden)

    Raúl Pacheco-Gómez

    Full Text Available There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow. It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP hydrolysis to polymer formation, and electron microscopy (EM imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution--it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli--it stabilizes associations of protofilaments.

  10. Dissecting a bacterial collagen domain from Streptococcus pyogenes: sequence and length-dependent variations in triple helix stability and folding.

    Science.gov (United States)

    Yu, Zhuoxin; Brodsky, Barbara; Inouye, Masayori

    2011-05-27

    To better investigate the relationship between sequence, stability, and folding, the Streptococcus pyogenes collagenous domain CL (Gly-Xaa-Yaa)(79) was divided to create three recombinant triple helix subdomains A, B, and C of almost equal size with distinctive amino acid features: an A domain high in polar residues, a B domain containing the highest concentration of Pro residues, and a very highly charged C domain. Each segment was expressed as a monomer, a linear dimer, and a linear trimer fused with the trimerization domain (V domain) in Escherichia coli. All recombinant proteins studied formed stable triple helical structures, but the stability varied depending on the amino acid sequence in the A, B, and C segments and increased as the triple helix got longer. V-AAA was found to melt at a much lower temperature (31.0 °C) than V-ABC (V-CL), whereas V-BBB melted at almost the same temperature (∼36-37 °C). When heat-denatured, the V domain enhanced refolding for all of the constructs; however, the folding rate was affected by their amino acid sequences and became reduced for longer constructs. The folding rates of all the other constructs were lower than that of the natural V-ABC protein. Amino acid substitution mutations at all Pro residues in the C fragment dramatically decreased stability but increased the folding rate. These results indicate that the thermostability of the bacterial collagen is dominated by the most stable domain in the same manner as found with eukaryotic collagens.

  11. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  12. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    Science.gov (United States)

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics.

  13. Comparison of Butyric acid concentrations in ordinary and probiotic yogurt samples in Iran

    OpenAIRE

    Narges Vaseji; Naheed Mojgani; Cyrus Amirinia; Iranmanesh, M

    2012-01-01

    Background and objectives: Butyric acid has many applications in chemical, food and pharmaceutical industries. Applications of butyric acid are as an additive to food, flavorings, varnishes, perfumes, pharmaceuticals and disinfectants. Butyric acid concentrations have positive impact on the quality control of milk, yogurt and other probiotic dairy products. The present investigation was undertaken to determine and compare the concentrations of butyric acid (C4) in the ordinary and probiotic y...

  14. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis

    OpenAIRE

    Jintao Zhang; Man Yi; Longying Zha; Siqiang Chen; Zhijia Li; Cheng Li; Mingxing Gong; Hong Deng; Xinwei Chu; Jiehua Chen; Zheqing Zhang; Limei Mao; Suxia Sun

    2016-01-01

    Purpose Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated au...

  15. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    Science.gov (United States)

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  16. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community.

    Science.gov (United States)

    Ren, Wenjie; Ren, Gaidi; Teng, Ying; Li, Zhengao; Li, Lina

    2015-10-30

    The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene.

  17. Formation of propionate and butyrate by the human colonic microbiota.

    Science.gov (United States)

    Louis, Petra; Flint, Harry J

    2017-01-01

    The human gut microbiota ferments dietary non-digestible carbohydrates into short-chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health-promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross-feeding of intermediary metabolites (in particular lactate, succinate and 1,2-propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.

  18. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  19. Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract

    NARCIS (Netherlands)

    Moquet, P.C.A.; Onrust, L.; Immerseel, Van F.; Ducatelle, R.; Hendriks, W.H.; Kwakkel, R.P.

    2016-01-01

    In the field of animal nutrition, butyrate is used as a zootechnical ingredient and can be used as an unprotected salt or in the form of protected derivatives such as butyrate glycerides or butyrate-loaded matrices. Dietary butyrate supplementation has been shown to improve growth performance and

  20. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer.

    Science.gov (United States)

    Harvey, Ronald W; Metge, David W; Barber, L B; Aiken, George R

    2010-02-01

    The effects of a dilute (ionic strength=5x10(-3)M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 microg/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only approximately 3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  1. Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster

    OpenAIRE

    2012-01-01

    Background and aims : Phosphorus from phytate, although constituting the main proportion of organic soil P, is unavailable to plants. Despite the well-known effects of rhizosphere trophic relationships on N mineralization, no work has been done yet on P mineralization. We hypothesized that the interactions between phytate-mineralizing bacteria, mycorrhizal fungi and bacterial grazer nematodes are able to improve plant P use from phytate. Methods : We tested this hypothesis by growing Pinus pi...

  2. Polyphasic Approach to Bacterial Dynamics during the Ripening of Spanish Farmhouse Cheese, Using Culture-Dependent and -Independent Methods▿

    OpenAIRE

    Martín-Platero, Antonio M.; Valdivia, Eva; Maqueda, Mercedes; Martín-Sánchez,Inés; Martínez-Bueno, Manuel

    2008-01-01

    We studied the dynamics of the microbial population during ripening of Cueva de la Magahá cheese using a combination of classical and molecular techniques. Samples taken during ripening of this Spanish goat's milk cheese in which Lactococcus lactis and Streptococcus thermophilus were used as starter cultures were analyzed. All bacterial isolates were clustered by using randomly amplified polymorphic DNA (RAPD) and identified by 16S rRNA gene sequencing, species-specific PCR, and multiplex PCR...

  3. The balance of apoptotic and necrotic cell death in Mycobacterium tuberculosis infected macrophages is not dependent on bacterial virulence.

    OpenAIRE

    2012-01-01

    BACKGROUND: An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission. METHODS: We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and ...

  4. Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner.

    Directory of Open Access Journals (Sweden)

    Jingjing Meng

    Full Text Available Opiates are among the most prescribed drugs for pain management. However, morphine use or abuse results in significant gut bacterial translocation and predisposes patients to serious infections with gut origin. The mechanism underlying this defect is still unknown. In this report, we investigated the mechanisms underlying compromised gut immune function and bacterial translocation following morphine treatment. We demonstrate significant bacterial translocation to mesenteric lymph node (MLN and liver following morphine treatment in wild-type (WT animals that was dramatically and significantly attenuated in Toll-like receptor (TLR2 and 4 knockout mice. We further observed significant disruption of tight junction protein organization only in the ileum but not in the colon of morphine treated WT animals. Inhibition of myosin light chain kinase (MLCK blocked the effects of both morphine and TLR ligands, suggesting the role of MLCK in tight junction modulation by TLR. This study conclusively demonstrates that morphine induced gut epithelial barrier dysfunction and subsequent bacteria translocation are mediated by TLR signaling and thus TLRs can be exploited as potential therapeutic targets for alleviating infections and even sepsis in morphine-using or abusing populations.

  5. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    Science.gov (United States)

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.

  6. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop.

    Science.gov (United States)

    Li, Xin; Shi, Zhongping; Li, Zhigang

    2014-08-01

    In this study, we attempted to increase butanol/acetone ratio and total solvent productivity in ABE fermentations with corn- and cassava-based media, by consecutively feeding a small amount of butyrate/acetate during solventogenic phase to weaken the metabolic strengths in butyrate/acetate closed-loops. Consecutively feeding a small amount of butyrate (a total of 3.0 g/L-broth) is most effective in improving performance of corn-based ABE fermentations, as it simultaneously increased average butanol/acetone ratio by 23 % (1.92-2.36) and total solvent productivity by 16 % (0.355-0.410 g/L/h) as compared with those of control. However, the butyrate feeding strategy could not improve butanol/acetone ratio and total solvent productivity in cassava-based ABE fermentations, where the metabolic strength of butyrate closed-loop had already been very low.

  7. Zinc sensing receptor signaling, mediated by GPR39, reduces butyrate-induced cell death in HT29 colonocytes via upregulation of clusterin.

    Directory of Open Access Journals (Sweden)

    Limor Cohen

    Full Text Available Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn(2+ sensing G-protein coupled receptor (ZnR that activates Ca(2+ signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn(2+, by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca(2+ release and Zn(2+-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na(+/H(+ exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na(+/H(+ exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn(2+-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn(2+, acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes.

  8. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms; Radiosensibilidad bacteriana frente a gamma y ultravioleta. Dependencia composicional y mecanismos de reparacion

    Energy Technology Data Exchange (ETDEWEB)

    Saez Angulo, R. M.; Davila, C. A.

    1974-07-01

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs.

  9. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Ho Pan Sham

    Full Text Available Enteric bacterial pathogens such as enterohemorrhagic E. coli (EHEC and Salmonella Typhimurium target the intestinal epithelial cells (IEC lining the mammalian gastrointestinal tract. Despite expressing innate Toll-like receptors (TLRs, IEC are innately hypo-responsive to most bacterial products. This is thought to prevent maladaptive inflammatory responses against commensal bacteria, but it also limits antimicrobial responses by IEC to invading bacterial pathogens, potentially increasing host susceptibility to infection. One reason for the innate hypo-responsiveness of IEC is their expression of Single Ig IL-1 Related Receptor (SIGIRR, a negative regulator of interleukin (IL-1 and TLR signaling. To address whether SIGIRR expression and the innate hypo-responsiveness of IEC impacts on enteric host defense, Sigirr deficient (-/- mice were infected with the EHEC related pathogen Citrobacter rodentium. Sigirr -/- mice responded with accelerated IEC proliferation and strong pro-inflammatory and antimicrobial responses but surprisingly, Sigirr -/- mice proved dramatically more susceptible to infection than wildtype mice. Through haematopoietic transplantation studies, it was determined that SIGIRR expression by non-haematopoietic cells (putative IEC regulated these responses. Moreover, the exaggerated responses were found to be primarily dependent on IL-1R signaling. Whilst exploring the basis for their susceptibility, Sigirr -/- mice were found to be unusually susceptible to intestinal Salmonella Typhimurium colonization, developing enterocolitis without the typical requirement for antibiotic based removal of competing commensal microbes. Strikingly, the exaggerated antimicrobial responses seen in Sigirr -/- mice were found to cause a rapid and dramatic loss of commensal microbes from the infected intestine. This depletion appears to reduce the ability of the microbiota to compete for space and nutrients (colonization resistance with the invading

  10. Hypoxia determines survival outcomes of bacterial infection through HIF-1alpha dependent re-programming of leukocyte metabolism *

    Science.gov (United States)

    Thompson, A.A.R.; Dickinson, R.S.; Murphy, F.; Thomson, J. P.; Marriott, H.M.; Tavares, A.; Willson, J.; Williams, L.; Lewis, A.; Mirchandani, A.; Dos Santos Coelho, P.; Doherty, C.; Ryan, E.; Watts, E.; Morton, N. M.; Forbes, S.; Stimson, R. H.; Hameed, A. G.; Arnold, N.; Preston, J.A.; Lawrie, A.; Finisguerra, V.; Mazzone, M.; Sadiku, P.; Goveia, J.; Taverna, F.; Carmeliet, P.; Foster, S.J.; Chilvers, E.R.; Cowburn, A.S.; Dockrell, D.H.; Johnson, R.S.; Meehan, R. R.; Whyte, M.K.B.; Walmsley, S.R.

    2017-01-01

    Hypoxia and bacterial infection frequently co-exist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both S. aureus and S. pneumoniae infections rapidly induced progressive neutrophil mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning animals through longer exposures to hypoxia, prior to infection, prevented these pathophysiological responses and profoundly dampened the transcriptome of circulating leukocytes. Specifically, perturbation of HIF pathway and glycolysis genes by hypoxic preconditioning was associated with reduced leukocyte glucose utilisation, resulting in systemic rescue from a global negative energy state and myocardial protection. Thus we demonstrate that hypoxia preconditions the innate immune response and determines survival outcomes following bacterial infection through suppression of HIF-1α and neutrophil metabolism. The therapeutic implications of this work are that in the context of systemic or tissue hypoxia therapies that target the host response could improve infection associated morbidity and mortality. PMID:28386604

  11. The balance of apoptotic and necrotic cell death in Mycobacterium tuberculosis infected macrophages is not dependent on bacterial virulence.

    Directory of Open Access Journals (Sweden)

    Rachel E Butler

    Full Text Available BACKGROUND: An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission. METHODS: We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237. RESULTS: We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis--both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis. CONCLUSIONS: This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.

  12. Modeling of Clostridium t yrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Jianjun Du; Amy McGraw; Jamie A. Hestekin

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum . A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function...

  13. Secondary polyvinyl butyral modified with potassium polytitanate for coatings with improved mechanical properties

    OpenAIRE

    2016-01-01

    The technology of laminated glass is accompanied with a large amount of polyvinyl butyral wastes, which are used for recycling due to mechanical properties of recycled PVB as these properties are lower than those of the original polymer. The properties of composite coatings based on secondary polyvinyl butyral modified with potassium polytitanate were investigated. The composite coating was obtained by polyvinyl butyral dissolved in ethyl alcohol and then dispersed potassium polytitanate into...

  14. Vibrational Spectroscopic and Thermodynamic Investigation of Poly (vinyl butyral

    Directory of Open Access Journals (Sweden)

    Saiful Islam Ansari

    2016-03-01

    Full Text Available A detailed study was performed to investigate the normal modes of vibration and their dispersions in poly (vinyl butyral by using Urey-Bradley force field and Wilson’s GF matrix method as modified by Higgs. It provides detailed interpretation of FTIR. Characteristic feature of dispersion curves such as regions of high density–of–states, repulsion and character mixing of dispersion modes are discussed. Predictive values of heat capacity as a function of temperature between 0-350 K have been evaluated.

  15. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep

    Directory of Open Access Journals (Sweden)

    Lettat Abderzak

    2012-07-01

    Full Text Available Abstract Background Ruminal disbiosis induced by feeding is the cause of ruminal acidosis, a digestive disorder prevalent in high-producing ruminants. Because probiotic microorganisms can modulate the gastrointestinal microbiota, propionibacteria- and lactobacilli-based probiotics were tested for their effectiveness in preventing different forms of acidosis. Results Lactic acidosis, butyric and propionic subacute ruminal acidosis (SARA were induced by feed chalenges in three groups of four wethers intraruminally dosed with wheat, corn or beet pulp. In each group, wethers were either not supplemented (C or supplemented with Propionibacterium P63 alone (P or combined with L. plantarum (Lp + P or L. rhamnosus (Lr + P. Compared with C, all the probiotics stimulated lactobacilli proliferation, which reached up to 25% of total bacteria during wheat-induced lactic acidosis. This induced a large increase in lactate concentration, which decreased ruminal pH. During the corn-induced butyric SARA, Lp + P decreased Prevotella spp. proportion with a concomitant decrease in microbial amylase activity and total volatile fatty acids concentration, and an increase in xylanase activity and pH. Relative to the beet pulp-induced propionic SARA, P and Lr + P improved ruminal pH without affecting the microbial or fermentation characteristics. Regardless of acidosis type, denaturing gradient gel electrophoresis revealed that probiotic supplementations modified the bacterial community structure. Conclusion This work showed that the effectiveness of the bacterial probiotics tested depended on the acidosis type. Although these probiotics were ineffective in lactic acidosis because of a deeply disturbed rumen microbiota, some of the probiotics tested may be useful to minimize the occurrence of butyric and propionic SARA in sheep. However, their modes of action need to be further investigated.

  16. RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin.

    Science.gov (United States)

    Los, Ferdinand C O; Kao, Cheng-Yuan; Smitham, Jane; McDonald, Kent L; Ha, Christine; Peixoto, Christina A; Aroian, Raffi V

    2011-02-17

    Pore-forming toxins (PFTs) secreted by pathogenic bacteria are the most common bacterial protein toxins and are important virulence factors for infection. PFTs punch holes in host cell plasma membranes, and although cells can counteract the resulting membrane damage, the underlying mechanisms at play remain unclear. Using Caenorhabditis elegans as a model, we demonstrate in vivo and in an intact epithelium that intestinal cells respond to PFTs by increasing levels of endocytosis, dependent upon RAB-5 and RAB-11, which are master regulators of endocytic and exocytic events. Furthermore, we find that RAB-5 and RAB-11 are required for protection against PFT and to restore integrity to the plasma membrane. One physical mechanism involved is the RAB-11-dependent expulsion of microvilli from the apical side of the intestinal epithelial cells. Specific vesicle-trafficking pathways thus protect cells against an attack by PFTs on plasma membrane integrity, via altered plasma membrane dynamics.

  17. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures.

    Science.gov (United States)

    Zheng, Xian-Jun; Yu, Han-Qing

    2005-01-01

    In this study batch experiments were conducted to investigate the inhibitory effects of butyrate addition on hydrogen production from glucose by using anaerobic mixed cultures. Experimental results showed that addition of butyrate at 4.18 and 6.27 g/l only slightly inhibited hydrogen production, and addition of butyrate at 8.36-12.54 g/l imposed a moderate inhibitory effect on hydrogen production. At addition of 25.08 g/l, butyrate had a strong inhibitory influence on substrate degradation and hydrogen production. The distribution of the volatile fatty acids produced from the acidogeneisis of glucose was significantly influenced by the addition of butyrate. The inhibition of butyrate addition on hydrogen production was described well by a non-competitive and non-linear inhibition model, with the maximum hydrogen production rate of 59.3 ml/g-SS/h, critical added butyrate concentration of 25.08 g/l, and inhibition degree of 0.323, respectively. The C(I,50) values (the butyrate concentration at which bioactivity is reduced by 50%) for hydrogen production rate and yield were estimated as 19.39 and 20.78 g/l of added butyrate, respectively.

  18. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion.

    Science.gov (United States)

    Malhi, Moolchand; Gui, Hongbing; Yao, Lei; Aschenbach, Jörg R; Gäbel, Gotthold; Shen, Zanming

    2013-01-01

    We tested the hypothesis that the proliferative effects of intraruminal butyrate infusions on the ruminal epithelium are linked to upregulation in cyclin D1 (CCND1), the cyclin-dependent kinase 4 (CDK4), and their possible association with enhanced absorption of short-chain fatty acids (SCFA). Goats (n=23) in 2 experiments (Exp.) were fed 200 g/d concentrate and hay ad libitum. In Exp. 1, goats received an intraruminal infusion of sodium butyrate at 0.3 (group B, n=8) or 0 (group C, n=7) g/kg of body weight (BW) per day before morning feeding for 28 d and were slaughtered 8 h after the butyrate infusion. In Exp. 2, goats (n=8) received butyrate infusion and feeding as in Exp. 1. On d 28, epithelial samples were biopsied from the antrium ruminis at 0, 3, and 7 h after the last butyrate infusion. In Exp. 1, the ruminal molar proportional concentration of butyrate increased in group B by about 110% after butyrate infusion and remained elevated for 1.5 h; thereafter, it gradually returned to the baseline (preinfusion) level. In group C, the molar proportional concentration of butyrate was unchanged over the time points. The length and width of papillae increased in B compared with C; this was associated with increased numbers of cells and cell layers in the epithelial strata and an increase in the surface area of 82%. The mRNA expression of CCND1 increased transiently at 3 h but returned to the preinfusion level at 7 h following butyrate infusion in Exp. 2. However, it did not differ between B and C in Exp. 1, in which the ruminal epithelium was sampled at 8 h after butyrate infusion. The mRNA expression of the monocarboxylate transporter MCT4, but not MCT1, was stably upregulated in B compared with C. The estimated absorption rate of total SCFA (%/h) increased in B compared with C. We conclude that transient increases in cyclin D1 transcription contribute to butyrate-induced papillae growth and subsequently to the increased absorption of SCFA in the ruminal epithelium

  19. Transport and Metabolism of the Endogenous Auxin Precursor lndole-3-Butyric Acid

    Institute of Scientific and Technical Information of China (English)

    Lucia C. Strader; Bonnie Bartel

    2011-01-01

    T Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.

  20. Nanonization of poorly water-soluble drug clobetasone butyrate by using femtosecond laser

    Science.gov (United States)

    Pan, Sunqiang; Takebe, Gen; Suzuki, Masumi; Takamoto, Hisayoshi; Ge, Jianhong; Liu, Chong; Hiramatsu, Mitsuo

    2014-02-01

    Nanonization, which involves the formation of the drug with nanometer particle size, is an effective method to improve the dissolution rate and bioavailability of poorly water-soluble drugs. A pulsewidth-tunable femtosecond laser was used to produce nanoparticles of clobetasone butyrate using poloxamer 188 as stabilizing agent. The effects of temperature and pulsewidth on the particle size and concentration were studied for the first time. The particle size and drug concentration dependence on the laser intensity and irradiation time were also investigated. Permeability test releaved that laser nanonization improved the drug permeability across Caco-2 cell monolayer. This laser nanonization method has a great potential to be used for new drug development.

  1. RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader.

    Science.gov (United States)

    Kriner, Michelle A; Groisman, Eduardo A

    2017-01-25

    Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization (rut) site on a nascent RNA by Rho's primary binding surface. However, it is presently unclear what factors determine the location of transcription termination, how RNA secondary structures influence this process and whether mechanistic differences distinguish constitutive from regulated Rho-dependent terminators. We previously demonstrated that the 5' leader mRNA of the Salmonella corA gene can adopt two mutually exclusive conformations that dictate accessibility of a rut site to Rho. We now report that the corA leader also controls two subsequent steps of Rho-dependent termination. First, the RNA conformation that presents an accessible rut site promotes pausing of RNA polymerase (RNAP) at a single Rho-dependent termination site over 100 nt downstream. Second, an additional RNA stem-loop promotes Rho activity and controls the location at which Rho-dependent termination occurs, despite having no effect on initial Rho binding to the corA leader. Thus, the multi-step nature of Rho-dependent termination may facilitate regulation of a given coding region by multiple cytoplasmic signals.

  2. Nutrient balance of layers fed diets with different calcium levels and the inclusion of phytase and/or sodium butyrate

    Directory of Open Access Journals (Sweden)

    MM Vieira

    2011-06-01

    Full Text Available In this study, Hisex Brown layers in lay were evaluated between 40 and 44 weeks of age to evaluate the inclusion of bacterial phytase (Ph and sodium butyrate (SB to diets containing different calcium levels (CaL. Performance, average egg weight and eggshell percentage, in addition to nutrient metabolizability and Ca and P balance were evaluated for 28 days. Birds were distributed according to a completely randomized experimental design with a 3x2x2 factorial arrangement, with three calcium levels (2.8, 3.3, 3.8%; the addition or not of phytase (500PhU/kg and the addition or not of sodium butyrate (20mEq/kg, composing 12 treatments with eight replicates of one bird each. There was no additive effect of phytase or SB on the evaluated responses. Feed intake and feed conversion ratio were influenced by CaL, with the best performance obtained with 3.3% dietary Ca. Ca balance was positively affected by dietary Ca, and P balance by the addition of phytase. Ca dietary concentration, estimated to obtain Ca body balance, was 3.41%, corresponding to an apparent retention of 59.9% of Ca intake.

  3. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS.

    Science.gov (United States)

    Ifuku, Shinsuke; Nogi, Masaya; Abe, Kentaro; Handa, Keishin; Nakatsubo, Fumiaki; Yano, Hiroyuki

    2007-06-01

    Bacterial cellulose (BC) nanofibers were acetylated to enhance the properties of optically transparent composites of acrylic resin reinforced with the nanofibers. A series of BC nanofibers acetylated from degree-of-substitution (DS) 0 to 1.76 were obtained. X-ray diffraction profiles indicated that acetylation proceeded from the surface to the core of BC nanofibers, and scanning electron microscopy images showed that the volume of nanofibers increases by the bulky acetyl group. Since acetylation decreased the refractive index of cellulose, regular transmittance of composites comprised of 63% BC nanofiber was improved, and deterioration at 580 nm because of fiber reinforcement was suppressed to only 3.4%. Acetylation of nanofibers changed their surface properties and reduced the moisture content of the composite to about one-third that of untreated composite, although excessive acetylation increased hygroscopicity. Furthermore, acetylation was found to reduce the coefficient of thermal expansion of a BC sheet from 3 x 10(-6) to below 1 x 10(-6) 1/K.

  4. Neutrophils from p40phox-/- mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing.

    Science.gov (United States)

    Ellson, Chris D; Davidson, Keith; Ferguson, G John; O'Connor, Rod; Stephens, Len R; Hawkins, Phillip T

    2006-08-07

    The generation of reactive oxygen species (ROS) by the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex plays a critical role in the antimicrobial functions of the phagocytic cells of the immune system. The catalytic core of this oxidase consists of a complex between gp91(phox), p22(phox), p47(phox), p67(phox), p40(phox), and rac-2. Mutations in each of the phox components, except p40(phox), have been described in cases of chronic granulomatous disease (CGD), defining their essential role in oxidase function. We sought to establish the role of p40(phox) by investigating the NADPH oxidase responses of neutrophils isolated from p40(phox-/-) mice. In the absence of p40(phox), the expression of p67(phox) is reduced by approximately 55% and oxidase responses to tumor necrosis factor alpha/fibrinogen, immunoglobulin G latex beads, Staphylococcus aureus, formyl-methionyl-leucyl-phenylalanine, and zymosan were reduced by approximately 97, 85, 84, 75, and 30%, respectively. The defect in ROS production by p40(phox-/-) neutrophils in response to S. aureus translated into a severe, CGD-like defect in the killing of this organism both in vitro and in vivo, defining p40(phox) as an essential component in bacterial killing.

  5. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B

    Directory of Open Access Journals (Sweden)

    Li Qiao

    2006-12-01

    Full Text Available Abstract Background In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular mechanisms of the anti-cancer effects of these inhibitors have yet to be understood. Results Here, we report that a key determinant for the susceptibility of cancer cells to histone deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment. Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from butyrate-induced apoptotic cell death. Conclusion Our study demonstrates that although the primary target of histone deacetylase inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that determines their fate of survival.

  6. A rapid procedure for the in situ assay of periplasmic, PQQ-dependent methanol dehydrogenase in intact single bacterial colonies.

    Science.gov (United States)

    Vemuluri, Venkata Ramana; Shaw, Shreya; Autenrieth, Caroline; Ghosh, Robin

    2017-03-23

    Mechanistic details of methanol oxidation catalyzed by the periplasmically-located pyrroloquinoline quinone-dependent methanol dehydrogenase of methylotrophs can be elucidated using site-directed mutants. Here, we present an in situ colony assay of methanol dehydrogenase, which allows robotic screening of large populations of intact small colonies, and regrowth of colonies for subsequent analysis.

  7. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    Science.gov (United States)

    van Opijnen, Tim; Dedrick, Sandra; Bento, José

    2016-09-01

    The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.

  8. The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors.

    Science.gov (United States)

    Steiner, Alexandre A; Molchanova, Alla Y; Dogan, M Devrim; Patel, Shreya; Pétervári, Erika; Balaskó, Márta; Wanner, Samuel P; Eales, Justin; Oliveira, Daniela L; Gavva, Narender R; Almeida, M Camila; Székely, Miklós; Romanovsky, Andrej A

    2011-05-01

    Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide(AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22◦C, a moderate dose of LPS (25 - 100 μg kg−1 I.V.) induced a fall in body temperature with a nadir at ∼100 minpostinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 μg kg - 1 I.P.), by systemic TRPV1 antagonism with capsazepine(40mg kg−1 I.P.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kg−1 I.P.).However, CB1 receptor antagonism by rimonabant (4.6mg kg−1 I.P.) or SLV319 (15mg kg−1 I.P.)blocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered I.C.V. at a dose (4.6 μg) that was too low to produce systemic effects. The blockade of LPS hypothermia by I.C.V. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant,the I.C.V. administration of AEA (50 μg) enhanced LPS hypothermia. Importantly, I.C.V. AEAdid not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermo effector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis.

  9. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Jianjun Du

    2014-04-01

    Full Text Available A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function of cell mass, while acetic acid production was a function of cell growth rate. Further, it was found that at high acetic acid concentrations, acetic acid was metabolized to butyric acid and that this conversion could be modeled. In batch fermentation, high butyric acid selectivity occurred at high initial cell or glucose concentrations. In continuous fermentation, decreased dilution rate improved selectivity; at a dilution rate of 0.028 h−1, the selectivity reached 95.8%. The model and experimental data showed that at total cell recycle, the butyric acid selectivity could reach 97.3%. This model could be used to optimize butyric acid production using C. tyrobutyricum in a continuous fermentation scheme. This is the first study that mathematically describes batch, steady state, and dynamic behavior of C. tyrobutyricum for butyric acid production.

  10. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum.

    Science.gov (United States)

    Zhang, Yali; Yu, Mingrui; Yang, Shang-Tian

    2012-01-01

    Clostridium tyrobutyricum ATCC 25755 is an anaerobic, rod-shaped, gram-positive bacterium that produces butyrate, acetate, hydrogen, and carbon dioxide from various saccharides, including glucose and xylose. Phosphotransbutyrylase (PTB) is a key enzyme in the butyric acid synthesis pathway. In this work, effects of ptb knockout by homologous recombination on metabolic flux and product distribution were investigated. When compared with the wild type, the activities of PTB and butyrate kinase in ptb knockout mutant decreased 76 and 42%, respectively; meanwhile, phosphotransacetylase and acetate kinase increased 7 and 29%, respectively. However, ptb knockout did not significantly reduce butyric acid production from glucose or xylose in batch fermentations. Instead, it increased acetic acid and hydrogen production 33.3-53.8% and ≈ 11%, respectively. Thus, the ptb knockout did increase the carbon flux toward acetate synthesis, resulting in a significant decrease (28-35% reduction) in the butyrate/acetate ratio in ptb mutant fermentations. In addition, the mutant displayed a higher specific growth rate (0.20 h(-1) vs. 0.15 h(-1) on glucose and 0.14 h(-1) vs. 0.10 h(-1) on xylose) and tolerance to butyric acid. Consequently, batch fermentation with the mutant gave higher fermentation rate and productivities (26-48% increase for butyrate, 81-100% increase for acetate, and 38-46% increase for hydrogen). This mutant thus can be used more efficiently than the parental strain in fermentations to produce butyrate, acetate, and hydrogen from glucose and xylose.

  11. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Science.gov (United States)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  12. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    Science.gov (United States)

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  13. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?

    Science.gov (United States)

    Brahe, L K; Astrup, A; Larsen, L H

    2013-12-01

    It is increasingly recognized that there is a connection between diet, intestinal microbiota, intestinal barrier function and the low-grade inflammation that characterizes the progression from obesity to metabolic disturbances, making dietary strategies to modulate the intestinal environment relevant. In this context, the ability of some Gram-positive anaerobic bacteria to produce the short-chain fatty acid butyrate is interesting. A lower abundance of butyrate-producing bacteria has been associated with metabolic risk in humans, and recent studies suggest that butyrate might have an anti-inflammatory potential that can alleviate obesity-related metabolic complications, possibly due to its ability to enhance the intestinal barrier function. Here, we review and discuss the potential of butyrate as an anti-inflammatory mediator in metabolic diseases, and the potential for dietary interventions increasing the intestinal availability of butyrate.

  14. MODULATION OF MDR-1 GENE IN HUMAN BREAST CANCER CELLS BY SODIUM BUTYRATE AND DMSO

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the regulation effect of MDR-1 gene inhuman breast cancer cell by the differentiating agents, sodium butyrate and dimethyl sulfoxide. Methods: 1. A sensitive assay, RT-PCR, was used to measure the mRNA level before and after the treatment of sodium butyrate, DMSO, using b -actin as control; 2. Evaluated the effect of sodium butyrate, DMSO on MDR-1 gene expression of human breast cancer at the protein level by immunoflow cytometry; 3. P-glycoprotein function was examined after accumulation of the fluorescent drug, Phodamine-123, by flow cytometry; 4. Chemosensitivity to doxorubicin was analyzed using the MTT assay. Results: Sodium butyrate and DMSO were found to increase the MDR characteristics on MDR-1 gene, MDR-1 expression levels, P-glycoprotein function and chemosensitivity to doxorubicin. Conclusion: sodium butyrate, DMSO can modulate the MDR-1 gene at gene level, protein level, protein function level and cell level.

  15. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  16. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways.

  17. Thermal decomposition of yttrium(III) propionate and butyrate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2013-01-01

    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...... of CO2 and a symmetrical ketone consisting of 3-pentanone and 4-heptanone respectively. Final conversion to Y2O3 takes pace with release of CO2. Elemental carbon that is left as a by-product is finally slowly burned by the residual oxygen present in the Ar atmosphere. Fusion is observed at ≈110°C...

  18. A method for purifying butyric crude oil fractions

    Energy Technology Data Exchange (ETDEWEB)

    Saskovets, V.V.; Gayle, A.A.; Proskuryakov, V.A.; Semenov, L.V.; Zakharov, A.P.

    1983-01-01

    In a method for purification of butyric fractions of oil through extraction by a selective solvent, in order to increase the output and to improve the quality of the purified oil, 2,5-dimethyl-1,3,4-oxadiazole of the cited formula, or its mixture with 80 to 90 percent furfural is used as the selective solvent. The solvent is produced through a reaction between hydrazine and an acetic anhydride. The solvent is a colorless liquid with a weak characteristic smell, and is easily dissolved in water with a boiling point of 178 degrees and density at 4-20/sup 0/ of 1.0963. The solvent is thermally stable: after boiling at 220 degrees, its viscosity is essentially the same.

  19. The use of high pressure CO2 -facilitated pH swings to enhance in situ product recovery of butyric acid in a two-phase partitioning bioreactor.

    Science.gov (United States)

    Peterson, Eric C; Daugulis, Andrew J

    2014-11-01

    Through the use of high partial pressures of CO2 (pCO2 ) to facilitate temporary pH reductions in two-phase partitioning bioreactors (TPPBs), improved pH dependent partitioning of butyric acid was observed which achieved in situ product recovery (ISPR), alleviating end-product inhibition (EPI) during the production of butyric acid by Clostridium tyrobutyricum (ATCC 25755). Through high pressure pCO2 studies, media buffering effects were shown to be substantially overcome at 60 bar pCO2 , resulting in effective extraction of the organic acid by the absorptive polymer Pebax® 2533, yielding a distribution coefficient (D) of 2.4 ± 0.1 after 1 h of contact at this pressure. Importantly, it was also found that C. tyrobutyricum cultures were able to withstand 60 bar pCO2 for 1 h with no decrease in growth ability when returned to atmospheric pressure in batch reactors after several extraction cycles. A fed-batch reactor with cyclic high pCO2 polymer extraction recovered 92 g of butyric acid to produce a total of 213 g compared to 121 g generated in a control reactor. This recovery reduced EPI in the TPPB, resulting in both higher productivity (0.65 vs. 0.33 g L(-1)  h(-1) ) and yield (0.54 vs. 0.40). Fortuitously, it was also found that repeated high pCO2 -facilitated polymer extractions of butyric acid during batch growth of C. tyrobutyricum lessened the need for pH control, and reduced base requirements by approximately 50%. Thus, high pCO2 -mediated absorptive polymer extraction presents a novel method for improving process performance in butyric acid fermentation, and this technique could be applied to the bioproduction of other organic acids as well.

  20. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells.

    Science.gov (United States)

    Pant, Kishor; Yadav, Ajay K; Gupta, Parul; Islam, Rakibul; Saraya, Anoop; Venugopal, Senthil K

    2017-03-07

    Butyrate is one of the short chain fatty acids, produced by the gut microbiota during anaerobic fermentation of dietary fibres. It has been shown that it can inhibit tumor progression via suppressing histone deacetylase and can induce apoptosis in cancer cells. However, the comprehensive pathway by which butyrate mediates apoptosis and growth arrest in cancer cells still remains unclear. In this study, the role of miR-22 in butyrate-mediated ROS release and induction of apoptosis was determined in hepatic cells. Intracellular expression of miR-22 was increased when the Huh 7 cells were incubated with sodium butyrate. Over-expression of miR-22 or addition of sodium butyrate inhibited SIRT-1 expression and enhanced the ROS production. Incubation of cells with anti-miR-22 reversed the effects of butyrate. Butyrate induced apoptosis via ROS production, cytochrome c release and activation of caspase-3, whereas addition of N-acetyl cysteine or anti-miR-22 reversed these butyrate-induced effects. Furthermore, sodium butyrate inhibited cell growth and proliferation, whereas anti-miR-22 inhibited these butyrate-mediated changes. The expression of PTEN and gsk-3 was found to be increased while p-akt and β-catenin expression was decreased significantly by butyrate. These data showed that butyrate modulated both apoptosis and proliferation via miR-22 expression in hepatic cells.

  1. Butyrate inhibits cancerous HCT116 cell proliferation but to a lesser extent in noncancerous NCM460 colon cells

    Science.gov (United States)

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser...

  2. In vitro dissolution and in vivo absorption of calcium [1-14C]butyrate in free or protected forms

    Science.gov (United States)

    Butyrate is a by-product of microbial carbohydrate fermentation that occurs primarily in the large intestine. When added to feed, butyrate quickly disappears in the upper digestive tract. Because butyrate is important for the epithelial cell development and for mucosal integrity, and for animal grow...

  3. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor.

    Science.gov (United States)

    Choi, Okkyoung; Um, Youngsoon; Sang, Byoung-In

    2012-10-01

    Electron mediators and electron supply through a cathode were examined to enhance the reducing power for butyrate production by an acidogenic clostridium strain, Clostridium tyrobutyricum BAS 7. Among the tested electron mediators, methyl viologen (MV)-amended cultures showed an increase of butyrate productivity (1.3 times), final concentration (1.4 times), and yield (1.3 times). The electron flow altered by MV addition from the ferredoxin pool to the NADH pool was shown by one electron model, implying that more available NADH increased butyrate production. In the cathode compartment poised at -400 mV versus the Ag/AgCl electrode, the neutral red (NR)-amended cultures of Clostridium tyrobutyricum BAS 7 increased butyrate concentration (from 5 to 8.8 g/L) and yield (from 0.33 up to 0.44 g/g) with no acetate production at all. Given that electrically reduced NR (NR(red) , yellow) by the cathode was re-oxidized (NR(ox) , red) in the cells on the basis of color change, electron flow from NR(red) to NAD(+) (i.e., NADH generation) induced an increase in butyrate production. This is the first report to show the increase of butyric acid production by electrically driven acidogenesis. These results show that the electron flow altered NADH formation by electron mediators and by the cathodic electron donor, increasing the yield and selectivity of reduced end-products like butyrate.

  4. Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor.

    Science.gov (United States)

    Jiang, Ling; Wang, Jufang; Liang, Shizhong; Cai, Jin; Xu, Zhinan; Cen, Peilin; Yang, Shangtian; Li, Shuang

    2011-01-01

    Repeated fed-batch fermentation of glucose by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was successfully employed to produce butyric acid at a high final concentration as well as to adapt a butyric-acid-tolerant strain. At the end of the eighth fed-batch fermentation, the butyric acid concentration reached 86.9 ± 2.17 g/L, which to our knowledge is the highest butyric acid concentration ever produced in the traditional fermentation process. To understand the mechanism and factors contributing to the improved butyric acid production and enhanced acid tolerance, adapted strains were harvested from the FBB and characterized for their physiological properties, including specific growth rate, acid-forming enzymes, intracellular pH, membrane-bound ATPase and cell morphology. Compared with the original culture used to seed the bioreactor, the adapted culture showed significantly reduced inhibition effects of butyric acid on specific growth rate, cellular activities of butyric-acid-forming enzyme phosphotransbutyrylase (PTB) and ATPase, together with elevated intracellular pH, and elongated rod morphology.

  5. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Institute of Scientific and Technical Information of China (English)

    HE Guo-qing; KONG Qing; CHEN Qi-he; RUAN Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.

  6. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion.

    Directory of Open Access Journals (Sweden)

    Bin Liu

    Full Text Available Hepatic ischemia/reperfusion (I/R injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation.

  7. Duodenal histology and carcass quality of feedlot cattle supplemented with calcium butyrate and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Thiago Simas de Oliveira Moreira

    2016-01-01

    Full Text Available The experiment was carried out at the Comigo Technology Center, in Rio Verde, State of Goiás, Brazil, with the objective of evaluating the effects of supplementation with calcium butyrate, as a growth promoting agent for the duodenal mucosa and Bacillus subtilis as a probiotic performance enhancer in feedlot cattle. Calcium butyrate (5 and 10 g per animal per day and Bacillus (10 g per animal per day were added to a basal diet. There were used 85 Nelore bulls, with average weight of 315 ± 7 kg. The experiment lasted 118 days, including the adaptation period, until slaughter at 30 months of age. Diets were distributed in a completely randomized design with four treatments, where: T1 = control (basal diet; T2 = basal diet + 5 g calcium butyrate; T3 = basal diet + 10 g calcium butyrate and T4 = basal diet + 10 g calcium butyrate + 10 g probiotic with four replications and five to six animals per replication. It was used a forage: concentrate ratio of 30:70, the roughage used was the corn silage. Height and width measurements of intestinal villi were taken, and carcass and meat quality were evaluated. The supplementation of calcium butyrate and Bacillus subtilis positively influenced (p < 0.05 the carcass marbling level and calcium butyrate increased the villus height in the small intestine.

  8. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor.

    Science.gov (United States)

    Zhu, Ying; Yang, Shang-Tian

    2003-01-01

    By immobilization in a fibrous-bed bioreactor (FBB), we succeeded in adapting and selecting an acid-tolerant strain of Clostridium tyrobutyricum that can produce high concentrations of butyrate from glucose and xylose. This mutant grew well under high butyrate concentrations (>30 g/L) and had better fermentative ability as compared to the wild-type strain used to seed the bioreactor. Kinetic analysis of butyrate inhibition on cell growth, acid-forming enzymes, and ATPase activity showed that the adapted cells from the FBB are physiologically different from the original wild type. Compared to the wild type, the adapted culture's maximum specific growth rate increased by 2.3-fold and its growth tolerance to butyrate inhibition increased by 29-fold. The key enzymes in the butyrate-forming pathway, phosphotransbutyrylase (PTB) and butyrate kinase (BK), were also more active in the mutant, with 175% higher PTB and 146% higher BK activities. Also, the mutant's ATPase was less sensitive to inhibition by butyric acid, as indicated by a 4-fold increase in the inhibition rate constant, and was more resistant to the enzyme inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). The lower ATPase sensitivity to butyrate inhibition might have contributed to the increased growth tolerance to butyrate inhibition, which also might be attributed to the higher percentage of saturated fatty acids in the membrane phospholipids (74% in the mutant vs 69% in the wild type). This study shows that cell immobilization in the FBB provides an effective means for in-process adaptation and selection of mutant with higher tolerance to inhibitory fermentation product.

  9. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria.

    Science.gov (United States)

    Tsukahara, Takamitsu; Koyama, Hironari; Okada, Masaaki; Ushida, Kazunari

    2002-08-01

    Gluconic acid reaches the large intestine to stimulate lactic acid bacteria. However, the fermentation pattern of gluconic acid has yet to be elucidated. Accordingly, we examined the fermentation properties induced by gluconic acid in the pig cecal digesta in vitro. We also tested sorbitol and glucose, substrates for which the fermentation rate and patterns are known. The gluconic acid-utilizing bacteria were further isolated from pig cecal digesta and identified to examine the effect of gluconic acid on hind gut fermentation. Gluconic acid was fermented more slowly than were the other two substrates. Gluconic acid stimulated butyrate production; the butyrate molar percentage reached 26%, which is considered a high butyrate production. The majority of gluconic acid fermenters were identified as lactic acid bacteria, such as Lactobacillus reuteri and L. mucosae, and acid-utilizing bacteria, such as Megasphaera elsdenii and Mitsuokella multiacida. The gluconic acid fermented by lactic acid bacteria, and the lactate and acetate that were produced were used to form butyrate by acid-utilizing bacteria, such as M. elsdenii. Gluconic acid may be useful as a prebiotic to stimulate butyrate production in the large intestine.

  10. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  11. Butyrate stimulates IL-32α expression in human intestinal epithelial cell lines

    Institute of Scientific and Technical Information of China (English)

    Ayako; Kobori; Shigeki; Bamba; Hirotsugu; Imaeda; Hiromitsu; Ban; Tomoyuki; Tsujikawa; Yasuharu; Saito; Yoshihide; Fujiyama; Akira; Andoh

    2010-01-01

    AIM: To investigate the effects of butyrate on interleukin (IL)-32α expression in epithelial cell lines. METHODS: The human intestinal epithelial cell lines HT-29, SW480, and T84 were used. Intracellular IL- 32α was determined by Western blotting analyses. IL- 32α mRNA expression was analyzed by real-time poly-merase chain reaction. RESULTS: Acetate and propionate had no effects on IL-32α mRNA expression. Butyrate significantly enhanced IL-32α expression in all cell lines. Butyrate also up-regulated IL-1β-i...

  12. Anticarcinogenic actions of tributyrin, a butyric acid prodrug.

    Science.gov (United States)

    Heidor, Renato; Ortega, Juliana Festa; de Conti, Aline; Ong, Thomas Prates; Moreno, Fernando Salvador

    2012-12-01

    Bioactive food compounds (BFCs) exhibit potential anticarcinogenic effects that deserve to be explored. Butyric acid (BA) is considered a promising BFC and has been used in clinical trials; however, its short half-life considerably restricts its therapeutic application. Tributyrin (TB), a BA prodrug present in milk fat and honey, has more favorable pharmacokinetic properties than BA, and its oral administration is also better tolerated. In vitro and in vivo studies have shown that TB acts on multiple anticancer cellular and molecular targets without affecting non-cancerous cells. Among the TB mechanisms of action, the induction of apoptosis and cell differentiation and the modulation of epigenetic mechanisms are notable. Due to its anticarcinogenic potential, strategies as lipid emulsions, nanoparticles, or structured lipids containing TB are currently being developed to improve its organoleptic characteristics and bioavailability. In addition, TB has minimal toxicity, making it an excellent candidate for combination therapy with other agents for the control of cancer. Despite the lack of data available in the literature, TB is a promising molecule for anticancer strategies. Therefore, additional preclinical and clinical studies should be performed using TB to elucidate its molecular targets and anticarcinogenic potential.

  13. Micropatterned polyvinyl butyral membrane for acid-base diodes.

    Science.gov (United States)

    Roszol, László; Lawson, Thuy; Koncz, Viktória; Noszticzius, Zoltán; Wittmann, Maria; Sarkadi, Tamás; Koppa, Pál

    2010-11-04

    Until now, polyvinyl alcohol (PVA) gel cylinders have been used in electrolyte diodes as a connecting element between the acidic and alkaline reservoirs. In this paper, a new connecting element is reported: a breath figure templated polyvinyl butyral (PVB) membrane prepared with dip-coating from a dichloromethane solution of the polymer in a humid atmosphere. The procedure gives a 1.5-2 μm thick membrane with a hexagonal pattern, the average characteristic length of which is 1 μm. After an acidic etching, it was found to be a good connecting element. The voltage-current characteristics and dynamic properties of PVA and PVB were measured and compared. The PVB membrane has a faster response to voltage changes than the PVA gel, but in both cases, there was a slow drift in the current that prevented it from reaching a steady state. Reproducible characteristics can be obtained, however, after the current reaches a well-defined quasi-steady state.

  14. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Wan, Wei; Wang, Jianlong [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)

    2008-12-15

    The inhibitory effect of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production by mixed cultures was investigated in batch tests using glucose as substrate. The experimental results showed that, at 35 C and initial pH 7.0, during the fermentative hydrogen production, the substrate degradation efficiency, hydrogen production potential, hydrogen yield and hydrogen production rate all trended to decrease with increasing added ethanol, acetic acid, propionic acid and butyric acid concentration from 0 to 300 mmol/L. The inhibitory effect of added ethanol on fermentative hydrogen production was smaller than those of added acetic acid, propionic acid and butyric acid. The modified Han-Levenspiel model could describe the inhibitory effects of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production rate in this study successfully. The modified Logistic model could describe the progress of cumulative hydrogen production. (author)

  15. The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Wang, Xing-Yu; Zhou, Lian; Yang, Jun; Ji, Guang-Hai; He, Ya-Wen

    2016-03-01

    Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis.

  16. Thermal Analysis of Whole Bacterial Cells Exposed to Potassium Permanganate Using Differential Scanning Calorimetry: a Biphasic Dose-Dependent Response to Stress

    Directory of Open Access Journals (Sweden)

    Marina K. Abuladze

    2009-01-01

    Full Text Available Differential scanning calorimetry (DSC was applied to estimate the impact of the toxic oxidant potassium permanganate (PM on the intracellular structural and functional alterations at whole cell level using soil bacteria Arthrobacter oxydans as a model culture. Differential scanning calorimetry (DSC was applied in order to estimate the impact of the toxic oxidant potassium permanganate (PM on the intracellular structural and functional alterations at the whole cell level using the soil bacteria Arthrobacter oxydans as a model culture. We compared the total melting heat and the temperature of DNA-protein complex (DNP melting at the PM application prior to the calorimetry measurement and after 24-h exposure at the concentration range 0.02–1.4 mM. The initial oxidative effect caused changes in the pattern of the whole cell melting spectra (mainly at the temperature range 56–78°C, the decrease of Tmax °C DNP melting, and did not influence significantly the total heat of bacterial melting at different concentrations of PM. The prolonged effect of permanganate up to 24 h was characterized by a biphasic dose-dependent response to stress estimated by the DSC technique and the colony-forming assay. The low doses of PM (0.02 and 0.2 mM stimulated cell proliferation, and increased the total whole cell melting heat and the temperature of DNP melting. The toxic effect of PM up to 0.04 mM reduced cell viability, changed the character of multipeaked thermograms, and lowered the total melting heat and the temperature of DNP melting in a concentration-dependent manner. This study presents the DSC method for evaluating and monitoring the effects of exposure to potential human and environmental toxicants.

  17. Cyclic AMP synergizes with butyrate in promoting β-defensin 9 expression in chickens.

    Science.gov (United States)

    Sunkara, Lakshmi T; Zeng, Xiangfang; Curtis, Amanda R; Zhang, Guolong

    2014-02-01

    Host defense peptides (HDP) have both microbicidal and immunomodulatory properties. Specific induction of endogenous HDP synthesis has emerged as a novel approach to antimicrobial therapy. Cyclic adenosine monophosphate (cAMP) and butyrate have been implicated in HDP induction in humans. However, the role of cAMP signaling and the possible interactions between cAMP and butyrate in regulating HDP expression in other species remain unknown. Here we report that activation of cAMP signaling induces HDP gene expression in chickens as exemplified by β-defensin 9 (AvBD9). We further showed that, albeit being weak inducers, cAMP agonists synergize strongly with butyrate or butyrate analogs in AvBD9 induction in macrophages and primary jejunal explants. Additionally, oral supplementation of forskolin, an adenylyl cyclase agonist in the form of a Coleus forskohlii extract, was found to induce AvBD9 expression in the crop of chickens. Furthermore, feeding with both forskolin and butyrate showed an obvious synergy in triggering AvBD9 expression in the crop and jejunum of chickens. Surprisingly, inhibition of the MEK-ERK mitogen-activated protein kinase (MAPK) pathway augmented the butyrate-FSK synergy, whereas blocking JNK or p38 MAPK pathway significantly diminished AvBD9 induction in chicken macrophages and jejunal explants in response to butyrate and FSK individually or in combination. Collectively, these results suggest the potential for concomitant use of butyrate and cAMP signaling activators in enhancing HDP expression, innate immunity, and disease resistance in both animals and humans.

  18. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  19. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum.

    Science.gov (United States)

    Eeckhaut, Venessa; Van Immerseel, Filip; Croubels, Siska; De Baere, Siegrid; Haesebrouck, Freddy; Ducatelle, Richard; Louis, Petra; Vandamme, Peter

    2011-07-01

    Sixteen butyrate-producing bacteria were isolated from the caecal content of chickens and analysed phylogenetically. They did not represent a coherent phylogenetic group, but were allied to four different lineages in the Firmicutes phylum. Fourteen strains appeared to represent novel species, based on a level of ≤ 98.5% 16S rRNA gene sequence similarity towards their nearest validly named neighbours. The highest butyrate concentrations were produced by the strains belonging to clostridial clusters IV and XIVa, clusters which are predominant in the chicken caecal microbiota. In only one of the 16 strains tested, the butyrate kinase operon could be amplified, while the butyryl-CoA:acetate CoA-transferase gene was detected in eight strains belonging to clostridial clusters IV, XIVa and XIVb. None of the clostridial cluster XVI isolates carried this gene based on degenerate PCR analyses. However, another CoA-transferase gene more similar to propionate CoA-transferase was detected in the majority of the clostridial cluster XVI isolates. Since this gene is located directly downstream of the remaining butyrate pathway genes in several human cluster XVI bacteria, it may be involved in butyrate formation in these bacteria. The present study indicates that butyrate producers related to cluster XVI may play a more important role in the chicken gut than in the human gut.

  20. Butyrate-induced GPR41 Activation Inhibits Histone Acetylation and Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Jin Wu; Zongli Zhou; Yinghe Hu; Suzhen Dong

    2012-01-01

    Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41 (GPR41).In addition,it is an inhibitor of histone deacetylase (HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the Gl-stage,while its activation by butyrate can cause more cells to pass the Gl checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.

  1. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    Science.gov (United States)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  2. Bacterial Vaginosis

    Science.gov (United States)

    ... Issues > Conditions > Sexually Transmitted > Bacterial Vaginosis Health Issues Listen Español Text Size Email Print Share Bacterial Vaginosis Page Content Bacterial vaginosis (BV) is the most common vaginal infection in sexually active teenaged girls . It appears to be caused by ...

  3. Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain through Culture-Dependent and Independent Approaches.

    Directory of Open Access Journals (Sweden)

    Javier Pascual

    Full Text Available Little is known of the bacterial communities associated with the rhizosphere of wild plant species found in natural settings. The rhizosphere bacterial community associated with wild thyme, Thymus zygis L., plants was analyzed using cultivation, the creation of a near-full length 16S rRNA gene clone library and 454 amplicon pyrosequencing. The bacterial community was dominated by Proteobacteria (mostly Alphaproteobacteria and Betaproteobacteria, Actinobacteria, Acidobacteria, and Gemmatimonadetes. Although each approach gave a different perspective of the bacterial community, all classes/subclasses detected in the clone library and the cultured bacteria could be found in the pyrosequencing datasets. However, an exception caused by inconclusive taxonomic identification as a consequence of the short read length of pyrotags together with the detection of singleton sequences which corresponded to bacterial strains cultivated from the same sample highlight limitations and considerations which should be taken into account when analysing and interpreting amplicon datasets. Amplicon pyrosequencing of replicate rhizosphere soil samples taken a year later permit the definition of the core microbiome associated with Thymus zygis plants. Abundant bacterial families and predicted functional profiles of the core microbiome suggest that the main drivers of the bacterial community in the Thymus zygis rhizosphere are related to the nutrients originating from the plant root and to their participation in biogeochemical cycles thereby creating an intricate relationship with this aromatic plant to allow for a feedback ecological benefit.

  4. Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain) through Culture-Dependent and Independent Approaches.

    Science.gov (United States)

    Pascual, Javier; Blanco, Silvia; García-López, Marina; García-Salamanca, Adela; Bursakov, Sergey A; Genilloud, Olga; Bills, Gerald F; Ramos, Juan L; van Dillewijn, Pieter

    2016-01-01

    Little is known of the bacterial communities associated with the rhizosphere of wild plant species found in natural settings. The rhizosphere bacterial community associated with wild thyme, Thymus zygis L., plants was analyzed using cultivation, the creation of a near-full length 16S rRNA gene clone library and 454 amplicon pyrosequencing. The bacterial community was dominated by Proteobacteria (mostly Alphaproteobacteria and Betaproteobacteria), Actinobacteria, Acidobacteria, and Gemmatimonadetes. Although each approach gave a different perspective of the bacterial community, all classes/subclasses detected in the clone library and the cultured bacteria could be found in the pyrosequencing datasets. However, an exception caused by inconclusive taxonomic identification as a consequence of the short read length of pyrotags together with the detection of singleton sequences which corresponded to bacterial strains cultivated from the same sample highlight limitations and considerations which should be taken into account when analysing and interpreting amplicon datasets. Amplicon pyrosequencing of replicate rhizosphere soil samples taken a year later permit the definition of the core microbiome associated with Thymus zygis plants. Abundant bacterial families and predicted functional profiles of the core microbiome suggest that the main drivers of the bacterial community in the Thymus zygis rhizosphere are related to the nutrients originating from the plant root and to their participation in biogeochemical cycles thereby creating an intricate relationship with this aromatic plant to allow for a feedback ecological benefit.

  5. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response.

    Science.gov (United States)

    Palma, Marco; Zurita, Juan; Ferreras, Julian A; Worgall, Stefan; Larone, Davise H; Shi, Lei; Campagne, Fabien; Quadri, Luis E N

    2005-05-01

    SoxR is a transcriptional regulator that controls an oxidative stress response in Escherichia coli. The regulator is primarily activated by superoxide anion-dependent oxidation. Activated SoxR turns on transcription of a single gene, soxS, which encodes a transcriptional regulator that activates a regulon that includes dozens of oxidative stress response genes. SoxR homologues have been identified in many bacterial species, including the opportunistic pathogen Pseudomonas aeruginosa. However, the expected SoxR partner, SoxS, has not been found in P. aeruginosa. Thus, the primary gene target(s) of P. aeruginosa SoxR is unknown and the involvement of this regulator in the oxidative stress response of the bacterium remains unclear. We utilized transcriptome profiling to identify the P. aeruginosa SoxR regulon and constructed and characterized an unmarked P. aeruginosa DeltasoxR mutant. We provide evidence indicating that P. aeruginosa SoxR activates a six-gene regulon in response to O(2)(.-)-induced stress. The regulon includes three transcriptional units: (i) the recently identified mexGHI-ompD four-gene operon, which encodes a multidrug efflux pump system involved in quorum-sensing signal homeostasis; (ii) gene PA3718, encoding a probable efflux pump; and (iii) gene PA2274, encoding a probable monooxygenase. We also demonstrate that P. aeruginosa SoxR is not a key regulatory player in the oxidative stress response. Finally, we show that P. aeruginosa SoxR is required for virulence in a mouse model of intrapulmonary infection. These results demonstrate that the E. coli-based SoxRS paradigm does not hold in P. aeruginosa and foster new hypotheses for the possible physiological role of P. aeruginosa SoxR.

  6. CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen.

    Science.gov (United States)

    Spehlmann, Martina E; Dann, Sara M; Hruz, Petr; Hanson, Elaine; McCole, Declan F; Eckmann, Lars

    2009-09-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal disease in young children, yet symptoms and duration are highly variable for unknown reasons. Citrobacter rodentium, a murine model pathogen that shares important functional features with EPEC, colonizes mice in colon and cecum and causes inflammation, but typically little or no diarrhea. We conducted genome-wide microarray studies to define mechanisms of host defense and disease in C. rodentium infection. A significant fraction of the genes most highly induced in the colon by infection encoded CXC chemokines, particularly CXCL1/2/5 and CXCL9/10, which are ligands for the chemokine receptors CXCR2 and CXCR3, respectively. CD11b(+) dendritic cells were the major producers of CXCL1, CXCL5, and CXCL9, while CXCL2 was mainly induced in macrophages. Infection of gene-targeted mice revealed that CXCR3 had a significant but modest role in defense against C. rodentium, whereas CXCR2 had a major and indispensable function. CXCR2 was required for normal mucosal influx of neutrophils, which act as direct antibacterial effectors. Moreover, CXCR2 loss led to severe diarrhea and failure to express critical components of normal ion and fluid transport, including ATPase beta(2)-subunit, CFTR, and DRA. The antidiarrheal functions were unique to CXCR2, since other immune defects leading to increased bacterial load and inflammation did not cause diarrhea. Thus, CXCR2-dependent processes, particularly mucosal neutrophil influx, not only contribute to host defense against C. rodentium, but provide protection against infection-associated diarrhea.

  7. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.

    Science.gov (United States)

    Peterson, Eric C; Daugulis, Andrew J

    2014-03-01

    Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR.

  8. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  9. High performance films of cellulose butyral derivative having a necklace-like annular structure in the side chains

    OpenAIRE

    2014-01-01

    We fabricated high performance films using cellulose butyral (CB) synthesized from native cellulose. Two-step reactions were adopted to produce the derivative CB, including etherification of cellulose with glycidol in NaOH/urea aqueous solution to yield O-(2, 3-dihydroxypropyl) cellulose (DHPC), and butyralization of DHPC. Both DHPC and CB products were easily processed into a thin film by hot-press molding. The butyral modifier significantly improved the tenacity of highly ductile DHPC, by v...

  10. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.

    Science.gov (United States)

    Jang, Yu-Sin; Woo, Hee Moon; Im, Jung Ae; Kim, In Ho; Lee, Sang Yup

    2013-11-01

    Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.

  11. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor.

    Science.gov (United States)

    Huang, Jin; Cai, Jin; Wang, Jin; Zhu, Xiangcheng; Huang, Lei; Yang, Shang-Tian; Xu, Zhinan

    2011-02-01

    Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼ 85.1 (85.1g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work.

  12. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells.

    Science.gov (United States)

    Zeng, Huawei; Taussig, David P; Cheng, Wen-Hsing; Johnson, LuAnn K; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  13. Comparison of Butyric acid concentrations in ordinary and probiotic yogurt samples in Iran

    Directory of Open Access Journals (Sweden)

    Narges Vaseji

    2012-06-01

    Full Text Available Background and objectives: Butyric acid has many applications in chemical, food and pharmaceutical industries. Applications of butyric acid are as an additive to food, flavorings, varnishes, perfumes, pharmaceuticals and disinfectants. Butyric acid concentrations have positive impact on the quality control of milk, yogurt and other probiotic dairy products. The present investigation was undertaken to determine and compare the concentrations of butyric acid (C4 in the ordinary and probiotic yogurt samples by GC method.Materials and Methods: Probiotic yogurt samples were prepared under laboratory scale conditions using two different commercial starters ABY1 and 211, while ordinary yogurt samples lacked the probiotic starter cultures. All samples were analyzed in duplicate, for C4 concentrations by gas chromatography after day 1, 2, 10 and 20 of production, during storage at 4ºC. The results were analyzed using ANOVA and Duncan test.Results: The level of the mentioned fatty acid in ABY1 yogurt sample was significantly higher (0.2% than in 211 samples (0.17%. These values were significantly lower in ordinary yogurt samples and only 0.07% was recorded in these samples on first day of storage which decreased gradually during storage. The level of reduction in the yogurt samples tested during different time intervals was not similar in all the examined samples, and some showed enhanced reduction than other samples.Conclusions: Compared to ordinary yogurt samples, probiotic yogurt samples used in study showed higher levels of butyric acid with increased shelf life.

  14. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses.

    Science.gov (United States)

    Jiang, Ling; Wang, Jufang; Liang, Shizhong; Wang, Xiaoning; Cen, Peilin; Xu, Zhinan

    2009-07-01

    Butyrate fermentation by immobilized Clostridium tyrobutyricum was successfully carried out in a fibrous bed bioreactor using cane molasses. Batch fermentations were conducted to investigate the influence of pH on the metabolism of the strain, and the results showed that the fermentation gave a highest butyrate production of 26.2 g l(-1) with yield of 0.47 g g(-1) and reactor productivity up to 4.13 g l(-1)h(-1) at pH 6.0. When repeated-batch fermentation was carried out, long-term operation with high butyrate yield, volumetric productivity was achieved. Several cane molasses pretreatment techniques were investigated, and it was found that sulfuric acid treatment gave better results regarding butyrate concentration (34.6+/-0.8 g l(-1)), yield (0.58+/-0.01 g g(-1)), and sugar utilization (90.8+/-0.9%). Also, fed-batch fermentation from cane molasses pretreated with sulfuric acid was performed to further increase the concentration of butyrate up to 55.2 g l(-1).

  15. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213.

    Science.gov (United States)

    Liu, Siqing; Bischoff, Kenneth M; Leathers, Timothy D; Qureshi, Nasib; Rich, Joseph O; Hughes, Stephen R

    2013-09-01

    A novel Clostridium tyrobutyricum strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L(-1) butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH), corn stover (CSH), rice hull (RHH), and switchgrass (SGH). Results indicated that 50% WSH with a Clostridia medium (Ct) produced the most butyric acid (8.06 g L(-1), 0.46 g/g glucose), followed by 50% SGH with Ct (6.01 g L(-1), 0.44 g/g glucose), however, 50% CSH Ct showed growth inhibition. RPT-4213 was then used in pH-controlled bioreactor fermentations using 60% WSH and SGH, with a dilute (0.5×) Ct medium, resulting 9.87 g L(-1) butyric acid in WSH (yield 0.44 g/g) and 7.05 g L(-1) butyric acid in SGH (yield 0.42 g/g). The titer and productivity could be improved through process engineering.

  16. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain.

    Science.gov (United States)

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-09-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l(-1) of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v(-1) ) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60-80% PHWS lie between 0.37 and 0.46 g g(-1) of sugar, while the selectivity for butyric acid was as high as 0.9-1.0 g g(-1) of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7.

  17. The inhibitor of histone deacetylases sodium butyrate enhances the cytotoxicity of mitomycin C.

    Science.gov (United States)

    Gospodinov, Anastas; Popova, Stanislava; Vassileva, Ivelina; Anachkova, Boyka

    2012-10-01

    The use of histone deacetylase inhibitors has been proposed as a promising approach to increase the cell killing effect of DNA damage-inducing drugs in chemotherapy. However, the molecular mechanism of their action remains understudied. In the present article, we have assessed the effect of the histone deacetylase inhibitor sodium butyrate on the DNA damage response induced by the crosslinking agent mitomycin C. Sodium butyrate increased mitomycin C cytotoxicity, but did not impair the repair pathways required to remove mitomycin C-induced lesions as neither the rate of nucleotide excision repair nor the homologous recombination repair rate were diminished. Sodium butyrate treatment abrogated the S-phase cell-cycle checkpoint in mitomycin C-treated cells and induced the G(2)-M checkpoint. However, sodium butyrate treatment alone resulted in accumulation of reactive oxygen species, double-strand breaks in DNA, and apoptosis. These results imply that the accumulation of reactive oxygen species-mediated increase in DNA lesion burden may be the major mechanism by which sodium butyrate enhances the cytotoxicity of mitomycin C.

  18. New holographic polymeric composition based on plexiglass, polyvinyl butyral, and phenanthrenquinone

    Science.gov (United States)

    Matusevich, Vladislav; Tolstik, Elen; Kowarschik, Richard; Egorova, Elena; Matusevich, Yuri I.; Krul, Leonid

    2013-05-01

    The newly developed Plexiglas films containing polyvinyl butyral resins and phenanthrenequinone molecules as photosensitive dopant, which are proposed for the practical application as interlayer of laminated safety glass, are shown for the first time. The injection of the phenanthrenequinone-poly(methyl methacrylate) into the polyvinyl butyral protective interlayer provides a homogenous distribution of the recording holographic medium in the layer and allows fixing the entire surface grating in the laminated glass. In addition, the original properties of polyvinyl butyral as a connecting material were preserved during manufacturing of the laminated glass. This allows a recording of holographic structures directly after baking of the laminated glass, thus reducing the destruction of the gratings due to the elevated temperatures. The diffractive structures in phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral polymeric layers with thicknesses of hundreds of microns are sealed between two panels of glass (so-called laminated glass) and are generated by illumination with an Argon-laser of 514 nm. Efficiently fixed and long-term stable holographic gratings recorded in the phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral layer enable to produce transparent laminated glass with inserted diffractive elements, which can be used e.g. for Head-up Displays in automobile windshields or as holographic light concentrators for solar cells.

  19. Consolidated bioprocessing for butyric acid production from rice straw with undefined mixed culture

    Directory of Open Access Journals (Sweden)

    Binling Ai

    2016-10-01

    Full Text Available Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L•d. In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41% and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes.

  20. Blocking the butyrate-formation pathway impairs hydrogen production in Clostridium perfringens

    Institute of Scientific and Technical Information of China (English)

    Ruisong Yu; Ruofan Wang; Ting Bi; Weining Sun; Zhihua Zhou

    2013-01-01

    Inactivating competitive pathways will improve fermentative hydrogen production by obligate anaerobes,such as those of genus Clostridium.In our previous study,the hydrogen yield of Clostridium perfringens W13 in which L-lactate dehydrogenase was inactivated increased by 44% when compared with its original strain W12.In this study,we explored whether blocking butyrate formation pathway would increase hydrogen yield.The acetyl-CoA acetyltransferase gene (atoB) encodes the first enzyme in this pathway,which ultimately forms butyrate.Clostridium perfringens W14 and W15 were constructed by inactivating atoB in W13 and W12,respectively.The hydrogen yield of W14 and W15 was 44% and 33% of those of W13 and W12,respectively.Inactivation of atoB decreased the pyruvate synthesis and its conversion to acetyl-CoA in both mutants,and increased ethanol formation in W14 and W15.Proteomic analysis revealed that the expressions of five proteins involved in butyrate formation pathway were up-regulated in W14.Our results suggest that butyrate formation deficiency improved ethanol production but not hydrogen production,indicating the importance of butyrate formation pathway for hydrogen production in C.perfringens.

  1. Rapid Estimation of Enantioselectivity in Lipase-catalyzed Resolution of Glycidyl Butyrate Using pH Indicator

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; WANG Lei; WANG Li-cheng; LI Chun-yuan; WANG Ren; MIAO Qing-hua; YANG Ming; WANG Zhi

    2009-01-01

    A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the dif-ference of hydrolysis rates for the racemic ester and its slow reacting enantiomer under the same condition because the difference mainly depends on the enantioselective ratio(E values). The higher the enantiose-lectivity of enzyme, the larger the difference of hydrolysis rate. The bromothymol blue(BTB) can be used as pH indicator for microplate reader to monitor the formation of acid in lipase-catalyzed hydrolysis ofesters. This method has been successfully used to rapidly estimate the enantioselectivity of several lipases in the resolution of glycidyl butyrate.

  2. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis.

    Science.gov (United States)

    Dewei, Song; Min, Chen; Haiming, Cheng

    2016-11-01

    Candida rugosa lipases were immobilized onto collagen fibers through glutaraldehyde cross-linking method. The immobilization process has been optimized. Under the optimal immobilization conditions, the activity of the collagen-immobilized lipase reached 340 U/g. The activity was recovered of 28.3 % by immobilization. The operational stability of the obtained collagen-immobilized lipase for hydrolysis of olive oil emulsion was determined. The collagen-immobilized lipase showed good tolerance to temperature and pH variations in comparison to free lipase. The collagen-immobilized lipase was also applied as biocatalyst for synthesis of butyl butyrate from butyric acid and 1-butanol in n-hexane. The conversion yield was 94 % at the optimal conditions. Of its initial activity, 64 % was retained after 5 cycles for synthesizing butyl butyrate in n-hexane.

  3. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: the effect of alcohol carbon chain length.

    Science.gov (United States)

    Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J

    2013-02-01

    The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid.

  4. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    Science.gov (United States)

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.

  5. Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations.

    Science.gov (United States)

    Chen, Wen-Hsing; Jian, Zih-Ce

    2013-10-01

    Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g(-1) of dry cell was projected for 31.9 g L(-1) sucrose and 1.3 g L(-1) butyrate, and the maximum specific butanol production rate of 0.87 g d(-1) g(-1) of dry cell was predicted for 25.0 g L(-1) sucrose and 2.6 g L(-1) butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol(-1) was projected for 25.0 g L(-1) sucrose and 2.3 g L(-1) butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol(-1) when butyrate addition increased from 0 to 1 g L(-1) under low sugar concentration (3.8 g L(-1) sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone-butanol-ethanol fermentation.

  6. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum.

    Science.gov (United States)

    Wu, Zetang; Yang, Shang-Tian

    2003-04-05

    A novel extractive fermentation for butyric acid production from glucose, using immobilized cells of Clostridium tyrobutyricum in a fibrous bed bioreactor, was developed by using 10% (v/v) Alamine 336 in oleyl alcohol as the extractant contained in a hollow-fiber membrane extractor for selective removal of butyric acid from the fermentation broth. The extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor. The fermentation pH was self-regulated by a balance between acid production and removal by extraction, and was kept at approximately pH 5.5 throughout the study. Compared with conventional fermentation, extractive fermentation resulted in a much higher product concentration (>300 g/L) and product purity (91%). It also resulted in higher reactor productivity (7.37 g/L. h) and butyric acid yield (0.45 g/g). Without on-line extraction to remove the acid products, at the optimal pH of 6.0, the final butyric acid concentration was only approximately 43.4 g/L, butyric acid yield was 0.423 g/g, and reactor productivity was 6.77 g/L. h. These values were much lower at pH 5.5: 20.4 g/L, 0.38 g/g, and 5.11 g/L. h, respectively. The improved performance for extractive fermentation can be attributed to the reduced product inhibition by selective removal of butyric acid from the fermentation broth. The solvent was found to be toxic to free cells in suspension, but not harmful to cells immobilized in the fibrous bed. The process was stable and provided consistent long-term performance for the entire 2-week period of study.

  7. Sodium butyrate and dexamethasone promote exocrine pancreatic gene expression in mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Meng REN; Li YAN; Chang-zhen SHANG; Jun CAO; Fang-ping LI; Jingyi LI; Hua CHENG; Jun MIN

    2009-01-01

    Aim: The feasibility of inducing endocrine pancreatic differentiation of embryonic stem (ES) cells has been well documented. How-ever, whether ES cells possess the potential for exocrine pancreatic differentiation requires further exploration. Here, we investigated whether sodium butyrate and glucocorticoids were conducive to the exocrine pancreatic differentiation of ES cells. Methods: E14 mouse ES cells were cultured in suspension to form embryoid bodies (EBs). These EBs were cultured in differentiating medium containing varying concentrations of sodium butyrate. The effects of activinA and dexamethasone (Dex) on exocrine differen-tiation were also explored. Finally, the combination of sodium butyrate, activinA, and Dex was used to promote the differentiation of exocrine pancreatic cells. Specific exocrine pancreatic gene expression was detected by reverse transcription polymerase chain reac-tion (RT-PCR) and amylase expression was examined by immunofluorescence staining. Flow cytometry analysis was also performed to determine the percentage of amylase-positive cells after the treatment with activinA, sodium butyrate, and Dex. Results: Exposure of ES cells to 1 mmol/L sodium butyrate for 5 days promoted exocrine pancreatic gene expression. Further combi-nation with Dex and other pancreatic-inducing factors, such as activinA, significantly enhanced the mRNA and protein levels of exocrine pancreatic markers. Additionally, flow cytometry revealed that approximately 17% of the final differentiated cells were amylase-positive. Conclusion: These data indicate that the exocrine pancreatic differentiation of ES cells can be induced by activinA, sodium butyrate, and Dex, providing a potential tool for studying pancreatic differentiation and pancreas-related diseases.

  8. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    prices as a chemical are at $3.00 per gallon – wholesaling in 55 gallon drums for $6.80, with a worldwide market of 1.4 billion gallon per year. The market demand is expected to increase dramatically since butanol can now be produced economically from low-cost biomass. Butanol’s application as a replacement for gasoline will outpace ethanol, biodiesel and hydrogen when its safety and simplicity of use are seen. Butanol’s application for the Department of Defense as a clean-safe replacement for batteries when used in conjunction with fuel cell technology is seen as an application for the future. Disposable canisters made of PLA that carry butanol to be reformed and used to generate electricity for computers, night vision and stealth equipment can be easily disposed of. In a typical ABE fermentation, butyric, propionic and acetic acids are produced first by C. acetobutylicum; the culture then undergoes a metabolic shift and solvents (butanol, acetone, and ethanol) are formed (Fond et al., 1985). In conventional ABE fermentations, the butanol yield from glucose is low, typically at ~15% (w/w) and rarely exceeds 25% (0.77–1.3 gallons per bushel corn respectfully). The production of butanol is also limited by severe product inhibition. Butanol at a concentration of 10 g/L can significantly inhibit cell growth and the fermentation. Consequently, butanol titers in conventional ABE fermentations are usually lower than 13 g/L. The low butanol yield and butanol concentration made butanol production from glucose by ABE fermentation uneconomical.

  9. A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose

    Directory of Open Access Journals (Sweden)

    Beauvieux Marie-Christine

    2011-06-01

    Full Text Available Abstract Background Butyrate, end-product of intestinal fermentation, is known to impair oxidative phosphorylation in rat liver and could disturb glycogen synthesis depending on the ATP supplied by mitochondrial oxidative phosphorylation and cytosolic glycolysis. Methods In 48 hr-fasting rats, hepatic changes of glycogen and total ATP contents and unidirectional flux of mitochondrial ATP synthesis were evaluated by ex vivo 31P NMR immediately after perfusion and isolation of liver, from 0 to 10 hours after force-feeding with (butyrate 1.90 mg + glucose 14.0 mg.g-1 body weight or isocaloric glucose (18.2 mg.g-1 bw; measurements reflected in vivo situation at each time of liver excision. The contribution of energetic metabolism to glycogen metabolism was estimated. Results A net linear flux of glycogen synthesis (~11.10 ± 0.60 μmol glucosyl units.h-1.g-1 liver wet weight occurred until the 6th hr post-feeding in both groups, whereas butyrate delayed it until the 8th hr. A linear correlation between total ATP and glycogen contents was obtained (r2 = 0.99 only during net glycogen synthesis. Mitochondrial ATP turnover, calculated after specific inhibition of glycolysis, was stable (~0.70 ± 0.25 μmol.min-1.g-1 liver ww during the first two hr whatever the force-feeding, and increased transiently about two-fold at the 3rd hr in glucose. Butyrate delayed the transient increase (1.80 ± 0.33 μmol.min-1.g-1 liver ww to the 6th hr post-feeding. Net glycogenolysis always appeared after the 8th hr, whereas flux of mitochondrial ATP synthesis returned to near basal level (0.91 ± 0.19 μmol.min-1.g-1 liver ww. Conclusion In liver from 48 hr-starved rats, the energy need for net glycogen synthesis from exogenous glucose corresponds to ~50% of basal mitochondrial ATP turnover. The evidence of a late and transient increase in mitochondrial ATP turnover reflects an energetic need, probably linked to a glycogen cycling. Butyrate, known to reduce oxidative

  10. The expression of glucose regulated protein-94 in colorectal carcinoma cells treated by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The expression of glucose regulated protein 94 (GRP94)during the treatment of human colorectal carcinoma cell lineClone A cells with sodium butyrate was studied. Sodium butyrate (SB) can cause functional and morphological effects on Clone A cells including growth arrest at G0/G1 stage and cell differentiation as observed by morphological changes, MTT and flow cytometry assays, as well as reduced Grp94 gene expression as shown by Northern blot and Western blot assays. The possible mechanism of the correlation between Grp94 gene expression and tumor growth inhibition and cell differentiation is briefly discussed.

  11. The expression of glucose regulated protein—94 in colorectal carcinoma cells treated by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    WUYIDI; JINDANSONG

    2000-01-01

    The expression of glucose regulated protein 94 (GPR94) during the treatment of human colorectal carcinoma cell lineClone A cells with codium butyrate was studied.Dodium butyrate (SB) can cause functional and morphological effects on Clone A cells including growth arrest at G0/G1 stage and cell differentiation as observed by morphological changes,MTT and flow cytometry assays,as well as reduced Grp94 gene expression as shown by Northern blot and Western blot assays.The possible mechanism of the correlation between Grp94 gene expression and tumor growth inhibition and cell differentiation is briefly discussed.

  12. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter;

    ’s platform for a variety of products for industrial use. Butyric acid is considered as a potential chemical building-block for the production of chemicals for e.g. polymeric compounds and the aim of this work was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces less acetic...... acid (higher selectivity), has a higher yield and a higher productivity of butyric acid from pre-treated lignocellulosic biomass. Pre-treated wheat straw was used as the main carbon source. After one year of serial adaptation and selection a mutant strain of C. tyrobutyricum was developed. This new...

  13. Characterization by culture-dependent and culture-1 independent methods of the 2 bacterial population of suckling-lamb packaged in different atmospheres

    NARCIS (Netherlands)

    Oses, S.M.; Diez, A.M.; Melero, B.; Luning, P.A.; Jaime, I.; Rovira, J.

    2013-01-01

    This study offers insight into the dynamics of bacterial populations in fresh cuts of suckling lamb under four different atmospheric conditions: air (A), and three Modified Atmosphere Packaging (MAP) environments, 15%O2/30%CO2/55%N2 (C, commercial), 70%O2/30%CO2 (O), and 15%O2/85%CO2 (H) for 18 days

  14. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  15. Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow.

    Science.gov (United States)

    Kotunia, A; Woliński, J; Laubitz, D; Jurkowska, M; Romé, V; Guilloteau, P; Zabielski, R

    2004-07-01

    Feeding of neonates with artificial milk formulas delays the maturation of the gastrointestinal mucosa. Na-butyrate has a complex trophic effect on the gastrointestinal epithelium in adults. The present study aimed to determine the effect of milk formula supplementation with Na-butyrate on the gut mucosa in neonatal piglets. Sixteen 3 day old piglets were randomly divided into two groups: control (C, n = 8), and Na-butyrate (B, n = 8). Animals were feed for 7 days with artificial milk formula alone (C) or supplemented with Na-butyrate (B). At the 10(th) day of life the piglets were sacrificed and whole thickness samples of the upper gut were taken for analyses. Administration of Na-butyrate led to significant increase in daily body weight gain as compared to control. In the duodenum, the villi length and mucosa thickness were reduced, however, in the distal jejunum and ileum, the crypt depth, villi length and mucosa thickness were increased in Na-butyrate supplemented piglets as compared to control. Supplementation with Na-butyrate did not affect the intestinal brush border enzyme activities but increased plasma pancreatic polypeptide and cholecystokinin concentrations. These results suggest that supplementation with Na-butyrate may enhance the development of jejunal and ileal mucosa in formula-fed piglets.

  16. Dosimetric characteristics of a radiochromic polyvinyl butyral film containing 2,4-hexadiyn-1,6-bis(n-butyl urethane).

    Science.gov (United States)

    Abdel-Fattah, A A; Soliman, Y S; Bayomi, A M M; Abdel-Khalek, A A

    2014-04-01

    A radiation-sensitive compound 2,4-hexadiyn-1,6-bis(n-butyl urethane) (HDDBU) was synthesized, characterized by FTIR spectroscopy, and introduced into a thin polyvinyl butyral film to form a radiation dosimeter for industrial irradiation facilities. The monomer polymerizes under gamma radiation, inducing change in the film spectrum in the range of 200-400 nm. According to XRD spectroscopy, the film contains monomeric HDDBU in a non-crystalline state. The dose response function, radiation sensitivity, and dependences of the response on environmental factors were studied. Uncertainty of dose measurements with the proposed dosimetry system was analyzed in detail.

  17. Acetate and butyrate as substrates for hydrogen production through photo-fermentation: Process optimization and combined performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Venkata Mohan, S.; Prathima Devi, M.; Peri, Dinakar; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, AP 500 007 (India)

    2009-09-15

    Organic acids viz., acetate and butyrate were evaluated as primary substrates for the production of biohydrogen (H{sub 2}) through photo-fermentation process using mixed culture at mesophilic temperature (34 C). Experiments were performed by varying parameters like operating pH, presence/absence of initiator substrate (glucose) and vitamin solution, type of nitrogen source (mono sodium salt of glutamic acid and amino glutamic acid) and gas (nitrogen/argon) used to create anaerobic microenvironment. Experimental data showed the feasibility of H{sub 2} production along with substrate degradation utilizing organic acids as metabolic substrate but was found to be dependent on the process parameters evaluated. Maximum specific H{sub 2} production and substrate degradation were observed with acetic acid [3.51 mol/Kg COD{sub R}-day; 1.22 Kg COD{sub R}/m{sup 3}-day (92.96%)] compared to butyric acid [3.33 mol/Kg COD{sub R}-day; 1.19 Kg COD{sub R}/m{sup 3}-day (88%)]. Higher H{sub 2} yield was observed under acidophilic microenvironment in the presence of glucose (co-substrate), mono sodium salt of glutamic acid (nitrogen source) and vitamins. Argon induced microenvironment was observed to be effective compared to nitrogen induced microenvironment. Combined process efficiency viz., H{sub 2} production and substrate degradation was evaluated employing data enveloping analysis (DEA) methodology based on the relative efficiency. Integration of dark fermentation with photo-fermentation appears to be an economically viable route for sustainable biohydrogen production if wastewater is used as substrate. (author)

  18. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  19. Effect of method of delivery of sodium butyrate on rumen development in newborn calves

    DEFF Research Database (Denmark)

    Górka, P; Kowalski, Z M; Pietrzak, P;

    2011-01-01

    The effect of sodium butyrate (SB) supplementation in milk replacer (MR) or in starter mixture (SM) or in both MR and SM on performance, selected blood parameters, and rumen development in newborn calves was determined. Twenty-eight male calves with a mean age of 5 (±1) d were randomly allocated...

  20. Effect of abomasal butyrate infusion on gene expression in the duodenum of lambs

    Science.gov (United States)

    A previous study infusing butyrate into the abomasum of sheep produced increased oxygen, glucose, glutamate, and glutamine uptake by the portal-drained viscera. These changes were thought to be partially due to increases in glycolysis and cell proliferation. The purpose of this study was to evaluate...

  1. Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    Germination and growth of spores of butyric acid bacteria ( BAB) may cause severe defects in semihard cheeses. Silage is the main source of BAB spores in cheese milk. The objectives of the study were to determine the significance of grass silages and corn silages as sources of BAB spores and to inve

  2. Butyrate: A dietary inhibitor of histone deacetylases and an epigenetic regulator

    Science.gov (United States)

    The short-chain fatty acids (SCFAs) acetate, propionate and butyrate, also known as volatile fatty acids (VFA), are produced in the gastrointestinal tract by microbial fermentation. Consumption of dietary fibers has been shown to have positive metabolic health effects, such as increasing satiety, an...

  3. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923).

    Science.gov (United States)

    Wasels, François; Clément, Benjamin; Lopes Ferreira, Nicolas

    2016-03-03

    Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain.

  4. Genome Sequence of Clostridium tyrobutyricum ATCC 25755, a Butyric Acid-Overproducing Strain.

    Science.gov (United States)

    Jiang, Ling; Zhu, Liying; Xu, Xian; Li, Yanping; Li, Shuang; Huang, He

    2013-05-30

    Clostridium tyrobutyricum ATCC 25755 is an efficient producer of butyric acid. Here we report a 3.01-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for an alternative pathway leading to acetate synthesis as well as a series of membrane transport systems.

  5. Minimizing the level of butyric acid bacteria spores in farm tank milk

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    A year-long survey of 24 dairy farms was conducted to determine the effects of farm management on the concentrations of butyric acid bacteria (BAB) spores in farm tank milk (FTM). The results were used to validate a control strategy derived from model simulations. The BAB spore concentrations were m

  6. Genome Sequence of Clostridium tyrobutyricum ATCC 25755, a Butyric Acid-Overproducing Strain

    OpenAIRE

    2013-01-01

    Clostridium tyrobutyricum ATCC 25755 is an efficient producer of butyric acid. Here we report a 3.01-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for an alternative pathway leading to acetate synthesis as well as a series of membrane transport systems.

  7. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923)

    OpenAIRE

    2016-01-01

    Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain.

  8. Evaluation of butyrate-induced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors.

    Science.gov (United States)

    Madhavarao, Chikkathur N; Agarabi, Cyrus D; Wong, Lily; Müller-Loennies, Sven; Braulke, Thomas; Khan, Mansoor; Anderson, Howard; Johnson, Gibbes R

    2014-01-01

    Bioreactor process changes can have a profound effect on the yield and quality of biotechnology products. Mannose-6-phosphate (M6P) glycan content and the enzymatic catalytic kinetic parameters are critical quality attributes (CQAs) of many therapeutic enzymes used to treat lysosomal storage diseases (LSDs). Here, we have evaluated the effect of adding butyrate to bioreactor production cultures of human recombinant β-glucuronidase produced from CHO-K1 cells, with an emphasis on CQAs. The β-glucuronidase produced in parallel bioreactors was quantified by capillary electrophoresis, the catalytic kinetic parameters were measured using steady-state analysis, and mannose-6-phosphorylation status was assessed using an M6P-specific single-chain antibody fragment. Using this approach, we found that butyrate treatment increased β-glucuronidase production up to approximately threefold without significantly affecting the catalytic properties of the enzyme. However, M6P content in β-glucuronidase was inversely correlated with the increased enzyme production induced by butyrate treatment. This assessment demonstrated that although butyrate dramatically increased β-glucuronidase production in bioreactors, it adversely impacted the mannose-6-phosphorylation of this LSD therapeutic enzyme. This strategy may have utility in evaluating manufacturing process changes to improve therapeutic enzyme yields and CQAs.

  9. Conversion regular patterns of acetic acid,propionic acid and butyric acid in UASB reactor

    Institute of Scientific and Technical Information of China (English)

    LIU Min; REN Nan-qi; CHEN Ying; ZHU Wen-fang; DING Jie

    2004-01-01

    On the basis of continuous tests and batch tests, conversion regular patterns of acetate, propionate and butyrate in activated sludge at different heights of the UASB reactor were conducted. Results indicated that the conversion capacity of the microbial is decided by the substrate characteristic when sole VFA is used as the only substrate. But when mixed substrates are used,the conversion regulations would have changed accordingly. Relationships of different substrates vary according to their locations. In the whole reactor, propionate's conversion is restrained by acetate and butyrate of high concentration. On the top and at the bottom of the reactor, conversion of acetate, but butyrate, is restrained by propionate. And in the midst, acetate's conversion is accelerated by propionate while that of butyrate is restrained. It is proved, based on the analysis of specific conversion rate, that the space distribution of the microbe is the main factor that affects substrates' conversion. The ethanol-type fermentation of the acidogenic-phase is the optimal acid-type fermentation for the two-phase anaerobic process.

  10. Photovoltaic Properties of Film Composites of Polyvinyl Butyral and a CU/CA Heterometallic Complex

    Science.gov (United States)

    Davidenko, N. A.; Davidenko, I. I.; Kokozay, V. N.; Studzinsky, S. L.; Petrusenko, S. R.; Plyuta, N. I.

    2015-11-01

    Photosensitive polymer fi lm composites based on non-photoconductive polyvinyl butyral with an added heterometallic Cu/Ca complex were prepared and investigated. It was found that such composites had photovoltaic properties and exhibited a photodielectric effect when irradiated in the complex absorption band. The mechanism and characteristics of the photovoltaic and photodielectric effects in the studied fi lm composites were discussed.

  11. Hydroxyapatite nanoparticles: electrospinning and calcination of hydroxyapatite/polyvinyl butyral nanofibers and growth kinetics

    NARCIS (Netherlands)

    Zakaria, S.M.; Zein, S.H. Sharif; Othman, M.R.; Jansen, J.A.

    2013-01-01

    Electrospinning of hydroxyapatite (HA)/polyvinyl butyral solution resulted in the formation of fibers with average diameter of 937-1440 nm. These fibers were converted into HA nanoparticles with size <100 nm after undergoing calcination treatment at 600 degrees C. The diameter of the fiber was fo

  12. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  13. Protective effect of sodium butyrate on the cell culture model of Huntington disease

    Institute of Scientific and Technical Information of China (English)

    Zhang Baorong; Tian Jun; Yin Xinzhen; Luo Wei; Xia Kun

    2007-01-01

    This study aimed to develop a cell culture model of Huntington disease and observe the effect of sodium butyrate on this cell culture model. Exon 1 of both a wild type and a mutant IT15 gene from the genomic DNA of a healthy adult and a patient with Huntington disease was amplified and cloned into the eukaryotic expression vector pEGFP-C1. Human neuroblastoma SH-SYSY cells were transiently transfected with these recombinant plasmids in the absence and presence of sodium butyrate (0.1, 0.2, 0.5, 1.0 mmol/L). The MTT assay was used to measure cell viability. The results indicated that the N-terminal fragment of mutant huntingtin formed perinuclear and intranuclear aggregates and caused a decrease of SH-SY5Y cell viability. Sodium butyrate inhibited the decrease of SH-SYSY cell viability caused by the N-terminal fragment of mutant huntingtin. This suggests that sodium butyrate has a protective effect on this cell culture model of Huntington disease.

  14. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  15. Sodium butyrate improves growth performance of weaned piglets during the first period after weaning

    Directory of Open Access Journals (Sweden)

    Aldo Prandini

    2010-01-01

    Full Text Available The purpose of the present work was to evaluate whether the addition of sodium butyrate to feed could facilitate wean- ing and growth response in piglets. For 56 days two groups of 20 piglets (9.2±1.4 kg LW were fed an acidified basal diet (containing formic and lactic acid at 0.5 and 1.5 g/kg of feed, respectively without (control group or with sodium butyrate (SB at 0.8 g/kg. Average daily gain (ADG, daily feed intake (DFI, feed efficiency (FE and live weight (LW were recorded. In the first two weeks, butyrate supplementation increased ADG (+20%; P<0.05 and DFI (+16%; P<0.05. During the subsequent period (15 to 35 days animals fed SB had a higher DFI but lower feed efficiency (+10% and -14%, respectively; P<0.05 than animals fed the control diet. No other benefits were observed thereafter. The data presented showed that the use of sodium butyrate facilitated only the initial phase of adaptation to a solid diet in piglets.

  16. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Directory of Open Access Journals (Sweden)

    Susanne Schreiter

    Full Text Available Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they

  17. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles.

    Directory of Open Access Journals (Sweden)

    Elise S Pelzer

    Full Text Available Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%. We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

  18. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Science.gov (United States)

    Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2012-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life.

  19. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Directory of Open Access Journals (Sweden)

    Gbenga Adedeji Adewumi

    2013-01-01

    Full Text Available In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, Staphylococcus saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and Uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA combined with 16S-23S rRNA gene internal transcribed spacer (ITS PCR amplification, restriction analysis (ITS-PCR-RFLP and randomly amplified polymorphic DNA (RAPD-PCR. This further discriminated Bacillus subtilis and its variants from food-borne pathogens such as Bacillus cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP for iru production to achieve product consistency, safety quality and improved shelf life.

  20. Bacterial gastroenteritis

    Science.gov (United States)

    Bacterial gastroenteritis is present when bacteria cause an infection of the stomach and intestines ... has not been treated Many different types of bacteria can cause ... Campylobacter jejuni E coli Salmonella Shigella Staphylococcus ...

  1. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Goulart Pacheco; Christiano Costa Esposito; Lucas CM Müller; Morgana TL Castelo-Branco; Leonardo Pereira Quintella; Vera Lucia A Chagas; Heitor Siffert P de Souza

    2012-01-01

    AIM:To investigate whether butyrate or glutamine enemas could diminish inflammation in experimental diversion colitis.METHODS:Wistar specific pathogen-free rats were submitted to a Hartmann's end colostomy and treated with enemas containing glutamine,butyrate,or saline.Enemas were administered twice a week in the excluded segment of the colon from 4 to 12 wk after the surgical procedure.Follow-up colonoscopy was performed every 4 wk for 12 wk.The effect of treatment was evaluated using video-endoscopic and histologic scores and measuring interleukin-1β,tumor necrosis factor-alpha,and transforming growth factor beta production in organ cultures by enzyme linked immunosorbent assay.RESULTS:Colonoscopies of the diverted segment showed mucosa with hyperemia,increased number of vessels,bleeding and mucus discharge.Treatment with either glutamine or butyrate induced significant reductions in both colonoscopic (P < 0.02) and histological scores (P < 0.01) and restored the densities of collagen fibers in tissue (P =0.015; P =0.001),the number of goblet cells (P =0.021; P =0.029),and the rate of apoptosis within the epithelium (P =0.043; P =0.011) to normal values.The high levels of cytokines in colon explants from rats with diversion colitis significantly decreased to normal values after treatment with butyrate or glutamine.CONCLUSION:The improvement of experimental diversion colitis following glutamine or butyrate enemas highlights the importance of specific luminal nutrients in the homeostasis of the colonic mucosa and supports their utilization for the treatment of human diversion colitis.

  2. The voltage dependence of GABAA receptor gating depends on extracellular pH.

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W

    2005-11-28

    Recent studies have indicated that changes in extracellular pH and in membrane voltage affect the gamma-amino-n-butyric acid type A receptor gating mainly by altering desensitization and binding. To test whether the effects of membrane potential and pH are additive, their combined actions were investigated. By analyzing the current responses to rapid gamma-amino-n-butyric acid applications, we found that the current to voltage relationship was close to linear at acid pH but the increasing pH induced an inward rectification. Desensitization was enhanced at depolarizing potentials, but this strongly depended on pH, being weak at acidic and strong at basic pH values. A similar trend was observed for the onset rate of responses to saturating gamma-amino-n-butyric acid concentration. These data provide evidence that the voltage sensitivity of GABAA receptors depends on extracellular pH.

  3. The voltage dependence of GABAA receptor gating depends on extracellular pH

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W.

    2007-01-01

    Recent studies have indicated that changes in extracellular pH and in membrane voltage affect the γ-amino-n-butyric acid type A receptor gating mainly by altering desensitization and binding. To test whether the effects of membrane potential and pH are additive, their combined actions were investigated. By analyzing the current responses to rapid γ-amino-n-butyric acid applications, we found that the current to voltage relationship was close to linear at acid pH but the increasing pH induced an inward rectification. Desensitization was enhanced at depolarizing potentials, but this strongly depended on pH, being weak at acidic and strong at basic pH values. A similar trend was observed for the onset rate of responses to saturating γ-amino-n-butyric acid concentration. These data provide evidence that the voltage sensitivity of GABAA receptors depends on extracellular pH. PMID:16272885

  4. A bacterial population analysis of granular sludge from an anaerobic digester treating a maize-processing waste

    Energy Technology Data Exchange (ETDEWEB)

    Howgrave-Graham, A.R.; Wallis, F.M. (Natal Univ., Pietermaritzburg (ZA). Dept. of Microbiology and Plant Pathology); Steyn, P.L. (Pretoria Univ. (South Africa))

    1991-01-01

    Microbial population studies were conducted on a dense granular sludge, with excellent settling, thickening and nutrient removal properties, from a South African clarigester treating effluent from a factory producing glucose and other carbohydrates from maize. The bacterial population comprised a heterogeneous group including acetogens, enterobacteria, sulphate-reducers, spirochaetes, heterofermentative lactobacilli and methanogens. The presence of these bacteria and lack of propionic acid and butyric acid bacteria suggests that the microbial activity of this anaerobic digester involved acetate and lactate metabolism rather than propionate or butyrate catabolism as a source of precursors for methane production. (author).

  5. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    Science.gov (United States)

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10.

  6. Butyrate ingestion improves hepatic glycogen storage in the re-fed rat

    Directory of Open Access Journals (Sweden)

    Rigalleau Vincent

    2008-10-01

    Full Text Available Abstract Background Butyrate naturally produced by intestinal fiber fermentation is the main nutrient for colonocytes, but the metabolic effect of the fraction reaching the liver is not totally known. After glycogen hepatic depletion in the 48-hour fasting rat, we monitored the effect of (butyrate 1.90 mg + glucose 14.0 mg/g body weight versus isocaloric (glucose 18.2 mg/g or isoglucidic (glucose 14.0 mg/g control force-feeding on in vivo changes in hepatic glycogen and ATP contents evaluated ex vivo by NMR in the isolated and perfused liver. Results The change in glycogen was biphasic with (i an initial linear period where presence of butyrate in the diet increased (P = 0.05 the net synthesis rate (0.20 ± 0.01 μmol/min.g-1 liver wet weight, n = 15 versus glucose 14.0 mg/g only (0.16 ± 0.01 μmol/min.g-1 liver ww, n = 14, and (ii a plateau of glycogen store followed by a depletion. Butyrate delayed the establishment of the equilibrium between glycogenosynthetic and glycogenolytic fluxes from the 6th to 8th hour post-feeding. The maximal glycogen content was then 97.27 ± 10.59 μmol/g liver ww (n = 7 at the 8th hour, which was significantly higher than with the isocaloric control diet (64.34 ± 8.49 μmol/g, n = 12, P = 0.03 and the isoglucidic control one (49.11 ± 6.35 μmol/g liver ww, n = 6, P = 0.003. After butyrate ingestion, ATP content increased from 0.95 ± 0.29 to a plateau of 2.14 ± 0.23 μmol/g liver ww at the 8th hour post-feeding (n = 8 [P = 0.04 versus isoglucidic control diet (1.45 ± 0.19 μmol/g, n = 8 but was not different from the isocaloric control diet (1.70 ± 0.18 μmol/g, n = 12]. Conclusion The main hepatic effect of butyrate is a sparing effect on glycogen storage explained (i by competition between butyrate and glucose oxidation, glucose being preferentially directed to glycogenosynthesis during the post-prandial state; and (ii by a likely reduced glycogenolysis from the newly synthesized glycogen. This first

  7. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon

    Institute of Scientific and Technical Information of China (English)

    Aldo Roda; Patrizia Simoni; Maria Magliulo; Paolo Nanni; Mario Baraldini; Giulia Roda; Enrico Roda

    2007-01-01

    AIM:To develop a new formulation with hydroxy propyl methyl cellulose and Shellac coating for extended and selective delivery of butyrate in the ileo-caecal region and colon.METHODS:One-gram sodium butyrate coated tablets containing 13C-butyrate were orally administered to 12 healthy subjects and 12 Crohn's disease patients and the rate of 13C-butyrate absorption was evaluated by 13CO2 breath test analysis for eight hours.Tauroursodeoxycholic acid(500 mg)was co-administered as a biomarker of oro-ileal transit time to determine also the site of release and absorption of butyrate by the time of its serum maximum concentration.RESULTS:The coated formulation delayed the 13C-butyrate release by 2-3 h with respect to the uncoated tablets.Sodium butyrate was delivered in the intestine of all subjects and a more variable transit time was found in Crohn's disease patients than in healthy subjects.The variability of the peak 13CO2 in the kinetic release of butyrate was explained by the inter-subject variability in transit time.However,the coating chosen ensured an efficient release of the active compound even in patients with a short transit time.CONCLUSION:Simultaneous evaluation of breath 13CO2 and tauroursodeoxycholic acid concentrationtime curves has shown that the new oral formulation consistently releases sodium butyrate in the ileo-cecal region and colon both in healthy subjects and Crohn's disease patients with variable intestinal transit time.This formulation may be of therapeutic value in inflammatory bowel disease patients due to the appropriate release of the active compound.

  8. New lactic acid bacterial strains from traditional Mongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source.

    Science.gov (United States)

    Kimoto-Nira, Hiromi; Yamasaki, Seishi; Sasaki, Keisuke; Moriya, Naoko; Takenaka, Akio; Suzuki, Chise

    2015-03-01

    Attachment of lactic acid bacteria to the mucosal surface of the gastrointestinal tract is a major property of probiotics. Here, we examined the ability of 21 lactic acid bacterial strains isolated from traditional fermented milk products in Mongolia to adhere to porcine gastric mucin in vitro. Higher attachment was observed with Lactobacillus delbrueckii subsp. bulgaricus strains 6-8 and 8-1 than with Lactobacillus rhamnosus GG (positive control). Lactococcus lactis subsp. cremoris strain 7-1 adhered to mucin as effectively as did strain GG. Heat inactivation decreased the adhesive ability of strains 6-8 and 8-1 but did not affect strain 7-1. The adhesion of strains 6-8, 7-1 and 8-1 was significantly inhibited when the cells were pretreated with periodate and trypsin, indicating that proteinaceous and carbohydrate-like cell surface compounds are involved in the adhesion of these strains. The adhesion of strain 7-1 was affected by the type of carbohydrate present in the growth medium, being higher with fructose than with lactose, galactose or xylose as the carbon source. The sugar content of 7-1 cells grown on various carbohydrates was negatively correlated with its adhesive ability. We provide new probiotic candidate strains and new information regarding carbohydrate preference that influences lactic acid bacterial adhesion to mucin.

  9. Radiation-sensitive indicator based on radiation-chemical formation of acids in polyvinyl butyral films containing chloral hydrate

    Science.gov (United States)

    Abdel-Fattah, Atef A.; El-Kelany, M.

    1998-03-01

    Radiation-sensitive indicators based on dyed polyvinyl butyral (PVB) containing acid-sensitive dye (bromophenol blue, BPB) and chloral hydrate (CCl 3CH(OH) 2, 2,2,2-trichloroethane-1, 1-diol) have been developed. These plastic film dosimeters undergo colour change from blue (the alkaline form of BPB) to yellow (the acidic form of BPB), indicating acid formation. The concentration of radiation-formed acids in the films containing different concentrations of chloral hydrate was calculated at different doses. The kinetics of the acid-formation reaction is discussed, indicating a half-order reaction with respect to chloral hydrate concentration. These films can be used as dosimeters for food irradiation applications where the maxima of the useful dose ranges are between 1 and 4 kGy depending on chloral hydrate concentration in the film. The response of these films depends on temperature during irradiation; therefore a correction should be applied. These films have the advantage of negligible humidity effects on response in the intermediate range of relative humidity from 10 to 70% as well as good post-irradiation stability when stored in the dark at room temperature.

  10. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability

    Science.gov (United States)

    Chen, Kejie; Shanmugam, Nanda Kumar N.; Pazos, Michael A.; Hurley, Bryan P.; Cherayil, Bobby J.

    2016-01-01

    Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß). Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages) after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis. PMID:27505062

  11. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed El-Sakhawy

    2014-01-01

    Full Text Available Carboxymethyl cellulose acetate butyrate (CMCAB has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW thermoplastic polymers with high glass transition temperatures (Tg. CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD formulations.

  12. Butyric acid fermentation from pretreated and hydrolyzed wheat straw by C.tyrobutyricum

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Westermann, Peter; Gavala, Hariklia N.

    and xylose at a concentration of 71,6±0,2 g/l and 55,4±0,2 g/l respectively, with TS content 20,87% (g/g). From an economical point of view, the conversion of both sugars is very important. In fact C.tyrobutyricum has the capability to convert both hexose and pentose sugars. Results from batch experiments......Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Among other microbial strains, C.tyrobutyricum was found interesting due to its higher yield (more than 93% of the theoretical yield...

  13. Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Pind, Peter Frode; Angelidaki, Irini

    2003-01-01

    parameter set occupied mutually exclusive parameter spaces, indicating that all were statistically different from each other. However, qualitatively, the influence on model outputs was similar, and the lumped set would be reasonable for mixed acid digestion. The main characteristic not represented by Monod......The degradation kinetics of normal and branched chain butyrate and valerate are important in protein-fed anaerobic systems, as a number of amino acids degrade to these organic acids. Including activated and primary wastewater sludge digesters, the majority of full-scale systems digest feeds...... with a significant or major fraction of COD as protein. This study assesses the validity of using a common kinetic parameter set and biological catalyst to represent butyrate, n-valerate, and i-valerate degradation in dynamic models. The i-valerate degradation stoichiometry in a continuous, mixed population system...

  14. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria.

    Science.gov (United States)

    Nylund, L; Nermes, M; Isolauri, E; Salminen, S; de Vos, W M; Satokari, R

    2015-02-01

    The reports on atopic diseases and microbiota in early childhood remain contradictory, and both decreased and increased microbiota diversity have been associated with atopic eczema. In this study, the intestinal microbiota signatures associated with the severity of eczema in 6-month-old infants were characterized. Further, the changes in intestinal microbiota composition related to the improvement of this disease 3 months later were assessed. The severity of eczema correlated inversely with microbiota diversity (r = -0.54, P = 0.002) and with the abundance of butyrate-producing bacteria (r = -0.52, P = 0.005). During the 3-month follow-up, microbiota diversity increased (P microbiota and high abundance of butyrate-producing bacteria were associated with milder eczema, thus suggesting they have a role in alleviating symptoms of atopic eczema.

  15. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  16. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  17. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  18. Flexible thermoplastic composite of Polyvinyl Butyral (PVB) and waste of rigid Polyurethane foam

    OpenAIRE

    2015-01-01

    This study reports the preparation and characterization of composites with recycled poly(vinyl butyral) (PVB) and residue of rigid polyurethane foam (PUr), with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC) and thermogravimetry. The composites were evaluated by melt flow index (MFI), tensile and hardness mechanical te...

  19. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    Science.gov (United States)

    Mai, Hoang Hoa; Solomon, H. M.; Taguchi, M.; Kojima, T.

    2008-04-01

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection.

  20. Characterization of defects of mullite fibers prepared by polyvinyl butyral as spinning aid

    OpenAIRE

    2010-01-01

    Mullite fibers have been synthesized using polyvinyl butyral as spinning aids. Defects including cracks, core-sheath structure, randomly arranged powders, shots and rough surface were observed. The results showed that circumferential cracks were terminated by the main axial crack. The thermal shrinkage could be considered as the reason for the formation of cracks and core-sheath structure. Improper control of heat treatment resulted in the rough surface around fibers. The wet gel fibers...

  1. Constitutive Investigation on Viscoelasticity of PolyVinyl Butyral: Experiments Based on Dynamic Mechanical Analysis Method

    OpenAIRE

    2014-01-01

    PolyVinyl Butyral (PVB) film is now widely used in automotive industry and architectures serving as the protective interlayer. The dynamic modulus of PVB is measured through systematic experiments based on Dynamic Mechanical Analysis (DMA) method at various temperatures, heating rates, and vibration frequencies. Further, viscoelasticity of PVB influenced by time and temperature is systematically studied. Fitted empirical formulas describing the relationship between glass transition temperatur...

  2. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Hoa Mai [Institute for Nuclear Science Technique, Vietnam Atomic Energy Commission (VAEC), 59 Ly Thuong Kiet, Hanoi (Viet Nam); Solomon, H.M. [Philippine Nuclear Research Institute (PNRI), Commonwealth Avenue, Diliman Quezon City (Philippines); Taguchi, M. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi. Gunma 370-1292 (Japan); Kojima, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi. Gunma 370-1292 (Japan)], E-mail: kojima.takuji@jaea.go.jp

    2008-04-15

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection.

  3. Photoconducting Properties of Film Composites Based on Polyvinyl Butyral and Heterometallic Cu/Mo Complexes

    Science.gov (United States)

    Davidenko, N. A.; Kokozay, V. N.; Davidenko, I. I.; Buvailo, H. I.; Makhankova, V. G.; Studzinsky, S. L.

    2016-11-01

    We have synthesized and studied novel photosensitive polymer film composites based on non-photoconducting polyvinyl butyral doped with heterometallic Cu/Mo complexes. We have established that these composites have photoconducting and photovoltaic properties and are characterized by hole-type photoconductivity. The photocurrent and the photo-EMF are higher for composites in which complexes are used that have a shorter distance between nearest-neighbor metallic copper centers, which is explained by better conditions for transport of nonequilibrium holes.

  4. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, G.; Geveke, M.; Diekmann, H. (Hannover Univ. (Germany). Inst. fuer Mikrobiologie); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research)

    1991-12-01

    Population dynamics during start-up of a fluidized-bed reactor with butyrate or butyrate plus acetate as sole substrates as well as biofilm development on the sand substratum were studied microbiologically, immunologically and by scanning electron microscopy. An adapted syntrophic consortium consisting of Syntrophospora sp., Methanothrix soehngenii, Methanosarcina mazei and Methanobrevibacter arboriphilus or Methanogenium sp. achieved high-rate butyrate degradation to methane and carbon dioxide. Desulfovibrio sp., Methanocorpusculum sp., and Methanobacterium sp. were also present in lower numbers. Immunological analysis demonstrated methanogens antigenically related to Methanobrevibacter ruminantium M1, Methanosarcina mazei S6, M. thermophila TM1, Methanobrevibacter arboriphilus AZ and Methanothrix soehngenii Opfikon in the biofilm. Immunological analysis also showed that the organisms isolated from the butyrate-degrading culture used as a source of inoculum were related to M. soehngenii Opfikon, Methanobacterium formicium MF and Methanospirillum hungatei JF1. (orig.).

  5. An Acute Butyr-Fentanyl Fatality: A Case Report with Postmortem Concentrations.

    Science.gov (United States)

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Wright, Jennifer; Mena, Othon

    2016-03-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of butyr-fentanyl in a fatality attributed principally to the drug. A man who had a history of intravenous drug abuse was found unresponsive on the bathroom floor of his home. Drug paraphernalia was located on the bathroom counter. Toxicology testing, which initially screened positive for fentanyl by enzyme-linked immunosorbent assay, subsequently confirmed butyr-fentanyl, which was then quantitated by gas chromatography-mass spectrometry-specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. The butyr-fentanyl peripheral blood concentration was quantitated at 58 ng/mL compared with the central blood concentration of 97 ng/mL. The liver concentration was 320 ng/g, the vitreous was 40 ng/mL, the urine was 670 ng/mL and the gastric contained 170 mg. Acetyl-fentanyl was also detected in all biological specimens tested. Peripheral blood concentration was quantitated at 38 ng/mL compared with the central blood concentration of 32 ng/mL. The liver concentration was 110 ng/g, the vitreous was 38 ng/mL, the urine was 540 ng/mL and the gastric contained fentanyl, acetyl-fentanyl and cocaine intoxication, and the manner of death was certified as accident.

  6. Butyric acid glycerides in the diet of broiler chickens: effects on gut histology and carcass composition

    Directory of Open Access Journals (Sweden)

    Andrea Martini

    2010-01-01

    Full Text Available Aim of the study was to verify the effects of butyric acid glycerides, as a supplemental ingredient in the diet, on live performance of broiler chickens and on the morphology of their small intestine, since short chain fatty acids are known as selective protection factors against intestinal microbial parasites, potent growth promoters of the gut wall tissues, also in terms of immune modulation response. An experiment was carried out on 150 Ross 308 female chickens, allotted to 5 treatments, over a 35 d ays period: the control, with soybean oil as the energy supplement, and 4 treatments with increasing amounts (0.2, 0.35, 0.5, 1% mixed feed of a mixture of butyric acid glycerides (mono-, di- and tri- glycerides. Treated animals showed a higher live weight at slaughtering (P<0.05 with a better feed conversion rate. The carcase characteristics were not influenced, but the small intestine wall resulted slightly modified with shorter villi, longer microvilli (P<0.01 and larger crypts depth in jejunum (P<0.01, only with lowest concentration of the supplement (0.2%. It is concluded that butyric acid glycerides are an efficient supplement to broilers’ diets, deserving particular attention as a possible alternative to antimicrobial drugs, which have been banned in Europe.

  7. Upregulation of 25-hydroxyvitamin D3-1α-hydroxylase by butyrate in Caco-2 cells

    Institute of Scientific and Technical Information of China (English)

    Oliver Schr(o)der; Sinan Turak; Carolin Daniel; Tanja Gaschott; Jürgen Stein

    2005-01-01

    AIM: To investigate the possible involvement of 25-hydroxyvitamin D3-1α-hydroxylase [1α-25(OH)2D3] in butyrate-induced differentiation in human intestinal cell line Caco-2 cells.METHODS: Caco-2 cells were incubated either with 3 mmol/L butyrate and 1 μmol/L 25(OH)2D3 or with 1μmol/L 1α-25(OH)2D3 for various time intervals ranging from 0 to 72 h. Additionally, cells were co-incubated with butyrate and either 25(OH)2D3 or 1α-25(OH)2D3.1α-25(OH)2D3 mRNA was determined semi-quantitatively using the fluorescent dye PicoGreen. Immunoblotting was used for the detection of 1α-25(OH)2D3 protein.Finally, enzymatic activity was measured by ELISA.RESULTS: Both butyrate and 1α-25(OH)2D3 stimulated differentiation of Caco-2 cells after a 48 h incubation period, while 25(OH)2D3 had no impact on cell differentiation. Synergistic effects on differentiation were observed when cells were co-incubated with butyrate and vitamin D metabolite. Butyrate transiently upregulated 1α-25(OH)2D3 mRNA followed by a timely delayed protein upregulation. Coincidently, enzymatic activity was enhanced significantly. The induction of the enzyme allowed for comparable differentiating effects of both vitamin D metabolites.CONCLUSION: Our experimental data pr ovide a further mechanism for the involvement of the vitamin D signaling pathway in colonic epithelial cell differentiation by butyrate. The enhancement of 1α-25(OH)2D3 followed by antiproliferative effects of the vitamin D prohormone in the Caco-2 cell line suggest that 25(OH)2D3 in combination with butyrate may offer a new therapeutic approach for the treatment of colon cancer.

  8. Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase.

    Science.gov (United States)

    Inhorn, L; Fleming, J W; Klingberg, D; Gabig, T G; Boswell, H S

    1988-04-01

    Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3-independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the "differentiation" agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G-proteins appear to play a secondary role.

  9. Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor.

    Science.gov (United States)

    Jiang, Ling; Wang, Jufang; Liang, Shizhong; Wang, Xiaoning; Cen, Peilin; Xu, Zhinan

    2010-01-01

    Butyric acid has many applications in chemical, food, and pharmaceutical industries. In the present study, Clostridium tyrobutyricum ATCC 25755 was immobilized in a fibrous-bed bioreactor to evaluate the performance of butyrate production from glucose and xylose. The results showed that the final concentration and yield of butyric acid were 13.70 and 0.46 g g(-1), respectively, in batch fermentation when 30 g L(-1) glucose was introduced into the bioreactor. Furthermore, high concentration 10.10 g L(-1) and yield 0.40 g g(-1) of butyric acid were obtained with 25 g L(-1) xylose as the carbon source. The immobilized cells of C. tyrobutyricum ensured similar productivity and yield from repeated batch fermentation. In the fed-batch fermentation, the final concentration of butyric acid was further improved to 24.88 g L(-1) with one suitable glucose feeding in the fibrous-bed bioreactor. C. tyrobutyricum immobilized in the fibrous-bed bioreactor would provide an economically viable fermentation process to convert the reducing sugars derived from plant biomass into the final bulk chemical (butyric acid).

  10. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  11. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    Science.gov (United States)

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  12. IL-4Rα-dependent alternative activation of macrophages is not decisive for Mycobacterium tuberculosis pathology and bacterial burden in mice.

    Directory of Open Access Journals (Sweden)

    Reto Guler

    Full Text Available Classical activation of macrophages (caMph or M1 is crucial for host protection against Mycobacterium tuberculosis (Mtb infection. Evidence suggests that IL-4/IL-13 alternatively activated macrophages (aaMph or M2 are exploited by Mtb to divert microbicidal functions of caMph. To define the functions of M2 macrophages during tuberculosis (TB, we infected mice deficient for IL-4 receptor α on macrophages (LysMcreIL-4Rα-/lox with Mtb. We show that absence of IL-4Rα on macrophages does not play a major role during infection with Mtb H37Rv, or the clinical Beijing strain HN878. This was demonstrated by similar mortality, bacterial burden, histopathology and T cell proliferation between infected wild-type (WT and LysMcreIL-4Rα-/lox mice. Interestingly, we observed no differences in the lung expression of inducible nitric oxide synthase (iNOS and Arginase 1 (Arg1, well-established markers for M1/M2 macrophages among the Mtb-infected groups. Kinetic expression studies of IL-4/IL-13 activated bone marrow-derived macrophages (BMDM infected with HN878, followed by gene set enrichment analysis, revealed that the MyD88 and IL-6, IL-10, G-CSF pathways are significantly enriched, but not the IL-4Rα driven pathway. Together, these results suggest that IL-4Rα-macrophages do not play a central role in TB disease progression.

  13. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists.

  14. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S; Holzman, Ian R; Lin, Jing

    2009-09-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.

  15. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  16. Bacterial cellulose/boehmite composites

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. UNESP. Instituto de Quimica de Araraquara, SP (Brazil); Caiut, Jose Mauricio A. [Universidade de Sao Paulo. Departamento de Quimica - FFCLRP/USP, Ribeirao Preto, SP (Brazil)

    2011-07-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  17. Identification and characterization of a cell surface scavenger receptor cysteine-rich protein of Sciaenops ocellatus: bacterial interaction and its dependence on the conserved structural features of the SRCR domain.

    Science.gov (United States)

    Qiu, Reng; Sun, Bo-Guang; Li, Jun; Liu, Xiao; Sun, Li

    2013-03-01

    The scavenger receptor cysteine-rich (SRCR) proteins are secreted or membrane-bound receptors with one or multiple SRCR domains. Members of the SRCR superfamily are known to have diverse functions that include pathogen recognition and immunoregulation. In teleost, although protein sequences with SRCR structure have been identified in some species, very little functional investigation has been carried out. In this study, we identified and characterized a teleost SRCR protein from red drum Sciaenops ocellatus. The protein was named S. ocellatus SRCR1 (SoSRCRP1). SoSRCRP1 is 410-residue in length and was predicted to be a transmembrane protein, with the extracellular region containing a collagen triple helix repeat and a SRCR domain. The SRCR domain has six conserved cysteines, of which, C338 and C399, C351 and C409, and C379 and C389 were predicted to form three disulfide bonds. SoSRCRP1 expression was detected mainly in immune-relevant tissues and upregulated by bacterial and viral infection. In head kidney leukocytes, bacterial infection stimulated the expression of SoSRCRP1, and the expressed SoSRCRP1 was localized on cell surface. Recombinant SoSRCRP1 (rSoSRCRP1) corresponding to the SRCR domain was purified from Escherichia coli and found to be able to bind Gram-negative and Gram-positive bacteria. To examine the structure-function relationship of SoSRCRP1, the mutant proteins SoSRCRP1M1, SoSRCRP1M2, SoSRCRP1M3, and SoSRCRP1M4 were created, which bear C351S and C409S, C338S, C379S, and R325A mutations respectively. Compared to rSoSRCRP1, all mutants were significantly reduced in the ability of bacterial interaction, with the highest reduction observed with SoSRCRP1M4. Taken together, these results indicate that SoSRCRP1 is a cell surface-localized SRCR protein that binds bacterial ligands in a manner that depends on the conserved structural features of the SRCR domain.

  18. N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings.

    Science.gov (United States)

    Delalande, Laurie; Faure, Denis; Raffoux, Aurélie; Uroz, Stéphane; D'Angelo-Picard, Cathy; Elasri, Miena; Carlier, Aurélien; Berruyer, Romain; Petit, Annik; Williams, Paul; Dessaux, Yves

    2005-03-01

    The half-life of N-hexanoyl-l-homoserine lactone (C6-HSL) was determined under various pH and temperature conditions, and in several plant environments. C6-HSL was sensitive to alkaline pH, a process that was also temperature-dependent. In addition, C6-HSL disappeared from plant environments, i.e. axenic monocot and dicot plants cultivated under gnotobiotic, hydroponic conditions, albeit with variable kinetics. The disappearance was rapid at the root system of legume plants such as clover or Lotus, and slow or non-existent at the root system of monocots such as wheat or corn. These variable kinetics were not dependent upon pH changes that may have affected the growth media of the plants. Furthermore, C6-HSL did not accumulate in the plant, and the plant did not produce inhibitors of the C6-HSL signal. HPLC analyses revealed that C6-HSL disappeared from the media, and hence, Lotus exhibited a natural C6-HSL inactivating ability. This ability was not specific for C6-HSL and allowed the degradation of other N-acyl-homoserine lactones such as 3-oxo-C6-HSL, 3-oxo-octanoyl-HSL and 3-oxo-decanoyl-HSL. Preliminary investigation revealed that the inactivating ability is temperature-dependant and possibly of enzymatic origin.

  19. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production.

    Directory of Open Access Journals (Sweden)

    Mitsuharu Matsumoto

    Full Text Available BACKGROUND: Chronic low-grade inflammation is recognized as an important factor contributing to senescence and age-related diseases. In mammals, levels of polyamines (PAs decrease during the ageing process; PAs are known to decrease systemic inflammation by inhibiting inflammatory cytokine synthesis in macrophages. Reductions in intestinal luminal PAs levels have been associated with intestinal barrier dysfunction. The probiotic strain Bifidobacterium animalis subsp. lactis LKM512 is known to increase intestinal luminal PA concentrations. METHODOLOGY/PRINCIPAL FINDINGS: We supplemented the diet of 10-month-old Crj:CD-1 female mice with LKM512 for 11 months, while the controls received no supplementation. Survival rates were compared using Kaplan-Meier survival curves. LKM512-treated mice survived significantly longer than controls (P<0.001; moreover, skin ulcers and tumors were more common in the control mice. We then analyzed inflammatory and intestinal conditions by measuring several markers using HPLC, ELISA, reverse transcription-quantitative PCR, and histological slices. LKM512 mice showed altered 16S rRNA gene expression of several predominant intestinal bacterial groups. The fecal concentrations of PAs, but not of short-chain fatty acids, were significantly higher in LKM512-treated mice (P<0.05. Colonic mucosal function was also better in LKM512 mice, with increased mucus secretion and better maintenance of tight junctions. Changes in gene expression levels were evaluated using the NimbleGen mouse DNA microarray. LKM512 administration also downregulated the expression of ageing-associated and inflammation-associated genes and gene expression levels in 21-month-old LKM512-treated mice resembled those in 10-month-old untreated (younger mice. CONCLUSION/SIGNIFICANCE: Our study demonstrated increased longevity in mice following probiotic treatment with LKM512, possibly due to the suppression of chronic low-grade inflammation in the colon

  20. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia.

    Science.gov (United States)

    Vital, Marius; Gao, Jiarong; Rizzo, Mike; Harrison, Tara; Tiedje, James M

    2015-03-17

    Butyrate-producing bacteria have an important role in maintaining host health. They are well studied in human and medically associated animal models; however, much less is known for other Vertebrata. We investigated the butyrate-producing community in hindgut-fermenting Mammalia (n = 38), Aves (n = 8) and Reptilia (n = 8) using a gene-targeted pyrosequencing approach of the terminal genes of the main butyrate-synthesis pathways, namely butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk). Most animals exhibit high gene abundances, and clear diet-specific signatures were detected with but genes significantly enriched in omnivores and herbivores compared with carnivores. But dominated the butyrate-producing community in these two groups, whereas buk was more abundant in many carnivorous animals. Clustering of protein sequences (5% cutoff) of the combined communities (but and buk) placed carnivores apart from other diet groups, except for noncarnivorous Carnivora, which clustered together with carnivores. The majority of clusters (but: 5141 and buk: 2924) did not show close relation to any reference sequences from public databases (identity <90%) demonstrating a large 'unknown diversity'. Each diet group had abundant signature taxa, where buk genes linked to Clostridium perfringens dominated in carnivores and but genes associated with Ruminococcaceae bacterium D16 were specific for herbivores and omnivores. Whereas 16S rRNA gene analysis showed similar overall patterns, it was unable to reveal communities at the same depth and resolution as the functional gene-targeted approach. This study demonstrates that butyrate producers are abundant across vertebrates exhibiting great functional redundancy and that diet is the primary determinant governing the composition of the butyrate-producing guild.

  1. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation.

    Science.gov (United States)

    Zhu, Ying; Liu, Xiaoguang; Yang, Shang-Tian

    2005-04-20

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium, producing butyrate and acetate as its main fermentation products. In order to decrease acetate and increase butyrate production, integrational mutagenesis was used to disrupt the gene associated with the acetate formation pathway in C. tyrobutyricum. A nonreplicative integrational plasmid containing the phosphotransacetylase gene (pta) fragment cloned from C. tyrobutyricum by using degenerate primers and an erythromycin resistance cassette were constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome inactivated the target pta gene and produced the pta-deleted mutant (PTA-Em), which was confirmed by Southern hybridization. SDS-PAGE and two-dimensional protein electrophoresis results indicated that protein expression was changed in the mutant. Enzyme activity assays using the cell lysate showed that the activities of PTA and acetate kinase (AK) in the mutant were reduced by more than 60% for PTA and 80% for AK. The mutant grew more slowly in batch fermentation with glucose as the substrate but produced 15% more butyrate and 14% less acetate as compared to the wild-type strain. Its butyrate productivity was approximately 2-fold higher than the wild-type strain. Moreover, the mutant showed much higher tolerance to butyrate inhibition, and the final butyrate concentration was improved by 68%. However, inactivation of pta gene did not completely eliminate acetate production in the fermentation, suggesting the existence of other enzymes (or pathways) also leading to acetate formation. This is the first-reported genetic engineering study demonstrating the feasibility of using a gene-inactivation technique to manipulate the acetic acid formation pathway in C. tyrobutyricum in order to improve butyric acid production from glucose.

  2. The synergistic effect of 1'-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells.

    Science.gov (United States)

    Kato, Rie; Matsui-Yuasa, Isao; Azuma, Hideki; Kojima-Yuasa, Akiko

    2014-04-05

    It has been suggested that the combined effect of natural products may improve the effect of treatment against the proliferation of cancer cells. In this study, we evaluated the combination of 1'-acetoxychavicol acetate (ACA), obtained from Alpinia galangal, and sodium butyrate, a major short chain fatty acid, on the growth of HepG2 human hepatocellular carcinoma cells and found that treatment had a synergistic inhibitory effect. The number of HepG2 cells was synergistically decreased via apoptosis induction when cells were treated with both ACA and sodium butyrate. In ACA- and sodium butyrate-treated cells, intracellular reactive oxygen species (ROS) levels and NADPH oxidase activities were increased significantly. The decrease in cell number after combined treatment of ACA and sodium butyrate was diminished when cells were pretreated with catalase. These results suggest that an increase in intracellular ROS levels is involved in cancer cell death. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays an essential role in controlling processes related to tumor development. In ACA- and sodium butyrate-treated cells, AMPK phosphorylation was induced significantly, and this induction improved when cells were pretreated with catalase. These results suggest that the increase in intracellular ROS is involved in the increase of AMPK phosphorylation. In normal hepatocyte cells, treatment with ACA and sodium butyrate did not decrease cell numbers or increase ROS levels. In conclusion, combined treatment with ACA and sodium butyrate synergistically induced apoptotic cell death via an increase in intracellular ROS and phosphorylation of AMPK. Our findings may provide new insight into the development of novel combination therapies against hepatocellular carcinoma.

  3. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy.

    Science.gov (United States)

    Gomez-Arango, Luisa F; Barrett, Helen L; McIntyre, H David; Callaway, Leonie K; Morrison, Mark; Dekker Nitert, Marloes

    2016-10-01

    The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women.

  4. Macrophage-elicited osteoclastogenesis in response to bacterial stimulation requires Toll-like receptor 2-dependent tumor necrosis factor-alpha production.

    Science.gov (United States)

    Ukai, Takashi; Yumoto, Hiromichi; Gibson, Frank C; Genco, Caroline Attardo

    2008-02-01

    The receptor activator of NF-kappaB ligand (RANKL) and the proinflammatory cytokines are believed to play important roles in osteoclastogenesis. We recently reported that the innate immune recognition receptor, Toll-like receptor 2 (TLR2), is crucial for inflammatory bone loss in response to infection by Porphyromonas gingivalis, the primary organism associated with chronic inflammatory periodontal disease. However, the contribution of macrophage-expressed TLRs to osteoclastogenesis has not been defined. In this study, we defined a requirement for TLR2 in tumor necrosis factor-alpha (TNF-alpha)-elicited osteoclastogenesis in response to exposure to P. gingivalis. Culture supernatant (CS) fluids from P. gingivalis-stimulated macrophages induced bone marrow macrophage-derived osteoclastogenesis. This activity was dependent on TNF-alpha and occurred independently of RANKL, interleukin-1beta (IL-1beta), and IL-6. CS fluids from P. gingivalis-stimulated TLR2(-/-) macrophages failed to express TNF-alpha, and these fluids induced significantly less osteoclast formation compared with that of the wild-type or the TLR4(-/-) macrophages. In addition, P. gingivalis exposure induced up-regulation of TLR2 expression on the cell surface of macrophages, which was demonstrated to functionally react to reexposure to P. gingivalis, as measured by a further increase in TNF-alpha production. These results demonstrate that macrophage-dependent TLR2 signaling is crucial for TNF-alpha-dependent/RANKL-independent osteoclastogenesis in response to P. gingivalis infection. Furthermore, the ability of P. gingivalis to induce the cell surface expression of TLR2 may contribute to the chronic inflammatory state induced by this pathogen.

  5. A MyD88-dependent IFNγR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge

    Institute of Scientific and Technical Information of China (English)

    Eric M Pietras; Lloyd S Miller; Carl T Johnson; Ryan M O'Connell; Paul W Dempsey; Genhong Cheng

    2011-01-01

    Monocytes are mobilized to sites of infection via interaction between the chemokine MCP-1 and its receptor, CCR2, at which point they differentiate into macrophages that mediate potent antimicrobial effects. In this study, we investigated the mechanisms by which monocytes are mobilized in response to systemic challenge with the intracellular bacterium Francisella tularensis. We found that mice deficient in MyD88, interferon-γ (IFNγ)R or CCR2 all had defects in the expansion of splenic monocyte populations upon F. tularensis challenge, and in control of F. tularensis infection. Interestingly, MyD88-deficient mice were defective in production of IFNγ, and IFNγR deficient mice exhibited defective production of MCP-1, the ligand for CCR2. Transplantation of IFNγR-deficient bone marrow (BM) into wild-type mice further suggested that mobilization of monocytes in response to F. tularensis challenge required IFNγR expression on BM-derived cells. These studies define a critical host defense circuit wherein MyD88-dependent IFNγ production signals via IFNγR expressed on BM-derived cells, resulting in MCP-1 production and activation of CCR2-dependent mobilization of monocytes in the innate immune response to systemic F. tularensis challenge.

  6. Tarsi of Male Heliothine Moths Contain Aldehydes and Butyrate Esters as Potential Pheromone Components.

    Science.gov (United States)

    Choi, Man-Yeon; Ahn, Seung-Joon; Park, Kye-Chung; Meer, Robert Vander; Cardé, Ring T; Jurenka, Russell

    2016-05-01

    The Noctuidae are one of the most speciose moth families and include the genera Helicoverpa and Heliothis. Females use (Z)-11-hexadecenal as the major component of their sex pheromones except for Helicoverpa assulta and Helicoverpa gelotopoeon, both of which utilize (Z)-9-hexadecenal. The minor compounds found in heliothine sex pheromone glands vary with species, but hexadecanal has been found in the pheromone gland of almost all heliothine females so far investigated. In this study, we found a large amount (0.5-1.5 μg) of hexadecanal and octadecanal on the legs of males of four heliothine species, Helicoverpa zea, Helicoverpa armigera, H. assulta, and Heliothis virescens. The hexadecanal was found on and released from the tarsi, and was in much lower levels or not detected on the remaining parts of the leg (tibia, femur, trochanter, and coxa). Lower amounts (0.05-0.5 μg) of hexadecanal were found on female tarsi. This is the first known sex pheromone compound to be identified from the legs of nocturnal moths. Large amounts of butyrate esters (about 16 μg) also were found on tarsi of males with lower amounts on female tarsi. Males deposited the butyrate esters while walking on a glass surface. Decapitation did not reduce the levels of hexadecanal on the tarsi of H. zea males, indicating that hexadecanal production is not under the same neuroendocrine regulation system as the production of female sex pheromone. Based on electroantennogram studies, female antennae had a relatively high response to hexadecanal compared to male antennae. We consider the possible role of aldehydes and butyrate esters as courtship signals in heliothine moths.

  7. Effect of sodium butyrate and Yucca schidigera extract on bone characteristics in growing pigs

    Directory of Open Access Journals (Sweden)

    Puzio Iwona

    2016-03-01

    Full Text Available Introduction: The aim of this study was to investigate the influence of diet supplementation with sodium butyrate and Yucca schidigera extract (0.2% and 0.3% on femur quality of growing pigs (n = 45. Material and Methods: At the age of 28, 35 and 56 d, five piglets from each group fed a different diet were euthanised and the femora were collected for further analyses. The bone characteristics were assessed based on weight, length, densitometric analysis of BMC and BMD, pQCT analysis (area, mineral content, volumetric density of trabecular and cortical part of metaphysis and diaphysis, respectively, ultimate strength, and geometrical parameters (cross-sectional area and second moment of inertia. Results: There were no significant differences in femur bone parameters among experimental groups on the 28th d of life. On the 35th d of life, piglets with 0.2% supplementation of sodium butyrate and Yucca schidigera extract had significantly lower values of weight and second moment of inertia, and significantly higher trabecular BMD and BMC compared to other experimental groups. In 56-day-old pigs, the higher values were observed in both experimental groups regarding BMC, ultimate strength, geometrical parameters, cortical BMC, diaphyseal total area, and endosteal circumference (P < 0.05. Significant differences between experimental groups were observed only in bone weight and cortical thickness. Conclusion: This study proved that simultaneous supplementation with sodium butyrate and Yucca schidigera extract positively influences bone quality in pigs in the post-weaning period. However, there were no differences in bone characteristics between the addition of 0.2% and 0.3% preparations.

  8. Butyrate Increases Intracellular Calcium Levels and Enhances Growth Hormone Release from Rat Anterior Pituitary Cells via the G-Protein-Coupled Receptors GPR41 and 43

    OpenAIRE

    Maria Consolata Miletta; Vibor Petkovic; Andrée Eblé; Ammann, Roland A; Flück, Christa E.; Primus-E Mullis

    2014-01-01

    Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous...

  9. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43

    OpenAIRE

    Miletta, Maria Consolata; Petkovic, Vibor; Eblé, Andrée; Ammann, Roland; Flück, Christa; Mullis, Primus-Eugen

    2014-01-01

    Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous...

  10. Thermoacoustical and Excess Properties of Binary Mixtures of Ethyl Butyrate with Methanol and Vinyl Acetate

    Directory of Open Access Journals (Sweden)

    Jagdish Prasad Shukla

    2010-06-01

    Full Text Available This paper aims to portray the nature of interaction present in the mixture of ethyl butyrate with methanol and vinyl acetate by computing various thermodynamic parameters at 298.15 K. Excess thermodynamic properties correlated with Redlich–Kister polynomial equation reveals the extent of interaction present in the mixture. Acoustical relations giving the molecular radii of liquid mixtures suggest the change in structure with composition quite well. A comparative study of various empirical and semi-empirical relations such as Flory’s Statistical Theory, Goldsack and Sarvas, Sanchez theory etc. for predicting ultrasonic velocity of the mixtures with the experimental values have been done.

  11. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.

    Science.gov (United States)

    Ueki, Toshiyuki; Nevin, Kelly P; Woodard, Trevor L; Lovley, Derek R

    2014-10-21

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. Importance: The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  12. Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells

    OpenAIRE

    Tailor, Dhanir; Hahm, Eun-Ryeong; Kale, Raosaheb K.; Singh, Shivendra V.; Singh, Rana P.

    2013-01-01

    Sodium butyrate (NaBt) is the byproduct of anaerobic microbial fermentation inside the gastro-intestinal tract that could reach upto 20 mM, and has been shown to inhibit the growth of various cancers. Herein, we evaluated its effect on mitochondrial fusion and associated induction of apoptosis in colorectal cancer cells (CRC). NaBt treatment at physiological (1-5 mM) concentrations for 12 and 24 h decreased the cell viability and induced G2-M phase cell cycle arrest in HCT116 (12h) and SW480 ...

  13. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning

    DEFF Research Database (Denmark)

    Nilsson, Anne C; Östman, Elin M; Knudsen, Knud Erik Bach;

    2010-01-01

    Epidemiological studies have shown an inverse relation between a whole grain consumption and risk of type-2 diabetes and cardiovascular disease. One tentative mechanism relates to colonic metabolism of indigestible carbohydrates. In a previous study, we reported a positive relation between colonic...... fermentation and improved glucose tolerance. This work can be seen as an extension of that study, focusing on the tentative role of specific colonic metabolites, i.e. SCFA. Plasma concentrations of acetate, propionate, and butyrate were determined in the morning in healthy participants (5 women and 10 men...... concentrations the following morning compared with an evening meal with white wheat bread (P fermentation and generation of SCFA, where in particular...

  14. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  15. In Vitro Effects of Dietary Inulin on Human Fecal Microbiota and Butyrate Production.

    Science.gov (United States)

    Jung, Tae-Hwan; Jeon, Woo-Min; Han, Kyoung-Sik

    2015-09-01

    Administration of dietary fibers has various health benefits, mainly by increasing numbers of beneficial bacteria and enhancing production of short-chain fatty acids in the colon. There has been growing interest in the addition of dietary fiber to human diet, due to its prebiotic effects. This study aimed to evaluate the prebiotic activity of inulin using an in vitro batch fermentation system with human fecal microbiota. Fermentation of inulin resulted in a significantly greater ratio of Lactobacillus or Bifidobacteria to Enterobacteria strains as an index of healthy human intestine and elevated butyrate concentration, which are related to improvement of gut health.

  16. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  17. Characterization of defects of mullite fibers prepared by polyvinyl butyral as spinning aid

    Directory of Open Access Journals (Sweden)

    Zhang Y.B.

    2010-01-01

    Full Text Available Mullite fibers have been synthesized using polyvinyl butyral as spinning aids. Defects including cracks, core-sheath structure, randomly arranged powders, shots and rough surface were observed. The results showed that circumferential cracks were terminated by the main axial crack. The thermal shrinkage could be considered as the reason for the formation of cracks and core-sheath structure. Improper control of heat treatment resulted in the rough surface around fibers. The wet gel fibers were easily inserted by some alumina powders which were used to obtain the uniform shrinkage during calcinations in the kiln.

  18. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves

    DEFF Research Database (Denmark)

    Gorka, P; Kowalski, Z M; Pietrzak, P;

    2009-01-01

    Rumen development is an important factor determining early solid feed intake and performance in cattle. A popular trend towards early weaning of newborn dairy calves necessitated looking for ways of accelerating the gastrointestinal tract (GIT) development. The present study aimed to determine...... the effect of sodium butyrate (NaB) supplementation in milk replacer and starter diet on rumen development in rearing calves. Fourteen bull calves (5-day-old) were randomly allocated to two groups: Control (C) and NaB. The later received 0.3 % NaB in milk replacer and starter diet. Animals were in experiment...

  19. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production.

    Science.gov (United States)

    Liu, Xiaoguang; Zhu, Ying; Yang, Shang-Tian

    2006-01-01

    Clostridium tyrobutyricum produces butyrate, acetate, H(2), and CO(2) as its main fermentation products from glucose and xylose. To improve butyric acid and hydrogen production, integrational mutagenesis was used to create a metabolically engineered mutant with inactivated ack gene, encoding acetate kinase (AK) associated with the acetate formation pathway. A non-replicative plasmid containing the acetate kinase gene (ack) fragment was constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome should inactivate the target ack gene and produce ack-deleted mutant, PAK-Em. Enzyme activity assays showed that the AK activity in PAK-Em decreased by approximately 50%; meanwhile, phosphotransacetylase (PTA) and hydrogenase activities each increased by approximately 40%. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the expression of protein with approximately 32 kDa molecular mass was reduced significantly in the mutant. Compared to the wild type, the mutant grew more slowly at pH 6.0 and 37 degrees C, with a lower specific growth rate of 0.14 h(-1) (vs 0.21 h(-1) for the wild type), likely due to the partially impaired PTA-AK pathway. However, the mutant produced 23.5% more butyrate (0.42 vs 0.34 g/g glucose) at a higher final concentration of 41.7 g/L (vs 19.98 g/L) as a result of its higher butyrate tolerance as indicated in the growth kinetics study using various intial concentrations of butyrate in the media. The mutant also produced 50% more hydrogen (0.024 g/g) from glucose than the wild type. Immobilized-cell fermentation of PAK-Em in a fibrous-bed bioreactor (FBB) further increased the final butyric acid concentration (50.1 g/L) and the butyrate yield (0.45 g/g glucose). Furthermore, in the FBB fermentation at pH 5.0 with xylose as the substrate, only butyric acid was produced by the mutant, whereas the wild type produced large amounts

  20. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  1. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium.

    Science.gov (United States)

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-06-06

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn't induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates.

  2. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor.

    Science.gov (United States)

    Wei, Dong; Liu, Xiaoguang; Yang, Shang-Tian

    2013-02-01

    A fermentation process using Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor (FBB) was developed for butyric acid production from sugarcane bagasse (SCB) hydrolysate. SCB was first treated with dilute acid and then hydrolyzed with cellulases. The hydrolysate containing glucose and xylose was used as carbon source for the fermentation without detoxification. The bacterium was able to grow at a specific growth rate of ∼0.06 h(-1) in media containing 15-20% (w/v) SCB in serum bottles. In batch cultures in the FBB, both glucose and xylose in the SCB hydrolysate were simultaneously converted to butyrate with a high yield (0.45-0.54 g/gsugar) and productivity (0.48-0.60 g/Lh). A final butyrate concentration of 20.9 g/L was obtained in a fed-batch culture, with an overall productivity of 0.51 g/Lh and butyrate yield of 0.48 g/g sugar consumed. This work demonstrated the feasibility of using SCB as a low-cost feedstock to produce butyric acid.

  3. Effect of different butyrate supplementations on growth and health of weaning pigs challenged or not with E. coli K88

    Directory of Open Access Journals (Sweden)

    Paolo Trevisi

    2010-01-01

    Full Text Available In a full factorial design (4 diets X challenge, Yes/No, 72 weaning pigs were assigned to one of the diets: Control; experimental diets, obtained with the addition of 2 g/kg free sodium butyrate (fNaB, or 0.6 g/kg fat-protected sodium butyrate (pNaB, or 2 g/kg INVE-NutriAd commercial mixture (Mix, based on 75 g/kg protected butyrate. Oral challenge with Escherichia coli K88 was done on 2/3 of pigs on d 7. Pigs were slaughtered on d 13. The mortality in challenged pigs, tended to be higher in control group (50.0% than in the three supplemented groups (23.5%. Growth tended to be increased averagely by the supplements (p=0.100 after the challenge, that also significantly reduced growth. In general the diet did not affect the fecal shedding of Escherichia coli and Lactobacilli, the K88-specific IgA activity in blood, the morphology of oxyntic mucosa and the expression of H+/K+-ATPase gene. The supplementations tended to increase villous length of jejunum (p=0.101. On the whole, growth, villous height and surviving rate can be positively affected either when the supplementation is done by free butyrate, by protected butyrate or by the special Inve Nutri-Ad product and these effects are distributed both on pigs infected or not with Escherichia coli K88.

  4. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    Science.gov (United States)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  5. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets

    DEFF Research Database (Denmark)

    Le Gall, Maud; Gallois, Mélanie; Sève, Bernard;

    2009-01-01

    Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning......) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11-12 d) weaning and SB before and after weaning (for 35-36 d). Growth performance, feed intake...... and various end-point indices of GIT anatomy and physiology were investigated at slaughter. The pigs supplemented with SB before weaning grew faster after weaning than the controls (P intake was higher in pigs supplemented with SB before or after weaning (P

  6. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  7. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  8. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.

    Science.gov (United States)

    Brightwell, Gale; Boerema, Jackie; Mills, John; Mowat, Eilidh; Pulford, David

    2006-05-25

    We examined the bacterial community present on an Intralox conveyor belt system in an operating lamb boning room by sequencing the 16S ribosomal DNA (rDNA) of bacteria extracted in the presence or absence of cultivation. RFLP patterns for 16S rDNA clone library and cultures were generated using HaeIII and MspI restriction endonucleases. 16S rDNA amplicons produced 8 distinct RFLP pattern groups. RFLP groups I-IV were represented in the clone library and RFLP groups I and V-VIII were represented amongst the cultured isolates. Partial DNA sequences from each RFLP group revealed that all group I, II and VIII representatives were Pseudomonas spp., group III were Sphingomonas spp., group IV clones were most similar to an uncultured alpha proteobacterium, group V was similar to a Serratia spp., group VI with an Alcaligenes spp., and group VII with Microbacterium spp. Sphingomonads were numerically dominant in the culture-independent clone library and along with the group IV alpha proteobacterium were not represented amongst the cultured isolates. Serratia, Alcaligenes and Microbacterium spp. were only represented with cultured isolates. Pseudomonads were detected by both culture-dependent (84% of isolates) and culture-independent (12.5% of clones) methods and their presence at high frequency does pose the risk of product spoilage if transferred onto meat stored under aerobic conditions. The detection of sphingomonads in large numbers by the culture-independent method demands further analysis because sphingomonads may represent a new source of meat spoilage that has not been previously recognised in the meat processing environment. The 16S rDNA collections generated by both methods were important at representing the diversity of the bacterial population associated with an Intralox conveyor belt system.

  9. EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity.

    Directory of Open Access Journals (Sweden)

    Alejandra Garces

    Full Text Available Mycobacterium tuberculosis (Mtb requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall.

  10. The epithelial αvβ3-integrin boosts the MYD88-dependent TLR2 signaling in response to viral and bacterial components.

    Directory of Open Access Journals (Sweden)

    Tatiana Gianni

    2014-11-01

    Full Text Available TLR2 is a cell surface receptor which elicits an immediate response to a wide repertoire of bacteria and viruses. Its response is usually thought to be proinflammatory rather than an antiviral. In monocytic cells TLR2 cooperates with coreceptors, e.g. CD14, CD36 and αMβ2-integrin. In an earlier work we showed that αvβ3-integrin acts in concert with TLR2 to elicit an innate response to HSV, and to lipopolysaccharide. This response is characterized by production of IFN-α and -β, a specific set of cytokines, and NF-κB activation. We investigated the basis of the cooperation between αvβ3-integrin and TLR2. We report that β3-integrin participates by signaling through Y residues located in the C-tail, known to be involved in signaling activity. αvβ3-integrin boosts the MYD88-dependent TLR2 signaling and IRAK4 phosphorylation in 293T and in epithelial, keratinocytic and neuronal cell lines. The replication of ICP0minus HSV is greatly enhanced by DN versions of MYD88, of Akt - a hub of this pathway, or by β3integrin-silencing. αvβ3-integrin enables the recruitment of TLR2, MAL, MYD88 at lipid rafts, the platforms from where the signaling starts. The PAMP of the HSV-induced innate response is the gH/gL virion glycoprotein, which interacts with αvβ3-integrin and TLR2 independently one of the other, and cross-links the two receptors. Given the preferential distribution of αvβ3-integrin to epithelial cells, we propose that αvβ3-integrin serves as coreceptor of TLR2 in these cells. The results open the possibility that TLR2 makes use of coreceptors in a variety of cells to broaden its spectrum of activity and tissue specificity.

  11. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-01-01

    Full Text Available Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.

  12. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    Science.gov (United States)

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  13. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion.

    Science.gov (United States)

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G

    2013-08-30

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes.

  14. Hepatic metabolism of anaesthetized growing pigs during acute portal infusion of volatile fatty acids and hydroxy-methyl butyrate

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Larsen, Uffe Krogh; Bjerre-Harpøth, Vibeke;

    2016-01-01

    intervals and analyzed for contents of paraamino- hippuric acid (PAH; blood flow marker) and plasma metabolites. Total VFA was infused at a rate of 0 mmol/h (background; Inf1, Inf6), 60 mmol/h (Inf2) or 120 mmol/h (Inf3 to Inf5). Infused VFA contained 70, 20, and 5% of acetate, propionate, and butyrate......, respectively, for Inf2 and Inf3, or 65%, 20%, and 10% of acetate, propionate, and butyrate, respectively, for Inf4 and Inf5. In addition, for Inf5, HMB was infused at 2 mmol/h. Statistical analysis included fixed effects of infusion and interaction between infusion and samplings within infusion while...... accounting for repeated measurements. A net hepatic uptake of propionate, butyrate, and lactate was observed, whereas the liver released acetate, glucose, and urea. The portal lactate absorption could not account for the net hepatic uptake of lactate, suggesting lactate originated from partial oxidation...

  15. Subclinical ketosis on dairy cows in transition period in farms with contrasting butyric acid contents in silages.

    Science.gov (United States)

    Vicente, Fernando; Rodríguez, María Luisa; Martínez-Fernández, Adela; Soldado, Ana; Argamentería, Alejandro; Peláez, Mario; de la Roza-Delgado, Begoña

    2014-01-01

    This study examines the relationship between subclinical ketosis (SCK) in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; Psilage with a high butyric acid content (35.2 g/kg DM intake).

  16. Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets

    Science.gov (United States)

    Xu, Jumei; Chen, Xue; Yu, Shuiqing; Su, Yong; Zhu, Weiyun

    2016-01-01

    Butyrate in the gut of animals has potential properties including regulating the innate immune, modulating the lipid metabolism, and protecting gut healthy. So far, only limited information on the impact of butyrate on the neonatal is available. This study aimed to investigate effects of oral administration of sodium butyrate (SB) on gut microbiota and the expression of inflammatory cytokine in neonatal piglets. Ten litters of crossbred newborn piglets were randomly allocated to the SB and control (CO) groups, each group consisted of five litters (replicates). Piglets in the SB group were orally administrated with 7 to 13 ml sodium butyrate solution (150 mmol/l) per day from the age of 1 to 7 days, respectively; piglets in the CO group were treated with the same dose of physiological saline. On days 8 and 21 (of age), gut digesta and tissues were collected for the analysis of microbiota, butyrate concentration and gene expression of inflammatory cytokine. Results showed that there was no difference in the butyrate concentration in the gut of piglets on days 8 and 21 between two groups. Real-time PCR assay showed that SB had no effect on the numbers of total bacteria in the stomach, ileum, and colon. MiSeq sequencing of the V3-V4 region of the 16S rRNA gene revealed that SB increased the richness in the stomach and colon, and the diversity of colonic microbiota on day 8 (P piglets on day 8 (P piglets with low impact on intestinal microbial structure, which suggests oral administration of SB may have a benefit role in the health of neonatal piglets. PMID:27611998

  17. Fabrication of transparent and conductive carbon nanotube/polyvinyl butyral films by a facile solution surface dip coating method

    Science.gov (United States)

    Li, Yuanqing; Yu, Ting; Pui, Tzesian; Chen, Peng; Zheng, Lianxi; Liao, Kin

    2011-06-01

    We present a simple solution surface dip coating method for fabricating transparent and conductive carbon nanotube/polyvinyl butyral (CNT/PVB) composite films. This fabrication process is simple to scale production and requires only ethanol and water as solvents, which is green and environment friendly.We present a simple solution surface dip coating method for fabricating transparent and conductive carbon nanotube/polyvinyl butyral (CNT/PVB) composite films. This fabrication process is simple to scale production and requires only ethanol and water as solvents, which is green and environment friendly. Electronic supplementary information (ESI) available: Experimental section. See DOI: 10.1039/c1nr10302d

  18. Bacterial vaginosis -- aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000687.htm Bacterial vaginosis - aftercare To use the sharing features on this ... to back after you use the bathroom. Preventing Bacterial Vaginosis You can help prevent bacterial vaginosis by: Not ...

  19. Pregnancy Complications: Bacterial Vaginosis

    Science.gov (United States)

    ... Complications & Loss > Pregnancy complications > Bacterial vaginosis and pregnancy Bacterial vaginosis and pregnancy E-mail to a friend Please ... this page It's been added to your dashboard . Bacterial vaginosis (also called BV or vaginitis) is an infection ...

  20. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    Directory of Open Access Journals (Sweden)

    Edgar C. Clausen

    2012-08-01

    Full Text Available In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partial cell recycle mode to improve fermenter yield and productivity. Experiments with fermentation in batch, continuous culture and continuous culture with partial cell recycle by ultrafiltration were conducted. The results show that a continuous fermentation can be sustained for more than 120 days, which is the first reported long-term production of butyric acid in a continuous operation. Further, the results also show that partial cell recycle via membrane ultrafiltration has a great influence on the selectivity and productivity of butyric acid, with an increase in selectivity from ≈9% to 95% butyric acid with productivities as high as 1.13 g/Lh. Continuous fermentation with low dilution rate and high cell recycle ratio has been found to be desirable for optimum productivity and selectivity toward butyric acid and a comprehensive model explaining this phenomenon is given.

  1. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Directory of Open Access Journals (Sweden)

    Maria Consolata Miletta

    Full Text Available Butyrate is a short-chain fatty acid (SCFA closely related to the ketone body ß-hydroxybutyrate (BHB, which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR, GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  2. Short-term infusion of sodium butyrate, but not lactose, increases plasma ß-hydroxybutyrate and insulin in lactating dairy cows

    Science.gov (United States)

    Several previous studies have identified beneficial effects of butyrate on rumen development and intestinal health in pre-ruminants. These encouraging findings have led to further investigations related to butyrate supplementation in the mature ruminant. However, the maximum tolerable dosage rate of...

  3. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Science.gov (United States)

    Miletta, Maria Consolata; Petkovic, Vibor; Eblé, Andrée; Ammann, Roland A; Flück, Christa E; Mullis, Primus-E

    2014-01-01

    Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  4. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Ying; Hu, Peng-Chao; Ma, Yan-Bin; Fan, Rong; Gao, Fang-Fang; Zhang, Jing-Wei; Wei, Lei

    2016-01-01

    This study investigated the effects of sodium butyrate (NaB) on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and analyzed the relevant mechanism. Here, we demonstrated that a certain concentration of NaB effectively induced MCF-7 cell apoptosis. Cell counting kit-8 (CCK-8) assay was used to detect cell viability and the apoptosis rate. Western blotting was used to detect changes in the Bcl-2 expression level. We observed cell shape changes with microscopy. Immunofluorescence revealed some apoptotic nuclei. Electron microscopy revealed thick nucleoli, chromatin margination, reduced mitochondria, and dramatic vacuoles. Collectively, our findings elucidated the morphological mechanism by which NaB changed the ultrastructure of MCF-7 cells.

  5. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    Science.gov (United States)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  6. The effect of sugars on the retention of ethyl butyrate by gellan gels.

    Science.gov (United States)

    Evageliou, Vasiliki; Patsiakou, Anna

    2014-08-15

    The effect of sucrose, glucose and fructose on the retention of ethyl butyrate by low acyl gellan gels was investigated by static headspace gas chromatography. The air/biopolymer partition coefficient (K) and percentage of retention (R%) were determined. When 5 g of sample were left to equilibrate at 37 °C for 24 h, the obtained results were explained in terms of gel rigidity, as increased rigidity resulted in increased aroma retention. Glucose showed the greatest aroma release among the sugars and resulted in either the same or increased aroma release with increasing concentration. Increasing concentrations of fructose and sucrose did not alter aroma release significantly. For 15 g of sample mass, sucrose exhibited the lowest partition coefficient values among the sugars. The two higher sucrose concentrations resulted in decreased coefficient values. For fructose and glucose, aroma retention decreased with increasing concentration. The percentage of retention values were positive for all sugars, throughout their concentration range and for both experiments.

  7. Hydroxyapatite nanoparticles: electrospinning and calcination of hydroxyapatite/polyvinyl butyral nanofibers and growth kinetics.

    Science.gov (United States)

    Zakaria, Siti Maisurah; Sharif Zein, Sharif Hussein; Othman, Mohd Roslee; Jansen, John A

    2013-07-01

    Electrospinning of hydroxyapatite (HA)/polyvinyl butyral solution resulted in the formation of fibers with average diameter of 937-1440 nm. These fibers were converted into HA nanoparticles with size <100 nm after undergoing calcination treatment at 600°C. The diameter of the fiber was found to be influenced by applied voltage and spinning distance. The injection flowrate did not affect the diameter significantly. The electrospinning method successfully reduced the commercial HA particle size in the range of 400-1100 nm into <100 nm. The dispersion of the finally calcined HA nanoparticles was improved significantly after anionic sodium dodecyl sulfate surfactant was introduced. The experimental data of HA growth kinetics were subjected to the integral method of analysis, and the rate law of the reaction was found to follow the first order reaction.

  8. Fabrication of SiC-C composite from poycarbosilane, epoxy and polyvinyl butyral resin mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Wook; Park, Dong Won; Jeun, Joon Pyo; Kang, Phil Hyun [Korea Atomic Energy Research Institte, Jeongeup (Korea, Republic of)

    2009-06-15

    Silicon carbide (SiC) has wide application in various industrial fields because of their good high strength and modulus, low density, oxidation resistance and thermal stability. In this study, SiC-C composites were prepared from mixture of polycarbosilane (PCS), epoxy resin, and polyvinyl butyral (PVB) with weight ration of 2/1/1. PCS/epoxy/PVB mixture was cured by electron beam irradiation at 5,000 kGy. The cured composite was pyrolyzed by heat treatment in flowing argon at 1,300 .deg. C for 1 hr. As the result of TGA analysis, the oxidation resistance showed 95.2% residue at 1,500 .deg. C under air.

  9. Photochromic properties of the N-Salicylideneaniline in Polyvinyl Butyral matrix: Experimental and theoretical investigations

    Science.gov (United States)

    Shahab, Siyamak; Filippovich, Liudmila; Aharodnikova, M.; Almodarresiyeh, Hora A.; Hajikolaee, Fatemeh Haji; Kumar, Rakesh; Mashayekhi, Mahsa

    2017-04-01

    In the present work, isomerization, photophysical properties, thermal conductivity (λ) and spectral study of the N-Salicylideneaniline: 2-[(E)-(phenylimino)methyl]phenol (SA) under the action of UV radiation in the Polyvinyl Butyral (PVB) matrix were studied using the Indicator method and Density Functional Theory (DFT). The electronic absorption spectra of SA and its isomers (SA1 and SA2) in dimethylformamide (DMF) solutions were also calculated. The nature of absorption bands of SA, SA1 and SA2 in the visible and near ultraviolet spectral regions was interpreted. The excitation energies, electronic transitions and oscillator strengths for SA, SA1 and SA2 have also been calculated. Thermal Conductivity of PVB-films containing SA before and after UV radiation was also measured. A Photochromic PVB - film on the basis of SA for application in optical devices and display technologies was made.

  10. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation

    Science.gov (United States)

    Carrion, Sandra Leon; Sutter, Carrie Hayes; Sutter, Thomas R.

    2014-01-01

    Epidermal growth factor (EGF) receptor (EGFR) signaling is a critical determinant of keratinocyte proliferation and differentiation in both normal and diseased skin. Here we explore the effects of combined treatment with the differentiation-promoting agent sodium butyrate (SB) and the EGFR inhibitor (EGFRI) PD153035 on terminal differentiation of normal human epidermal keratinocytes (NHEKs). Cells treated with SB showed increased expression of the levels of mRNA and protein of the differentiation markers filaggrin and transglutaminase 1. Co-treatment with EGF significantly blunted these effects of SB. Combined treatment with SB and PD153035 alleviated these inhibitory actions of EGF, resulting in improved effects of decreased cell growth and increased terminal differentiation, relative to the individual treatments. These results indicate that the combined use of a differentiation-promoting agent and an EGFR inhibitor may offer an additional approach to the management of hyperproliferative skin diseases. PMID:24451036

  11. Synergistic Effect of Probiotics, Butyrate and l-Carnitine in Treatment of IBD

    Directory of Open Access Journals (Sweden)

    Mahsa Moeinian

    2013-07-01

    Full Text Available Genetic, environmental factors, dysregulation of immune system, intestinal microbes and oxidative stress are the most important factors that play the role in the pathogenesis of inflammatory bowel disease (IBD. Current treatments do not always result in complete remission and usually accompanied with several adverse effects. Recent studies showed that nuclear factor-kappa B (NF-κB, tumor necrosis factor-α (TNF-α and oxidative stress play the pivotal role in the induction of inflammation. Butyrate, l-Carnitine, and probiotics have the potential to control inflammation by reduction of main inflammatory cytokines, including NF-κB and TNF-α. They also stimulate antioxidant enzymes and inhibit IκB kinase (IKK. Regarding the beneficial effects of these three compounds in inflammation via several mechanisms, we hypothesize that the mixture of these compounds would be synergistically effective in reduction of inflammation and alleviation of IBD. Further experimental investigations are needed, to evaluate the hypothesis.

  12. Effect of abomasal butyrate infusion on net nutrient flux across the portal-drained viscera and liver of growing lambs

    Science.gov (United States)

    The purpose of this experiment was to determine if supplying butyrate to the post-ruminal gastrointestinal tract of growing lambs alters blood flow and nutrient flux across the portal-drained viscera (PDV) and hepatic tissues. Polled Dorset wether lambs (n = 10; initial BW = 55 ± 3.3 kg) had cathet...

  13. Butyrate Induced Cell Cycle Arrest in Bovine Cells through Targeting Gene Expression relevance to DNA Replication Apparatus

    Science.gov (United States)

    Using both real-time RT-PCR and Western blot analysis in bovine kidney epithelial cells, we systematically investigated the gene expression relevance to DNA replication apparatus targeted by butyrate. The real-time PCR and Western blot data generally confirmed the microarray analysis. From the quan...

  14. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Science.gov (United States)

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp.

  15. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    Science.gov (United States)

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  16. Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor.

    Science.gov (United States)

    Oliveira, Maria D L; Correia, Maria T S; Diniz, Flamarion B

    2009-12-15

    Immobilization of concanavalin A on gold electrode by means of gold nanoparticles and polyvinyl butyral was carried out and investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The system was tested with sera from patients infected by dengue fever (DF) and dengue hemorrhagic fever (DHF). Electrochemical impedance spectroscopy (in the frequency range from 100mHz to 100KHz), and cyclic voltammetry (from -0.2 to 0.7V vs. Ag/AgCl), was performed in phosphate buffer solution containing 10mM K(3)[Fe(CN)(6)]/K(4)[Fe(CN)(6)] (1:1) mixture as a redox probe. As biomolecules accumulated on the electrode surface the voltammetric response changed from a clear diffusional to an irreversible behavior. Impedance spectroscopy showed a clear increase of the electron-transfer resistance when the sensor is exposed to contaminated sera (DF or DHF) as compared to exposure to uncontaminated serum (NDF). The results were analyzed through an equivalent circuit and values of charge transfer resistance and capacitance were obtained. Variations in charge transfer resistance were used to distinguish the sensor response for the different sera investigated (DF, DHF and NDF). Alternatively, a three-dimensional graph gave the best response for differentiation of all three blood sera. The distinctive patterns of impedimetric responses observed were ascribed to different glycoprotein patterns in the sera investigated. Therefore, the lectin immobilization on electrode surface with gold nanoparticles and polyvinyl butyral, combined with the three-dimensional impedance analysis introduced herein are valuable tools in the development of a biosensor for immunological response to diseases.

  17. Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate.

    Science.gov (United States)

    Akel, Salem; Bertolette, Daniel; Ruscetti, Francis W

    2013-04-22

    The role of crosstalk between the Smad and the MAPK signaling pathways in activin-, transforming growth factor-β (TGF-β)-, hydroxyurea (HU) - and butyrate-dependent erythroid differentiation of K562 leukemic cells was studied. Treatment with all four inducers caused transient phosphorylation of Smad2/3 and MAPK proteins including ERK, p38 and JNK. Use of specific inhibitors of p38, ERK and JNK MAPK proteins, and TGF-β type I receptor indicated that differentiation induced by each of these agents involves activation of Smad2/3 and p38 MAPK, and inhibition of ERK MAPK. Also, treatment of cells with an inhibitor of protein serine/threonine phosphatase, okadaic acid (OA), induced phosphorylation of Smad2/3, and p38 MAPK, coincident with its induction of erythroid differentiation. Specific inhibition of TGF-β type I receptor kinase activity not only abolished TGF-β/activin effects but also prevented Smad2/3 activation and erythroid differentiation induced by OA, HU and butyrate. The TGF-β type I receptor kinase inhibitor blocked OA-induced differentiation but not p38 MAPK phosphorylation demonstrating that signals from both pathways are needed. As previously observed, addition of ERK1/2 MAPK inhibitors upregulated Smad2/3 phosphorylation and enhanced differentiation, but these effects were dependent on signals from the TGF-β type I receptor. These data indicate that activation of both Smad2/3 and p38 MAPK signaling pathways is a prerequisite to induce erythroid differentiation of erythroleukemia cells by activin, TGF-β, HU, OA and butyrate.

  18. Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells.

    Science.gov (United States)

    Kim, Young-Ho; Park, Jong-Wook; Lee, Jai-Youl; Kwon, Taeg Kyu

    2004-10-01

    Sodium butyrate, a short-chain fatty acid naturally present in the human colon, is able to induce cell cycle arrest, differentiation and apoptosis in various cancer cells. Sodium butyrate is most probably related to the inhibition of deacetylases leading to hyperacetylation of chromatin components such as histones and non-histone proteins and to alterations in gene expression. In this study, we demonstrate for the first time that sodium butyrate selectively up-regulated DR5 but had no effect on the expression of the other TNF-alpha-related apoptosis-inducing ligand (TRAIL) receptor, DR4. Sodium butyrate-induced expression of DR5 involves the putative Sp1 site within the DR5 promoter region. Using a combination of the electrophoretic mobility shift assay and the luciferase reporter assay, we found that a specific Sp1 site (located at -195 bp relative to the transcription start site) is required for sodium butyrate-mediated activation of the DR5 promoter. When HCT116 cells were incubated with sodium butyrate and TRAIL, enhanced TRAIL-mediated apoptosis was observed. The enhanced apoptosis was measured by fluorescent activated cell sorting analysis, DNA fragmentation, poly (ADP-ribose) polymerase cleavage, down-regulation of XIAP and caspase activity. Taken together, the present studies suggest that sodium butyrate may be an effective sensitizer of TRAIL-induced apoptosis.

  19. Synergistic effects of sodium butyrate, a histone deacetylase inhibitor, on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus.

    Science.gov (United States)

    Yoo, Dae Young; Kim, Woosuk; Nam, Sung Min; Kim, Dae Won; Chung, Jin Young; Choi, Soo Young; Yoon, Yeo Sung; Won, Moo-Ho; Hwang, In Koo

    2011-10-01

    We previously observed that pyridoxine (vitamin B(6)) significantly increased cell proliferation and neuroblast differentiation without any neuronal damage in the hippocampus. In this study, we investigated the effects of sodium butyrate, a histone deacetylase (HDAC) inhibitor which serves as an epigenetic regulator of gene expression, on pyridoxine-induced neural proliferation and neurogenesis induced by the increase of neural proliferation in the mouse dentate gyrus. Sodium butyrate (300 mg/kg, subcutaneously), pyridoxine (350 mg/kg, intraperitoneally), or combination with sodium butyrate were administered to 8-week-old mice twice a day and once a day, respectively, for 14 days. The administration of sodium butyrate significantly increased acetyl-histone H3 levels in the dentate gyrus. Sodium butyrate alone did not show the significant increase of cell proliferation in the dentate gyrus. But, pyridoxine alone significantly increased cell proliferation. Sodium butyrate in combination with pyridoxine robustly enhanced cell proliferation and neurogenesis induced by the increase of neural proliferation in the dentate gyrus, showing that sodium butyrate treatment distinctively enhanced development of neuroblast dendrites. These results indicate that an inhibition of HDAC synergistically promotes neurogenesis induced by a pyridoxine and increase of neural proliferation.

  20. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds.

    Science.gov (United States)

    Hill, Allyson T; Ying, Sheng; Plaxton, William C

    2014-02-15

    The aim of the present study was to characterize the native protein kinase [BTPC (bacterial-type phosphoenolpyruvate carboxylase)-K (BTPC Ser451 kinase)] that in vivo phosphorylates Ser451 of the BTPC subunits of an unusual Class-2 PEP (phosphoenolpyruvate) carboxylase hetero-octameric complex of developing COS (castor oil seeds). COS BTPC-K was highly purified by PEG fractionation and hydrophobic size-exclusion anion-exchange and affinity chromatographies. BTPC-K phosphorylated BTPC strictly at Ser451 (Km=1.0 μM; pH optimum=7.3), a conserved target residue occurring within an intrinsically disordered region, as well as the protein histone III-S (Km=1.7 μM), but not a COS plant-type PEP carboxylase or sucrose synthase or α-casein. Its activity was Ca2+- (K0.5=2.7 μM) and ATP- (Km=6.6 μM) dependent, and markedly inhibited by trifluoperazine, 3-phosphoglycerate and PEP, but insensitive to calmodulin or 14-3-3 proteins. BTPC-K exhibited a native molecular mass of ~63 kDa and was soluble rather than membrane-bound. Inactivation and reactivation occurred upon BTPC-K's incubation with GSSG and then DTT respectively. Ser451 phosphorylation by BTPC-K inhibited BTPC activity by ~50% when assayed under suboptimal conditions (pH 7.3, 1 mM PEP and 10 mM L-malate). Our collective results indicate a possible link between cytosolic Ca2+ signalling and anaplerotic flux control in developing COS.

  1. Low fucose containing bacterial polysaccharide facilitate mitochondria-dependent ROS-induced apoptosis of human lung epithelial carcinoma via controlled regulation of MAPKs-mediated Nrf2/Keap1 homeostasis signaling.

    Science.gov (United States)

    Chowdhury, Sougata Roy; Sengupta, Suman; Biswas, Subir; Sen, Ramkrishna; Sinha, Tridib Kumar; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2015-12-01

    Reactive oxygen species (ROS), the key mediators of cellular oxidative stress and redox dysregulation involved in cancer initiation and progression, have recently emerged as promising targets for anticancer drug discovery. Continuous free radical assault upsets homeostasis in cellular redox system and regulates the associated signaling pathways to mediate stress-induced cell death. This study investigates the dose-specific pro-oxidative behavior of a bacterial fucose polysaccharide, which attenuated proliferation of different cancer cells. In the fermentation process, Bacillus megaterium RB-05 [GenBank Accession Number HM371417] was found to biosynthesize a polysaccharide with low-fucose content (4.9%), which conferred the maximum anti-proliferative activity (750 µg/mL) against human lung cancer epithelial cells (A549) during preliminary screening. Structural elucidation and morphological characterization of the duly purified polysaccharide was done using HPLC, GC-MS, (1)H/(13)C NMR, and microscopy. The polysaccharide exhibited concentration- and time-dependent anti-proliferative effects against A549 cells by inducing intracellular ROS level and regulating the mitochondrial membrane-permeability following the apoptotic pathway. This process encompasses activation of caspase-8/9/3/7, increase in the ratio of Bax/Bcl2 ratio, translocation of Bcl2-associated X protein (Bax) and cytochrome c, decrease in expression of anti-apoptotic members of Bcl2 family, and phosphorylation of mitogen activated protein kinases (MAPKs). Apoptosis was attenuated upon pretreatment with specific caspase-inhibitors. Simultaneously, during apoptosis, the ROS-mediated stress as well as activated MAPKs triggered nuclear translocation of transcription factors like nuclear factor (erythroid-derived)-like 2 (Nrf2) and promoted further transcription of downstream cytoprotective genes, which somehow perturbed the chemotherapeutic efficacy of the polysaccharide, although using CuPP, a chemical

  2. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    Science.gov (United States)

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.

  3. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Sabita N., E-mail: sabivan@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Department of Biological Sciences, Alabama State University, Montgomery, AL 36104 (United States); Kala, Rishabh [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  4. Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves.

    Science.gov (United States)

    Górka, P; Pietrzak, P; Kotunia, A; Zabielski, R; Kowalski, Z M

    2014-02-01

    The effect of sodium butyrate (SB) supplementation in milk replacer (MR), starter mixture (SM), or both on small intestine maturation in newborn calves was investigated. Twenty-eight male calves with a mean age of 5 (± 1) d were randomly allocated into 1 of 4 groups (7 animals per group) and fed (1) MR and SM, without SB (MR(-) and SM(-), respectively; MR(-)/SM(-)); (2) MR(-) and SM supplemented with SB encapsulated within triglyceride matrix (SM(+), 0.6% as fed; MR(-)/SM(+)); (3) MR supplemented with crystalline SB (MR(+), 0.3% as fed) and SM(-) (MR(+)/SM(-)); or (4) MR(+) and SM(+) (MR(+)/SM(+)). The MR was offered in amounts equal to 10% of initial body weight of the calf. The SM was blended with whole corn grain (50/50; wt/wt) and offered ad libitum as a starter diet. Calves were slaughtered at 26 d (± 1) of age and small intestine development was investigated. Treatment with MR(+) decreased villus height in the proximal jejunum and decreased villus height, crypt depth, and tunica mucosa thickness in the middle jejunum, whereas treatment with SM(+) tended to increase small intestine weight and crypt depth in the proximal jejunum, and increased villus height in the distal jejunum. In the duodenum, crypt depth and tunica mucosa thickness were greater for the MR(-)/SM(+) group compared with MR(-)/SM(-), MR(+)/SM(-), and MR(+)/SM(+) groups. In the ileum, crypt depth was less for MR(-)/SM(+) compared with MR(-)/SM(-). Supplementation with SB in both MR and SM enhanced cell proliferation and decreased apoptosis in the middle jejunum mucosa. Regarding brush border enzyme activities, addition of SB to MR increased lactase activity in the middle jejunum and maltase activity in the distal jejunum, and tended to increase lactase activity in the distal jejunum, aminopeptidase A activity in the middle jejunum and ileum, and aminopeptidase N activity in the ileum. In contrast, SM(+) increased dipeptidylpeptidase IV activity in the distal jejunum and tended to increase

  5. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  6. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    Science.gov (United States)

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus.

  7. Rhizogenic behavior of black pepper cultivars to indole-3-butyric acid

    Directory of Open Access Journals (Sweden)

    Welington Secundino

    2014-07-01

    Full Text Available Little information is available regarding vegetative propagation of the species Piper nigrum L. to generate technical recommendations for the production of seedlings on a commercial scale. The purpose of this study was to investigate the rhizogenic behavior of cultivars of this species regarding indol-3-butyric acid (IBA. The experiment was performed at a vegetation house equipped with an intermittent nebulization irrigation system. The experimental site was located in the University Center of Northern Espírito Santo (CEUNES of the Federal University of Espírito Santo (UFES, Brazil. The experimental design consisted of randomized blocks arranged in a 3 x 5 factorial scheme: three cultivars (Bragantina, Iaçará and Guajarina x five IBA concentrations (0; 1,500; 3,000; 4,500 and 6,000 mg kg-1, with four repetitions of 16 cuttings each. Total immersion of the cuttings in IBA is recommended for the Iaçará and Guajarina cultivars, and immersion of only the basal region is recommended for cv. Bragantina. The recommended IBA concentration for these cultivars is 4,000 mg kg-1.

  8. Statistical design for formulation optimization of hydrocortisone butyrate-loaded PLGA nanoparticles.

    Science.gov (United States)

    Yang, Xiaoyan; Patel, Sulabh; Sheng, Ye; Pal, Dhananjay; Mitra, Ashim K

    2014-06-01

    The aim of this investigation was to develop hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) with ideal encapsulation efficiency (EE), particle size, and drug loading (DL) under emulsion solvent evaporation technique utilizing various experimental statistical design modules. Experimental designs were used to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. Plackett-Burman design for independent variables was first conducted to prescreen various formulation and process variables during the development of NP. Selected primary variables were further optimized by central composite design. This process leads to an optimum formulation with desired EE, particle size, and DL. Contour plots and response surface curves display visual diagrammatic relationships between the experimental responses and input variables. The concentration of PLGA, drug, and polyvinyl alcohol and sonication time were the critical factors influencing the responses analyzed. Optimized formulation showed EE of 90.6%, particle size of 164.3 nm, and DL of 64.35%. This study demonstrates that statistical experimental design methodology can optimize the formulation and process variables to achieve favorable responses for HB-loaded NP.

  9. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    Science.gov (United States)

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  10. Sodium Butyrate Induces Apoptosis of Human Colon Cancer Cells by Modulating ERK and Sphingosine Kinase 2

    Institute of Scientific and Technical Information of China (English)

    XIAO Min; LIU Yun Gang; ZOU Meng Chen; ZOU Fei

    2014-01-01

    Objective To investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells. Methods After the HCT116 cells were pretreated with specific ERK inhibitor (U0126) or specific siRNA and exposed to 10 mmol/L sodium butyrate (NaBT) for 24 h, their apoptosis was detected by flow cytometry, levels of SphK2 and ERK protein were measured by Western blot, and translocation of SphK2 was assayed by immunofluorescence microscopy. Results The U0126 and siRNAs specific for SphK2 blocked the export of SphK2 from nuclei to cytoplasm and increased the apoptosis of HCT116 cells following NaBT exposure. Over-expression of PKD decreased NaBT-induced apoptosis of HCT116 cells, which was reversed by U0126. Furthermore, transfection of HCT116 cells with constitutively activated PKD plasmids recovered the U0126-blocked export of SphK2. Conclusion ERK regulates the export of SphK2 and apoptosis of HCT116 cells by modulating PKD. Modulation of these molecules may help increase the sensitivity of colon cancer cells to the physiologic anti-colon cancer agent, NaBT.

  11. Enhancement of Human Prolactin Synthesis by Sodium Butyrate Addition to Serum-Free CHO Cell Culture

    Directory of Open Access Journals (Sweden)

    Herbert Rodrigues Goulart

    2010-01-01

    Full Text Available Sodium butyrate (NaBu has been used as a productivity enhancer for the synthesis of recombinant proteins in Chinese hamster ovary (CHO cells. Thus, the influence of NaBu on the production of recombinant human prolactin (hPRL from CHO cells was investigated for the first time. CHO cell cultures were submitted to a treatment with different concentrations of NaBu (0.25 to 4 mM. Quantitative and qualitative analyses by reverse-phase high-performance liquid chromatography (RP-HPLC and Western blot or SDS-PAGE, carried out directly on CHO-conditioned medium, showed that the highest hPRL expression was obtained with 1 mM NaBu. In vitro biological assays based on noble rat lymphoma (Nb2 and mouse pro-B lymphoma (Ba/F3-LLP cells were carried out on purified hPRL. Its bioactivity in the presence of NaBu was not apparently different from that of the First International Reference Reagent of recombinant hPRL (WHO 97/714. Our results show that NaBu increased the synthesis of recombinant hPRL in CHO cells, apparently without compromising either its structure or function.

  12. Performance evaluation of biofilters and biotrickling filters in odor control of n-butyric acid.

    Science.gov (United States)

    Ding, Ying; Han, Zhiying; Wu, Weixiang; Shi, Dezhi; Chen, Yingxu; Li, Wenhong

    2011-01-01

    With the rapid development of swine production in China, odor pollution associated with piggery facilities has become an increasing environmental concern. N-butyric acid (n-BA) is one of the key odor compounds selected to represent volatile fatty acids (VFAs) found in piggery facilities. In this study, two biofilters (BFs) packed with compost (BFC) or sludge (BFS) and two biotrickling filters (BTFs) packed with pall rings (BTFP) or multidimensional hollow balls (BTFM), respectively, were compared with regard to their performances in the removal of n-BA. The non-biological removal capacities of packing material of the bioreactors on a per unit volume basis were BFS>BFC>BTFM>BTFP. Maximum biological removal capacities per unit volume of packing material of the bioreactors all exceeded 9.1 kg/m(3)·d and in the order of BFC>BTFM>BFS>BTFP. Kinetic analysis as well as overall evaluation by radar graphs showed that the BTFs achieved superior removal rates to the BFs in the order of BTFM>BTFP>BFC>BFS. The biotrickling filter packed with multidimensional hollow balls could be an effective technology for VFAs removal. Results from this research provide economical and effective alternatives for odor control in piggery facilities.

  13. ROOTING OF GUANANDI (Calophyllum brasiliense CAMBESS CUTTINGS USING INDOLE-BUTYRIC ACID

    Directory of Open Access Journals (Sweden)

    Eduardo Ciriello

    2015-12-01

    Full Text Available Commercial reforestation of Brazilian native species to produce hardwood for sawmills has been recently intensified in the country. Among the potential species planted by the logging industry is guanandi (Calophyllum brasiliense Cambess because it is widely distributed in the country, highly adapted to different soil and climate conditions, good bole form and high quality timber. The development of genetic improvement programs should prioritize gains in productivity and yields in the medium and long term. For such programs to be successful, the study of vegetative propagation techniques to abbreviate steps in forest improvement and allow its mass production is fundamental. To assess the viability of vegetative propagation of the species, two successive experiments were carried out during two years testing the best type of cutting, hormone concentration and management. Different cuttings types submitted to increasing doses of indole-butyric acid (IBA were tested to evaluate survival, sprouting, rooting and callus formation. Results indicate that the species is viable for vegetative propagation with 85 to 90% rooting of cuttings from seedlings in the IBA concentrations of 3000 to 7000 mg.L-1. For the cuttings, sprouting from the base of adult trees 3000 mg.L-1 was the best concentration of IBA.

  14. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements.

    Science.gov (United States)

    Guinovart, Tomàs; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J

    2014-04-22

    A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec(-1)) over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90±33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  15. Constitutive Investigation on Viscoelasticity of PolyVinyl Butyral: Experiments Based on Dynamic Mechanical Analysis Method

    Directory of Open Access Journals (Sweden)

    Bohan Liu

    2014-01-01

    Full Text Available PolyVinyl Butyral (PVB film is now widely used in automotive industry and architectures serving as the protective interlayer. The dynamic modulus of PVB is measured through systematic experiments based on Dynamic Mechanical Analysis (DMA method at various temperatures, heating rates, and vibration frequencies. Further, viscoelasticity of PVB influenced by time and temperature is systematically studied. Fitted empirical formulas describing the relationship between glass transition temperature and frequency, as well as the heating rate of PVB, are established. The master curve of PVB at 293 K is suggested based on the experiment data as to express the dynamic modulus variation at various frequencies in a wider range. Constitutive behavior of PVB is then analyzed based on Generalized Maxwell (GM model and Fractional Derivative (FD model, respectively. It is shown that PVB has higher efficiency of energy dissipation in its high energy absorption state, while both fifth-order GM model and FD model can characterize the viscoelasticity of PVB at glassy transition area. Results may offer useful fundamental experimental data and important constitutive characteristics of PVB and shed lights on further studies on viscoelasticity behavior of PVB and energy mitigation ability of laminated glass.

  16. Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Al Zahrany, Awad A., E-mail: azahrany@kacst.edu.sa [Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, (KACST), P.O. BOX 6086, Riyadh 11442 (Saudi Arabia); Rabaeh, Khalid A. [Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, (KACST), P.O. BOX 6086, Riyadh 11442 (Saudi Arabia); Radiography Department, Faculty of Allied Health Sciences, Hashemite University, Zarqa (Jordan); Basfar, Ahmed A. [Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, (KACST), P.O. BOX 6086, Riyadh 11442 (Saudi Arabia)

    2011-11-15

    Radio-chromic film based on polyvinyl butyral (PVB) containing different concentrations of methyl red (MR) dye for 0.125, 0.25 and 0.5 mM has been introduced as high dose dosimeter. The dosimeters were irradiated with gamma ray from {sup 60}Co source at doses from 5 to 150 kGy. UV/vis spectrophotometry was used to investigate the optical density of unirradiated and irradiated films in terms of absorbance at 497 nm. The dose sensitivity of MR-PVB film dosimeter increases strongly with increase of absorbed dose as well as increase of concentrations of MR dye. The effects of irradiation temperature, relative humidity, dose rate and the stability of the response of the films after irradiation were investigated and found that these films could be used as routine dosimeter in industrial radiation processing. The useful dose range of developed MR-PVB film dosimeters is in the range of 5-100 kGy. - Highlights: > This manuscript relates to radio-chromic dosimeter for used in high dose radiation processing. > Methyl red MR contains azo group which breaking due to gamma radiation, resulting in color bleaching. > Radio-chromic film PVB containing different concentrations of MR dye has been introduced. > The color bleaching of MR-PVB film dosimeter increases gradually with increasing absorbed dose. > Response of MR-PVB films was slightly affected by irradiation temperature and relative humidity.

  17. Dosimetry characterization of nitro-blue tetrazolium polyvinyl butyral films for radiation processing

    Science.gov (United States)

    Basfar, Ahmed A.; Rabaeh, Khalid A.; Moussa, Akram A.; Msalam, Rashed I.

    2011-06-01

    Nitro-blue tetrazolium polyvinyl butyral film dosimeters (NBT-PVB) were prepared and investigated based on radiation-induced reduction of NBT 2+. NBT-PVB film dosimeters containing different concentrations of NBT dye from 1 to 5 mM were prepared in a solution of ethanol. The dosimeters were irradiated with γ-ray from 60Co source at doses from 5 up to 55 kGy. UV/vis spectrophotometry was used to investigate the optical density of unirradiated and irradiated films in terms of absorbance at 529 nm. The absorbance increases with absorbed dose up to 55 kGy for NBT-PVB film dosimeters. The dose sensitivity of NBT-PVB film increases strongly with an increase in concentrations of NBT dye. The effects of irradiation temperature, humidity, dose rate and the stability of the response of the films after irradiation were investigated. The influence of irradiation temperature and humidity on the performance of the film was reduced significantly due to the use of PVB as a binder containing NBT dye.

  18. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes

    Science.gov (United States)

    Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

    2015-04-01

    Mixtures of polyvinylpyrrolidone/polyvinyl butyral (PVP/PVB) are attractive binders for the preparation of carbon electrodes for aqueous electrolyte supercapacitors. The use of PVP/PVB offers several key advantages: They are soluble in ethanol and can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector. Infrared spectroscopy and contact angle measurements show that the PVP-to-PVB ratio determines the degree of binder hydrophilicity. Within our study, the most favorable performance was obtained for AC electrodes with a composition of AC + 1.5 mass% PVP + 6.0 mass% PVB; such electrodes were mechanically stabile and water resistant with a PVP release of less than 5% of total PVP while PVB itself is water insoluble. Compared to when using PVDF, the specific surface area (SSA) of the assembled electrodes was 10% higher, indicating a reduced pore blocking tendency. A good electrochemical performance was observed in different aqueous electrolytes for composite electrodes with the optimized binder composition: 160 F g-1 at 1 A g-1 for 1 M H2SO4 and 6 M KOH and 120 F g-1 for 1 M NaCl. The capacitance was slightly reduced by 2.5% after cycling to 1.2 V with 1.28 A g-1 in 1 M NaCl for 10,000 times.

  19. Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter

    Science.gov (United States)

    Al Zahrany, Awad A.; Rabaeh, Khalid A.; Basfar, Ahmed A.

    2011-11-01

    Radio-chromic film based on polyvinyl butyral (PVB) containing different concentrations of methyl red (MR) dye for 0.125, 0.25 and 0.5 mM has been introduced as high dose dosimeter. The dosimeters were irradiated with gamma ray from 60Co source at doses from 5 to 150 kGy. UV/vis spectrophotometry was used to investigate the optical density of unirradiated and irradiated films in terms of absorbance at 497 nm. The dose sensitivity of MR-PVB film dosimeter increases strongly with increase of absorbed dose as well as increase of concentrations of MR dye. The effects of irradiation temperature, relative humidity, dose rate and the stability of the response of the films after irradiation were investigated and found that these films could be used as routine dosimeter in industrial radiation processing. The useful dose range of developed MR-PVB film dosimeters is in the range of 5-100 kGy.

  20. Dosimetry characterization of nitro-blue tetrazolium polyvinyl butyral films for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Basfar, Ahmed A., E-mail: abasfar@kacst.edu.s [Radiation Technology Center, Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia); Rabaeh, Khalid A. [Radiation Technology Center, Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia); Radiography Department, Faculty of Allied Health Sciences, Hashemite University, Zarqa (Jordan); Moussa, Akram A. [Biomedical Physics Department, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia); Msalam, Rashed I. [Radiation Technology Center, Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia)

    2011-06-15

    Nitro-blue tetrazolium polyvinyl butyral film dosimeters (NBT-PVB) were prepared and investigated based on radiation-induced reduction of NBT{sup 2+}. NBT-PVB film dosimeters containing different concentrations of NBT dye from 1 to 5 mM were prepared in a solution of ethanol. The dosimeters were irradiated with {gamma}-ray from {sup 60}Co source at doses from 5 up to 55 kGy. UV/vis spectrophotometry was used to investigate the optical density of unirradiated and irradiated films in terms of absorbance at 529 nm. The absorbance increases with absorbed dose up to 55 kGy for NBT-PVB film dosimeters. The dose sensitivity of NBT-PVB film increases strongly with an increase in concentrations of NBT dye. The effects of irradiation temperature, humidity, dose rate and the stability of the response of the films after irradiation were investigated. The influence of irradiation temperature and humidity on the performance of the film was reduced significantly due to the use of PVB as a binder containing NBT dye.

  1. Support film in transmission electron microscopy: experiences with polyvinyl butyral Pioloform BM 18.

    Science.gov (United States)

    Kneissler, Ursula; Harendza, Sigrid; Helmchen, Udo

    2003-01-01

    Microscopic work with single-slot grids requires high-quality support films to span the relatively large gap. The imminent unavailability of the polyvinyl formal Pioloform FN 65, which to date has been used as the standard polyvinyl formal for the generation of support films in transmission electron microscopy (TEM), has necessitated the finding of a substitute material to produce such films. Therefore, we compared the polyvinyl butyral Pioloform BM 18 with the polyvinyl formal Pioloform FN 65 for the production of TEM support films, using operational criteria for assessment. Pioloform BM 18 with the solvent chloroform resulted in support films of unacceptable quality compared with Pioloform FN 65. Adding the softener dibutyl phthalate to the chloroform solvent for Pioloform BM 18 markedly improved the film quality, resulting in support films with high transparency and flexibility, and even greater stability in the electron beam when compared with films of Pioloform FN 65. Pioloform FN 65 also had the disadvantage of requiring highly toxic 1,2-dichloroethane as a solvent, whereas Pioloform BM 18 can be used with chloroform.

  2. Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method.

    Science.gov (United States)

    Zhu, Haibo; Liu, Zhicheng; Kong, Dejin; Wang, Yangdong; Yuan, Xiaohong; Xie, Zaiku

    2009-03-15

    Three facile routes were utilized to synthesize ZSM-5 materials with intracrystal or intercrystal mesopores, where the polyvinyl butyral gel served as mesopore directing template. The three routes were divided into two synthesis strategies: the hydrothermal treatment of silica/PVB composite and re-crystallization of preformed zeolite precursor with the assistance of PVB gel. The fabrication of silica/PVB composite was accomplished by two routes including sol-gel process and impregnation method. The resulting composite was undergone hydrothermal treatment. During the crystallization PVB was occluded in the ZSM-5 crystal, creating intracrystal mesopores in the zeolite. The last route for the synthesis of mesoporous ZSM-5 was realized by re-crystallization of preformed ZSM-5 zeolite in the presence of PVB. This route involved the pre-crystallization of the amorphous aluminosilicate to produce the pre-formed ZSM-5 precursor. Upon further crystallization of the mixture of PVB gel and pre-formed ZSM-5, the ZSM-5 precursor was transformed into ZSM-5 aggregate of nanocrystals, while the PVB gel was occluded in the ZSM-5 particles. Removal of the template generated the typical microporosity associated with ZSM-5 structure along with intercrystal mesoporosity produced from the PVB. The mesoporous ZSM-5 exhibited enhanced catalytic activity in the toluene disproportionation and transalkylation with C(9) and C(10) aromatics.

  3. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  4. Carboxymethylcellulose acetate butyrate/poly(4-vinyl-N-pentyl pyridinium bromide blends as antimicrobial coatings

    Directory of Open Access Journals (Sweden)

    L. S. Blachechen

    2015-09-01

    Full Text Available Blends of carboxymethyl cellulose acetate butyrate (CMCAB, a cellulose derivative, and poly(4-vinyl-N-pentyl pyridinium bromide (QPVP-C5, an antimicrobial polymer, were prepared by casting method and characterized by means of Fourier transform infrared vibrational spectroscopy (FTIR, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and contact angle measurements. Miscibility between CMCAB and QPVP-C5 was evidenced by DSC measurements of blends, which showed a single thermal event of Tg, and SEM images, which revealed homogenous morphology, regardless the blend composition. Moreover, thermal stability of QPVP-C5 was substantially enhanced, when it was mixed with CMCAB. Upon increasing the QPVP-C5 content in the blend the wettability and antimicrobial activity against Gram-positive bacteria Micrococcus luteus increased, indicating the surface enrichment by pyridinium groups. In fact, blends with 70 wt% QPVP-C5 reduced 5 log and 4 log the colony-forming units of Micrococcus luteus and Escherichia coli, respectively.

  5. Transparent Blend of Poly(Methylmethacrylate/Cellulose Acetate Butyrate for the Protection from Ultraviolet

    Directory of Open Access Journals (Sweden)

    Raouf Mahmood Raouf

    2016-04-01

    Full Text Available The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV radiation exposure to transparent poly(methylmethacrylate (PMMA, which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB. The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend.

  6. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    OpenAIRE

    Sabita N. Saldanha; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-01-01

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overe...

  7. Contribution of C. beijerinckii and C. sporogenes in association with C. tyrobutyricum to the butyric fermentation in Emmental type cheese.

    Science.gov (United States)

    Le Bourhis, Anne-Gaëlle; Doré, Joël; Carlier, Jean-Philippe; Chamba, Jean-François; Popoff, Michel-Robert; Tholozan, Jean-Luc

    2007-01-25

    The relationship between C. tyrobutyricum, C. sporogenes and C. beijerinckii in experimental cheese conditions, and their influences on late-blowing and butyric fermentation, have been investigated. A molecular approach using a PCR-TTGE method in combination with conventional methods, such as microbiological and physico-chemical analysis, was performed to monitor the evolution of these clostridial species, simultaneously with the occurrence of cheese defects. Sixteen Emmental type cheeses were produced from milk inoculated with different clostridial spore associations. In all cheeses inoculated with C. tyrobutyricum, obvious signs of late blowing were detected. In cheeses inoculated with C. beijerinckii or C. sporogenes, a formation of holes in cheese body was observed, with a concomitant slight amount of butyric acid production. Even though C. beijerinckii and C. sporogenes were less metabolically active and less numerically important than C. tyrobutyricum in cheese as shown by TTGE profiles, the association of these species to C. tyrobutyricum enhanced the butyric fermentation and the cheese defects. The level of butyric content in ripened cheese increased to 268 mg 100 g(-1) in presence of C. tyrobutyricum, and reached a maximum of 414 mg 100 g(-1) in presence of the C. beijerinckii-C. tyrobutyricum (1:10) association. The propionic fermentation was also higher in cheese inoculated with C. tyrobutyricum, and was slowed down in presence of C. beijerinckii and C. sporogenes. From 30 days of ripening, a strong correlation between the chemical contents and the intensity of cheese defects was demonstrated. A chemical analysis of cheese associated with a molecular method for microbial spoilage investigation allows the prediction of the level of late blowing at early stages of ripening, and the understanding of the origin of the defect.

  8. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression.

    Science.gov (United States)

    Tayebi, Behnoosh; Abrishami, Fatemeh; Alizadeh, Shaban; Minayi, Neda; Mohammadian, Mozhdeh; Soleimani, Masoud; Dehghanifard, Ali; Atwan, Hossein; Ajami, Monireh; Ajami, Mansoureh

    2017-02-01

    Context Inherited hemoglobin diseases are the most common single-gene disorders. Induction of fetal hemoglobin in beta hemoglobin disorders compensate for abnormal chain and ameliorate the clinical complications. Sodium butyrate is used conventionally for fetal hemoglobin induction; it can be replaced by safer therapeutic tools like microRNAs, small non-coding RNAs that control number of epigenetic mechanisms. Objective In this study, we compared the changes in the microRNAs of differentiated erythroid cells between control and sodium butyrate treated groups. The objective is to find significant association between these changes and gamma chain up regulation. Materials and methods First, CD133(+ ) hematopoietic stem cells were isolated from cord blood by magnetic cell sorting (MACS) technique. After proliferation, the cells were differentiated to erythroid lineage in culture medium by EPO, SCF, and IL3. Meanwhile, the test group was treated with sodium butyrate. Then, gamma chain upregulation was verified by qPCR technique. Finally, microRNA profiling was performed through microarray assay and some of them confirmed by qPCR. Result Results demonstrated that gamma chain was 5.9-fold upregulated in the treated group. Significant changes were observed at 76 microRNAs, in which 20 were up-regulated and 56 were down-regulated. Discussion Five of these microRNAs including U101, hsa-miR-4726-5p, hsa-miR7109 5p, hsa-miR3663, and hsa-miR940 had significant changes in expression and volume. Conclusion In conclusion, it can be assumed that sodium butyrate can up-regulate gamma chain gene, and change miRNAs expression. These results can be profitable in future studies to find therapeutic goal suitable for such disorders.

  9. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation.

    Science.gov (United States)

    Yang, Keunyoung; Yu, Youngseob; Hwang, Seokhwan

    2003-05-01

    For partial acidogenesis of cheese-whey wastewater, a set of experiments were carried out to produce short-chain volatile fatty acids (VFA) in laboratory-scale continuously stirred tank reactors (CSTR). The maximum rate of acetic and butyric acid production associated with simultaneous changes in hydraulic retention time (HRT), pH, and temperature was investigated, in which the degree of acidification of the whey to the short-chain VFAs was less than 20% of the influent chemical oxygen demand (COD) concentration. Response surface methodology was successfully applied to determine the optimum physiological conditions where the maximum rates of acetic and butyric acid production occurred. These were 0.40-day HRT, pH 6.0 at 54.1 degrees C and 0.22-day HRT, pH 6.5 at 51.9 degrees C, respectively. The optimum conditions for acetic acid production were selected for partial acidification of cheese-whey wastewater because of a higher rate in combined productions of acetic and butyric acids than that at optimum conditions for butyric acid production. A thermophilic two-phase process with the partial acidification followed by a methanation step was operated. Performance of the two-phase process was compared to the single-phase anaerobic system. The two-phase process clearly showed a better performance in management of cheese-whey wastewater over the single-phase system. Maximum rate of COD removal and the rate of methane production in the two-phase process were, respectively, 116% and 43% higher than those of the single-phase system.

  10. High Sensitive Sensor Fabricated by Reduced Graphene Oxide/Polyvinyl Butyral Nanofibers for Detecting Cu (II) in Water

    OpenAIRE

    2015-01-01

    Graphene oxide (GO)/polyvinyl butyral (PVB) nanofibers were prepared by a simple electrospinning technique with PVB as matrix and GO as a functional nanomaterial. GO/PVB nanofibers on glassy carbon electrode (GCE) were reduced through electrochemical method to form reduced graphene oxide (RGO)/PVB nanofibers. The morphology and structure of GO/PVB nanofiber were studied by scanning election microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR). RGO/PV...

  11. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  12. Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin.

    Science.gov (United States)

    Ferreira, L S; Bittar, C M M

    2011-02-01

    This study was conducted to examine the influence of supplementation of sodium butyrate, sodium monensin or calcium propionate in a starter diet on the performance and selected plasma metabolites (plasma glucose, non-esterified fatty acids and β-hydroxybutyrate) of Holstein calves during pre- and post-weaning periods. Twenty-four newborn Holstein calves were housed in individual hutches until 10 weeks of life, receiving water free choice, and fed four liters of milk daily. Calves were blocked according to weight and date of birth, and allocated to one of the following treatments, according to the additive in the starter: (i) sodium butyrate (150 g/kg); (ii) sodium monensin (30 mg/kg); and (iii) calcium propionate (150 g/kg). During 10 weeks, calves received starter ad libitum, while coast cross hay (Cynodon dactylon (L.) pers.) was offered after weaning, which occurred at the 8th week of age. Weekly, calves were weighted and evaluated for body measurements. Blood samples were taken weekly after the fourth week of age, 2 hours after the morning feeding, for determination of plasma metabolites. No differences were observed among treatments for starter or hay intake, BW and daily gain of the animals. Mean concentrations of selected plasma metabolites were similar in calves fed a starter supplemented with sodium butyrate, sodium monensin and calcium propionate. There was significant reduction in the concentrations of plasma glucose as calves aged. The inclusion of sodium butyrate, calcium propionate or sodium monensin as additives in starter feeds resulted in equal animal performance, before and after weaning, suggesting that sodium monensin may be replaced by organic acid salts.

  13. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets

    DEFF Research Database (Denmark)

    Bartholome, Anne L; Albin, David M; Baker, David H

    2004-01-01

    BACKGROUND: Supplementation of total parenteral nutrition (TPN) with a mixture of short-chain fatty acids (SCFA) enhances intestinal adaptation in the adult rodent model. However, the ability and timing of SCFA to augment adaptation in the neonatal intestine is unknown. Furthermore, the specific...... SCFA inducing the intestinotrophic effects and underlying regulatory mechanism(s) are unclear. Therefore, we examined the effect of SCFA supplemented TPN on structural aspects of intestinal adaptation and hypothesized that butyrate is the SCFA responsible for these effects. METHODS: Piglets (n = 120......) were randomized to (1) control TPN or TPN supplemented with (2) 60 mmol/L SCFA (36 mmol/L acetate, 15 mmol/L propionate and 9 mmol/L butyrate), (3) 9 mmol/L butyrate, or (4) 60 mmol/L butyrate. Within each group, piglets were further randomized to examine acute (4, 12, or 24 hours) and chronic (3 or 7...

  14. Subclinical Ketosis on Dairy Cows in Transition Period in Farms with Contrasting Butyric Acid Contents in Silages

    Directory of Open Access Journals (Sweden)

    Fernando Vicente

    2014-01-01

    Full Text Available This study examines the relationship between subclinical ketosis (SCK in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05. As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake.

  15. Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments

    Directory of Open Access Journals (Sweden)

    Jianchao Zhang

    2016-08-01

    Full Text Available Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake. The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes (CNTs in the sediment enrichments. Observations made with fluorescence in situ hybridization (FISH and scanning electron microscope (SEM indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation.

  16. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    Science.gov (United States)

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  17. Influence of Butyrate Loaded Clinoptilolite Dietary Supplementation on Growth Performance, Development of Intestine and Antioxidant Capacity in Broiler Chickens.

    Science.gov (United States)

    Wu, Yanan; Zhou, Yanmin; Lu, Changhui; Ahmad, Hussain; Zhang, Hao; He, Jintian; Zhang, Lili; Wang, Tian

    2016-01-01

    The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry.

  18. Investigation of extraction fraction in confined impinging jet reactors for tri-butyl-phosphate extracting butyric acid process☆

    Institute of Scientific and Technical Information of China (English)

    Zhengming Gao; Manting Zhao; Yun Yu; Zhipeng Li; Jing Han

    2016-01-01

    The extraction fraction E and overall volumetric mass transfer coefficient kLa of TBP extracting butyric acid pro-cess in confined impinging jet reactors (CIJR) with two jets were investigated. The main variables tested were the concentration of tri-butyl-phosphate (TBP) and butyric acid, the impinging velocity V, the impinging velocity ratio of two phases Vorg/Vaq, the nozzle inner diameter di and the distance L between the jet axes and the top wall of the impinging chamber. The results showed that E and kLa increase with an increase of the impinging ve-locity V, the concentration of TBP Corg, and the impinging velocity ratio Vorg/Vaq. However, E and kLa decrease with an increase of the inner diameter di from 1 to 2 mm, the concentration of butyric acid Caq from 0.5%(v/v) to 2%(v/v). The factor L ranging from 3 to 11 mm has a negligible effect on E and kLa. A correlation on these variables and kLa was proposed based on the experimental data. These results indicated good mass transfer performance of CIJR in the extraction operation.

  19. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model.

    Science.gov (United States)

    Gholami, Mahdi; Ghasemi-Niri, Seyedeh Farnaz; Maqbool, Faheem; Baeeri, Maryam; Memariani, Zahra; Pousti, Iraj; Abdollahi, Mohammad

    2016-06-01

    This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases.

  20. A survey on anticancer effects of artemisinin, iron, miconazole, and butyric acid on 5637 (bladder cancer and 4T1 (Breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Amir Ali Shahbazfar

    2014-01-01

    The groups treated with miconazole showed identical changes, with less severity compared to combination therapy groups. In butyric acid-treated groups, the only detectable changes were, mild cell swelling, few apoptosis, and rare necrosis. Conclusions: A combination therapy with artemisinin can be more effective against cancer cells than monotherapy with that. Butyric acid was not effective on cancer cells. Miconazole deviated the nature of cell death from apoptosis to necrosis and it must be used under caution.

  1. Polysaccharide-specific memory B cells generated by conjugate vaccines in humans conform to the CD27+IgG+ isotype-switched memory B Cell phenotype and require contact-dependent signals from bystander T cells activated by bacterial proteins to differentiate into plasma cells.

    Science.gov (United States)

    Clarke, Edward T; Williams, Neil A; Findlow, Jamie; Borrow, Ray; Heyderman, Robert S; Finn, Adam

    2013-12-15

    The polysaccharides (PS) surrounding encapsulated bacteria are generally unable to activate T cells and hence do not induce B cell memory (BMEM). PS conjugate vaccines recruit CD4(+) T cells via a carrier protein, such as tetanus toxoid (TT), resulting in the induction of PS-specific BMEM. However, the requirement for T cells in the subsequent activation of the BMEM at the time of bacterial encounter is poorly understood, despite having critical implications for protection. We demonstrate that the PS-specific BMEM induced in humans by a meningococcal serogroup C PS (Men C)-TT conjugate vaccine conform to the isotype-switched (IgG(+)CD27(+)) rather than the IgM memory (IgM(+)CD27(+)) phenotype. Both Men C and TT-specific BMEM require CD4(+) T cells to differentiate into plasma cells. However, noncognate bystander T cells provide such signals to PS-specific BMEM with comparable effect to the cognate T cells available to TT-specific BMEM. The interaction between the two populations is contact-dependent and is mediated in part through CD40. Meningococci drive the differentiation of the Men C-specific BMEM through the activation of bystander T cells by bacterial proteins, although these signals are enhanced by T cell-independent innate signals. An effect of the TT-specific T cells activated by the vaccine on unrelated BMEM in vivo is also demonstrated. These data highlight that any protection conferred by PS-specific BMEM at the time of bacterial encounter will depend on the effectiveness with which bacterial proteins are able to activate bystander T cells. Priming for T cell memory against bacterial proteins through their inclusion in vaccine preparations must continue to be pursued.

  2. Downregulation of the Expression of GLUT1 Plays a Role in Apoptosis Induced by Sodium Butyrate in HT-29 Cell Line

    Directory of Open Access Journals (Sweden)

    Guang-Jin Yuan

    2006-02-01

    Full Text Available The regulation of glucose and sodium butyrate transporters(glucose transporter1-5 and Monocarboxylate transporter 1 and their relationship with cell apoptosis induced bysodium butyrate in colonic caner cell line HT-29 were studied. Cell apoptosis was detectedby flow cytometric assay. The expression of MCT1 and GLUT1-5 mRNA were detected byRT-PCR and the uptake of glucose was detected using 2-deoxy-[3H]glucose. The expressionof bax and bcl-x/l were detected by westernblot assay. We found that sodium butyrateinduced apoptosis in HT-29 cell line. The expression of GLUT1 mRNA, bcl-x/l, as well theuptake of glucose was inhibited by sodium butyrate. The expression of MCT1 and GLUT2,GLUT3, GLUT5 was not regulated by sodium butyrate. However, the concentration ofglucose had positive correlation with the expression of bcl-x/l protein and negativecorrelation with the apoptosis induced by sodium butyrate. All the results suggested thatdownregulation of the expression of GLUT1 was associated with the apoptosis induced bysodium butyrate in HT-29 cell line.

  3. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  4. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  5. Capturing one of the human gut microbiome’s most wanted: reconstructing the genome of a novel butyrate-producing, clostridial scavenger from metagenomic sequence data

    Directory of Open Access Journals (Sweden)

    Patricio eJeraldo

    2016-05-01

    Full Text Available The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP researchers generated a list of most wanted taxa: bacteria both prevalent among healthy volunteers and distantly related to any sequenced organisms. Unfortunately, the challenge of assembling high-quality genomes from a tangle of metagenomic reads has slowed progress in learning about these uncultured bacteria. Here, we describe how recent advances in sequencing and analysis allowed us to assemble most wanted genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP’s criteria for a most wanted taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/Clostridium leptum subgroup species Butyricicoccus pullicaecorum (71–76% average nucleotide identity. Gene function analysis indicates that the species is an obligate anaerobe, forms spores, and produces the anti-inflammatory short-chain fatty acids acetate and butyrate. It also appears to take up metabolically costly molecules such as cobalamin, methionine, and branch-chained amino acids from the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient-scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases such as colon cancer and inflammatory bowel disease. In conclusion, we have assembled essentially complete genomes from stool metagenomic data, yielding

  6. Capturing One of the Human Gut Microbiome’s Most Wanted: Reconstructing the Genome of a Novel Butyrate-Producing, Clostridial Scavenger from Metagenomic Sequence Data

    Science.gov (United States)

    Jeraldo, Patricio; Hernandez, Alvaro; Nielsen, Henrik B.; Chen, Xianfeng; White, Bryan A.; Goldenfeld, Nigel; Nelson, Heidi; Alhquist, David; Boardman, Lisa; Chia, Nicholas

    2016-01-01

    The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP) researchers generated a list of “most wanted” taxa: bacteria both prevalent among healthy volunteers and distantly related to any sequenced organisms. Unfortunately, the challenge of assembling high-quality genomes from a tangle of metagenomic reads has slowed progress in learning about these uncultured bacteria. Here, we describe how recent advances in sequencing and analysis allowed us to assemble “most wanted” genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP’s criteria for a “most wanted” taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/Clostridium leptum subgroup species Butyricicoccus pullicaecorum (71–76% average nucleotide identity). Gene function analysis indicates that the species is an obligate anaerobe, forms spores, and produces the anti-inflammatory short-chain fatty acids acetate and butyrate. It also appears to take up metabolically costly molecules such as cobalamin, methionine, and branch-chained amino acids from the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient-scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases such as colon cancer and inflammatory bowel disease. In conclusion, we have assembled essentially complete genomes from stool metagenomic data, yielding

  7. Effect of Indole Butyric Acid on the Transportation of Stored Calcium in Malus hupehensis Rhed. Seedling

    Institute of Scientific and Technical Information of China (English)

    LI Jia; YANG Hong-qiang; YAN Tian-li; SHU Huai-rui

    2006-01-01

    Calcium (Ca) plays an important role in the metabolism of higher plants. Recently, research on Ca2+ in plants has been focused especially at the cellular and molecular levels. Uptake, transport, and distribution are also very important for Ca to accomplish its function at the whole-plant level. In this experiment, one-year-old apple seedlings (M. hupehensis Rehd.) were investigated to determine the distribution of stored Ca, the different forms of Ca, and Ca2+-ATPase activity after treatment with indole butyric acid (IBA). The results showed that the total Ca measured in mature leaves and Ca2+-ATPase activity in tender leaves were higher compared with those in the control (CK). Calcium nitrate and calcium chloride (ALe-Ca) and calcium phosphate and calcium carbonate (HAC-Ca) decreased in both mature leaves and shoots,whereas water-soluble calcium (H2O-Ca), calcium pectate (NaCl-Ca), and calcium oxalate (HCl-Ca) increased. The percentage of active calcium, calcium pectate, and water-soluble calcium increased, whereas the percentage of calcium phosphate and calcium carbonate decreased. When treated with IBA, calcium fractions and percentage of the different forms of Ca was enhanced in 40 part per million (ppm) IBA compared with 20 ppm IBA and water. The results indicated that IBA increased the percentage of both active calcium (NaCl-Ca and H2O-Ca) in tender shoots and boosted the transportation of stored Ca in plants. IBA promoted Ca2+-ATPase activity and Ca2+ uptake in tender shoots of M. hupehensis. It can improve the total Ca contents and the relative percentage of Ca.

  8. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  9. Neuroprotective Effect of Sodium Butyrate against Cerebral Ischemia/Reperfusion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available Sodium butyrate (NaB is a dietary microbial fermentation product of fiber and serves as an important neuromodulator in the central nervous system. In this study, we further investigated that NaB attenuated cerebral ischemia/reperfusion (I/R injury in vivo and its possible mechanisms. NaB (5, 10 mg/kg was administered intragastrically 3 h after the onset of reperfusion in bilateral common carotid artery occlusion (BCCAO mice. After 24 h of reperfusion, neurological deficits scores were estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The levels of oxidative stress and inflammatory cytokines were assessed. Apoptotic neurons were measured by TUNEL; apoptosis-related protein caspase-3, Bcl-2, Bax, the phosphorylation Akt (p-Akt, and BDNF were assayed by western blot and immunohistochemistry. The results showed that 10 mg/kg NaB treatment significantly ameliorated neurological deficit and histopathology changes in cerebral I/R injury. Moreover, 10 mg/kg NaB treatment markedly restored the levels of MDA, SOD, IL-1β, TNF-α, and IL-8. 10 mg/kg NaB treatment also remarkably inhibited the apoptosis, decreasing the levels of caspase-3 and Bax and increasing the levels of Bcl-2, p-Akt, and BDNF. This study suggested that NaB exerts neuroprotective effects on cerebral I/R injury by antioxidant, anti-inflammatory, and antiapoptotic properties and BDNF-PI3K/Akt pathway is involved in antiapoptotic effect.

  10. Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine.

    Science.gov (United States)

    Kläring, Karoline; Hanske, Laura; Bui, Nam; Charrier, Cédric; Blaut, Michael; Haller, Dirk; Plugge, Caroline M; Clavel, Thomas

    2013-12-01

    A Gram-positive, spore-forming, non-motile, strictly anaerobic rod-shaped bacterium was isolated from the caecal content of a TNF(deltaARE) mouse. The isolate, referred to as strain SRB-521-5-I(T), was originally cultured on a reduced agar medium containing yeast extract, rumen fluid and lactic acid as main energy and carbon sources. Phylogenetic analysis of partial 16S rRNA genes revealed that the species most closely related to strain SRB-521-5-I(T) were Flavonifractor plautii and Pseudoflavonifractor capillosus (<95 % sequence similarity; 1436 bp). In contrast to F. plautii and P. capillosus, strain SRB-521-5-I(T) contained a substantial amount of C18 : 0 dimethylacetal. Additional major fatty acids were C14 : 0 methyl ester, C16 : 0 dimethylacetal and C18 : 0 aldehyde. Strain SRB-521-5-I(T) differed in its enzyme profile from F. plautii and P. capillosus by being positive for dextrin, maltotriose, turanose, dl-lactic acid and d-lactic acid methyl ester but negative for d-fructose. In reduced Wilkins-Chalgren-Anaerobe broth, strain SRB-521-5-I(T) produced approximately 8 mM butyrate and 4 mM acetate. In contrast to F. plautii, the strain did not metabolize flavonoids. It showed intermediate resistance towards the antibiotics ciprofloxacin, colistin and tetracycline. Based on genotypic and phenotypic characteristics, we propose the name Intestinimonas butyriciproducens gen. nov., sp. nov. to accommodate strain SRB-521-5-I(T) ( = DSM 26588(T) = CCUG 63529(T)) as the type strain.

  11. Epigenetically reprogramming of human embryonic stem cells by 3-Deazaneplanocin A and sodium butyrate

    Directory of Open Access Journals (Sweden)

    Soheila Azghadi

    2011-01-01

    Full Text Available Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit. Human embryonic stem cell (hESC lines are derived from the inner cell mass (ICM of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state, and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs. Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction. Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively.

  12. Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells.

    Science.gov (United States)

    Tailor, Dhanir; Hahm, Eun-Ryeong; Kale, Raosaheb K; Singh, Shivendra V; Singh, Rana P

    2014-05-01

    Sodium butyrate (NaBt) is the byproduct of anaerobic microbial fermentation inside the gastro-intestinal tract that could reach up to 20mM, and has been shown to inhibit the growth of various cancers. Herein, we evaluated its effect on mitochondrial fusion and associated induction of apoptosis in colorectal cancer cells (CRC). NaBt treatment at physiological (1-5mM) concentrations for 12 and 24h decreased the cell viability and induced G2-M phase cell cycle arrest in HCT116 (12h) and SW480 human CRC cells. This cell cycle arrest was associated with mitochondria-mediated apoptosis accompanied by a decrease in survivin and Bcl-2 expression, and generation of reactive oxygen species (ROS). Furthermore, NaBt treatment resulted in a significant decrease in the mitochondrial mass which is an indicator of mitochondrial fusion. Level of dynamin-related protein 1 (DRP1), a key regulator of mitochondrial fission and fusion where its up-regulation correlates with fission, was found to be decreased in CRC cells. Further, at early treatment time, DRP1 down-regulation was noticed in mitochondria which later became drastically reduced in both mitochondria as well as cytosol. DRP1 is activated by cyclin B1-CDK1 complex by its ser616 phosphorylation in which both cyclin B1-CDK1 complex and phospho-DRP1 (ser616) were strongly reduced by NaBt treatment. DRP1 was observed to be regulated by apoptosis as pan-caspase inhibitor showing rescue from NaBt-induced apoptosis also caused the reversal of DRP1 to the normal level as in control proliferating cells. Together, these findings suggest that NaBt can modulate mitochondrial fission and fusion by regulating the level of DRP1 and induce cell cycle arrest and apoptosis in human CRC cells.

  13. BAY 61-3606, CDKi, and Sodium Butyrate Treatments Modulate p53 Protein Level and Its Site-Specific Phosphorylation in Human Vestibular Schwannomas In Vitro

    Directory of Open Access Journals (Sweden)

    Rohan Mitra

    2014-01-01

    Full Text Available This study is done to evaluate the effect of spleen tyrosine kinase inhibitor (BAY 61-3606, cyclin-dependent kinase inhibitor (CDKi, and sodium butyrate (Na-Bu on the level and phosphorylation of p53 protein and its binding to murine double minute 2 (MDM2 homologue in human vestibular schwannomas (VS. Primary cultures of the tumor tissues were treated individually with optimum concentrations of these small molecules in vitro. The results indicate modulation of p53 protein status and its binding ability to MDM2 in treated samples as compared to the untreated control. The three individual treatments reduced the level of total p53 protein. These treatments also decreased Ser392 and Ser15 phosphorylated p53 in tumor samples of young patients and Ser315 phosphorylated p53 in old patients. Basal level of Thr55 phosphorylated p53 protein was present in all VS samples and it remained unchanged after treatments. The p53 protein from untreated VS samples showed reduced affinity to MDM2 binding in vitro and it increased significantly after treatments. The MDM2/p53 ratio increased approximately 3-fold in the treated VS tumor samples as compared to the control. The differential p53 protein phosphorylation status perhaps could play an important role in VS tumor cell death due to these treatments that we reported previously.

  14. Solvated crystals based on [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with the hexagonal structure and their phase transformation.

    Science.gov (United States)

    Zheng, Lidong; Han, Yanchun

    2012-02-09

    This work focuses on the structural exploration of micro-sized crystals based on a well-known methanofullerene, [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). We have succeeded in producing PCBM crystals with the hexagonal symmetry through the liquid-liquid interfacial precipitation (LLIP) method. We found that smaller but more regular PCBM crystals tend to form in the oversaturated PCBM solutions with solvents of lower solubility for PCBM, such as tetrahydrofuran (THF) and 1,4-dioxane. The structure of the produced crystals also shows a dependence on the solvents, which can be attributed to the incorporation of different solvent molecules into PCBM crystals. Under thermal annealing, for the first time, we have observed a crystalline to crystalline phase transformation of these hexagonal PCBM crystals. Along with the phase transformation, the morphology of the crystals has also been transformed from the hexagon to long needles. In addition, the needlelike crystals arrange themselves with a relative angle of 60° to each other, which implies an intrinsic structural correlation between needlelike and hexagonal crystals.

  15. Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate.

    Science.gov (United States)

    Jroundi, Fadwa; Gonzalez-Muñoz, Maria Teresa; Garcia-Bueno, Ana; Rodriguez-Navarro, Carlos

    2014-09-01

    Gypsum plasterworks and decorative surfaces are easily degraded, especially when exposed to humidity, and thus they require protection and/or consolidation. However, the conservation of historical gypsum-based structural and decorative materials by conventional organic and inorganic consolidants shows limited efficacy. Here, a new method based on the bioconsolidation capacity of carbonatogenic bacteria inhabiting the material was assayed on historical gypsum plasters and compared with conventional consolidation treatments (ethyl silicate; methylacrylate-ethylmethacrylate copolymer and polyvinyl butyral). Conventional products do not reach in-depth consolidation, typically forming a thin impervious surface layer which blocks pores. In contrast, the bacterial treatment produces vaterite (CaCO3) biocement, which does not block pores and produces a good level of consolidation, both at the surface and in-depth, as shown by drilling resistance measurement system analyses. Transmission electron microscopy analyses show that bacterial vaterite cement formed via oriented aggregation of CaCO3 nanoparticles (∼20nm in size), resulting in mesocrystals which incorporate bacterial biopolymers. Such a biocomposite has superior mechanical properties, thus explaining the fact that drilling resistance of bioconsolidated gypsum plasters is within the range of inorganic calcite materials of equivalent porosity, despite the fact that the bacterial vaterite cement accounts for only a 0.02 solid volume fraction. Bacterial bioconsolidation is proposed for the effective consolidation of this type of material. The potential applications of bacterial calcium carbonate consolidation of gypsum biomaterials used as bone graft substitutes are discussed.

  16. Sodium butyrate-induced death-associated protein kinase expression promote Raji cell morphological change and apoptosis by reducing FAK protein levels

    Institute of Scientific and Technical Information of China (English)

    Hai-tao ZHANG; Zhe-ling FENG; Jun WU; Ya-jun WANG; Xia GUO; Nian-ci LIANG; Zhen-yu ZHU; Jian-quan MA

    2007-01-01

    Aim:To investigate the role of death-associated protein kinase (DAPK) on the apoptosis of Raji cells induced by sodium butyrate. Methods:The apoptosis of Raji cells were induced by sodium butyrate for 2,4,6,8,and 10 d. Simultaneity,the Raji cells were inhibited to adhere on culture flask by polyHEME. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and the cell apoptosis percentage was estimated by flow cytometry. DAPK and focal adhesion kinase (FAK) expression were measured by Western blotting.Coding sequence on the C-terminal of DAPK,which can suppress the function of DAPK,was tranfected into the Raji cells to investigate whether the C-terminal of DAPK could inhibit the apoptosis of Raji cells induced by sodium butyrate. Results:After being treated with sodium butyrate,the Raji cells expressed DAPK and displayed many protrusions to adhere onto the culture flask. The Raji cells were susceptive to apoptosis when they were inhibited adhesion by polyHEME. At that time,the cell viability decreased,the cell apoptosis percentage increased and the protein levels of total FAK were reduced. The Raji cells,which were transfected with the coding region on the C-terminal of DAPK,sustained apoptosis and the FAK protein level when treated with sodium butyrate. Conclusion:Sodium butyrate induced DAPK expression. It caused the Raji cells to display many protrusions all around the cells and adhere onto the culture flask. DAPK expression prompted apoptosis by reducing the FAK protein level in sodium butyrate induced Raji cells.

  17. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  18. Bacterial endocarditis prophylaxis.

    Science.gov (United States)

    Blanco-Carrión, Andrés

    2004-01-01

    Bacterial endocarditis (BE) is a disease resulting from the association of morphological alterations of the heart and bacteraemia originating from different sources that at times can be indiscernible (infectious endocarditis). It is classified on the basis of the morphological alteration involved, depending on the clinical manifestations and course of illness, which varies according to the causative microorganism and host conditions (for example, it is characteristic in I.V. drug users). The most common microorganisms involved are: Streptococcus viridans (55%), Staphylococcus aureus (30%), Enterococcus (6%) and HACEK bacteria (corresponding to the initials: Haemophilus, Actinobacillus, Cardiobacterium, Eikenella and Kingella), although on occasions it can also be caused by fungi. The oral microbiological flora plays a very important role in the aetiopathogenesis of BE, given that the condition may be of oral or dental origin. This paper will deal with the prevention of said bacteraemia. Prophylaxis will be undertaken using amoxicillin or clindamycin according to action protocols, with special emphasis placed on oral hygiene in patients with structural defects of the heart.

  19. Effects of sodium butyrate supplementation on reproductive performance and colostrum composition in gilts.

    Science.gov (United States)

    He, B; Wang, M; Guo, H; Jia, Y; Yang, X; Zhao, R

    2016-10-01

    Nutrients are essential for the health and survival of human beings and animals. Also, they play a major role in enhancing reproductive efficiency. The aim of the current study was to investigate the effects of sodium butyrate (SB) on reproductive performance and colostrum composition in gilts. A total of 40 Large White×Landrace replacement gilts (at the age of 160 to 175 days) were fed either a standard diet (control group, n=20) or standard diet top dressed with encapsulated SB at the level of 500 mg/kg (SB group, n=20) from 1 month before mating to 7 days after farrowing. The rate of gilts regular return to estrus after insemination was lower in SB group than the control group. The total number of piglets born (P=0.179) and the litter weight at birth (P=0.063) did not differ between the two treatment groups. However, the mean BW at day 7 tended to be greater in SB group (P=0.051) and average daily gain of piglets was greater (P=0.011) compared with control group. Colostrum samples were collected at parturition and the concentrations of total protein (P=0.197), cholesterol (P=0.161) and lactose (P=0.923) were not influenced by SB supplementation. However, compared with control gilts, colostrum from SB-treated gilts contained lower triglyceride (P=0.050). Moreover, colostrum concentrations of prolactin (P=0.005) and leptin (P=0.006) were significantly lower in SB group. No significant differences were noted for the colostral concentrations of cortisol (P=0.899), thyroxine (P=0.891) or triiodothyronine (P=0.194). The concentration of lipopolysaccharide in colostrum was not influenced by SB supplementation (P=0.972). However, colostrum from SB-treated gilts had significantly lower tumor necrosis factor α (TNFα) (P=0.030) and higher immunoglobulin A (IgA) (P=0.042). Collectively, SB supplementation could reduce the rate of gilts return to estrus, alter the composition of colostrum and enhance the growth rate of piglets. Moreover, SB could alter the immune function

  20. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter;

    fermentation coupled with Reverse Enhanced Electro-Dialysis (REED) at D=0.0417 h-1 (1 day HRT) in experiments with a mixture of glucose and xylose in synthetic growth medium as well as with increasing concentrations of PHWS (up to 100%). Data obtained from experiments with synthetic medium showed......) and resulted in a butyric acid productivity and yield of 1.31g/L/h and 0.44 g/g, respectively at 1 day HRT. Acknowledgements: This work is a part of EU-7th Framework programme supported project SUPRABIO (FP7-cooperationproject no 241640)....

  1. STUDY ON IMMOBILIZED PORCINE PANCREATIC LIPASE CATALYZING TRANSESTERIFICATION BETWEEN METHYL—BUTYRATE AND 1—BUTANOL IN NONAQUEOUS SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    XieZhidong; LueXianyu; 等

    1996-01-01

    Transesterification between methyl-butyrate and 1-butanol in nonaqueous systems was catalyzed by porcine pancreatic lipase which was immobilized on cross-linked polystyrene.Organic solvents,substrate concentration,contents of water and other parameters which affect the immobilized enzyme activity were studied.Lipase immobilized on hydrophobic crosslinked polystyrene can reduce its diffusion limit in the reaction.It was found that the activity of immobilized lipase in organic systems was two times as high as that of free lipase.

  2. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C.

    Science.gov (United States)

    Wang, Liang; Ou, Mark S; Nieves, Ismael; Erickson, John E; Vermerris, Wilfred; Ingram, L O; Shanmugam, K T

    2015-12-01

    In this study, a moderate thermophile Clostridium thermobutyricum is shown to ferment the sugars in sweet sorghum juice treated with invertase and supplemented with tryptone (10 g L(-1)) and yeast extract (10 g L(-1)) at 50°C to 44 g L(-1) butyrate at a calculated highest volumetric productivity of 1.45 g L(-1)h(-1) (molar butyrate yield of 0.85 based on sugars fermented). This volumetric productivity is among the highest reported for batch fermentations. Sugars from acid and enzyme-treated sweet sorghum bagasse were also fermented to butyrate by this organism with a molar yield of 0.81 (based on the amount of cellulose and hemicellulose). By combining the results from juice and bagasse, the calculated yield of butyric acid is approximately 90 kg per tonne of fresh sweet sorghum stalk. This study demonstrates that C. thermobutyricum can be an effective microbial biocatalyst for production of bio-based butyrate from renewable feedstocks at 50°C.

  3. Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. on biosynthesis butyric acid efficiency in Clostridium tyrobutyricum.

    Science.gov (United States)

    Zhou, Xiang; Wang, Shu-Yang; Lu, Xi-Hong; Liang, Jian-Ping

    2014-06-01

    Clostridium tyrobutyricum is well documented as a fermentation strain for the production of butyric acid. In this work, using high-energy carbon heavy ion irradiated C. tyrobutyricum, then butyric acid fermentation using glucose or alkali and acid pretreatments of Eucommia ulmoides Oliv. as a carbon source was carried out. Initially, the modes at pH 5.7-6.5 and 37°C were compared using a model medium containing glucose as a carbon source. When the 72gL(-1) glucose concentration was found to be the highest yield, the maximum butyric acid production from glucose increased significantly, from 24gL(-1) for the wild type strains to 37gL(-1) for the strain irradiated at 126AMeV and a dose of 35Gy and a 10(7)ions/pulse. By feeding 100gL(-1) acid pretreatments of E. ulmoides Oliv. into the fermentations, butyrate yields (5.8gL(-1)) and butyrate/acetate (B/A) ratio (4.32) were achieved.

  4. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  5. Sodium butyrate enemas in the treatment of acute radiation-induced proctitis in patients with prostate cancer and the impact on late proctitis. A prospective evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Andrea; Herrmann, Markus K.A.; Kertesz, Tereza; Christiansen, Hans; Hermann, Robert M.; Hess, Clemens F. [University Hospital, Goettingen (Germany). Department of Radiotherapy and Radiooncology; Pradier, Olivier [University Hospital, Brest (France). Department of Radiotherapy and Radiooncology; Schmidberger, Heinz [University Hospital, Mainz (Germany). Department of Radiotherapy and Radiooncology

    2008-12-15

    To evaluate prospectively the effect of sodium butyrate enemas on the treatment of acute and the potential influence on late radiation-induced proctitis. 31 patients had been treated with sodium butyrate enemas for radiation-induced acute grade II proctitis which had developed after 40 Gy in median. During irradiation the toxicity was evaluated weekly by the Common Toxicity Criteria (CTC) and subsequently yearly by the RTOG (Radiation Therapy Oncology Group) and LENT-SOMA scale. 23 of 31 patients (74%) experienced a decrease of CTC grade within 8 days on median. A statistical significant difference between the incidence and the severity of proctitis before start of treatment with sodium butyrate enemas compared to 14 days later and compared to the end of irradiation treatment course, respectively, was found. The median follow-up was 50 months. Twenty patients were recorded as suffering from no late proctitis symptom. Eleven patients suffered from grade I and 2 of these patients from grade II toxicity, too. No correlation was seen between the efficacy of butyrate enemas on acute proctitis and prevention or development of late toxicity, respectively. Sodium butyrate enemas are effective in the treatment of acute radiation-induced proctitis in patients with prostate cancer but have no impact on the incidence and severity of late proctitis. (orig.)

  6. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...... valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future....

  7. Ultrafast transient optical studies of charge pair generation and recombination in poly-3-hexylthiophene(P3ht):[6,6]phenyl C61 butyric methyl acid ester (PCBM) blend films.

    Science.gov (United States)

    Kirkpatrick, James; Keivanidis, Panagiotis E; Bruno, Annalisa; Ma, Fei; Haque, Saif A; Yarstev, Arkady; Sundstrom, Villy; Nelson, Jenny

    2011-12-29

    Charge generation and recombination are studied in blend films of poly-3-hexylthiophene (P3HT) and [6,6']phenyl C61 butyric acid methyl ester (PCBM) using ultrafast transient absorption spectroscopy. We find that the charge generation yield depends upon both blend film composition and thermal annealing. The data suggest that recombination occurs over a wide range of time scales and that, in the least favorable cases, the fastest charge recombination occurs on a time scale similar to exciton diffusion. The results are explained using a simple model that incorporates the effect of P3HT domain size on exciton diffusion and uses empirical models of recombination kinetics. We propose our method as a route to interpretation of spectroscopic data where different processes occur on similar time scales.

  8. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate...... filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria...

  9. Marine mesocosm bacterial colonisation of volcanic ash

    Science.gov (United States)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  10. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases

    Directory of Open Access Journals (Sweden)

    Vorhölter Frank-Jörg

    2012-10-01

    Full Text Available Abstract Background Efficient perception of attacking pathogens is essential for plants. Plant defense is evoked by molecules termed elicitors. Endogenous elicitors or damage-associated molecular patterns (DAMPs originate from plant materials upon injury or pathogen activity. While there are comparably well-characterized examples for DAMPs, often oligogalacturonides (OGAs, generated by the activity of fungal pathogens, endogenous elicitors evoked by bacterial pathogens have been rarely described. In particular, the signal perception and transduction processes involved in DAMP generation are poorly characterized. Results A mutant strain of the phytopathogenic bacterium Xanthomonas campestris pv. campestris deficient in exbD2, which encodes a component of its unusual elaborate TonB system, had impaired pectate lyase activity and caused no visible symptoms for defense on the non-host plant pepper (Capsicum annuum. A co-incubation of X. campestris pv. campestris with isolated cell wall material from C. annuum led to the release of compounds which induced an oxidative burst in cell suspension cultures of the non-host plant. Lipopolysaccharides and proteins were ruled out as elicitors by polymyxin B and heat treatment, respectively. After hydrolysis with trifluoroacetic acid and subsequent HPAE chromatography, the elicitor preparation contained galacturonic acid, the monosaccharide constituent of pectate. OGAs were isolated from this crude elicitor preparation by HPAEC and tested for their biological activity. While small OGAs were unable to induce an oxidative burst, the elicitor activity in cell suspension cultures of the non-host plants tobacco and pepper increased with the degree of polymerization (DP. Maximal elicitor activity was observed for DPs exceeding 8. In contrast to the X. campestris pv. campestris wild type B100, the exbD2 mutant was unable to generate elicitor activity from plant cell wall material or from pectin. Conclusions To our

  11. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qianqian [Department of Polymer Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Hangzhou 310027 (China); Li Yang, E-mail: liyang@zju.edu.cn [Department of Polymer Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Hangzhou 310027 (China); Yang Mujie [Department of Polymer Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Hangzhou 310027 (China)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer Polyanline/poly(vinyl butyral) nanofibers are prepared by electrospinning. Black-Right-Pointing-Pointer Nanofiber-based SAW humidity sensor show high sensitivity and ultrafast response. Black-Right-Pointing-Pointer The SAW sensor can detect very low humidity. - Abstract: Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core-sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of {approx}75 kHz/%RH from 20 to 90%RH, ultrafast response (1 s and 2 s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers.

  12. Hepatic metabolism of anaesthetized growing pigs during acute portal infusion of volatile fatty acids and hydroxy-methyl butyrate

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Larsen, Uffe Krogh; Bjerre-Harpøth, Vibeke

    2016-01-01

    ABSTRACT: The objective of the experiment was to study hepatic metabolism during infusion of volatile fatty acids (VFA) differing in amounts and composition or infusion of HMB. Three fasted (20 h) pigs (mean BW ± SE; 58 kg ± 1) were fitted with indwelling catheters in the portal vein, hepatic vein...... intervals and analyzed for contents of paraamino- hippuric acid (PAH; blood flow marker) and plasma metabolites. Total VFA was infused at a rate of 0 mmol/h (background; Inf1, Inf6), 60 mmol/h (Inf2) or 120 mmol/h (Inf3 to Inf5). Infused VFA contained 70, 20, and 5% of acetate, propionate, and butyrate......, respectively, for Inf2 and Inf3, or 65%, 20%, and 10% of acetate, propionate, and butyrate, respectively, for Inf4 and Inf5. In addition, for Inf5, HMB was infused at 2 mmol/h. Statistical analysis included fixed effects of infusion and interaction between infusion and samplings within infusion while...

  13. Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, KiSeob; Lee, JunYoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Park, JeaHeel; Ha, KiRyong [Keimyung University, Seoul (Korea, Republic of)

    2014-08-15

    In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 .deg. C to 7.1% and 48 nW at 70 .deg. C, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

  14. Síntese enzimática de butirato de isoamila empregando lipases microbianas comerciais Enzymatic synthesis isoamyl butyrate employing commercial microbial lipases

    Directory of Open Access Journals (Sweden)

    Vitor Cardoso Aragão

    2009-01-01

    Full Text Available Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-1 of Lipozyme TL IM, 30 ºC, 180 rpm of agitation, isoamyl alcohol to butyric acid molar ratio of 1:1 and acid substrate concentration of 0.06 M.

  15. Effect of butyrate on aromatase cytochrome P450 levels in HT29, DLD-1 and LoVo colon cancer cells.

    Science.gov (United States)

    Rawłuszko, Agnieszka Anna; Sławek, Sylwia; Gollogly, Armin; Szkudelska, Katarzyna; Jagodziński, Paweł Piotr

    2012-03-01

    Epidemiological studies suggest that colonic production of butyrate and estrogen may be involved in human susceptibility to colorectal cancer (CRC). Estrone (E1) can be produced by the aromatase pathway during the conversion of androstenedione (A) to E1. Therefore, we studied the effect of sodium butyrate (NaBu) on the CYP19A1 transcript and protein levels and on the conversion of A to E1 in HT29, DLD-1 and LoVo CRC cells. We found that NaBu significantly downregulated CYP19A1 transcript and protein levels, a phenomenon that was associated with reduced conversion of A to E1 in HT29, DLD-1 and LoVo cells. Our studies demonstrated that, although butyrate exhibited a protective role in CRC development, this compound may reduce aromatase activity and the production of E1 in colon cancer cells.

  16. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence.

    Science.gov (United States)

    Park, Duck Hwan; Mirabella, Rossana; Bronstein, Philip A; Preston, Gail M; Haring, Michel A; Lim, Chun Keun; Collmer, Alan; Schuurink, Robert C

    2010-10-01

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.

  17. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria....

  18. Effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823

    Institute of Scientific and Technical Information of China (English)

    Song-Lin Shi; Yong-Ye Wang; Ying Liang; Qi-Fu Li

    2006-01-01

    AIM: To investigate the effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823.METHODS: Effects of tachyplesin and n-sodium butyrate on proliferation of BGC-823 cells were determined with trypan blue dye exclusion test and HE staining. Effects of tachyplesin and n-sodium butyrate on cell cycle were detected by flow cytometry. Protein levels of c-erbB-2, c-myc, p53 and p16 were examined by immunocytochemistry.RESULTS: The inhibiting effects were similar after 2.0 mg/L tachyplesin and 2.0 mmol/L n-sodium butyrate treatment, the inhibitory rate of cellular growth was 62.66% and 60.19% respectively, and the respective maximum mitotic index was decreased by 49.35% and 51.69% respectively. Tachyplesin and n-sodium butyrate treatment could markedly increase the proportion of cells at G0/G1 phase and decrease the proportion at S phase.The expression levels of oncogene c-erbB-2, c-myc, and mtp53 proteins were down-regulated while the expression level of tumor suppressor gene p16 protein was up-regulated after the treatment with tachyplesin or n-sodium butyrate. The effects of 1.0 mg/L tachyplesin in combination with 1.0 mmol/L n-sodium butyrate were obviously superior to their individual treatment in changing cell cycle distribution and expression of c-erbB-2,c-myc, mtp53 and p16 protein. The inhibitory rate of cellular growth of BGC-823 cells after combination treatment was 62.29% and the maximum mitotic index was decreased by 51.95%.CONCLUSION: Tachyplesin as a differentiation inducer of tumor cells has similar effects as n-sodium butyrate on proliferation of tumor cells, expression of correlative oncogene and tumor suppressor gene. It also has a synergistic effect on differentiation of tumor cells.

  19. A probe on the intermolecular forces in diisopropyl ether-n-butyric acid mixture by dielectric, FTIR studies and quantum chemical calculations.

    Science.gov (United States)

    Arivazhagan, G; Shanmugam, R; Elangovan, A

    2013-03-15

    The results of FTIR spectral measurement on equimolar diisopropyl ether-butyric acid binary mixture and quantum chemical calculations on the complex molecule have been presented. Dielectric studies have been carried out on the binary mixture over the entire composition range and at four different temperatures 303 K, 308 K, 313 K and 318 K. n-Butyric acid seems to prefer less polar ether to interact with it. It appears that the usual interpretation of variation of static dielectric constant and positive deviation of excess permittivity from ideal mixture behavior needs to be relooked.

  20. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  1. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  2. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  3. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  4. Bioinformatic Comparison of Bacterial Secretomes

    Institute of Scientific and Technical Information of China (English)

    Catharine Song; Aseem Kumar; Mazen Saleh

    2009-01-01

    The rapid increasing number of completed bacterial genomes provides a good op-portunity to compare their proteomes. This study was undertaken to specifically compare and contrast their secretomes-the fraction of the proteome with pre-dicted N-terminal signal sequences, both type Ⅰ and type Ⅱ. A total of 176 theoreti-cal bacterial proteomes were examined using the ExProt program. Compared with the Gram-positives, the Gram-negative bacteria were found, on average, to con-tain a larger number of potential Sec-dependent sequences. In the Gram-negative bacteria but not in the others, there was a positive correlation between proteome size and secretome size, while there was no correlation between secretome size and pathogenicity. Within the Gram-negative bacteria, intracellular pathogens were found to have the smallest secretomes. However, the secretomes of certain bacte-ria did not fit into the observed pattern. Specifically, the secretome of Borrelia burgdoferi has an unusually large number of putative lipoproteins, and the signal peptides of mycoplasmas show closer sequence similarity to those of the Gram-negative bacteria. Our analysis also suggests that even for a theoretical minimal genome of 300 open reading frames, a fraction of this gene pool (up to a maximum of 20%) may code for proteins with Sec-dependent signal sequences.

  5. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing....... These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host....

  6. Volatiles in Inter-Specific Bacterial Interactions.

    Science.gov (United States)

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities.

  7. [Diagnosis of bacterial vaginosis].

    Science.gov (United States)

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana

    2013-01-01

    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  8. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    Science.gov (United States)

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  9. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier

    Science.gov (United States)

    Zhou, Da; Pan, Qin; Xin, Feng-Zhi; Zhang, Rui-Nan; He, Chong-Xin; Chen, Guang-Yu; Liu, Chang; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-01-01

    AIM To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. METHODS Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation- or metabolism-associated genes were quantified by real-time PCR. RESULTS NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-α, IL-1, IL-2, IL-6 and IFN-γ in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. CONCLUSION NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD. PMID:28104981

  10. Body composition of piglets from sows fed the leucine metabolite β-hydroxy β-methyl butyrate in late gestation

    DEFF Research Database (Denmark)

    Flummer, Christine; Kristensen, Niels Bastian; Theil, Peter Kappel

    2012-01-01

    Supplementation of the leucine metabolite β-hydroxy β-methyl butyrate (HMB) to sows during late gestation or lactation has been shown to improve piglet health, survival, and growth. This study aimed to investigate long-term effects of HMB supplementation to late-gestating sows on body...... characteristics of piglets at weaning. Sows were fed a standard lactation diet from day –15 relative to parturition and throughout the experiment and a diet supplemented with (HMB; n = 2) or without [control (CON); n = 3] 15 mg Ca(HMB)2/kg BW in morning meals from day –10 until parturition. Fifty-six suckling...... piglets were weighed at day 28 and water content was assessed by deuterium oxide dilution. Piglets were euthanized, organ weights and lengths were recorded, the empty carcass was analyzed for dry matter, ash, and crude protein content, and body fat content was calculated. Two litters were treated...

  11. Study of liquid-solid catalytic reaction of epichlorohydrin with sodium butyrate in the presence of tetrabutylammonium bromide

    Science.gov (United States)

    Huang, Qiang; Meng, Qingyi; Ban, Chunlan; Zhang, Rui; Gao, Yingyu

    2016-08-01

    The liquid-solid catalytic reaction of epichlorohydrin and sodium butyrate with tetrabutylammonium bromide as a phase transfer catalyst was studied in this paper. The shrinking core model was applied. The analysis of the reaction based on the kinetic model showed a reaction-controlled regime at temperatures varying from 90 to 100°C. The exterior diffusivity was removed between 300 and 400 rpm. The internal diffusivity was removed when the particle size was 2 × 10-4 m. Reaction rate constants were calculated at different temperatures. The correlation was obtained when the proposed kinetic model was applied to all the experimental data for predictive evaluations and the activation energy was 37.01 kJ mol-1.

  12. Photovoltaic Properties of Poly (3-Hexylthiophene: [6, 6]-Phenyl C61-Butyric Acid 3-Ethylthiophene Thin Films

    Directory of Open Access Journals (Sweden)

    B.M. Omer

    2013-07-01

    Full Text Available We fabricated and studied the electrical and photovoltaic properties of organic solar cell based on poly (3-hexylthiophene (P3HT as an electron donor blended with the acceptor [6, 6]-Phenyl C61-Butyric Acid 3-Ethylthiophene Ester (modified fullerene. The active layer composed of (3:1, w/w mixture of P3HT and the modified fullerene was sandwiched between indium tin oxide (ITO and aluminum (Al. The ideality factor n and barrier hight b values were determined from the dark current density-voltage characteristics and found as 2.45 and 0.78 eV, respectively. The device shows photovoltaic behavior with an open circuit voltage of 400 mV, short circuit current of 22.9 A/cm2 and fill factor 0.32 under 2.8 mW/cm2 light intensity.

  13. Dynamic Mechanical Properties of Aramid Fabrics Impregnated with Carbon Nanotube/Poly (Vinyl Butyral/Ethanol Solution

    Directory of Open Access Journals (Sweden)

    V. Obradović

    2013-09-01

    Full Text Available In this study six samples of polyurethane/p-aramid multiaxial fabric forms (Colon fabrics were coated with 10 wt.% poly (vinyl butyral (PVB/ethanol solution with the addition of multiwalled carbon nanotubes (MWCNT. The solution was impregnated on both sides of each of the fabrics. All composite samples consisted of four layers of the impregnated fabrics. The MWCNT/PVB content was 0, 0.1 and 1 wt.%. The three samples of the fabrics with different MWCNT/PVB content were coated with γ-aminopropyltriethoxysilane (AMEO silane/ethanol solution due to the surface modification. The mechanical properties of the prepared composite samples were studied by dynamic mechanical analysis (DMA. The 60% increase in storage modulus was achieved by addition of MWCNT and impregnation of aramid fabrics with AMEO silane. The pristine multiwalled carbon nanotubes (MWCNT were introduced in order to enhance additionally the mechanical properties of the materials for ballistic protection.

  14. Novel potentiometry immunoassay with amplified sensitivity for diphtheria antigen based on Nafion, colloidal Ag and polyvinyl butyral as matrixes.

    Science.gov (United States)

    Tang, Dianping; Yuan, Ruo; Chai, Yaqin; Zhang, Linyan; Zhong, Xia; Dai, Jianyuan; Liu, Yan

    2004-11-30

    A novel potentiometry immunoassay with amplified sensitivity has been developed for the detection of diphtheria antigen (Diph) via immobilizing diphtheria antibody (anti-Diph) on a platinum electrode based on Nafion, colloidal Ag (Ag), and polyvinyl butyral (PVB) as matrixes in this study. The modified procedure was further characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The influence and factors influencing the performance of resulting immunosensor were studied in detail. The resulting immunosensor exhibited sigmoid curve with log Diph concentrations, high sensitivity (51.4 mV/decade), wide linear range from 8 to 800 ng ml(-1) with a detection limit of 1.5 ng ml(-1), rapid potentiometric response (6 months). Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme-linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting diphtheria antigen in the clinical diagnosis.

  15. Dielectric Properties of Polyvinyl Alcohol, Poly(methyl Methacrylate), Polyvinyl Butyral Resin and Polyimide at Low Temperatures

    Science.gov (United States)

    Tuncer, Enis; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.

    2008-03-01

    Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. For this reason dielectric properties of electrical insulation materials are needed for low temperature power applications. In this work we report the dielectric properties of four polymers: polyvinyl alcohol (PVA), poly(methyl methacrylate) (PMMA), polyvinyl butyral resin (PVB), and polyimide (PI-Kapton®). The dielectric measurements are performed with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 45 K to 350 K. The dielectric breakdown characteristics of the polymers are measured in a liquid nitrogen bath at atmospheric pressure. It is observed that PI and PMMA dissolved in toluene have the lowest dielectric losses for temperatures lower than 100 K. PVB and PI have the smallest spread in their breakdown strength data.

  16. DIELECTRIC PROPERTIES OF POLYVINYL ALCOHOL, POLY(METHYL METHACRYLATE), POLYVINYL BUTYRAL RESIN AND POLYIMIDE AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Tuncer, Enis [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL

    2008-01-01

    Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. For this reason dielectric properties of electrical insulation materials are needed for low temperature power applications. In this work we report the dielectric properties of four polymers: polyvinyl alcohol (PVA), poly(methyl methacrylate) (PMMA), polyvinyl butyral resin (PVB), and polyimide (PI--Kapton\\textregistered). The dielectric measurements are performed with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 45K to 350K. The dielectric breakdown characteristics of the polymers are measured in a liquid nitrogen bath at atmospheric pressure. It is observed that PI and \\pmma\\ dissolved in toluene have the lowest dielectric losses for temperatures lower than $100\\ \\kelvin$. \\Blx\\ and PI have the smallest spread in their breakdown strength data.

  17. High Sensitive Sensor Fabricated by Reduced Graphene Oxide/Polyvinyl Butyral Nanofibers for Detecting Cu (II) in Water.

    Science.gov (United States)

    Ding, Rui; Luo, Zhimin; Ma, Xiuling; Fan, Xiaoping; Xue, Liqun; Lin, Xiuzhu; Chen, Sheng

    2015-01-01

    Graphene oxide (GO)/polyvinyl butyral (PVB) nanofibers were prepared by a simple electrospinning technique with PVB as matrix and GO as a functional nanomaterial. GO/PVB nanofibers on glassy carbon electrode (GCE) were reduced through electrochemical method to form reduced graphene oxide (RGO)/PVB nanofibers. The morphology and structure of GO/PVB nanofiber were studied by scanning election microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR). RGO/PVB modified GCE was used for fabricating an electrochemical sensor for detecting Cu (II) in water. The analysis results showed that RGO/PVB modified GCE had good analytical results with the linear range of 0.06-2.2 μM, detection limit of 4.10 nM (S/N = 3), and the sensitivity of 103.51 μA·μM(-1)·cm(-2).

  18. Thermal decomposition of PVB (polyvinyl butyral) binder in the matrix and electrolyte of molten carbonate fuel cells

    Science.gov (United States)

    Seo, J. J.; Kuk, S. T.; Kim, K.

    In order to determine the burnt-out condition of polyvinyl butyral as a binder in the fuel cell, thermal gravimetric analysis, gas chromatography and gas chromatography/mass spectrometry are used to analyse decomposed products during the thermal decomposition process in the matrix-green sheet and electrolyte-green sheet. Most of thermal degradation takes place under 400 °C, but degradation-resistant structures still remain up to 700 °C. Adding water vapour to the atmosphere gas could be one method to promote thermal degradation. Butyraldehyde and butene peaks among the released gases show characteristic decomposition behaviour. Thus, the butyraldehyde and butene peaks can be used as an index to check the extent of decomposition in the thermal decomposition process.

  19. High Sensitive Sensor Fabricated by Reduced Graphene Oxide/Polyvinyl Butyral Nanofibers for Detecting Cu (II in Water

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2015-01-01

    Full Text Available Graphene oxide (GO/polyvinyl butyral (PVB nanofibers were prepared by a simple electrospinning technique with PVB as matrix and GO as a functional nanomaterial. GO/PVB nanofibers on glassy carbon electrode (GCE were reduced through electrochemical method to form reduced graphene oxide (RGO/PVB nanofibers. The morphology and structure of GO/PVB nanofiber were studied by scanning election microscopy (SEM, transmission electron microscopy (TEM, and Fourier transform infrared (FTIR. RGO/PVB modified GCE was used for fabricating an electrochemical sensor for detecting Cu (II in water. The analysis results showed that RGO/PVB modified GCE had good analytical results with the linear range of 0.06–2.2 μM, detection limit of 4.10 nM (S/N=3, and the sensitivity of 103.51 μA·μM−1·cm−2.

  20. Colorful Hydrophobic Poly(Vinyl Butyral)/Cationic Dye Fibrous Membranes via a Colored Solution Electrospinning Process

    Science.gov (United States)

    Yan, Xu; You, Ming-Hao; Lou, Tao; Yu, Miao; Zhang, Jun-Cheng; Gong, Mao-Gang; Lv, Fu-Yan; Huang, Yuan-Yuan; Long, Yun-Ze

    2016-12-01

    Colorful nanofibrous membranes have attracted much attention for their visual varieties and various functionalities. In this article, a colored solution electrospinning process was used to fabricate colorful hydrophobic poly(vinyl butyral) (PVB)/cationic dye nanofibrous membranes (NFMs) successfully. The color and morphology of these as-spun nanofibrous membranes have been analyzed by colorimetry, spectroscopy, and scanning electron microscopy (SEM). It is shown that the as-spun colorful PVB-based membranes exhibit excellent level-dyeing property and color stability. Furthermore, the doping of cationic dye and the increase of dye concentration can decrease the diameter of the as-spun colored fibers, which results in better level-dyeing property and higher water contact angle more than 140°. The stained PVB fibrous membranes with excellent level-dyeing property and hydrophobicity are promising in some applications such as textiles, wallpapers, and anticorrosive coating/painting.

  1. The changes in telomerase activity and telomere length in HeLa cells undergoing apop- tosis induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The changes in telomerase activity and telomere length during apoptosis in HeLa cells as induced by sodium butyrate (SB) have been studied. After a 48 h SB treatment, HeLa cells demonstrated characteristic apoptotic hallmarks including chromatin condensation, formation of apoptotic bodies and DNA Laddering which were caused by the cleavage and degradation of DNA between nucleosomes. There were no significant changes in telomerase activity of apoptotic cells, while the telomere length shortened markedly. In the meanwhile, cells became more susceptible to apoptotic stimuli and telomere became more vulnerable to degradation after telomerase activity was inhibited. All the results suggest that the apoptosis induced by SB is closely related to telomere shortening, while telomerase enhances resistance of HeLa cells to apoptotic stimuli by protecting telomere.

  2. Study on the Effects of Increasing Production Rate of Ruminal Acetate and Butyrate on Their Absorption and Passage in Alimentary Tract of Sheep

    Institute of Scientific and Technical Information of China (English)

    DU Rui-ping; LU De-xun

    2011-01-01

    Six Inner Mongolian semifine-wool wethers (1.5 years old,29-31 kg BW) fitted with a ruminal and a duodenum cannula were used to study the effects of increasing production rate of ruminal acetate and butyrate on their absorption and passage in alimentary tract by simulating continuous feeding and pulsecontinuous infusion technology.The sheep were divided into two groups randomly and fed the same basal diet,one group was for acetate measuring and the other group was for butyrate measuring.Diet was formulated according to maintain requirement of Inner Mongolian sheep and consisted of hay 69.64%,corn 18.11%,soybean meal 15.57%,wheat bran 5.57%,and premix 1.11%,the diet contained DM 92.34%,CP9.74%,ME 8.47 MJ/kg,Ca 0.31%,P 0.21%(dry matter basis).Three infusion levels of acetate and butyrate were designed to reach 2.5,3.0 and 4.0 multiple on the basis of basal production rate.The rumen and duodenum fluid samples were collected for measuring pH,Co-EDTA,acetate and butyrate concentration.

  3. Effects of β-hydroxy β-methyl butyrate supplementation to sows in late gestation on absorption and hepatic metabolism of glucose and amino acids during transition

    DEFF Research Database (Denmark)

    Flummer, Christine; Lyby, H; Storli, K S;

    2012-01-01

    A multicatheter sow model was established to study the effects of dietary β-hydroxy β-methyl butyrate (HMB) supplementation on net portal flux (NPF) and net hepatic flux (NHF) of HMB, glucose, and the AA Ala, Gly, Ile, Leu, Phe, Tyr, and Val. Eight second parity sows were fitted with permanent in...

  4. First European Report of Social Wasps Trapped in Response to Acetic acid, Isobutanol, 2-Methyl-2-propanol, and Heptyl butyrate in Tests Conducted in Hungary

    Science.gov (United States)

    Five species of social wasps were captured in trapping tests in Hungary that evaluated the attractiveness of acetic acid, isobutanol, 2-methyl-2-propanol, and heptyl butyrate to social wasps. Both Vespula vulgaris (L.) and Vespula germanica (Fabr.), were captured in traps baited with isobutanol, t...

  5. A model experiment in the study of cocaine base smoking. Isolation of methyl 4-(3-pyridyl) butyrate from cocaine pyrolysate.

    Science.gov (United States)

    Novak, M; Salemink, C A

    1984-01-01

    Cocaine base was pyrolysed at 600 degrees C in a nitrogen atmosphere and methyl 4-(3-pyridyl) butyrate was isolated as one of the main components from the cocaine pyrolysate. The structure of the compound was determined by spectral means as well as by comparison with a synthetic sample.

  6. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    Science.gov (United States)

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid.

  7. Poly-(Epsilon-caprolactone) (PCL) and poly(hydroxy-butyrate) (PHB) blends containing seaweed fibers: Morphology and thermal-mechanical properties

    Science.gov (United States)

    Massive quantities of marine seaweed, Ulva armoricana are washed onto shores of many European countries and accumulates as waste. Attempts were made to utilize this renewable resource in hybrid composites by blending the algal biomass with biodegradable polymers such as poly(hydroxy-butyrate) and po...

  8. Origin of the enhanced performance in poly(3-hexylthiophene) : [6,6]-phenyl C-61-butyric acid methyl ester solar cells upon slow drying of the active layer

    NARCIS (Netherlands)

    Mihailetchi, Valentin D.; Xie, Hangxing; Boer, Bert de; Popescu, Lacramioara M.; Hummelen, Jan C.; Blom, Paul W.M.; Koster, L. Jan Anton

    2006-01-01

    The origin of the enhanced performance of bulk heterojunction solar cells based on slowly dried films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C-61-butyric acid methyl ester is investigated, combining charge transport measurements with numerical device simulations. Slow drying leads to a 33

  9. Pyridoxine Dependent Seizures-Report Of A Case And Brief Review Of Literature

    OpenAIRE

    2002-01-01

    Pyridoxine-dependent seizure is a rare autosornal recessive disorder that usually presents as neonatal intractable seizures. This syndrome is due to an inborn abnormality of the enzyme glutamic acid decarboxylase, which results in reduced pyridoxine-dependent synthesis of the inhibitory neurotransmitter gamma amino butyric acid. We report a girl child who had seizures on the second post natal day which was controlled with oral pyridoxine. She had status epilepticus twice when the drug was ...

  10. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mátis Gábor

    2013-01-01

    Full Text Available Abstract Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus

  11. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  12. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  13. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    Full Text Available BACKGROUND: The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. CONCLUSIONS/SIGNIFICANCE: These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with

  14. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  15. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  16. BACTERIAL DESEASES IN SEA FISH

    Directory of Open Access Journals (Sweden)

    Ivančica Strunjak-Perović

    1997-10-01

    Full Text Available With development of the fish culturing in the sea, the interest in their health also increased. The reason for this are diseases or rather mortality that occur in such controlled cultures and cause great economic losses. By growing large quantities of fish in rather small species, natural conditions are changed, so fish is more sensitive and prone to infection agents (viruses, bacteria, parasites. Besides, a large fish density in the cultural process accelerates spreading if the diseases, but also enables a better perception of them. In wild populations sick specimen very quickly become predator’s prey, witch makes it difficult to note any pathological changes in such fish. There are lots of articles on viral, bacterial and parasitic diseases nowdays, but this work deals exclusively with bacterial deseases that occur in the controlled sea cultures (vibriosis, furunculosis, pastherelosis, nocardiosis, mycobaceriosis, edwardsielosis, yersiniosis, deseases caused by bacteria of genera Flexibacter, Pseudomonas, Aeromonas, Streptococus and bacteria nephryithis. Yet, the knowledge of these deseases vary, depending on wether a fish species is being cultured for a longer period of time or is only being introduced in the controlled culture.

  17. HDAC inhibitor sodium butyrate sensitizes E1A+Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of γH2AX foci.

    Science.gov (United States)

    Abramova, Maria V; Svetlikova, Svetlana B; Kukushkin, Alexander N; Aksenov, Nikolai D; Pospelova, Tatiana V; Pospelov, Valery A

    2011-12-15

    HDAC inhibitors (HDACi) suppress the growth of tumor cells due to induction of cell cycle arrest, senescence or apoptosis. Recent data demonstrate that HDACi can interfere with DNA Damage Response (DDR) thereby sensitizing the cells to DNA damaging agents. Here, we show that HDACi sodium butyrate (NaBut) potentiates the formation of γH2AX foci predominantly in S-phase E1A+Ras cells. Accumulation of γH2AX foci sensitizes the cells toward such DNA damaging agents as irradiation (IR) and adriamycin. In fact, NaBut potentiates the persistence of γH2AX foci induced by genotoxic agents. The synergizing effects depend on DNA damaging factors and on the order of NaBut treatment. Indeed, NaBut treatment for 24 h leads to an accumulation of G 1-phase cells and a lack of S-phase cells, therefore, adriamycin, a powerful S-phase-specific inhibitor, when added to NaBut-treated cells, is unable to substantially add γH2AX foci. In contrast, IR produces both single- and double-strand DNA breaks at any stage of the cell cycle and was shown to increase γH2AX foci in NaBut-treated cells. Further, a lifetime of IR-induced γH2AX foci depends on the subsequent presence of HDACi. Correspondingly, NaBut withdrawal leads to the extinction of IR-induced γH2AX foci. This necessitates HDACi to hold the IR-induced γH2AX foci unrepaired. However, the IR-induced γH2AX foci persist after long-term NaBut treatment (72 h) even after washing the drug. Thus, although signaling pathways regulating H2AX phosphorylation in NaBut-treated cells remain to be investigated, the obtained results show that NaBut potentiates effects of DNA damaging agents by facilitating formation and persistence of γH2AX foci.

  18. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  19. Preparation and Catalytic Activity of SO42-/TiO-La2O3 in Synthesis of Butyl Butyrate

    Institute of Scientific and Technical Information of China (English)

    YANG Shui-jin; LUO Yi; BAI Ai-min; HU Zhen-zhu; CHEN Fang

    2004-01-01

    Butyl butyrate is a very important compound, which is transparent liquid and has the pear,apple flavor. Natural exist is in the fruit, such as apple, pear, banana, grape and strawberry, etc.Primarily used for to prepare the edible spice and is also widely used in industrial intermediate product, solvent and synthetic perfumery. Until now, there are many methods to synthesize it.Conventionally H2SO4 was reported, but it causes many problems, such as the erosion of equipment,easily causes the vice-reaction, difficulty for after-treatment, environment pollution etc. A new environmentally friendly catalyst, SO42-/TiO2-La2O3 was prepared. And catalytic activity of catalyst in esterification of n-butanoic acid and n-butyl alcohol with SO42-/TiO2-La2O3 as catalyst has been no report up to now. Therefore, studying on the synthetic catalyst has theoretical and practical significances. The catalytic activity of catalyst in esterification of n-butanoic acid and n-butyl alcohol was measured.In this paper, we fast reported the preparation of SO42-/riO2-La2O3 and discussed the factors influencing the synthesis catalyst. The catalyst rare earth solid superacid SO42-/TiO2-La2O3 was The precipitate was filtered and washed thoroughly with distilled water until chloride ions were free.furnace at 480 ℃ for 3 h, and finally stored in a desiccator until use.The factors influencing the synthesis were discussed and the best conditions were found out. The experiment indicated that this catalyst has the following advantage. The amount of catalyst was little and getting high yield, its product has a good quanlity and is favour of reducing erosion of equipment, avoiding environment pollution. The optimum conditions are: molar ratio of n-butanoic acid to n-butyl alcohol was 1:1.5, the quantity of catalyst was equal to 1.5% of feed stocks, the reaction temperature was 93-114 ℃, and the reaction time was 1.0 h. Rare earth solid superacid SO42-/TiO2-La2O3 is an excellent catalyst for

  20. Efecto del consumo de la fibra dietética en la expresión cuantitativa del receptor de butirato GPR43 en colon de ratas Effect of dietary fiber in the quantitative expression of butyrate receptor GPR43 in rats colon

    Directory of Open Access Journals (Sweden)

    L. Y. Corte Osorio

    2011-10-01

    Full Text Available Introducción: Los ácidos grasos de cadena corta (AGCC acetato, propionato y butirato, son productos de fermentación de la fibra dietética (FD en el intestino grueso. Recientemente, el butirato ha sido estudiado ya que es considerado indispensable para el mantenimiento de las funciones del colon y por su relación con la protección del cáncer colorrectal. Esto se atribuye a la capacidad de butirato de regular la expresión génica por mecanismos como la inhibición de la enzima histona deacetilasa. Se ha reportado que el receptor de AGCC, GPR43 está involucrado en el proceso de transducción de señales intracelulares una vez que se unen a ligandos como butirato para generar los efectos fisiológicos del butirato en los colonocitos. Objetivo: Determinar si el consumo de FD de nopal (Opuntia ficus I tiene influencia directa sobre la expresión cuantitativa del receptor específico de butirato GPR43. Métodos: Ratas adultas Wistar se sometieron a cuatro diferentes dietas variando el contenido de FD en 0, 5, 15 y 25% de FD denopal, respectivamente. Resultados y discusión: Los resultados mostraron un aumento significativo de la expresión relativa de GPR43 (93,1% cuando se suministró a las ratas una dieta conteniendo 5% de FD de nopal, usando como gen de referencia β-actina. Los resultados de esta investigación aportarán nuevos datos a los estudios que determinan la relación de la dieta con la salud intestinal, con el fin de ampliar el conocimiento sobre los efectos del ácido butírico en las funciones colónicas.Introduction: Short chain fatty acids (SCFA acetate, propionate and butyrate are the major anions produced by the bacterial fermentation of dietary fiber (DF in colon. Recently, butyrate has been recently studied because is important to maintain colonic functions and because it has been related with a protective effect in colorectal cancer, which is mainly, explained by its potential to regulate gene expression by inhibiting

  1. Genomic and Transcriptomic Analyses of Foodborne Bacterial Pathogens

    Science.gov (United States)

    Zhang, Wei; Dudley, Edward G.; Wade, Joseph T.

    DNA microarrays (often interchangeably called DNA chips or DNA arrays) are among the most popular analytical tools for high-throughput comparative genomic and transcriptomic analyses of foodborne bacterial pathogens. A typical DNA microarray contains hundreds to millions of small DNA probes that are chemically attached (or "printed") onto the surface of a microscopic glass slide. Depending on the specific "printing" and probe synthesis technologies for different microarray platforms, such DNA probes can be PCR amplicons or in situ synthesized short oligonucleotides. DNA microarray technologies have revolutionized the way that we investigate the biology of foodborne bacterial pathogens. The major advantage of these technologies is that DNA microarrays allow comparison of subtle genomic or transcriptomic variations between two bacterial samples, such as genomic variations between two different bacterial strains or transcriptomic alterations of same bacterial strain under two different treatments. Some applications of comparative genomic hybridization microarrays and global gene expression microarrays have been covered in previous chapters of this book.

  2. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    Science.gov (United States)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  3. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    . Staphylococci adhere stronger on fresh glass than on hydrophilic glass, while the weaker adhesion by P. fluorescens was similar on both types of glass. These results confirmed the importance of surface hydrophobicity in bacterial adhesion. This study has demonstrated that single-cell force spectroscopy allows...... be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  4. The Putative Role of the Non-Gastric H+/K+-ATPase ATP12A (ATP1AL1 as Anti-Apoptotic Ion Transporter: Effect of the H+/K+ ATPase Inhibitor SCH28080 on Butyrate-Stimulated Myelomonocytic HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Martin Jakab

    2014-10-01

    Full Text Available Background/Aims: The ATP12A gene codes for a non-gastric H+/K+ ATPase, which is expressed in a wide variety of tissues. The aim of this study was to test for the molecular and functional expression of the non-gastric H+/K+ ATPase ATP12A/ATP1AL1 in unstimulated and butyrate-stimulated (1 and 10 mM human myelomonocytic HL-60 cells, to unravel its potential role as putative apoptosis-counteracting ion transporter as well as to test for the effect of the H+/K+ ATPase inhibitor SCH28080 in apoptosis. Methods: Real-time reverse-transcription PCR (qRT-PCR was used for amplification and cloning of ATP12A transcripts and to assess transcriptional regulation. BCECF microfluorimetry was used to assess changes of intracellular pH (pHi after acute intracellular acid load (NH4Cl prepulsing. Mean cell volumes (MCV and MCV-recovery after osmotic cell shrinkage (Regulatory Volume Increase, RVI were assessed by Coulter counting. Flow-cytometry was used to measure MCV (Coulter principle, to assess apoptosis (phosphatidylserine exposure to the outer leaflet of the cell membrane, caspase activity, 7AAD staining and differentiation (CD86 expression. Results: We found by RT-PCR, intracellular pH measurements, MCV measurements and flow cytometry that ATP12A is expressed in human myelomonocytic HL-60 cells. Treatment of HL-60 cells with 1 mM butyrate leads to monocyte-directed differentiation whereas higher concentrations (10 mM induce apoptosis as assessed by flow-cytometric determination of CD86 expression, caspase activity, phosphatidylserine exposure on the outer leaflet of the cell membrane and MCV measurements. Transcriptional up-regulation of ATP12A and CD86 is evident in 1 mM butyrate-treated HL-60 cells. The H+/K+ ATPase inhibitor SCH28080 (100 µM diminishes K+-dependent pHi recovery after intracellular acid load and blocks RVI after osmotic cell shrinkage. After seeding, HL-60 cells increase their MCV within the first 24 h in culture, and subsequently

  5. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  6. Bacterial Colony Optimization

    Directory of Open Access Journals (Sweden)

    Ben Niu

    2012-01-01

    Full Text Available This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO. BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism is developed to simplify the bacterial optimization, which is spread over the whole optimization process. However, the other behaviors such as elimination, reproduction, and migration are implemented only when the given conditions are satisfied. Two types of interactive communication schemas: individuals exchange schema and group exchange schema are designed to improve the optimization efficiency. In the simulation studies, a set of 12 benchmark functions belonging to three classes (unimodal, multimodal, and rotated problems are performed, and the performances of the proposed algorithms are compared with five recent evolutionary algorithms to demonstrate the superiority of BCO.

  7. Bacterial assays for recombinagens.

    Science.gov (United States)

    Hoffmann, G R

    1992-12-01

    Two principal strategies have been used for studying recombinagenic effects of chemicals and radiation in bacteria: (1) measurement of homologous recombination involving defined alleles in a partially diploid strain, and (2) measurement of the formation and loss of genetic duplications in the bacterial chromosome. In the former category, most methods involve one allele in the bacterial chromosome and another in a plasmid, but it is also possible to detect recombination between two chromosomal alleles or between two extrachromosomal alleles. This review summarizes methods that use each of these approaches for detecting recombination and tabulates data on agents that have been found to be recombinagenic in bacteria. The assays are discussed with respect to their effectiveness in testing for recombinagens and their potential for elucidating mechanisms underlying recombinagenic effects.

  8. Bacterial transformation of terpenoids

    Science.gov (United States)

    Grishko, V. V.; Nogovitsina, Y. M.; Ivshina, I. B.

    2014-04-01

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references.

  9. Spontaneous bacterial peritonitis

    OpenAIRE

    Al Amri Saleh

    1995-01-01

    Spontaneous bacterial peritonitis (SBP) is an infection of the ascitic fluid without obvious intra-abdominal source of sepsis; usually complicates advanced liver disease. The pathogenesis of the disease is multifactorial: low ascitic protein-content, which reflects defi-cient ascitic fluid complement and hence, reduced opsonic activity is thought to be the most important pathogenic factor. Frequent and prolonged bacteremia has been considered as another pertinent cause of SBP. This disease is...

  10. Modelling bacterial speciation

    OpenAIRE

    2006-01-01

    A central problem in understanding bacterial speciation is how clusters of closely related strains emerge and persist in the face of recombination. We use a neutral Fisher–Wright model in which genotypes, defined by the alleles at 140 house-keeping loci, change in each generation by mutation or recombination, and examine conditions in which an initially uniform population gives rise to resolved clusters. Where recombination occurs at equal frequency between all members of the population, we o...

  11. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  12. Neglected bacterial zoonoses.

    Science.gov (United States)

    Chikeka, I; Dumler, J S

    2015-05-01

    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. Although many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which broad-spectrum diagnoses are actively sought. This review will focus attention on leptospirosis, relapsing fever borreliosis and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control.

  13. Upregulation of Na+,Cl--Coupled Betaine/ γ-Amino-Butyric Acid Transporter BGT1 by Tau Tubulin Kinase 2

    Directory of Open Access Journals (Sweden)

    Ahmad Almilaji

    2013-08-01

    Full Text Available Background/Aims: The serine/threonine kinase Tau-tubulin-kinase 2 (TTBK2 is expressed in various tissues including kidney, liver and brain. Loss of function mutations of TTBK2 lead to autosomal dominant spinocerebellar ataxia type 11 (SCA11. Cell survival is fostered by cellular accumulation of organic osmolytes. Carriers accomplishing cellular accumulation of organic osmolytes include the Na+, Cl--coupled betaine/γ-amino-butyric acid transporter BGT1. The present study explored whether TTBK2 participates in the regulation of BGT1 activity. Methods: Electrogenic transport of GABA was determined in Xenopus oocytes expressing BGT1 with or without wild-type TTBK2, truncated TTBK2[1-450] or kinase inactive mutants TTBK2- KD and TTBK2[1-450]-KD. Results: Coexpression of wild-type TTBK2, but not of TTBK2[1-450], TTBK2-KD or TTBK2[1-450]-KD, increased electrogenic GABA transport. Wildtype TTBK2 increased the maximal transport rate without significantly modifying affinity of the carrier. Coexpression of wild-type TTBK2 significantly delayed the decline of transport following inhibition of carrier insertion with brefeldin A, indicating that wild-type TTBK2 increased carrier stability in the cell membrane. Conclusion: Tau-tubulin-kinase 2 TTBK2 is a powerful stimulator of the osmolyte and GABA transporter BGT1.

  14. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    Science.gov (United States)

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate.

  15. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens.

    Science.gov (United States)

    Zhang, W H; Gao, F; Zhu, Q F; Li, C; Jiang, Y; Dai, S F; Zhou, G H

    2011-11-01

    The present study was to investigate the effects of dietary microencapsulated sodium butyrate (SB) and acute pre-slaughter stress, mimicked by subcutaneous corticosterone (CORT) administration, on BW, carcass characteristics, muscle antioxidant status, and meat quality of broiler chickens. A total of 120 1-d-old broiler chickens were fed a control diet (without SB) or a 0.4-g microencapsulated SB/kg diet. On 42 d, half of the birds from each treatment were given 1 single subcutaneous injection of CORT (4 mg/kg of BW in corn oil) to mimic acute stress, whereas the other half were injected with the same amount of corn oil (sham control). Three hours later, BW loss was determined and breast meat samples were collected. The results showed that the BW of the CORT-challenged groups lost much more than the sham control group (P stress (P chickens (P stress treatment on fatty acid composition was insignificant (P > 0.05). In addition, diet and stress did not significantly influence carcass characteristics and the chemical composition of breast meat (P > 0.05). These results suggest that microencapsulated SB was favorable for chickens in the presence of stress, which may be partially ascribed to the ability of SB to decrease catabolism and oxidative injury of tissues.

  16. Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces.

    Science.gov (United States)

    Li, Li; Jiang, Hongxin; Kim, Hyun-Jung; Yum, Man-Yu; Campbell, Mark R; Jane, Jay-Lin; White, Pamela J; Hendrich, Suzanne

    2015-09-01

    An in vitro semi-continuous long-term (3 wk) anaerobic incubation system simulating lower gut fermentation was used to determine variability in gut microbial metabolism between 4 predigested high amylose-resistant starch residues (SR): SRV, SRVI, SRVII, and SRGEMS in human fecal samples. Subjects participated twice, 5 mo apart: 30 in Phase I (15 lean, 9 overweight and 6 obese), 29 in Phase II (15 lean, 9 overweight, 5 obese); 13 of 15 lean subjects participated in both phases. Of the 4 SRs, SRV displayed the highest gelatinization temperature, peak temperature, enthalpy changes, and the least digestibility compared with the other SRs. In both phases, compared with blank controls, all SRs increased butyrate ∼2-fold which stabilized at week 2 and only SRV caused greater propionate concentration (∼30%) after 3 wk which might have been partly mediated by its lesser digestibility. Fecal samples from lean and overweight/obese subjects incubated with SRs showed similar short-chain fatty acid production across both time points, which suggests that resistant starch may benefit individuals across BMIs.

  17. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    Directory of Open Access Journals (Sweden)

    Jorge Pliego

    2015-01-01

    Full Text Available Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  18. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    Science.gov (United States)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  19. Diet structure, butyric acid, and fermentable carbohydrates influence growth performance, gut morphology, and cecal fermentation characteristics in broilers.

    Science.gov (United States)

    Qaisrani, S N; van Krimpen, M M; Kwakkel, R P; Verstegen, M W A; Hendriks, W H

    2015-09-01

    An experiment with 288 male (Ross 308) 1-d-old broilers was conducted to test the hypothesis that a coarse diet supplemented with butyric acid (BA) and fermentable carbohydrates (FC) improves performance of broilers with a poorly digestible protein source. The interaction effects of diet structure (fine or coarse), FC supplementation (with or without), and BA supplementation (with or without) in a poorly digestible diet based on rapeseed meal (RSM) were tested in a factorial arrangement of 8 (2×2×2) dietary treatments. The coarseness of the diet affected feed intake (FI) (Pcarbohydrate supplementation did not influence growth performance, gut development, or contents of total BCFA and total biogenic amines in the cecal digesta (P>0.05). Supplementation with FC, however, decreased the cecal concentration of spermine by approximately 31% compared with broilers fed diets without FC (P=0.002). In conclusion, feeding a coarse diet supplemented with BA improved performance of broilers fed a diet containing a poorly digestible protein source. The negative effects of a poorly digestible protein source can thus be partly counterbalanced by coarse grinding and BA supplementation in the diet.

  20. Role of clevidipine butyrate in the treatment of acute hypertension in the critical care setting: a review

    Directory of Open Access Journals (Sweden)

    Ahmed S Awad

    2010-06-01

    Full Text Available Ahmed S Awad, Michael E GoldbergDepartment of Anesthesiology, Cooper University Hospital, UMDNJ-Robert Wood Johnson Medical School, Camden Campus, Camden, New Jersey, USAAbstract: Acutely elevated blood pressure in the critical care setting is associated with a higher risk of acute end-organ damage (eg, myocardial ischemia, stroke, and renal failure and perioperative bleeding. Urgent treatment and careful blood pressure control are crucial to prevent significant morbidity. Clevidipine butyrate (Cleviprex™ is an ultrashort-acting, third-generation intravenous calcium channel blocker. It is an arterial-selective vasodilator with no venodilatory or myocardial depressive effects. Clevidipine has an extremely short half-life of approximately 1 minute as it is rapidly metabolized by blood and tissue esterases. These metabolites are then primarily eliminated through urine and fecal pathways. The rapid onset and the short duration of action permit tighter and closer adjustment of the blood pressure than is possible with other intravenous agents.Keywords: calcium channel blocker, antihypertensive medications, end-organ damage, hypertensive crisis, hypertensive urgency

  1. Electrochemical characteristics of a platinum electrode modified with a matrix of polyvinyl butyral and colloidal Ag containing immobilized horseradish peroxidase.

    Science.gov (United States)

    Yuan, Ruo; Liu, Yan; Li, Qun-Fang; Chai, Ya-Qin; Mo, Chang-Li; Zhong, Xia; Tang, Dian-Ping; Dai, Jian-Yuan

    2005-02-01

    A new hydrogen peroxide biosensor was constructed, which consisted of a platinum electrode modified by a matrix of polyvinyl butyral (PVB) and nanometer-sized Ag colloid containing immobilized horseradish peroxidase (HRP), and using Co(bpy)3(3+) as mediator in the hydrogen peroxide solution. The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The modified process was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The HRP immobilized on colloidal Ag was stable and retained its biological activity. The sensor displays excellent electrocatalytic response to the reduction of H2O2. Analytical parameters such as pH and temperature were also studied. Linear calibration for H2O2 was obtained in the range of 1x10(-5) to 1x10(-2) M under optimized conditions. The sensor was highly sensitive to H2O2, with a detection limit of 2x10(-6) M, and the sensor achieved 95% of steady-state current within 10 s. The sensor exhibited high sensitivity, selectivity and stability.

  2. Interactions between lead-zirconate titanate, polyacrylic acid, and polyvinyl butyral in ethanol and their influence on electrophoretic deposition behavior.

    Science.gov (United States)

    Kuscer, Danjela; Bakarič, Tina; Kozlevčar, Bojan; Kosec, Marija

    2013-02-14

    Electrophoretic deposition (EPD) is an attractive method for the fabrication of a few tens of micrometer-thick piezoelectric layers on complex-shape substrates that are used for manufacturing high-frequency transducers. Niobium-doped lead-zirconate titanate (PZT Nb) particles were stabilized in ethanol using poly(acrylic acid) (PAA). With Fourier-transform infrared spectroscopy (FT-IR), we found that the deprotonated carboxylic group from the PAA is coordinated with the metal in the perovskite PZT Nb structure, resulting in a stable ethanol-based suspension. The hydroxyl group from the polyvinyl butyral added into the suspension to prevent the formation of cracks in the as-deposited layer did not interact with the PAA-covered PZT Nb particles. PVB acts as a free polymer in ethanol-based suspensions. The electrophoretic deposition of micro- and nanometer-sized PZT Nb particles from ethanol-based suspensions onto electroded alumina substrates was attempted in order to obtain uniform, crack-free deposits. The interactions between the PZT Nb particles, the PAA, and the PVB in ethanol will be discussed and related to the properties of the suspensions, the deposition yield and the morphology of the as-deposited PZT Nb thick film.

  3. Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral.

    Science.gov (United States)

    Oliveira, Maria D L; Correia, Maria T S; Coelho, Luana C B B; Diniz, Flamarion B

    2008-10-01

    In this work, ConA and CramoLL lectins were immobilized on gold nanoparticles (AuNp) with polyvinyl butyral (PVB), and adsorbed on the surface of gold (Au) electrodes. Electrochemical impedance spectroscopy (EIS), in the frequency range from 100mHz to 100KHz, and cyclic voltammetry (CV), from -0.2 to 0.7V, were performed on these electrodes, in phosphate buffer (PBS) solution containing 10mM K(3)[Fe(CN)(6)]/K(4)[Fe(CN)(6)] (1:1) mixture as a redox probe. EIS and CV measurements showed that redox probe reactions on the modified Au electrodes were partially blocked due to the adsorption of AuNp-ConA-PVB and AuNp-CramoLL-PVB. SEM images showed the presence of aggregates of AuNp-ConA on PVB spherules in a tridimensional structure on the surface of the Au electrode. Bovine serum albumin (BSA) was adsorbed on the AuNp-Lectin-PVB modified electrode in order to block the remaining free gold sites. Both EIS and CV techniques yielded results that confirm positive responses of the lectins to ovalbumin agglutination. These results indicate an improvement of the sensitivity for detection of sugars that can be applicable to construction of a biosensor sensitive to glycoproteins in solution.

  4. Cross-Feeding between Bifidobacterium longum BB536 and Acetate-Converting, Butyrate-Producing Colon Bacteria during Growth on Oligofructose▿

    OpenAIRE

    Falony, Gwen; Vlachou, Angeliki; Verbrugghe, Kristof; De Vuyst, Luc

    2006-01-01

    In vitro coculture fermentations of Bifidobacterium longum BB536 and two acetate-converting, butyrate-producing colon bacteria, Anaerostipes caccae DSM 14662 and Roseburia intestinalis DSM 14610, with oligofructose as the sole energy source, were performed to study interspecies interactions. Two clearly distinct types of cross-feeding were identified. A. caccae DSM 14662 was not able to degrade oligofructose but could grow on the fructose released by B. longum BB536 during oligofructose break...

  5. Contribution of C-beijerinckii and C-sporogenes in association with C-tyrobutyricum to the butyric fermentation in Emmental type cheese

    OpenAIRE

    Le Bourhis, A. G.; Dore, J.; Carlier, J P; CHAMBA, J.F.; Popoff, M.R.; Tholozan, Jean-Luc

    2007-01-01

    The relationship between C. tyrobutyricum, C. sporogenes and C. beijerinckii in experimental cheese conditions, and their influences on late-blowing and butyric fermentation, have been investigated. A molecular approach using a PCR-TTGE method in combination with conventional methods, such as microbiological and physico-chemical analysis, was performed to monitor the evolution of these clostridial species, simultaneously with the occurrence of cheese defects. Sixteen Emmental type cheeses wer...

  6. Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Isabel Gómez-Hurtado

    Full Text Available BACKGROUND: Gut is the major source of endogenous bacteria causing infections in advanced cirrhosis. Intestinal barrier dysfunction has been described in cirrhosis and account for an increased bacterial translocation rate. HYPOTHESIS AND AIMS: We hypothesize that microbiota composition may be affected and change along with the induction of experimental cirrhosis, affecting the inflammatory response. ANIMALS AND METHODS: Progressive liver damage was induced in Balb/c mice by weight-controlled oral administration of carbon tetrachloride. Laparotomies were performed at weeks 6, 10, 13 and 16 in a subgroup of treated mice (n = 6/week and control animals (n = 4/week. Liver tissue specimens, mesenteric lymph nodes, intestinal content and blood were collected at laparotomies. Fibrosis grade, pro-fibrogenic genes expression, gut bacterial composition, bacterial translocation, host's specific butyrate-receptor GPR-43 and serum cytokine levels were measured. RESULTS: Expression of pro-fibrogenic markers was significantly increased compared with control animals and correlated with the accumulated dose of carbon tetrachloride. Bacterial translocation episodes were less frequent in control mice than in treated animals. Gram-positive anaerobic Clostridia spp count was decreased in treated mice compared with control animals and with other gut common bacterial species, altering the aerobic/anaerobic ratio. This fact was associated with a decreased gene expression of GPR43 in neutrophils of treated mice and inversely correlated with TNF-alpha and IL-6 up-regulation in serum of treated mice along the study protocol. This pro-inflammatory scenario favoured blood bacterial translocation in treated animals, showing the highest bacterial translocation rate and aerobic/anaerobic ratio at the same weeks. CONCLUSIONS: Gut microbiota alterations are associated with the development of an inflammatory environment, fibrosis progression and bacterial translocation in

  7. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  8. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  9. Bacterial vaginosis: a critical analysis of current knowledge.

    Science.gov (United States)

    Nasioudis, D; Linhares, I M; Ledger, W J; Witkin, S S

    2017-01-01

    Bacterial vaginosis (BV), the change from a Lactobacillus-dominant vaginal microbiota to an anaerobic and facultative bacterial dominance, is associated with pathological sequelae. In many BV-positive women their microbiota is in fact normal and unrelated to pathology. Whether or not the dominance of BV-associated bacteria persists depends upon interactions between host and bacterial factors. Inconsistencies in diagnosis and erroneous associations with pathology may be due to a failure to differentiate between sub-populations of women. It is only in those women with a BV diagnosis in which the identified bacteria are atypical and persist that BV may be a clinical problem requiring intervention.

  10. Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time.

    Science.gov (United States)

    Mitchell, Robert J; Kim, Ji-Seong; Jeon, Byung-Seung; Sang, Byoung-In

    2009-11-01

    The effects of the hydraulic retention time (HRT=8, 10, 12 or 16.7 h) and glucose concentration (30, 40 or 50 g/L) on the production of hydrogen and butyrate by an immobilized Clostridium tyrobutyricum culture, grown under continuous culturing conditions, were evaluated. With 30 g/L glucose, the higher HRTs tested led to greater butyrate concentrations in the culture, i.e., 9.3 g/L versus 12.9 g/L with HRTs of 8 h and 16.7 h, respectively. In contrast, higher biogas and hydrogen production rates were generally seen when the HRT was lower. Experiments with different glucose concentrations saw a significant amount of glucose washed out when 50 g/L was used, the highest being 22.7 g/L when the HRT was 16.7 h. This study found the best conditions for the continuous production of hydrogen and butyric acid by C. tyrobutyricum to be with an HRT of 12 h and a glucose concentration of 50 g/L, respectively.

  11. Synergistic Effect of Sodium Butyrate and Thalidomide in the Induction of Fetal Hemoglobin Expression in Erythroid Progenitors Derived from Cord Blood CD133 + Cells

    Directory of Open Access Journals (Sweden)

    Ali Dehghanifard

    2012-07-01

    Full Text Available Background: The use of drugs with the ability to induce production of fetal hemoglobin as a novel therapeutic approach in treating β-Hemoglobinopathies is considered. γ-globin gene expression inducer drugs including sodium butyrate and thalidomide can reduce additional α-globin chains accumulation in erythroid precursors. Materials and Methods: In this experimental study, MACS kit was used to isolate CD133+ cells of umbilical cord blood. Further, the effect of two drugs of thalidomide and sodium butyrate were separately and combined studied on the induction of quantitative expression of β-globin and γ-globin genes in erythroid precursor cells derived from CD133+ stem cells in-vitro. For this purpose, the technique SYBR green Real-time PCR was used.Results: Flow cytometry results showed that approximately 95% of purified cells were CD133+. Real-time PCR results also showed the increased levels of γ-globin mRNA in the cell groups treated with thalidomide, sodium butyrate and combination of drugs as 2.6 and 1.2 and 3.5 times respectively, and for β-globin gene, it is respectively 1.4 and 1.3 and 1.6 times compared with the control group (p<0.05.Conclusion: The study results showed that the mentioned drug combination can act as a pharmaceutical composition affecting the induction of fetal hemoglobin expression in erythroid precursor cells derived from CD133 + cells.

  12. Pitfalls in global normalization of ChIP-seq data in CD4(+) T cells treated with butyrate: A possible solution strategy.

    Science.gov (United States)

    Furusawa, Yukihiro; Endo, Takaho A; Obata, Yuuki; Ohara, Osamu; Ohno, Hiroshi; Hase, Koji

    2014-12-01

    Regulatory T cells (Treg) play a central role in the suppression of inflammatory and allergic responses. Colonization of certain gut commensal microbes such as Clostridia class IV and XIVa in the gut can induce development of colonic Treg cells contributing to the maintenance of gut immune homeostasis. Clostridia-derived butyrate promotes the differentiation of naïve T cells into Treg cells through upregulation of Foxp3, the master transcription factor of Treg cells. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that treatment of naïve T cells with butyrate induces Treg-polarizing conditions by enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus. In general, global normalization was utilized for ChIP-seq analysis to compare the data obtained from two or more samples. However, global normalization is not appropriate for the evaluation of ChIP-seq data when treatment can affect the total amount of target protein. Here, we introduce a unique normalization method for ChIP-seq analysis in cells treated with butyrate, a pan-HDAC inhibitor that is likely to affect total acetylation levels of histone H3.

  13. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    Science.gov (United States)

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively.

  14. Optimising Antibiotic Usage to Treat Bacterial Infections

    Science.gov (United States)

    Paterson, Iona K.; Hoyle, Andy; Ochoa, Gabriela; Baker-Austin, Craig; Taylor, Nick G. H.

    2016-11-01

    The increase in antibiotic resistant bacteria poses a threat to the continued use of antibiotics to treat bacterial infections. The overuse and misuse of antibiotics has been identified as a significant driver in the emergence of resistance. Finding optimal treatment regimens is therefore critical in ensuring the prolonged effectiveness of these antibiotics. This study uses mathematical modelling to analyse the effect traditional treatment regimens have on the dynamics of a bacterial infection. Using a novel approach, a genetic algorithm, the study then identifies improved treatment regimens. Using a single antibiotic the genetic algorithm identifies regimens which minimise the amount of antibiotic used while maximising bacterial eradication. Although exact treatments are highly dependent on parameter values and initial bacterial load, a significant common trend is identified throughout the results. A treatment regimen consisting of a high initial dose followed by an extended tapering of doses is found to optimise the use of antibiotics. This consistently improves the success of eradicating infections, uses less antibiotic than traditional regimens and reduces the time to eradication. The use of genetic algorithms to optimise treatment regimens enables an extensive search of possible regimens, with previous regimens directing the search into regions of better performance.

  15. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    OpenAIRE

    2006-01-01

    The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and M...

  16. SMC complexes in bacterial chromosome condensation and segregation.

    Science.gov (United States)

    Strunnikov, Alexander V

    2006-03-01

    Bacterial chromosomes segregate via a partition apparatus that employs a score of specialized proteins. The SMC complexes play a crucial role in the chromosome partitioning process by organizing bacterial chromosomes through their ATP-dependent chromatin-compacting activity. Recent progress in the composition of these complexes and elucidation of their structural and enzymatic properties has advanced our comprehension of chromosome condensation and segregation mechanics in bacteria.

  17. SMC complexes in bacterial chromosome condensation and segregation

    OpenAIRE

    Strunnikov, Alexander V.

    2005-01-01

    Bacterial chromosomes segregate via a partition apparatus that employs a score of specialized proteins. The SMC complexes play a crucial role in the chromosome partitioning process by organizing bacterial chromosomes through their ATP-dependent chromatin-compacting activity. Recent progress in the composition of these complexes and elucidation of their structural and enzymatic properties has advanced our comprehension of chromosome condensation and segregation mechanics in bacteria.

  18. The Pyridoxal 5′-Phosphate (PLP-Dependent Enzyme Serine Palmitoyltransferase (SPT: Effects of the Small Subunits and Insights from Bacterial Mimics of Human hLCB2a HSAN1 Mutations

    Directory of Open Access Journals (Sweden)

    Ashley E. Beattie

    2013-01-01

    Full Text Available The pyridoxal 5′-phosphate (PLP-dependent enzyme serine palmitoyltransferase (SPT catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b, and mutations in both hLCB1 (e.g., C133W and C133Y and hLCB2a (e.g., V359M, G382V, and I504F have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1, an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F, and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form.

  19. Bacterial chromosome segregation.

    Science.gov (United States)

    Possoz, Christophe; Junier, Ivan; Espeli, Olivier

    2012-01-01

    Dividing cells have mechanisms to ensure that their genomes are faithfully segregated into daughter cells. In bacteria, the description of these mechanisms has been considerably improved in the recent years. This review focuses on the different aspects of bacterial chromosome segregation that can be understood thanks to the studies performed with model organisms: Escherichia coli, Bacillus subtilis, Caulobacter crescentus and Vibrio cholerae. We describe the global positionning of the nucleoid in the cell and the specific localization and dynamics of different chromosomal loci, kinetic and biophysic aspects of chromosome segregation are presented. Finally, a presentation of the key proteins involved in the chromosome segregation is made.

  20. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various