WorldWideScience

Sample records for butyrate dependent bacterial

  1. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders

    OpenAIRE

    Nankova, Bistra B; Agarwal, Raj; MacFabe, Derrick F.; La Gamma, Edmund F.

    2014-01-01

    Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA ad...

  2. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  3. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon

    OpenAIRE

    Thangaraju, Muthusamy; Cresci, Gail A.; Liu, Kebin; Ananth, Sudha; Gnanaprakasam, Jaya P.; Browning, Darren D.; Mellinger, John D.; Smith, Sylvia B.; Digby, Gregory J.; Lambert, Nevin A.; Prasad, Puttur D.; Ganapathy, Vadivel

    2009-01-01

    Short-chain fatty acids, generated in colon by bacterial fermentation of dietary fiber, protect against colorectal cancer and inflammatory bowel disease. Among these bacterial metabolites, butyrate is biologically most relevant. GPR109A is a G-protein-coupled receptor for nicotinate, but recognizes butyrate with low affinity. Millimolar concentrations of butyrate are needed to activate the receptor. Although concentrations of butyrate in colonic lumen are sufficient to activate the receptor m...

  4. Diet-dependent shifts in ruminal butyrate producing bacteria

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Tepšič, K.; Avguštin, G.; Kopečný, Jan

    2006-01-01

    Roč. 51, č. 4 (2006), s. 294-298. ISSN 0015-5632 R&D Projects: GA AV ČR IBS5045112 Institutional research plan: CEZ:AV0Z50450515 Keywords : butyrate-producing bacteria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.963, year: 2006

  5. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    Science.gov (United States)

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661480

  6. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  7. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data

    OpenAIRE

    Vital, Marius; Howe, Adina Chuang; Tiedje, James M.

    2014-01-01

    ABSTRACT Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzym...

  8. Response of HT29 cells to butyrate treatment depends on time of exposure and glucose deprivation

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Dana; Štokrová, Jitka; Korb, Jan; Šloncová, Eva; Tuháčková, Zdena; Sovová, Vlasta

    2002-01-01

    Roč. 10, č. 6 (2002), s. 779-784. ISSN 1107-3756 Institutional research plan: CEZ:AV0Z5052915 Keywords : colorectal carcinoma cells,butyrate treatment,glucose deprivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.063, year: 2002

  9. Organic memory using [6,6]-phenyl-C61 butyric acid methyl ester: morphology, thickness and concentration dependence studies

    International Nuclear Information System (INIS)

    We report a simple memory device in which the fullerene-derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) mixed with inert polystyrene (PS) matrix is sandwiched between two aluminum (Al) electrodes. Transmission electron microscopy (TEM) images of PCBM:PS films showed well controlled morphology without forming any aggregates at low weight percentages (th) for switching from the high-impedance state to the low-impedance state, the voltage at maximum current density (Vmax) and the voltage at minimum current density (Vmin) in the NDR regime are constant within this thickness range. The current density ratio at Vmax and Vmin is more than or equal to 10, increasing with thickness. Furthermore, the current density is exponentially dependent on the longest tunneling jump between two PCBM molecules, suggesting a tunneling mechanism between individual PCBM molecules. This is further supported with temperature independent NDR down to 240 K

  10. Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon

    Science.gov (United States)

    Louis, Petra; Duncan, Sylvia H.; McCrae, Sheila I.; Millar, Jacqueline; Jackson, Michelle S.; Flint, Harry J.

    2004-01-01

    The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate. PMID:15028695

  11. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Nepelska

    Full Text Available The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells.

  12. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer.

    Directory of Open Access Journals (Sweden)

    Shien Hu

    Full Text Available Colonic microbiota ferment non-absorbed dietary fiber to produce prodigious amounts of short chain fatty acids (SCFAs that benefit the host through a myriad of metabolic, trophic, and chemopreventative effects. The chemopreventative effects of the SCFA butyrate are, in part, mediated through induction of p21 gene expression. In this study, we assessed the role of microRNA(miRNA in butyrate's induction of p21 expression. The expression profiles of miRNAs in HCT-116 cells and in human sporadic colon cancers were assessed by microarray and quantitative PCR. Regulation of p21 gene expression by miR-106b was assessed by 3' UTR luciferase reporter assays and transfection of specific miRNA mimics. Butyrate changed the expression of 44 miRNAs in HCT-116 cells, many of which were aberrantly expressed in colon cancer tissues. Members of the miR-106b family were decreased in the former and increased in the latter. Butyrate-induced p21 protein expression was dampened by treatment with a miR-106b mimic. Mutated p21 3'UTR-reporter constructs expressed in HCT-116 cells confirmed direct miR-106b targeting. Butyrate decreased HCT-116 proliferation, an effect reversed with the addition of the miR-106b mimic. We conclude that microbe-derived SCFAs regulate host gene expression involved in intestinal homeostasis as well as carcinogenesis through modulation of miRNAs.

  13. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. PMID:26478298

  14. Dependence of protein binding capacity of dimethylamino-γ-butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization

    Science.gov (United States)

    Iwanade, Akio; Umeno, Daisuke; Saito, Kyoichi; Sugo, Takanobu

    2013-06-01

    Dimethylamino-γ-butyric acid (DMGABA) as an ampholite was reacted with the epoxy group of the poly-glycidyl methacrylate chain grafted onto the pore surface of a porous hollow-fiber polyethylene membrane by radiation-induced graft polymerization. DMGABA was dissolved in a mixture of dioxane and water at various dioxane volume fractions, defined by dividing the dioxane volume by the total volume. The equilibrium binding capacity (EBC) of the DMGABA-immobilized porous hollow-fiber membrane for lysozyme was evaluated in the permeation mode. The EBC was varied from a 1/50-fold monolayer binding capacity to a 10-fold monolayer binding capacity by controlling the composition of the solvent used for DMGABA immobilization and the molar conversion of the epoxy group into the DMGABA group.

  15. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  16. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.

    Science.gov (United States)

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D

    2016-04-01

    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs. PMID:26771749

  17. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    International Nuclear Information System (INIS)

    We fabricate a pentacene/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO2 gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time

  18. Dependence of protein binding capacity of dimethylamino-γ-butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization

    International Nuclear Information System (INIS)

    Dimethylamino-γ-butyric acid (DMGABA) as an ampholite was reacted with the epoxy group of the poly-glycidyl methacrylate chain grafted onto the pore surface of a porous hollow-fiber polyethylene membrane by radiation-induced graft polymerization. DMGABA was dissolved in a mixture of dioxane and water at various dioxane volume fractions, defined by dividing the dioxane volume by the total volume. The equilibrium binding capacity (EBC) of the DMGABA-immobilized porous hollow-fiber membrane for lysozyme was evaluated in the permeation mode. The EBC was varied from a 1/50-fold monolayer binding capacity to a 10-fold monolayer binding capacity by controlling the composition of the solvent used for DMGABA immobilization and the molar conversion of the epoxy group into the DMGABA group. - Highlights: ► A DMGABA membrane was immobilized by irradiation induced graft polymerization. ► The DMGABA was immobilized in a mixture of dioxane and water of various compositions. ► Lysozyme adsorptivity of DMGABA-immobilized membranes evaluated in the permeation mode. ► The composition of the DMGABA immobilized solvent can control adsorptivity

  19. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs.

    Science.gov (United States)

    Pieper, R; Vahjen, W; Neumann, K; Van Kessel, A G; Zentek, J

    2012-10-01

    Pharmacological levels of zinc oxide (ZnO) can improve the health of weaning piglets and influence the intestinal microbiota. This experiment aimed at studying the dose-response effect of five dietary concentrations of ZnO on small intestinal bacteria and metabolite profiles. Fifteen piglets, weaned at 25 ± 1 days of age, were allocated into five groups according to body weight and litter. Diets were formulated to contain 50 (basal diet), 150, 250, 1000 and 2500 mg zinc/kg by adding analytical-grade (>98% purity) ZnO to the basal diet and fed ad libitum for 14 days after a 7-day adaptation period on the basal diet. Ileal bacterial community profiles were analysed by denaturing gradient gel electrophoresis and selected bacterial groups quantified by real-time PCR. Concentrations of ileal volatile fatty acids (VFA), D- and L-lactate and ammonia were determined. Species richness, Shannon diversity and evenness were significantly higher at high ZnO levels. Quantitative PCR revealed lowest total bacterial counts in the 50 mg/kg group. Increasing ZnO levels led to an increase (p = 0.017) in enterobacteria from log 4.0 cfu/g digesta (50 mg/kg) to log 6.7 cfu/g digesta (2500 mg/kg). Lactic acid bacteria were not influenced (p = 0.687) and clostridial cluster XIVa declined (p = 0.035) at highest ZnO level. Concentration of total, D- and L-lactate and propionate was not affected (p = 0.736, p = 0.290 and p = 0.630), but concentrations of ileal total VFA, acetate and butyrate increased markedly from 50 to 150 mg/kg and decreased with further increasing zinc levels and reached low levels again at 2500 mg/kg (p = 0.048, p = 0.048 and p = 0.097). Ammonia decreased (p < 0.006) with increasing dietary ZnO level. In conclusion, increasing levels of dietary ZnO had strong and dose-dependent effects on ileal bacterial community composition and activity, suggesting taxonomic variation in metabolic response to ZnO. PMID:21929727

  20. Controlling bacterial infections by inhibiting proton-dependent processes.

    Science.gov (United States)

    Kaneti, Galoz; Meir, Ohad; Mor, Amram

    2016-05-01

    Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial therapy, focused at disturbing bacterial cytoplasmic membrane functions at sub minimal inhibitory concentrations, namely through superficial physical alterations of the bilayer, thereby perturbing transmembrane signals transduction. Such a paradigm may have the advantage of fighting the infection while avoiding many of the known resistance mechanisms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26522076

  1. Severe bacterial infections in patients with non-transfusion-dependent thalassemia: prevalence and clinical risk factors

    OpenAIRE

    Nattiya Teawtrakul; Arunee Jetsrisuparb; Chittima Sirijerachai; Kanchana Chansung; Chinadol Wanitpongpun

    2015-01-01

    Introduction: Bacterial infection is one of the major causes of death in patients with thalassemia. Clinical predictive factors for severe bacterial infection were evaluated in patients with non-transfusion-dependent thalassemia (NTDT). Methods: A retrospective study was conducted of patients with NTDT aged ≥10 years at Srinagarind Hospital, Khon Kaen University, Thailand. Clinical characteristics and potential clinical risk factors for bacterial infection were collected. Risk factors for ...

  2. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  3. Colonic mucin synthesis is increased by sodium butyrate.

    Science.gov (United States)

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis. PMID:7890244

  4. Interferon production by Shigella flexneri-infected fibroblasts depends upon intracellular bacterial metabolism.

    OpenAIRE

    Hess, C. B.; Niesel, D W; Holmgren, J.; Jonson, G; Klimpel, G R

    1990-01-01

    The role of bacterial invasion and subsequent intracellular metabolism or replication, or both, in the induction of interferon (IFN) production in primary cultures of murine embryo fibroblasts (MEFs) was examined. IFN production appeared to be dependent upon bacterial invasion. MEFs that were challenged with Shigella flexneri cultured at 30 degrees C to inhibit the temperature-dependent virulence gene expression that is essential for invasion failed to produce IFN. Furthermore, inhibition of ...

  5. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens

    OpenAIRE

    Peyssonnaux, Carole; Zinkernagel, Annelies S.; Datta, Vivekanand; Lauth, Xavier; Johnson, Randall S; Nizet, Victor

    2006-01-01

    Hepcidin is an antimicrobial peptide secreted by the liver during inflammation that plays a central role in mammalian iron homeostasis. Here we demonstrate the endogenous expression of hepcidin by macrophages and neutrophils in vitro and in vivo. These myeloid cell types produced hepcidin in response to bacterial pathogens in a toll-like receptor 4 (TLR4)-dependent fashion. Conversely, bacterial stimulation of macrophages triggered a TLR4-dependent reduction in the iron exporter ferroportin. ...

  6. Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose

    OpenAIRE

    Karol Fijałkowski; Rafał Rakoczy; Anna Żywicka; Radosław Drozd; Beata Zielińska; Karolina Wenelska; Krzysztof Cendrowski; Dorota Peitler; Marian Kordas; Maciej Konopacki; Ewa Mijowska

    2016-01-01

    The aim of the study was to assess the influence of rotating magnetic field (RMF) on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC) synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest w...

  7. Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose

    Directory of Open Access Journals (Sweden)

    Karol Fijałkowski

    2016-01-01

    Full Text Available The aim of the study was to assess the influence of rotating magnetic field (RMF on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest water retention capacity as compared to the samples exposed for 5 and 7 days. The observation was confirmed for both the control and RMF exposed BC. It was proved that the BC exposed samples showed up to 26% higher water retention capacity as compared to the control samples. These samples also required the highest temperature to release the water molecules. Such findings agreed with the observation via SEM examination which revealed that the structure of BC synthesized for 7 days was more compacted than the sample exposed to RMF for 3 days. Furthermore, the analysis of 2D correlation of Fourier transform infrared spectra demonstrated the impact of RMF exposure on the dynamics of BC microfibers crystallinity formation.

  8. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    OpenAIRE

    S. Farjana; F. Toomadj; Lundgren, P.; Sanz-Velasco, A.; Naboka, O.; Enoksson, P.

    2013-01-01

    This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs) and multiwalled carbon nanotubes (MWCNTs). The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC) pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, an...

  9. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables

    OpenAIRE

    Jackson, Colin R.; Randolph, Kevin C; Osborn, Shelly L; Heather L. Tyler

    2013-01-01

    Background Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Results Total cu...

  10. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    Science.gov (United States)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  11. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  12. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells

    International Nuclear Information System (INIS)

    Murine mastocytoma cells were incubated in vitro with inorganic [35S]sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion of components with high affinity for antithrombin. Structural analysis of heparin labeled with [3H] glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. A polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-[3H]glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell

  13. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression.

    Science.gov (United States)

    Sunkara, Lakshmi T; Achanta, Mallika; Schreiber, Nicole B; Bommineni, Yugendar R; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S; Beker, Ali; Teeter, Robert G; Zhang, Guolong

    2011-01-01

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293

  14. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  15. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kasturi Ranganna

    2012-09-01

    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  16. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    Science.gov (United States)

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. PMID:27288853

  17. Dependence of Bacterial Protein Adhesins on Toll-Like Receptors for Proinflammatory Cytokine Induction

    OpenAIRE

    Hajishengallis, George; Martin, Michael; Sojar, Hakimuddin T.; Sharma, Ashu; Schifferle, Robert E.; DeNardin, Ernesto; Russell, Michael W.; Genco, Robert J.

    2002-01-01

    Toll-like receptors (TLRs) are important signal transducers that mediate inflammatory reactions induced by microbes through pattern recognition of virulence molecules such as lipopolysaccharide (LPS) and lipoproteins. We investigated whether proinflammatory cytokine responses induced by certain bacterial protein adhesins may also depend on TLRs. In differentiated THP-1 mononuclear cells stimulated by LPS-free recombinant fimbrillin (rFimA) from Porphyromonas gingivalis, cytokine release was a...

  18. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells.

    Directory of Open Access Journals (Sweden)

    Hui Yan

    Full Text Available Short chain fatty acids (SCFA, products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity.

  19. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms

    International Nuclear Information System (INIS)

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs

  20. Butyrate production from high-fiber diet protects against lymphoma tumor.

    Science.gov (United States)

    Wei, Wei; Sun, Wei; Yu, Shanshan; Yang, Yu; Ai, Limei

    2016-10-01

    Gut microbiota and dietary fiber are critical for protecting body from obesity, diabetes and cancer. Butyrate, produced in the gut by bacterial fermentation of dietary fibers, is demonstrated to be protective against the development of colorectal cancer as a histone deacetylase (HDAC) inhibitor. We report that high-fiber diet and butyrate significantly inhibited the growth lymphoma tumors. Butyrate induced apoptosis of lymphoma tumor cells and significantly up-regulated histone 3 acetylation (H3ac) level and target genes such as Fas, P21, P27. Our results unravel an instrumental role of fiber diet and their metabolites on lymphoma tumor and demonstrate an intervention potential on the prevention and therapy of lymphoma. PMID:26885564

  1. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants

    Science.gov (United States)

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-01-01

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. PMID:27470911

  2. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    Directory of Open Access Journals (Sweden)

    S. Farjana

    2013-01-01

    Full Text Available This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs and multiwalled carbon nanotubes (MWCNTs. The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, and for BNC pellicles modified with MWCNTs it was from 0.12 S·cm−1 to 1.6 S·cm−1. The strain-induced electromechanical response, resistance versus strain, was monitored during the application of tensile force in order to study the sensitivity of the modified nanocellulose. A maximum gauge factor of 252 was found from the highest conductive sample treated by MWCNT. It has been observed that the sensitivity of the sample depends on the conductivity of the modified cellulose.

  3. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    Science.gov (United States)

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  4. Antagonistic Effects of Sodium Butyrate and N-(4-Hydroxyphenyl-retinamide on Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Rainer Kuefer

    2007-03-01

    Full Text Available Butyrates and retinoids are promising antineoplastic agents. Here we analyzed effects of sodium butyrate and N-(4-hydroxyphenyl-retinamide (4-HPR on prostate cancer cells as monotherapy or in combination in vitro and in vivo. Sodium butyrate and 4-HPR induced concentration-dependent growth inhibition in prostate cancer cells in vitro. The isobologram analysis revealed that sodium butyrate and 4-HPR administered together antagonize effects of each other. For the in vivo studies, a water-soluble complex (4-HPR with a cyclodextrin was created. A single dose of sodium butyrate and 4-HPR showed a peak level in chicken plasma within 30 minutes. Both compounds induced inhibition of proliferation and apoptosis in xenografts of the chicken chorioallantoic membrane. Analysis of the cytotoxic effects of the drugs used in combination demonstrated an antagonistic effect on inhibition of proliferation and on induction of apoptosis. Prolonged jun N-terminal kinase phosphorylation induced by sodium butyrate and 4-HPR was strongly attenuated when both compounds were used in combination. Both compounds induced inhibition of NF-κ,B. This effect was strongly antagonized in LNCaP cells when the compounds were used in combination. These results indicate that combinational therapies have to be carefully investigated due to potential antagonistic effects in the clinical setting despite promising results of a monotherapy.

  5. Activation of PPARγ is not involved in butyrate-induced epithelial cell differentiation

    International Nuclear Information System (INIS)

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor γ (PPARγ) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPARγ in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPARγ in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPARγ ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPARγ ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPARγ mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPARγ is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation

  6. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    Science.gov (United States)

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  7. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    Directory of Open Access Journals (Sweden)

    Igor Buzalewicz

    Full Text Available The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH, which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an

  8. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    Science.gov (United States)

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  9. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  10. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V

    2016-05-01

    This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates. PMID:26952406

  11. Severe bacterial infections in patients with non-transfusion-dependent thalassemia: prevalence and clinical risk factors

    Directory of Open Access Journals (Sweden)

    Nattiya Teawtrakul

    2015-10-01

    Conclusion: The prevalence of bacterial infection in patients with NTDT was found to be moderate. Time after splenectomy >10 years, deferoxamine therapy, and iron overload may be clinical risk factors for severe bacterial infection in patients with NTDT. Bacterial infection should be recognized in splenectomized patients with NTDT, particularly those who have an iron overload.

  12. Dependence of Bacterial Protein Adhesins on Toll-Like Receptors for Proinflammatory Cytokine Induction

    Science.gov (United States)

    Hajishengallis, George; Martin, Michael; Sojar, Hakimuddin T.; Sharma, Ashu; Schifferle, Robert E.; DeNardin, Ernesto; Russell, Michael W.; Genco, Robert J.

    2002-01-01

    Toll-like receptors (TLRs) are important signal transducers that mediate inflammatory reactions induced by microbes through pattern recognition of virulence molecules such as lipopolysaccharide (LPS) and lipoproteins. We investigated whether proinflammatory cytokine responses induced by certain bacterial protein adhesins may also depend on TLRs. In differentiated THP-1 mononuclear cells stimulated by LPS-free recombinant fimbrillin (rFimA) from Porphyromonas gingivalis, cytokine release was abrogated by monoclonal antibodies (MAbs) to CD14 and TLR4 but not to TLR2. Similar experiments using anti-β2 integrin MAbs suggested that β2 integrins (CD11/CD18) also play a role in cytokine induction by rFimA or native fimbriae. Minor fimbriae (distinct from the fimA-encoded major fimbriae) of P. gingivalis induced proinflammatory cytokine release in a CD14- and TLR2-dependent mode. Cytokine induction by BspA, a leucine-rich repeat protein from Bacteroides forsythus, depended heavily on CD14 and TLR2. We also found that the ability of the streptococcal protein AgI/II to stimulate cytokine release depended partially on CD14 and TLR4, and the AgI/II segment that possibly interacts with these receptors was identified as its N-terminal saliva-binding region. When THP-1 cells were exposed to rFimA for 24 h, surface expression of CD14 and CD18 was decreased and the cells became hyporesponsive to cytokine induction by a second challenge with rFimA. However, tolerance induction was abolished when the THP-1 cells were pretreated with rFimA in the presence of either anti-CD14 MAb or anti-TLR4 MAb. Induction of cross-tolerance between rFimA and LPS correlated with downregulation of the pattern recognition receptors involved. Our data suggest that the CD14-TLR2/4 system is involved in cytokine production and tolerance induction upon interaction with certain proinflammatory bacterial protein adhesins. PMID:11874886

  13. Loss of the DNA Damage Repair Kinase ATM Impairs Inflammasome-Dependent Anti-Bacterial Innate Immunity.

    Science.gov (United States)

    Erttmann, Saskia F; Härtlova, Anetta; Sloniecka, Marta; Raffi, Faizal A M; Hosseinzadeh, Ava; Edgren, Tomas; Rofougaran, Reza; Resch, Ulrike; Fällman, Maria; Ek, Torben; Gekara, Nelson O

    2016-07-19

    The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1β (IL-1β) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection. PMID:27421701

  14. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    Directory of Open Access Journals (Sweden)

    Eric Drago

    Full Text Available Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC, and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  15. Biogas Production on Demand Regulated by Butyric Acid Addition

    Science.gov (United States)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  16. Aromatic-dependent salmonella as anti-bacterial vaccines and as presenters of heterologous antigens or of DNA encoding them.

    Science.gov (United States)

    Stocker, B A

    2000-09-29

    The development of live bacterial vaccines is reviewed, in particular aromatic-dependent Salmonella, either for protection against the corresponding infections (including typhoid fever) or as carrier-presenter of antigens of unrelated pathogens or of DNA specifying them. Aromatic-dependent Salmonella live vaccines are also compared with BCG and Ty21a and the recent records of exceptional situations are discussed in which aroA (deletion) strains of Salmonella typhimurium cause progressive disease in mice. PMID:11000459

  17. Allergic Airway Inflammation Decreases Lung Bacterial Burden following Acute Klebsiella pneumoniae Infection in a Neutrophil- and CCL8-Dependent Manner

    OpenAIRE

    Dulek, Daniel E.; Newcomb, Dawn C.; Goleniewska, Kasia; Cephus, Jaqueline; Zhou, Weisong; Reiss, Sara; Toki, Shinji; Ye, Fei; Zaynagetdinov, Rinat; Sherrill, Taylor P.; Timothy S. Blackwell; Moore, Martin L.; Boyd, Kelli L.; Kolls, Jay K.; Peebles, R. Stokes

    2014-01-01

    The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infect...

  18. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites

    Science.gov (United States)

    Nogi, Masaya; Ifuku, Shinsuke; Abe, Kentaro; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2006-03-01

    We produced transparent nanocomposite reinforced with bacterial cellulose having a wide range of fiber contents, from 7.4to66.1wt%, by the combination of heat drying and organic solvent exchange methods. The addition of only 7.4wt% of bacterial cellulose nanofibers, which deteriorated light transmittance by only 2.4%, was able to reduce the coefficient of thermal expansion of acrylic resin from 86×10-6to38×10-6K-1. As such, the nanofiber network of bacterial cellulose has an extraordinary potential as a reinforcement to obtain optically transparent and low thermal expansion materials.

  19. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites

    OpenAIRE

    Nogi, Masaya; Ifuku, Shinsuke; Abe, Kentaro; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2006-01-01

    We produced transparent nanocomposite reinforced with bacterial cellulose having a wide range of fiber contents, from 7.4 to 66.1 wt %, by the combination of heat drying and organic solvent exchange methods. The addition of only 7.4 wt % of bacterial cellulose nanofibers, which deteriorated light transmittance by only 2.4%, was able to reduce the coefficient of thermal expansion of acrylic resin from 86×10–6 to 38×10–6 K–1. As such, the nanofiber network of bacterial cellulose has an extraord...

  20. Recovery of Bordetella pertussis from PCR-positive nasopharyngeal samples is dependent on bacterial load.

    Science.gov (United States)

    Vestrheim, Didrik F; Steinbakk, Martin; Bjørnstad, Martha L; Moghaddam, Amir; Reinton, Nils; Dahl, Mette L; Grude, Nils; Sandven, Per

    2012-12-01

    Viable Bordetella pertussis isolates are essential for surveillance purposes. We performed culture of 223 PCR-positive nasopharyngeal samples. B. pertussis was recovered from 45 (20.2%) of the samples. Growth was associated with a high bacterial load, as determined by PCR. Culture from PCR-positive samples is a feasible approach to recover B. pertussis isolates, and culture can be limited to samples with a high bacterial load. PMID:23035189

  1. Recovery of Bordetella pertussis from PCR-Positive Nasopharyngeal Samples Is Dependent on Bacterial Load

    OpenAIRE

    Vestrheim, Didrik F.; Steinbakk, Martin; Bjørnstad, Martha L.; Moghaddam, Amir; Reinton, Nils; Dahl, Mette L.; Grude, Nils; Sandven, Per

    2012-01-01

    Viable Bordetella pertussis isolates are essential for surveillance purposes. We performed culture of 223 PCR-positive nasopharyngeal samples. B. pertussis was recovered from 45 (20.2%) of the samples. Growth was associated with a high bacterial load, as determined by PCR. Culture from PCR-positive samples is a feasible approach to recover B. pertussis isolates, and culture can be limited to samples with a high bacterial load.

  2. Bacterial communities in fish sauce mash using culture-dependent and -independent methods

    OpenAIRE

    Fukui, Youhei; Yoshida, Mitsuhiro; Shozen, Kei-ichi; Funatsu, Yasuhiro; Takano, Takashi; OIKAWA, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2012-01-01

    In fish sauce production, microorganisms are associated with the fermentation process; however, the sequential changes in the bacterial communities have never been examined throughout the period of fermentation. In this study, we determined the bacterial floras in a fish sauce mash over 8 months, using three different culture media and 16S rRNA gene clone library analysis. During the first 4 weeks, viable counts of non-halophilic and halophilic bacteria decreased and were dominated by Staphyl...

  3. Bacterial communities in fish sauce mash using culture-dependent and -independent methods.

    Science.gov (United States)

    Fukui, Youhei; Yoshida, Mitsuhiro; Shozen, Kei-ichi; Funatsu, Yasuhiro; Takano, Takashi; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2012-01-01

    In fish sauce production, microorganisms are associated with the fermentation process; however, the sequential changes in the bacterial communities have never been examined throughout the period of fermentation. In this study, we determined the bacterial floras in a fish sauce mash over 8 months, using three different culture media and 16S rRNA gene clone library analysis. During the first 4 weeks, viable counts of non-halophilic and halophilic bacteria decreased and were dominated by Staphylococcus species. Between 4 and 6 weeks, halophilic and highly halophilic bacterial counts markedly increased from 10(7) to 10(8) cfu/g, and the predominant species changed to Tetragenococcus halophilus. The occurrence of T. halophilus was associated with an increase of lactic acid and a reduction of pH values. In contrast, non-halophilic bacterial counts decreased to 10(6) cfu/g by 6 weeks with Bacillus subtilis as the dominant isolate. Clone library analysis revealed that the dominant bacterial group also changed from Staphylococcus spp. to T. halophilus, and the changes were consistent with those of the floras of halophilic and highly halophilic isolates. This is the first report describing a combination approach of culture and clone library methods for the analysis of bacterial communities in fish sauce mash. PMID:22990487

  4. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    Science.gov (United States)

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  5. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed

    OpenAIRE

    Smalla, K.; Wieland, G.; Buchner, A.; A. Zock; Parzy, J.; Kaiser, S; Roskot, N.; Heuer, H.; Berg, G

    2001-01-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods....

  6. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    Directory of Open Access Journals (Sweden)

    Roberto Berni Canani, Margherita Di Costanzo, Ludovica Leone, Monica Pedata, Rosaria Meli, Antonio Calignano

    2011-03-01

    Full Text Available The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine.

  7. Dependency of cerebral blood flow upon mean arterial pressure in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Larsen, Fin Stolze; Qvist, Jesper;

    2000-01-01

    Diseases, Copenhagen University Hospital, Denmark. PATIENTS: Sixteen adult patients with acute bacterial meningitis. INTERVENTION: Infusion of norepinephrine to increase MAP. MEASUREMENTS: During a rise in MAP induced by norepinephrine infusion, we measured relative changes in CBF by transcranial Doppler......OBJECTIVE: Patients with acute bacterial meningitis are often treated with sympathomimetics to maintain an adequate mean arterial pressure (MAP). We studied the influence of such therapy on cerebral blood flow (CBF). DESIGN: Prospective physiologic trial. SETTING: The Department of Infectious....... Autoregulation was classified as impaired if Vmean increased by >10% per 30 mm Hg increase in MAP and if no lower limit of autoregulation was identified by the computer program; otherwise, autoregulation was classified as preserved. MAIN RESULTS: Initially, Vmean increased from a median value of 46 cm/sec (range...

  8. Study on the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Tang Chunsheng; Rong Fengnian

    2005-01-01

    Objective:To investigate the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells in vitro.Methods:Human ovarian epithelial cancer 3AO cells were cultured in vitro and treated with sodium butyrate of different concentration for different time. The characters of apoptosis were assessed through light microscopy and DNA ladder analysis. The morphological changes of mitochondria were detected through electron and epifluorescence microscopy. The functional changes of mitochondria and the expression of Bcl-2/Bax protein were analyzed by flow cytometry.Results:As the concentration of sodium butyrate rose to 4mmol/L, the morphologic characters of apoptosis were found by light microscopy, DNA ladder was observed. Under epifluorescence microscope the fluorescence of the control group was stronger than that of the experimental group. Under electron microscope swelled mitochondria was detected. Flow cytometry analysis showed mitochondria transmembrane potentials decreased and there were down-regulate of Bcl-2 protein and up-regulate of the Bax protein(P<0.05).Conclusion:Sodium butyrate can induce apoptosis of 3AO cells in a time-dose dependent manner. Mitochondrion may play a key role in the procedure of apoptosis of ovarian cancer cells.

  9. Neurotoxicity of glia activated by gram-positive bacterial products depends on nitric oxide production.

    OpenAIRE

    Kim, Y. S.; Täuber, M G

    1996-01-01

    The present study examined the mechanism by which bacterial cell walls from two gram-positive meningeal pathogens, Streptococcus pneumoniae and the group B streptococcus, induced neuronal injury in primary cultures of rat brain cells. Cell walls from both organisms produced cellular injury to similar degrees in pure astrocyte cultures but not in pure neuronal cultures. Cell walls also induced nitric oxide production in cultures of astrocytes or microglia. When neurons were cultured together w...

  10. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches

    OpenAIRE

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2013-01-01

    Initial neonatal gut colonisation is a crucial stage for developing a healthy physiology, beneficially influenced by breast-feeding. Breast milk has been shown not only to provide nutrients and bioactive/immunological compounds, but also commensal bacteria, including gut-associated anaerobic Bifidobacterium spp. The aim of the present study was to investigate bacterial diversity in breast milk, with emphasis on identifying gut-associated obligate anaerobes. Breast milk collected from seven mo...

  11. Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens.

    Science.gov (United States)

    Wang, Zheng; Zhao, Qi; Zhang, Dongxia; Sun, Chengming; Bao, Cuixia; Yi, Maoli; Xing, Li; Luo, Deyan

    2016-09-01

    Emerging evidence from animal models suggests that platelets may participate in a wide variety of processes including the immune response against infection. More than 200 whole blood samples from patients and healthy controls were run in the System XE-5000 analyzer, and plasma fractions were separated for the following tests by ELISA, Luminex and light scattering. We describe two mechanisms by which platelets may contribute to immune function against various bacterial pathogens based on increased mean platelet volume in gram-positive bacterial infections and increased platelet counts in gram-negative bacterial infections. Gram-negative bacteria activate platelets to recruit neutrophils, which participate in the immune response against infection. During this process, fractalkine, macrophage inflammatory protein-1β, interleukin-17A, tumor necrosis factor-α and platelet-activating factor were higher in patients infected with Escherichia coli; additionally, giant platelets were observed under the microscope. Meanwhile, we found that platelets played a different role in gram-positive bacterial infections. Specifically, they could actively adhere to gram-positive bacteria in circulation and transfer them to immune sites to promote antibacterial lymphocyte expansion. During this process, complement C3 and factor XI were more highly expressed in patients infected with Staphylococcus aureus; additionally, we detected more small platelets under the microscope. Platelets participate in the immune response against both gram-negative and gram-positive bacteria, although the mechanisms differ. These results will help us understand the complex roles of platelets during infections, and direct our use of antibiotics based on clinical platelet data. PMID:26588444

  12. Cultivation-Dependent and -Independent Approaches for Determining Bacterial Diversity in Heavy-Metal-Contaminated Soil

    OpenAIRE

    Ellis, Richard J.; Morgan, Philip; Weightman, Andrew J.; Fry, John C.

    2003-01-01

    In recent years, culture-independent methods have been used in preference to traditional isolation techniques for microbial community analysis. However, it is questionable whether uncultured organisms from a given sample are important for determining the impact of anthropogenic stress on indigenous communities. To investigate this, soil samples were taken from a site with patchy metal contamination, and the bacterial community structure was assessed with a variety of approaches. There were sm...

  13. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane.

    Science.gov (United States)

    Amarasiri, Mohan; Hashiba, Satoshi; Miura, Takayuki; Nakagomi, Toyoko; Nakagomi, Osamu; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-05-15

    We demonstrated the genotype-dependent removal of human norovirus particles with a microfiltration (MF) membrane in the presence of bacteria bearing histo-blood group antigens (HBGAs). Three genotypes (GII.3, GII.4, and GII.6) of norovirus-like particles (NoVLPs) were mixed with three bacterial strains (Enterobacter sp. SENG-6, Escherichia coli O86:K61:B7, and Staphylococcus epidermidis), respectively, and the mixture was filtered with an MF membrane having a nominal pore size of 0.45 μm. All NoVLP genotypes were rejected by the MF membrane in the presence of Enterobacter sp. SENG-6, which excreted HBGAs as extracellular polymeric substances (EPS). This MF membrane removal of NoVLPs was not significant when EPS was removed from cells of Enterobacter sp. SENG-6. GII.6 NoVLP was not rejected with the MF membrane in the presence of E. coli O86:K61:B7, but the removal of EPS of E. coli O86:K61:B7 increased the removal efficiency due to the interaction of NoVLPs with the exposed B-antigen in lipopolysaccharide (LPS) of E. coli O86:K61:B7. No MF membrane removal of all three genotypes was observed when S. epidermidis, an HBGA-negative strain, was mixed with NoVLPs. These results demonstrate that the location of HBGAs on bacterial cells is an important factor in determining the genotype-dependent removal efficiency of norovirus particles with the MF membrane. The presence of HBGAs in mixed liquor suspended solids from a membrane bioreactor (MBR) pilot plant was confirmed by immune-transmission electron microscopy, which implies that bacterial HBGAs can contribute to the genotype-dependent removal of human noroviruses with MBR using MF membrane. PMID:27095709

  14. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    Energy Technology Data Exchange (ETDEWEB)

    Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.; Sperlazza, Justin R.; Heiniger, Ryan W.; Wolfgang, Matthew C.; Redinbo, Matthew R. (UNC)

    2010-09-21

    Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.

  15. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Husen Zhang

    Full Text Available Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  16. Effects of sodium n-butyrate on entry into S phase in resting rat 3Y1 cells infected with simian virus 40.

    OpenAIRE

    Mitsudomi, T.; Kimura, G

    1985-01-01

    In quiescent rat 3Y1 fibroblasts infected with simian virus 40 (SV40), sodium butyrate elongated the time lag before entry into S phase in a concentration-dependent fashion. In spite of the elongated time lags, SV40-infected cells entered S phase in a very synchronous mode, irrespective of the butyrate concentrations. The elongated time lag seemed to be at least partially due to a delayed synthesis and a delayed accumulation of large T antigen caused by butyrate. The entry into S phase was al...

  17. Bacterial Growth in Amniotic Fluid Is Dependent on the Iron-Availability and the Activity of Bacterial Iron-Uptake System

    OpenAIRE

    Ahn, Young-Joon; Park, Sang-Kee; Oh, Jae-Wook; Sun, Hui-Yu; Shin, Sung-Heui

    2004-01-01

    In the present study, the relationship among iron-availability, antibacterial activity, role of meconium as an iron source and the activity of bacterial iron-uptake system (IUS) for bacterial growth in amniotic fluid (AF) were investigated. Staphylococcus aureus ATCC 6538 and its streptonigrin-resistant (SR) mutant with defective IUS were used as the test strains. The growth of S. aureus in AF was stimulated dosedependently by addition of meconium. Bacterial growth stimulated by meconium was ...

  18. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed.

    Science.gov (United States)

    Smalla, K; Wieland, G; Buchner, A; Zock, A; Parzy, J; Kaiser, S; Roskot, N; Heuer, H; Berg, G

    2001-10-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  19. Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing.

    Science.gov (United States)

    Eevers, N; Beckers, B; Op de Beeck, M; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    Endophytic bacteria often have beneficial effects on their host plants that can be exploited for bioremediation applications but, according to the literature, only 0.001-1% of all endophytic microbes should be cultivable. This study compared the cultivated endophytic communities of the roots and shoots of Cucurbita pepo with the total endophytic communities as determined by cultivation-dependent techniques and 454 pyrosequencing. The ten most abundant taxa of the total communities aligned well with the cultivated taxa; however, the abundance of these taxa in the two communities differed greatly. Enterobacter showed very low presence in the total communities, whereas they were dominantly present in the cultivated communities. Although Rhizobium dominated in total root and shoot communities, it was poorly cultivable and even then only in growth media containing plant extract. Since endophytes likely contribute to plant-growth promotion, cultivated bacterial strains were tested for their plant-growth promoting capabilities, and the results were correlated with their abundance in the total community. Bacillus and Pseudomonas showed promising results when considering cultivability, abundance in the total community and plant-growth promoting capability. This study demonstrated that, although a limited number of bacterial genera were cultivable, current cultivation-dependent techniques may be sufficient for further isolation and inoculation experiments that aim to improve phytoremediation efficiency. PMID:26656884

  20. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    OpenAIRE

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-01-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically c...

  1. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent

    Science.gov (United States)

    Wiens, Kirsten E.; Ernst, Joel D.

    2016-01-01

    Type I interferons (including IFNαβ) are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb) infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING) signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS) in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC). We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA) in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ. PMID:27500737

  2. Effects of sodium butyrate and 3-aminobenzamide on survival of Chinese hamster HA-1 cells after X irradiation

    International Nuclear Information System (INIS)

    HA-1 cells were grown in medium containing 2 mM sodium butyrate and then exposed to graded doses of 250 kVp X rays. After irradiation, some of the butyrate-treated cultures were treated with either 10 or 20 mM 3-aminobenzamide for 2 h at 37 degrees C. The butyrate treatment produced a small degree of radiation sensitization as indicated by an increase in the alpha parameter using a linear-quadratic description of survival responses. The dose-modifying factor at the 10% survival level (DMF10) was 1.15. Similarly, both 10 and 20 mM 3-aminobenzamide treatments produced concentration-dependent increases in radiosensitization, again as indicated by an increase in the value of the alpha constant, with DMF10 values of 1.22 and 1.40, respectively. However, the combination of the 2 mM sodium butyrate + 10 mM 3-aminobenzamide treatments produced a supraadditive response in terms of increased cell killing (DMF10 = 1.76). We interpret this to mean that 3-aminobenzamide inhibits a sodium butyrate associated increase in poly(ADP-ribose) which then predisposes hyperacetylated chromatin to attack by endogenous nucleases leading to increased cytotoxicity

  3. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus.

    Directory of Open Access Journals (Sweden)

    Laura Hobley

    2012-02-01

    Full Text Available Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP, which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742 resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434 resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367 abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125 substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766 had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly

  4. Enhancement of Methacholine-Evoked Tracheal Contraction Induced by Bacterial Lipopolysaccharides Depends on Epithelium and Tumor Necrosis Factor

    Directory of Open Access Journals (Sweden)

    T. Secher

    2012-01-01

    Full Text Available Inhaled bacterial lipopolysaccharides (LPSs induce an acute tumour necrosis factor-alpha (TNF-α- dependent inflammatory response in the murine airways mediated by Toll-like receptor 4 (TLR4 via the myeloid differentiation MyD88 adaptor protein pathway. However, the contractile response of the bronchial smooth muscle and the role of endogenous TNFα in this process have been elusive. We determined the in vivo respiratory pattern of C57BL/6 mice after intranasal LPS administration with or without the presence of increasing doses of methacholine (MCh. We found that LPS administration altered the basal and MCh-evoked respiratory pattern that peaked at 90 min and decreased thereafter in the next 48 h, reaching basal levels 7 days later. We investigated in controlled ex vivo condition the isometric contraction of isolated tracheal rings in response to MCh cholinergic stimulation. We observed that preincubation of the tracheal rings with LPS for 90 min enhanced the subsequent MCh-induced contractile response (hyperreactivity, which was prevented by prior neutralization of TNFα with a specific antibody. Furthermore, hyperreactivity induced by LPS depended on an intact epithelium, whereas hyperreactivity induced by TNFα was well maintained in the absence of epithelium. Finally, the enhanced contractile response to MCh induced by LPS when compared with control mice was not observed in tracheal rings from TLR4- or TNF- or TNF-receptor-deficient mice. We conclude that bacterial endotoxin-mediated hyperreactivity of isolated tracheal rings to MCh depends upon TLR4 integrity that signals the activation of epithelium, which release endogenous TNFα.

  5. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells.

    Science.gov (United States)

    Rosignoli, P; Fabiani, R; De Bartolomeo, A; Spinozzi, F; Agea, E; Pelli, M A; Morozzi, G

    2001-10-01

    Epidemiological studies support the involvement of short-chain fatty acids (SCFA) in colon physiology and the protective role of butyrate on colon carcinogenesis. Among the possible mechanisms by which butyrate may exert its anti-carcinogenicity an antioxidant activity has been recently suggested. We investigated the effects of butyrate and mixtures of SCFA (butyrate, propionate and acetate) on DNA damage induced by H(2)O(2) in isolated human colonocytes and in two human colon tumour cell lines (HT29 and HT29 19A). Human colonocytes were isolated from endoscopically obtained samples and the DNA damage was assessed by the comet assay. H(2)O(2) induced DNA damage in normal colonocytes in a dose-dependent manner which was statistically significant at concentrations over 10 microM. At 15 microM H(2)O(2) DNA damage in HT29 and HT29 19A cells was significantly lower than that observed in normal colonocytes (P < 0.01). Pre-incubation of the cells with physiological concentrations of butyrate (6.25 and 12.5 mM) reduced H(2)O(2) (15 microM) induced damage by 33 and 51% in human colonocytes, 45 and 75% in HT29 and 30 and 80% in HT29 19A, respectively. Treatment of cells with a mixture of 25 mM acetate + 10.4 mM propionate + 6.25 mM butyrate did not induce DNA damage, while a mixture of 50 mM acetate + 20.8 mM propionate + 12.5 mM butyrate was weakly genotoxic only towards normal colonocytes. However, both mixtures were able to reduce the H(2)O(2)-induced DNA damage by about 50% in all cell types. The reported protective effect of butyrate might be important in pathogenetic mechanisms mediated by reactive oxygen species, and aids understanding of the apparent protection toward colorectal cancer exerted by dietary fibres, which enhance the butyrate bioavailability in the colonic mucosa. PMID:11577008

  6. Mutational Analysis of Bacterial NAD+-dependent DNA Ligase:Role of Motif Ⅳ in Ligation Catalysis

    Institute of Scientific and Technical Information of China (English)

    Hong FENG

    2007-01-01

    The bacterial DNA ligase as a multiple domain protein is involved in DNA replication, repair and recombination. Its catalysis of ligation can be divided into three steps. To delineate the roles of amino acid residues in motif Ⅳ in ligation catalysis, site-directed mutants were constructed in a bacterial NAD+-dependent DNA ligase from Thermus sp. TAK16D. It was shown that four conserved residues (D286, G287, V289 and K291) in motif Ⅳ had significant roles on the overall ligation. Under single turnover conditions, the observed apparent rates of D286E, G287A, V289I and K291R mutants were clearly reduced compared with that of WT ligase on both match and mismatch nicked substrates. The effects of D286E mutation on overall ligation may not only be ascribed to the third step. The G287A mutation has a major effect on the second step. The effects of V289I and K291R mutation on overall ligation are not on the third step, perhaps other aspects, such as conformation change of ligase protein in ligation catalysis, are involved. Moreover, the amino acid substitutions of above four residues were more sensitive on mismatch nicked substrate, indicating an enhanced ligation fidelity.

  7. Microbial metabolite butyrate facilitates M2 macrophage polarization and function

    OpenAIRE

    Jian Ji; Dingming Shu; Mingzhu Zheng; Jie Wang; Chenglong Luo; Yan Wang; Fuyou Guo; Xian Zou; Xiaohui Lv; Ying Li; Tianfei Liu; Hao Qu

    2016-01-01

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. ...

  8. Comparison of desoximetasone and hydrocortisone butyrate in psoriasis.

    Science.gov (United States)

    Zachariae, H

    1976-01-01

    Thirty psoriatics were treated for 2 weeks on a double-blind controlled basis with desoximetasone (0.25%) and with hydrocortisone butyrate (0.1%). It was a randomised left-right comparative trial. Thirteen out of 27 patients preferred desoximetasone, 3 patients preferred hydrocortisone butyrate. There was also a significantly better effect of desoximetasone as judged by the observer after the second week of treatment. PMID:60029

  9. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  10. Gram-Negative Bacterial Infection in Thigh Abscess Can Migrate to Distant Burn Depending on Burn Depth

    Directory of Open Access Journals (Sweden)

    Victoria Hamrahi

    2012-01-01

    Full Text Available Sepsis remains the major cause of death in patients with major burn injuries. In the present investigation we evaluated the interaction between burn injuries of varying severity and preexisting distant infection. We used Gram-negative bacteria (Pseudomonas aeruginosa and Proteus mirabilis that were genetically engineered to be bioluminescent, which allowed for noninvasive, sequential optical imaging of the extent and severity of the infection. The bioluminescent bacteria migrated from subcutaneous abscesses in the leg to distant burn wounds on the back depending on the severity of the burn injury, and this migration led to increased mortality of the mice. Treatment with ciprofloxacin, injected either in the leg with the bacterial infection or into the burn eschar, prevented this colonization of the wound and decreased mortality. The present data suggest that burn wounds can readily become colonized by infections distant from the wound itself.

  11. Biochemical changes induced by salt stress in halotolerant bacterial isolates are media dependent as well as species specific.

    Science.gov (United States)

    Joghee, Nidhya Nadarajan; Jayaraman, Gurunathan

    2016-01-01

    Halophilic bacteria respond to salt stress by regulating the cytosolic pools of organic solutes to achieve osmotic equilibrium. In order to understand the metabolic regulation of these organic solutes, for the first time, we have investigated the effect of salt on growth and biochemical changes in four major moderately halophilic bacterial strains isolated from a saltern region of the Kumta coast, India. The strains under study were Halomonas hydrothermalis VITP9, Bacillus aquimaris VITP4, Planococcus maritimus VITP21, and Virgibacillus dokdonensis VITP14, which exhibited similar salt tolerance (0% to 10% w/v NaCl) with optimal growth at 5% w/v NaCl. Biochemical analysis showed that the total intracellular organic solutes increased significantly with increasing NaCl concentration in the growth medium, and the compositions of the solutes were dependent on the type of strain and also on the nutrient richness of the growth medium. Glutamic acid levels increased in all the strains under salt stress, indicating the significance of glutamic acid as the anionic counterpart of K(+)/Na(+) ions and precursor for other synthesized nitrogenous osmolytes. Though initial studies were performed with thin-layer chromatography, mass spectrometry was used to identify the major solutes accumulated by the strains under salt stress, such as proline (VITP4), ectoine (VITP14 and VITP9), and sugars (VITP21) under minimal medium and glycine betaine (by all the strains under study) under complex growth medium conditions. Such comparative study on the stress-dependent metabolic differences of different microbes, under identical experimental condition, helps to identify possible bacterial sources for the production of industrially important solutes. PMID:25286020

  12. Cloning, overexpression, and characterization of a bacterial Ca2+-dependent phospholipase D

    OpenAIRE

    Yang, Hongying; Roberts, Mary F.

    2002-01-01

    Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca2+-dependent PLD from Streptomyces chromofuscus exhibits little homology to other PLDs. We have cloned (using DNA isolated from the ATCC type strain), overexpressed in Escherichia coli (two expression systems, pET-23a(+) and pTYB11), and purified the S. chromo...

  13. Structure of a GTP-dependent Bacterial PEP-carboxykinase from Corynebacterium glutamicum

    Energy Technology Data Exchange (ETDEWEB)

    Aich, Sanjukta; Prasad, Lata; Delbaere, Louis T.J. (Saskatchewan)

    2008-06-23

    GTP-dependent phosphoenolpyruvate carboxykinase (PCK) is the key enzyme that controls the blood glucose level during fasting in higher animals. Here we report the first substrate-free structure of a GTP-dependent phosphoenolpyruvate (PEP) carboxykinase from a bacterium, Corynebacterium glutamicum (CgPCK). The protein crystallizes in space group P2{sub 1} with four molecules per asymmetric unit. The 2.3 {angstrom} resolution structure was solved by molecular replacement using the human cytosolic PCK (hcPCK) structure (PDB ID: 1KHF) as the starting model. The four molecules in the asymmetric unit pack as two dimers, and is an artifact of crystal packing. However, the P-loop and the guanine binding loop of the substrate-free CgPCK structure have different conformations from the other published GTP-specific PCK structures, which all have bound substrates and/or metal ions. It appears that a change in the P-loop and guanine binding loop conformation is necessary for substrate binding in GTP-specific PCKs, as opposed to overall domain movement in ATP-specific PCKs.

  14. Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets.

    Science.gov (United States)

    Xu, Jumei; Chen, Xue; Yu, Shuiqing; Su, Yong; Zhu, Weiyun

    2016-01-01

    Butyrate in the gut of animals has potential properties including regulating the innate immune, modulating the lipid metabolism, and protecting gut healthy. So far, only limited information on the impact of butyrate on the neonatal is available. This study aimed to investigate effects of oral administration of sodium butyrate (SB) on gut microbiota and the expression of inflammatory cytokine in neonatal piglets. Ten litters of crossbred newborn piglets were randomly allocated to the SB and control (CO) groups, each group consisted of five litters (replicates). Piglets in the SB group were orally administrated with 7 to 13 ml sodium butyrate solution (150 mmol/l) per day from the age of 1 to 7 days, respectively; piglets in the CO group were treated with the same dose of physiological saline. On days 8 and 21 (of age), gut digesta and tissues were collected for the analysis of microbiota, butyrate concentration and gene expression of inflammatory cytokine. Results showed that there was no difference in the butyrate concentration in the gut of piglets on days 8 and 21 between two groups. Real-time PCR assay showed that SB had no effect on the numbers of total bacteria in the stomach, ileum, and colon. MiSeq sequencing of the V3-V4 region of the 16S rRNA gene revealed that SB increased the richness in the stomach and colon, and the diversity of colonic microbiota on day 8 (P < 0.05). Genera Acinetobacter, Actinobacillus, Facklamia, Globicatella, Kocuria, Rothia, unclassified Leptotrichiaceae, unclassified Neisseriaceae, and unclassified Prevotellaceae in the stomach were increased in relative abundance by SB treatment, whereas the abundances of Lactobacillus decreased on day 8 (P < 0.05). At the genus and operational taxonomic unit (OTU) levels, SB had low impact on bacterial community in the ileum and colon on days 8 and 21. SB treatment decreased the expression of IL-6, IL-8, IFN-γ, IL-10, TGF-β, and histone deacetylase 1 (HDAC1) in the ileum of piglets on day 8

  15. Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches

    Directory of Open Access Journals (Sweden)

    Delavat François

    2012-09-01

    Full Text Available Abstract Background Acid Mine Drainages (AMDs are extreme environments characterized by very acid conditions and heavy metal contaminations. In these ecosystems, the bacterial diversity is considered to be low. Previous culture-independent approaches performed in the AMD of Carnoulès (France confirmed this low species richness. However, very little is known about the cultured bacteria in this ecosystem. The aims of the study were firstly to apply novel culture methods in order to access to the largest cultured bacterial diversity, and secondly to better define the robustness of the community for 3 important functions: As(III oxidation, cellulose degradation and cobalamine biosynthesis. Results Despite the oligotrophic and acidic conditions found in AMDs, the newly designed media covered a large range of nutrient concentrations and a pH range from 3.5 to 9.8, in order to target also non-acidophilic bacteria. These approaches generated 49 isolates representing 19 genera belonging to 4 different phyla. Importantly, overall diversity gained 16 extra genera never detected in Carnoulès. Among the 19 genera, 3 were previously uncultured, one of them being novel in databases. This strategy increased the overall diversity in the Carnoulès sediment by 70% when compared with previous culture-independent approaches, as specific phylogenetic groups (e.g. the subclass Actinobacteridae or the order Rhizobiales were only detected by culture. Cobalamin auxotrophy, cellulose degradation and As(III-oxidation are 3 crucial functions in this ecosystem, and a previous meta- and proteo-genomic work attributed each function to only one taxon. Here, we demonstrate that other members of this community can also assume these functions, thus increasing the overall community robustness. Conclusions This work highlights that bacterial diversity in AMDs is much higher than previously envisaged, thus pointing out that the AMD system is functionally more robust than expected

  16. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen.

    Science.gov (United States)

    Kopecný, Jan; Zorec, Masa; Mrázek, Jakub; Kobayashi, Yasuo; Marinsek-Logar, Romana

    2003-01-01

    Two novel Gram-negative, anaerobic, non-spore-forming, butyrate-producing bacterial species, strains Mz 5T and JK 615T, were isolated from the rumen fluid of cow and sheep. Both strains were curved rods that were motile by means of single polar or subpolar flagellum and common in the rumen microbial ecosystem. Strain Mz 5T produced high xylanase, proteinase, pectin hydrolase and DNase activities; 1,4-beta-endoglucanase was also detected in the culture medium. The bacterium utilized a wide range of carbohydrates. Glucose was fermented to formate, butyrate, lactate, succinate and ethanol. The DNA G + C content was 42.1 mol%. The complete 16S rDNA sequence was obtained and phylogenetic relationships were determined. Strain Mz 5T and related isolates were located in clostridial cluster XIVa and were closely related to Pseudobutyrivibrio ruminis, Butyrivibrio crossotus, Roseburia cecicola and Eubacterium rectale. The name proposed for this novel bacterium is Pseudobutyrivibrio xylanivorans; the type strain is Mz 5T (=DSM 14809T =ATCC BAA-455T). Strain JK 615T produced no fibrolytic activity, but utilized a wide range of carbohydrates. Glucose was fermented to formate, acetate, butyrate and ethanol. The DNA G + C content was 44-8 mol%. The complete 16S rDNA sequence was obtained and phylogenetic relationships were determined. Strain JK 615T was located in clostridial cluster XIVa and was closely related to Clostridium proteoclasticum, Butyrivibrio fibrisolvens and Eubacterium halii. The name proposed for this novel bacterium is Butyrivibrio hungatei; the type strain is JK 615T (=DSM 14810T =ATCC BAA-456T). PMID:12656174

  17. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.

    Science.gov (United States)

    Heuck, Alejandro P; Moe, Paul C; Johnson, Benjamin B

    2010-01-01

    The cholesterol-dependent cytolysins (CDCs) are a family of beta-barrel pore-forming toxins secreted by Gram-positive bacteria. These toxins are produced as water-soluble monomeric proteins that after binding to the target cell oligomerize on the membrane surface forming a ring-like pre-pore complex, and finally insert a large beta-barrel into the membrane (about 250 A in diameter). Formation of such a large transmembrane structure requires multiple and coordinated conformational changes. The presence of cholesterol in the target membrane is absolutely required for pore-formation, and therefore it was long thought that cholesterol was the cellular receptor for these toxins. However, not all the CDCs require cholesterol for binding. Intermedilysin, secreted by Streptoccocus intermedius only binds to membranes containing a protein receptor, but forms pores only if the membrane contains sufficient cholesterol. In contrast, perfringolysin O, secreted by Clostridium perfringens, only binds to membranes containing substantial amounts of cholesterol. The mechanisms by which cholesterol regulates the cytolytic activity of the CDCs are not understood at the molecular level. The C-terminus of perfringolysin O is involved in cholesterol recognition, and changes in the conformation of the loops located at the distal tip of this domain affect the toxin-membrane interactions. At the same time, the distribution of cholesterol in the membrane can modulate toxin binding. Recent studies support the concept that there is a dynamic interplay between the cholesterol-binding domain of the CDCs and the excess of cholesterol molecules in the target membrane. PMID:20213558

  18. Bacterial neuraminidase increases IL-8 production in lung epithelial cells via NF-κB-dependent pathway

    International Nuclear Information System (INIS)

    Bacterial neuraminidase, a sialic acid-degrading enzyme, is one of the virulent factors produced in pathogenic bacteria like as other bacterial components. However little is known about whether bacterial neuraminidase can initiate or modify a cellular response, such as cytokine production, in epithelial cells at infection and inflammation. We demonstrate here that bacterial neuraminidase, but not heat-inactivated neuraminidase, up-regulates expression of interleukin-8 (IL-8) mRNA and protein in lung epithelial A549 and NCI-H292 cells. We also show that bacterial neuraminidase significantly up-regulates IL-8 promoter activity as well as nuclear factor-kappaB (NF-κB) reporter activity. Moreover, inhibition of NF-κB signaling suppressed IL-8 mRNA expression induced by bacterial neuraminidase. Taken together, desialylation-induced IL-8 production in lung epithelial cells may play an important role in infection-associated inflammatory events.

  19. Morphine Induces Bacterial Translocation in Mice by Compromising Intestinal Barrier Function in a TLR-Dependent Manner

    OpenAIRE

    Meng, Jingjing; Yu, Haidong; Ma, Jing; Wang, Jinghua; Banerjee, Santanu; Charboneau, Rick; Barke, Roderick A.; Roy, Sabita

    2013-01-01

    Opiates are among the most prescribed drugs for pain management. However, morphine use or abuse results in significant gut bacterial translocation and predisposes patients to serious infections with gut origin. The mechanism underlying this defect is still unknown. In this report, we investigated the mechanisms underlying compromised gut immune function and bacterial translocation following morphine treatment. We demonstrate significant bacterial translocation to mesenteric lymph node (MLN) a...

  20. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?

    Science.gov (United States)

    Bourassa, Megan W; Alim, Ishraq; Bultman, Scott J; Ratan, Rajiv R

    2016-06-20

    As interest in the gut microbiome has grown in recent years, attention has turned to the impact of our diet on our brain. The benefits of a high fiber diet in the colon have been well documented in epidemiological studies, but its potential impact on the brain has largely been understudied. Here, we will review evidence that butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, can improve brain health. Butyrate has been extensively studied as a histone deacetylase (HDAC) inhibitor but also functions as a ligand for a subset of G protein-coupled receptors and as an energy metabolite. These diverse modes of action make it well suited for solving the wide array of imbalances frequently encountered in neurological disorders. In this review, we will integrate evidence from the disparate fields of gastroenterology and neuroscience to hypothesize that the metabolism of a high fiber diet in the gut can alter gene expression in the brain to prevent neurodegeneration and promote regeneration. PMID:26868600

  1. Photoactivation of butyric acid from 6-aminobenzocoumarin cages

    OpenAIRE

    Soares, Ana M. S.; Hungerford, Graham; Susana P. G. Costa; Gonçalves, M. Sameiro T.

    2015-01-01

    A new benzocoumarin bearing an amino group is proposed as a photocleavable protecting group for carboxylic acids. The novel heterocycle, 6-amino-4-chloromethyl-2-oxo-2H-naphtho[1,2-b]pyran was used in the preparation of ester conjugates of butyric acid, and of the corresponding mono- and di-methylated or ethylated derivatives. The photolability of the ester conjugates was studied by irradiation at selected wavelengths in methanol/HEPES buffer (80:20) solutions, and the release of butyric acid...

  2. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice

    OpenAIRE

    Gao, Zhanguo; Yin, Jun; Zhang, Jin; Ward, Robert E.; Martin, Roy J; Lefevre, Michael; Cefalu, William T.; Ye, Jianping

    2009-01-01

    OBJECTIVE We examined the role of butyric acid, a short-chain fatty acid formed by fermentation in the large intestine, in the regulation of insulin sensitivity in mice fed a high-fat diet. RESEARCH DESIGN AND METHODS In dietary-obese C57BL/6J mice, sodium butyrate was administrated through diet supplementation at 5% wt/wt in the high-fat diet. Insulin sensitivity was examined with insulin tolerance testing and homeostasis model assessment for insulin resistance. Energy metabolism was monitor...

  3. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut

    Science.gov (United States)

    Rivière, Audrey; Selak, Marija; Lantin, David; Leroy, Frédéric; De Vuyst, Luc

    2016-01-01

    With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV) and Anaerostipes, Eubacterium, and Roseburia species (clostridial cluster XIVa). These kinds of interactions possibly favor the co-existence of bifidobacterial strains with other bifidobacteria and with butyrate-producing colon bacteria in the human colon. PMID:27446020

  4. The missing link in linear alkylbenzenesulfonate surfactant degradation : 4-sulfoacetophenone as a transient intermediate in the degradation of 3-(4-sulfophenyl) butyrate by comamonas testosteroni KF-1

    OpenAIRE

    Schleheck, David; Netzer, Frederick von; Fleischmann, Thomas; Rentsch, Daniel; Huhn, Thomas; Cook, Alasdair M.; Kohler, Hans-Peter E.

    2010-01-01

    Biodegradation of the laundry surfactant linear alkylbenzenesulfonate (LAS) involves complex bacterial communities. The known heterotrophic community has two tiers. First, all LAS congeners are oxygenated and oxidized to about 50 sulfophenylcarboxylates (SPC). Second, the SPCs are mineralized. Comamonas testosteroni KF-1 mineralizes 3-(4-sulfophenyl)butyrate (3-C4-SPC). During growth of strain KF-1 with 3-C4-SPC, two transient intermediates were detected in the culture medium. One intermediat...

  5. From the gut to the peripheral tissues: the multiple effects of butyrate

    OpenAIRE

    Guilloteau, P.; Martin, L; Eeckhaut, Venessa; Ducatelle, Richard; Zabielski, R.; Van Immerseel, Filip

    2010-01-01

    Butyrate is a natural substance present in biological liquids and tissues. The present paper aims to give an update on the biological role of butyrate in mammals, when it is naturally produced by the gastrointestinal microbiota or orally ingested as a feed additive. Recent data concerning butyrate production delivery as well as absorption by the colonocytes are reported. Butyrate cannot be detected in the peripheral blood, which indicates fast metabolism in the gut wall and/or in the liver. I...

  6. Comparison of Butyric acid concentrations in ordinary and probiotic yogurt samples in Iran

    OpenAIRE

    Narges Vaseji; Naheed Mojgani; Cyrus Amirinia; Iranmanesh, M

    2012-01-01

    Background and objectives: Butyric acid has many applications in chemical, food and pharmaceutical industries. Applications of butyric acid are as an additive to food, flavorings, varnishes, perfumes, pharmaceuticals and disinfectants. Butyric acid concentrations have positive impact on the quality control of milk, yogurt and other probiotic dairy products. The present investigation was undertaken to determine and compare the concentrations of butyric acid (C4) in the ordinary and probiotic y...

  7. Structural and biochemical characterization of bacterial YpgQ protein reveals a metal-dependent nucleotide pyrophosphohydrolase.

    Science.gov (United States)

    Jeon, Ye Ji; Park, Sun Cheol; Song, Wan Seok; Kim, Ok-Hee; Oh, Byung-Chul; Yoon, Sung-Il

    2016-07-01

    The optimal balance of cellular nucleotides and the efficient elimination of non-canonical nucleotides are critical to avoiding erroneous mutation during DNA replication. One such mechanism involves the degradation of excessive or abnormal nucleotides by nucleotide-hydrolyzing enzymes. YpgQ contains the histidine-aspartate (HD) domain that is involved in the hydrolysis of nucleotides or nucleic acids, but the enzymatic activity and substrate specificity of YpgQ have never been characterized. Here, we unravel the catalytic activity and structural features of YpgQ to report the first Mn(2+)-dependent pyrophosphohydrolase that hydrolyzes (deoxy)ribonucleoside triphosphate [(d)NTP] to (deoxy)ribonucleoside monophosphate and pyrophosphate using the HD domain. YpgQ from Bacillus subtilis (bsYpgQ) displays a helical structure and assembles into a unique dimeric architecture that has not been observed in other HD domain-containing proteins. Each bsYpgQ monomer accommodates a metal ion and a nucleotide substrate in a cavity located between the N- and C-terminal lobes. The metal cofactor is coordinated by the canonical residues of the HD domain, namely, two histidine residues and two aspartate residues, and is positioned in close proximity to the β-phosphate group of the nucleotide, allowing us to propose a nucleophilic attack mechanism for the nucleotide hydrolysis reaction. YpgQ enzymes from other bacterial species also catalyze pyrophosphohydrolysis but exhibit different substrate specificity. Comparative structural and mutational studies demonstrated that residues outside the major substrate-binding site of bsYpgQ are responsible for the species-specific substrate preference. Taken together, our structural and biochemical analyses highlight the substrate-recognition mode and catalysis mechanism of YpgQ in pyrophosphohydrolysis. PMID:27062940

  8. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  9. The Synergistic Effects of Probiotic Microorganisms on the Microbial Production of Butyrate In Vitro

    Directory of Open Access Journals (Sweden)

    Abbas, Khadija A.

    2009-01-01

    Full Text Available Butyrate producing microbiota perform a number of activities important in supporting the normal function of the human gastrointestinal tract. The goal of this study was to determine the synergistic effects of lactate- and butyrate-producing bacteria on butyrate production in vitro co-culture. PCR was used to detect the genes butyrate kinase and butyryl-CoA transferase that contribute to butyrate production, in a panel of representative gut microbiota. Preliminary data suggested that two Clostridium sp. (ASF 500 and ASF 502 and one Eubacterium sp. (ASF492 possessed at least one of these genes for butyrate production. Co-culture experiments mixing a lactate-producer with a butyrate-producer showed an increase in butyrate production. Real-time quantitative PCR was used to estimate the number of bacteria in co-culture by targeting the 16S rDNA gene. Butyrate levels in the mixing experiment were analyzed using GC/MS. Preliminary results showed that butyrate genes are present in Clostridium sp. ASF 500 and ASF 502, however, assessment of butyrate production showed the butyrate levels do not correlate with the results from qPCR.

  10. Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract

    NARCIS (Netherlands)

    Moquet, P.C.A.; Onrust, L.; Immerseel, Van F.; Ducatelle, R.; Hendriks, W.H.; Kwakkel, R.P.

    2016-01-01

    In the field of animal nutrition, butyrate is used as a zootechnical ingredient and can be used as an unprotected salt or in the form of protected derivatives such as butyrate glycerides or butyrate-loaded matrices. Dietary butyrate supplementation has been shown to improve growth performance and

  11. Butyrate and propionate: important components of toxic dental plaque extracts.

    OpenAIRE

    Singer, R E; Buckner, B A

    1981-01-01

    Extracts of in vitro-cultured human dental plaque contain factors toxic to mammalian cells. Previous studies demonstrated that those toxic factors most readily released from cultured plaque had very low molecular weights and were heat stable. Studies reported here demonstrate that metabolic end products including short-chain fatty acids were present in fractions containing the low-molecular-weight, heat-stable factors. The salts of two of these acids, butyrate and propionate, inhibited prolif...

  12. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs.

    Science.gov (United States)

    Castillo, M; Martín-Orúe, S M; Roca, M; Manzanilla, E G; Badiola, I; Perez, J F; Gasa, J

    2006-10-01

    An experiment was designed to evaluate the effects of 3 different additives on the gastrointestinal microbiota of early-weaned pigs. Early-weaned (18 to 22 d; n = 32) pigs (6.0 +/- 0.10 kg of BW) from 8 litters were randomly distributed into 8 pens. Each pen was assigned 1 of 4 dietary treatments: a prestarter or control diet, the control diet with 0.04% avilamycin (AB), with 0.3% sodium butyrate, or with 0.03% plant extract mixture (XT; standardized mixture with 5% (wt/wt) carvacrol extracted from Origanum spp., 3% cinnamaldehyde extracted from Cinnamonum spp., and 2% capsicum oleoresin from Capsicum annum). At the end of the experimental period, 8 pigs per treatment were killed, and samples of their intestinal content were taken. The total bacterial load along the gastrointestinal tract (GIT; stomach, jejunum, cecum, and distal colon) and the lactobacilli and enterobacteria in the jejunum and cecum were measured by quantitative PCR. The total microbial counts along the GIT did not differ among the diets, but there was an increase in the lactobacilli:enterobacteria ratio in the cecum of the piglets on the XT diet (P = 0.003). Restriction fragment length polymorphism of the PCR-amplified V3, V4, and V5 regions of the 16S rDNA gene showed changes in the structure of the microbial community in the jejunum. Dendrograms grouped animals by diets; control with 0.3% sodium butyrate was the treatment that promoted the biggest changes in the microbial ecosystem, followed by AB and then XT. Biodiversity increased when using additives compared with the control diet (P = 0.002). Microbial metabolic activity along the hindgut was studied using the concentration of purine bases and carbohydrase activities. Different patterns for purine bases were observed between diets (diet x intestinal section, P = 0.01). The control diet reached a maximum purine base concentration at the end of the colon, whereas that of the AB diet was reached at the cecum. We could not detect any cellulase

  13. Diversity of Clinical and Environmental Isolates of Vibrio cholerae in Natural Transformation and Contact-Dependent Bacterial Killing Indicative of Type VI Secretion System Activity.

    Science.gov (United States)

    Bernardy, Eryn E; Turnsek, Maryann A; Wilson, Sarah K; Tarr, Cheryl L; Hammer, Brian K

    2016-05-01

    The bacterial pathogenVibrio choleraecan occupy both the human gut and aquatic reservoirs, where it may colonize chitinous surfaces that induce the expression of factors for three phenotypes: chitin utilization, DNA uptake by natural transformation, and contact-dependent bacterial killing via a type VI secretion system (T6SS). In this study, we surveyed a diverse set of 53 isolates from different geographic locales collected over the past century from human clinical and environmental specimens for each phenotype outlined above. The set included pandemic isolates of serogroup O1, as well as several serogroup O139 and non-O1/non-O139 strains. We found that while chitin utilization was common, only 22.6% of the isolates tested were proficient at chitin-induced natural transformation, suggesting that transformation is expendable. Constitutive contact-dependent killing ofEscherichia coliprey, which is indicative of a functional T6SS, was rare among clinical isolates (only 4 of 29) but common among environmental isolates (22 of 24). These results bolster the pathoadaptive model in which tight regulation of T6SS-mediated bacterial killing is beneficial in a human host, whereas constitutive killing by environmental isolates may give a competitive advantage in natural settings. Future sequence analysis of this set of diverse isolates may identify previously unknown regulators and structural components for both natural transformation and T6SS. PMID:26944842

  14. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.; Barber, L.B.; Aiken, G.R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  15. Bacterial gastroenteritis

    Science.gov (United States)

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... Bacterial gastroenteritis can affect 1 person or a group of people who all ate the same food. It is ...

  16. Polyphasic Approach to Bacterial Dynamics during the Ripening of Spanish Farmhouse Cheese, Using Culture-Dependent and -Independent Methods▿

    OpenAIRE

    Martín-Platero, Antonio M.; Valdivia, Eva; Maqueda, Mercedes; Martín-Sánchez, Inés; Martínez-Bueno, Manuel

    2008-01-01

    We studied the dynamics of the microbial population during ripening of Cueva de la Magahá cheese using a combination of classical and molecular techniques. Samples taken during ripening of this Spanish goat's milk cheese in which Lactococcus lactis and Streptococcus thermophilus were used as starter cultures were analyzed. All bacterial isolates were clustered by using randomly amplified polymorphic DNA (RAPD) and identified by 16S rRNA gene sequencing, species-specific PCR, and multiplex PCR...

  17. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

    OpenAIRE

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of rib...

  18. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    Science.gov (United States)

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  19. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.

    Science.gov (United States)

    Xin, Fengxue; Basu, Anindya; Yang, Kun-Lin; He, Jianzhong

    2016-02-01

    In this study, a fermentation process for production of butanol and butyl-butyrate by using Clostridium sp. strain BOH3 is developed. This strain is able to produce butyric acid and butanol when it ferments 60 g/L xylose. Meanwhile, it also excreted indigenous lipases (induced by olive oil) which naturally convert butyric acid and butanol into 1.2 g/L of butyl-butyrate. When Bio-OSR was used as both an inducer for lipase and extractant for butyl-butyrate, the butyl-butyrate concentration can reach 6.3 g/L. To further increase the yield, additional lipases and butyric acid are added to the fermentation system. Moreover, kerosene was used as an extractant to remove butyl-butyrate in situ. When all strategies are combined, 22.4 g/L butyl-butyrate can be produced in a fed-batch reactor spiked with 70 g/L xylose and 7.9 g/L butyric acid, which is 4.5-fold of that in a similar system (5 g/L) with hexadecane as the extractant. PMID:26710347

  20. The effect of short-chain fatty acids butyrate, propionate, and acetate on urothelial cell kinetics in vitro: potential therapy in augmentation cystoplasty.

    Science.gov (United States)

    Dyer, J P; Featherstone, J M; Solomon, L Z; Crook, T J; Cooper, A J; Malone, P S

    2005-07-01

    The intestinal element of enterocystoplasty is affected by chronic inflammatory changes, which lead to excess mucus production, urinary tract infections, and stone formation. There is also an increased risk of malignancy. These inflammatory changes may be due to diversion colitis, which affects colonic segments excluded from the faecal stream and likewise may respond to intraluminal short-chain fatty acid (SCFA) therapy. The SCFAs have interesting antiproliferative, differentiating, and pro-apoptotic effects, which are protective against colorectal cancer and may influence the risk of malignancy in enterocystoplasty. Before intravesical therapy can be considered, the effect on normal urothelium must be investigated. Primary urothelial cells cultured from biopsy specimens and transformed urothelial (RT112 and MGH-U1) and intestinal cell lines (HT29 and CaCo-2) were incubated with SCFAs. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the residual viable biomass to assess cell proliferation. Proliferation of primary and transformed urothelial cells in culture was inhibited by all SCFAs in a similar time- and dose-dependent manner. The concentration of SCFA required to inhibit growth of primary cells by 50% (IC50) was 20 mM of butyrate, 120 mM of propionate, and 240 mM of acetate after incubation for 1 h. After 72 h the IC50 was 2 mM of butyrate, 4 mM of propionate, and 20 mM of acetate. Transformed urothelial and colon cancer cell lines demonstrated similar growth inhibition. Butyrate was the most potent inhibitor of cell proliferation, followed by propionate and then acetate. Growth inhibition is not an immediate cytotoxic effect, and urothelial cells show a degree of adaptation to butyrate and growth recovery after incubation with butyrate. In conclusion, butyrate- and propionate-induced growth inhibition is potentially clinically significant and may have therapeutically beneficial implications in vivo. PMID:15864601

  1. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep

    Directory of Open Access Journals (Sweden)

    Lettat Abderzak

    2012-07-01

    Full Text Available Abstract Background Ruminal disbiosis induced by feeding is the cause of ruminal acidosis, a digestive disorder prevalent in high-producing ruminants. Because probiotic microorganisms can modulate the gastrointestinal microbiota, propionibacteria- and lactobacilli-based probiotics were tested for their effectiveness in preventing different forms of acidosis. Results Lactic acidosis, butyric and propionic subacute ruminal acidosis (SARA were induced by feed chalenges in three groups of four wethers intraruminally dosed with wheat, corn or beet pulp. In each group, wethers were either not supplemented (C or supplemented with Propionibacterium P63 alone (P or combined with L. plantarum (Lp + P or L. rhamnosus (Lr + P. Compared with C, all the probiotics stimulated lactobacilli proliferation, which reached up to 25% of total bacteria during wheat-induced lactic acidosis. This induced a large increase in lactate concentration, which decreased ruminal pH. During the corn-induced butyric SARA, Lp + P decreased Prevotella spp. proportion with a concomitant decrease in microbial amylase activity and total volatile fatty acids concentration, and an increase in xylanase activity and pH. Relative to the beet pulp-induced propionic SARA, P and Lr + P improved ruminal pH without affecting the microbial or fermentation characteristics. Regardless of acidosis type, denaturing gradient gel electrophoresis revealed that probiotic supplementations modified the bacterial community structure. Conclusion This work showed that the effectiveness of the bacterial probiotics tested depended on the acidosis type. Although these probiotics were ineffective in lactic acidosis because of a deeply disturbed rumen microbiota, some of the probiotics tested may be useful to minimize the occurrence of butyric and propionic SARA in sheep. However, their modes of action need to be further investigated.

  2. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms; Radiosensibilidad bacteriana frente a gamma y ultravioleta. Dependencia composicional y mecanismos de reparacion

    Energy Technology Data Exchange (ETDEWEB)

    Saez Angulo, R. M.; Davila, C. A.

    1974-07-01

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs.

  3. Vibrational Spectroscopic and Thermodynamic Investigation of Poly (vinyl butyral

    Directory of Open Access Journals (Sweden)

    Saiful Islam Ansari

    2016-03-01

    Full Text Available A detailed study was performed to investigate the normal modes of vibration and their dispersions in poly (vinyl butyral by using Urey-Bradley force field and Wilson’s GF matrix method as modified by Higgs. It provides detailed interpretation of FTIR. Characteristic feature of dispersion curves such as regions of high density–of–states, repulsion and character mixing of dispersion modes are discussed. Predictive values of heat capacity as a function of temperature between 0-350 K have been evaluated.

  4. Transport and Metabolism of the Endogenous Auxin Precursor lndole-3-Butyric Acid

    Institute of Scientific and Technical Information of China (English)

    Lucia C. Strader; Bonnie Bartel

    2011-01-01

    T Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.

  5. Dual 4- and 5-phosphatase activities regulate SopB-dependent phosphoinositide dynamics to promote bacterial entry.

    Science.gov (United States)

    Piscatelli, Heather L; Li, Menghan; Zhou, Daoguo

    2016-05-01

    Salmonella are able to invade non-phagocytic cells such as intestinal epithelial cells by modulating the host actin cytoskeleton to produce membrane ruffles. Two type III effector proteins SopB and SopE play key roles to this modulation. SopE is a known guanine nucleotide exchange factor (GEF) capable of activating Rac1 and CDC42. SopB is a phosphatidylinositol 4-phosphatase and 5-phosphatase promoting membrane ruffles and invasion of Salmonella through undefined mechanisms. Previous studies have demonstrated that the 4-phosphatase activity of SopB is required for PtdIns-3-phosphate (PtdIns(3)P) accumulation and SopB-mediated invasion. We show here that both the 4-phosphatase as well as the 5-phosphatase activities of SopB are essential in ruffle formation and subsequent invasion. We found that the 5-phosphatase activity of SopB is likely responsible for generating PtdIns-3,4-bisphosphate (PtdIns(3,4)P2 ) and subsequent recruitment of sorting nexin 9 (SNX9), an actin modulating protein. Intriguingly, the 4-phosphatase activity is responsible for the dephosphorylation of PtdIns(3,4)P2 into PtdIns(3)P. Alone, neither activity is sufficient for ruffling but when acting in conjunction with one another, the 4-phosphatase and 5-phosphatase activities led to SNX9-mediated ruffling and Salmonella invasion. This work reveals the unique ability of bacterial effector protein SopB to utilize both its 4- and 5-phosphatase activities to regulate phosphoinositide dynamics to promote bacterial entry. PMID:26537021

  6. Thermal decomposition of yttrium(III) propionate and butyrate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2013-01-01

    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...... compounds follow a similar decomposition path starting with dehydration, which is complete at 110°C. The dehydrated salts convert to a dioxycarbonate (Y2O2CO3) via an unstable intermediate product (probably Y2O(C2H5CO2)4 and Y2O(C3H7CO2)4 for the propionate and butyrate respectively), with the evolution of...... CO2 and a symmetrical ketone consisting of 3-pentanone and 4-heptanone respectively. Final conversion to Y2O3 takes pace with release of CO2. Elemental carbon that is left as a by-product is finally slowly burned by the residual oxygen present in the Ar atmosphere. Fusion is observed at ≈110°C in...

  7. Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves.

    Science.gov (United States)

    Kato, Shin-Ichi; Sato, Katsuyoshi; Chida, Haruka; Roh, Sang-Gun; Ohwada, Shyuichi; Sato, Shusuke; Guilloteau, Paul; Katoh, Kazuo

    2011-12-01

    Although the growth-promoting action of sodium-butyrate (Na-butyrate) used as a feed additive has been observed in calves and pigs, the precise mechanisms involved remain to be clarified. In this study, pre-weaning calves were given milk formula (MF) supplemented with butyrate for 6 weeks to investigate its effects on postprandial changes in the plasma concentrations of metabolic hormones, and, simultaneously, on growth performance, the weight of the digestive organs and rumen papilla development. Ingestion of MF increased (Pliver, spleen, and stomach were not changed. In addition, there was no difference in the expression of mRNA for sodium-dependent glucose transporter-1 in the small intestinal epithelial tissues. We conclude that the accelerated growth performance related to the intake of Na-butyrate used as a feed additive reported previously in several species is partly due to improved insulin sensitivity and a better digestive functional development. These data could be applicable to animal and human nutrition. PMID:21911440

  8. Solid–liquid equilibria measurements for binary systems comprising (butyric acid + propionic or pentanoic acid) and (heptanoic acid + propionic or butyric or pentanoic or hexanoic acid)

    International Nuclear Information System (INIS)

    Highlights: ► Binary SLE measurement for butyric acid + {propionic or pentanoic acid}. ► Binary SLE measurements for heptanoic acid + {propionic or butyric or pentanoic or hexanoic acid}. ► Measurements undertaken using a synthetic method using two new apparati. - Abstract: Solid–liquid equilibria (SLE) measurements have been undertaken for carboxylic acid systems comprising (butyric acid + propionic or pentanoic acid) and (heptanoic acid + propionic or butyric or pentanoic or hexanoic acid) via a synthetic method using two complementary pieces of equipment. The measurements have been obtained at atmospheric pressure and over the temperature range of (225.6 to 270.7) K. All the acid mixtures exhibit a eutectic point in their respective phase diagrams, which have been determined experimentally. The estimated maximum uncertainties in the reported temperatures and compositions are ±1 K and ±0.0006 mole fraction, respectively. The experimental data have been satisfactorily correlated with the Wilson and NRTL activity coefficient models.

  9. Nanoparticle-Based Topical Ophthalmic Gel Formulation for Sustained Release of Hydrocortisone Butyrate.

    Science.gov (United States)

    Yang, Xiaoyan; Trinh, Hoang M; Agrahari, Vibhuti; Sheng, Ye; Pal, Dhananjay; Mitra, Ashim K

    2016-04-01

    This study was conducted to develop formulations of hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NP) suspended in thermosensitive gel to improve ocular bioavailability of HB for the treatment of bacterial corneal keratitis. PLGA NP with different surfactants such as polyvinyl alcohol (PVA), pluronic F-108, and chitosan were prepared using oil-in-water (O/W) emulsion evaporation technique. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential, and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when nanoparticles were suspended in thermosensitive gels and zero-order release kinetics was observed. In HCEC cell line, chitosan-emulsified NP showed the highest cellular uptake efficiency over PVA- and pluronic-emulsified NP (59.09 ± 6.21%, 55.74 ± 6.26%, and 62.54 ± 3.30%, respectively) after 4 h. However, chitosan-emulsified NP indicated significant cytotoxicity of 200 and 500 μg/mL after 48 h, while PVA- and pluronic-emulsified NP exhibited no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases. PMID:26085051

  10. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Science.gov (United States)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  11. TRAPPING YELLOWJACKETS (HYMENOPTERA: VESPIDAE) WITH HEPTYL BUTYRATE EMITTED FROM CONTROLLED-RELEASE DISPENSERS

    Science.gov (United States)

    Numbers of workers of Vespula pensylvanica (Saussure) (western yellowjacket) and V. atropilosa (Sladen) trapped with heptyl butyrate in Washington increased with increased release of the attractant from vial dispensers, up to an estimated 2.3 milligrams heptyl butyrate per hour. Vespula germanica F...

  12. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence.

    Science.gov (United States)

    Leclercq, Sophie Y; Sullivan, Matthew J; Ipe, Deepak S; Smith, Joshua P; Cripps, Allan W; Ulett, Glen C

    2016-01-01

    Streptococcus agalactiae can cause urinary tract infection (UTI) including cystitis and asymptomatic bacteriuria (ABU). The early host-pathogen interactions that occur during S. agalactiae UTI and subsequent mechanisms of disease pathogenesis are poorly defined. Here, we define the early interactions between human bladder urothelial cells, monocyte-derived macrophages, and mouse bladder using uropathogenic S. agalactiae (UPSA) 807 and ABU-causing S. agalactiae (ABSA) 834 strains. UPSA 807 adhered, invaded and killed bladder urothelial cells more efficiently compared to ABSA 834 via mechanisms including low-level caspase-3 activation, and cytolysis, according to lactate dehydrogenase release measures and cell viability. Severe UPSA 807-induced cytotoxicity was mediated entirely by the bacterial β-hemolysin/cytolysin (β-H/C) because an β-H/C-deficient UPSA 807 isogenic mutant, UPSA 807ΔcylE, was not cytotoxic in vitro; the mutant was also significantly attenuated for colonization in the bladder in vivo. Analysis of infection-induced cytokines, including IL-8, IL-1β, IL-6 and TNF-α in vitro and in vivo revealed that cytokine and chemokine responses were dependent on expression of β-H/C that also elicited severe bladder neutrophilia. Thus, virulence of UPSA 807 encompasses adhesion to, invasion of and killing of bladder cells, pro-inflammatory cytokine/chemokine responses that elicit neutrophil infiltration, and β-H/C-mediated subversion of innate immune-mediated bacterial clearance from the bladder. PMID:27383371

  13. Effects of amphiphilic agent on thermal conductivity of boron nitride/poly(vinyl butyral) composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hong Jun [Department of Materials Engineering, Kyonggi University, Suwon (Korea, Republic of); Cha, Sang-Ho [Department of Chemical Engineering, Kyonggi University, Suwon (Korea, Republic of); Lee, Woo Sung [Electronic Materials and Device Research Center, Korea Electronics Technology Institute, Seongnam (Korea, Republic of); Kim, Eung Soo, E-mail: eskim@kyonggi.ac.kr [Department of Materials Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2014-09-10

    Highlights: • The platelet BN particles were oriented in poly(vinyl butyral) (PVB) matrix by tape-casting process. • The degree of BN orientation was estimated from XRD patterns of BN/PVB composites. • Surface treatment of BN with amphiphilic agent was confirmed by FT-IR and elemental analysis. • The BN/PVB composites with in-plane oriented 8-μm-sized BN particles showed a higher thermal conductivity than the other composites. - Abstract: Dependence of thermal conductivity of boron nitride (BN)/poly(vinyl butyral) (PVB) composites on the orientation and particle size of BN with an amphiphilic agent was investigated. The platelet BN particles were oriented in the polymer matrix by physical processes such as tape-casting process. A comparison of the thermal conductivity of the specimens with that of pristine BN showed that the BN/PVB composite treated with amphiphilic agents such as C{sub 14}H{sub 6}O{sub 8} and C{sub 27}H{sub 27}N{sub 3}O{sub 2} showed a higher thermal conductivity than the PVB composite with pristine BN. It was also found that the thermal conductivity of the C{sub 14}H{sub 6}O{sub 8}-treated BN/PVB composite was higher than that of the C{sub 27}H{sub 27}N{sub 3}O{sub 2}-treated composite due to the good dispersion and interfacial adhesion with C{sub 14}H{sub 6}O{sub 8}. Also, the thermal conductivity of the composite with an in-plane orientation of 8-μm-sized BN was higher than that of the composites with different particles sizes because of the improvement in the high degree of orientation.

  14. MODULATION OF MDR-1 GENE IN HUMAN BREAST CANCER CELLS BY SODIUM BUTYRATE AND DMSO

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the regulation effect of MDR-1 gene inhuman breast cancer cell by the differentiating agents, sodium butyrate and dimethyl sulfoxide. Methods: 1. A sensitive assay, RT-PCR, was used to measure the mRNA level before and after the treatment of sodium butyrate, DMSO, using b -actin as control; 2. Evaluated the effect of sodium butyrate, DMSO on MDR-1 gene expression of human breast cancer at the protein level by immunoflow cytometry; 3. P-glycoprotein function was examined after accumulation of the fluorescent drug, Phodamine-123, by flow cytometry; 4. Chemosensitivity to doxorubicin was analyzed using the MTT assay. Results: Sodium butyrate and DMSO were found to increase the MDR characteristics on MDR-1 gene, MDR-1 expression levels, P-glycoprotein function and chemosensitivity to doxorubicin. Conclusion: sodium butyrate, DMSO can modulate the MDR-1 gene at gene level, protein level, protein function level and cell level.

  15. Butyrate regulates the expression of inflammatory and chemotactic cytokines in human acute leukemic cells during apoptosis.

    Science.gov (United States)

    Pulliam, Stephanie R; Pellom, Samuel T; Shanker, Anil; Adunyah, Samuel E

    2016-08-01

    Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24h, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines. PMID:27253488

  16. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    OpenAIRE

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A.; Gilbert, Jack A.; Nagler, Cathryn R.

    2015-01-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based ...

  17. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    OpenAIRE

    Edgar C. Clausen; Jamie A. Hestekin; Beitle, Robert R.; Nicole Lorenz; Amy McGraw; Jianjun Du

    2012-01-01

    In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partia...

  18. Butyric acid tolerance of rice mutant M4 families

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2007-01-01

    Full Text Available Hydromorphic soils have a low drainage capacity and are used mainly for the cultivation of irrigated rice.This condition favors the development of anaerobic microorganisms that produce phytotoxic substances. The objective of thisstudy was to evaluate the response of rice mutants to the phytotoxicity caused by butyric acid under anaerobic conditions. Theexperiment consisted of four treatments arranged in a randomized block design. Plants of 40 families were grown in ahydroponic system and the measured variables were root length and length of aerial part (LAP, number of roots (NR androot dry matter (RDM and aerial part dry matter (DMAP. The analysis of variance was performed, the relative performancecalculated and linear regressions were fitted. Only the treatment effect for NR and effect of interaction for LAP were notsignificant. Root length was most affected by the acid and the regressions expressed positive as well as negative effects for acidtolerance in the mutant families.

  19. [Pharmacological study on hydrocortisone 17-butyrate 21-propionate (author's transl)].

    Science.gov (United States)

    Otomo, S; Higuchi, S; Nakaike, S; Takeshita, K; Tanaka, M; Gotoh, Y; Osada, Y; Tsuchida, K; Inoue, K; Kyogoku, K; Tarumoto, Y; Sasajima, M; Ohzeki, M

    1981-12-01

    The topical and systemic anti-inflammatory activities of hydrocortisone 17-butyrate 21-propionate (HBP) were studied. The systemic anti-inflammatory activities of HBP and reference steroids were examined for their effects on dinitrochlorobenzene dermatitis, carrageenin edema, cotton pellet granuloma and adjuvant arthritis in rats and by the delayed allergic edema test in mice. The topical anti-inflammatory activities of these steroids were examined for their effects on croton oil dermatitis, croton oil ear edema, carrageenin edema and cotton pellet granuloma in rats. Furthermore, effects of these steroids on liver glycogen deposition in mice, thymolysis, and decrease of serum corticosterone level in rats were examined. Systemically administered HBP was less potent than betamethasone 17-valerate (BV), but was almost equal to hydrocortisone 17-butyrate (HB) in anti-inflammatory activity, and its effects on liver glycogen deposition, thymolysis, and the decrease of serum corticosterone level. However, the topical anti-inflammatory activity of HBP was more potent than that of BV and HB, although in the same experiment, thymolytic activity of HBP was less potent than that of BV, but was almost equal to HB. The inhibitory effect of HBP on hypotonic induced hemolysis was weaker than that of BV, but was stronger than that of HB in vitro. The affinity of HBP was higher than that of BV and HB to polymorphonuclear leucocytes used as the inflammatory cells in vitro. On the other hand no marked difference was observed in the affinity to erythrocytes used as the non-inflammatory cells in vitro. These results suggest that HBP is a useful drug which has superior topical anti-inflammatory activity, but has a weak systemic effect. PMID:7333567

  20. Detection of Ca2+-dependent acid phosphatase activity identiifes neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Institute of Scientific and Technical Information of China (English)

    Tigran R Petrosyan; Anna S Ter-Markosyan; Anna S Hovsepyan

    2016-01-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I;n=12) or unilateral rubrospinal tract transection at the cervical level (C3–4) (group II;n=12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian’s calcium adenoside triphosphate method revealed that BM stimulated the sprouting of ifbers and dilated the capillaries in the brain and spinal cord. These results sug-gest that BM can promote the recovery of motor function of rats with central nervous system injury;and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regenera-tion-promoting effects of BM on the injured central nervous system.

  1. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  2. Butyrate plays differential roles in cellular signaling in cancerous HCT116 and noncancerous NCM460 colon cells

    Science.gov (United States)

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects in colon. However, the mechanistic action of butyrate at the cellular level remains to be determined. We hypothesize that butyrate plays differential roles in cancerous and non-cancerous cells through si...

  3. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Institute of Scientific and Technical Information of China (English)

    HE Guo-qing; KONG Qing; CHEN Qi-he; RUAN Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.

  4. Duodenal histology and carcass quality of feedlot cattle supplemented with calcium butyrate and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Thiago Simas de Oliveira Moreira

    2016-01-01

    Full Text Available The experiment was carried out at the Comigo Technology Center, in Rio Verde, State of Goiás, Brazil, with the objective of evaluating the effects of supplementation with calcium butyrate, as a growth promoting agent for the duodenal mucosa and Bacillus subtilis as a probiotic performance enhancer in feedlot cattle. Calcium butyrate (5 and 10 g per animal per day and Bacillus (10 g per animal per day were added to a basal diet. There were used 85 Nelore bulls, with average weight of 315 ± 7 kg. The experiment lasted 118 days, including the adaptation period, until slaughter at 30 months of age. Diets were distributed in a completely randomized design with four treatments, where: T1 = control (basal diet; T2 = basal diet + 5 g calcium butyrate; T3 = basal diet + 10 g calcium butyrate and T4 = basal diet + 10 g calcium butyrate + 10 g probiotic with four replications and five to six animals per replication. It was used a forage: concentrate ratio of 30:70, the roughage used was the corn silage. Height and width measurements of intestinal villi were taken, and carcass and meat quality were evaluated. The supplementation of calcium butyrate and Bacillus subtilis positively influenced (p < 0.05 the carcass marbling level and calcium butyrate increased the villus height in the small intestine.

  5. Destructive effects of butyrate on the cell envelope of Helicobacter pylori.

    Science.gov (United States)

    Yonezawa, Hideo; Osaki, Takako; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Woo, Timothy Derk Hoong; Takahashi, Motomichi; Matsubara, Sachie; Kawakami, Hayato; Ochiai, Kuniyasu; Kamiya, Shigeru

    2012-04-01

    Helicobacter pylori can be found in the oral cavity and is mostly detected by the use of PCR techniques. Growth of H. pylori is influenced by various factors in the mouth, such as the oral microflora, saliva and other antimicrobial substances, all of which make colonization of the oral cavity by H. pylori difficult. In the present study, we analysed the effect of the cell supernatant of a representative periodontal bacterium Porphyromonas gingivalis on H. pylori and found that the cell supernatant destroyed the H. pylori cell envelope. As P. gingivalis produces butyric acid, we focused our research on the effects of butyrate and found that it significantly inhibited the growth of H. pylori. H. pylori cytoplasmic proteins and DNA were detected in the extracellular environment after treatment with butyrate, suggesting that the integrity of the cell envelope was compromised and indicating that butyrate has a bactericidal effect on H. pylori. In addition, levels of extracellular H. pylori DNA increased following treatment with the cell supernatant of butyric acid-producing bacteria, indicating that the cell supernatant also has a bactericidal effect and that this may be due to its butyric acid content. In conclusion, butyric acid-producing bacteria may play a role in affecting H. pylori colonization of the oral cavity. PMID:22194341

  6. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat. PMID:23918959

  7. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  8. Electrochemical Characterization of Cellulose Acetate Butyrate-Prmutit Composite Membrane in Aqueous Uni-Uni Valent Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    A.K. Tiwari

    2015-06-01

    Full Text Available Co-mixed cellulose acetate butyrate and permutit in a definite composition was prepared and coded as MRS-2. The membrane potential was measured with uni-uni valent electrolyte, NaCl solutions using saturated calomel electrodes (SCEs.The effective fixed charge density of the membrane was determined by TMS method and it showed dependence on the porosity, charge on the membrane matrix, charge and size of permeating ions. Other important electrochemical parameters were calculated. Conductance-time data were generated for the kinetic study of the permeating ions in terms of membrane permeability, flow and flux parameters. Donnan membrane equilibrium condition was examined. Membrane adsorbability showed concave dependence with external electrolyte solution and convex type dependence was showed by swelling and conductance parameters. This membrane had no characteristic of anomalous osmosis, indicates that there is no water flooding will take place during membrane operation.

  9. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway.

    Science.gov (United States)

    Wang, Xukai; He, Gang; Peng, Yan; Zhong, Weitian; Wang, Yan; Zhang, Bo

    2015-01-01

    Insulin resistance (IR) is a common feature of Type II diabetes, metabolic disorders, hypertension and other vascular diseases. Recent studies showed that obesity-induced inflammation may be critical for IR. To investigate the anti-inflammatory effect of sodium butyrate (NaB) on obesity-induced inflammation, the db/db mice were intraperitoneally injected with NaB for 6 weeks. Glucose control was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT). Adipose tissue was harvested for gene expression analysis. 3T3-L1 adipocytes were treated with Tnf-α to mimic the inflammatory state and gene expression was detected by realtime PCR and Western blotting. Our results showed that NaB treatment improved glucose control in db/db mice as determined by GTT and ITT tests. Gene expression analysis showed that NaB inhibited cytokines and immunological markers including CD68, Interferon-γ and Mcp in adipose tissues in db/db mice. Moreover, NaB inhibited cytokine releasing in 3T3-L1 adipocytes treated with TNF-α. Further analysis of inflammation pathway showed that NLRP3 was activated in db/db mice, which was efficiently inhibited by NaB treatment. Our data suggest that inhibition of obesity-induced inflammation alleviates IR, and NaB might be a potential anti-inflammatory agent for obesity. PMID:26234821

  10. ALA-Butyrate prodrugs for Photo-Dynamic Therapy

    Science.gov (United States)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2010-05-01

    The use of 5-aminolevulinic acid (ALA) administration has led to many applications of photodynamic therapy (PDT) in cancer. However, the hydrophilic nature of ALA limits its ability to penetrate the cells and tissues, and therefore the need for ALA derivatives became an urgent research target. In this study we investigated the activity of novel multifunctional acyloxyalkyl ester prodrugs of ALA that upon metabolic hydrolysis release active components such as, formaldehyde, and the histone deacetylase inhibitory moiety, butyric acid. Evaluation of these prodrugs under photo-irradiation conditions showed that butyryloxyethyl 5-amino-4-oxopentanoate (ALA-BAC) generated the most efficient photodynamic destruction compared to ALA. ALA-BAC stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells which resulted in generation of intracellular ROS, reduction of mitochondrial activity, leading to apoptotic and necrotic death of the cells. The apoptotic cell death induced by ALA / ALA-BAC followed by PDT equally activate intrinsic and extrinsic apoptotic signals and both pathways may occur simultaneously. The main advantage of ALA-BAC over ALA stems from its ability to induce photo-damage at a significantly lower dose than ALA.

  11. Butyrate induces sLex synthesis by stimulation of selective glycosyltransferase genes

    OpenAIRE

    Radhakrishnan, Prakash; Beum, Paul V.; Tan, Shuhua; Cheng, Pi-Wan

    2007-01-01

    Sialyl Lewis x (sLex) is an important tumor-associated carbohydrate antigen present on the cell surface glycoconjugates involved in leukocyte migration and cancer metastasis. We report the formation of sLex epitope in butyrate-treated human pancreatic adenocarcinoma cells expressing MUC1 and core 2 N-acetylglucosaminyltransferase (C2GnT). Butyrate treatment stimulates not only the transgene but also a group of endogenous glycosyltransferase genes involved in the synthesis of sLex. Current fin...

  12. Butyrate-mediated acquisition of chemoresistance by human colon cancer cells.

    Science.gov (United States)

    Kang, Hyang Ri; Choi, Hyeon Gyeom; Jeon, Chae Kyung; Lim, Soo-Jeong; Kim, So Hee

    2016-08-01

    Butyrate is a short-chain fatty acid produced by the intestinal microflora and it not only induces apoptosis but also inhibits the proliferation of cancer cells. Recently, it has been reported that butyrate may cause resistance in colon cancer cells. Therefore, we investigated the effects of increased resistance to butyrate in HCT116 colon cancer cells. We established HCT116 cells resistant to butyrate (HCT116/BR) by treating HCT116 parental cells (HCT116/PT) with increasing concentrations of butyrate to a maximum of 1.6 mM for 3 months. The butyrate concentrations that inhibited cell growth by 50% (IC50) were 0.508 and 5.50 mM in HCT116/PT and HCT116/BR cells. The values after treatment with paclitaxel, 5-fluorouracil (5-FU), doxorubicin and trichostatin A (TSA) were 2.42, 2.36, 4.31 and 11.3-fold higher, respectively, in HCT116/BR cells compared with HCT116/PT cells. The protein expression of drug efflux pumps, such as P-glycoprotein (P-gp), breast cancer-resistant protein (BCRP) and the multidrug resistance associated protein 1 (MRP1), did not differ between HCT116/PT and HCT116/BR cells. The expression level of the anti-apoptotic Bcl-xL protein was increased while those of pro-apoptotic Bax and Bim proteins were reduced in HCT116/BR cells. There were no significant differences in cell motility and invasion. This study suggests that exposure of colon cancer cells to butyrate results in development of resistance to butyrate, which may play a role in the acquisition of chemoresistance in colon cancer. PMID:27277338

  13. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate.

    Directory of Open Access Journals (Sweden)

    Robert W Li

    Full Text Available The capacity of the rumen microbiota to produce volatile fatty acids (VFAs has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Twenty one phyla were identified in the rumen microbiota of dairy cows. The rumen microbiota harbored 54.5±6.1 genera (mean ± SD and 127.3±4.4 operational taxonomic units (OTUs, respectively. However, the core microbiome comprised of 26 genera and 82 OTUs. Butyrate infusion altered molar percentages of 3 major VFAs. Butyrate perturbation had a profound impact on the rumen microbial composition. A 72 h-infusion led to a significant change in the numbers of sequence reads derived from 4 phyla, including 2 most abundant phyla, Bacteroidetes and Firmicutes. As many as 19 genera and 43 OTUs were significantly impacted by butyrate infusion. Elevated butyrate levels in the rumen seemingly had a stimulating effect on butyrate-producing bacteria populations. The resilience of the rumen microbial ecosystem was evident as the abundance of the microorganisms returned to their pre-disturbed status after infusion withdrawal. Our findings provide insight into perturbation dynamics of the rumen microbial ecosystem and should guide efforts in formulating optimal uses of probiotic bacteria treating human diseases.

  14. Butyrate-induced GPR41 Activation Inhibits Histone Acetylation and Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Jin Wu; Zongli Zhou; Yinghe Hu; Suzhen Dong

    2012-01-01

    Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41 (GPR41).In addition,it is an inhibitor of histone deacetylase (HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the Gl-stage,while its activation by butyrate can cause more cells to pass the Gl checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.

  15. Thermal Analysis of Whole Bacterial Cells Exposed to Potassium Permanganate Using Differential Scanning Calorimetry: a Biphasic Dose-Dependent Response to Stress

    Directory of Open Access Journals (Sweden)

    Marina K. Abuladze

    2009-01-01

    Full Text Available Differential scanning calorimetry (DSC was applied to estimate the impact of the toxic oxidant potassium permanganate (PM on the intracellular structural and functional alterations at whole cell level using soil bacteria Arthrobacter oxydans as a model culture. Differential scanning calorimetry (DSC was applied in order to estimate the impact of the toxic oxidant potassium permanganate (PM on the intracellular structural and functional alterations at the whole cell level using the soil bacteria Arthrobacter oxydans as a model culture. We compared the total melting heat and the temperature of DNA-protein complex (DNP melting at the PM application prior to the calorimetry measurement and after 24-h exposure at the concentration range 0.02–1.4 mM. The initial oxidative effect caused changes in the pattern of the whole cell melting spectra (mainly at the temperature range 56–78°C, the decrease of Tmax °C DNP melting, and did not influence significantly the total heat of bacterial melting at different concentrations of PM. The prolonged effect of permanganate up to 24 h was characterized by a biphasic dose-dependent response to stress estimated by the DSC technique and the colony-forming assay. The low doses of PM (0.02 and 0.2 mM stimulated cell proliferation, and increased the total whole cell melting heat and the temperature of DNP melting. The toxic effect of PM up to 0.04 mM reduced cell viability, changed the character of multipeaked thermograms, and lowered the total melting heat and the temperature of DNP melting in a concentration-dependent manner. This study presents the DSC method for evaluating and monitoring the effects of exposure to potential human and environmental toxicants.

  16. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    Science.gov (United States)

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

  17. Structure and Dynamics of Anaerobic Bacterial Aggregates in a Gas-Lift Reactor

    OpenAIRE

    Beeftink, H.H.; Staugaard, P

    1986-01-01

    Anaerobic mixed-culture aggregates, which converted glucose to acetic, propionic, butyric, and valeric acids, were formed under controlled conditions of substrate feed (carbon limitation) and hydraulic regimen. The continuous-flow system used (anaerobic gas-lift reactor) was designed to retain bacterial aggregates in a well-mixed reactor. Carrier availability (i.e., liquid-suspended sand grains) proved necessary for bacterial aggregate formation from individual cells during reactor start-up. ...

  18. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    Science.gov (United States)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  19. Electronic Structures and Optical Properties of Phenyl C71 Butyric Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Cai-Rong Zhang

    2013-01-01

    Full Text Available Phenyl C71 butyric acid methyl ester (PC71BM has been adopted as electron acceptor materials in bulk heterojunction solar cells with relatively higher power conversion efficiency. The understanding of the mechanism and performance for the devices based upon PC71BM requires the information of conformations, electronic structures, optical properties, and so forth. Here, the geometries, IR and Raman, electronic structures, polarizabilities, and hyperpolarizabilities of PC71BM isomers are studied by using density functional theory (DFT; the absorption and excitation properties are investigated via time-dependent DFT with B3LYP, PBE0, and CAM-B3LYP functionals. The calculated results show that [6,6]PC71BM is more stable than [5,6]PC71BM due to the lower total energy. The vibrational modes of the isomers at IR and Raman peaks are quite similar. As to absorption properties, CAM-B3LYP functional is the suitable functional for describing the excitations of PC71BM because the calculated results with CAM-B3LYP functional agree well with that of the experiment. The analysis of transition configurations and molecular orbitals demonstrated that the transitions at the absorption maxima in UV/Vis region are localized π-π* transitions in fullerenes cages. Furthermore, the larger isotropic polarizability of PC71BM indicates that the response of PC71BM to applied external electric field is stronger than that of PC61BM, and therefore resulting into better nonlinear optical properties.

  20. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    International Nuclear Information System (INIS)

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (Voc) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the Voc, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased Voc, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  1. Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain) through Culture-Dependent and Independent Approaches.

    Science.gov (United States)

    Pascual, Javier; Blanco, Silvia; García-López, Marina; García-Salamanca, Adela; Bursakov, Sergey A; Genilloud, Olga; Bills, Gerald F; Ramos, Juan L; van Dillewijn, Pieter

    2016-01-01

    Little is known of the bacterial communities associated with the rhizosphere of wild plant species found in natural settings. The rhizosphere bacterial community associated with wild thyme, Thymus zygis L., plants was analyzed using cultivation, the creation of a near-full length 16S rRNA gene clone library and 454 amplicon pyrosequencing. The bacterial community was dominated by Proteobacteria (mostly Alphaproteobacteria and Betaproteobacteria), Actinobacteria, Acidobacteria, and Gemmatimonadetes. Although each approach gave a different perspective of the bacterial community, all classes/subclasses detected in the clone library and the cultured bacteria could be found in the pyrosequencing datasets. However, an exception caused by inconclusive taxonomic identification as a consequence of the short read length of pyrotags together with the detection of singleton sequences which corresponded to bacterial strains cultivated from the same sample highlight limitations and considerations which should be taken into account when analysing and interpreting amplicon datasets. Amplicon pyrosequencing of replicate rhizosphere soil samples taken a year later permit the definition of the core microbiome associated with Thymus zygis plants. Abundant bacterial families and predicted functional profiles of the core microbiome suggest that the main drivers of the bacterial community in the Thymus zygis rhizosphere are related to the nutrients originating from the plant root and to their participation in biogeochemical cycles thereby creating an intricate relationship with this aromatic plant to allow for a feedback ecological benefit. PMID:26741495

  2. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.

    Science.gov (United States)

    Peterson, Eric C; Daugulis, Andrew J

    2014-03-01

    Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR. PMID:23996152

  3. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  4. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes

    OpenAIRE

    Rumberger, John M.; Jonathan R.S. Arch; Allan Green

    2014-01-01

    We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin...

  5. Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner

    OpenAIRE

    Avadhanula, Vasanthi; Rodriguez, Carina A.; DeVincenzo, John P.; Wang, Yan; Webby, Richard J; Ulett, Glen C.; Adderson, Elisabeth E.

    2006-01-01

    Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known recept...

  6. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    OpenAIRE

    Gbenga Adedeji Adewumi; Folarin Anthony Oguntoyinbo; Santosh eKeisam; Wahengbam eRomi; Kumaraswamy eJeyaram

    2013-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 regio...

  7. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds

    OpenAIRE

    Adewumi, Gbenga A.; Oguntoyinbo, Folarin A.; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2013-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of ...

  8. Hypoxia-inducible Factor-dependent Regulation of Platelet-activating Factor Receptor as a Route for Gram-Positive Bacterial Translocation across Epithelia

    OpenAIRE

    Keely, Simon; Glover, Louise E.; Weissmueller, Thomas; MacManus, Christopher F.; Fillon, Sophie; Fennimore, Blair; Colgan, Sean P.

    2010-01-01

    Mucosal surfaces, such as the lung and intestine, are lined by a monolayer of epithelia that provides tissue barrier and transport function. It is recently appreciated that a common feature of inflammatory processes within the mucosa is hypoxia (so-called inflammatory hypoxia). Given the strong association between bacterial translocation and mucosal inflammatory disease, we hypothesized that intestinal epithelial hypoxia influences bacterial translocation. Initial studies revealed that exposu...

  9. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia

    OpenAIRE

    Vital, Marius; Gao, Jiarong; Rizzo, Mike; Harrison, Tara; Tiedje, James M.

    2014-01-01

    Butyrate-producing bacteria have an important role in maintaining host health. They are well studied in human and medically associated animal models; however, much less is known for other Vertebrata. We investigated the butyrate-producing community in hindgut-fermenting Mammalia (n=38), Aves (n=8) and Reptilia (n=8) using a gene-targeted pyrosequencing approach of the terminal genes of the main butyrate-synthesis pathways, namely butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (...

  10. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses.

    Science.gov (United States)

    Jiang, Ling; Wang, Jufang; Liang, Shizhong; Wang, Xiaoning; Cen, Peilin; Xu, Zhinan

    2009-07-01

    Butyrate fermentation by immobilized Clostridium tyrobutyricum was successfully carried out in a fibrous bed bioreactor using cane molasses. Batch fermentations were conducted to investigate the influence of pH on the metabolism of the strain, and the results showed that the fermentation gave a highest butyrate production of 26.2 g l(-1) with yield of 0.47 g g(-1) and reactor productivity up to 4.13 g l(-1)h(-1) at pH 6.0. When repeated-batch fermentation was carried out, long-term operation with high butyrate yield, volumetric productivity was achieved. Several cane molasses pretreatment techniques were investigated, and it was found that sulfuric acid treatment gave better results regarding butyrate concentration (34.6+/-0.8 g l(-1)), yield (0.58+/-0.01 g g(-1)), and sugar utilization (90.8+/-0.9%). Also, fed-batch fermentation from cane molasses pretreated with sulfuric acid was performed to further increase the concentration of butyrate up to 55.2 g l(-1). PMID:19297150

  11. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  12. Rapid Estimation of Enantioselectivity in Lipase-catalyzed Resolution of Glycidyl Butyrate Using pH Indicator

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; WANG Lei; WANG Li-cheng; LI Chun-yuan; WANG Ren; MIAO Qing-hua; YANG Ming; WANG Zhi

    2009-01-01

    A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the dif-ference of hydrolysis rates for the racemic ester and its slow reacting enantiomer under the same condition because the difference mainly depends on the enantioselective ratio(E values). The higher the enantiose-lectivity of enzyme, the larger the difference of hydrolysis rate. The bromothymol blue(BTB) can be used as pH indicator for microplate reader to monitor the formation of acid in lipase-catalyzed hydrolysis ofesters. This method has been successfully used to rapidly estimate the enantioselectivity of several lipases in the resolution of glycidyl butyrate.

  13. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    Science.gov (United States)

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  14. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

    NARCIS (Netherlands)

    D.H. Park; R. Mirabella; P.A. Bronstein; G.M. Preston; M.A. Haring; C.K. Lim; A. Collmer; R.C. Schuurink

    2010-01-01

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome h

  15. A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose

    Directory of Open Access Journals (Sweden)

    Beauvieux Marie-Christine

    2011-06-01

    Full Text Available Abstract Background Butyrate, end-product of intestinal fermentation, is known to impair oxidative phosphorylation in rat liver and could disturb glycogen synthesis depending on the ATP supplied by mitochondrial oxidative phosphorylation and cytosolic glycolysis. Methods In 48 hr-fasting rats, hepatic changes of glycogen and total ATP contents and unidirectional flux of mitochondrial ATP synthesis were evaluated by ex vivo 31P NMR immediately after perfusion and isolation of liver, from 0 to 10 hours after force-feeding with (butyrate 1.90 mg + glucose 14.0 mg.g-1 body weight or isocaloric glucose (18.2 mg.g-1 bw; measurements reflected in vivo situation at each time of liver excision. The contribution of energetic metabolism to glycogen metabolism was estimated. Results A net linear flux of glycogen synthesis (~11.10 ± 0.60 μmol glucosyl units.h-1.g-1 liver wet weight occurred until the 6th hr post-feeding in both groups, whereas butyrate delayed it until the 8th hr. A linear correlation between total ATP and glycogen contents was obtained (r2 = 0.99 only during net glycogen synthesis. Mitochondrial ATP turnover, calculated after specific inhibition of glycolysis, was stable (~0.70 ± 0.25 μmol.min-1.g-1 liver ww during the first two hr whatever the force-feeding, and increased transiently about two-fold at the 3rd hr in glucose. Butyrate delayed the transient increase (1.80 ± 0.33 μmol.min-1.g-1 liver ww to the 6th hr post-feeding. Net glycogenolysis always appeared after the 8th hr, whereas flux of mitochondrial ATP synthesis returned to near basal level (0.91 ± 0.19 μmol.min-1.g-1 liver ww. Conclusion In liver from 48 hr-starved rats, the energy need for net glycogen synthesis from exogenous glucose corresponds to ~50% of basal mitochondrial ATP turnover. The evidence of a late and transient increase in mitochondrial ATP turnover reflects an energetic need, probably linked to a glycogen cycling. Butyrate, known to reduce oxidative

  16. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Science.gov (United States)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  17. Bacterial deposition in a parallel plate and a stagnation point flow chamber : microbial adhesion mechanisms depend on the mass transport conditions

    NARCIS (Netherlands)

    Bakker, DP; Busscher, HJ; van der Mei, HC

    2002-01-01

    Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica, suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanis

  18. Characterization by culture-dependent and culture-1 independent methods of the 2 bacterial population of suckling-lamb packaged in different atmospheres

    NARCIS (Netherlands)

    Oses, S.M.; Diez, A.M.; Melero, B.; Luning, P.A.; Jaime, I.; Rovira, J.

    2013-01-01

    This study offers insight into the dynamics of bacterial populations in fresh cuts of suckling lamb under four different atmospheric conditions: air (A), and three Modified Atmosphere Packaging (MAP) environments, 15%O2/30%CO2/55%N2 (C, commercial), 70%O2/30%CO2 (O), and 15%O2/85%CO2 (H) for 18 days

  19. Transport of 3-hydroxy(3-/sup 14/C)butyrate by dissociated cells from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Tildon, J.T.; Roeder, L.M.

    1988-08-01

    Recent studies suggest that the utilization of oxidizable substrates by the brain may be regulated in part by transport across the plasma membrane. Dissociated brain cells obtained by mechanical disruption of rat brain were used to measure the uptake of 3-hydroxy(3-14C)butyrate. Total uptake revealed two mechanisms (diffusion and a carrier-mediated system). A Lineweaver-Burk plot of the latter component yielded an apparent Km of 1.47 mM and a maximal velocity (Vmax) of 5 nmol.min-1.mg protein-1. The rates of uptake were temperature dependent and were significantly higher at pH 6.2 than at pH 7.4 or 8.2. Preloading the cells and increasing the intracellular concentration of 3-hydroxybutyrate using 12.5 and 25 mM increased the rate of uptake 143 and 206%, respectively, indicative of an accelerative exchange mechanism. Uptake was inhibited approximately 50% by (in mM) 10 phenylpyruvate, 10 alpha-ketoisocaproate, 10 KCN, and 1.5 NaAsO/sub 2/. Uptake was also decreased by (in mM) 5 lactate, 5 methyl malonic acid, 1 alpha-cyano-4-hydroxycinnamate, and 1 mersalyl. Dissociated brain cells from 14- to 16-day-old rats accumulated 3-hydroxybutyrate at a rate more than two-fold greater than cells from either younger (2-day-old) or older (28-day-old and adult) animals. These data are consistent with the proposal that 3-hydroxybutyrate is taken up by the brain by both diffusion and a carrier-mediated transport system, and they support the hypothesis that transport at the cellular level contributes to the regulation of substrate utilization by the brain.

  20. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  1. Deuterium kinetic isotope effect for oxidation of perdeuterated sodium butyrate with manganate in 3 M sodium hydrochloride solution

    International Nuclear Information System (INIS)

    Deuterium kinetic effect, D-KIE, for oxidation of perdeuterided sodium butyrate, CD3(CD2)2COONa, with manganate in the aqueous solution of 3M NaOH has been determined in the temperature range 323-373 K. The temperature dependent kH/kD ratios are in the range from 17.59 at 323 K to 11,25 at 373 K. The activation energy difference, δQ0 = Q0DD - Q0=HH δH0DD - δH0HH = 9.20 kJ mol-1, and the Arrhenius preexponential factors ratio A0DD/A0HH is equal to 1.76, corresponding to δS0DD - δS0HH = 4.70 k J-1 as deduced from the Arrhenius and Eyring diagrams. This is the main evidence of tunnelling in the transfer of methylene hydrogens of butyrate to the negatively charged oxygens of manganate in very basic solutions. The k0HH/k0DD ratios, corrected for the ionic strength, have been reproduced by multiplying the (k0HH/k0DD)KIE value, caused by zero point energy differences, by the Bell tunnel correction QtHH.QtDD. The half width of the energy barrier, as approximated by an inverted parabola, was found to be equal to 5x10-11 m. The physico-chemical origin of the energy barrier for the oxidation of n-chain aliphatic carboxylates with MnO42- ions in strongly alkaline solutions has been discussed. The mechanisms of the permanganate versus manganate oxidation i. e., in acidic versus alkaline media are compared. (author)

  2. Butyrate Produced by Commensal Bacteria Potentiates Phorbol Esters Induced AP-1 Response in Human Intestinal Epithelial Cells

    OpenAIRE

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M.

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect...

  3. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  4. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  5. Prostatitis - bacterial

    Science.gov (United States)

    Any bacteria that can cause a urinary tract infection can cause acute bacterial prostatitis. Infections spread through sexual contact can cause prostatitis. These include chlamydia and gonorrhea . Sexually transmitted ...

  6. Periodic growth of bacterial colonies

    Science.gov (United States)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  7. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  8. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. PMID:26779817

  9. Proteome analysis of butyrate-treated chronic myelogenous leukemia K562 cells

    Czech Academy of Sciences Publication Activity Database

    Halada, Petr; Grebeňová, D.; Pešlová, G.; Havlíček, Vladimír; Hrkal, Z.

    Edinburgh, 2003, s. -. [International Mass Spectrometry Conference /16./. Edingurgh (GB), 31.08.2003-05.09.2003] R&D Projects: GA ČR GA303/01/1445; GA MZd NL7681 Institutional research plan: CEZ:AV0Z5020903 Keywords : butyrate-treated * leukemie k562 * cells Subject RIV: EE - Microbiology, Virology

  10. Protective effect of sodium butyrate on the cell culture model of Huntington disease

    Institute of Scientific and Technical Information of China (English)

    Zhang Baorong; Tian Jun; Yin Xinzhen; Luo Wei; Xia Kun

    2007-01-01

    This study aimed to develop a cell culture model of Huntington disease and observe the effect of sodium butyrate on this cell culture model. Exon 1 of both a wild type and a mutant IT15 gene from the genomic DNA of a healthy adult and a patient with Huntington disease was amplified and cloned into the eukaryotic expression vector pEGFP-C1. Human neuroblastoma SH-SYSY cells were transiently transfected with these recombinant plasmids in the absence and presence of sodium butyrate (0.1, 0.2, 0.5, 1.0 mmol/L). The MTT assay was used to measure cell viability. The results indicated that the N-terminal fragment of mutant huntingtin formed perinuclear and intranuclear aggregates and caused a decrease of SH-SY5Y cell viability. Sodium butyrate inhibited the decrease of SH-SYSY cell viability caused by the N-terminal fragment of mutant huntingtin. This suggests that sodium butyrate has a protective effect on this cell culture model of Huntington disease.

  11. Conversion regular patterns of acetic acid,propionic acid and butyric acid in UASB reactor

    Institute of Scientific and Technical Information of China (English)

    LIU Min; REN Nan-qi; CHEN Ying; ZHU Wen-fang; DING Jie

    2004-01-01

    On the basis of continuous tests and batch tests, conversion regular patterns of acetate, propionate and butyrate in activated sludge at different heights of the UASB reactor were conducted. Results indicated that the conversion capacity of the microbial is decided by the substrate characteristic when sole VFA is used as the only substrate. But when mixed substrates are used,the conversion regulations would have changed accordingly. Relationships of different substrates vary according to their locations. In the whole reactor, propionate's conversion is restrained by acetate and butyrate of high concentration. On the top and at the bottom of the reactor, conversion of acetate, but butyrate, is restrained by propionate. And in the midst, acetate's conversion is accelerated by propionate while that of butyrate is restrained. It is proved, based on the analysis of specific conversion rate, that the space distribution of the microbe is the main factor that affects substrates' conversion. The ethanol-type fermentation of the acidogenic-phase is the optimal acid-type fermentation for the two-phase anaerobic process.

  12. Minimizing the level of butyric acid bacteria spores in farm tank milk

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    A year-long survey of 24 dairy farms was conducted to determine the effects of farm management on the concentrations of butyric acid bacteria (BAB) spores in farm tank milk (FTM). The results were used to validate a control strategy derived from model simulations. The BAB spore concentrations were m

  13. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Science.gov (United States)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  14. Bacterial Conjunctivitis

    OpenAIRE

    Köhle, Ülkü; Kükner, Şahap

    2003-01-01

    Conjunctivitis is an infection of the conjunctiva, generally characterized by irritation, itching, foreign body sensation, tearing and discharge. Bacterial conjunctivitis may be distinguished from other types of conjunctivitis by the presence of yellow–white mucopurulent discharge. It is the most common form of ocular infection all around the world. Staphylococcus species are the most common bacterial pathogenes, followed by Streptococcus pneumoniae and Haemophilus i...

  15. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  16. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  17. Effects of 5-azacytidine and butyrate on differentiation and apoptosis of hepatic cancer cell lines.

    Science.gov (United States)

    Wang, X M; Wang, X; Li, J; Evers, B M

    1998-01-01

    OBJECTIVE: To determine the cellular effects of 5-azacytidine (5-azaC) and sodium butyrate on two human liver cancers, HepG2 and Hep3B. SUMMARY BACKGROUND DATA: Primary liver cancer is a significant health problem; treatment options are limited and prognosis is poor. Recent studies have focused on the role that programmed cell death (i.e., apoptosis) plays in both normal and neoplastic growth: certain genes can either suppress (e.g., Bcl-2, Bcl-xL) or promote (e.g., Bik, Bax, Bak) apoptosis. The identification of novel agents targeted to specific molecular pathways may be beneficial in the treatment of this disease. METHODS: Human liver cancer cell lines HepG2 and Hep3B were treated with 5-azaC alone, butyrate alone, or 5-azaC and butyrate. Morphologic and proliferative changes were assessed by light microscopy and 5-bromo-2'-deoxyuridine staining; flow cytometry was used to determine cell cycle characteristics. Apoptosis was assessed by DNA laddering and the in situ apoptosis detection assay using the TdT-mediated dUTP nick end labeling method. In addition, total RNA and protein were analyzed by ribonuclease protection and Western blot, respectively, to assess changes in the expression of apoptosis-related genes. RESULTS: Treatment with either 5-azaC or butyrate inhibited cell growth and induced apoptosis in both HepG2 and Hep3B cells; the combination of 5-azaC and butyrate was not more effective than either agent alone. 5-azaC alone resulted in a more differentiated-appearing morphology and G2 cell cycle arrest in both cell lines. Treatment with 5-azaC or butyrate affected the expression levels of proteins of the Bcl-2 family. CONCLUSIONS: Both 5-azaC and butyrate induced apoptosis in the HepG2 and Hep3B liver cancer cells; 5-azaC treatment alone produced G2 arrest in both cell lines. Proteins of the Bcl-2 family may play a role in the cellular changes that occur with treatment, but further studies are required to define this potential role. Products of the

  18. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus

    OpenAIRE

    Su, Xiao-Mei; Liu, Yin-Dong; Hashmi, Muhammad Zaffar; Ding, Lin-Xian; Shen, Chao-Feng

    2015-01-01

    Biphenyl (BP)-degrading bacteria were identified to degrade various polychlorinated BP (PCB) congers in long-term PCB-contaminated sites. Exploring BP-degrading capability of potentially useful bacteria was performed for enhancing PCB bioremediation. In the present study, the bacterial composition of the PCB-contaminated sediment sample was first investigated. Then extracellular organic matter (EOM) from M icrococcus luteus was used to enhance BP biodegradation. The effect of the EOM on the c...

  19. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles.

    Directory of Open Access Journals (Sweden)

    Elise S Pelzer

    Full Text Available Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%. We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

  20. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Science.gov (United States)

    Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2012-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life. PMID:23316189

  1. Context-dependent protein folding of a virulence peptide in the bacterial and host environments: structure of an SycH–YopH chaperone–effector complex

    International Nuclear Information System (INIS)

    The structure of a SycH–YopH chaperone–effector complex from Yersinia reveals the bacterial state of a protein that adopts different folds in the host and pathogen environments. Yersinia pestis injects numerous bacterial proteins into host cells through an organic nanomachine called the type 3 secretion system. One such substrate is the tyrosine phosphatase YopH, which requires an interaction with a cognate chaperone in order to be effectively injected. Here, the first crystal structure of a SycH–YopH complex is reported, determined to 1.9 Å resolution. The structure reveals the presence of (i) a nonglobular polypeptide in YopH, (ii) a so-called β-motif in YopH and (iii) a conserved hydrophobic patch in SycH that recognizes the β-motif. Biochemical studies establish that the β-motif is critical to the stability of this complex. Finally, since previous work has shown that the N-terminal portion of YopH adopts a globular fold that is functional in the host cell, aspects of how this polypeptide adopts radically different folds in the host and in the bacterial environments are analysed

  2. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Directory of Open Access Journals (Sweden)

    Gbenga Adedeji Adewumi

    2013-01-01

    Full Text Available In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, Staphylococcus saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and Uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA combined with 16S-23S rRNA gene internal transcribed spacer (ITS PCR amplification, restriction analysis (ITS-PCR-RFLP and randomly amplified polymorphic DNA (RAPD-PCR. This further discriminated Bacillus subtilis and its variants from food-borne pathogens such as Bacillus cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP for iru production to achieve product consistency, safety quality and improved shelf life.

  3. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Goulart Pacheco; Christiano Costa Esposito; Lucas CM Müller; Morgana TL Castelo-Branco; Leonardo Pereira Quintella; Vera Lucia A Chagas; Heitor Siffert P de Souza

    2012-01-01

    AIM:To investigate whether butyrate or glutamine enemas could diminish inflammation in experimental diversion colitis.METHODS:Wistar specific pathogen-free rats were submitted to a Hartmann's end colostomy and treated with enemas containing glutamine,butyrate,or saline.Enemas were administered twice a week in the excluded segment of the colon from 4 to 12 wk after the surgical procedure.Follow-up colonoscopy was performed every 4 wk for 12 wk.The effect of treatment was evaluated using video-endoscopic and histologic scores and measuring interleukin-1β,tumor necrosis factor-alpha,and transforming growth factor beta production in organ cultures by enzyme linked immunosorbent assay.RESULTS:Colonoscopies of the diverted segment showed mucosa with hyperemia,increased number of vessels,bleeding and mucus discharge.Treatment with either glutamine or butyrate induced significant reductions in both colonoscopic (P < 0.02) and histological scores (P < 0.01) and restored the densities of collagen fibers in tissue (P =0.015; P =0.001),the number of goblet cells (P =0.021; P =0.029),and the rate of apoptosis within the epithelium (P =0.043; P =0.011) to normal values.The high levels of cytokines in colon explants from rats with diversion colitis significantly decreased to normal values after treatment with butyrate or glutamine.CONCLUSION:The improvement of experimental diversion colitis following glutamine or butyrate enemas highlights the importance of specific luminal nutrients in the homeostasis of the colonic mucosa and supports their utilization for the treatment of human diversion colitis.

  4. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia.

    Science.gov (United States)

    Vital, Marius; Gao, Jiarong; Rizzo, Mike; Harrison, Tara; Tiedje, James M

    2015-04-01

    Butyrate-producing bacteria have an important role in maintaining host health. They are well studied in human and medically associated animal models; however, much less is known for other Vertebrata. We investigated the butyrate-producing community in hindgut-fermenting Mammalia (n = 38), Aves (n = 8) and Reptilia (n = 8) using a gene-targeted pyrosequencing approach of the terminal genes of the main butyrate-synthesis pathways, namely butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk). Most animals exhibit high gene abundances, and clear diet-specific signatures were detected with but genes significantly enriched in omnivores and herbivores compared with carnivores. But dominated the butyrate-producing community in these two groups, whereas buk was more abundant in many carnivorous animals. Clustering of protein sequences (5% cutoff) of the combined communities (but and buk) placed carnivores apart from other diet groups, except for noncarnivorous Carnivora, which clustered together with carnivores. The majority of clusters (but: 5141 and buk: 2924) did not show close relation to any reference sequences from public databases (identity Ruminococcaceae bacterium D16 were specific for herbivores and omnivores. Whereas 16S rRNA gene analysis showed similar overall patterns, it was unable to reveal communities at the same depth and resolution as the functional gene-targeted approach. This study demonstrates that butyrate producers are abundant across vertebrates exhibiting great functional redundancy and that diet is the primary determinant governing the composition of the butyrate-producing guild. PMID:25343515

  5. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  6. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    Science.gov (United States)

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  7. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon

    Institute of Scientific and Technical Information of China (English)

    Aldo Roda; Patrizia Simoni; Maria Magliulo; Paolo Nanni; Mario Baraldini; Giulia Roda; Enrico Roda

    2007-01-01

    AIM:To develop a new formulation with hydroxy propyl methyl cellulose and Shellac coating for extended and selective delivery of butyrate in the ileo-caecal region and colon.METHODS:One-gram sodium butyrate coated tablets containing 13C-butyrate were orally administered to 12 healthy subjects and 12 Crohn's disease patients and the rate of 13C-butyrate absorption was evaluated by 13CO2 breath test analysis for eight hours.Tauroursodeoxycholic acid(500 mg)was co-administered as a biomarker of oro-ileal transit time to determine also the site of release and absorption of butyrate by the time of its serum maximum concentration.RESULTS:The coated formulation delayed the 13C-butyrate release by 2-3 h with respect to the uncoated tablets.Sodium butyrate was delivered in the intestine of all subjects and a more variable transit time was found in Crohn's disease patients than in healthy subjects.The variability of the peak 13CO2 in the kinetic release of butyrate was explained by the inter-subject variability in transit time.However,the coating chosen ensured an efficient release of the active compound even in patients with a short transit time.CONCLUSION:Simultaneous evaluation of breath 13CO2 and tauroursodeoxycholic acid concentrationtime curves has shown that the new oral formulation consistently releases sodium butyrate in the ileo-cecal region and colon both in healthy subjects and Crohn's disease patients with variable intestinal transit time.This formulation may be of therapeutic value in inflammatory bowel disease patients due to the appropriate release of the active compound.

  8. Butyrate ingestion improves hepatic glycogen storage in the re-fed rat

    Directory of Open Access Journals (Sweden)

    Rigalleau Vincent

    2008-10-01

    Full Text Available Abstract Background Butyrate naturally produced by intestinal fiber fermentation is the main nutrient for colonocytes, but the metabolic effect of the fraction reaching the liver is not totally known. After glycogen hepatic depletion in the 48-hour fasting rat, we monitored the effect of (butyrate 1.90 mg + glucose 14.0 mg/g body weight versus isocaloric (glucose 18.2 mg/g or isoglucidic (glucose 14.0 mg/g control force-feeding on in vivo changes in hepatic glycogen and ATP contents evaluated ex vivo by NMR in the isolated and perfused liver. Results The change in glycogen was biphasic with (i an initial linear period where presence of butyrate in the diet increased (P = 0.05 the net synthesis rate (0.20 ± 0.01 μmol/min.g-1 liver wet weight, n = 15 versus glucose 14.0 mg/g only (0.16 ± 0.01 μmol/min.g-1 liver ww, n = 14, and (ii a plateau of glycogen store followed by a depletion. Butyrate delayed the establishment of the equilibrium between glycogenosynthetic and glycogenolytic fluxes from the 6th to 8th hour post-feeding. The maximal glycogen content was then 97.27 ± 10.59 μmol/g liver ww (n = 7 at the 8th hour, which was significantly higher than with the isocaloric control diet (64.34 ± 8.49 μmol/g, n = 12, P = 0.03 and the isoglucidic control one (49.11 ± 6.35 μmol/g liver ww, n = 6, P = 0.003. After butyrate ingestion, ATP content increased from 0.95 ± 0.29 to a plateau of 2.14 ± 0.23 μmol/g liver ww at the 8th hour post-feeding (n = 8 [P = 0.04 versus isoglucidic control diet (1.45 ± 0.19 μmol/g, n = 8 but was not different from the isocaloric control diet (1.70 ± 0.18 μmol/g, n = 12]. Conclusion The main hepatic effect of butyrate is a sparing effect on glycogen storage explained (i by competition between butyrate and glucose oxidation, glucose being preferentially directed to glycogenosynthesis during the post-prandial state; and (ii by a likely reduced glycogenolysis from the newly synthesized glycogen. This first

  9. CCAAT/enhancer-binding protein δ facilitates bacterial dissemination during pneumococcal pneumonia in a platelet-activating factor receptor-dependent manner

    OpenAIRE

    Duitman, JanWillem; Schouten, Marcel; Groot, Angelique P.; Borensztajn, Keren S.; Daalhuisen, Joost B.; Florquin, Sandrine; van der Poll, Tom; Spek, C Arnold

    2012-01-01

    CCAAT/enhancer-binding protein δ (C/EBPδ) recently emerged as an essential player in the inflammatory response to bacterial infections. C/EBPδ levels increase rapidly after a proinflammatory stimulus, and increasing C/EBPδ levels seem to be indispensable for amplification of the inflammatory response. Here we aimed to elucidate the role of C/EBPδ in host defense in community-acquired pneumococcal pneumonia. We show that C/EBPδ−/− mice are relatively resistant to pneumococcal pneumonia, as ind...

  10. Induction of cellular deoxyribonucleic acid synthesis in butyrate-treated cells by simian virus 40 deoxyribonucleic acid.

    OpenAIRE

    Kawasaki, S; Diamond, L; Baserga, R

    1981-01-01

    Sodium butyrate (3 mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G1 and S-ph...

  11. Filtration properties of bacterial cellulose membranes

    OpenAIRE

    Lehtonen, Janika

    2015-01-01

    Bacterial cellulose has the same molecular formula as cellulose from plant origin, but it is characterized by several unique properties including high purity, crystallinity and mechanical strength. These properties are dependent on parameters such as the bacterial strain used, the cultivation conditions and post-growth processing. The possibility to achieve bacterial cellulose membranes with different properties by varying these parameters could make bacterial cellulose an interesting materi...

  12. New lactic acid bacterial strains from traditional Mongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source.

    Science.gov (United States)

    Kimoto-Nira, Hiromi; Yamasaki, Seishi; Sasaki, Keisuke; Moriya, Naoko; Takenaka, Akio; Suzuki, Chise

    2015-03-01

    Attachment of lactic acid bacteria to the mucosal surface of the gastrointestinal tract is a major property of probiotics. Here, we examined the ability of 21 lactic acid bacterial strains isolated from traditional fermented milk products in Mongolia to adhere to porcine gastric mucin in vitro. Higher attachment was observed with Lactobacillus delbrueckii subsp. bulgaricus strains 6-8 and 8-1 than with Lactobacillus rhamnosus GG (positive control). Lactococcus lactis subsp. cremoris strain 7-1 adhered to mucin as effectively as did strain GG. Heat inactivation decreased the adhesive ability of strains 6-8 and 8-1 but did not affect strain 7-1. The adhesion of strains 6-8, 7-1 and 8-1 was significantly inhibited when the cells were pretreated with periodate and trypsin, indicating that proteinaceous and carbohydrate-like cell surface compounds are involved in the adhesion of these strains. The adhesion of strain 7-1 was affected by the type of carbohydrate present in the growth medium, being higher with fructose than with lactose, galactose or xylose as the carbon source. The sugar content of 7-1 cells grown on various carbohydrates was negatively correlated with its adhesive ability. We provide new probiotic candidate strains and new information regarding carbohydrate preference that influences lactic acid bacterial adhesion to mucin. PMID:25186082

  13. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  14. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  15. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  16. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed El-Sakhawy

    2014-01-01

    Full Text Available Carboxymethyl cellulose acetate butyrate (CMCAB has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW thermoplastic polymers with high glass transition temperatures (Tg. CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD formulations.

  17. Butyric acid fermentation from pretreated and hydrolyzed wheat straw by C.tyrobutyricum

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Westermann, Peter; Gavala, Hariklia N.

    xylose at a concentration of 71,6±0,2 g/l and 55,4±0,2 g/l respectively, with TS content 20,87% (g/g). From an economical point of view, the conversion of both sugars is very important. In fact C.tyrobutyricum has the capability to convert both hexose and pentose sugars. Results from batch experiments......Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Among other microbial strains, C.tyrobutyricum was found interesting due to its higher yield (more than 93% of the theoretical yield) and...

  18. An Acute Butyr-Fentanyl Fatality: A Case Report with Postmortem Concentrations.

    Science.gov (United States)

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Wright, Jennifer; Mena, Othon

    2016-03-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of butyr-fentanyl in a fatality attributed principally to the drug. A man who had a history of intravenous drug abuse was found unresponsive on the bathroom floor of his home. Drug paraphernalia was located on the bathroom counter. Toxicology testing, which initially screened positive for fentanyl by enzyme-linked immunosorbent assay, subsequently confirmed butyr-fentanyl, which was then quantitated by gas chromatography-mass spectrometry-specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. The butyr-fentanyl peripheral blood concentration was quantitated at 58 ng/mL compared with the central blood concentration of 97 ng/mL. The liver concentration was 320 ng/g, the vitreous was 40 ng/mL, the urine was 670 ng/mL and the gastric contained 170 mg. Acetyl-fentanyl was also detected in all biological specimens tested. Peripheral blood concentration was quantitated at 38 ng/mL compared with the central blood concentration of 32 ng/mL. The liver concentration was 110 ng/g, the vitreous was 38 ng/mL, the urine was 540 ng/mL and the gastric contained <70 mg. The only other drug detected was a relatively low concentration of benzoylecgonine. The cause of death was certified as acute butyr-fentanyl, acetyl-fentanyl and cocaine intoxication, and the manner of death was certified as accident. PMID:26683128

  19. Cortical and subcortical gamma amino acid butyric acid deficits in anxiety and stress disorders: Clinical implications

    OpenAIRE

    Goddard, Andrew W

    2016-01-01

    Anxiety and stress disorders are a major public health issue. However, their pathophysiology is still unclear. The gamma amino acid butyric acid (GABA) neurochemical system has been strongly implicated in their pathogenesis and treatment by numerous preclinical and clinical studies, the most recent of which have been highlighted and critical review in this paper. Changes in cortical GABA appear related to normal personality styles and responses to stress. While there is accumulating animal an...

  20. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation

    OpenAIRE

    Carrion, Sandra Leon; Sutter, Carrie Hayes; Sutter, Thomas R.

    2014-01-01

    Epidermal growth factor (EGF) receptor (EGFR) signaling is a critical determinant of keratinocyte proliferation and differentiation in both normal and diseased skin. Here we explore the effects of combined treatment with the differentiation-promoting agent sodium butyrate (SB) and the EGFR inhibitor (EGFRI) PD153035 on terminal differentiation of normal human epidermal keratinocytes (NHEKs). Cells treated with SB showed increased expression of the levels of mRNA and protein of the differentia...

  1. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    Science.gov (United States)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  2. Monitoring the cold crystallization of poly(3-hydroxy butyrate) via dielectric spectroscopy

    OpenAIRE

    Napolitano, Simone; Wübbenhorst, Michael

    2007-01-01

    Dielectric spectroscopy has been used to monitor the cold crystallization kinetics of poly(3-hydroxy butyrate), PHB, just above the glass transition temperature of the amorphous chains. Although the polymer shows a relatively complex dielectric scenario, an easy and fast analysis of the crystallization kinetics was performed by choosing an appropriate temperature range in which the structural relaxation is the only process present in the spectra of the amorphous samples. It was possible to mo...

  3. Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Koubková, Zuzana; Hýžďalová, Martina; Kozubík, Alois

    2009-01-01

    Roč. 53, č. 1 (2009), S102-S113. ISSN 1613-4125 R&D Projects: GA ČR(CZ) GA524/07/1178; GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA301/07/1557 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : apoptosis * butyrate * cell differentiation Subject RIV: BO - Biophysics Impact factor: 4.356, year: 2009

  4. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs. PMID:25189844

  5. Heritability estimates for octyl acetate and octyl butyrate in the mature fruit of the wild parsnip.

    Science.gov (United States)

    Carroll, M J; Zangerl, A R; Berenbaum, M R

    2000-01-01

    The aliphatic esters octyl acetate and octyl butyrate occur as major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). We determined phenotypic variation and narrow-sense heritabilities of these octyl esters in wild parsnip fruits from 30 maternal families. The mean octyl acetate content was 1.56 microg/mg dry fruit (0.08-5.51 microg/mg dry fruit) and the mean octyl butyrate content was 4.28 microg/mg dry fruit (1.28-14.22 microg/ mg dry fruit). Narrow-sense heritabilities for each ester's content were calculated by analysis of half-sib families (HS) and parent-offspring regression (OP). Heritabilities were 0.389 (HS) and 0.654 (OP) for octyl acetate and 0.670 (HS) and 0.626 (OP) for octyl butyrate. The amounts of the esters were phenotypically correlated with each other and with the linear furanocoumarins bergapten and xanthotoxin, phototoxic compounds that co-occur in the vittae with the esters. Ester amounts were not genetically correlated, indicating that these compounds could respond independently to selection pressures. These octyl esters may serve as carrier solvents that enhance penetration of these furanocoumarins into herbivore integuments and gut walls. PMID:10739131

  6. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  7. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei.

    Directory of Open Access Journals (Sweden)

    Alexander Schmidt

    Full Text Available In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT, a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224 was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF

  8. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  9. Bacterial cellulose/boehmite composites

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. UNESP. Instituto de Quimica de Araraquara, SP (Brazil); Caiut, Jose Mauricio A. [Universidade de Sao Paulo. Departamento de Quimica - FFCLRP/USP, Ribeirao Preto, SP (Brazil)

    2011-07-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  10. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  11. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  12. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health

    Directory of Open Access Journals (Sweden)

    Lonneke eOnrust

    2015-12-01

    Full Text Available The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that is sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS are such compounds as they can be converted to lactate which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies.

  13. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    International Nuclear Information System (INIS)

    HeLa S3 cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-[35S]methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S3 cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S3 cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product

  14. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production.

    Directory of Open Access Journals (Sweden)

    Mitsuharu Matsumoto

    Full Text Available BACKGROUND: Chronic low-grade inflammation is recognized as an important factor contributing to senescence and age-related diseases. In mammals, levels of polyamines (PAs decrease during the ageing process; PAs are known to decrease systemic inflammation by inhibiting inflammatory cytokine synthesis in macrophages. Reductions in intestinal luminal PAs levels have been associated with intestinal barrier dysfunction. The probiotic strain Bifidobacterium animalis subsp. lactis LKM512 is known to increase intestinal luminal PA concentrations. METHODOLOGY/PRINCIPAL FINDINGS: We supplemented the diet of 10-month-old Crj:CD-1 female mice with LKM512 for 11 months, while the controls received no supplementation. Survival rates were compared using Kaplan-Meier survival curves. LKM512-treated mice survived significantly longer than controls (P<0.001; moreover, skin ulcers and tumors were more common in the control mice. We then analyzed inflammatory and intestinal conditions by measuring several markers using HPLC, ELISA, reverse transcription-quantitative PCR, and histological slices. LKM512 mice showed altered 16S rRNA gene expression of several predominant intestinal bacterial groups. The fecal concentrations of PAs, but not of short-chain fatty acids, were significantly higher in LKM512-treated mice (P<0.05. Colonic mucosal function was also better in LKM512 mice, with increased mucus secretion and better maintenance of tight junctions. Changes in gene expression levels were evaluated using the NimbleGen mouse DNA microarray. LKM512 administration also downregulated the expression of ageing-associated and inflammation-associated genes and gene expression levels in 21-month-old LKM512-treated mice resembled those in 10-month-old untreated (younger mice. CONCLUSION/SIGNIFICANCE: Our study demonstrated increased longevity in mice following probiotic treatment with LKM512, possibly due to the suppression of chronic low-grade inflammation in the colon

  15. Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves

    OpenAIRE

    Kato, Shin-ichi; Sato, Katsuyoshi; Chida, Haruka; Roh., Sang-gun; Ohwada, Shyuichi; SATO, Shusuke; Guilloteau, Paul

    2011-01-01

    Although the growth-promoting action of sodium-butyrate (Na-butyrate) used as a feed additive has been observed in calves and pigs, the precise mechanisms involved remain to be clarified. In this study, pre-weaning calves were given milk formula (MF) supplemented with butyrate for 6 weeks to investigate its effects on postprandial changes in the plasma concentrations of metabolic hormones, and, simultaneously, on growth performance, the weight of the digestive organs and rumen papilla develop...

  16. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  17. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  18. Identification and Characterization of Arabidopsis Indole-3-Butyric Acid Response Mutants Defective in Novel Peroxisomal Enzymes

    OpenAIRE

    Zolman, Bethany K.; Martinez, Naxhiely; Millius, Arthur; Adham, A. Raquel; Bartel, Bonnie

    2008-01-01

    Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid β-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10. Like the previously described ibr3 mutant, which disrupts a putative peroxisomal ...

  19. Phase equilibria in water-pyridine-butyric acid systems at 25.0°C

    Science.gov (United States)

    Cherkasov, D. G.; Chepurina, Z. V.; Il'in, K. K.

    2014-04-01

    The solubility of the components of the ternary water-pyridine-butyric acid system is studied by means of isothermal titration at 25.0°C under normal pressure. Nine nodes are plotted over the area of delayering using the Mertslin section method, and the compositions of the equilibrium liquid phases are determined graphically. It was found that there is a closed binodal curve with two critical points on the solubility diagram of the system; the distribution curve of pyridine between the equilibrium liquid phases demonstrates its preferential distribution into the organic phase.

  20. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.

    Science.gov (United States)

    Ueki, Toshiyuki; Nevin, Kelly P; Woodard, Trevor L; Lovley, Derek R

    2014-01-01

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. Importance: The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  1. Preparation of poly(3-hydroxybutyrate)/carboxymethyl cellulose acetate butyrate blends using gel formation

    International Nuclear Information System (INIS)

    This study investigates poly(3-hydroxybutyrate) (PHB) gel formation with a binary combination of solvents and its use on the preparation of PHB and carboxymethyl cellulose acetate butyrate (CMCAB) blends. The gel preparation method was compared to a precipitation method followed by hot pressing. The results from DSC and X-ray diffractions showed that both methodologies produced blends with very similar thermal properties and crystallization behavior. Scanning electron microscopy indicated better homogeneity in gel formation blends. Apart from this, the gel formation methodology provided new ways to prepare immiscible blends with the advantage of using friendlier solvents. (author)

  2. Effect of different butyrate supplementations on growth and health of weaning pigs challenged or not with E. coli K88

    Directory of Open Access Journals (Sweden)

    Paolo Trevisi

    2010-01-01

    Full Text Available In a full factorial design (4 diets X challenge, Yes/No, 72 weaning pigs were assigned to one of the diets: Control; experimental diets, obtained with the addition of 2 g/kg free sodium butyrate (fNaB, or 0.6 g/kg fat-protected sodium butyrate (pNaB, or 2 g/kg INVE-NutriAd commercial mixture (Mix, based on 75 g/kg protected butyrate. Oral challenge with Escherichia coli K88 was done on 2/3 of pigs on d 7. Pigs were slaughtered on d 13. The mortality in challenged pigs, tended to be higher in control group (50.0% than in the three supplemented groups (23.5%. Growth tended to be increased averagely by the supplements (p=0.100 after the challenge, that also significantly reduced growth. In general the diet did not affect the fecal shedding of Escherichia coli and Lactobacilli, the K88-specific IgA activity in blood, the morphology of oxyntic mucosa and the expression of H+/K+-ATPase gene. The supplementations tended to increase villous length of jejunum (p=0.101. On the whole, growth, villous height and surviving rate can be positively affected either when the supplementation is done by free butyrate, by protected butyrate or by the special Inve Nutri-Ad product and these effects are distributed both on pigs infected or not with Escherichia coli K88.

  3. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium.

    Science.gov (United States)

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn't induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  4. A MyD88-dependent IFNγR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge

    Institute of Scientific and Technical Information of China (English)

    Eric M Pietras; Lloyd S Miller; Carl T Johnson; Ryan M O'Connell; Paul W Dempsey; Genhong Cheng

    2011-01-01

    Monocytes are mobilized to sites of infection via interaction between the chemokine MCP-1 and its receptor, CCR2, at which point they differentiate into macrophages that mediate potent antimicrobial effects. In this study, we investigated the mechanisms by which monocytes are mobilized in response to systemic challenge with the intracellular bacterium Francisella tularensis. We found that mice deficient in MyD88, interferon-γ (IFNγ)R or CCR2 all had defects in the expansion of splenic monocyte populations upon F. tularensis challenge, and in control of F. tularensis infection. Interestingly, MyD88-deficient mice were defective in production of IFNγ, and IFNγR deficient mice exhibited defective production of MCP-1, the ligand for CCR2. Transplantation of IFNγR-deficient bone marrow (BM) into wild-type mice further suggested that mobilization of monocytes in response to F. tularensis challenge required IFNγR expression on BM-derived cells. These studies define a critical host defense circuit wherein MyD88-dependent IFNγ production signals via IFNγR expressed on BM-derived cells, resulting in MCP-1 production and activation of CCR2-dependent mobilization of monocytes in the innate immune response to systemic F. tularensis challenge.

  5. Bacterial Communities: Interactions to Scale

    Science.gov (United States)

    Stubbendieck, Reed M.; Vargas-Bautista, Carol; Straight, Paul D.

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  6. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    Science.gov (United States)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  7. Optical Properties of MEH-PPV and MEH-PPV/ [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester Thin Films

    Directory of Open Access Journals (Sweden)

    B.M. Omer

    2012-12-01

    Full Text Available Thin films of Poly [2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV were prepared from chloroform, 1,2-dichlorobenzene and toluene solutions by spin coating technique on quartz substrates. Absorption and photoluminescence (PL spectra of the polymer thin films prepared from different solvents were measured. It was concluded from the UV-Vis absorption and PL spectra that the optical properties of MEH-PPV films strongly affected by solvents used for spin coating. A strong photoluminescence quenching was observed in (1:4 MEH-PPV: [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester (Modified Fullerene composite which provides evidence of photoinduced charge transfer. Further, with Atomic Force Microscope (AFM it has been demonstrated that the surface morphology of the MEH-PPV: Modified fullerene thin films are strongly dependent on the preparation condition (solvents.

  8. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  9. A simple method for the rapid determination of the stereospecificity of NAD-dependent dehydrogenases applied to mammalian IMP dehydrogenase and bacterial NADH peroxidase.

    Science.gov (United States)

    Cooney, D; Hamel, E; Cohen, M; Kang, G J; Dalal, M; Marquez, V

    1987-11-01

    The stereospecificity of IMP dehydrogenase (IMP:NAD+ oxidoreductase, EC 1.1.1.205) from two different sources was determined. The enzyme preparations were obtained from murine lymphoblasts and from Escherichia coli. Both enzymes transferred the 2-3H of IMP to the pro-S position of carbon atom C-4 of the nicotinamide ring in NAD. Thus, B-sided stereospecificity is common to the enzyme from two very different species. In addition, the studies described here demonstrate that alcohol dehydrogenase and NADH peroxidase, used as auxiliary enzymes, in combination with a microdistillation procedure, should permit rapid determination of the stereospecificity of any NAD-dependent dehydrogenase for which the appropriate tritiated substrate is available. PMID:2889473

  10. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  11. Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella.

    Science.gov (United States)

    Rivera-Chávez, Fabian; Zhang, Lillian F; Faber, Franziska; Lopez, Christopher A; Byndloss, Mariana X; Olsan, Erin E; Xu, Gege; Velazquez, Eric M; Lebrilla, Carlito B; Winter, Sebastian E; Bäumler, Andreas J

    2016-04-13

    The mammalian intestine is host to a microbial community that prevents pathogen expansion through unknown mechanisms, while antibiotic treatment can increase susceptibility to enteric pathogens. Here we show that streptomycin treatment depleted commensal, butyrate-producing Clostridia from the mouse intestinal lumen, leading to decreased butyrate levels, increased epithelial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium. Epithelial hypoxia and Salmonella restriction could be restored by tributyrin treatment. Clostridia depletion and aerobic Salmonella expansion were also observed in the absence of streptomycin treatment in genetically resistant mice but proceeded with slower kinetics and required the presence of functional Salmonella type III secretion systems. The Salmonella cytochrome bd-II oxidase synergized with nitrate reductases to drive luminal expansion, and both were required for fecal-oral transmission. We conclude that Salmonella virulence factors and antibiotic treatment promote pathogen expansion through the same mechanism: depletion of butyrate-producing Clostridia to elevate epithelial oxygenation, allowing aerobic Salmonella growth. PMID:27078066

  12. Postnatal development of the myenteric glial network and its modulation by butyrate.

    Science.gov (United States)

    Cossais, François; Durand, Tony; Chevalier, Julien; Boudaud, Marie; Kermarrec, Laetitia; Aubert, Philippe; Neveu, Isabelle; Naveilhan, Philippe; Neunlist, Michel

    2016-06-01

    The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development. PMID:27056724

  13. Dietary toxicity of calcium beta-hydroxy-beta-methyl butyrate (CaHMB).

    Science.gov (United States)

    Baxter, J H; Carlos, J L; Thurmond, J; Rehani, R N; Bultman, J; Frost, D

    2005-12-01

    HMB, 3-hydroxy-3-methyl butyrate, is of interest as a dietary supplement and a possible component of functional and medical foods. The purpose of this study was to evaluate the toxicity of the calcium salt of HMB, calcium 3-hydroxy-3-methyl butyrate (CaHMB, monohydrate, food grade), when administered daily in the diet of rats for at least 90 days. Male and female Crl:CD (SD)IGS BR animals were assigned to four groups. Each group received diets containing the carrier or 1%, 2%, or 5% of CaHMB mixed with diet. Assessment of toxicity was based on mortality, clinical observations, body weights, food consumption, and clinical and anatomic pathology evaluations. Administration of CaHMB in basal diet for 91 days was tolerated well. There were no unscheduled sacrifices or deaths. There were no CaHMB-related adverse effects on clinical observations, body weights, food consumption, clinical chemistry, hematology, absolute or relative organ weights, or macroscopic or microscopic observations. A statistically significant increase in inorganic phosphorous was observed in male animals in the 5% feeding group; however, this effect was not considered adverse. Based on the results of this study, the no-observed-adverse-effect level (NOAEL) was considered to be 5% of CaHMB mixed with diet (3.49 g/kg BW for males and 4.16 g/kg BW for females). PMID:16006030

  14. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-01-01

    Full Text Available Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.

  15. Synthesis of Clevidipine Butyrate%氯维地平的合成

    Institute of Scientific and Technical Information of China (English)

    张婧; 纪宪勇; 孙翔; 王杰

    2011-01-01

    Clevidipine butyrate, an antihypertensive agent, was synthesized from 2-cyanoethyl acetoacetate (2), 2,3-dichlorobenzaldehyde and methyl 3-aminocrotonate by Hantzsch cyclocondensation and followed by selective hydrolysis with sodium sulfide at room temperature to give 4-(2,3-dichlorophenyl)-l,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid monomethyl ester, which was then subjected to reaction with chloromethyl butyrate with an overall yield of about 59% (based on 2).%3-羟基丙腈和双乙烯酮在三乙胺作用下制得乙酰乙酸(2ˉ氰基乙基)酯(2),再与2,3-二氯苯甲醛和3ˉ氨基巴豆酸甲酯经Hantzsch缩合闭环,接着用硫化钠在常温下选择性水解得4-(2,3-二氯苯基)-1-4-二氢-2,6-二甲基-3,5-吡啶二羧酸单甲酯,最后与正丁酸氯甲酯反应即得抗高血压药氯维地平,总收率约59%(以2计).

  16. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro.

    Science.gov (United States)

    Scott, Karen P; Martin, Jennifer C; Duncan, Sylvia H; Flint, Harry J

    2014-01-01

    Dietary macronutrients affect the composition of the gut microbiota, and prebiotics are used to improve and maintain a healthy gut. The impact of prebiotics on dominant gut bacteria other than bifidobacteria, however, is under-researched. Here, we report carbohydrate utilisation patterns for representative butyrate-producing anaerobes, belonging to the Gram-positive Firmicutes families Lachnospiraceae and Ruminococcaceae, by comparison with selected Bacteroides and Bifidobacterium species. Growth assessments using anaerobic Hungate tubes and a new rapid microtitre plate assay were generally in good agreement. The Bacteroides strains tested showed some growth on basal medium with no added carbohydrates, utilising peptides in the growth medium. The butyrate-producing strains exhibited different growth profiles on the substrates, which included starch, inulin, fructooligosaccharides (FOS), galactooligosaccharides (GOS) and xylooligosaccharides (XOS). Eleven were able to grow on short-chain FOS, but this number decreased as the chain length of the fructan substrates increased. Long-chain inulin was utilised by Roseburia inulinivorans, but by none of the Bifidobacterium species examined here. XOS was a more selective growth substrate than FOS, with only six of the 11 Firmicutes strains able to use XOS for growth. These results illustrate the selectivity of different prebiotics and help to explain why some are butyrogenic. PMID:23909466

  17. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery.

    Science.gov (United States)

    Russo, Ilaria; Luciani, Alessandro; De Cicco, Paola; Troncone, Edoardo; Ciacci, Carolina

    2012-01-01

    Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa. PMID:22412931

  18. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    Directory of Open Access Journals (Sweden)

    Edgar C. Clausen

    2012-08-01

    Full Text Available In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partial cell recycle mode to improve fermenter yield and productivity. Experiments with fermentation in batch, continuous culture and continuous culture with partial cell recycle by ultrafiltration were conducted. The results show that a continuous fermentation can be sustained for more than 120 days, which is the first reported long-term production of butyric acid in a continuous operation. Further, the results also show that partial cell recycle via membrane ultrafiltration has a great influence on the selectivity and productivity of butyric acid, with an increase in selectivity from ≈9% to 95% butyric acid with productivities as high as 1.13 g/Lh. Continuous fermentation with low dilution rate and high cell recycle ratio has been found to be desirable for optimum productivity and selectivity toward butyric acid and a comprehensive model explaining this phenomenon is given.

  19. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets

    DEFF Research Database (Denmark)

    Bartholome, Anne L; Albin, David M; Baker, David H;

    2004-01-01

    decreasing apoptosis within 4 hours postresection. The intestinotrophic mechanism(s) underlying butyrate's effects may involve GLP-2. Ultimately, butyrate administration may enable an infant with short-bowel syndrome to successfully transition to enteral feedings by maximizing their absorptive area....

  20. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Directory of Open Access Journals (Sweden)

    Maria Consolata Miletta

    Full Text Available Butyrate is a short-chain fatty acid (SCFA closely related to the ketone body ß-hydroxybutyrate (BHB, which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR, GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  1. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C61-butyric acid methyl ester composite

    International Nuclear Information System (INIS)

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P+/C60- charge transfer complex was not completely ruled out. The large exciton binding energy (Eb = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (g state in both PTV010 and PTV55 cases, whereas excitons generated on PCBM molecules undergo energy transfer only to PTV55 in the blend film. Thus, the addition of PCBM increases the photoluminescence yield with respect to neat polymer yield. The efficiency of the energy transfer process is shown to depend on the degree of polymer and PCBM intermixing within the film, which in turn is governed by the polymer chain orders. The effect of such intermixing on the resulting kinetics of photo-induced excitations is also discussed. Our results show limited effect of polymer crystallinity of PTV to its excitonic properties, much the contrary of the case with poly (3-hexylthiophene) which has similar chemical structure with PTV.

  2. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells

    Science.gov (United States)

    This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3, H4, and their...

  3. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Science.gov (United States)

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. PMID:26672465

  4. Preparation, release and physicochemical characterisation of ethyl butyrate and hexanal inclusion complexes with β- and γ-cyclodextrin.

    Science.gov (United States)

    Zhang, Yang; Zhou, Yibin; Cao, Shengnan; Li, Songnan; Jin, Shanshan; Zhang, Shu

    2015-01-01

    Complexes of ethyl butyrate and hexanal encapsulated by β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were prepared by coprecipitation, and gas chromatography was used to quantity the flavour compounds in the complexes. The ethyl butyrate-γ-CD complex had the highest inclusion ratio (12.20%) followed by the ethyl butyrate-β-CD, hexanal-β-CD and hexanal-γ-CD complexes (11.29, 4.41 and 3.33%, respectively). Release experiments were performed under different relative humidities (RH 93, 75 and 52%) and temperatures (4 and 25 °C). The flavour release behaviours of the complexes were described by the Avrami equation. The rate of flavour release was enhanced with both increasing temperature and RH, although the effect of RH was stronger. Physicochemical characterisation using FT-IR, XRD, DSC and SEM analyses demonstrated that crystalline complexes were formed. Both β-CD and γ-CD were able to encapsulate ethyl butyrate and hexanal, and lower RH and temperature were more suitable for the storage of these complexes. PMID:26471403

  5. Interaction of polyunsaturated fatty acids and sodium butyrate during apoptosis in HT-29 human colon adenocarcinoma cells

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Lojek, Antonín; Kozubík, Alois

    2005-01-01

    Roč. 44, č. 1 (2005), s. 40-51. ISSN 1436-6207 R&D Projects: GA ČR(CZ) GA525/01/0419 Institutional research plan: CEZ:AV0Z50040507 Keywords : colon cancer * diet * butyrate Subject RIV: BO - Biophysics Impact factor: 2.257, year: 2005

  6. Response of HT115, a highly invasive human colorectal adenocarcinoma cell line, to sodium butyrate treatment and glucose deprivation

    Czech Academy of Sciences Publication Activity Database

    Štokrová, Jitka; Sovová, Vlasta; Šloncová, Eva; Kučerová, Dana; Tuháčková, Zdena; Korb, Jan

    2005-01-01

    Roč. 26, č. 3 (2005), s. 793-799. ISSN 1019-6439 R&D Projects: GA AV ČR(CZ) KSK5020115 Keywords : HT115 cells * sodium butyrate * glucose deprivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.681, year: 2005

  7. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    Science.gov (United States)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  8. Synergistic Effect of Probiotics, Butyrate and l-Carnitine in Treatment of IBD

    Directory of Open Access Journals (Sweden)

    Mahsa Moeinian

    2013-07-01

    Full Text Available Genetic, environmental factors, dysregulation of immune system, intestinal microbes and oxidative stress are the most important factors that play the role in the pathogenesis of inflammatory bowel disease (IBD. Current treatments do not always result in complete remission and usually accompanied with several adverse effects. Recent studies showed that nuclear factor-kappa B (NF-κB, tumor necrosis factor-α (TNF-α and oxidative stress play the pivotal role in the induction of inflammation. Butyrate, l-Carnitine, and probiotics have the potential to control inflammation by reduction of main inflammatory cytokines, including NF-κB and TNF-α. They also stimulate antioxidant enzymes and inhibit IκB kinase (IKK. Regarding the beneficial effects of these three compounds in inflammation via several mechanisms, we hypothesize that the mixture of these compounds would be synergistically effective in reduction of inflammation and alleviation of IBD. Further experimental investigations are needed, to evaluate the hypothesis.

  9. Effect of ionizing radiation and indole butyric acid on rooting of olive cuttings

    International Nuclear Information System (INIS)

    This study was performed to investigate the effects of indole butyric acid (IBA) (2000 and 4000 ppm), low doses of gamma irradiation (2,4, and 6 Gy), combined treatment of IBA followed by irradiation, and irradiation followed by IBA on olive cuttings (Variety Khodairi). Rooting percentage, callus formation, vegetative growth root number, and the length of the roots were measured after 100 days of planting. The results indicated that IBA treatments in both concentrations increased the callus formation, rooting, vegetative growth, and the number and length of the roots. Low doses of gamma irradiation had no effects on rooting percentage in comparison with the hormonal treatments. Callus formation, rooting, vegetative growth, and length of the root of cuttings produced in 1990 were better than those produced in 1991, and cuttings produced in January were better than those produced in March and October. (author). 16 refs., 15 tabs

  10. (Liquid + liquid) equilibria of (water + butyric acid + isoamyl alcohol) ternary system

    International Nuclear Information System (INIS)

    (Liquid + liquid) equilibrium (LLE) data for the ternary system (water + butyric acid + isoamyl alcohol) have been determined experimentally at T (298.15, 308.15 and 318.15) K. Complete phase diagrams were obtained by determining solubility and the tie-line data. Tie-line compositions were correlated by Othmer-Tobias method. The UNIFAC method was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between groups CH3, CH2, CH, COOH, OH and H2O. It is found that UNIFAC group interaction parameters used for LLE could not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region

  11. Research Progress of Physiological Function of Butyric Acid%丁酸的生理功能研究进展

    Institute of Scientific and Technical Information of China (English)

    卢忆; 张晓阳; 马艳莉; 李里特

    2013-01-01

    丁酸是一种重要的短链脂肪酸,是结肠细胞重要的能量来源,可控制细胞增殖,具有多种生理功能.近年来大量研究表明,丁酸有促进肠道发育、维持肠道功能与健康、增强机体免疫性能、抗肿瘤、抗氧化等功能,但目前对于丁酸生理功能的研究多停留在利用动物模型或细胞进行单独研究的阶段.本文从肠道组织功能与健康、物质代谢、免疫功能、肿瘤细胞等几个方面综述了丁酸功能的研究进展,并进行了展望,旨在为丁酸的进一步研究与应用提供思路.%Butyric acid, as one of the most important kinds of short chain fatty acids, can provide energy source for colon cells and control cell proliferation. As shown by recent researches, butyric acid has many physiological functions including promoting intestinal development, maintaining intestinal health and function, enhancing immune performance, anti-tumor, anti-oxidation and so on. But researches on butyric acid have mostly been limited to the stage of using animal models and separate cells to study single function. This paper reviewed the influence of butyric acid on intestinal tissue, metabolism, immune system, tumour cells and so on, aiming at providing references for further exploitation of butyric acid.

  12. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  13. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T

    International Nuclear Information System (INIS)

    The short fatty acid, butyrate, which is produced by intestinal anaerobic bacteria in the colon, has inhibitory activity on histone deacetylases (HDACs). Treatment of the human colon cancer cell line, LS174T, with 1-2 mM sodium butyrate stimulated MUC2 mucin production, as determined by histological PAS staining of carbohydrate chains of mucin, and confirmed at the protein and mRNA levels by immunoblotting with anti-MUC2 antibody and real-time RT-PCR, respectively. Increases in acetylated histone H3 in the LS174T cells treated with butyrate suggest inhibition of HDACs in these cells. Butyrate-stimulated MUC2 production in the LS174T cells was inhibited by the MEK inhibitor, U0126, implicating the involvement of extracellular signal-regulated kinase (ERK) cascades in this process. Proliferation of the LS174T cells was inhibited by butyrate treatment. Although apoptotic nuclear DNA fragmentation could not be detected, cell-cycle arrest at the G0/G1 phase in the butyrate-treated cells was demonstrated by flow cytometry. Thus butyrate, an HDAC inhibitor, inhibits proliferation of LS174T cells but stimulates MUC2 production in individual cells

  14. Bacterial Nail Infection (Paronychia)

    Science.gov (United States)

    ... of nail infection is often caused by a bacterial infection but may also be caused by herpes, a ... to a type of yeast called Candida , or bacterial infection, and this may lead to abnormal nail growth. ...

  15. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will...

  16. Bacterial study of the anaerobic bioreactor for distillery effluent

    International Nuclear Information System (INIS)

    This study relates with anaerobic bioreactors of Habib Sugar Mills, Nawabshah. Bacterial growth was studied through microscope along with its effect on the production of methane gas (Biogas) at all HRTs (Hydraulic Retention Times) between 15 and 28 days. The bacterium has the efficiency to convert 12% glucose within 24 hours to final product and cell mass. The acetogenic organisms also show their maximum growth on glucose in BGP-1 and BPG-2 at both the corks, where as Methanogenic organisms have shown their zero shown their zero growth on glucose. The efforts have been taken to determine the methanogenic, acetogenic and syntrophomonas sp. data of anaerobic bioreactors of BGP (Biogas Plant) I and II, when these samples were cultured on acetate, methanol, formate, butyrate, propionate and glucose. (author)

  17. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    International Nuclear Information System (INIS)

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  18. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Sabita N., E-mail: sabivan@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Department of Biological Sciences, Alabama State University, Montgomery, AL 36104 (United States); Kala, Rishabh [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  19. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth. PMID:21452895

  20. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  1. Electron Paramagnetic Resonance Study of Gamma Irradiated N-CARBAMYL-DL-ALPHA AMINO-N-BUTYRIC Acid

    International Nuclear Information System (INIS)

    The electron paramagnetic resonance (EPR) of gamma irradiated powders of N- carbamyl-DL-alpha amino-n-butyric acid were investigated at room temperature. The radiation damage centers produced in the N-carbamyl-DL-alpha amino-n-butyric acid were attributed to the HNCCH2CH3 radical. The EPR spectra were computer simulated and the g values of the radicals and the hyperfine structure constants of the unpaired electron with the environmental protons and 14N nucleus were determined. These results were found to be in good agreement with the existing literature data. The EPR spectra were recorded with a Varian model X-band E-109C EPR spectrometer at room temperature. The g factors were determined by comparison with the signal of a diphenylpicrylhydrazyl (DPPH) sample with of g = 2.0036

  2. Experience on clinical application of positron emission tomography with a new radiopharmaceutical preparation Sodium 11C-butyrate in differential diagnosis of pathological volume brain formation

    International Nuclear Information System (INIS)

    Possibilities of the application of new radiopharmaceutical - sodium butyrate, [1-11C] (11C-Butyrate) for differential diagnosis of pathological volume brain formation were studied. Positron emission tomography (PET) of the brain was performed in 24 patients. In addition PET with 18F-FDG was performed in all patients. In 15 out of 24 patients the brain malignant tumor has been discovered, in 4 patients - benign tumors, in 5 - postoperative cysts. Results of the studies showed that the ratio tumor/normal tissue in case of 11C-Butyrate and 18F-FDG application proved to be comparable for all studied histological types of tumors. Malignant tumors in these cases had been visualized as a hot spots of increased uptake 11C-Butyrate (ratio ≥ 1). The obtained data testify to the diagnosis of the pathological volume brain formation

  3. Application of new radiopharmaceutical Sodium 1'1C-Butyrate and positron emission tomography in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Diagnostic value of Sodium 11C-Butyrate (11C-Butyrate) in assessing perfusion and oxidative metabolism in patients with coronary artery disease (CAD) is studied. 41 Patients with CAD were investigated. PET-scans were performed twice: at 2-7 min and 25-31 min after i.v. injection of 250-400 MBq 11C-Butyrate. Regional perfusion was evaluated by the uptake of radioactivity in the myocardium at the first scan, intensity of beta-oxidation - by decreasing the uptake level at the second scan. It is shown that the application of PET with 11C-Butyrate in patients with CAD allows to estimate hypoperfused segments, evaluate heart oxidative metabolism and provides differential diagnosis of scar and ischemia

  4. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-). PMID:22350013

  5. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    OpenAIRE

    Shifeng Li; Yanming Shen; Min Xiao; Dongbin Liu; Lihui Fan; Zhigang Zhang

    2014-01-01

    Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA) and indole-3-butyric acid (IBA) simultaneous intercalated MgAl-layered double hydroxides (LDHs) was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilaye...

  6. Vancomycin treatment and butyrate supplementation modulate gut microbe composition and severity of neointimal hyperplasia after arterial injury

    OpenAIRE

    Ho, Karen J.; Xiong, Liqun; Hubert, Nathaniel J.; Nadimpalli, Anuradha; Wun, Kelly; Chang, Eugene B; Kibbe, Melina R.

    2015-01-01

    Abstract Gut microbial metabolites are increasingly recognized as determinants of health and disease. However, whether host–microbe crosstalk influences peripheral arteries is not understood. Neointimal hyperplasia, a proliferative and inflammatory response to arterial injury, frequently limits the long‐term benefits of cardiovascular interventions such as angioplasty, stenting, and bypass surgery. Our goal is to assess the effect of butyrate, one of the principal short chain fatty acids prod...

  7. Densities, Viscosities, and Surface and Interfacial Tensions of the Ternary Mixture Water + Ethyl Butyrate + Methanol at 303.15 K

    OpenAIRE

    Kijevcanin, Mirjana Lj.; Ribeiro, Inês S. A.; Ferreira, Abel G. M.; Fonseca, Isabel M. A.

    2003-01-01

    The excess molar volumes, VE, viscosity deviations, Δη, and excess surface tensions were calculated from the measured density, viscosity, and surface tension values, σ, over the whole miscibility composition range for the ternary system water + ethyl butyrate + methanol and their constituent binaries, at 303.15 K and atmospheric pressure. The liquid interfacial tension was measured in the liquid−liquid equilibrium range at the same conditions of temperature and pressure. A Redlich−Kister type...

  8. Lipid alterations in human colon epithelial cells induced to differentiation and/or apoptosis by butyrate and polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Ciganek, M.; Slavík, J.; Kozubík, Alois; Stixová, Lenka; Vaculová, Alena; Dušek, L.; Machala, M.

    2012-01-01

    Roč. 23, č. 6 (2012), s. 539-548. ISSN 0955-2863 R&D Projects: GA ČR(CZ) GA524/07/1178; GA ČR(CZ) GAP301/11/1730 Institutional research plan: CEZ:AV0Z50040507 Institutional support: RVO:68081707 Keywords : Colon cancer * Polyunsaturated fatty acids * Butyrate Subject RIV: BO - Biophysics Impact factor: 4.552, year: 2012

  9. Constitutive Investigation on Viscoelasticity of PolyVinyl Butyral: Experiments Based on Dynamic Mechanical Analysis Method

    Directory of Open Access Journals (Sweden)

    Bohan Liu

    2014-01-01

    Full Text Available PolyVinyl Butyral (PVB film is now widely used in automotive industry and architectures serving as the protective interlayer. The dynamic modulus of PVB is measured through systematic experiments based on Dynamic Mechanical Analysis (DMA method at various temperatures, heating rates, and vibration frequencies. Further, viscoelasticity of PVB influenced by time and temperature is systematically studied. Fitted empirical formulas describing the relationship between glass transition temperature and frequency, as well as the heating rate of PVB, are established. The master curve of PVB at 293 K is suggested based on the experiment data as to express the dynamic modulus variation at various frequencies in a wider range. Constitutive behavior of PVB is then analyzed based on Generalized Maxwell (GM model and Fractional Derivative (FD model, respectively. It is shown that PVB has higher efficiency of energy dissipation in its high energy absorption state, while both fifth-order GM model and FD model can characterize the viscoelasticity of PVB at glassy transition area. Results may offer useful fundamental experimental data and important constitutive characteristics of PVB and shed lights on further studies on viscoelasticity behavior of PVB and energy mitigation ability of laminated glass.

  10. Enhancement of Human Prolactin Synthesis by Sodium Butyrate Addition to Serum-Free CHO Cell Culture

    Directory of Open Access Journals (Sweden)

    Herbert Rodrigues Goulart

    2010-01-01

    Full Text Available Sodium butyrate (NaBu has been used as a productivity enhancer for the synthesis of recombinant proteins in Chinese hamster ovary (CHO cells. Thus, the influence of NaBu on the production of recombinant human prolactin (hPRL from CHO cells was investigated for the first time. CHO cell cultures were submitted to a treatment with different concentrations of NaBu (0.25 to 4 mM. Quantitative and qualitative analyses by reverse-phase high-performance liquid chromatography (RP-HPLC and Western blot or SDS-PAGE, carried out directly on CHO-conditioned medium, showed that the highest hPRL expression was obtained with 1 mM NaBu. In vitro biological assays based on noble rat lymphoma (Nb2 and mouse pro-B lymphoma (Ba/F3-LLP cells were carried out on purified hPRL. Its bioactivity in the presence of NaBu was not apparently different from that of the First International Reference Reagent of recombinant hPRL (WHO 97/714. Our results show that NaBu increased the synthesis of recombinant hPRL in CHO cells, apparently without compromising either its structure or function.

  11. ROOTING OF GUANANDI (Calophyllum brasiliense CAMBESS CUTTINGS USING INDOLE-BUTYRIC ACID

    Directory of Open Access Journals (Sweden)

    Eduardo Ciriello

    2015-12-01

    Full Text Available Commercial reforestation of Brazilian native species to produce hardwood for sawmills has been recently intensified in the country. Among the potential species planted by the logging industry is guanandi (Calophyllum brasiliense Cambess because it is widely distributed in the country, highly adapted to different soil and climate conditions, good bole form and high quality timber. The development of genetic improvement programs should prioritize gains in productivity and yields in the medium and long term. For such programs to be successful, the study of vegetative propagation techniques to abbreviate steps in forest improvement and allow its mass production is fundamental. To assess the viability of vegetative propagation of the species, two successive experiments were carried out during two years testing the best type of cutting, hormone concentration and management. Different cuttings types submitted to increasing doses of indole-butyric acid (IBA were tested to evaluate survival, sprouting, rooting and callus formation. Results indicate that the species is viable for vegetative propagation with 85 to 90% rooting of cuttings from seedlings in the IBA concentrations of 3000 to 7000 mg.L-1. For the cuttings, sprouting from the base of adult trees 3000 mg.L-1 was the best concentration of IBA.

  12. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  13. Transparent Blend of Poly(Methylmethacrylate/Cellulose Acetate Butyrate for the Protection from Ultraviolet

    Directory of Open Access Journals (Sweden)

    Raouf Mahmood Raouf

    2016-04-01

    Full Text Available The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV radiation exposure to transparent poly(methylmethacrylate (PMMA, which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB. The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend.

  14. Rhizogenic behavior of black pepper cultivars to indole-3-butyric acid

    Directory of Open Access Journals (Sweden)

    Welington Secundino

    2014-07-01

    Full Text Available Little information is available regarding vegetative propagation of the species Piper nigrum L. to generate technical recommendations for the production of seedlings on a commercial scale. The purpose of this study was to investigate the rhizogenic behavior of cultivars of this species regarding indol-3-butyric acid (IBA. The experiment was performed at a vegetation house equipped with an intermittent nebulization irrigation system. The experimental site was located in the University Center of Northern Espírito Santo (CEUNES of the Federal University of Espírito Santo (UFES, Brazil. The experimental design consisted of randomized blocks arranged in a 3 x 5 factorial scheme: three cultivars (Bragantina, Iaçará and Guajarina x five IBA concentrations (0; 1,500; 3,000; 4,500 and 6,000 mg kg-1, with four repetitions of 16 cuttings each. Total immersion of the cuttings in IBA is recommended for the Iaçará and Guajarina cultivars, and immersion of only the basal region is recommended for cv. Bragantina. The recommended IBA concentration for these cultivars is 4,000 mg kg-1.

  15. Subclinical ketosis on dairy cows in transition period in farms with contrasting butyric acid contents in silages.

    Science.gov (United States)

    Vicente, Fernando; Rodríguez, María Luisa; Martínez-Fernández, Adela; Soldado, Ana; Argamentería, Alejandro; Peláez, Mario; de la Roza-Delgado, Begoña

    2014-01-01

    This study examines the relationship between subclinical ketosis (SCK) in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; Pdairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake). PMID:25525616

  16. Possible mechanism for the regulation of glucose on proliferation, inhibition and apoptosis of colon cancer cells induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To study the effect of glucose on sodium butyrateinduced proliferation inhibition and apoptosis in HT-29 cell line, and explored its possible mechanisms.METHODS: HT-29 cells were grown in RPMI-1640 medium supplemented with 10% fetal calf serum, and were allowed to adhere for 24 h, and then replaced with experimental medium. Cell survival rates were detected by MTT assay. Apoptosis was detected by TUNEL assay. Glucose transport protein 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) mRNA expression was detected by RT-PCR.RESULTS: Low concentration of glucose induced apoptosis and regulated proliferation in HT-29 cell line, and glucose can obviously inhibit the effect of proliferation inhibition and apoptosis induced by sodium butyrate. Glucose also down-regulated the expression of MCT1mRNA (0.28 ± 0.07 vs 0.19 ± 0.10, P < 0.05), and decreased the expression of GLUT1mRNA slightly (0.18 ± 0.04 vs 0.13 ± 0.03, P < 0.05).CONCLUSION: Glucose can regulate the effect of proliferation inhibition and apoptosis induced by sodium butyrate and this influence may be associated with the intracellular concentration of glucose and sodium butyrate.

  17. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    Science.gov (United States)

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  18. Subclinical Ketosis on Dairy Cows in Transition Period in Farms with Contrasting Butyric Acid Contents in Silages

    Directory of Open Access Journals (Sweden)

    Fernando Vicente

    2014-01-01

    Full Text Available This study examines the relationship between subclinical ketosis (SCK in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05. As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake.

  19. A survey on anticancer effects of artemisinin, iron, miconazole, and butyric acid on 5637 (bladder cancer and 4T1 (Breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Amir Ali Shahbazfar

    2014-01-01

    The groups treated with miconazole showed identical changes, with less severity compared to combination therapy groups. In butyric acid-treated groups, the only detectable changes were, mild cell swelling, few apoptosis, and rare necrosis. Conclusions: A combination therapy with artemisinin can be more effective against cancer cells than monotherapy with that. Butyric acid was not effective on cancer cells. Miconazole deviated the nature of cell death from apoptosis to necrosis and it must be used under caution.

  20. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    F.O. Andrade

    2012-09-01

    Full Text Available The combined treatment with histone deacetylase inhibitors (HDACi and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4 cells/mL and treated with butyrate (1 mM alone or combined with vitamin A (10 µM for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot, but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot and of RARβ by 2.0-fold (quantitative real-time PCR. Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  1. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  2. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 104 cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered

  3. The Bacterial Microflora of Fish, Revised

    OpenAIRE

    Austin, B.

    2006-01-01

    The results of numerous studies indicate that fish possess bacterial populations on or in their skin, gills, digestive tract, and light-emitting organs. In addition, the internal organs (kidney, liver, and spleen) of healthy fish may contain bacteria, but there is debate about whether or not muscle is actually sterile. Using traditional culture-dependent techniques, the numbers and taxonomic composition of the bacterial populations generally reflect those of the surrounding water. More modern...

  4. DNA vaccines and bacterial DNA in immunity

    OpenAIRE

    Bandholtz, Lisa Charlotta

    2002-01-01

    This thesis describes DNA-based vaccination and the importance of bacterial DNA in different immunological perspectives. Intranasal (i.n.) DNA vaccination utilizing a plasmid encoding the chlamydial heat shock protein 60 (p-hsp-60) generated lower bacterial burden and reduced pathology in the lungs of mice after subsequent infection with C. pneumoniae. This DNA vaccine- induced protection was dependent on T cells and induction of IFN-gamma. Co-administration of a plasmid...

  5. Modeling and simulation of bacterial biofilms

    OpenAIRE

    Rodríguez Espeso, David

    2013-01-01

    The present thesis focus its efforts on developing a mathematical and experimental modelization of bacterial biofilms: bacterial colonies embedded into a polysaccharid matrix with a high resistance against removal processes, which result in a recurrent source of problems in other disciplines (medicine, engineering, etc). The behaviour of these organisms is highly dependant of the physical system in which they are present. So different case studies are faced here to show their complexity. Firs...

  6. Capturing One of the Human Gut Microbiome’s Most Wanted: Reconstructing the Genome of a Novel Butyrate-Producing, Clostridial Scavenger from Metagenomic Sequence Data

    Science.gov (United States)

    Jeraldo, Patricio; Hernandez, Alvaro; Nielsen, Henrik B.; Chen, Xianfeng; White, Bryan A.; Goldenfeld, Nigel; Nelson, Heidi; Alhquist, David; Boardman, Lisa; Chia, Nicholas

    2016-01-01

    The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP) researchers generated a list of “most wanted” taxa: bacteria both prevalent among healthy volunteers and distantly related to any sequenced organisms. Unfortunately, the challenge of assembling high-quality genomes from a tangle of metagenomic reads has slowed progress in learning about these uncultured bacteria. Here, we describe how recent advances in sequencing and analysis allowed us to assemble “most wanted” genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP’s criteria for a “most wanted” taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/Clostridium leptum subgroup species Butyricicoccus pullicaecorum (71–76% average nucleotide identity). Gene function analysis indicates that the species is an obligate anaerobe, forms spores, and produces the anti-inflammatory short-chain fatty acids acetate and butyrate. It also appears to take up metabolically costly molecules such as cobalamin, methionine, and branch-chained amino acids from the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient-scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases such as colon cancer and inflammatory bowel disease. In conclusion, we have assembled essentially complete genomes from stool metagenomic data, yielding

  7. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets

    DEFF Research Database (Denmark)

    Le Gall, Maud; Gallois, Mélanie; Sève, Bernard;

    2009-01-01

    Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning......) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11-12 d) weaning and SB before and after weaning (for 35-36 d). Growth performance, feed intake and...... enzymes and five intestinal enzymes (P < 0.05). IL-18 gene expression tended to be lower in the mid-jejunum in SB-supplemented pigs. The small-intestinal mucosa was thinner and jejunal villous height lower in all SB groups (P < 0.05). In conclusion, the pre-weaning SB supplementation was the most...

  8. Influence of indole-butyric acid and electro-pulse on in vitro rooting and development of olive (Olea europea L.) microshoots.

    Science.gov (United States)

    Padilla, Isabel Maria Gonzalez; Vidoy, I; Encina, C L

    2009-09-01

    The effects of indole-butyric acid (IBA) and electro-pulses on rooting and shoot growth were studied in vitro, using olive shoot cultures. Tested shoots were obtained from seedlings belonging to three Spanish cultivars, 'Arbequina', 'Manzanilla de Sevilla' and 'Gordal Sevillana', which have easy-, medium- and difficult-to-root rooting abilities, respectively. The standard two-step rooting method (SRM), consisting of root induction in olive rooting medium supplemented with 0, 0.1 or 1 mg/l IBA followed by root elongation in the same rooting medium without IBA, was compared with a novel one-step method consisting of shoot electro-pulses of 250, 1,250 or 2,500 V in a solution of IBA (0, 0.1 or 1 mg/l) and direct transferral to root elongation medium. The rooting percentage of the seedling-derived shoots obtained with the SRM was 76% for 'Arbequina' and 'Gordal Sevillana' cultivars and 100% for 'Manzanilla de Sevilla' cultivar, whereas with the electro-pulse method, the rooting percentages were 68, 64 and 88%, respectively. IBA dipping without pulse produced 0% rooting in 'Arbequina' seedling-derived shoots. The electroporation in IBA not only had an effect on shoot rooting but also on shoot growth and development, with longer shoots and higher axillary shoot sprouting and growth after some of the treatments. These effects were cultivar-dependent. The electro-pulse per se could explain some of these effects on shoot development. PMID:19655148

  9. BAY 61-3606, CDKi, and Sodium Butyrate Treatments Modulate p53 Protein Level and Its Site-Specific Phosphorylation in Human Vestibular Schwannomas In Vitro

    Directory of Open Access Journals (Sweden)

    Rohan Mitra

    2014-01-01

    Full Text Available This study is done to evaluate the effect of spleen tyrosine kinase inhibitor (BAY 61-3606, cyclin-dependent kinase inhibitor (CDKi, and sodium butyrate (Na-Bu on the level and phosphorylation of p53 protein and its binding to murine double minute 2 (MDM2 homologue in human vestibular schwannomas (VS. Primary cultures of the tumor tissues were treated individually with optimum concentrations of these small molecules in vitro. The results indicate modulation of p53 protein status and its binding ability to MDM2 in treated samples as compared to the untreated control. The three individual treatments reduced the level of total p53 protein. These treatments also decreased Ser392 and Ser15 phosphorylated p53 in tumor samples of young patients and Ser315 phosphorylated p53 in old patients. Basal level of Thr55 phosphorylated p53 protein was present in all VS samples and it remained unchanged after treatments. The p53 protein from untreated VS samples showed reduced affinity to MDM2 binding in vitro and it increased significantly after treatments. The MDM2/p53 ratio increased approximately 3-fold in the treated VS tumor samples as compared to the control. The differential p53 protein phosphorylation status perhaps could play an important role in VS tumor cell death due to these treatments that we reported previously.

  10. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  11. SKW 6.4 cell differentiation induced by interleukin 6 is stimulated by butyrate.

    Science.gov (United States)

    Kawamoto, T; Gohda, E; Iji, H; Fujiwara, M; Yamamoto, I

    1998-08-01

    We investigated if sodium butyrate (NaBu), an inhibitor of histone deacetylase, and its analogs modulate cytokine-induced differentiation of the human B cell line SKW 6.4 transformed by the Epstein-Barr virus. NaBu markedly enhanced interleukin (IL)-6-induced IgM production with an accompanying increase in the level of histone H4 acetylation and augmented IgM production induced by IL-4 and phorbol 12-myristate 13-acetate. From both the enhancing effect of cell differentiation and the effect of inducing histone hyperacetylation in SKW 6.4 cells, other histone deacetylase inhibitors and NaBu analogs were divided into three groups: those that increased both IL-6-induced antibody production and histone acetylation, those that caused histone hyperacetylation, but failed to induce the differentiation, and those that were ineffective at inducing either activity. No agent that enhanced IgM production without inducing histone hyperacetylation was found among the inhibitors and analogs we tested. These results suggest that the increase in the histone acetylation is necessary, but it is insufficient to augment differentiation of SKW 6.4 cells. Thus another activity of NaBu in addition to the inhibition of histone deacetylase may be involved in promoting IL-6-induced differentiation. Our results also suggest that fatty acids that have a straight chain of four carbon atoms or are branched with four and five carbon atoms, which contain no hydrophilic substituents, or those with similar structures, show this other activity. PMID:9826026

  12. Neuroprotective Effect of Sodium Butyrate against Cerebral Ischemia/Reperfusion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available Sodium butyrate (NaB is a dietary microbial fermentation product of fiber and serves as an important neuromodulator in the central nervous system. In this study, we further investigated that NaB attenuated cerebral ischemia/reperfusion (I/R injury in vivo and its possible mechanisms. NaB (5, 10 mg/kg was administered intragastrically 3 h after the onset of reperfusion in bilateral common carotid artery occlusion (BCCAO mice. After 24 h of reperfusion, neurological deficits scores were estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The levels of oxidative stress and inflammatory cytokines were assessed. Apoptotic neurons were measured by TUNEL; apoptosis-related protein caspase-3, Bcl-2, Bax, the phosphorylation Akt (p-Akt, and BDNF were assayed by western blot and immunohistochemistry. The results showed that 10 mg/kg NaB treatment significantly ameliorated neurological deficit and histopathology changes in cerebral I/R injury. Moreover, 10 mg/kg NaB treatment markedly restored the levels of MDA, SOD, IL-1β, TNF-α, and IL-8. 10 mg/kg NaB treatment also remarkably inhibited the apoptosis, decreasing the levels of caspase-3 and Bax and increasing the levels of Bcl-2, p-Akt, and BDNF. This study suggested that NaB exerts neuroprotective effects on cerebral I/R injury by antioxidant, anti-inflammatory, and antiapoptotic properties and BDNF-PI3K/Akt pathway is involved in antiapoptotic effect.

  13. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    International Nuclear Information System (INIS)

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. - Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec−1) over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided

  14. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves.

    Science.gov (United States)

    Gorka, P; Kowalski, Z M; Pietrzak, P; Kotunia, A; Kiljanczyk, R; Flaga, J; Holst, J J; Guilloteau, P; Zabielski, R

    2009-10-01

    Rumen development is an important factor determining early solid feed intake and performance in cattle. A popular trend towards early weaning of newborn dairy calves necessitated looking for ways of accelerating the gastrointestinal tract (GIT) development. The present study aimed to determine the effect of sodium butyrate (NaB) supplementation in milk replacer and starter diet on rumen development in rearing calves. Fourteen bull calves (5-day-old) were randomly allocated to two groups: Control (C) and NaB. The later received 0.3 % NaB in milk replacer and starter diet. Animals were in experiment up to age of 26 days. Addition of NaB to milk replacer and starter diet had no effect on daily growth rate, but reduced the weight loss observed in C calves in first 11 days of age. Additionally, the NaB calves weighed more at the end of the study and tended to have higher growth rate in the whole trial period (Pweight (P=0.13) and higher reticulorumen weight expressed as a percent of whole stomach weight (P=0.02) as compared to control. Histometry analysis indicated larger rumen papillae length and width (P<0.01) in NaB group, and no change in muscle layer thickness, as compared to control. Plasma glucagon-like peptide-2 relative increase was higher in NaB group than in C group, and may be involved in rumen development. In conclusion, supplementation of the diet (milk replacer and starter diet) with NaB may enhance rumen development in neonatal calves. PMID:19996481

  15. Effect of Indole Butyric Acid on the Transportation of Stored Calcium in Malus hupehensis Rhed. Seedling

    Institute of Scientific and Technical Information of China (English)

    LI Jia; YANG Hong-qiang; YAN Tian-li; SHU Huai-rui

    2006-01-01

    Calcium (Ca) plays an important role in the metabolism of higher plants. Recently, research on Ca2+ in plants has been focused especially at the cellular and molecular levels. Uptake, transport, and distribution are also very important for Ca to accomplish its function at the whole-plant level. In this experiment, one-year-old apple seedlings (M. hupehensis Rehd.) were investigated to determine the distribution of stored Ca, the different forms of Ca, and Ca2+-ATPase activity after treatment with indole butyric acid (IBA). The results showed that the total Ca measured in mature leaves and Ca2+-ATPase activity in tender leaves were higher compared with those in the control (CK). Calcium nitrate and calcium chloride (ALe-Ca) and calcium phosphate and calcium carbonate (HAC-Ca) decreased in both mature leaves and shoots,whereas water-soluble calcium (H2O-Ca), calcium pectate (NaCl-Ca), and calcium oxalate (HCl-Ca) increased. The percentage of active calcium, calcium pectate, and water-soluble calcium increased, whereas the percentage of calcium phosphate and calcium carbonate decreased. When treated with IBA, calcium fractions and percentage of the different forms of Ca was enhanced in 40 part per million (ppm) IBA compared with 20 ppm IBA and water. The results indicated that IBA increased the percentage of both active calcium (NaCl-Ca and H2O-Ca) in tender shoots and boosted the transportation of stored Ca in plants. IBA promoted Ca2+-ATPase activity and Ca2+ uptake in tender shoots of M. hupehensis. It can improve the total Ca contents and the relative percentage of Ca.

  16. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    -vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial......Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate...... filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  17. Hydrogen production and anaerobic decolorization of wastewater containing Reactive Blue 4 by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa.

    Science.gov (United States)

    Watanapokasin, Ramida Yuwadee; Boonyakamol, Anantabhathra; Sukseree, Supawadee; Krajarng, Aungkana; Sophonnithiprasert, Thanet; Kanso, Sungwan; Imai, Tsuyoshi

    2009-06-01

    Anaerobic biodegradability of wastewater (3,000 mg CODcr/l) containing 300 mg/l Reactive Blue 4, with different co-substrates, glucose, butyrate and propionate by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa, concomitantly with hydrogen production was investigated at 35 degrees C. The accumulative hydrogen production at 3,067 mg CODcr/l was obtained after 7 days of incubation with glucose, sludge, the bacterial consortium. The volatile fatty acids, residual glucose and the total organic carbon were correlated to hydrogen obtained. Interestingly, the bacterial consortium possess decolorization ability showing approximately 24% dye removal after 24 h incubation using glucose as a co-substrate, which was about two and eight times those of butyrate (10%), propionate (12%) and control (3%), respectively. RB4 decolorization occurred through acidogenesis, as high volatile fatty acids but low methane was detected. The bacterial consortium will be the bacterial strains of interest for further decolorization and hydrogen production of industrial waste water. PMID:19002762

  18. Demonstrating Bacterial Flagella.

    Science.gov (United States)

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  19. Content Determination of Hydrocortisone Butyrate in Hydrocortisone Butyrate Gel by HPLC%HPLC法测定丁酸氢化可的松凝胶中丁酸氢化可的松的含量

    Institute of Scientific and Technical Information of China (English)

    王秋桐; 王伟; 侯海玲; 王玉华

    2013-01-01

    目的:建立测定丁酸氢化可的松凝胶中丁酸氢化可的松含量的方法.方法:采用高效液相色谱法.色谱柱为PhenomenC18柱,流动相为乙腈-0.5%醋酸水溶液(51:49,v/V),检测波长为240nm,流速为1.0 ml/min,柱温为25℃,进样量为20μl,灵敏度为1.0 AUFS.结果:丁酸氢化可的松的进样量在97.6~878.4 ng范围内与峰面积积分值呈良好的线性关系(r=0.9991);平均回收率为99.5%,RSD=0.45%(n=9).结论:该方法简便、灵敏、准确,可用于丁酸氢化可的松凝胶的质量控制.%OBJECTIVE: To develop a method for the content determination of hydrocortisone butyrate in Hydrocortisone butyrate gel. METHODS: HPLC method was adopted. The determination was performed on Phenomen C18 column with mobile phase consisted of acetonitrile-0.5% acetic acid (51:49) at flow rate of 1.0 ml/min. The column temperature was 25 ℃ and injection volume was 20 μl. The sensitivity of the sample was 1.0 AUFS. RESULTS: The linear range of hydrocortisone butyrate was 97.6-878.4 ng (r=0.999 1) with an average recovery of 99.5% (RSD=0.45% , n=9). CONCLUSION: The method is proven to be simple, accurate and precise for the quality control of Hydrocortisone butyrate gel.

  20. Proteomics in the Study of Bacterial Keratitis

    Directory of Open Access Journals (Sweden)

    Rachida Bouhenni

    2015-12-01

    Full Text Available Bacterial keratitis is a serious ocular infection that can cause severe visual loss if treatment is not initiated at an early stage. It is most commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, or Serratia species. Depending on the invading organism, bacterial keratitis can progress rapidly, leading to corneal destruction and potential blindness. Common risk factors for bacterial keratitis include contact lens wear, ocular trauma, ocular surface disease, ocular surgery, lid deformity, chronic use of topical steroids, contaminated ocular medications or solutions, and systemic immunosuppression. The pathogenesis of bacterial keratitis, which depends on the bacterium-host interaction and the virulence of the invading bacterium, is complicated and not completely understood. This review highlights some of the proteomic technologies that have been used to identify virulence factors and the host response to infections of bacterial keratitis in order to understand the disease process and develop improved methods of diagnosis and treatment. Although work in this field is not abundant, proteomic technologies have provided valuable information toward our current knowledge of bacterial keratitis. More studies using global proteomic approaches are warranted because it is an important tool to identify novel targets for intervention and prevention of corneal damage caused by these virulent microorganisms.

  1. Fructose Degradation in the Haloarchaeon Haloferax volcanii Involves a Bacterial Type Phosphoenolpyruvate-Dependent Phosphotransferase System, Fructose-1-Phosphate Kinase, and Class II Fructose-1,6-Bisphosphate Aldolase

    OpenAIRE

    Pickl, Andreas; Johnsen, Ulrike; Schönheit, Peter

    2012-01-01

    The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly ...

  2. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.

    Science.gov (United States)

    Ghorbaniaghdam, Atefeh; Henry, Olivier; Jolicoeur, Mario

    2013-04-01

    A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis-Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle. PMID:22976819

  3. Shuffling bacterial metabolomes

    OpenAIRE

    Thomason, Brendan; Read, Timothy D.

    2006-01-01

    Horizontal gene transfer (HGT) has a far more significant role than gene duplication in bacterial evolution. This has recently been illustrated by work demonstrating the importance of HGT in the emergence of bacterial metabolic networks, with horizontally acquired genes being placed in peripheral pathways at the outer branches of the networks.

  4. Vimentin in Bacterial Infections.

    Science.gov (United States)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  5. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...... become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future....

  6. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  7. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  8. The Long and Winding Road to Gamma-Amino-Butyric Acid as Neurotransmitter.

    Science.gov (United States)

    Avoli, Massimo; Krnjević, Krešimir

    2016-03-01

    This review centers on the discoveries made during more than six decades of neuroscience research on the role of gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain. Finally, we briefly address the involvement of GABA in neurological conditions that encompass epileptic disorders and mental retardation. RESUMÉ: Le chemin long et sinueux pour que le GABA soit reconnu comme un neurotransmetteur. Cette revue est axée sur les découvertes réalisées durant plus de six décennies de recherche en neurosciences sur l'acide gamma-aminobutyrique (GABA) comme neurotransmetteur. À cet effet, nous mettons une emphase particulière sur le rôle significatif de chercheurs canadiens dans ce domaine de recherche. En prenant comme point de départ les premières études qui ont établi que le GABA était un neurotransmetteur au niveau de synapses centrales, nous faisons le sommaire des résultats identifiant le récepteur GABA comme étant une cible thérapeutique ainsi que des données plus récentes montrant que la signalisation du récepteur GABAA joue, de façon surprenante, un rôle actif dans la synchronisation du réseau neuronal, tant au cours du développement que dans le cerveau adulte. Finalement, nous traitons brièvement du rôle de GABA dans les maladies neurologiques incluant les troubles épileptiques et l'arriération mentale. PMID:26763167

  9. Effect of different doses of coated butyric acid on growth performance and energy utilization in broilers.

    Science.gov (United States)

    Kaczmarek, S A; Barri, A; Hejdysz, M; Rutkowski, A

    2016-04-01

    We recently applied four dietary treatments in experiments I and II to determine the effect of protected calcium butyrate (BP) on growth performance and nutrient digestibility in broiler chickens. A group of one-day-old male Ross 308 broiler chicks (total 960, 480 per trial) were used in the study. In experiment I, the basal diets were fed with protected BP inclusion (0.2, 0.3, or 0.4 g/kg of finished feed) (BP) or without (C). In experiment II, 4 different diets were tested: 1) basal diet with no supplementation (C), 2) basal diet supplemented with protected BP (0.3 g/kg) (BP), 3) basal diet supplemented with avilamycin (6 mg/kg, active substance) a common antibiotic growth promoter (AGP) (Av), and 4) basal diet supplemented with the combination of both avilaymicin and BP. In experiment I, considering the entire study period, the use of BP improved feed conversion ratio (Penergy corrected for nitrogen (AMEN) were improved after BP supplementation (P<0.05). In experiment II, A or AB diets improved (P<0.05) body weight gain compared to the control treatment. The diets Av, BP, and AvB improved (P<0.05) feed conversion ratio compared to the control treatment. Birds from the treatment diet were characterized by having the thickest mucosa (P<0.05). On days 14, 35, and 42, the use of AB diets improved AMENcontent compared to the control treatment (P<0.05). The apparent ileal digestibility of amino acid data showed that Av or AvB treated birds were characterized by higher Asp, Glu, Cys, Gly, and Ala ileal digestibility than the control animals (P<0.05). The use of Av, BP, or AvB increased ileal digestibility of Thr, Ser, and Pro (P<0.05). There is an indication that BP, alone or in combination with avilamycin, improve the digestion and absorptive processes and consequently birds performance results. PMID:26740137

  10. Homoserine lactones: Do plants really listen to bacterial talk?

    OpenAIRE

    Klein, Ilona; von Rad, Uta; Durner, Jörg

    2009-01-01

    The bacterial quorum sensing signals N-acyl-L-homoserine lactones (AHL) enable bacterial cells to regulate gene expression depending on population density, which eventually leads to invasion of hosts. Only little is known about the molecular ways of plants reacting to these bacterial signals. Recently, we showed that the contact of Arabidopsis thaliana roots with N-hexanoyl-DL-homoserine-lactone (HHL) resulted in distinct transcriptional changes in roots and shoots, respectively. In addition,...

  11. Promotion and Inhibition of Ruminal Epithelium Growth by Butyric Acid and Insulin-Like Growth Factor-1 (IGF-1) in Dairy Goats

    Institute of Scientific and Technical Information of China (English)

    LIU Da-cheng; ZHOU Xiang-li; LIU Guo-juan; GAO Min; HU Hong-lian

    2014-01-01

    Isolated ruminal epithelia from caudal blind sacs of dairy goats were incubated with butyrate and insulin-like growth factor-1 (IGF-1) at different concentrations. Proportions of ruminal epithelium in different phases of the cell division cycle were determined by lfow cytometric analysis. The proportion of epithelial cells in S phase and G2-M phase (PS&G2-M) increased signiifcantly (P<0.01) whereas the proportion of epithelial cells in G0-G1 phase (PG0-G1) decreased after incubation with IGF-1. PS&G2-M decreased whereas PG0-G1increased markedly (P<0.01) after incubation with sodium butyrate. PS&G2-M incubated with IGF-1 and butyrate sodium together increased more than that incubated with IGF-1 alone; PG0-G1, however, decreased signiifcantly (P<0.01). Our results indicate that IGF-1 enhances whereas sodium butyrate inhibits the proliferation of rumen epithelial cells. Furthermore, butyrate and IGF-1, together, have a synergic effect on the proliferation of rumen epithelium.

  12. Sodium butyrate enemas in the treatment of acute radiation-induced proctitis in patients with prostate cancer and the impact on late proctitis. A prospective evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Andrea; Herrmann, Markus K.A.; Kertesz, Tereza; Christiansen, Hans; Hermann, Robert M.; Hess, Clemens F. [University Hospital, Goettingen (Germany). Department of Radiotherapy and Radiooncology; Pradier, Olivier [University Hospital, Brest (France). Department of Radiotherapy and Radiooncology; Schmidberger, Heinz [University Hospital, Mainz (Germany). Department of Radiotherapy and Radiooncology

    2008-12-15

    To evaluate prospectively the effect of sodium butyrate enemas on the treatment of acute and the potential influence on late radiation-induced proctitis. 31 patients had been treated with sodium butyrate enemas for radiation-induced acute grade II proctitis which had developed after 40 Gy in median. During irradiation the toxicity was evaluated weekly by the Common Toxicity Criteria (CTC) and subsequently yearly by the RTOG (Radiation Therapy Oncology Group) and LENT-SOMA scale. 23 of 31 patients (74%) experienced a decrease of CTC grade within 8 days on median. A statistical significant difference between the incidence and the severity of proctitis before start of treatment with sodium butyrate enemas compared to 14 days later and compared to the end of irradiation treatment course, respectively, was found. The median follow-up was 50 months. Twenty patients were recorded as suffering from no late proctitis symptom. Eleven patients suffered from grade I and 2 of these patients from grade II toxicity, too. No correlation was seen between the efficacy of butyrate enemas on acute proctitis and prevention or development of late toxicity, respectively. Sodium butyrate enemas are effective in the treatment of acute radiation-induced proctitis in patients with prostate cancer but have no impact on the incidence and severity of late proctitis. (orig.)

  13. Bacterial strategies for chemotaxis response.

    Science.gov (United States)

    Celani, Antonio; Vergassola, Massimo

    2010-01-26

    Regular environmental conditions allow for the evolution of specifically adapted responses, whereas complex environments usually lead to conflicting requirements upon the organism's response. A relevant instance of these issues is bacterial chemotaxis, where the evolutionary and functional reasons for the experimentally observed response to chemoattractants remain a riddle. Sensing and motility requirements are in fact optimized by different responses, which strongly depend on the chemoattractant environmental profiles. It is not clear then how those conflicting requirements quantitatively combine and compromise in shaping the chemotaxis response. Here we show that the experimental bacterial response corresponds to the maximin strategy that ensures the highest minimum uptake of chemoattractants for any profile of concentration. We show that the maximin response is the unique one that always outcompetes motile but nonchemotactic bacteria. The maximin strategy is adapted to the variable environments experienced by bacteria, and we explicitly show its emergence in simulations of bacterial populations in a chemostat. Finally, we recast the contrast of evolution in regular vs. complex environments in terms of minimax vs. maximin game-theoretical strategies. Our results are generally relevant to biological optimization principles and provide a systematic possibility to get around the need to know precisely the statistics of environmental fluctuations. PMID:20080704

  14. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice.

    Science.gov (United States)

    Subramanian, Umadevi; Kumar, Prerna; Mani, Indra; Chen, David; Kessler, Isaac; Periyasamy, Ramu; Raghavaraju, Giri; Pandey, Kailash N

    2016-07-01

    The objective of the present study was to examine the genetically determined differences in the natriuretic peptide receptor-A (NPRA) gene (Npr1) copies affecting the expression of cardiac hypertrophic markers, proinflammatory mediators, and matrix metalloproteinases (MMPs) in a gene-dose-dependent manner. We determined whether stimulation of Npr1 by all-trans retinoic acid (RA) and histone deacetylase (HDAC) inhibitor sodium butyric acid (SB) suppress the expression of cardiac disease markers. In the present study, we utilized Npr1 gene-disrupted heterozygous (Npr1(+/-), 1-copy), wild-type (Npr1(+/+), 2-copy), gene-duplicated (Npr1(++/+), 3-copy) mice, which were treated intraperitoneally with RA, SB, and a combination of RA/SB, a hybrid drug (HB) for 2 wk. Untreated 1-copy mice showed significantly increased heart weight-body weight (HW/BW) ratio, blood pressure, hypertrophic markers, including beta-myosin heavy chain (β-MHC) and proto-oncogenes (c-fos and c-jun), proinflammatory mediator nuclear factor kappa B (NF-κB), and MMPs (MMP-2, MMP-9) compared with 2-copy and 3-copy mice. The heterozygous (haplotype) 1-copy mice treated with RA, SB, or HB, exhibited significant reduction in the expression of β-MHC, c-fos, c-jun, NF-κB, MMP-2, and MMP-9. In drug-treated animals, the activity and expression levels of HDAC were significantly reduced and histone acetyltransferase activity and expression levels were increased. The drug treatments significantly increased the fractional shortening and reduced the systolic and diastolic parameters of the Npr1(+/-) mice hearts. Together, the present results demonstrate that a decreased Npr1 copy number enhanced the expression of hypertrophic markers, proinflammatory mediators, and MMPs, whereas an increased Npr1 repressed the cardiac disease markers in a gene-dose-dependent manner. PMID:27199456

  15. Biomechanics of bacterial walls: studies of bacterial thread made from Bacillus subtilis.

    OpenAIRE

    Thwaites, J J; Mendelson, N H

    1985-01-01

    Bacterial threads of up to 1 m in length have been produced from filaments of separation-suppressed mutants of Bacillus subtilis. Individual threads may contain 20,000 cellular filaments in parallel alignment. The tensile properties of bacterial threads have been examined by using conventional textile engineering techniques. The kinetics of elongation at constant load are indicative of a viscoelastic material. Both Young's modulus and breaking stress are highly dependent upon relative humidit...

  16. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E; Dang, Yan; Woodard, Trevor L; Nevin, Kelly P; Lovley, Derek R

    2016-06-01

    Promoting direct interspecies electron transfer (DIET) to enhance syntrophic metabolism may be a strategy for accelerating the conversion of organic wastes to methane, but microorganisms capable of metabolizing propionate and butyrate via DIET under methanogenic conditions have yet to be identified. In an attempt to establish methanogenic communities metabolizing propionate or butyrate with DIET, enrichments were initiated with up-flow anaerobic sludge blanket (UASB), similar to those that were previously reported to support communities that metabolized ethanol with DIET that relied on direct biological electrical connections. In the absence of any amendments, microbial communities enriched were dominated by microorganisms closely related to pure cultures that are known to metabolize propionate or butyrate to acetate with production of H2. When biochar was added to the reactors there was a substantial enrichment on the biochar surface of 16S rRNA gene sequences closely related to Geobacter and Methanosaeta species known to participate in DIET. PMID:26967338

  17. Effect of sodium butyrate treatment on the granule morphology, histamine level and elemental content of the bone marrow-derived mast cell

    International Nuclear Information System (INIS)

    Mast cells derived from the bone marrow of BALB/c mice (BMMC) were cultures and their growth ceased with sodium butyrate. Sodium butyrate treatment (1 mM, 4 days) caused maturation of the granules, and increased histamine content from approx. 1 pg/cell to 4 pg/cell. X-ray microanalysis revealed that maturation of the granules was accompanied by the increase in relative weight percent of sodium, phosphorus and sulphur, with concomitant decrease in chloride. The sulphur to potassium ratio increased three-fold in butyrate-treated mast cells. The existence of a different elemental composition during mast cell maturation may provide additional parameter for rapid discrimination of mast cell subpopulations. (author). 28 refs, 6 figs

  18. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    International Nuclear Information System (INIS)

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells

  19. Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

    International Nuclear Information System (INIS)

    In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 .deg. C to 7.1% and 48 nW at 70 .deg. C, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change

  20. Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, KiSeob; Lee, JunYoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Park, JeaHeel; Ha, KiRyong [Keimyung University, Seoul (Korea, Republic of)

    2014-08-15

    In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 .deg. C to 7.1% and 48 nW at 70 .deg. C, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

  1. Fractal Analysis of Lipase-Catalysed Synthesis of Butyl Butyrate in a Microbioreactor Under the Influence of Noise

    Science.gov (United States)

    Patnaik, Pratap R.

    2013-03-01

    Microbioreactors operated in real environments are often subject to noise from the environment. This is commonly manifested as fluctuations in the flow rates of the feed streams. Previous studies with larger bioreactors have shown that noise can seriously impair the performance. Given this possibility, the effects of noise on the performance of a microbioreactor have been analyzed for the trans-esterification of vinyl butyrate by 1-butanol by immobilized lipase B to produce butyl butyrate. As in previous work for macrobioreactors, the analysis was done with (i) no noise, (ii) unfiltered noise, and (iii) noise filtered by four different methods, and the fractal dimension of the product was used as an index of the performance. All fractal dimensions decreased with increasing dilution rates, and significant stochastic chaos was likely at low dilution rates. Of the four types of filters, the auto-associative neural filter (ANF) was the most effective in reducing chaos and restoring of smooth, nearly noise-free performance. The ANF also does not require a process model, which is a significant advantage for real systems. Simulations also revealed that even in the absence of noise, deterministic chaos is possible at low dilution rates; this underscores the importance of efficient filtering under such conditions when external noise too is present. The results thus establish the importance of noise in microbioreactor behavior and the usefulness of the fractal dimension in characterizing the effects.

  2. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    JoseLMartinez

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  3. BUTYRATE SUPPLEMENTATION AFFECTS mRNA ABUNDANCE OF GENES INVOLVED IN GLYCOLYSIS, OXIDATIVE PHOSPHORYLATION AND LIPOGENESIS IN THE RUMEN EPITHELIUM OF HOLSTEIN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Anne Hermen Laarman

    2013-01-01

    Full Text Available Energy availability in epithelial cells is a crucial link for maintaining epithelial barrier integrity; energy depletion is linked to impaired barrier function in several epithelia. This study aimed to elucidate the effects of exogenous butyrate on mRNA abundance of genes indirectly involved in rumen epithelial barrier integrity. Sixteen mid-lactation Holstein cows fed a total mixed ration received a concentrate mix to induce Subacute Ruminal Acidosis (SARA. For 7 days, while being fed the concentrate mix, cows were assigned either a control treatment or a butyrate treatment, in which cows were fed butyrate at 2.5% daily dry matter intake in the form of a calcium salt. On days 6 and 7, rumen pH was measured continuously and on day 7, rumen biopsies took place. Rumen pH fell below 5.6 for more than 3 hours per day in both treatments, con-firming the occurrence of SARA. Microarray and pathway analysis, confirmed by real time PCR, showed that exogenous butyrate significantly increased the mRNA abundance of hexokinase 2 (fold change: 2.07, pyruvate kinase (1.19, cytochrome B-complex 3 (1.18 and ATP Synthase, F0 subunit (1.66, which en-code important glycolytic enzymes. Meanwhile, butyrate decreased mRNA abundance of pyruvate dehydrogenase kinase 2(-2.38, ATP citrate lyase (-2.00 and mitochondrial CoA transporter (-2.27, which en-code enzymes involved in lipogenesis. These data suggest exogenous butyrate induces a shift towards energy mobilization in the rumen epithelium, which may aid barrier function in the rumen epithelium during SARA.

  4. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  5. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  6. Effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823

    Institute of Scientific and Technical Information of China (English)

    Song-Lin Shi; Yong-Ye Wang; Ying Liang; Qi-Fu Li

    2006-01-01

    AIM: To investigate the effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823.METHODS: Effects of tachyplesin and n-sodium butyrate on proliferation of BGC-823 cells were determined with trypan blue dye exclusion test and HE staining. Effects of tachyplesin and n-sodium butyrate on cell cycle were detected by flow cytometry. Protein levels of c-erbB-2, c-myc, p53 and p16 were examined by immunocytochemistry.RESULTS: The inhibiting effects were similar after 2.0 mg/L tachyplesin and 2.0 mmol/L n-sodium butyrate treatment, the inhibitory rate of cellular growth was 62.66% and 60.19% respectively, and the respective maximum mitotic index was decreased by 49.35% and 51.69% respectively. Tachyplesin and n-sodium butyrate treatment could markedly increase the proportion of cells at G0/G1 phase and decrease the proportion at S phase.The expression levels of oncogene c-erbB-2, c-myc, and mtp53 proteins were down-regulated while the expression level of tumor suppressor gene p16 protein was up-regulated after the treatment with tachyplesin or n-sodium butyrate. The effects of 1.0 mg/L tachyplesin in combination with 1.0 mmol/L n-sodium butyrate were obviously superior to their individual treatment in changing cell cycle distribution and expression of c-erbB-2,c-myc, mtp53 and p16 protein. The inhibitory rate of cellular growth of BGC-823 cells after combination treatment was 62.29% and the maximum mitotic index was decreased by 51.95%.CONCLUSION: Tachyplesin as a differentiation inducer of tumor cells has similar effects as n-sodium butyrate on proliferation of tumor cells, expression of correlative oncogene and tumor suppressor gene. It also has a synergistic effect on differentiation of tumor cells.

  7. Enteral nutrient solutions. Limiting bacterial growth.

    Science.gov (United States)

    Paauw, J D; Fagerman, K E; McCamish, M A; Dean, R E

    1984-06-01

    Bacterial contamination of enteral nutrient solutions ( ENS ) in FFcess of food product standards is known to occur in the hospital setting. The large amounts of bacteria often given with ENS have been shown to create a reservoir for nosocomial infections, and nonpathogenic bacteria have been implicated. Patient tolerance is dependent on immune status and the bacterial load delivered to the gut. The purpose of this study was to evaluate the bacterial growth-sustaining properties of various ENS and to devise methods to limit bacterial growth. Five commercial products were prepared under sterile conditions. After inoculation with approximately 5 X 10(3) organisms/cm3 of Enterobacter cloacae, each solution was hung at room temperature for 24 hours with samples drawn at fixed intervals and plated for bacterial counts. Bacterial growth rates in Ensure, Travasorb , and Vital were markedly higher than those in Precision and Vivonex. Vivonex was noted to contain potassium sorbate (KS) used as a fungistatic agent. Recent studies have identified KS as a broad-spectrum bacteriostatic food preservative that is federally approved for this use. KS (0.03%) was added to Travasorb inoculated with 5 X 10(3) organisms/cm(3) of E. cloacae. The bacterial growth rate was reduced by 75 per cent, and the final count of 2-3 X 10(4) organisms/ml was within the federally regulated limit for milk. This study suggests that initial inoculum, growth rate, and hang time can be altered to provide a significant reduction in final bacterial counts in ENS . PMID:6428286

  8. Calibrating bacterial evolution

    OpenAIRE

    Ochman, Howard; Elwyn, Susannah; Moran, Nancy A

    1999-01-01

    Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal appl...

  9. Bioinformatic Comparison of Bacterial Secretomes

    Institute of Scientific and Technical Information of China (English)

    Catharine Song; Aseem Kumar; Mazen Saleh

    2009-01-01

    The rapid increasing number of completed bacterial genomes provides a good op-portunity to compare their proteomes. This study was undertaken to specifically compare and contrast their secretomes-the fraction of the proteome with pre-dicted N-terminal signal sequences, both type Ⅰ and type Ⅱ. A total of 176 theoreti-cal bacterial proteomes were examined using the ExProt program. Compared with the Gram-positives, the Gram-negative bacteria were found, on average, to con-tain a larger number of potential Sec-dependent sequences. In the Gram-negative bacteria but not in the others, there was a positive correlation between proteome size and secretome size, while there was no correlation between secretome size and pathogenicity. Within the Gram-negative bacteria, intracellular pathogens were found to have the smallest secretomes. However, the secretomes of certain bacte-ria did not fit into the observed pattern. Specifically, the secretome of Borrelia burgdoferi has an unusually large number of putative lipoproteins, and the signal peptides of mycoplasmas show closer sequence similarity to those of the Gram-negative bacteria. Our analysis also suggests that even for a theoretical minimal genome of 300 open reading frames, a fraction of this gene pool (up to a maximum of 20%) may code for proteins with Sec-dependent signal sequences.

  10. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    Science.gov (United States)

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  11. Study on the Effects of Increasing Production Rate of Ruminal Acetate and Butyrate on Their Absorption and Passage in Alimentary Tract of Sheep

    Institute of Scientific and Technical Information of China (English)

    DU Rui-ping; LU De-xun

    2011-01-01

    Six Inner Mongolian semifine-wool wethers (1.5 years old,29-31 kg BW) fitted with a ruminal and a duodenum cannula were used to study the effects of increasing production rate of ruminal acetate and butyrate on their absorption and passage in alimentary tract by simulating continuous feeding and pulsecontinuous infusion technology.The sheep were divided into two groups randomly and fed the same basal diet,one group was for acetate measuring and the other group was for butyrate measuring.Diet was formulated according to maintain requirement of Inner Mongolian sheep and consisted of hay 69.64%,corn 18.11%,soybean meal 15.57%,wheat bran 5.57%,and premix 1.11%,the diet contained DM 92.34%,CP9.74%,ME 8.47 MJ/kg,Ca 0.31%,P 0.21%(dry matter basis).Three infusion levels of acetate and butyrate were designed to reach 2.5,3.0 and 4.0 multiple on the basis of basal production rate.The rumen and duodenum fluid samples were collected for measuring pH,Co-EDTA,acetate and butyrate concentration.

  12. Study on the Effects of Increasing Production Rate of Ruminal Acetate and Butyrate on Their Absorption and Passage in Alimentary Tract of Sheep

    Institute of Scientific and Technical Information of China (English)

    DU Rui-ping; LU De-xun

    2011-01-01

    Six Inner Mongolian semifine-wool wethers(1.5 years old,29-31 kg BW) fitted with a ruminal and a duodenum cannula were used to study the effects of increasing production rate of ruminal acetate and butyrate on their absorption and passage in alimentary tract by simulating continuous feeding and pulse-continuous infusion technology.The sheep were

  13. Poly-(epsilon-caprolactone)(PCL) and poly(hydroxy-butyrate)(PHB) blends containing seaweed fibers: morphology and thermal-mechanical properties.

    Science.gov (United States)

    Massive quantities of marine seaweed, Ulva armoricana are washed onto shores of many European countries and accumulates as waste. Attempts were made to utilize this renewable resource in hybrid composites by blending the algal biomass with biodegradable polymers such as poly(hydroxy-butyrate) and po...

  14. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Hanigan, M.D.; Kristensen, Niels Bastian

    2011-01-01

    mesenteric, right ruminal, and hepatic portal veins. The experiment was designed with 2 groups of cows: 4 cows adapted to high crude protein (CP) and 4 to low CP. All cows were subjected to 3 buffers: butyric, ammonia, and control in a randomized replicated 3 × 3 incomplete Latin square design. The buffers...

  15. Draft Genome Sequence of Syntrophomonas wolfei subsp. methylbutyratica Strain 4J5T (JCM 14075), a Mesophilic Butyrate- and 2-Methylbutyrate-Degrading Syntroph

    Science.gov (United States)

    Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Liu, Wen-Tso

    2016-01-01

    Syntrophomonas wolfei subsp. methylbutyratica strain 4J5T (=JCM 14075T) is a mesophilic bacterium capable of degrading butyrate and 2-methylbutyrate through syntrophic cooperation with a partner methanogen. The draft genome sequence is 3.2 Mb, with a G+C content of 45.5%. PMID:26941138

  16. Experimental and theoretical study of excess molar volumes and enthalpies for the ternary mixture butyl butyrate + 1-octanol + decane at 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garabal, Sandra; Jimenez, Eulogio; Segade, Luisa; Casas, Herminio; Franjo, Carlos; Legido, Jose L.; Paz Andrade, M. Inmaculada

    2003-10-14

    This paper reports measurements on excess thermodynamic properties for the ternary system: butyl butyrate+1-octanol+decane at the temperature 308.15 K and atmospheric pressure. The binary and ternary experimental data were correlated using the Redlich-Kister and Cibulka equation, respectively. Experimental values were compared with the predictions obtained by several contribution models and several empirical equations.

  17. Bioprotective carnitinoids: lipoic acid, butyrate, and mitochondria-targeting to treat radiation injury: mitochondrial drugs come of age.

    Science.gov (United States)

    Steliou, Kosta; Faller, Douglas V; Pinkert, Carl A; Irwin, Michael H; Moos, Walter H

    2015-06-01

    Preclinical Research Given nuclear-power-plant incidents such as the 2011 Japanese Fukushima-Daiichi disaster, an urgent need for effective medicines to protect against and treat the harmful biological effects of radiation is evident. To address such a challenge, we describe potential strategies herein including mitochondrial and epigenetic-driven methods using lipoic and butyric acid ester conjugates of carnitine. The antioxidant and other therapeutically beneficial properties of this class of agents may protect against ionizing radiation and resultant mitochondrial dysfunction. Recent studies of the compounds described herein reveal the potential-although further research and development is required to prove the effectiveness of this approach-to provide field-ready radiation-protective drugs. PMID:26109467

  18. The changes in telomerase activity and telomere length in HeLa cells undergoing apop- tosis induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The changes in telomerase activity and telomere length during apoptosis in HeLa cells as induced by sodium butyrate (SB) have been studied. After a 48 h SB treatment, HeLa cells demonstrated characteristic apoptotic hallmarks including chromatin condensation, formation of apoptotic bodies and DNA Laddering which were caused by the cleavage and degradation of DNA between nucleosomes. There were no significant changes in telomerase activity of apoptotic cells, while the telomere length shortened markedly. In the meanwhile, cells became more susceptible to apoptotic stimuli and telomere became more vulnerable to degradation after telomerase activity was inhibited. All the results suggest that the apoptosis induced by SB is closely related to telomere shortening, while telomerase enhances resistance of HeLa cells to apoptotic stimuli by protecting telomere.

  19. Photovoltaic Properties of Poly (3-Hexylthiophene: [6, 6]-Phenyl C61-Butyric Acid 3-Ethylthiophene Thin Films

    Directory of Open Access Journals (Sweden)

    B.M. Omer

    2013-07-01

    Full Text Available We fabricated and studied the electrical and photovoltaic properties of organic solar cell based on poly (3-hexylthiophene (P3HT as an electron donor blended with the acceptor [6, 6]-Phenyl C61-Butyric Acid 3-Ethylthiophene Ester (modified fullerene. The active layer composed of (3:1, w/w mixture of P3HT and the modified fullerene was sandwiched between indium tin oxide (ITO and aluminum (Al. The ideality factor n and barrier hight b values were determined from the dark current density-voltage characteristics and found as 2.45 and 0.78 eV, respectively. The device shows photovoltaic behavior with an open circuit voltage of 400 mV, short circuit current of 22.9 A/cm2 and fill factor 0.32 under 2.8 mW/cm2 light intensity.

  20. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter; Gavala, Hariklia N.

    fermentation coupled with Reverse Enhanced Electro-Dialysis (REED) at D=0.0417 h-1 (1 day HRT) in experiments with a mixture of glucose and xylose in synthetic growth medium as well as with increasing concentrations of PHWS (up to 100%). Data obtained from experiments with synthetic medium showed that...... disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...... development, and process improvement for higher yield, productivity and selectivity. Compared with other microbial strains Clostridium tyrobutyricum has been well characterised, exhibits higher yield and selectivity and can utilize glucose and xylose simultaneously. However, a prerequisite for cost effective...

  1. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  2. Formaldehyde Stress Responses in Bacterial Pathogens.

    Science.gov (United States)

    Chen, Nathan H; Djoko, Karrera Y; Veyrier, Frédéric J; McEwan, Alastair G

    2016-01-01

    Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed. PMID:26973631

  3. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    International Nuclear Information System (INIS)

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10−3 S/m from 4.3 × 10−9 S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer

  4. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mátis Gábor

    2013-01-01

    Full Text Available Abstract Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus

  5. The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis

    Directory of Open Access Journals (Sweden)

    M. G. Eshak

    2016-05-01

    Full Text Available Aim: To study the efficacy of Na-butyrate encapsulated in palm fat on performance of broiler chickens experimentally infected with necrotic enteritis (NE with the determination of its protective effect against the changes in the gene expression profiles and deoxyribonucleic acid (DNA fragmentation. Materials and Methods: A total of 800 one-day-old male Arbor Acres Plus broiler chickens were randomly allocated into four groups for 5 weeks. Na-butyrate was supplemented at dosages of 1 kg/ton for starter diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher diet (presence or absence. Birds of groups 1 and 2 were inoculated by crop gavages with 4×108 CFU/ml/bird of Clostridium perfringens in phosphate buffered saline for 4 successive days, from 14 to 17 days of age to produce NE. Results: Addition of Na-butyrate, encapsulated in palm fat, to ration of experimentally infected broilers with NE resulted in increased final body weight, at 35 days of age, reduced total feed consumption, improved feed conversion ratio, reduced cumulative mortality, and increased production number. There were increased intestinal diameter, intestinal length, and significantly increased the weight of bursa of Fabricius(BF with higher hemagglutination inhibition titers against Newcastle disease (ND vaccination versus untreated infected and untreated negative control birds. The results showed increased expression levels of alpha-toxin and glyceraldehyde-3-phosphate dehydrogenase in the bursa tissues of broilers infected with C. perfringens. However, the expression levels of these genes in broilers treated with Na-butyrate were similar to the non-infected control group. Supplementation of broilers with Na-butyrate increased the expression level of insulin-like growth factor-1 (IGF-1 and decreased the DNA fragmentation induced by C. perfringens. Conclusion: Na-butyrate significantly improved chicken broiler body weights, increased relative weights of BF, increased

  6. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  7. Sterile-α- and Armadillo Motif-Containing Protein Inhibits the TRIF-Dependent Downregulation of Signal Regulatory Protein α To Interfere with Intracellular Bacterial Elimination in Burkholderia pseudomallei-Infected Mouse Macrophages

    OpenAIRE

    Baral, Pankaj; Utaisincharoen, Pongsak

    2013-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, evades macrophage killing by suppressing the TRIF-dependent pathway, leading to inhibition of inducible nitric oxide synthase (iNOS) expression. We previously demonstrated that virulent wild-type B. pseudomallei inhibits the TRIF-dependent pathway by upregulating sterile-α- and armadillo motif-containing protein (SARM) and by inhibiting downregulation of signal regulatory protein α (SIRPα); both molecules are negative regulators o...

  8. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  9. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria.......Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...

  10. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    Full Text Available BACKGROUND: The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. CONCLUSIONS/SIGNIFICANCE: These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with

  11. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease

    OpenAIRE

    Yan, Arthur W.; Bernd Schnabl

    2012-01-01

    Alcoholic liver disease progresses through several stages of tissue damage, from simple steatosis to alcoholic hepatitis, fibrosis, or cirrhosis. Alcohol also affects the intestine, increases intestinal permeability and changes the bacterial microflora. Liver disease severity correlates with levels of systemic bacterial products in patients, and experimental alcoholic liver disease is dependent on gut derived bacterial products in mice. Supporting evidence for the importance of bacterial tran...

  12. BACTERIAL DESEASES IN SEA FISH

    Directory of Open Access Journals (Sweden)

    Ivančica Strunjak-Perović

    1997-10-01

    Full Text Available With development of the fish culturing in the sea, the interest in their health also increased. The reason for this are diseases or rather mortality that occur in such controlled cultures and cause great economic losses. By growing large quantities of fish in rather small species, natural conditions are changed, so fish is more sensitive and prone to infection agents (viruses, bacteria, parasites. Besides, a large fish density in the cultural process accelerates spreading if the diseases, but also enables a better perception of them. In wild populations sick specimen very quickly become predator’s prey, witch makes it difficult to note any pathological changes in such fish. There are lots of articles on viral, bacterial and parasitic diseases nowdays, but this work deals exclusively with bacterial deseases that occur in the controlled sea cultures (vibriosis, furunculosis, pastherelosis, nocardiosis, mycobaceriosis, edwardsielosis, yersiniosis, deseases caused by bacteria of genera Flexibacter, Pseudomonas, Aeromonas, Streptococus and bacteria nephryithis. Yet, the knowledge of these deseases vary, depending on wether a fish species is being cultured for a longer period of time or is only being introduced in the controlled culture.

  13. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  14. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  15. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  16. Heme uptake in bacterial pathogens

    OpenAIRE

    Contreras, Heidi; Chim, Nicholas; Credali, Alfredo; Goulding, Celia W.

    2014-01-01

    Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within...

  17. Evolutionary transitions in bacterial symbiosis

    OpenAIRE

    Sachs, Joel L.; Skophammer, Ryan G.; Regus, John U.

    2011-01-01

    Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the captur...

  18. Efecto del consumo de la fibra dietética en la expresión cuantitativa del receptor de butirato GPR43 en colon de ratas Effect of dietary fiber in the quantitative expression of butyrate receptor GPR43 in rats colon

    Directory of Open Access Journals (Sweden)

    L. Y. Corte Osorio

    2011-10-01

    Full Text Available Introducción: Los ácidos grasos de cadena corta (AGCC acetato, propionato y butirato, son productos de fermentación de la fibra dietética (FD en el intestino grueso. Recientemente, el butirato ha sido estudiado ya que es considerado indispensable para el mantenimiento de las funciones del colon y por su relación con la protección del cáncer colorrectal. Esto se atribuye a la capacidad de butirato de regular la expresión génica por mecanismos como la inhibición de la enzima histona deacetilasa. Se ha reportado que el receptor de AGCC, GPR43 está involucrado en el proceso de transducción de señales intracelulares una vez que se unen a ligandos como butirato para generar los efectos fisiológicos del butirato en los colonocitos. Objetivo: Determinar si el consumo de FD de nopal (Opuntia ficus I tiene influencia directa sobre la expresión cuantitativa del receptor específico de butirato GPR43. Métodos: Ratas adultas Wistar se sometieron a cuatro diferentes dietas variando el contenido de FD en 0, 5, 15 y 25% de FD denopal, respectivamente. Resultados y discusión: Los resultados mostraron un aumento significativo de la expresión relativa de GPR43 (93,1% cuando se suministró a las ratas una dieta conteniendo 5% de FD de nopal, usando como gen de referencia β-actina. Los resultados de esta investigación aportarán nuevos datos a los estudios que determinan la relación de la dieta con la salud intestinal, con el fin de ampliar el conocimiento sobre los efectos del ácido butírico en las funciones colónicas.Introduction: Short chain fatty acids (SCFA acetate, propionate and butyrate are the major anions produced by the bacterial fermentation of dietary fiber (DF in colon. Recently, butyrate has been recently studied because is important to maintain colonic functions and because it has been related with a protective effect in colorectal cancer, which is mainly, explained by its potential to regulate gene expression by inhibiting

  19. Riboregulation of bacterial and archaeal transposition.

    Science.gov (United States)

    Ellis, Michael J; Haniford, David B

    2016-05-01

    The coexistence of transposons with their hosts depends largely on transposition levels being tightly regulated to limit the mutagenic burden associated with frequent transposition. For 'DNA-based' (class II) bacterial transposons there is growing evidence that regulation through small noncoding RNAs and/or the RNA-binding protein Hfq are prominent mechanisms of defense against transposition. Recent transcriptomics analyses have identified many new cases of antisense RNAs (asRNA) that potentially could regulate the expression of transposon-encoded genes giving the impression that asRNA regulation of DNA-based transposons is much more frequent than previously thought. Hfq is a highly conserved bacterial protein that plays a central role in posttranscriptional gene regulation and stress response pathways in many bacteria. Three different mechanisms for Hfq-directed control of bacterial transposons have been identified to date highlighting the versatility of this protein as a regulator of bacterial transposons. There is also evidence emerging that some DNA-based transposons encode RNAs that could regulate expression of host genes. In the case of IS200, which appears to have lost its ability to transpose, contributing a regulatory RNA to its host could account for the persistence of this mobile element in a wide range of bacterial species. It remains to be seen how prevalent these transposon-encoded RNA regulators are, but given the relatively large amount of intragenic transcription in bacterial genomes, it would not be surprising if new examples are forthcoming. WIREs RNA 2016, 7:382-398. doi: 10.1002/wrna.1341 For further resources related to this article, please visit the WIREs website. PMID:26846462

  20. A lipid zipper triggers bacterial invasion

    OpenAIRE

    Eierhoff, Thorsten; Bastian, Björn; Thuenauer, Roland; Madl, Josef; Audfray, Aymeric; Aigal, Sahaja; Juillot, Samuel; Rydell, Gustaf E.; Müller, Stefan; Bentzmann, Sophie de; Imberty, Anne; Fleck, Christian; Römer, Winfried

    2014-01-01

    Entry of bacteria into host cells critically depends on their proper engulfment by the plasma membrane. So far, actin polymerization has been described as a major driving force in this process. However, our study reveals that the interaction of the bacterial surface lectin LecA with the host cell glycosphingolipid Gb3 is fully sufficient to promote engulfment of Pseudomonas aeruginosa, whereas actin polymerization is dispensable. Hence, the formation of a “lipid zipper” represents a previousl...

  1. Bacterial tactic responses.

    Science.gov (United States)

    Armitage, J P

    1999-01-01

    Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a

  2. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs.

    Science.gov (United States)

    Manzanilla, E G; Nofrarías, M; Anguita, M; Castillo, M; Perez, J F; Martín-Orúe, S M; Kamel, C; Gasa, J

    2006-10-01

    We evaluated the effects of 3 additives, sodium butyrate (AC), avilamycin (AB), and a combination of plant extracts (XT), on the productive performance and the intestinal environment of the early-weaned pig. The XT was a standardized mixture with 5% (wt/wt) carvacrol (from Origanum spp.), 3% cinnamaldehyde (from Cinnamonum spp.), and 2% capsicum oleoresin (from Capsicum annum). Pigs (n = 32) weaned at 18 to 22 d of age with an initial BW of 6.0 +/- 0.10 kg were allocated to 8 pens that, in turn, were allocated to 4 treatments. The treatments included a basal diet (CT) or the basal diet supplemented with 0.3% of AC, 0.04% of AB, or 0.03% of XT. Productive performance was determined during the initial 14 d postweaning. On d 19 and 21 of the experiment, the pigs were killed to allow collection of digesta and intestinal tissue to evaluate variables indicative of aspects of the gastrointestinal environment. Treatments AB and AC improved G:F (P = 0.012 and 0.003, respectively) compared with the CT. Butyrate included in the diet was only detected in the stomach but not in cranial jejunum. When compared with CT, AC produced a lower ileal starch digestibility (P = 0.002) and a lower whole-tract OM and starch digestibility (P = 0.001 and 0.003, respectively), related to a lower VFA concentration in the cranial colon (P = 0.082) and a numerically reduced branched VFA percentage in the rectum. The AB treatment diminished propionate production in caudal colon (P = 0.002) and rectum (P = 0.012) compared with CT. The AC group exhibited deeper crypt depth in the jejunum without variations in villus height compared with CT (P = 0.042). The AC and AB groups also increased goblet cell presence in the colon (P = 0.001 and 0.032, respectively). On the other hand, AB and XT diminished intraepithelial lymphocytes in the jejunum (P = 0.003 and 0.034, respectively). The XT increased lymphocyte presence in the colon (P = 0.003). These results show the important influence of AB and AC on

  3. [Bacterial diseases of rape].

    Science.gov (United States)

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  4. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host....

  5. The Putative Role of the Non-Gastric H+/K+-ATPase ATP12A (ATP1AL1 as Anti-Apoptotic Ion Transporter: Effect of the H+/K+ ATPase Inhibitor SCH28080 on Butyrate-Stimulated Myelomonocytic HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Martin Jakab

    2014-10-01

    Full Text Available Background/Aims: The ATP12A gene codes for a non-gastric H+/K+ ATPase, which is expressed in a wide variety of tissues. The aim of this study was to test for the molecular and functional expression of the non-gastric H+/K+ ATPase ATP12A/ATP1AL1 in unstimulated and butyrate-stimulated (1 and 10 mM human myelomonocytic HL-60 cells, to unravel its potential role as putative apoptosis-counteracting ion transporter as well as to test for the effect of the H+/K+ ATPase inhibitor SCH28080 in apoptosis. Methods: Real-time reverse-transcription PCR (qRT-PCR was used for amplification and cloning of ATP12A transcripts and to assess transcriptional regulation. BCECF microfluorimetry was used to assess changes of intracellular pH (pHi after acute intracellular acid load (NH4Cl prepulsing. Mean cell volumes (MCV and MCV-recovery after osmotic cell shrinkage (Regulatory Volume Increase, RVI were assessed by Coulter counting. Flow-cytometry was used to measure MCV (Coulter principle, to assess apoptosis (phosphatidylserine exposure to the outer leaflet of the cell membrane, caspase activity, 7AAD staining and differentiation (CD86 expression. Results: We found by RT-PCR, intracellular pH measurements, MCV measurements and flow cytometry that ATP12A is expressed in human myelomonocytic HL-60 cells. Treatment of HL-60 cells with 1 mM butyrate leads to monocyte-directed differentiation whereas higher concentrations (10 mM induce apoptosis as assessed by flow-cytometric determination of CD86 expression, caspase activity, phosphatidylserine exposure on the outer leaflet of the cell membrane and MCV measurements. Transcriptional up-regulation of ATP12A and CD86 is evident in 1 mM butyrate-treated HL-60 cells. The H+/K+ ATPase inhibitor SCH28080 (100 µM diminishes K+-dependent pHi recovery after intracellular acid load and blocks RVI after osmotic cell shrinkage. After seeding, HL-60 cells increase their MCV within the first 24 h in culture, and subsequently

  6. Supramolecular bacterial systems

    OpenAIRE

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found in living systems, it was possible to integrate chemically-synthesized and naturally-occurring components to create platforms with interesting bioactive properties. Bacterial cells and recombinant ...

  7. Bacterial transformation of terpenoids

    International Nuclear Information System (INIS)

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references

  8. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  9. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  10. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  11. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    International Nuclear Information System (INIS)

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: → Bacterial dispersal networks can considerably improve biodegradation performance. → They facilitate bacterial access to dispersal-limited areas and remote resources. → Abiotic conditions, time horizon and network structure govern the improvements. → Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  12. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure.

    Science.gov (United States)

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-09-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (pp-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  13. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  14. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  15. Survivial Strategies in Bacterial Range Expansions

    Science.gov (United States)

    Frey, Erwin

    2014-03-01

    Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.

  16. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    OpenAIRE

    Heloisa Helena Karnas Hoefel; Liana Lautert

    2006-01-01

    The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and M...

  17. Effect of Sodium Butyrate on Lung Vascular TNFSF15 (TL1 A) Expression: Differential Expression Patterns in Pulmonary Artery and Microvascular Endothelial Cells

    OpenAIRE

    Safaya, Surinder; Klings, Elizabeth S.; Odhiambo, Adam; Li, Guihua; Farber, Harrison W.; Martin H Steinberg

    2009-01-01

    Vascular endothelial growth inhibitor TNFSF15 (TL1 A), a ligand for TNFRSF25 (DR3) and decoy receptor TNFRSF6B (DcR3), is expressed in human pulmonary arterial (HPAEC) and lung microvascular (HMVEC) endothelial cells where it might modulate inflammation and sickle vasculopathy. Pulmonary disease, endothelial abnormalities and inflammation are prominent features of sickle cell disease (SCD). Butyrate has opposing effects on endogenous TNFSF15 expression in pulmonary endothelium, acting as an i...

  18. Enhanced transfection efficiency and improved cell survival after electroporation of G2/M-synchronized cells and treatment with sodium butyrate.

    OpenAIRE

    Goldstein, S; Fordis, C M; Howard, B H

    1989-01-01

    To achieve high transfection efficiency in human fibroblasts with good preservation of proliferative capacity we developed an electroporation procedure that combines two distinct modalities: use of recipient cells synchronized in the late G2/mitotic phase of the cell cycle and treatment of cells post-electroporation with 5 mM butyrate. This combination enabled reduction of plasmid DNA concentration and electroporation voltage, both associated with cytotoxicity, while greatly enhancing transfe...

  19. Measurement and correlation of phase equilibrium data of the mixtures consisting of butyric acid, water, cyclohexanone at different temperatures

    International Nuclear Information System (INIS)

    Highlights: ► Liquid phase equilibria of (water + BA + cyclohexanone) system were investigated. ► Experimental LLE data were correlated with NRTL and UNIQUAC models. ► Distribution coefficients and separation factors were evaluated. - Abstract: In this work, experimental solubility and tie-line data for the (water + butyric acid + cyclohexanone) system were obtained at T = (298.2, 308.2, and 318.2) K and atmospheric pressure. The ternary system investigated exhibits type-1 behavior of LLE. The experimental tie-line data were compared with those correlated by the UNIQUAC and NRTL models. The consistency of the experimental tie-line data was determined through the Othmer Tobias and Hand correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions. A comparison of the extracting capability of the solvent at different temperatures was made with respect to separation factors. The Katritzky and Kamlet–Abboud–Taft multiparameter scales were applied to correlate distribution coefficients and separation factors in this ternary system. The LSER models values were interpreted in terms of intermolecular interactions.

  20. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    Directory of Open Access Journals (Sweden)

    Jorge Pliego

    2015-01-01

    Full Text Available Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  1. Use of Chloro phenol Red Dyed Poly(vinyl alcohol) and Poly(vinyl butyral) Copolymer Films for Dosimetric Applications

    International Nuclear Information System (INIS)

    Poly (vinylalcohol) PVA, and poly(vinyl butyral co-polyvinyl alcohol co-vinyl acetate) (PVB-co-PVA/PVAC), containing acid base indicator dye (chloro phenol red) CPR, and a Cl-containing substance (chloral hydrate) may be useful for radiation dosimetry. Chloro phenol red in PVA films changes its color from purple to yellow by irradiation due to the lowering of the ph caused by the generated HCl from the radiolysis of chloral hydrate. The useful dose range extends up to 3.5 kGy. On the other hand, dyed copolymer films are bleached when exposed to gamma radiation with the useful dose range up to 8 kGy. Different concentrations of chloral hydrate were added to control the response dose range of application. The radiation chemical yield G(value) was calculated in presence and absence of chloral hydrate, where it increases with increase chloral hydrate concentration for both CPR/PVA and CPR/PVB copolymer films. Humidity during irradiation was also studied. The pre- and post-irradiation stability of the films was found to be satisfactory

  2. Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice.

    Science.gov (United States)

    Li, Haixiao; Sun, Jing; Wang, Fangyan; Ding, Guoqiang; Chen, Wenqian; Fang, Renchi; Yao, Ye; Pang, Mengqi; Lu, Zhong-Qiu; Liu, Jiaming

    2016-07-01

    Sodium butyrate (SB) has been widely used to treat cerebral diseases. The aim of the present study is to examine the neuroprotective effects of SB on early TBI in mice and to explore the underlying mechanisms of these effects. TBI was induced using a modified weight-drop method. Neurological deficits were evaluated according to the neurological severity score (NSS), brain oedema was measured by brain water content, and blood-brain barrier (BBB) permeability was evaluated by Evans blue (EB) dye extravasation. Neuronal injury was assessed by hematoxylin and eosin (H&E) staining and Fluoro-Jade C staining. The expression of tight junction-associated proteins, such as occludin and zonula occludens-1 (ZO-1), was analysed by western blotting and immunofluorescence. Our results showed that mice subjected to TBI exhibited worsened NSS, brain oedema, neuronal damage and BBB permeability. However, these were all attenuated by SB. Moreover, SB reversed the decrease in occludin and ZO-1 expression induced by TBI. These findings suggest that SB might attenuate neurological deficits, brain oedema, neuronal change and BBB damage, as well as increase occludin and ZO-1 expression in the brain to protect against TBI. The protective effect of SB may be correlated with restoring the BBB following its impairment. PMID:27017959

  3. The effect of indole-butyric acid and kinetin on rooting of rose cuttings in winter and summer

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2013-12-01

    Full Text Available The effect of indole-butyric acid, both alone and with a low concentration of kinetin, on the rooting of rose cuttings in winter and summer, is presented in this paper. The experiments were conducted using 500 and 1000 mg/l IBA with or without the addition of 5 mg/l kinetin. The growth regulators were applied by dipping the base of a cutting for 5 s in an aqueous solution of these substances. Cuttings 5-6 cm in length were made from the mid-part of a stem of a rose grown in a greenhouse. The experiments were carried out using 'Queen of Bermuda' and 'Baccara' cuttings. The investigations showed that treating rose cuttings rooted in winter with an IBA solution had a significant promotive effect on the quantity of rooted cuttings, number of formed roots on the cutting, as well as on the length of the longest root. A distinctive increase in the number of breaking buds was also seen on the cuttings treated with IBA. The IBA solution applied to cuttings rooted in the summer significantly decreased the number of rooted cuttings and breaking buds. However, no significant influence on the number and length of formed roots was found. Addition of kinetin to the IBA solutions did not have any effect on the rooting of rose cuttings either in winter or summer.

  4. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate.

    Science.gov (United States)

    Bastiaansen, Jessica A M; Merritt, Matthew E; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) (13)C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-(13)C]pyruvate and [1-(13)C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [(13)C]bicarbonate (-48%), [1-(13)C]acetylcarnitine (+113%), and [5-(13)C]glutamate (-63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-(13)C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-(13)C]acetoacetate and [1-(13)C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-(13)C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (-82%). Combining HP (13)C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  5. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector

    Directory of Open Access Journals (Sweden)

    Adak Tridibesh

    2009-05-01

    Full Text Available Abstract Background Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms. Results Lab-reared and field-collected A. stephensi male, female and larvae were screened by "culture-dependent and culture-independent" methods. Five 16S rRNA gene library were constructed form lab and field-caught A. stephensi mosquitoes and a total of 115 culturable isolates from both samples were analyzed further. Altogether, 68 genera were identified from midgut of adult and larval A. stephensi, 53 from field-caught and 15 from lab-reared mosquitoes. A total of 171 and 44 distinct phylotypes having 85 to 99% similarity with the closest database matches were detected among field and lab-reared A. stephensi midgut, respectively. These OTUs had a Shannon diversity index value of 1.74–2.14 for lab-reared and in the range of 2.75–3.49 for field-caught A. stephensi mosquitoes. The high species evenness values of 0.93 to 0.99 in field-collected adult and larvae midgut flora indicated the vastness of microbial diversity retrieved by these approaches. The dominant bacteria in field-caught adult male A. stephensi were uncultured Paenibacillaceae while in female and in larvae it was Serratia marcescens, on the other hand in lab-reared mosquitoes, Serratia marcescens and Cryseobacterium meninqosepticum bacteria were found to be abundant. Conclusion

  6. The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins

    OpenAIRE

    1985-01-01

    Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation-- trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The ...

  7. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  8. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte; Kruse, Torben; Nordström, Kurt

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  9. Bacterial terpene cyclases.

    Science.gov (United States)

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  10. Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions.

    Science.gov (United States)

    Ludwig-Müller, Jutta

    2007-01-01

    Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes. PMID:16325963

  11. Bacterial contamination of enteral diets.

    OpenAIRE

    de Leeuw, I H; Vandewoude, M F

    1986-01-01

    Enteral feeding solutions can be contaminated by bacterial micro-organisms already present in the ingredients, or introduced during preparation or transport, or in the hospital ward. During jejunostomy feeding without pump or filter, ascending bacterial invasion of the feeding bag is possible. In patients with lowered immune response contaminated feedings can cause serious septic clinical problems. The progressive loss of the nutritional value of the enteral feeding solution by bacterial cont...

  12. Transport powered by bacterial turbulence

    OpenAIRE

    Kaiser, Andreas; Peshkov, Anton; Sokolov, Andrey; ten Hagen, Borge; Löwen, Hartmut; Aranson, Igor S.

    2014-01-01

    We demonstrate that collective turbulent-like motion in a bacterial bath can power and steer directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedge-like "bulldozer" draws energy from a bacterial bath of varied density. We obtain that a maximal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp regi...

  13. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  14. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M;

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...... susceptibility occurred in 21 (23%) of 92 cases of known aetiology, compared to an estimated 6% in nationally notified cases (p <0.001). Ceftriaxone plus penicillin as empirical treatment was appropriate in 97% of ABM cases in the study population, and in 99.6% of nationally notified cases. The notification rate...... was 75% for penicillin-susceptible episodes, and 24% for penicillin-non-susceptible episodes (p <0.001). Cases involving staphylococci, Pseudomonas spp. and Enterobacteriaceae were under-reported. Among 51 ABM cases with no identified risk factors, nine of 11 cases with penicillin...

  15. [Endogenous bacterial endophthalmitis].

    Science.gov (United States)

    Cornut, P-L; Chiquet, C

    2011-01-01

    Endogenous bacterial endophthalmitis, also called metastatic bacterial endophthalmitis, remains a diagnostic and therapeutic challenge. It is a rare and potentially sight-threatening ocular infection that occurs when bacteria reach the eye via the bloodstream, cross the blood-ocular barrier, and multiply within the eye. It usually affects immunocompromised patients and those suffering from diabetes mellitus, malignancy, or cardiac disease, but has also been reported after invasive procedures or in previously healthy people. In most cases, the ocular symptoms occur after the diagnosis of septicemia or systemic infection. Ocular symptoms include decreased vision, redness, discharge, pain, and floaters. The ocular inflammatory signs may be anterior and/or posterior. Bilateral involvement occurs in nearly 25% of cases. A wide range of microorganisms are involved, with differences in their frequency according to geography as well as the patient's age and past medical history, because of variations in the predisposing conditions and the source of the sepsis. The majority of patients are initially misdiagnosed, and ophthalmologists should be aware of this because prompt local and general management is required to save the eye and/or the patient's life. PMID:21145128

  16. The Bacterial Microflora of Fish, Revised

    Directory of Open Access Journals (Sweden)

    B. Austin

    2006-01-01

    Full Text Available The results of numerous studies indicate that fish possess bacterial populations on or in their skin, gills, digestive tract, and light-emitting organs. In addition, the internal organs (kidney, liver, and spleen of healthy fish may contain bacteria, but there is debate about whether or not muscle is actually sterile. Using traditional culture-dependent techniques, the numbers and taxonomic composition of the bacterial populations generally reflect those of the surrounding water. More modern culture-independent approaches have permitted the recognition of previously uncultured bacteria. The role of the organisms includes the ability to degrade complex molecules (therefore exercising a potential benefit in nutrition, to produce vitamins and polymers, and to be responsible for the emission of light by the light-emitting organs of deep-sea fish. Taxa, including Pseudomonas, may contribute to spoilage by the production of histamines in fish tissue.

  17. Initial insights into bacterial succession during human decomposition.

    Science.gov (United States)

    Hyde, Embriette R; Haarmann, Daniel P; Petrosino, Joseph F; Lynne, Aaron M; Bucheli, Sibyl R

    2015-05-01

    Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession. PMID:25431049

  18. Effects of dietary humic and butyric acid on growth performance and response to lipopolysaccharide in young pigs.

    Science.gov (United States)

    Weber, T E; van Sambeek, D M; Gabler, N K; Kerr, B J; Moreland, S; Johal, S; Edmonds, M S

    2014-09-01

    Humic acid (MFG) and fat-protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS)-induced inflammation in young pigs. An experiment was conducted using 448 crossbred weanling pigs, which were stratified by gender and BW and were randomly assigned to 1 of 4 dietary treatments in a 2 × 2 factorial arrangement consisting of control and MFG with or without BA. The pigs were housed at a density of 8 pigs/pen and with 14 pens/dietary treatment. Growth performance and feed intake were assessed for 35 d. To assess the inflammation-related properties of MFG and BA, on d 36 a subset of 48 pigs from each treatment was intramuscular injected with either sterile saline or Escherichia coli LPS (20 μg/kg BW; E. coli serotype O55:B5) for 4 h in a 2 × 2 × 2 factorial arrangement (± LPS, ± MFG and ± BA; n = 6 pigs/treatment group) to assess their febrile response as well as serum, liver, and muscle cytokine responses. Results from this study showed that neither BA nor MFG alone or in combination altered pig ADG, ADFI, and G:F. Moreover, in the presence of LPS, the combination of MFG and BA resulted in a 62% decrease (P = 0.08) in serum cortisol compared to when neither compound was added to the diet. In contrast, serum IGF-I was increased (P pigs subjected to LPS. However, both MFG and BA inclusion appear to have a complex role in modulating different aspects of the immune response to LPS, particularly when both are fed in combination. Humic acid also appeared to play a role in decreasing oxidative stress. PMID:25023805

  19. Efficient derivation of functional hepatocytes from mouse induced pluripotent stem cells by a combination of cytokines and sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi; YANG Yang; ZHANG Jian; WANG Guo-ying; LIU Wei; QIU Dong-bo; HEI Zi-qing; YING Qi-long; CHEN Gui-hua

    2011-01-01

    Background Hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation to support many forms of hepatic insufficiency.Unfortunately,the lack of donor livers makes it difficult to obtain enough viable human hepatocytes for hepatocyte-based therapies.Therefore,it is urgent to find new ways to provide ample hepatocytes.Induced pluripotent stem (iPS) cells,a breakthrough in stem cell research,may terminate these hinders for cell transplantation.For the promise of iPS cells to be realized in liver diseases,it is necessary to determine if and how efficient they can be differentiated into functional hepatocytes.Methods In this study,we directly compared the hepatic-differentiation capacity of mouse iPS cells and embryonic stem (ES) cells with three different induction approaches:conditions via embryonic body (EB) formation plus cytokines,conditions by combination of dimethyl sulfoxide and sodium butyrate and chemically defined,serum free monolayer conditions.Among these three induction conditions,more homogenous populations can be promoted under chemically defined,serum free conditions.The cells generated under these conditions exhibited hepatic functions in vitro,including glycogen storage,indocynine green (ICG) uptake and release as well as urea secretion.Although efficient hepatocytes differentiation from mouse iPS cells were observed,mouse iPS cells showed relatively lower hepatic induction efficiency compared with mouse ES cells.Results Mouse iPS cells would be efficiently differentiated into functional hepatocytes in vitro,which may be helpful in facilitating the development of hepatocytes for transplantation and for research on drug discovery.Conclusion We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe procedures that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells in vitro.

  20. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  1. Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1

    Science.gov (United States)

    Sánchez-Tena, S.; Vizán, P.; Dudeja, P.K.; Centelles, J.J.; Cascante, M.

    2016-01-01

    Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (−)-epicatechin (EC) and (−)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer. PMID:23994611

  2. [Small intestine bacterial overgrowth].

    Science.gov (United States)

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  3. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  4. BACTERIAL FLORA OF RAINBOW TROUT LARVAE AND FRY (ONCORHYNCHUS MYKISS

    Directory of Open Access Journals (Sweden)

    Damir Kapetanović

    2003-09-01

    Full Text Available There are no information in available literature about the structure of bacterial flora in rainbow trout larvae and fry in the first days of their lives. The objective of our work has been to follow bacteroflora between the third and the eighth week of their lives. During 35 days of experiment bacteroflora of rainbow trout has been examined, along with following physico–chemical characteristics of water quality as well as it’s influence on health. Samples for bacteriological examination were taken from gill, heart and kidney areas and innoculated on the plates. Bacterial colonies were examined macroscopically, slides with Gram staining, and afterwords biochemical tests were performed. For identification, APILAB Plus programme (bio Mérieux, France was used. Bacterial population of rainbow trout larvae and fry changed in dependence with their age. Physico–chemical characteristics of water ranged within optimal values. Most of bacterial colonies originated from gill isolates (64,4 %, than from heart (21,8 % and kidney areas (13,8 %. The bacterial flora of larvae in incubator was composed mostly of Gram–positive bacteria (75,1 %, genera: Renibacterium (25 %, Lactobacillus (16,7 %, Staphilococcus (16,7 % and Corynebacterium (16,7 %. The transfer of larvae from incubator into the pools resulted in reducing bacterial flora (–66,7 % after 45 minute stay in the pool. Gram–negative bacteria, which have been represented in larvae in incubator with low percent (24, 9 %, after the transfer of larvae to the pools became dominant and represented more than 95 % of rainbow trout larvae and fry bacterial flora. Flavobacterium, Acinetobacter and Yersinia were the predominant Gram–negative genera in larvae in incubator, whereas Aeromonas, Pseudomonas, Flavobacterium and Pasteurella were the main isolates from rainbow trout larvae and fry until the end of experiment. Bacterial flora of larvae in incubator mostly consists of Gram–positive bacteria

  5. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  6. Phage–host interplay: examples from tailed phages and Gram-negative bacterial pathogens

    OpenAIRE

    Chaturongakul, Soraya; Ounjai, Puey

    2014-01-01

    Complex interactions between bacteriophages and their bacterial hosts play significant roles in shaping the structure of environmental microbial communities, not only by genetic transduction but also by modification of bacterial gene expression patterns. Survival of phages solely depends on their ability to infect their bacterial hosts, most importantly during phage entry. Successful dynamic adaptation of bacteriophages when facing selective pressures, such as host adaptation and resistance, ...

  7. Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens

    OpenAIRE

    PueyOunjai; SorayaChaturongakul

    2014-01-01

    Complex interactions between bacteriophages and their bacterial hosts play significant roles in shaping the structure of environmental microbial communities, not only by genetic transduction but also by modification of bacterial gene expression patterns. Survival of phages solely depends on their ability to infect their bacterial hosts, most importantly during phage entry. Successful dynamic adaptation of bacteriophages when facing selective pressures, such as host adaptation and resistance, ...

  8. Evolution of bacterial flora in burn wounds: key role of environmental disinfection in control of infection

    OpenAIRE

    Taneja, Neelam; Chari, PS; Singh, Malkit; Singh, Gagandeep; Biswal, Manisha; Sharma, Meera

    2013-01-01

    Bacterial flora in burn patients undergoes change over period of time and is dependent upon many factors. Study of burn flora is not only helpful in locating entry of multidrug resistant bacterial strains into the unit’s usual flora but also in determining current antibiotic susceptibilities. Since no studies are available from India that have studied sequential emergence of different microorganisms in burn wound, present study was carried out to study evolution of bacterial flora in burn wou...

  9. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia

    International Nuclear Information System (INIS)

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 104 cells cm-2 (diatoms) and 5 x 106 cells cm-2 (bacteria). The algal-bacterial consortia consistently exhibited higher rates of [3H]thymidine incorporation than did biofilms composed solely of bacteria. The rates of [3H]thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10-21 mol to 17.9 x 10-21 mol of [3H]thymidine incorporated cell -1 h-1) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon

  10. Effect of Sodium Butyrate and 1,25-(OH)2D3 on Proliferation and hTERT Expression of Human Colon Cancer Cells%丁酸钠和1,25-(OH)2D3对人结肠癌细胞增殖和hTERT表达的影响

    Institute of Scientific and Technical Information of China (English)

    章颖; 于成功

    2011-01-01

    Background: Telomerase activity plays a crucial role in the immortalization of tumor cells and is tightly regulated by human telomerase reverse transcriptase (hTERT). Bioactive agents such as sodium butyrate and lα,25-dihydroxyvitamin D3 [1,25-(OH)2D3] have been demonstrated to have a potential anti-tumor effect. Aims: To investigate the effect of sodium butyrate and 1,25-(OH)2D3 on proliferation of human colon cancer cells and its potential mechanism. Methods:Human colon cancer HT29 cells were treated with sodium butyrate (0.5-2.0 mmol/L), 1,25-(OH)2D3 (10-8-10-6mol/L) and their combination [1.0 mmol/L sodium butyrate + 10-7mol/L 1,25-(OH)2D3], respectively. The growth inhibition of HT29 cells was measured by MTT assay, the cell cycle and apoptosis were assessed by flow cytometry, and hTERT mRNA expression was determined by RT-PCR. Results: Both sodium butyrate and 1,25-(OH)2D3 inhibited the growth of HT29 cells in a dose- and time-dependent manner. Sodium butyrate (1.0 mmol/L) and 1,25-(OH)2D3 (10-7mol/L) could arrest cell cycle in G0/G1 phase, induce apoptosis, and down-regulate hTERT mRNA expression in HT29 cells. Co-administration of sodium butyrate and 1,25-(OH)2D3 was more effective than used alone (P<0.05). Conclusions: Sodium butyrate and 1,25(OH)2D3 can inhibit the proliferation of human colon cancer cells. The mechanism might be related to inhibition of telomerase activity, arrest of cell cycle and induction of apoptosis by down-regulating hTERT expression. Co-administation of the two drugs has synergistic effect on human colon cancer cells.%背景:端粒酶在肿瘤细胞永生化过程中起重要作用,人端粒酶逆转录酶(hTERT)是调节端粒酶活性的关键因素.有研究发现生物活性制剂丁酸钠和1α,25-二羟维生素D3[1,25-(OH)2D31具有潜在抗肿瘤效应.目的:观察丁酸钠和1,25-(OH)2D3对人结肠癌细胞增殖的影响及其可能机制.方法:以不同浓度丁酸钠(0.5~2.0 mmol/L)、1,25-(OH)2D3(10-8~10

  11. Self-similar dynamics of bacterial chemotaxis

    CERN Document Server

    Ngamsaad, Waipot

    2012-01-01

    We investigate the pattern formation of colony generated by chemotactic bacteria through a continuum model. In a simplified case, the dynamics of system is governed by a density-dependent convection-reaction-diffusion equation, $u_t = (u^{m})_{xx} - 2\\kappa(u^m)_{x}+ u - u^{m}$. This equation admits the analytical solutions that show the self-similarity of the bacterial colony's morphogenesis. In addition, we found that the colony evolves long time as the sharp traveling wave. The roles of chemotaxis on the regulation of pattern formation in these results are also discussed.

  12. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. PMID:22099187

  13. Interactions That Drive Sec-Dependent Bacterial Protein Transport†

    OpenAIRE

    Rusch, Sharyn L.; Kendall, Debra A.

    2007-01-01

    Understanding the transport of hydrophilic proteins across biological membranes continues to be an important undertaking. The general secretory (Sec) pathway in Escherichia coli transports the majority of E. coli proteins from their point of synthesis in the cytoplasm to their sites of final localization, associating sequentially with a number of protein components of the transport machinery. The targeting signals for these substrates must be discriminated from those of proteins transported v...

  14. Choosing Between Yeast and Bacterial Expression Systems: Yield Dependent

    Science.gov (United States)

    Miller, Rebecca S.; Malone, Christine C.; Moore, Blake P.; Burk, Melissa; Crawford, Lisa; Karr, Laurel J.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Green fluorescent protein (GFP) is a naturally occurring fluorescent protein isolated from the jellyfish Aequorea victoria. The intrinsic fluorescence of the protein is due to a chromophore located in the center of the molecule. Its usefulness has been established as a marker for gene expression and localization of gene products. GFP has recently been utilized as a model protein for crystallization studies at NASA/MSFC, both in earth-based and in microgravity experiments. Because large quantities of purified protein were needed, the cDNA of GFP was cloned into the Pichia pastoris pPICZ(alpha) C strain, with very little protein secreted into the media. Microscopic analysis prior to harvest showed gigantic green fluorescent yeast, but upon harvesting most protein was degraded. Trial fermentations of GFP cloned into pPICZ A for intracellular expression provided unsatisfactory yield. GFP cloned into E, coli was overexpressed at greater than 150 mg/liter, with purification yields at greater than 100mg/liter.

  15. Oxygen-­dependent regulation of bacterial lipid production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Dohnalkova, Alice; Noguera, Daniel R.; Donohue, Timothy J.

    2015-05-12

    Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the somewhat unique ability to increase membrane production at low O₂ tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reporter of membrane lipid content. We show that, under low-O₂ and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O₂ tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low O2 conditions. We also found that an intact PrrBA pathway is required for low O2-induced fatty acid accumulation. Our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O₂ tension.

  16. The impact of a specific blend of essential oil components and sodium butyrate in feed on growth performance and Salmonella counts in experimentally challenged broilers.

    Science.gov (United States)

    Cerisuelo, A; Marín, C; Sánchez-Vizcaíno, F; Gómez, E A; de la Fuente, J M; Durán, R; Fernández, C

    2014-03-01

    Essential oils (EO) and short-chain fatty acids have potential antimicrobial activity in broilers. This study aimed to investigate the effect of a specific blend of EO and a combination of this blend of EO with sodium-butyrate on growth performance and Salmonella colonization in broilers. A total of 480 one-day-old male broilers were distributed into 5 treatments (8 pens per treatment and 12 birds per pen) and reared during 42 d in experimental conditions. Dietary treatments consisted of the addition of different doses of EO (0 mg/kg, control; 50 mg/kg, EO50 and 100 mg/kg, EO100) or a combination of EO with 1 g/kg of sodium-butyrate (B; EO50 + B, EOB50 and EO100 + B, EOB100) to a basal diet. All birds were orally infected with 10(8) cfu of Salmonella Enteritidis on d 7 of study. Individual BW and feed intake per pen were measured at arrival and on a weekly basis. The prevalence and enumeration of Salmonella in feces was determined per treatment at 72 h postinfection and on d 23 and 37 of study. At slaughter, cecal content and liver samples from 16 birds per treatment were cultured for Salmonella and cecal pH was measured. No differences were observed on growth performance among treatments. All fecal samples analyzed were positive for Salmonella from d 10 to the end of the rearing period. At slaughter, Salmonella contamination (positive samples) in cecum was lower in birds fed EOB50 compared with the other treatments (P < 0.05), whereas birds fed the control diet showed the highest colonization rates. The pH of the cecal content was not different among treatments. Thus, EO or its combination with sodium-butyrate did not affect growth performance. However, a clear effectiveness of these products was observed in Salmonella control, especially when low doses of EO were combined with sodium-butyrate (EOB50). PMID:24604853

  17. Effects of Exogenous Indole Butyric Acid and Callus Formation on the Anti-oxidant Activity, Total Phenolic, and Anthocyanin Constituents of Mulberry Cuttings

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to evaluate the effects of exogenous indole butyric acid (IBA) and callus formation on the antioxidant activity, total phenolics, and anthocyanin constituents of Morus nigra L. and M. alba L. cuttings, we investigated the variations before and after the treatment. The results indicate that anti-oxidant ability, total phenolic, and anthocyanin constituents of the callus stems of both Morus species were higher than those of non-callus forming species. There were also increases observed in anti-oxidant ability, total phenolic,and anthocyanin constituents of calli treated with IBA (1 000-3 000 mg/L).

  18. The interaction of butyrate with TNF-alpha during differentiation and apoptosis of colon epithelial cells: role of NK-kappaB activation

    Czech Academy of Sciences Publication Activity Database

    Hýžďalová, Martina; Hofmanová, Jiřina; Pacherník, J.; Vaculová, Alena; Kozubík, Alois

    Portoroz, 2007. P-99. [15th Euroconference on Apoptosis & 4th Training course on Concepts and Methods in Programmed Cell Death. 26.10.2007-31.10.2007, Portoroz] R&D Projects: GA AV ČR(CZ) 1QS500040507; GA AV ČR(CZ) KJB500040508; GA ČR(CZ) GA524/07/1178 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : butyrate * TNf-alpha * NF-kappaB Subject RIV: BO - Biophysics

  19. Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson.

    Science.gov (United States)

    2012-06-01

    The following article from Proteins: Structure, Function, and Bioinformatics, "Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation," by Jiasheng Diao, Yunglin D. Ma, and Miriam S. Hasson, published online on 21 October 2010 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the journal Editor in Chief, Bertrand Garcia-Moreno, and Wiley Periodicals. The retraction has been agreed because it was established by internal investigation performed by Purdue University that the authors of this article are not the owners of the data and have no right to publication. PMID:19847916

  20. 4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification.

    Science.gov (United States)

    Yin, Xue-Bo; Qi, Bin; Sun, Xuping; Yang, Xiurong; Wang, Erkang

    2005-06-01

    4-(Dimethylamino)butyric acid (DMBA) labeling combined with gold nanoparticle amplification for electrochemiluminescence (ECL) determination of a biological substance (bovine serum albumin (BSA) and immunoglobulin G (IgG) as models) was presented. After DMBA, an analogue of tripropylamine, was tagged on the (anti)analytes, an ECL signal related to the content of the analytes was generated when the analyte tagged with DMBA was in contact with tris(2,2'-bipyridine)ruthenium (Ru(bpy)(3)2+) solution and a potential was applied. To improve the adsorption capacity, a gold nanoparticle layer was first combined into the surface of the 2-mm-diameter gold electrode. For the determination of BSA, avidin was covalently conjugated to a self-assembled monolayer of 3-mercaptopropanoic acid on the gold nanoparticle layer. Biotinylated BSA-DMBA was then immobilized on the gold nanoparticle layer of the gold electrode via the avidin-biotin reaction. IgG was tested via a typical sandwich-type immobilization method. ECL signals were generated from the electrodes immobilized with BSA or IgG by immersing them in a 1 mmol L-1 Ru(bpy)(3)2+ solution and scanning from 0.5 to 1.3 V versus Ag/AgCl. With gold nanoparticle amplification, the ECL peak intensity was proportional to the concentration over the range 1-80 and 5-100 microg/mL for BSA and IgG consuming 50 microL of sample, respectively. A 10- and 6-fold sensitivity enhancement was obtained for BSA and IgG over their direct immobilization on an electrode using DMBA labeling. The relative standard deviations of five replicate determinations of 10 microg/mL BSA and 20 microg/mL IgG were 8.4 and 10.2%, respectively. High biocompatibility and low cost were the main advantages of the present DMBA labeling technique over the traditional Ru(bpy)(3)2+ labeling. PMID:15924384

  1. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin < or =2 ppm), but treatment was ineffective at treating infection by a resistant strain of L. fermentum (MIC = 16 ppm). The model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. PMID:19148876

  2. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  3. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  4. The rare bacterial biosphere.

    Science.gov (United States)

    Pedrós-Alió, Carlos

    2012-01-01

    All communities are dominated by a few species that account for most of the biomass and carbon cycling. On the other hand, a large number of species are represented by only a few individuals. In the case of bacteria, these rare species were until recently invisible. Owing to their low numbers, conventional molecular techniques could not retrieve them. Isolation in pure culture was the only way to identify some of them, but current culturing techniques are unable to isolate most of the bacteria in nature. The recent development of fast and cheap high-throughput sequencing has begun to allow access to the rare species. In the case of bacteria, the exploration of this rare biosphere has several points of interest. First, it will eventually produce a reasonable estimate of the total number of bacterial taxa in the oceans; right now, we do not even know the right order of magnitude. Second, it will answer the question of whether "everything is everywhere." Third, it will require hypothesizing and testing the ecological mechanisms that allow subsistence of many species in low numbers. And fourth, it will open an avenue of research into the immense reserve of genes with potential applications hidden in the rare biosphere. PMID:22457983

  5. Transport Powered by Bacterial Turbulence

    Science.gov (United States)

    Kaiser, Andreas; Peshkov, Anton; Sokolov, Andrey; ten Hagen, Borge; Löwen, Hartmut; Aranson, Igor S.

    2014-04-01

    We demonstrate that collective turbulentlike motion in a bacterial bath can power and steer the directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedgelike "bulldozer" draws energy from a bacterial bath of varied density. We obtain that an optimal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp region of the carrier, which is shielded from the outside turbulent fluctuations.

  6. Transport powered by bacterial turbulence.

    Science.gov (United States)

    Kaiser, Andreas; Peshkov, Anton; Sokolov, Andrey; ten Hagen, Borge; Löwen, Hartmut; Aranson, Igor S

    2014-04-18

    We demonstrate that collective turbulentlike motion in a bacterial bath can power and steer the directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedgelike "bulldozer" draws energy from a bacterial bath of varied density. We obtain that an optimal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp region of the carrier, which is shielded from the outside turbulent fluctuations. PMID:24785075

  7. Bacterial colonization of Hydra hatchlings follows a robust temporal pattern.

    Science.gov (United States)

    Franzenburg, Sören; Fraune, Sebastian; Altrock, Philipp M; Künzel, Sven; Baines, John F; Traulsen, Arne; Bosch, Thomas C G

    2013-04-01

    Animals are colonized by complex bacterial communities. The processes controlling community membership and influencing the establishment of the microbial ecosystem during development are poorly understood. Here we aimed to explore the assembly of bacterial communities in Hydra with the broader goal of elucidating the general rules that determine the temporal progression of bacterial colonization of animal epithelia. We profiled the microbial communities in polyps at various time points after hatching in four replicates. The composition and temporal patterns of the bacterial communities were strikingly similar in all replicates. Distinct features included high diversity of community profiles in the first week, a remarkable but transient adult-like profile 2 weeks after hatching, followed by progressive emergence of a stable adult-like pattern characterized by low species diversity and the preponderance of the Betaproteobacterium Curvibacter. Intriguingly, this process displayed important parallels to the assembly of human fecal communities after birth. In addition, a mathematical modeling approach was used to uncover the organizational principles of this colonization process, suggesting that both, local environmental or host-derived factor(s) modulating the colonization rate, as well as frequency-dependent interactions of individual bacterial community members are important aspects in the emergence of a stable bacterial community at the end of development. PMID:23344242

  8. Effects of different osmolarities on bacterial biofilm formation

    OpenAIRE

    Vanessa Nessner Kavamura; Itamar Soares de Melo

    2014-01-01

    Biofilm formation depends on several factors. The influence of different osmolarities on bacterial biofilm formation was studied. Two strains (Enterobacter sp. and Stenotrophomonas sp.) exhibited the most remarkable alterations. Biofilm formation is an important trait and its use has been associated to the protection of organisms against environmental stresses.

  9. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  10. Bacterial Mobilization of Nutrients From Biochar-Amended Soils.

    Science.gov (United States)

    Schmalenberger, A; Fox, A

    2016-01-01

    Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur. PMID:26917243

  11. The Bacterial Microflora of Fish

    OpenAIRE

    Austin, B.

    2002-01-01

    The results of numerous studies indicate that fish possess bacterial populations on or in their skin, gills, digestive tract, and light-emitting organs. In addition, the internal organs (kidney, liver, and spleen) of healthy fish may contain bacteria, but there is debate on whether or not muscle is actually sterile. The numbers and taxonomic composition of the bacterial populations often reflect those of the surrounding water. The role of the bacteria includes the ability to degrade complex m...

  12. Bacterial Culture of Neonatal Sepsis

    OpenAIRE

    AH Movahedian; R Moniri; Z Mosayebi

    2006-01-01

    Neonatal bacterial sepsis is one of the major cause of morbidity and mortality in neonates. This retrospective study was performed to determine the incidence of bacterial sepsis with focus on Gram negative organisms in neonates admitted at Beheshti Hospital in Kashan, during a 3-yr period, from September 2002 to September 2005. Blood culture was performed on all neonates with risk factors or signs of suggestive sepsis. Blood samples were cultured using brain heart infusion (BHI) broth accordi...

  13. Bacterial Alkaloids Prevent Amoebal Predation.

    Science.gov (United States)

    Klapper, Martin; Götze, Sebastian; Barnett, Robert; Willing, Karsten; Stallforth, Pierre

    2016-07-25

    Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae. PMID:27294402

  14. Mast cells in bacterial infections

    OpenAIRE

    Rönnberg, Elin

    2014-01-01

    Mast cells are implicated in immunity towards bacterial infection, but the molecular mechanisms by which mast cells contribute to the host response are only partially understood. Previous studies have examined how mast cells react to purified bacterial cell wall components, such as peptidoglycan and lipopolysaccharide. To investigate how mast cells react to live bacteria we co-cultured mast cells and the gram-positive bacteria Streptococcus equi (S. equi) and Staphylococcus aureus (S. aureus)...

  15. Studies of Experimental Bacterial Translocation

    OpenAIRE

    Stenbäck, Anders

    2005-01-01

    One of the main obstacles to maintaining patients with short bowel syndrome on parenteral nutrition, or successfully transplanting these patients with a small bowel graft, is the many severe infections that occur. Evidence is accumulating that translocating bacteria from the patient’s bowel causes a significant part of these infections. In this thesis bacterial translocation is studied in a Thiry-Vella loop of defunctionalised small bowel in the rat. Bacterial translocation to the mesenteric ...

  16. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  17. Electrical spiking in bacterial biofilms

    OpenAIRE

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial gro...

  18. Bacterial sex in dental plaque

    OpenAIRE

    Olsen, Ingar; Tribble, Gena D; Fiehn, Nils-Erik; Wang, Bing-Yan

    2013-01-01

    Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it a...

  19. Bacterial contamination of radiopharmaceutical preparations

    International Nuclear Information System (INIS)

    Examinations of the microflora of the air, personnel hands' skin, and surface of the equipment were performed in the Centre for Nuclear research, Libya. It is stated that bacterial contamination was maximal in winter and minimal in summer. The authors believe that human factor is the crucial in bacterial contamination. The microflora detected at the surfaces of equipment contains increased levels of radioresistent forms of bacteria. 8 refs.; 3 tabs

  20. Meningitis bacteriana Bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Ana Teresa Alvarado Guevara

    2006-03-01

    causales son virales lo cual conlleva a las diferentes sub-clasificaciones. También en ciertos casos puede ser ocasionada por hongos, bacterias atípicas, micobacterias y parásitos.In Costa Rica the bacterial meningitis had turn into a high-priority subject in which to monitoring epidemiologist. It had been talked about in the last months, to dice an increase in the attention is published of this subject, due to this phenomenon it becomes necessary to make a revision of topic. Meningitis is an inflammation of leptomeninges and colonization of the subarachnoid cerebrospinal fluid (LCR due to different agents, which produces meningeal symptoms (ex. migraine, neck rigidity, and photophobia and pleocytosis in LCR. De pending on the variables to take into account is possible to group it in different classifications, taking into account the time of evolution are possible to be divided in acute or chronic, to first with few hours or days of beginning of the symptoms, whereas the chronicle also presents a silence course but of the disease of approximately 4 weeks of instauration. There is a difference according to its etiologic agent; they can be infectious and non-infectious. Examples of common non-infectious causes include medications (ex, nonsteroidal anti-inflammatory drugs, and antibiotics and carcinomatosis. A classification exists as well according to the causal agent. The acute bacterial meningitis remarks a bacterial origin of the syndrome, which characterizes by the by an acute onset of meningeal symptoms and neutrophilic pleocytosis. Each one of the bacteriological agents, parasitic or fungus finishes by characterizing the different presentations of the clinical features (ex, meningocóccica meningitis, Cryptococcus meningitis. Finally, there is also the aseptic meningitis, denominated in this form because it’s nonpyogenic cellular response caused by many types of agents. The patients show an acute beginning of symptoms, fever and lymphocytic pleocytosis. After

  1. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats.

    Directory of Open Access Journals (Sweden)

    Yan Lin

    Full Text Available In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets--(1 control diet (C group, (2 high fat + high fiber diet (HF group, (3 high-fat +5% sodium butyrate diet (SB group, and (4 HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group--intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF.

  2. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    Directory of Open Access Journals (Sweden)

    Hongzhen Luo

    Full Text Available In this study, an efficient acetone-butanol-ethanol (ABE fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1 extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2 enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3 direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  3. Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance

    DEFF Research Database (Denmark)

    Flummer, Christine; Theil, Peter Kappel

    2012-01-01

    colostrum period (0.0 vs. 4.8%, P < 0.05). The HMB supplementation did not affect colostrum composition (P > 0.10). Supplementation with HMB increased milk content of fat (7.40 vs. 6.47 ± 0.30%; P < 0.05), dry matter (19.0 vs. 18.2 ± 0.26; P < 0.05), and energy (4.81 vs. 4.47 ±0.12 kJ/g; P < 0.05) and......This trial was conducted to investigate whether β-hydroxy β-methyl butyrate (HMB) supplementation during late gestation and throughout lactation would influence colostrum and milk production of sows and neonatal piglet survival (0 to 24 h). Control sows (CON; n = 8) were fed a standard lactation.......05] whereas plasma 3-hydroxy butyrate was reduced in HMB sows during lactation. In conclusion, HMB supplemented to sows improved the colostrum production but inhibited piglet growth at peak lactation....

  4. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria.

    Directory of Open Access Journals (Sweden)

    Sujatha Srinivasan

    Full Text Available BACKGROUND: Bacterial vaginosis (BV is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. METHODOLOGY/PRINCIPAL FINDINGS: Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel's clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs significantly associated with each of the four Amsel's criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. CONCLUSIONS/SIGNIFICANCE: The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased

  5. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    Science.gov (United States)

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment. PMID:24600849

  6. 7 CFR 58.135 - Bacterial estimate.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Bacterial estimate. 58.135 Section 58.135 Agriculture... Milk § 58.135 Bacterial estimate. (a) Methods of Testing. Milk shall be tested for bacterial estimate... of Testing. A laboratory examination to determine the bacterial estimate shall be made on...

  7. Síntese do butirato de n-butila empregando lipase microbiana imobilizada em copolímero de estireno-divinilbenzeno Synthesis of butyl butyrate by microbial lipase immobilized onto styrene-divinylbenzene copolymer

    Directory of Open Access Journals (Sweden)

    Pedro Carlos de Oliveira

    2000-10-01

    Full Text Available This work investigates the reaction parameters of an immobilized lipase in the esterification reaction of n-butanol and butyric acid. Microbial lipase from Candida rugosa was immobilized onto styrene-divinylbenzene copolymer (STY-DVB and subsequently introduced in an organic medium containing substrates in appropriate concentrations. Heptane was selected as solvent on the basis of its compatibility with the resin and the enzyme. The influence of molar ratio of acid to alcohol, amount of immobilized lipase and temperature on the butyl butyrate formation was determined. The results were compared with those achieved with free lipase and Lipozyme (commercially immobilized lipase under the same operational conditions.

  8. Polysaccharides and bacterial plugging

    Energy Technology Data Exchange (ETDEWEB)

    Fogler, H.S.

    1991-11-01

    Before any successful application of Microbial Enhanced Oil Recovery process can be realized, an understanding of the cells' transport and retentive mechanisms in porous media is needed. Cell transport differs from particle transport in their ability to produce polysaccharides, which are used by cells to adhere to surfaces. Cell injection experiments have been conducted using Leuconostoc cells to illustrate the importance of cellular polysaccharide production as a transport mechanism that hinders cell movement and plugs porous media. Kinetic studies of the Leuconostoc cells, carried out to further understand the plugging rates of porous media, have shown that the cells' growth rates are approximately equal when provided with monosaccharide (glucose and fructose) or sucrose. The only difference in cell metabolism is the production of dextran when sucrose is supplied as a carbon source. Experimentally it has also been shown that the cells' growth rate is weakly dependent upon the sucrose concentration in the media, and strongly dependent upon the concentration of yeast extract. The synthesis of cellular dextran has been found to lag behind cell generation, thus indicating that the cells need to reach maturity before they are capable of expressing the detransucrase enzyme and synthesizing insoluble dextran. Dextran yields were found to be dependent upon the sucrose concentration in the media. 10 refs., 9 figs., 9 tabs.

  9. Direct optical monitoring of flow generated by bacterial flagellar rotation

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, Silke R.; Nedev, Spas; Carretero-Palacios, Sol; Lohmüller, Theobald, E-mail: t.lohmueller@lmu.de, E-mail: feldmann@lmu.de; Feldmann, Jochen, E-mail: t.lohmueller@lmu.de, E-mail: feldmann@lmu.de [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Munich (Germany); Mader, Andreas; Opitz, Madeleine [Chair for Experimental Physics: Soft Matter Physics and Biophysics, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Munich (Germany)

    2014-03-03

    We report on a highly sensitive approach to measure and quantify the time dependent changes of the flow generated by the flagella bundle rotation of single bacterial cells. This is achieved by observing the interactions between a silica particle and a bacterium, which are both trapped next to each other in a dual beam optical tweezer. In this configuration, the particle serves as a sensitive detector where the fast-Fourier analysis of the particle trajectory renders, it possible to access information about changes of bacterial activity.

  10. The impact of structure dimensions on initial bacterial adhesion.

    Science.gov (United States)

    Helbig, Ralf; Günther, Denise; Friedrichs, Jens; Rößler, Florian; Lasagni, Andrés; Werner, Carsten

    2016-07-21

    Substrate topography can have profound effects on initial bacterial adhesion during biofilm formation. We applied Staphylococcus epidermidis and Escherichia coli cells onto periodically structured substrates with different structure dimensions, structure types and wetting properties. We found a strong dependence of cell retention on the structure dimensions of the applied substrates. Periodicities in the range of the cell size increased, whereas smaller periodicities decreased cell retention, independent of contact time (minutes to hours) and hydrophobicity. These novel insights on the role of surface topography on bacterial retention might facilitate the development of non-fouling surfaces in the future. PMID:27232637

  11. An (almost) solvable model for bacterial pattern formation

    Science.gov (United States)

    Grammaticos, B.; Badoual, M.; Aubert, M.

    2007-10-01

    We present a simple model for the description of ring-like concentric structures in bacterial colonies. We model the differences between Bacillus subtilis and Proteus mirabilis colonies by using a different dependence of the duration of the consolidation phase on the concentration of agar. We compare our results to experimental data from these two bacterial species colonies and obtain a good agreement. Based on this analysis, we formulate a hypothesis on the connection of the diffusion constant that appears in the model to the experimental agar concentration.

  12. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    OpenAIRE

    Sujatha Kandasamy; Balachandar Dananjeyan; Kumar Krishnamurthy; Gero Benckiser

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the in...

  13. Microfluidic Approaches to Bacterial Biofilm Formation

    OpenAIRE

    Hee-Deung Park; Junghyun Kim; Seok Chung

    2012-01-01

    Bacterial biofilms—aggregations of bacterial cells and extracellular polymeric substrates (EPS)—are an important subject of research in the fields of biology and medical science. Under aquatic conditions, bacterial cells form biofilms as a mechanism for improving survival and dispersion. In this review, we discuss bacterial biofilm development as a structurally and dynamically complex biological system and propose microfluidic approaches for the study of bacterial biofilms. Biofilms develop t...

  14. The human vaginal bacterial biota and bacterial vaginosis.

    Science.gov (United States)

    Srinivasan, Sujatha; Fredricks, David N

    2008-01-01

    The bacterial biota of the human vagina can have a profound impact on the health of women and their neonates. Changes in the vaginal microbiota have been associated with several adverse health outcomes including premature birth, pelvic inflammatory disease, and acquisition of HIV infection. Cultivation-independent molecular methods have provided new insights regarding bacterial diversity in this important niche, particularly in women with the common condition bacterial vaginosis (BV). PCR methods have shown that women with BV have complex communities of vaginal bacteria that include many fastidious species, particularly from the phyla Bacteroidetes and Actinobacteria. Healthy women are mostly colonized with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners, though a variety of other bacteria may be present. The microbiology of BV is heterogeneous. The presence of Gardnerella vaginalis and Atopobium vaginae coating the vaginal epithelium in some subjects with BV suggests that biofilms may contribute to this condition. PMID:19282975

  15. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    Science.gov (United States)

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management. PMID:26655363

  16. BUTYRATE-MEDIATED GENOMIC CHANGES INVOLVED IN NON-SPECIFIC HOST DEFENSES, MATRIX REMODELING AND THE IMMUNE RESPONSE IN THE RUMEN EPITHELIUM OF COWS AFFLICTED WITH SUBACUTE RUMINAL ACIDOSIS

    Directory of Open Access Journals (Sweden)

    Louis Dionissopoulos

    2013-01-01

    Full Text Available Subacute Ruminal Acidosis (SARA is a disorder in cattle which can lead to chronic inflammation in the rumen epithelium, known as rumenitis. Butyrate has been shown to attenuate some of the detrimental effects of inflammatory gastroenteral disorders but the molecular mechanisms mediated by butyrate have not been defined. The objective of this study was to define the inflammatory-related genomic changes responsible for the beneficial effects of butyrate. Experimentally, 16 fistulated dairy cows at mid-lactation were fed a SARA-inducing (45% non-fiber carbohydrate diet beginning 2 days before the beginning of treatment and continuing throughout the experiment. Cows were then evenly divided into treatment groups where a carrier with (n = 8 or without (n = 8 supplemental butyrate (2.5% initial DM intake was deposited into the rumen daily for 7 days. The minimum rumen pH was higher in cows with supplemental butyrate (4.96±0.09 to 5.20±0.05, p = 0.040, but mean pH, maximum pH and the duration for which rumen pH was below 5.6 was unaffected. Free plasma Lipopolysaccharide (LPS concentration was unaffected by treatment as was the concentration of Serum Amyloid A (SAA, although the LPS Binding Protein (LBP concentration was increased by the addition of butyrate to the rumen (6.91±0.29 to 7.93±0.29 μg mL-1, p = 0.024. Of the rumen Short Chain Fatty Acids (SCFA tested, only butyrate showed a pronounced treatment effect, rising from 8.60±0.94 to 21.60±0.94 mM (p≤0.0001. Plasma Beta-Hydroxybutyrate (BHBA concentration also increased (799.50±265.24 to 3261.63±265.24 μM, p≤0.001. Butyrate infusion did not affect milk parameters (total fat, lactose, total protein and LOS; however, when related to dry matter intake, milk production efficiency was increased (p = 0.035. Microarray and qRT-PCR analyses of rumen papillae biopsies collected on day 7 found that butyrate administration affected (p≤0.05 the expression of genes

  17. New Treatments for Bacterial Keratitis

    Directory of Open Access Journals (Sweden)

    Raymond L. M. Wong

    2012-01-01

    Full Text Available Purpose. To review the newer treatments for bacterial keratitis. Data Sources. PubMed literature search up to April 2012. Study Selection. Key words used for literature search: “infectious keratitis”, “microbial keratitis”, “infective keratitis”, “new treatments for infectious keratitis”, “fourth generation fluoroquinolones”, “moxifloxacin”, “gatifloxacin”, “collagen cross-linking”, and “photodynamic therapy”. Data Extraction. Over 2400 articles were retrieved. Large scale studies or publications at more recent dates were selected. Data Synthesis. Broad spectrum antibiotics have been the main stay of treatment for bacterial keratitis but with the emergence of bacterial resistance; there is a need for newer antimicrobial agents and treatment methods. Fourth-generation fluoroquinolones and corneal collagen cross-linking are amongst the new treatments. In vitro studies and prospective clinical trials have shown that fourth-generation fluoroquinolones are better than the older generation fluoroquinolones and are as potent as combined fortified antibiotics against common pathogens that cause bacterial keratitis. Collagen cross-linking was shown to improve healing of infectious corneal ulcer in treatment-resistant cases or as an adjunct to antibiotics treatment. Conclusion. Fourth-generation fluoroquinolones are good alternatives to standard treatment of bacterial keratitis using combined fortified topical antibiotics. Collagen cross-linking may be considered in treatment-resistant infectious keratitis or as an adjunct to antibiotics therapy.

  18. Interfering with Bacterial Quorum Sensing.

    Science.gov (United States)

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  19. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.; Butcher, Rebecca E.; Kan, Wan-Ting; Bird, Catherina H.; Ung, Kheng; Browne, Kylie A.; Baran, Katherine; Bashtannyk-Puhalovich, Tanya A.; Faux, Noel G.; Wong, Wilson; Porter, Corrine J.; Pike, Robert N.; Ellisdon, Andrew M.; Pearce, Mary C.; Bottomley, Stephen P.; Emsley, Jonas; Smith, A. Ian; Rossjohn, Jamie; Hartland, Elizabeth L.; Voskoboinik, Ilia; Trapani, Joseph A.; Bird, Phillip I.; Dunstone, Michelle A.; Whisstock, James C. (PMCI-A); (Monash); (Nottingham)

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.

  20. Hopanoids as functional analogues of cholesterol in bacterial membranes.

    Science.gov (United States)

    Sáenz, James P; Grosser, Daniel; Bradley, Alexander S; Lagny, Thibaut J; Lavrynenko, Oksana; Broda, Martyna; Simons, Kai

    2015-09-22

    The functionality of cellular membranes relies on the molecular order imparted by lipids. In eukaryotes, sterols such as cholesterol modulate membrane order, yet they are not typically found in prokaryotes. The structurally similar bacterial hopanoids exhibit similar ordering properties as sterols in vitro, but their exact physiological role in living bacteria is relatively uncharted. We present evidence that hopanoids interact with glycolipids in bacterial outer membranes to form a highly ordered bilayer in a manner analogous to the interaction of sterols with sphingolipids in eukaryotic plasma membranes. Furthermore, multidrug transport is impaired in a hopanoid-deficient mutant of the gram-negative Methylobacterium extorquens, which introduces a link between membrane order and an energy-dependent, membrane-associated function in prokaryotes. Thus, we reveal a convergence in the architecture of bacterial and eukaryotic membranes and implicate the biosynthetic pathways of hopanoids and other order-modulating lipids as potential targets to fight pathogenic multidrug resistance. PMID:26351677

  1. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    Directory of Open Access Journals (Sweden)

    Heloisa Helena Karnas Hoefel

    2006-12-01

    Full Text Available The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and Medline searching for the word nursing and bacterial resistance, antibiotics control, hospital infections, administration drugs, errors and adverse events. There were chose 58 papers about nursing and/or were basics for international and Brazilian studies. Results: It was described international classifications errors and consequences analyzing their possible influences on antibiotics effects. Based on these knowledge, interventions are recommended to implement safety practice and care.

  2. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells

    Directory of Open Access Journals (Sweden)

    Doughty Martin L

    2011-05-01

    Full Text Available Abstract Background Histone deacetylases (HDACs are enzymes that modulate gene expression and cellular processes by deacetylating histones and non-histone proteins. While small molecule inhibitors of HDAC activity (HDACi are used clinically in the treatment of cancer, pre-clinical treatment models suggest they also exert neuroprotective effects and stimulate neurogenesis in neuropathological conditions. However, the direct effects of HDACi on cell cycle progression and proliferation, two properties required for continued neurogenesis, have not been fully characterized in adult neural stem cells (NSCs. In this study, we examined the effects of two broad class I and class II HDACi on adult mouse NSCs, the hydroxamate-based HDACi suberoylanilide hydroxamic acid (vorinostat, SAHA and the short chain fatty acid HDACi sodium butyrate. Results We show that both HDACi suppress the formation of neurospheres by adult mouse NSCs grown in proliferation culture conditions in vitro. DNA synthesis is significantly inhibited in adult mouse NSCs exposed to either SAHA or sodium butyrate and inhibition is associated with an arrest in the G1 phase of the cell cycle. HDACi exposure also resulted in transcriptional changes in adult mouse NSCs. Cdk inhibitor genes p21 and p27 transcript levels are increased and associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27. mRNA levels for notch effector Hes genes and Spry-box stem cell transcription factors are downregulated, whereas pro-neural transcription factors Neurog1 and Neurod1 are upregulated. Lastly, we show HDAC inhibition under proliferation culture conditions leads to long-term changes in cell fate in adult mouse NSCs induced to differentiate in vitro. Conclusion SAHA and sodium butyrate directly regulate cdk inhibitor transcription to control cell cycle progression in adult mouse NSCs. HDAC inhibition results in G1 arrest in adult mouse NSCs and transcriptional changes

  3. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by...

  4. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  5. Phylogenetic organization of bacterial activity.

    Science.gov (United States)

    Morrissey, Ember M; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; Hayer, Michaela; McHugh, Theresa A; Marks, Jane C; Price, Lance B; Hungate, Bruce A

    2016-09-01

    Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions. PMID:26943624

  6. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    International Nuclear Information System (INIS)

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture

  7. Bacterial Diversity in Çamalti Saltern, Turkey.

    Science.gov (United States)

    Mutlu, Mehmet Burçin; Güven, Kiymet

    2015-01-01

    A combination of culture-dependent and culture-independent approaches was employed to identify the bacterial diversity of Çamalti solar saltern in Turkey. The bacterial communities of Çamalti Saltern were analyzed by molecular techniques that included denaturing gradient gel electrophoresis of 16S rRNA gene fragments PCR amplified from DNA extracted from the water samples of the saltern and 16S rRNA gene library analysis. A total of 42 isolates were identified at the genus/species level and 17 of them were found to belong to the Bacteria domain. All bacterial isolates were phylogenetically related to Halobacillus, Virgibacillus and Halomonas genus. A total of 50 clones from 16S rRNA gene library were analyzed by ARDRA. 16S rRNA sequence analysisof these clones revealed that most (85%) of the bacterial clones were related to Salinibacter genus members of the Bacteroidetes. The sequences of DGGE bands were related to the uncultured Salinibacter, uncultured halophilic bacterium and Halomonas sp. This work highlights the halophilic bacterial diversity of Çamalti marine solar saltern. PMID:26094314

  8. Bacterial community survey of sediments at Naracoorte Caves, Australia

    Directory of Open Access Journals (Sweden)

    Ball Andrew S.

    2012-07-01

    Full Text Available Bacterial diversity in sediments at UNESCO World Heritage listed Naracoorte Caves was surveyed as part of an investigation carried out in a larger study on assessing microbial communities in caves. Cave selection was based on tourist accessibility; Stick Tomato and Alexandra Cave (> 15000 annual visits and Strawhaven Cave was used as control (no tourist access. Microbial analysis showed that Bacillus was the most commonly detected microbial genus by culture dependent and independent survey of tourist accessible and inaccessible areas of show (tourist accessible and control caves. Other detected sediment bacterial groups were assigned to the Firmicutes, Actinobacteria and Proteobacteria. The survey also showed differences in bacterial diversity in caves with human access compared to the control cave with the control cave having unique microbial sequences (Acinetobacter, Agromyces, Micrococcus and Streptomyces. The show caves had higher bacterial counts, different 16S rDNA based DGGE cluster patterns and principal component groupings compared to Strawhaven. Different factors such as human access, cave use and configurations could have been responsible for the differences observed in the bacterial community cluster patterns (tourist accessible and inaccessible areas of these caves. Cave sediments can therefore act as reservoirs of microorganisms. This might have some implications on cave conservation activities especially if these sediments harbor rock art degrading microorganisms in caves with rock art.

  9. TBK1 protects vacuolar integrity during intracellular bacterial infection.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    2007-03-01

    Full Text Available TANK-binding kinase-1 (TBK1 is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella, more extensive bacterial proliferation was observed in tbk1(-/- than tbk1(+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.

  10. Soil bacterial communities associated with natural and commercial Cyclopia spp.

    Science.gov (United States)

    Postma, Anneke; Slabbert, Etienne; Postma, Ferdinand; Jacobs, Karin

    2016-03-01

    The commercially important plants in the genus Cyclopia spp. are indigenous to the Cape Floristic Region of South Africa and are used to manufacture an herbal tea known as honeybush tea. Growing in the low nutrient fynbos soils, these plants are highly dependent on symbiotic interactions with soil microorganisms for nutrient acquisition. The aim of this study was to investigate the soil bacterial communities associated with two commercially important Cyclopia species, namely C. subternata and C. longifolia. Specific interest was the differences between rhizosphere and bulk soil collected from natural sites and commercially grown plants. Samples were collected on two occasions to include a dry summer and wet winter season. Results showed that the dominant bacterial taxa associated with these plants included Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria. Commercial and natural as well as rhizosphere and bulk soil samples were highly similar in bacterial diversity and species richness. Significant differences were detected in bacterial community structures and co-occurrence patterns between the wet and dry seasons. The results of this study improved our knowledge on what effect commercial Cyclopia plantations and seasonal changes can have on soil bacterial communities within the endemic fynbos biome. PMID:26850159

  11. Bacterial contamination of blood components.

    Science.gov (United States)

    Seghatchian, J

    2001-10-01

    Despite considerable advances in the safety of blood components, transfusion associated bacterial infection (TABI) remains an unresolved problem. As yet there are no perfect preventative, screening and/or detection methodologies for eliminating contaminated units. Until a practical, rapid, cost-effective and logistically acceptable test becomes available, we should be satisfied with the choice of various limited solutions that at least partially improve the bacterial safety of blood components. It is also necessary to establish standardised guidelines and agreed upon systematic procedures for the recognition and reporting of the laboratory and clinical evaluation of adverse reactions in recipients of contaminated blood components. PMID:11761277

  12. Molecular Mechanisms Underlying Bacterial Persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...... technological advances in microfluidics and reporter genes have improved this scenario. Here, we summarize recent progress in the field, revealing the ubiquitous bacterial stress alarmone ppGpp as an emerging central regulator of multidrug tolerance and persistence, both in stochastically and environmentally...

  13. Emerging food pathogens and bacterial toxins.

    Science.gov (United States)

    Bielecki, Jacek

    2003-01-01

    Many different foodborne diseases have been described. For example, Shigella bacteria, hepatitis A virus and Norwalk virus were shown as a unwashed hands microorganisms, but pathogen Campylobacter and Escherichia coli were named as raw and undercooked meat and poultry or raw milk and untreated water born bacteria. However, two of them: Listeria monocytogenes and Yersinia enterocolitica are known as growing at refrigerator temperatures. Essential virulence determinants of Listeria monocytogenes pathogenicity are well known as a bacterial toxins. Basic molecular mechanisms of pathogenicity depending from these toxins were presented. It was shown that other bacterial toxins may act as very danger food poisoning substances. This is why elimination of pathogenic microorganisms from foods is an obvious solution in some food processes, however this approach is not practical or even desirable in many processes. Thus, risk assessment and microbial monitoring will continue to play important roles in ensuring food safety. Some technological advances have the capability of delivering detection systems that can not only monitor pathogenic microorganisms, but also entire microbial populations in the food matrix. PMID:15058810

  14. Septins regulate bacterial entry into host cells.

    Directory of Open Access Journals (Sweden)

    Serge Mostowy

    Full Text Available BACKGROUND: Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB. METHODOLOGY/PRINCIPAL FINDINGS: Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells. We found that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as collars next to actin at the site of entry of Listeria and Shigella. SEPT2-depletion by siRNA decreased bacterial invasion, suggesting that septins have roles during particle entry. Incubating cells with InlB-coated beads confirmed an essential role for SEPT2. Moreover, SEPT2-depletion impaired InlB-mediated stimulation of Met-dependent signaling as shown by FRET. CONCLUSIONS/SIGNIFICANCE: Together these findings highlight novel roles for SEPT2, and distinguish the roles of septin and actin in bacterial entry.

  15. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    Science.gov (United States)

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  16. Exercise Dependence

    OpenAIRE

    Erdal Vardar

    1987-01-01

    Exercise dependence define a condition in which a person performs excessive exercise resulting in deterioration of his or her physical and mental health wellness. Despite many clinical research studies on exercise dependence, exact diagnostic criteria has not been developed yet. Clinical evidences concerning etiology, epidemiology, underlying mechanisms and treatment of exercise dependence are still not sufficient. Moreover, evaluation of this clinical disorder within dependency perspective i...

  17. Exercise Dependence

    OpenAIRE

    Vardar, Erdal

    2012-01-01

    Exercise dependence define a condition in which a person performs excessive exercise resulting in deterioration of his or her physical and mental health wellness. Despite many clinical research studies on exercise dependence, exact diagnostic criteria has not been developed yet. Clinical evidences concerning etiology, epidemiology, underlying mechanisms and treatment of exercise dependence are still not sufficient. Moreover, evaluation of this clinical disorder within dependency perspective...

  18. Determination of 4-(methylnitrosamino)-4-(3-pyridyl)-butyric acid in tobacco, tobacco smoke and the urine of rats and smokers.

    Science.gov (United States)

    Pachinger, A; Begutter, H; Ultsch, I; Klus, H

    1993-10-22

    The potential endogenous nitrosation of nicotine and/or nicotine metabolites has led to speculation on the possible formation of 4-(methylnitrosamino)-4-(3-pyridyl)butyric acid (iso-NNAC) in smokers. A gas chromatographic method with thermal energy analytical detection is described for the determination of iso-NNAC in tobacco, tobacco smoke and urine. Sample pre-concentration is performed using C18 extraction cartridges prior to esterification of iso-NNAC using ethereal diazomethane solution. Sample clean-up includes chromatography on aluminum and silica, and fractionation using high-performance liquid chromatography. The detection limits for iso-NNAC in tobacco, tobacco smoke and urine are 2 ng/g tobacco, 0.1 ng/cigarette and 20 ng/l urine, respectively. PMID:8106592

  19. Modeling of Open-Circuit Voltage of Phenyl-C61-Butyric Acid Methyl Ester-Like Based Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Ferreira, Rodrigo M; Batagin-Neto, Augusto; Lavarda, Francisco C

    2015-12-01

    New materials are currently being sought for use in active layers of bulk-heterojunction organic solar cells, and computational modeling plays an important role in this search. Although open circuit voltage (V(oc)) is one of the fundamental quantities that determine the efficiency of a solar cell, there is no consensus on the best way to estimate this magnitude for new materials from calculations of the electronic structure. In this paper, we compare ways of predicting V(oc) values employing a diverse group of blends and conclude that it is possible to have a good prediction tool for organic solar cells based on phenyl-C61-butyric acid methyl ester (PCBM) acceptor molecules. PMID:26682440

  20. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    International Nuclear Information System (INIS)

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of 14C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 370C. The heat shocked protoplasts incorporated 33% more 14C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids