WorldWideScience

Sample records for butyrate dependent bacterial

  1. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders

    OpenAIRE

    Nankova, Bistra B; Agarwal, Raj; MacFabe, Derrick F.; La Gamma, Edmund F.

    2014-01-01

    Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA ad...

  2. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  3. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon

    OpenAIRE

    Thangaraju, Muthusamy; Cresci, Gail A.; Liu, Kebin; Ananth, Sudha; Gnanaprakasam, Jaya P.; Browning, Darren D.; Mellinger, John D.; Smith, Sylvia B.; Digby, Gregory J.; Lambert, Nevin A.; Prasad, Puttur D.; Ganapathy, Vadivel

    2009-01-01

    Short-chain fatty acids, generated in colon by bacterial fermentation of dietary fiber, protect against colorectal cancer and inflammatory bowel disease. Among these bacterial metabolites, butyrate is biologically most relevant. GPR109A is a G-protein-coupled receptor for nicotinate, but recognizes butyrate with low affinity. Millimolar concentrations of butyrate are needed to activate the receptor. Although concentrations of butyrate in colonic lumen are sufficient to activate the receptor m...

  4. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    Science.gov (United States)

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661480

  5. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-01-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  6. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  7. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data

    OpenAIRE

    Vital, Marius; Howe, Adina Chuang; Tiedje, James M.

    2014-01-01

    ABSTRACT Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzym...

  8. Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract.

    Science.gov (United States)

    Metzler-Zebeli, Barbara U; Hooda, Seema; Pieper, Robert; Zijlstra, Ruurd T; van Kessel, Andrew G; Mosenthin, Rainer; Gänzle, Michael G

    2010-06-01

    The impact of nonstarch polysaccharides (NSP) differing in their functional properties on intestinal bacterial community composition, prevalence of butyrate production pathway genes, and occurrence of Escherichia coli virulence factors was studied for eight ileum-cannulated growing pigs by use of terminal restriction fragment length polymorphism (TRFLP) and quantitative PCR. A cornstarch- and casein-based diet was supplemented with low-viscosity, low-fermentability cellulose (CEL), with high-viscosity, low-fermentability carboxymethylcellulose (CMC), with low-viscosity, high-fermentability oat beta-glucan (LG), and with high-viscosity, high-fermentability oat beta-glucan (HG). Only minor effects of NSP fractions on the ileal bacterial community were observed, but NSP clearly changed the digestion in the small intestine. Compared to what was observed for CMC, more fermentable substrate was transferred into the large intestine with CEL, LG, and HG, resulting in higher levels of postileal dry-matter disappearance. Linear discriminant analysis of NSP and TRFLP profiles and 16S rRNA gene copy numbers for major bacterial groups revealed that CMC resulted in a distinctive bacterial community in comparison to the other NSP, which was characterized by higher gene copy numbers for total bacteria, Bacteroides-Prevotella-Porphyromonas, Clostridium cluster XIVa, and Enterobacteriaceae and increased prevalences of E. coli virulence factors in feces. The numbers of butyryl-coenzyme A (CoA) CoA transferase gene copies were higher than those of butyrate kinase gene copies in feces, and these quantities were affected by NSP. The present results suggest that the NSP fractions clearly and distinctly affected the taxonomic composition and metabolic features of the fecal microbiota. However, the effects were more linked to the individual NSP and to their effect on nutrient flow into the large intestine than to their shared functional properties.

  9. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis.

    Science.gov (United States)

    Rajendran, Vazhaikkurichi M; Nanda Kumar, Navalpur S; Tse, Chung M; Binder, Henry J

    2015-10-16

    Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na(+) absorption. Although colonic Na(+) absorption is mediated by both epithelial Na(+) channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na(+) absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na(+) absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na(+) fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3 (-)-dependent Na(+) absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3 (-)-dependent) Na(+) absorption. In in vivo loop studies HCO3 (-)-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3 (-)-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na(+) absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea.

  10. Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon

    Science.gov (United States)

    Louis, Petra; Duncan, Sylvia H.; McCrae, Sheila I.; Millar, Jacqueline; Jackson, Michelle S.; Flint, Harry J.

    2004-01-01

    The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate. PMID:15028695

  11. Wzy-dependent bacterial capsules as potential drug targets.

    Science.gov (United States)

    Ericsson, Daniel J; Standish, Alistair; Kobe, Bostjan; Morona, Renato

    2012-10-01

    The bacterial capsule is a recognized virulence factor in pathogenic bacteria. It likely works as an antiphagocytic barrier by minimizing complement deposition on the bacterial surface. With the continual rise of bacterial pathogens resistant to multiple antibiotics, there is an increasing need for novel drugs. In the Wzy-dependent pathway, the biosynthesis of capsular polysaccharide (CPS) is regulated by a phosphoregulatory system, whose main components consist of bacterial-tyrosine kinases (BY-kinases) and their cognate phosphatases. The ability to regulate capsule biosynthesis has been shown to be vital for pathogenicity, because different stages of infection require a shift in capsule thickness, making the phosphoregulatory proteins suitable as drug targets. Here, we review the role of regulatory proteins focusing on Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli and discuss their suitability as targets in structure-based drug design.

  12. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Nepelska

    Full Text Available The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells.

  13. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy.

  14. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. PMID:26478298

  15. Temperature dependent bacteriophages of a tropical bacterial pathogen

    Science.gov (United States)

    Shan, Jinyu; Korbsrisate, Sunee; Withatanung, Patoo; Adler, Natalie Lazar; Clokie, Martha R. J.; Galyov, Edouard E.

    2014-01-01

    There is an increasing awareness of the multiple ways that bacteriophages (phages) influence bacterial evolution, population dynamics, physiology, and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model B. thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C), the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C), the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial biology, and on our ability to culture and correctly enumerate viable bacteria. PMID:25452746

  16. Temperature dependent bacteriophages of a tropical bacterial pathogen

    Directory of Open Access Journals (Sweden)

    Martha Rebecca Jane Clokie

    2014-11-01

    Full Text Available There is an increasing awareness of the multiple ways that bacteriophages (phages influence bacterial evolution, population dynamics, physiology and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model Burkholderia thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C, the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C, the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial life, and on our ability to culture and correctly enumerate viable bacteria.

  17. Protease-dependent mechanisms of complement evasion by bacterial pathogens.

    Science.gov (United States)

    Potempa, Michal; Potempa, Jan

    2012-09-01

    The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.

  18. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.

    Science.gov (United States)

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D

    2016-04-01

    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs. PMID:26771749

  19. Effect of butyrate on immune response of a chicken macrophage cell line

    Science.gov (United States)

    Butyric acid is a major short chain fatty acid (SCFA) produced in the gastrointestinal tract by anaerobic bacterial fermentation which has been demonstrated to have beneficial health effects in many species including poultry. To understand the immunomodulating effects of butyrate on chicken macropha...

  20. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs.

    Science.gov (United States)

    Pieper, R; Vahjen, W; Neumann, K; Van Kessel, A G; Zentek, J

    2012-10-01

    Pharmacological levels of zinc oxide (ZnO) can improve the health of weaning piglets and influence the intestinal microbiota. This experiment aimed at studying the dose-response effect of five dietary concentrations of ZnO on small intestinal bacteria and metabolite profiles. Fifteen piglets, weaned at 25 ± 1 days of age, were allocated into five groups according to body weight and litter. Diets were formulated to contain 50 (basal diet), 150, 250, 1000 and 2500 mg zinc/kg by adding analytical-grade (>98% purity) ZnO to the basal diet and fed ad libitum for 14 days after a 7-day adaptation period on the basal diet. Ileal bacterial community profiles were analysed by denaturing gradient gel electrophoresis and selected bacterial groups quantified by real-time PCR. Concentrations of ileal volatile fatty acids (VFA), D- and L-lactate and ammonia were determined. Species richness, Shannon diversity and evenness were significantly higher at high ZnO levels. Quantitative PCR revealed lowest total bacterial counts in the 50 mg/kg group. Increasing ZnO levels led to an increase (p = 0.017) in enterobacteria from log 4.0 cfu/g digesta (50 mg/kg) to log 6.7 cfu/g digesta (2500 mg/kg). Lactic acid bacteria were not influenced (p = 0.687) and clostridial cluster XIVa declined (p = 0.035) at highest ZnO level. Concentration of total, D- and L-lactate and propionate was not affected (p = 0.736, p = 0.290 and p = 0.630), but concentrations of ileal total VFA, acetate and butyrate increased markedly from 50 to 150 mg/kg and decreased with further increasing zinc levels and reached low levels again at 2500 mg/kg (p = 0.048, p = 0.048 and p = 0.097). Ammonia decreased (p < 0.006) with increasing dietary ZnO level. In conclusion, increasing levels of dietary ZnO had strong and dose-dependent effects on ileal bacterial community composition and activity, suggesting taxonomic variation in metabolic response to ZnO. PMID:21929727

  1. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  2. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam

    2015-03-02

    We fabricate a pentacene/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO{sub 2} gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time.

  3. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    International Nuclear Information System (INIS)

    We fabricate a pentacene/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO2 gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time

  4. Modeling of Scale-Dependent Bacterial Growth by Chemical Kinetics Approach

    Directory of Open Access Journals (Sweden)

    Haydee Martínez

    2014-01-01

    Full Text Available We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli  JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  5. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens

    OpenAIRE

    Peyssonnaux, Carole; Zinkernagel, Annelies S.; Datta, Vivekanand; Lauth, Xavier; Johnson, Randall S; Nizet, Victor

    2006-01-01

    Hepcidin is an antimicrobial peptide secreted by the liver during inflammation that plays a central role in mammalian iron homeostasis. Here we demonstrate the endogenous expression of hepcidin by macrophages and neutrophils in vitro and in vivo. These myeloid cell types produced hepcidin in response to bacterial pathogens in a toll-like receptor 4 (TLR4)-dependent fashion. Conversely, bacterial stimulation of macrophages triggered a TLR4-dependent reduction in the iron exporter ferroportin. ...

  6. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  7. Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose

    Directory of Open Access Journals (Sweden)

    Karol Fijałkowski

    2016-01-01

    Full Text Available The aim of the study was to assess the influence of rotating magnetic field (RMF on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest water retention capacity as compared to the samples exposed for 5 and 7 days. The observation was confirmed for both the control and RMF exposed BC. It was proved that the BC exposed samples showed up to 26% higher water retention capacity as compared to the control samples. These samples also required the highest temperature to release the water molecules. Such findings agreed with the observation via SEM examination which revealed that the structure of BC synthesized for 7 days was more compacted than the sample exposed to RMF for 3 days. Furthermore, the analysis of 2D correlation of Fourier transform infrared spectra demonstrated the impact of RMF exposure on the dynamics of BC microfibers crystallinity formation.

  8. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    Science.gov (United States)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  9. Colonic mucin synthesis is increased by sodium butyrate.

    Science.gov (United States)

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis.

  10. Colonic mucin synthesis is increased by sodium butyrate.

    Science.gov (United States)

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis. PMID:7890244

  11. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    OpenAIRE

    S. Farjana; F. Toomadj; Lundgren, P.; Sanz-Velasco, A.; Naboka, O.; Enoksson, P.

    2013-01-01

    This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs) and multiwalled carbon nanotubes (MWCNTs). The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC) pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, an...

  12. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    Science.gov (United States)

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis.

  13. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  14. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kasturi Ranganna

    2012-09-01

    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  15. Sodium butyrate and its synthetic amide derivative modulate nociceptive behaviors in mice.

    Science.gov (United States)

    Russo, Roberto; De Caro, Carmen; Avagliano, Carmen; Cristiano, Claudia; La Rana, Giovanna; Mattace Raso, Giuseppina; Berni Canani, Roberto; Meli, Rosaria; Calignano, Antonio

    2016-01-01

    In the present study we investigated the role of sodium butyrate (butyrate), and its more palatable derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), in animal models of acute and chronic pain. We found that oral administrations of butyrate (10-200mg/Kg) or equimolecular FBA (21.2-424mg/Kg) reduced visceral pain in a dose- and time-dependent manner. Both drugs were also effective in the formalin test, showing an antinociceptive effect. This analgesic effect was blocked by glibenclamide, suggesting the involvement of ATP-dependent K(+) channels. Moreover, following repeated administration butyrate (100-200mg/Kg) and FBA (212-424mg/Kg) retained their analgesic properties in a model of neuropathic pain, reducing mechanical and thermal hyperalgesia in the chronic constriction injury (CCI) model. The involvement of peroxisome proliferator-activated receptor (PPAR) -α and -γ for the analgesic effect of butyrate was also investigated by using PPAR-α null mice or the PPAR-γ antagonist GW9662. Western blot analysis, confirmed the role of peroxisome receptors in butyrate effects, evidencing the increase of PPAR-α and -γ expression, associated to the reduction of inflammatory markers (COX-2, iNOS, TNF-α and cFOS). In conclusion, we describe the role of butyrate-based drugs in pain, identifying different and converging non-genomic and genomic mechanisms of action, which cooperate in nociception maintenance.

  16. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms

    International Nuclear Information System (INIS)

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs

  17. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways.

    Science.gov (United States)

    Willis, Lisa M; Whitfield, Chris

    2013-08-30

    Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.

  18. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    Directory of Open Access Journals (Sweden)

    S. Farjana

    2013-01-01

    Full Text Available This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs and multiwalled carbon nanotubes (MWCNTs. The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, and for BNC pellicles modified with MWCNTs it was from 0.12 S·cm−1 to 1.6 S·cm−1. The strain-induced electromechanical response, resistance versus strain, was monitored during the application of tensile force in order to study the sensitivity of the modified nanocellulose. A maximum gauge factor of 252 was found from the highest conductive sample treated by MWCNT. It has been observed that the sensitivity of the sample depends on the conductivity of the modified cellulose.

  19. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants

    Science.gov (United States)

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-01-01

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. PMID:27470911

  20. Bacterial production in the water column of small streams highly depends on terrestrial dissolved organic carbon

    Science.gov (United States)

    Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert

    2016-04-01

    are more dependent on terrestrial DOC sources for their growth than those in larger streams. Based on this experiment and literature data we hypothesize that: I) The response of the bacterial production to terrestrial DOC in the water column is stronger than for the benthic zone and is decreasing with increasing stream size, likely due to the increase of autochthonous DOC production within the stream. II) Independent of stream size there is only a small reaction to terrestrial DOC for the bacterial production in the benthic zone, either due to internal DOC production or a stronger dependency on particulate organic carbon. We propose that this terrestrial DOC dependency concept is generally applicable, however, its potential underlying mechanisms and concept predictions need to be tested further for other stream and river ecosystems.

  1. Presence of insulin receptors in cultured glial C6 cells. Regulation by butyrate.

    Science.gov (United States)

    Montiel, F; Ortiz-Caro, J; Villa, A; Pascual, A; Aranda, A

    1989-01-01

    The presence of insulin receptor and its regulation by butyrate and other short-chain fatty acids was studied in C6 cells, a rat glioma cell line. Intact C6 cells bind 125I-insulin in a rapid, reversible and specific manner. Scatchard analysis of the binding data gives typical curvilinear plots with apparent affinities of approx. 6 nM and 70 nM for the low-affinity (approx. 90% of total) and high-affinity (approx. 10% of total) sites respectively. Incubation with butyrate results in a time- and dose-dependent decrease of insulin binding to C6 cells. A maximal effect was found with 2 mM-butyrate that decreased the receptor by 40-70% after 48 h. Butyrate decreased numbers of receptors of both classes, but did not significantly alter receptor affinity. Other short-chain fatty acids, as well as keto acids, had a similar effect, but with a lower potency. Cycloheximide caused an accumulation of insulin receptors at the cell surface, since insulin binding increased and receptor affinity did not change after incubation with the inhibitor. Simultaneous addition of butyrate and cycloheximide abolished the loss of receptors produced by the fatty acid. In cells preincubated with butyrate, cycloheximide also produced a large increase in receptor numbers, showing that in the absence of new receptor synthesis a large pool of receptors re-appears at the surface of butyrate-treated cells. PMID:2930502

  2. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    Science.gov (United States)

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-05-31

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

  3. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    Science.gov (United States)

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  4. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  5. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells.

    Directory of Open Access Journals (Sweden)

    Hui Yan

    Full Text Available Short chain fatty acids (SCFA, products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity.

  6. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    Science.gov (United States)

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication. PMID:27346602

  7. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    Science.gov (United States)

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication.

  8. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    Directory of Open Access Journals (Sweden)

    Igor Buzalewicz

    Full Text Available The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH, which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an

  9. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    Science.gov (United States)

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  10. Comparison of culture-dependent and -independent methods for bacterial community monitoring during Montasio cheese manufacturing.

    Science.gov (United States)

    Carraro, Lisa; Maifreni, Michela; Bartolomeoli, Ingrid; Martino, Maria Elena; Novelli, Enrico; Frigo, Francesca; Marino, Marilena; Cardazzo, Barbara

    2011-04-01

    The microbial community in milk is of great importance in the manufacture of traditional cheeses produced using raw milk and natural cultures. During milk curdling and cheese ripening, complex interactions occur in the microbial community, and accurate identification of the microorganisms involved provides essential information for understanding their role in these processes and in flavor production. Recent improvements in molecular biological methods have led to their application to food matrices, and thereby opened new perspectives for the study of microbial communities in fermented foods. In this study, a description of microbial community composition during the manufacture and ripening of Montasio cheese was provided. A combined approach using culture-dependent and -independent methods was applied. Culture-dependent identification was compared with 16S clone libraries sequencing data obtained from both DNA and reverse-transcribed RNA (cDNA) amplification and real-time quantitative PCR (qPCR) assays developed to detect and quantify specific bacterial species/genera (Streptococcus thermophilus, Lactobacillus casei, Pediococcus pentosaceus, Enterococcus spp., Pseudomonas spp.). S. thermophilus was the predominant LAB species throughout the entire ripening period of Montasio cheese. The culture-independent method demonstrates the relevant presence of Pseudomonas spp. and Lactococcus piscium at the beginning of ripening. The culture-dependent approach and the two culture-independent approaches produced complementary information, together generating a general view of cheese microbial ecology.

  11. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V

    2016-05-01

    This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates. PMID:26952406

  12. Severe bacterial infections in patients with non-transfusion-dependent thalassemia: prevalence and clinical risk factors

    Directory of Open Access Journals (Sweden)

    Nattiya Teawtrakul

    2015-10-01

    Conclusion: The prevalence of bacterial infection in patients with NTDT was found to be moderate. Time after splenectomy >10 years, deferoxamine therapy, and iron overload may be clinical risk factors for severe bacterial infection in patients with NTDT. Bacterial infection should be recognized in splenectomized patients with NTDT, particularly those who have an iron overload.

  13. Butyrate production from high-fiber diet protects against lymphoma tumor.

    Science.gov (United States)

    Wei, Wei; Sun, Wei; Yu, Shanshan; Yang, Yu; Ai, Limei

    2016-10-01

    Gut microbiota and dietary fiber are critical for protecting body from obesity, diabetes and cancer. Butyrate, produced in the gut by bacterial fermentation of dietary fibers, is demonstrated to be protective against the development of colorectal cancer as a histone deacetylase (HDAC) inhibitor. We report that high-fiber diet and butyrate significantly inhibited the growth lymphoma tumors. Butyrate induced apoptosis of lymphoma tumor cells and significantly up-regulated histone 3 acetylation (H3ac) level and target genes such as Fas, P21, P27. Our results unravel an instrumental role of fiber diet and their metabolites on lymphoma tumor and demonstrate an intervention potential on the prevention and therapy of lymphoma. PMID:26885564

  14. Loss of the DNA Damage Repair Kinase ATM Impairs Inflammasome-Dependent Anti-Bacterial Innate Immunity.

    Science.gov (United States)

    Erttmann, Saskia F; Härtlova, Anetta; Sloniecka, Marta; Raffi, Faizal A M; Hosseinzadeh, Ava; Edgren, Tomas; Rofougaran, Reza; Resch, Ulrike; Fällman, Maria; Ek, Torben; Gekara, Nelson O

    2016-07-19

    The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1β (IL-1β) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection. PMID:27421701

  15. Antagonistic Effects of Sodium Butyrate and N-(4-Hydroxyphenyl-retinamide on Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Rainer Kuefer

    2007-03-01

    Full Text Available Butyrates and retinoids are promising antineoplastic agents. Here we analyzed effects of sodium butyrate and N-(4-hydroxyphenyl-retinamide (4-HPR on prostate cancer cells as monotherapy or in combination in vitro and in vivo. Sodium butyrate and 4-HPR induced concentration-dependent growth inhibition in prostate cancer cells in vitro. The isobologram analysis revealed that sodium butyrate and 4-HPR administered together antagonize effects of each other. For the in vivo studies, a water-soluble complex (4-HPR with a cyclodextrin was created. A single dose of sodium butyrate and 4-HPR showed a peak level in chicken plasma within 30 minutes. Both compounds induced inhibition of proliferation and apoptosis in xenografts of the chicken chorioallantoic membrane. Analysis of the cytotoxic effects of the drugs used in combination demonstrated an antagonistic effect on inhibition of proliferation and on induction of apoptosis. Prolonged jun N-terminal kinase phosphorylation induced by sodium butyrate and 4-HPR was strongly attenuated when both compounds were used in combination. Both compounds induced inhibition of NF-κ,B. This effect was strongly antagonized in LNCaP cells when the compounds were used in combination. These results indicate that combinational therapies have to be carefully investigated due to potential antagonistic effects in the clinical setting despite promising results of a monotherapy.

  16. Fat coating of Ca butyrate results in extended butyrate release in the gastrointestinal tract of broilers

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.; Heetkamp, M.J.W.; Buyse, J.; Niewold, T.A.

    2015-01-01

    Based on its described beneficial effects on small and large intestinal epithelium, butyrate can be a very good alternative to antimicrobial growth promoters. Effective dietary application requires coating because the majority of uncoated butyrate is purportedly absorbed before reaching the proximal

  17. Decoupling Environment-Dependent and Independent Genetic Robustness across Bacterial Species.

    Directory of Open Access Journals (Sweden)

    Shiri Freilich

    2010-02-01

    Full Text Available The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species' lifestyle (specialized/generalist; the second, environmental-independent, is associated (correlation = approximately 0.6 with the intrinsic metabolic capacities of a species-higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets.

  18. Bacterial Suppression of RNA Polymerase II-Dependent Host Gene Expression

    Directory of Open Access Journals (Sweden)

    Ines Ambite

    2016-07-01

    Full Text Available Asymptomatic bacteriuria (ABU is a bacterial carrier state in the urinary tract that resembles commensalism at other mucosal sites. ABU strains often lack the virulence factors that characterize uropathogenic Escherichia coli (E. coli strains and therefore elicit weak innate immune responses in the urinary tract. In addition, ABU strains are active modifiers of the host environment, which they influence by suppressing RNA polymerase II (Pol II-dependent host gene expression. In patients inoculated with the ABU strain E. coli 83972, gene expression was markedly reduced after 24 h (>60% of all regulated genes. Specific repressors and activators of Pol II-dependent transcription were modified, and Pol II Serine 2 phosphorylation was significantly inhibited, indicating reduced activity of the polymerase. This active inhibition included disease–associated innate immune response pathways, defined by TLR4, IRF-3 and IRF-7, suggesting that ABU strains persist in human hosts by active suppression of the antibacterial defense. In a search for the mechanism of inhibition, we compared the whole genome sequences of E. coli 83972 and the uropathogenic strain E. coli CFT073. In addition to the known loss of virulence genes, we observed that the ABU strain has acquired several phages and identified the lytic Prophage 3 as a candidate Pol II inhibitor. Intact phage particles were released by ABU during in vitro growth in human urine. To address if Prophage 3 affects Pol II activity, we constructed a Prophage 3 negative deletion mutant in E. coli 83972 and compared the effect on Pol II phosphorylation between the mutant and the E. coli 83972 wild type (WT strains. No difference was detected, suggesting that the Pol II inhibitor is not encoded by the phage. The review summarizes the evidence that the ABU strain E. coli 83972 modifies host gene expression by inhibition of Pol II phosphorylation, and discusses the ability of ABU strains to actively create an

  19. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites

    Science.gov (United States)

    Nogi, Masaya; Ifuku, Shinsuke; Abe, Kentaro; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2006-03-01

    We produced transparent nanocomposite reinforced with bacterial cellulose having a wide range of fiber contents, from 7.4to66.1wt%, by the combination of heat drying and organic solvent exchange methods. The addition of only 7.4wt% of bacterial cellulose nanofibers, which deteriorated light transmittance by only 2.4%, was able to reduce the coefficient of thermal expansion of acrylic resin from 86×10-6to38×10-6K-1. As such, the nanofiber network of bacterial cellulose has an extraordinary potential as a reinforcement to obtain optically transparent and low thermal expansion materials.

  20. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites

    OpenAIRE

    Nogi, Masaya; Ifuku, Shinsuke; Abe, Kentaro; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2006-01-01

    We produced transparent nanocomposite reinforced with bacterial cellulose having a wide range of fiber contents, from 7.4 to 66.1 wt %, by the combination of heat drying and organic solvent exchange methods. The addition of only 7.4 wt % of bacterial cellulose nanofibers, which deteriorated light transmittance by only 2.4%, was able to reduce the coefficient of thermal expansion of acrylic resin from 86×10–6 to 38×10–6 K–1. As such, the nanofiber network of bacterial cellulose has an extraord...

  1. Bacterial communities in fish sauce mash using culture-dependent and -independent methods

    OpenAIRE

    Fukui, Youhei; Yoshida, Mitsuhiro; Shozen, Kei-ichi; Funatsu, Yasuhiro; Takano, Takashi; OIKAWA, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2012-01-01

    In fish sauce production, microorganisms are associated with the fermentation process; however, the sequential changes in the bacterial communities have never been examined throughout the period of fermentation. In this study, we determined the bacterial floras in a fish sauce mash over 8 months, using three different culture media and 16S rRNA gene clone library analysis. During the first 4 weeks, viable counts of non-halophilic and halophilic bacteria decreased and were dominated by Staphyl...

  2. Bacterial communities in fish sauce mash using culture-dependent and -independent methods.

    Science.gov (United States)

    Fukui, Youhei; Yoshida, Mitsuhiro; Shozen, Kei-ichi; Funatsu, Yasuhiro; Takano, Takashi; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2012-01-01

    In fish sauce production, microorganisms are associated with the fermentation process; however, the sequential changes in the bacterial communities have never been examined throughout the period of fermentation. In this study, we determined the bacterial floras in a fish sauce mash over 8 months, using three different culture media and 16S rRNA gene clone library analysis. During the first 4 weeks, viable counts of non-halophilic and halophilic bacteria decreased and were dominated by Staphylococcus species. Between 4 and 6 weeks, halophilic and highly halophilic bacterial counts markedly increased from 10(7) to 10(8) cfu/g, and the predominant species changed to Tetragenococcus halophilus. The occurrence of T. halophilus was associated with an increase of lactic acid and a reduction of pH values. In contrast, non-halophilic bacterial counts decreased to 10(6) cfu/g by 6 weeks with Bacillus subtilis as the dominant isolate. Clone library analysis revealed that the dominant bacterial group also changed from Staphylococcus spp. to T. halophilus, and the changes were consistent with those of the floras of halophilic and highly halophilic isolates. This is the first report describing a combination approach of culture and clone library methods for the analysis of bacterial communities in fish sauce mash. PMID:22990487

  3. Kinetics of syntrophic cultures: a theoretical treatise on butyrate fermentation.

    Science.gov (United States)

    Kleerebezem, R; Stams, A J

    2000-03-01

    Numerous microbial conversions in methanogenic environments proceed at (Gibbs) free energy changes close to thermodynamic equilibrium. In this paper we attempt to describe the consequences of this thermodynamic boundary condition on the kinetics of anaerobic conversions in methanogenic environments. The anaerobic fermentation of butyrate is used as an example. Based on a simple metabolic network stoichiometry, the free energy change based balances in the cell, and the flux of substrates and products in the catabolic and anabolic reactions are coupled. In butyrate oxidation, a mechanism of ATP-dependent reversed electron transfer has been proposed to drive the unfavorable oxidation of butyryl-CoA to crotonyl-CoA. A major assumption in our model is that ATP-consumption and electron translocation across the cytoplasmic membrane do not proceed according to a fixed stoichiometry, but depend on the cellular concentration ratio of ATP and ADP. The energetic and kinetic impact of product inhibition by acetate and hydrogen are described. A major consequence of the derived model is that Monod-based kinetic description of this type of conversions is not feasible, because substrate conversion and biomass growth are proposed to be uncoupled. It furthermore suggests that the specific substrate conversion rate cannot be described as a single function of the driving force of the catabolic reaction but depends on the actual substrate and product concentrations. By using nonfixed stoichiometries for the membrane associated processes, the required flexibility of anaerobic bacteria to adapt to varying environmental conditions can be described.

  4. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    Directory of Open Access Journals (Sweden)

    Eric Drago

    Full Text Available Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC, and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  5. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms.

    Science.gov (United States)

    Liu, Jiaming; Wang, Fangyan; Luo, Haihua; Liu, Aihua; Li, Kangxin; Li, Cui; Jiang, Yong

    2016-01-01

    Gastric ulcers (GUs) are a common type of peptic ulcer. Alcohol overdose is one of the main causes of GU, which is difficult to prevent. Although the protective effect of butyrate on inflammation-related diseases is well understood, its effect on GUs has not been reported. We investigated the protective effects of butyrate against ethanol-induced lesions to the gastric mucosa in mice and the underlying mechanisms. BALB/c mice were orally pretreated with butyrate for 30min prior to the establishment of the GU model by challenge with absolute ethanol. Ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas butyrate pretreatment reduced the gastric mucosal injuries in a dose-dependent manner. Butyrate pretreatment also significantly ameliorated contents of malondialdehyde (MDA) and carbonyl proteins, and decreased levels of IL-1β, TNF-α and IL-6. The Western blot results consistently demonstrated that butyrate pretreatment attenuated the phosphorylation of NF-κB p65, p38 MAPK and ERKs in the gastric tissues. Additionally, gastric wall mucus (GWM), a parameter reflecting mucosal defense, was clearly increased by butyrate pretreatment. Butyrate pretreatment protects the gastric mucosa against ethanol-induced lesions by strengthening the mucosal defense and anti-oxidant and anti-inflammatory activities. As a necessary substance for the body, butyrate may be applied to the prevention and treatment of GUs.

  6. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed

    OpenAIRE

    Smalla, K.; Wieland, G.; Buchner, A.; A. Zock; Parzy, J.; Kaiser, S; Roskot, N.; Heuer, H.; Berg, G

    2001-01-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods....

  7. Biogas Production on Demand Regulated by Butyric Acid Addition

    Science.gov (United States)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  8. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary MRSA infection

    Science.gov (United States)

    Sun, Keer; Metzger, Dennis W.

    2014-01-01

    Methicillin-resistant S. aureus (MRSA) has emerged as a leading contributor to mortality during recent influenza pandemics. The mechanism for this influenza-induced susceptibility to secondary S. aureus infection is poorly understood. Here we show that innate antibacterial immunity was significantly suppressed during the recovery stage of influenza infection, despite the fact that MRSA super-infection had no significant effect on viral burdens. Compared to mice infected with bacteria alone, post-influenza MRSA infected mice exhibited impaired bacterial clearance, which was not due to defective phagocyte recruitment, but rather coincided with reduced intracellular reactive oxygen species (ROS) levels in alveolar macrophages and neutrophils. NADPH oxidase is responsible for ROS production during phagocytic bacterial killing, a process also known as oxidative burst. We found that gp91phox-containing NADPH oxidase activity in macrophages and neutrophils was essential for optimal bacterial clearance during respiratory MRSA infections. In contrast to WT animals, gp91phox−/− mice exhibited similar defects in MRSA clearance before and after influenza infection. Using gp91phox+/− mosaic mice, we further demonstrate that influenza infection inhibits a cell-intrinsic contribution of NADPH oxidase to phagocyte bactericidal activity. Together, our results establish that influenza infection suppresses NADPH oxidase-dependent bacterial clearance and leads to susceptibility to secondary MRSA infection. PMID:24563256

  9. Dependency of cerebral blood flow upon mean arterial pressure in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Larsen, Fin Stolze; Qvist, Jesper;

    2000-01-01

    patients undergoing serial examination after 7 (range, 2-10) days. Six of these patients had an uncomplicated course, one had a protracted recovery, and one died. Autoregulation was not restored in two patients; one died and one had a protracted recovery. CONCLUSION: In patients in the early phase of acute......OBJECTIVE: Patients with acute bacterial meningitis are often treated with sympathomimetics to maintain an adequate mean arterial pressure (MAP). We studied the influence of such therapy on cerebral blood flow (CBF). DESIGN: Prospective physiologic trial. SETTING: The Department of Infectious...... Diseases, Copenhagen University Hospital, Denmark. PATIENTS: Sixteen adult patients with acute bacterial meningitis. INTERVENTION: Infusion of norepinephrine to increase MAP. MEASUREMENTS: During a rise in MAP induced by norepinephrine infusion, we measured relative changes in CBF by transcranial Doppler...

  10. Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens.

    Science.gov (United States)

    Wang, Zheng; Zhao, Qi; Zhang, Dongxia; Sun, Chengming; Bao, Cuixia; Yi, Maoli; Xing, Li; Luo, Deyan

    2016-09-01

    Emerging evidence from animal models suggests that platelets may participate in a wide variety of processes including the immune response against infection. More than 200 whole blood samples from patients and healthy controls were run in the System XE-5000 analyzer, and plasma fractions were separated for the following tests by ELISA, Luminex and light scattering. We describe two mechanisms by which platelets may contribute to immune function against various bacterial pathogens based on increased mean platelet volume in gram-positive bacterial infections and increased platelet counts in gram-negative bacterial infections. Gram-negative bacteria activate platelets to recruit neutrophils, which participate in the immune response against infection. During this process, fractalkine, macrophage inflammatory protein-1β, interleukin-17A, tumor necrosis factor-α and platelet-activating factor were higher in patients infected with Escherichia coli; additionally, giant platelets were observed under the microscope. Meanwhile, we found that platelets played a different role in gram-positive bacterial infections. Specifically, they could actively adhere to gram-positive bacteria in circulation and transfer them to immune sites to promote antibacterial lymphocyte expansion. During this process, complement C3 and factor XI were more highly expressed in patients infected with Staphylococcus aureus; additionally, we detected more small platelets under the microscope. Platelets participate in the immune response against both gram-negative and gram-positive bacteria, although the mechanisms differ. These results will help us understand the complex roles of platelets during infections, and direct our use of antibiotics based on clinical platelet data.

  11. Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens.

    Science.gov (United States)

    Wang, Zheng; Zhao, Qi; Zhang, Dongxia; Sun, Chengming; Bao, Cuixia; Yi, Maoli; Xing, Li; Luo, Deyan

    2016-09-01

    Emerging evidence from animal models suggests that platelets may participate in a wide variety of processes including the immune response against infection. More than 200 whole blood samples from patients and healthy controls were run in the System XE-5000 analyzer, and plasma fractions were separated for the following tests by ELISA, Luminex and light scattering. We describe two mechanisms by which platelets may contribute to immune function against various bacterial pathogens based on increased mean platelet volume in gram-positive bacterial infections and increased platelet counts in gram-negative bacterial infections. Gram-negative bacteria activate platelets to recruit neutrophils, which participate in the immune response against infection. During this process, fractalkine, macrophage inflammatory protein-1β, interleukin-17A, tumor necrosis factor-α and platelet-activating factor were higher in patients infected with Escherichia coli; additionally, giant platelets were observed under the microscope. Meanwhile, we found that platelets played a different role in gram-positive bacterial infections. Specifically, they could actively adhere to gram-positive bacteria in circulation and transfer them to immune sites to promote antibacterial lymphocyte expansion. During this process, complement C3 and factor XI were more highly expressed in patients infected with Staphylococcus aureus; additionally, we detected more small platelets under the microscope. Platelets participate in the immune response against both gram-negative and gram-positive bacteria, although the mechanisms differ. These results will help us understand the complex roles of platelets during infections, and direct our use of antibiotics based on clinical platelet data. PMID:26588444

  12. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    Science.gov (United States)

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  13. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane.

    Science.gov (United States)

    Amarasiri, Mohan; Hashiba, Satoshi; Miura, Takayuki; Nakagomi, Toyoko; Nakagomi, Osamu; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-05-15

    We demonstrated the genotype-dependent removal of human norovirus particles with a microfiltration (MF) membrane in the presence of bacteria bearing histo-blood group antigens (HBGAs). Three genotypes (GII.3, GII.4, and GII.6) of norovirus-like particles (NoVLPs) were mixed with three bacterial strains (Enterobacter sp. SENG-6, Escherichia coli O86:K61:B7, and Staphylococcus epidermidis), respectively, and the mixture was filtered with an MF membrane having a nominal pore size of 0.45 μm. All NoVLP genotypes were rejected by the MF membrane in the presence of Enterobacter sp. SENG-6, which excreted HBGAs as extracellular polymeric substances (EPS). This MF membrane removal of NoVLPs was not significant when EPS was removed from cells of Enterobacter sp. SENG-6. GII.6 NoVLP was not rejected with the MF membrane in the presence of E. coli O86:K61:B7, but the removal of EPS of E. coli O86:K61:B7 increased the removal efficiency due to the interaction of NoVLPs with the exposed B-antigen in lipopolysaccharide (LPS) of E. coli O86:K61:B7. No MF membrane removal of all three genotypes was observed when S. epidermidis, an HBGA-negative strain, was mixed with NoVLPs. These results demonstrate that the location of HBGAs on bacterial cells is an important factor in determining the genotype-dependent removal efficiency of norovirus particles with the MF membrane. The presence of HBGAs in mixed liquor suspended solids from a membrane bioreactor (MBR) pilot plant was confirmed by immune-transmission electron microscopy, which implies that bacterial HBGAs can contribute to the genotype-dependent removal of human noroviruses with MBR using MF membrane. PMID:27095709

  14. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Husen Zhang

    Full Text Available Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  15. Isobaric vapor liquid equilibria data for the binary system (glycidyl butyrate + acetone, glycidyl butyrate + carbon tetrachloride, glycidyl butyrate + chloroform) at atmospheric pressure 101 kPa

    Science.gov (United States)

    Huang, Qiang; Meng, Qingyi; Ban, Chunlan; Zhang, Rui; Gao, Yingyu

    2016-09-01

    Isobaric vapor liquid equilibria (VLE) for the binary mixtures of glycidyl butyrate(1) + acetone(2), glycidyl butyrate(1) + carbon tetrachloride(2) and glycidyl butyrate(1) + chloroform(2) at 101 kPa were studied. The experimental data were satisfactorily correlated with the models of Wilson, NRTL and UNIQUAC activity coefficients. The activity coefficients for the equilibrium data were obtained by the nonlinear least square method. The average relative deviations between experimental temperatures and calculated temperatures by the Wilson, NRTL and UNIQUAC models were 0.16, 0.16, 0.23% for glycidyl butyrate(1) + chloroform( 2), 0.38, 0.12, 0.27% for glycidylbutyrate(1) + carbon tetrachloride(2), and 0.67, 0.13, 0.54% for glycidyl butyrate(1) + acetone(2). Azeotrope behavior was not found for these systems. The thermodynamic consistency of the correlations was checked by the Herrington's area test.

  16. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    Institute of Scientific and Technical Information of China (English)

    Roberto Berni Canani; Margherita Di Costanzo; Ludovica Leone; Monica Pedata; Rosaria Meli; Antonio Calignano

    2011-01-01

    The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from nonabsorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport,ameliorates mucosal inflammation and oxidative status,reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition,a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases,hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different;many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine.

  17. Bacterial Growth in Amniotic Fluid Is Dependent on the Iron-Availability and the Activity of Bacterial Iron-Uptake System

    OpenAIRE

    Ahn, Young-Joon; Park, Sang-Kee; Oh, Jae-Wook; Sun, Hui-Yu; Shin, Sung-Heui

    2004-01-01

    In the present study, the relationship among iron-availability, antibacterial activity, role of meconium as an iron source and the activity of bacterial iron-uptake system (IUS) for bacterial growth in amniotic fluid (AF) were investigated. Staphylococcus aureus ATCC 6538 and its streptonigrin-resistant (SR) mutant with defective IUS were used as the test strains. The growth of S. aureus in AF was stimulated dosedependently by addition of meconium. Bacterial growth stimulated by meconium was ...

  18. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed.

    Science.gov (United States)

    Smalla, K; Wieland, G; Buchner, A; Zock, A; Parzy, J; Kaiser, S; Roskot, N; Heuer, H; Berg, G

    2001-10-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  19. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species

    Directory of Open Access Journals (Sweden)

    Jennifer Tsang

    2014-01-01

    Full Text Available Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ54 (also known as RpoN to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni, Gammaproteobacteria (e.g., Vibrio and Pseudomonas species, and Alphaproteobacteria (e.g., Caulobacter crescentus. This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.

  20. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent

    Science.gov (United States)

    Wiens, Kirsten E.; Ernst, Joel D.

    2016-01-01

    Type I interferons (including IFNαβ) are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb) infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING) signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS) in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC). We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA) in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ. PMID:27500737

  1. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus.

    Directory of Open Access Journals (Sweden)

    Laura Hobley

    2012-02-01

    Full Text Available Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP, which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742 resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434 resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367 abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125 substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766 had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly

  2. Synthesis and Ionic Conductivity of Siloxane Based Polymer Electrolytes with Propyl Butyrate Pendant Groups

    Energy Technology Data Exchange (ETDEWEB)

    Jalagonia, Natia; Tatrishvili, Tamara; Markarashvili, Eliza; Aneli, Jimsher; Mukbaniani, Omar [Javakhishvili Tbilisi State University, Tbilisi (Georgia); Grazulevicius, Jouzas Vidas [Kaunas University of Technology, Kaunas (Lithuania)

    2016-02-15

    Hydrosilylation reactions of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl butyrate catalyzed by Karstedt's, H2PtCl6 and Pt/C catalyst were studied and 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane was obtained. The reaction order, activation energies and rate constants were determined. Ringopening polymerization of 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane in the presence of CaF2, LiF, KF and anhydrous potassium hydroxide in 60-70 .deg. C temperature range was carried out and methylsiloxane oligomers with regular arrangement of propyl butyrate pendant groups were obtained. The synthesized products were studied by FTIR and NMR spectroscopy. The polysiloxanes were characterized by wide-angle X-ray, gel-permeation chromatography and DSC analyses. Via sol-gel processes of oligomers doped with lithium trifluoromethylsulfonate or lithium bis (trifluoromethylsulfonyl)imide, solid polymer electrolyte membranes were obtained. The dependences of ionic conductivity of obtained polyelectrolytes on temperature and salt concentration were investigated, and it was shown that electric conductivity of the polymer electrolyte membranes at room temperature changed in the range 3.5x10{sup -4} - 6.4xa0{sup -7} S/cm.

  3. Study on the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Tang Chunsheng; Rong Fengnian

    2005-01-01

    Objective:To investigate the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells in vitro.Methods:Human ovarian epithelial cancer 3AO cells were cultured in vitro and treated with sodium butyrate of different concentration for different time. The characters of apoptosis were assessed through light microscopy and DNA ladder analysis. The morphological changes of mitochondria were detected through electron and epifluorescence microscopy. The functional changes of mitochondria and the expression of Bcl-2/Bax protein were analyzed by flow cytometry.Results:As the concentration of sodium butyrate rose to 4mmol/L, the morphologic characters of apoptosis were found by light microscopy, DNA ladder was observed. Under epifluorescence microscope the fluorescence of the control group was stronger than that of the experimental group. Under electron microscope swelled mitochondria was detected. Flow cytometry analysis showed mitochondria transmembrane potentials decreased and there were down-regulate of Bcl-2 protein and up-regulate of the Bax protein(P<0.05).Conclusion:Sodium butyrate can induce apoptosis of 3AO cells in a time-dose dependent manner. Mitochondrion may play a key role in the procedure of apoptosis of ovarian cancer cells.

  4. Susceptibility of Caenorhabditis elegans to Burkholderia infection depends on prior diet and secreted bacterial attractants.

    Directory of Open Access Journals (Sweden)

    Vaughn S Cooper

    Full Text Available The nematode Caenorhabditis elegans may be killed by certain pathogenic bacteria and thus is a model organism for studying interactions between bacteria and animal hosts. However, growing nematodes on prey bacteria may influence their susceptibility to potential pathogens. A method of axenic nematode culture was developed to isolate and quantify interactions between C. elegans and potentially pathogenic strains of the Burkholderia cepacia complex. Studying these dynamics in liquid solution rather than on agar surfaces minimized nematode avoidance behavior and resolved more differences among isolates. Most isolates of B. cenocepacia, B. ambifaria and B. cepacia caused 60-80% mortality of nematodes after 7 days, whereas isolates of B. multivorans caused less mortality (<25% and supported nematode reproduction. However, some B. cenocepacia isolates recovered from chronic infections were much less virulent (5-28% mortality. As predicted, prior diet altered the outcome of interactions between nematodes and bacteria. When given the choice between Burkholderia and E. coli as prey on agar, axenically raised nematodes initially preferred most lethal Burkholderia isolates to E. coli as a food source, but this was not the case for nematodes fed E. coli, which avoided toxic Burkholderia. This food preference was associated with the cell-free supernatant and thus secreted compounds likely mediated bacterial-nematode interactions. This model, which isolates interactions between bacteria and nematodes from the effects of prior feeding, demonstrates that bacteria can influence nematode behavior and their susceptibility to pathogens.

  5. Analysis of bacterial community in bulking sludge using culture-dependent and -independent approaches

    Institute of Scientific and Technical Information of China (English)

    Decai Jin; Ping Wang; Zhihui Bai; Xinxin Wang; Hong Peng; Rong Qi; Zhisheng Yu; Guoqiang Zhuang

    2011-01-01

    The bacterial community of a bulking sludge from a municipal wastewater treatment plant with anoxic-anaerobic-oxic process was investigated by combination of cultivation and 16S rRNA gene clone library analysis for understanding the causes of bulking.A total of 28 species were obtained from 63 isolates collected from six culture media.The most cultivable species belonged to γ-Proteobacteria including Klebsiella sp.,Pseudomonas sp.,Aeromonas sp.and Acinetobacter sp.Further analysis of these strains by repetitive sequence based on polymerase chain reaction (rep-PCR) technology showed that rep-PCR yielded discriminatory banding patterns within the same genus using REP and BOX primer sets.While the culture-independent assessment revealed that β-Proteobacteria was the dominant group in the bulking sample.Sequence analysis revealed that the highest proportion (14.7%) of operational taxonomic units was 98% similar to Candidatus Accumulibacter phosphatis,which is used to remove phosphorous from wastewater.Our results indicated that combining different approaches can produce complementary information,thus generate a more accurate view of microbial community in bulking sludge.

  6. Enhancement of Methacholine-Evoked Tracheal Contraction Induced by Bacterial Lipopolysaccharides Depends on Epithelium and Tumor Necrosis Factor

    Directory of Open Access Journals (Sweden)

    T. Secher

    2012-01-01

    Full Text Available Inhaled bacterial lipopolysaccharides (LPSs induce an acute tumour necrosis factor-alpha (TNF-α- dependent inflammatory response in the murine airways mediated by Toll-like receptor 4 (TLR4 via the myeloid differentiation MyD88 adaptor protein pathway. However, the contractile response of the bronchial smooth muscle and the role of endogenous TNFα in this process have been elusive. We determined the in vivo respiratory pattern of C57BL/6 mice after intranasal LPS administration with or without the presence of increasing doses of methacholine (MCh. We found that LPS administration altered the basal and MCh-evoked respiratory pattern that peaked at 90 min and decreased thereafter in the next 48 h, reaching basal levels 7 days later. We investigated in controlled ex vivo condition the isometric contraction of isolated tracheal rings in response to MCh cholinergic stimulation. We observed that preincubation of the tracheal rings with LPS for 90 min enhanced the subsequent MCh-induced contractile response (hyperreactivity, which was prevented by prior neutralization of TNFα with a specific antibody. Furthermore, hyperreactivity induced by LPS depended on an intact epithelium, whereas hyperreactivity induced by TNFα was well maintained in the absence of epithelium. Finally, the enhanced contractile response to MCh induced by LPS when compared with control mice was not observed in tracheal rings from TLR4- or TNF- or TNF-receptor-deficient mice. We conclude that bacterial endotoxin-mediated hyperreactivity of isolated tracheal rings to MCh depends upon TLR4 integrity that signals the activation of epithelium, which release endogenous TNFα.

  7. Interaction of Gram-negative bacteria with cationic proteins: Dependence on the surface characteristics of the bacterial cell

    Directory of Open Access Journals (Sweden)

    Isabella R Prokhorenko

    2009-03-01

    Full Text Available Isabella R Prokhorenko1, Svetlana V Zubova1, Alexandr Yu Ivanov2, Sergey V Grachev31Laboratory of Molecular Biomedicine, Institute of Basic Biological Problems; 2Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia; 3I.M. Sechenov’s Moscow Medical Academy, Moscow, Russia Abstract: Gram-negative bacteria can enter the bloodstream and interact with serum cationic proteins. The character of interaction will depend on the surface characteristics of bacterial cells, which are determined by bacterial chemotype and density of lipopolysaccharide (LPS packing in the cell wall. It was shown that the lysozyme treatment resulted in the increase sensitivity to hypotonic shock. Signifi cant differences to this effect were found between Escherichia coli strain D21 and D21f2 under treatment with physiological protein concentration. On the basis of electrokinetic measurements and studies of the interaction of cells with lysozyme, the hypothesis was formed that the cell wall of the E. coli strain D21f2 contains more LPS and has a higher density of their packing than the cell wall of the E. coli D21 cells. The effect of lysozyme and lactoferrin on the viability of E. coli cells of two different strains was examined. Lysozyme was found to more effectively inhibit the growth of the E. coli D21 bacteria, and lactoferrin suppressed mainly the growth of the E. coli D21f2 bacteria. These results indicate that the differences in LPS core structure of bacterial R-chemotype, which determines surface charge and density of LPS packing, plays an essential role in the mechanisms of interaction of the cationic proteins with the cell wall.Keywords: lipopolysaccharide, Escherichia coli, chemotype, lysozyme, lactoferrin, colony-forming units

  8. Mutational Analysis of Bacterial NAD+-dependent DNA Ligase:Role of Motif Ⅳ in Ligation Catalysis

    Institute of Scientific and Technical Information of China (English)

    Hong FENG

    2007-01-01

    The bacterial DNA ligase as a multiple domain protein is involved in DNA replication, repair and recombination. Its catalysis of ligation can be divided into three steps. To delineate the roles of amino acid residues in motif Ⅳ in ligation catalysis, site-directed mutants were constructed in a bacterial NAD+-dependent DNA ligase from Thermus sp. TAK16D. It was shown that four conserved residues (D286, G287, V289 and K291) in motif Ⅳ had significant roles on the overall ligation. Under single turnover conditions, the observed apparent rates of D286E, G287A, V289I and K291R mutants were clearly reduced compared with that of WT ligase on both match and mismatch nicked substrates. The effects of D286E mutation on overall ligation may not only be ascribed to the third step. The G287A mutation has a major effect on the second step. The effects of V289I and K291R mutation on overall ligation are not on the third step, perhaps other aspects, such as conformation change of ligase protein in ligation catalysis, are involved. Moreover, the amino acid substitutions of above four residues were more sensitive on mismatch nicked substrate, indicating an enhanced ligation fidelity.

  9. Review article: The role of butyrate on colonic function

    NARCIS (Netherlands)

    Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J.

    2008-01-01

    Background: Butyrate, a short-chain fatty acid, is a main end-product of intestinal microbial fermentation of mainly dietary fibre. Butyrate is an important energy source for intestinal epithelial cells and plays a role in the maintenance of colonic homeostasis. Aim: To provide an overview on the pr

  10. Effects of sodium n-butyrate on entry into S phase in resting rat 3Y1 cells infected with simian virus 40.

    OpenAIRE

    Mitsudomi, T.; Kimura, G

    1985-01-01

    In quiescent rat 3Y1 fibroblasts infected with simian virus 40 (SV40), sodium butyrate elongated the time lag before entry into S phase in a concentration-dependent fashion. In spite of the elongated time lags, SV40-infected cells entered S phase in a very synchronous mode, irrespective of the butyrate concentrations. The elongated time lag seemed to be at least partially due to a delayed synthesis and a delayed accumulation of large T antigen caused by butyrate. The entry into S phase was al...

  11. Cloning, overexpression, and characterization of a bacterial Ca2+-dependent phospholipase D

    OpenAIRE

    Yang, Hongying; Roberts, Mary F.

    2002-01-01

    Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca2+-dependent PLD from Streptomyces chromofuscus exhibits little homology to other PLDs. We have cloned (using DNA isolated from the ATCC type strain), overexpressed in Escherichia coli (two expression systems, pET-23a(+) and pTYB11), and purified the S. chromo...

  12. Gram-Negative Bacterial Infection in Thigh Abscess Can Migrate to Distant Burn Depending on Burn Depth

    Directory of Open Access Journals (Sweden)

    Victoria Hamrahi

    2012-01-01

    Full Text Available Sepsis remains the major cause of death in patients with major burn injuries. In the present investigation we evaluated the interaction between burn injuries of varying severity and preexisting distant infection. We used Gram-negative bacteria (Pseudomonas aeruginosa and Proteus mirabilis that were genetically engineered to be bioluminescent, which allowed for noninvasive, sequential optical imaging of the extent and severity of the infection. The bioluminescent bacteria migrated from subcutaneous abscesses in the leg to distant burn wounds on the back depending on the severity of the burn injury, and this migration led to increased mortality of the mice. Treatment with ciprofloxacin, injected either in the leg with the bacterial infection or into the burn eschar, prevented this colonization of the wound and decreased mortality. The present data suggest that burn wounds can readily become colonized by infections distant from the wound itself.

  13. Biochemical changes induced by salt stress in halotolerant bacterial isolates are media dependent as well as species specific.

    Science.gov (United States)

    Joghee, Nidhya Nadarajan; Jayaraman, Gurunathan

    2016-01-01

    Halophilic bacteria respond to salt stress by regulating the cytosolic pools of organic solutes to achieve osmotic equilibrium. In order to understand the metabolic regulation of these organic solutes, for the first time, we have investigated the effect of salt on growth and biochemical changes in four major moderately halophilic bacterial strains isolated from a saltern region of the Kumta coast, India. The strains under study were Halomonas hydrothermalis VITP9, Bacillus aquimaris VITP4, Planococcus maritimus VITP21, and Virgibacillus dokdonensis VITP14, which exhibited similar salt tolerance (0% to 10% w/v NaCl) with optimal growth at 5% w/v NaCl. Biochemical analysis showed that the total intracellular organic solutes increased significantly with increasing NaCl concentration in the growth medium, and the compositions of the solutes were dependent on the type of strain and also on the nutrient richness of the growth medium. Glutamic acid levels increased in all the strains under salt stress, indicating the significance of glutamic acid as the anionic counterpart of K(+)/Na(+) ions and precursor for other synthesized nitrogenous osmolytes. Though initial studies were performed with thin-layer chromatography, mass spectrometry was used to identify the major solutes accumulated by the strains under salt stress, such as proline (VITP4), ectoine (VITP14 and VITP9), and sugars (VITP21) under minimal medium and glycine betaine (by all the strains under study) under complex growth medium conditions. Such comparative study on the stress-dependent metabolic differences of different microbes, under identical experimental condition, helps to identify possible bacterial sources for the production of industrially important solutes. PMID:25286020

  14. Autoinducer 2: A concentration-dependent signal for mutualistic bacterial biofilm growth

    Science.gov (United States)

    Rickard, A.H.; Palmer, R.J.; Blehert, D.S.; Campagna, S.R.; Semmelhack, M.F.; Egland, P.G.; Bassler, B.L.; Kolenbrander, P.E.

    2006-01-01

    4,5-dihydroxy-2,3-pentanedione (DPD), a product of the LuxS enzyme in the catabolism of S-ribosylhomocysteine, spontaneously cyclizes to form autoinducer 2 (AI-2). AI-2 is proposed to be a universal signal molecule mediating interspecies communication among bacteria. We show that mutualistic and abundant biofilm growth in flowing saliva of two human oral commensal bacteria, Actinomyces naeslundii T14V and Streptococcus oralis 34, is dependent upon production of AI-2 by S. oralis 34. A luxS mutant of S. oralis 34 was constructed which did not produce AI-2. Unlike wild-type dual-species biofilms, A. naeslundii T14V and an S. oralis 34 luxS mutant did not exhibit mutualism and generated only sparse biofilms which contained a 10-fold lower biomass of each species. Restoration of AI-2 levels by genetic or chemical (synthetic AI-2 in the form of DPD) complementation re-established the mutualistic growth and high biomass characteristic for the wild-type dual-species biofilm. Furthermore, an optimal concentration of DPD was determined, above and below which biofilm formation was suppressed. The optimal concentration was 100-fold lower than the detection limit of the currently accepted AI-2 assay. Thus, AI-2 acts as an interspecies signal and its concentration is critical for mutualism between two species of oral bacteria grown under conditions that are representative of the human oral cavity. ?? 2006 Blackwell Publishing Ltd.

  15. Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches

    Directory of Open Access Journals (Sweden)

    Delavat François

    2012-09-01

    Full Text Available Abstract Background Acid Mine Drainages (AMDs are extreme environments characterized by very acid conditions and heavy metal contaminations. In these ecosystems, the bacterial diversity is considered to be low. Previous culture-independent approaches performed in the AMD of Carnoulès (France confirmed this low species richness. However, very little is known about the cultured bacteria in this ecosystem. The aims of the study were firstly to apply novel culture methods in order to access to the largest cultured bacterial diversity, and secondly to better define the robustness of the community for 3 important functions: As(III oxidation, cellulose degradation and cobalamine biosynthesis. Results Despite the oligotrophic and acidic conditions found in AMDs, the newly designed media covered a large range of nutrient concentrations and a pH range from 3.5 to 9.8, in order to target also non-acidophilic bacteria. These approaches generated 49 isolates representing 19 genera belonging to 4 different phyla. Importantly, overall diversity gained 16 extra genera never detected in Carnoulès. Among the 19 genera, 3 were previously uncultured, one of them being novel in databases. This strategy increased the overall diversity in the Carnoulès sediment by 70% when compared with previous culture-independent approaches, as specific phylogenetic groups (e.g. the subclass Actinobacteridae or the order Rhizobiales were only detected by culture. Cobalamin auxotrophy, cellulose degradation and As(III-oxidation are 3 crucial functions in this ecosystem, and a previous meta- and proteo-genomic work attributed each function to only one taxon. Here, we demonstrate that other members of this community can also assume these functions, thus increasing the overall community robustness. Conclusions This work highlights that bacterial diversity in AMDs is much higher than previously envisaged, thus pointing out that the AMD system is functionally more robust than expected

  16. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana.

    Science.gov (United States)

    Saur, Isabel M L; Kadota, Yasuhiro; Sklenar, Jan; Holton, Nicholas J; Smakowska, Elwira; Belkhadir, Youssef; Zipfel, Cyril; Rathjen, John P

    2016-03-22

    Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.

  17. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    Science.gov (United States)

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  18. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.

    Science.gov (United States)

    Heuck, Alejandro P; Moe, Paul C; Johnson, Benjamin B

    2010-01-01

    The cholesterol-dependent cytolysins (CDCs) are a family of beta-barrel pore-forming toxins secreted by Gram-positive bacteria. These toxins are produced as water-soluble monomeric proteins that after binding to the target cell oligomerize on the membrane surface forming a ring-like pre-pore complex, and finally insert a large beta-barrel into the membrane (about 250 A in diameter). Formation of such a large transmembrane structure requires multiple and coordinated conformational changes. The presence of cholesterol in the target membrane is absolutely required for pore-formation, and therefore it was long thought that cholesterol was the cellular receptor for these toxins. However, not all the CDCs require cholesterol for binding. Intermedilysin, secreted by Streptoccocus intermedius only binds to membranes containing a protein receptor, but forms pores only if the membrane contains sufficient cholesterol. In contrast, perfringolysin O, secreted by Clostridium perfringens, only binds to membranes containing substantial amounts of cholesterol. The mechanisms by which cholesterol regulates the cytolytic activity of the CDCs are not understood at the molecular level. The C-terminus of perfringolysin O is involved in cholesterol recognition, and changes in the conformation of the loops located at the distal tip of this domain affect the toxin-membrane interactions. At the same time, the distribution of cholesterol in the membrane can modulate toxin binding. Recent studies support the concept that there is a dynamic interplay between the cholesterol-binding domain of the CDCs and the excess of cholesterol molecules in the target membrane. PMID:20213558

  19. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells.

    Science.gov (United States)

    Rosignoli, P; Fabiani, R; De Bartolomeo, A; Spinozzi, F; Agea, E; Pelli, M A; Morozzi, G

    2001-10-01

    Epidemiological studies support the involvement of short-chain fatty acids (SCFA) in colon physiology and the protective role of butyrate on colon carcinogenesis. Among the possible mechanisms by which butyrate may exert its anti-carcinogenicity an antioxidant activity has been recently suggested. We investigated the effects of butyrate and mixtures of SCFA (butyrate, propionate and acetate) on DNA damage induced by H(2)O(2) in isolated human colonocytes and in two human colon tumour cell lines (HT29 and HT29 19A). Human colonocytes were isolated from endoscopically obtained samples and the DNA damage was assessed by the comet assay. H(2)O(2) induced DNA damage in normal colonocytes in a dose-dependent manner which was statistically significant at concentrations over 10 microM. At 15 microM H(2)O(2) DNA damage in HT29 and HT29 19A cells was significantly lower than that observed in normal colonocytes (P < 0.01). Pre-incubation of the cells with physiological concentrations of butyrate (6.25 and 12.5 mM) reduced H(2)O(2) (15 microM) induced damage by 33 and 51% in human colonocytes, 45 and 75% in HT29 and 30 and 80% in HT29 19A, respectively. Treatment of cells with a mixture of 25 mM acetate + 10.4 mM propionate + 6.25 mM butyrate did not induce DNA damage, while a mixture of 50 mM acetate + 20.8 mM propionate + 12.5 mM butyrate was weakly genotoxic only towards normal colonocytes. However, both mixtures were able to reduce the H(2)O(2)-induced DNA damage by about 50% in all cell types. The reported protective effect of butyrate might be important in pathogenetic mechanisms mediated by reactive oxygen species, and aids understanding of the apparent protection toward colorectal cancer exerted by dietary fibres, which enhance the butyrate bioavailability in the colonic mucosa. PMID:11577008

  20. Microbial metabolite butyrate facilitates M2 macrophage polarization and function

    OpenAIRE

    Jian Ji; Dingming Shu; Mingzhu Zheng; Jie Wang; Chenglong Luo; Yan Wang; Fuyou Guo; Xian Zou; Xiaohui Lv; Ying Li; Tianfei Liu; Hao Qu

    2016-01-01

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. ...

  1. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  2. Comparison of desoximetasone and hydrocortisone butyrate in psoriasis.

    Science.gov (United States)

    Zachariae, H

    1976-01-01

    Thirty psoriatics were treated for 2 weeks on a double-blind controlled basis with desoximetasone (0.25%) and with hydrocortisone butyrate (0.1%). It was a randomised left-right comparative trial. Thirteen out of 27 patients preferred desoximetasone, 3 patients preferred hydrocortisone butyrate. There was also a significantly better effect of desoximetasone as judged by the observer after the second week of treatment. PMID:60029

  3. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors.

    Science.gov (United States)

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-09-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23-0.99 U mg(-1) protein), butyrate kinase (Buk, biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH₃ and NH₄(+)-N), and a negative dependency can be postulated. Thus, high concentrations of NH₃ and NH₄(+)-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities.

  4. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    Science.gov (United States)

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis.

  5. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  6. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen.

    Science.gov (United States)

    Kopecný, Jan; Zorec, Masa; Mrázek, Jakub; Kobayashi, Yasuo; Marinsek-Logar, Romana

    2003-01-01

    Two novel Gram-negative, anaerobic, non-spore-forming, butyrate-producing bacterial species, strains Mz 5T and JK 615T, were isolated from the rumen fluid of cow and sheep. Both strains were curved rods that were motile by means of single polar or subpolar flagellum and common in the rumen microbial ecosystem. Strain Mz 5T produced high xylanase, proteinase, pectin hydrolase and DNase activities; 1,4-beta-endoglucanase was also detected in the culture medium. The bacterium utilized a wide range of carbohydrates. Glucose was fermented to formate, butyrate, lactate, succinate and ethanol. The DNA G + C content was 42.1 mol%. The complete 16S rDNA sequence was obtained and phylogenetic relationships were determined. Strain Mz 5T and related isolates were located in clostridial cluster XIVa and were closely related to Pseudobutyrivibrio ruminis, Butyrivibrio crossotus, Roseburia cecicola and Eubacterium rectale. The name proposed for this novel bacterium is Pseudobutyrivibrio xylanivorans; the type strain is Mz 5T (=DSM 14809T =ATCC BAA-455T). Strain JK 615T produced no fibrolytic activity, but utilized a wide range of carbohydrates. Glucose was fermented to formate, acetate, butyrate and ethanol. The DNA G + C content was 44-8 mol%. The complete 16S rDNA sequence was obtained and phylogenetic relationships were determined. Strain JK 615T was located in clostridial cluster XIVa and was closely related to Clostridium proteoclasticum, Butyrivibrio fibrisolvens and Eubacterium halii. The name proposed for this novel bacterium is Butyrivibrio hungatei; the type strain is JK 615T (=DSM 14810T =ATCC BAA-456T). PMID:12656174

  7. Photoactivation of butyric acid from 6-aminobenzocoumarin cages

    OpenAIRE

    Soares, Ana M. S.; Hungerford, Graham; Susana P. G. Costa; Gonçalves, M. Sameiro T.

    2015-01-01

    A new benzocoumarin bearing an amino group is proposed as a photocleavable protecting group for carboxylic acids. The novel heterocycle, 6-amino-4-chloromethyl-2-oxo-2H-naphtho[1,2-b]pyran was used in the preparation of ester conjugates of butyric acid, and of the corresponding mono- and di-methylated or ethylated derivatives. The photolability of the ester conjugates was studied by irradiation at selected wavelengths in methanol/HEPES buffer (80:20) solutions, and the release of butyric acid...

  8. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice

    OpenAIRE

    Gao, Zhanguo; Yin, Jun; Zhang, Jin; Ward, Robert E.; Martin, Roy J; Lefevre, Michael; Cefalu, William T.; Ye, Jianping

    2009-01-01

    OBJECTIVE We examined the role of butyric acid, a short-chain fatty acid formed by fermentation in the large intestine, in the regulation of insulin sensitivity in mice fed a high-fat diet. RESEARCH DESIGN AND METHODS In dietary-obese C57BL/6J mice, sodium butyrate was administrated through diet supplementation at 5% wt/wt in the high-fat diet. Insulin sensitivity was examined with insulin tolerance testing and homeostasis model assessment for insulin resistance. Energy metabolism was monitor...

  9. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut

    Science.gov (United States)

    Rivière, Audrey; Selak, Marija; Lantin, David; Leroy, Frédéric; De Vuyst, Luc

    2016-01-01

    With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV) and Anaerostipes, Eubacterium, and Roseburia species (clostridial cluster XIVa). These kinds of interactions possibly favor the co-existence of bifidobacterial strains with other bifidobacteria and with butyrate-producing colon bacteria in the human colon. PMID:27446020

  10. The missing link in linear alkylbenzenesulfonate surfactant degradation : 4-sulfoacetophenone as a transient intermediate in the degradation of 3-(4-sulfophenyl) butyrate by comamonas testosteroni KF-1

    OpenAIRE

    Schleheck, David; Netzer, Frederick von; Fleischmann, Thomas; Rentsch, Daniel; Huhn, Thomas; Cook, Alasdair M.; Kohler, Hans-Peter E.

    2010-01-01

    Biodegradation of the laundry surfactant linear alkylbenzenesulfonate (LAS) involves complex bacterial communities. The known heterotrophic community has two tiers. First, all LAS congeners are oxygenated and oxidized to about 50 sulfophenylcarboxylates (SPC). Second, the SPCs are mineralized. Comamonas testosteroni KF-1 mineralizes 3-(4-sulfophenyl)butyrate (3-C4-SPC). During growth of strain KF-1 with 3-C4-SPC, two transient intermediates were detected in the culture medium. One intermediat...

  11. Diversity of Clinical and Environmental Isolates of Vibrio cholerae in Natural Transformation and Contact-Dependent Bacterial Killing Indicative of Type VI Secretion System Activity.

    Science.gov (United States)

    Bernardy, Eryn E; Turnsek, Maryann A; Wilson, Sarah K; Tarr, Cheryl L; Hammer, Brian K

    2016-05-01

    The bacterial pathogen Vibrio cholerae can occupy both the human gut and aquatic reservoirs, where it may colonize chitinous surfaces that induce the expression of factors for three phenotypes: chitin utilization, DNA uptake by natural transformation, and contact-dependent bacterial killing via a type VI secretion system (T6SS). In this study, we surveyed a diverse set of 53 isolates from different geographic locales collected over the past century from human clinical and environmental specimens for each phenotype outlined above. The set included pandemic isolates of serogroup O1, as well as several serogroup O139 and non-O1/non-O139 strains. We found that while chitin utilization was common, only 22.6% of the isolates tested were proficient at chitin-induced natural transformation, suggesting that transformation is expendable. Constitutive contact-dependent killing of Escherichia coli prey, which is indicative of a functional T6SS, was rare among clinical isolates (only 4 of 29) but common among environmental isolates (22 of 24). These results bolster the pathoadaptive model in which tight regulation of T6SS-mediated bacterial killing is beneficial in a human host, whereas constitutive killing by environmental isolates may give a competitive advantage in natural settings. Future sequence analysis of this set of diverse isolates may identify previously unknown regulators and structural components for both natural transformation and T6SS. PMID:26944842

  12. Comparison of Butyric acid concentrations in ordinary and probiotic yogurt samples in Iran

    OpenAIRE

    Narges Vaseji; Naheed Mojgani; Cyrus Amirinia; Iranmanesh, M

    2012-01-01

    Background and objectives: Butyric acid has many applications in chemical, food and pharmaceutical industries. Applications of butyric acid are as an additive to food, flavorings, varnishes, perfumes, pharmaceuticals and disinfectants. Butyric acid concentrations have positive impact on the quality control of milk, yogurt and other probiotic dairy products. The present investigation was undertaken to determine and compare the concentrations of butyric acid (C4) in the ordinary and probiotic y...

  13. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.; Barber, L.B.; Aiken, G.R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  14. The Synergistic Effects of Probiotic Microorganisms on the Microbial Production of Butyrate In Vitro

    Directory of Open Access Journals (Sweden)

    Abbas, Khadija A.

    2009-01-01

    Full Text Available Butyrate producing microbiota perform a number of activities important in supporting the normal function of the human gastrointestinal tract. The goal of this study was to determine the synergistic effects of lactate- and butyrate-producing bacteria on butyrate production in vitro co-culture. PCR was used to detect the genes butyrate kinase and butyryl-CoA transferase that contribute to butyrate production, in a panel of representative gut microbiota. Preliminary data suggested that two Clostridium sp. (ASF 500 and ASF 502 and one Eubacterium sp. (ASF492 possessed at least one of these genes for butyrate production. Co-culture experiments mixing a lactate-producer with a butyrate-producer showed an increase in butyrate production. Real-time quantitative PCR was used to estimate the number of bacteria in co-culture by targeting the 16S rDNA gene. Butyrate levels in the mixing experiment were analyzed using GC/MS. Preliminary results showed that butyrate genes are present in Clostridium sp. ASF 500 and ASF 502, however, assessment of butyrate production showed the butyrate levels do not correlate with the results from qPCR.

  15. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

    OpenAIRE

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of rib...

  16. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    Science.gov (United States)

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  17. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms; Radiosensibilidad bacteriana frente a gamma y ultravioleta. Dependencia composicional y mecanismos de reparacion

    Energy Technology Data Exchange (ETDEWEB)

    Saez Angulo, R. M.; Davila, C. A.

    1974-07-01

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs.

  18. Delayed development induced by toxicity to the host can be inherited by a bacterial-dependent, transgenerational effect

    Directory of Open Access Journals (Sweden)

    Yael eFridmann-Sirkis

    2014-02-01

    Full Text Available Commensal gut bacteria in many species including flies are integral part of their host, and are known to influence its development and homeostasis within generation. Here we report an unexpected impact of host-microbe interactions, which mediates multi-generational, non-Mendelian inheritance of a stress-induced phenotype. We have previously shown that exposure of fly larvae to G418 antibiotic induces transgenerationally heritable phenotypes, including a delay in larval development, gene induction in the gut and morphological changes. We now show that G418 selectively depletes commensal Acetobacter species and that this depletion explains the heritable delay, but not the inheritance of the other phenotypes. Notably, the inheritance of the delay was mediated by a surprising trans-generational effect. Specifically, bacterial removal from F1 embryos did not induce significant delay in F1 larvae, but nonetheless led to a considerable delay in F2. This effect maintains a delay induced by bacterial-independent G418 toxicity to the host. In line with these findings, reintroduction of isolated Acetobacter species prevented the inheritance of the delay. We further show that this prevention is partly mediated by vitamin B2 (Riboflavin produced by these bacteria; exogenous Riboflavin led to partial prevention and inhibition of Riboflavin synthesis compromised the ability of the bacteria to prevent the inheritance.These results identify host-microbe interactions as a hitherto unrecognized factor capable of mediating non-Mendelian inheritance of a stress-induced phenotype.

  19. Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract

    NARCIS (Netherlands)

    Moquet, P.C.A.; Onrust, L.; Immerseel, Van F.; Ducatelle, R.; Hendriks, W.H.; Kwakkel, R.P.

    2016-01-01

    In the field of animal nutrition, butyrate is used as a zootechnical ingredient and can be used as an unprotected salt or in the form of protected derivatives such as butyrate glycerides or butyrate-loaded matrices. Dietary butyrate supplementation has been shown to improve growth performance and

  20. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs.

    Science.gov (United States)

    Castillo, M; Martín-Orúe, S M; Roca, M; Manzanilla, E G; Badiola, I; Perez, J F; Gasa, J

    2006-10-01

    An experiment was designed to evaluate the effects of 3 different additives on the gastrointestinal microbiota of early-weaned pigs. Early-weaned (18 to 22 d; n = 32) pigs (6.0 +/- 0.10 kg of BW) from 8 litters were randomly distributed into 8 pens. Each pen was assigned 1 of 4 dietary treatments: a prestarter or control diet, the control diet with 0.04% avilamycin (AB), with 0.3% sodium butyrate, or with 0.03% plant extract mixture (XT; standardized mixture with 5% (wt/wt) carvacrol extracted from Origanum spp., 3% cinnamaldehyde extracted from Cinnamonum spp., and 2% capsicum oleoresin from Capsicum annum). At the end of the experimental period, 8 pigs per treatment were killed, and samples of their intestinal content were taken. The total bacterial load along the gastrointestinal tract (GIT; stomach, jejunum, cecum, and distal colon) and the lactobacilli and enterobacteria in the jejunum and cecum were measured by quantitative PCR. The total microbial counts along the GIT did not differ among the diets, but there was an increase in the lactobacilli:enterobacteria ratio in the cecum of the piglets on the XT diet (P = 0.003). Restriction fragment length polymorphism of the PCR-amplified V3, V4, and V5 regions of the 16S rDNA gene showed changes in the structure of the microbial community in the jejunum. Dendrograms grouped animals by diets; control with 0.3% sodium butyrate was the treatment that promoted the biggest changes in the microbial ecosystem, followed by AB and then XT. Biodiversity increased when using additives compared with the control diet (P = 0.002). Microbial metabolic activity along the hindgut was studied using the concentration of purine bases and carbohydrase activities. Different patterns for purine bases were observed between diets (diet x intestinal section, P = 0.01). The control diet reached a maximum purine base concentration at the end of the colon, whereas that of the AB diet was reached at the cecum. We could not detect any cellulase

  1. Thermal decomposition of yttrium(III) propionate and butyrate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2013-01-01

    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...

  2. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  3. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep

    Directory of Open Access Journals (Sweden)

    Lettat Abderzak

    2012-07-01

    Full Text Available Abstract Background Ruminal disbiosis induced by feeding is the cause of ruminal acidosis, a digestive disorder prevalent in high-producing ruminants. Because probiotic microorganisms can modulate the gastrointestinal microbiota, propionibacteria- and lactobacilli-based probiotics were tested for their effectiveness in preventing different forms of acidosis. Results Lactic acidosis, butyric and propionic subacute ruminal acidosis (SARA were induced by feed chalenges in three groups of four wethers intraruminally dosed with wheat, corn or beet pulp. In each group, wethers were either not supplemented (C or supplemented with Propionibacterium P63 alone (P or combined with L. plantarum (Lp + P or L. rhamnosus (Lr + P. Compared with C, all the probiotics stimulated lactobacilli proliferation, which reached up to 25% of total bacteria during wheat-induced lactic acidosis. This induced a large increase in lactate concentration, which decreased ruminal pH. During the corn-induced butyric SARA, Lp + P decreased Prevotella spp. proportion with a concomitant decrease in microbial amylase activity and total volatile fatty acids concentration, and an increase in xylanase activity and pH. Relative to the beet pulp-induced propionic SARA, P and Lr + P improved ruminal pH without affecting the microbial or fermentation characteristics. Regardless of acidosis type, denaturing gradient gel electrophoresis revealed that probiotic supplementations modified the bacterial community structure. Conclusion This work showed that the effectiveness of the bacterial probiotics tested depended on the acidosis type. Although these probiotics were ineffective in lactic acidosis because of a deeply disturbed rumen microbiota, some of the probiotics tested may be useful to minimize the occurrence of butyric and propionic SARA in sheep. However, their modes of action need to be further investigated.

  4. The effect of short-chain fatty acids butyrate, propionate, and acetate on urothelial cell kinetics in vitro: potential therapy in augmentation cystoplasty.

    Science.gov (United States)

    Dyer, J P; Featherstone, J M; Solomon, L Z; Crook, T J; Cooper, A J; Malone, P S

    2005-07-01

    The intestinal element of enterocystoplasty is affected by chronic inflammatory changes, which lead to excess mucus production, urinary tract infections, and stone formation. There is also an increased risk of malignancy. These inflammatory changes may be due to diversion colitis, which affects colonic segments excluded from the faecal stream and likewise may respond to intraluminal short-chain fatty acid (SCFA) therapy. The SCFAs have interesting antiproliferative, differentiating, and pro-apoptotic effects, which are protective against colorectal cancer and may influence the risk of malignancy in enterocystoplasty. Before intravesical therapy can be considered, the effect on normal urothelium must be investigated. Primary urothelial cells cultured from biopsy specimens and transformed urothelial (RT112 and MGH-U1) and intestinal cell lines (HT29 and CaCo-2) were incubated with SCFAs. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the residual viable biomass to assess cell proliferation. Proliferation of primary and transformed urothelial cells in culture was inhibited by all SCFAs in a similar time- and dose-dependent manner. The concentration of SCFA required to inhibit growth of primary cells by 50% (IC50) was 20 mM of butyrate, 120 mM of propionate, and 240 mM of acetate after incubation for 1 h. After 72 h the IC50 was 2 mM of butyrate, 4 mM of propionate, and 20 mM of acetate. Transformed urothelial and colon cancer cell lines demonstrated similar growth inhibition. Butyrate was the most potent inhibitor of cell proliferation, followed by propionate and then acetate. Growth inhibition is not an immediate cytotoxic effect, and urothelial cells show a degree of adaptation to butyrate and growth recovery after incubation with butyrate. In conclusion, butyrate- and propionate-induced growth inhibition is potentially clinically significant and may have therapeutically beneficial implications in vivo. PMID:15864601

  5. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS.

    Science.gov (United States)

    Ifuku, Shinsuke; Nogi, Masaya; Abe, Kentaro; Handa, Keishin; Nakatsubo, Fumiaki; Yano, Hiroyuki

    2007-06-01

    Bacterial cellulose (BC) nanofibers were acetylated to enhance the properties of optically transparent composites of acrylic resin reinforced with the nanofibers. A series of BC nanofibers acetylated from degree-of-substitution (DS) 0 to 1.76 were obtained. X-ray diffraction profiles indicated that acetylation proceeded from the surface to the core of BC nanofibers, and scanning electron microscopy images showed that the volume of nanofibers increases by the bulky acetyl group. Since acetylation decreased the refractive index of cellulose, regular transmittance of composites comprised of 63% BC nanofiber was improved, and deterioration at 580 nm because of fiber reinforcement was suppressed to only 3.4%. Acetylation of nanofibers changed their surface properties and reduced the moisture content of the composite to about one-third that of untreated composite, although excessive acetylation increased hygroscopicity. Furthermore, acetylation was found to reduce the coefficient of thermal expansion of a BC sheet from 3 x 10(-6) to below 1 x 10(-6) 1/K.

  6. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence.

    Science.gov (United States)

    Leclercq, Sophie Y; Sullivan, Matthew J; Ipe, Deepak S; Smith, Joshua P; Cripps, Allan W; Ulett, Glen C

    2016-01-01

    Streptococcus agalactiae can cause urinary tract infection (UTI) including cystitis and asymptomatic bacteriuria (ABU). The early host-pathogen interactions that occur during S. agalactiae UTI and subsequent mechanisms of disease pathogenesis are poorly defined. Here, we define the early interactions between human bladder urothelial cells, monocyte-derived macrophages, and mouse bladder using uropathogenic S. agalactiae (UPSA) 807 and ABU-causing S. agalactiae (ABSA) 834 strains. UPSA 807 adhered, invaded and killed bladder urothelial cells more efficiently compared to ABSA 834 via mechanisms including low-level caspase-3 activation, and cytolysis, according to lactate dehydrogenase release measures and cell viability. Severe UPSA 807-induced cytotoxicity was mediated entirely by the bacterial β-hemolysin/cytolysin (β-H/C) because an β-H/C-deficient UPSA 807 isogenic mutant, UPSA 807ΔcylE, was not cytotoxic in vitro; the mutant was also significantly attenuated for colonization in the bladder in vivo. Analysis of infection-induced cytokines, including IL-8, IL-1β, IL-6 and TNF-α in vitro and in vivo revealed that cytokine and chemokine responses were dependent on expression of β-H/C that also elicited severe bladder neutrophilia. Thus, virulence of UPSA 807 encompasses adhesion to, invasion of and killing of bladder cells, pro-inflammatory cytokine/chemokine responses that elicit neutrophil infiltration, and β-H/C-mediated subversion of innate immune-mediated bacterial clearance from the bladder. PMID:27383371

  7. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    Science.gov (United States)

    van Opijnen, Tim; Dedrick, Sandra; Bento, José

    2016-09-01

    The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable. PMID:27607357

  8. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  9. Detection of Ca2+-dependent acid phosphatase activity identiifes neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Institute of Scientific and Technical Information of China (English)

    Tigran R Petrosyan; Anna S Ter-Markosyan; Anna S Hovsepyan

    2016-01-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I;n=12) or unilateral rubrospinal tract transection at the cervical level (C3–4) (group II;n=12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian’s calcium adenoside triphosphate method revealed that BM stimulated the sprouting of ifbers and dilated the capillaries in the brain and spinal cord. These results sug-gest that BM can promote the recovery of motor function of rats with central nervous system injury;and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regenera-tion-promoting effects of BM on the injured central nervous system.

  10. Composition and diversity analysis of the gut bacterial community of the Oriental armyworm, Mythimna separata, determined by culture-independent and culture-dependent techniques.

    Science.gov (United States)

    He, Cai; Nan, Xiaoning; Zhang, Zhengqing; Li, Menglou

    2013-01-01

    The intestinal bacteria community structure and diversity of the Oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae), was studied by analysis of a 16S rDNA clone library, denaturing gradient gel electrophoresis,and culture-dependent techniques. The 16S rDNA clone library revealed a bacterial community diversity comprising Cyanobacteria, Firmicutes, Actinobacteria, Gracilicutes and Proteobacteria, among which Escherichia coli (Migula) (Enterobacteriales: Enterobacteriaceae) was the dominant bacteria. The intestinal bacteria isolated by PCR-denaturing gradient gel electrophoresis were classified to Firmicutes, Proteobacteria, and Gracilicutes, and E. coli was again the dominant bacteria. The culture-dependent technique showed that the intestinal bacteria belonged to Firmicutes and Actinobacteria, and Staphylococcus was the dominant bacteria. The intestinal bacteria of M. separata were widely distributed among the groups Cyanobacteria, Firmicutes, Actinobacteria, Gracilicutes, Proteobacteria, and Gracilicutes. 16S rDNA clone library, denaturing gradient gel electrophoresis, and culture-dependent techniques should be integrated to obtain precise results in terms of the microbial community and its diversity. PMID:24773514

  11. Detection of Ca(2+)-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin.

    Science.gov (United States)

    Petrosyan, Tigran R; Ter-Markosyan, Anna S; Hovsepyan, Anna S

    2016-07-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca(2+)-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3-4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca(2+)-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca(2+)-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system. PMID:27630700

  12. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures.

    Science.gov (United States)

    Zheng, Xian-Jun; Yu, Han-Qing

    2005-01-01

    In this study batch experiments were conducted to investigate the inhibitory effects of butyrate addition on hydrogen production from glucose by using anaerobic mixed cultures. Experimental results showed that addition of butyrate at 4.18 and 6.27 g/l only slightly inhibited hydrogen production, and addition of butyrate at 8.36-12.54 g/l imposed a moderate inhibitory effect on hydrogen production. At addition of 25.08 g/l, butyrate had a strong inhibitory influence on substrate degradation and hydrogen production. The distribution of the volatile fatty acids produced from the acidogeneisis of glucose was significantly influenced by the addition of butyrate. The inhibition of butyrate addition on hydrogen production was described well by a non-competitive and non-linear inhibition model, with the maximum hydrogen production rate of 59.3 ml/g-SS/h, critical added butyrate concentration of 25.08 g/l, and inhibition degree of 0.323, respectively. The C(I,50) values (the butyrate concentration at which bioactivity is reduced by 50%) for hydrogen production rate and yield were estimated as 19.39 and 20.78 g/l of added butyrate, respectively.

  13. Transport and Metabolism of the Endogenous Auxin Precursor lndole-3-Butyric Acid

    Institute of Scientific and Technical Information of China (English)

    Lucia C. Strader; Bonnie Bartel

    2011-01-01

    T Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.

  14. Vibrational Spectroscopic and Thermodynamic Investigation of Poly (vinyl butyral

    Directory of Open Access Journals (Sweden)

    Saiful Islam Ansari

    2016-03-01

    Full Text Available A detailed study was performed to investigate the normal modes of vibration and their dispersions in poly (vinyl butyral by using Urey-Bradley force field and Wilson’s GF matrix method as modified by Higgs. It provides detailed interpretation of FTIR. Characteristic feature of dispersion curves such as regions of high density–of–states, repulsion and character mixing of dispersion modes are discussed. Predictive values of heat capacity as a function of temperature between 0-350 K have been evaluated.

  15. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B

    Directory of Open Access Journals (Sweden)

    Li Qiao

    2006-12-01

    Full Text Available Abstract Background In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular mechanisms of the anti-cancer effects of these inhibitors have yet to be understood. Results Here, we report that a key determinant for the susceptibility of cancer cells to histone deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment. Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from butyrate-induced apoptotic cell death. Conclusion Our study demonstrates that although the primary target of histone deacetylase inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that determines their fate of survival.

  16. Effect of feeding sodium butyrate in the late finishing period on Salmonella carriage, seroprevalence, and growth of finishing pigs.

    Science.gov (United States)

    Walia, Kavita; Argüello, Hector; Lynch, Helen; Leonard, Finola C; Grant, Jim; Yearsley, Dermot; Kelly, Sinead; Duffy, Geraldine; Gardiner, Gillian E; Lawlor, Peadar G

    2016-09-01

    Pork is an important source of human salmonellosis and low-cost on-farm control measures may provide a useful element in reducing the prevalence of this pathogen in food. This study investigated the effectiveness of dietary supplementation with sodium butyrate administered to finisher pigs for ∼4-weeks prior to slaughter to control Salmonella shedding on highly contaminated farms. Two trials (A and B) were conducted on two commercial pig farms, which had a history of high Salmonella seroprevalence. In both trials, pens (14 pens of 12 pigs/pen in Trial A and 12 pens of 12-17 pigs/pen in Trial B) were randomly assigned to a control (finisher feed without additive) or a treatment group (the same feed with 3kg sodium butyrate/t) for 24-28days, depending on the trial. Faeces were collected from each pig on days 0, 12 and 24/28, and blood, caecal digesta and ileocaecal/mesenteric lymph nodes were collected from the slaughterhouse. Pigs were weighed at the start and end of the trials, feed intake was recorded, and carcass quality parameters were recorded at slaughter. In Trial A, Salmonella shedding was reduced in the treatment compared to the control group at the end of the trial (30% versus 57% probability of detecting Salmonella in faeces, respectively; p0.05) in either trial. Numerical improvements in weight gain and FCE were found with sodium butyrate treatment, which gave a cost benefit of €0.04/kg of live-weight gain. Overall, results suggest that strategic feeding of sodium butyrate, at 3kg/t of feed, to finishing pigs for 24-28days prior to slaughter was effective in reducing Salmonella shedding and seroprevalance but perhaps only in the absence of co-infection with other pathogens. However, sodium butyrate supplementation at this rate did not influence intestinal carriage, nor did it reduce seroprevalence to below the cut-off used for the high Salmonella risk category in Ireland (50%), or significantly improve growth performance. PMID:27544256

  17. Effect of butyric acid on the performance and carcass yield of broiler chickens.

    Science.gov (United States)

    Leeson, S; Namkung, H; Antongiovanni, M; Lee, E H

    2005-09-01

    Short-chain fatty acids such as butyrate are considered potential alternatives to antibiotic growth promoters. The efficacy of butyric acid on performance and carcass characteristics of broiler chickens was tested in two studies. The effect of dietary butyrate on the ability to withstand coccidial oocyte challenge also was investigated. In experiment 1, male broiler chickens were fed diets supplemented with 0 or 11 ppm virginiamycin or 0.2 or 0.4% butyric acid (as mono-, di-, and triglyceride). In experiment 2, broilers were fed bacitracin methylene disalicylate or 0.1 or 0.2% butyric acid. In another trial, birds vaccinated against coccidiosis were challenged with oocytes at 21 d and examined 6 d later. In experiment 1, diet treatments had no effect on body weight gain. Feed intake of the birds fed 0.4% butyric acid was decreased (P < 0.01) compared with birds fed the nonmedicated diet during the starter period, whereas birds fed 0.2% butyric acid had similar feed intake to the control birds. In experiment 2, diet treatments did not affect the performance of broiler chicks while carcass weight and breast meat yield increased (P < 0.01) in birds fed 0.2% butyric acid. With oocyte challenge, birds that had received butyric acid before challenge showed higher growth rate following the challenge compared with birds that received nonmedicated feed. Bacitracin decreased (P < 0.05%) duodenal villi crypt depth, whereas villus length was similar in birds fed butyric acid or the nonmedicated control diet. These results show that 0.2% butyric acid can help to maintain the performance and carcass quality of broilers, especially in vaccinated birds challenged with coccidiosis. PMID:16206563

  18. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat. PMID:23918959

  19. Bacterial load and inflammation in fetal tissues is not dependent on IL-17a or IL-22 in 10-14 day pregnant mice infected with Listeria monocytogenes

    Science.gov (United States)

    Poulsen, Keith P.; Faith, Nancy G.; Steinberg, Howard; Czuprynski, Charles J.

    2012-01-01

    In this study, we first assessed the effect of intragastric infection of pregnant mice with Listeria monocytogenes on relative expression of select genes associated with T cell subsets. Relative gene expression was moderately increased in placental tissues for IFNγ, IL-4, IL-17a, IL-22, CD3, and FoxP3. To assess the roles of IL-17a and IL-22 in resistance to listeriosis during pregnancy, we compared the severity of maternal and fetal infection in IL-17a(−/−), IL-22(−/−), and IL-17a(−/−)/IL-22(−/−) mice with that of wild type C57BL/6 mice. Intragastric infection with modest numbers of bacterial cells (105 CFU) caused reproducible maternal and fetal infection in all four mouse strains. We recovered greater numbers of CFU from the bloodstream of pregnant IL-22(−/−) mice than pregnant wild type mice. Otherwise we found no significant difference in bacterial load in maternal or fetal tissues (spleen, liver, fetoplacental units) from pregnant IL-17a(−/−), IL-22(−/−), or IL-17a(−/−)/IL-22(−/−) or wild type mice. Nor did we observe histopathologic differences in severity of inflammation in maternal or fetal tissues from the various groups of mice. Although IL-17a and IL-22 are up-regulated in placental tissue, our study suggests that antibacterial resistance and the host inflammatory response are not dependent on IL-17a or IL-22 during infection of mice with L. monocytogenes at 10-14 days of gestation. PMID:23178254

  20. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium sp. strain RPT-4213

    Science.gov (United States)

    A novel Clostridium sp. strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L-1 butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH...

  1. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213

    Science.gov (United States)

    A newly isolated Clostridium sp. strain RPT-4213 was found to produce butyrate under anaerobic conditions. Fermentations using Lactobacilli MRS Broth produced 9.47 g L-1 butyric acid from glucose (0.48 g/g glucose). However, the strain was not capable of utilizing five carbon sugars. To assess the a...

  2. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum.

    Science.gov (United States)

    Zhang, Yali; Yu, Mingrui; Yang, Shang-Tian

    2012-01-01

    Clostridium tyrobutyricum ATCC 25755 is an anaerobic, rod-shaped, gram-positive bacterium that produces butyrate, acetate, hydrogen, and carbon dioxide from various saccharides, including glucose and xylose. Phosphotransbutyrylase (PTB) is a key enzyme in the butyric acid synthesis pathway. In this work, effects of ptb knockout by homologous recombination on metabolic flux and product distribution were investigated. When compared with the wild type, the activities of PTB and butyrate kinase in ptb knockout mutant decreased 76 and 42%, respectively; meanwhile, phosphotransacetylase and acetate kinase increased 7 and 29%, respectively. However, ptb knockout did not significantly reduce butyric acid production from glucose or xylose in batch fermentations. Instead, it increased acetic acid and hydrogen production 33.3-53.8% and ≈ 11%, respectively. Thus, the ptb knockout did increase the carbon flux toward acetate synthesis, resulting in a significant decrease (28-35% reduction) in the butyrate/acetate ratio in ptb mutant fermentations. In addition, the mutant displayed a higher specific growth rate (0.20 h(-1) vs. 0.15 h(-1) on glucose and 0.14 h(-1) vs. 0.10 h(-1) on xylose) and tolerance to butyric acid. Consequently, batch fermentation with the mutant gave higher fermentation rate and productivities (26-48% increase for butyrate, 81-100% increase for acetate, and 38-46% increase for hydrogen). This mutant thus can be used more efficiently than the parental strain in fermentations to produce butyrate, acetate, and hydrogen from glucose and xylose.

  3. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    Science.gov (United States)

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  4. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Science.gov (United States)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  5. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    OpenAIRE

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A.; Gilbert, Jack A.; Nagler, Cathryn R.

    2015-01-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based ...

  6. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity.

    Science.gov (United States)

    Kim, Minsun; Kim, Ki-Yeon; Lee, Kyung Min; Youn, Sung Hun; Lee, Sun-Mi; Woo, Han Min; Oh, Min-Kyu; Um, Youngsoon

    2016-10-01

    The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid. PMID:27474955

  7. MODULATION OF MDR-1 GENE IN HUMAN BREAST CANCER CELLS BY SODIUM BUTYRATE AND DMSO

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the regulation effect of MDR-1 gene inhuman breast cancer cell by the differentiating agents, sodium butyrate and dimethyl sulfoxide. Methods: 1. A sensitive assay, RT-PCR, was used to measure the mRNA level before and after the treatment of sodium butyrate, DMSO, using b -actin as control; 2. Evaluated the effect of sodium butyrate, DMSO on MDR-1 gene expression of human breast cancer at the protein level by immunoflow cytometry; 3. P-glycoprotein function was examined after accumulation of the fluorescent drug, Phodamine-123, by flow cytometry; 4. Chemosensitivity to doxorubicin was analyzed using the MTT assay. Results: Sodium butyrate and DMSO were found to increase the MDR characteristics on MDR-1 gene, MDR-1 expression levels, P-glycoprotein function and chemosensitivity to doxorubicin. Conclusion: sodium butyrate, DMSO can modulate the MDR-1 gene at gene level, protein level, protein function level and cell level.

  8. Butyrate regulates the expression of inflammatory and chemotactic cytokines in human acute leukemic cells during apoptosis.

    Science.gov (United States)

    Pulliam, Stephanie R; Pellom, Samuel T; Shanker, Anil; Adunyah, Samuel E

    2016-08-01

    Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24h, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines. PMID:27253488

  9. Keratin 8 expression in colon cancer associates with low faecal butyrate levels

    Directory of Open Access Journals (Sweden)

    Riley Stuart A

    2011-01-01

    Full Text Available Abstract Background Butyrate has been implicated in the mechanistic basis of the prevention of colorectal cancer by dietary fibre. Numerous in vitro studies have shown that butyrate regulates cell cycle and cell death. More recently we have shown that butyrate also regulates the integrity of the intermediate filament (IF cytoskeleton in vitro. These and other data suggest a link between the role of diet and the implication of a central role for the keratin 8 (K8 as guardian of the colorectal epithelium. Methods In this cross-sectional study possible links between butyrate levels, field effects and keratin expression in cancer were addressed directly by analysing how levels of expression of the IF protein K8 in tumours, in adjacent fields and at a distant landmark site may be affected by the level of butyrate in the colon microenvironment. An immunohistochemical scoring protocol for K8 was developed and applied to samples, findings were further tested by immunoblotting. Results Levels of K8 in colorectal tumours are lower in subjects with higher levels of faecal butyrate. Immunoblotting supported this finding.Although there were no significant relationships with butyrate on the non-tumour tissues, there was a consistent trend in all measures of extent or intensity of staining towards a reduction in expression with elevated butyrate, consistent with the inverse association in tumours. Conclusions The data suggest that butyrate may associate with down-regulation of the expression of K8 in the cancerized colon. If further validated these findings may suggest the chemopreventive value of butyrate is limited to early stage carcinogenesis as low K8 expression is associated with a poor prognosis.

  10. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways.

  11. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    OpenAIRE

    Edgar C. Clausen; Jamie A. Hestekin; Beitle, Robert R.; Nicole Lorenz; Amy McGraw; Jianjun Du

    2012-01-01

    In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partia...

  12. [Pharmacological study on hydrocortisone 17-butyrate 21-propionate (author's transl)].

    Science.gov (United States)

    Otomo, S; Higuchi, S; Nakaike, S; Takeshita, K; Tanaka, M; Gotoh, Y; Osada, Y; Tsuchida, K; Inoue, K; Kyogoku, K; Tarumoto, Y; Sasajima, M; Ohzeki, M

    1981-12-01

    The topical and systemic anti-inflammatory activities of hydrocortisone 17-butyrate 21-propionate (HBP) were studied. The systemic anti-inflammatory activities of HBP and reference steroids were examined for their effects on dinitrochlorobenzene dermatitis, carrageenin edema, cotton pellet granuloma and adjuvant arthritis in rats and by the delayed allergic edema test in mice. The topical anti-inflammatory activities of these steroids were examined for their effects on croton oil dermatitis, croton oil ear edema, carrageenin edema and cotton pellet granuloma in rats. Furthermore, effects of these steroids on liver glycogen deposition in mice, thymolysis, and decrease of serum corticosterone level in rats were examined. Systemically administered HBP was less potent than betamethasone 17-valerate (BV), but was almost equal to hydrocortisone 17-butyrate (HB) in anti-inflammatory activity, and its effects on liver glycogen deposition, thymolysis, and the decrease of serum corticosterone level. However, the topical anti-inflammatory activity of HBP was more potent than that of BV and HB, although in the same experiment, thymolytic activity of HBP was less potent than that of BV, but was almost equal to HB. The inhibitory effect of HBP on hypotonic induced hemolysis was weaker than that of BV, but was stronger than that of HB in vitro. The affinity of HBP was higher than that of BV and HB to polymorphonuclear leucocytes used as the inflammatory cells in vitro. On the other hand no marked difference was observed in the affinity to erythrocytes used as the non-inflammatory cells in vitro. These results suggest that HBP is a useful drug which has superior topical anti-inflammatory activity, but has a weak systemic effect. PMID:7333567

  13. Thermal Analysis of Whole Bacterial Cells Exposed to Potassium Permanganate Using Differential Scanning Calorimetry: a Biphasic Dose-Dependent Response to Stress

    Directory of Open Access Journals (Sweden)

    Marina K. Abuladze

    2009-01-01

    Full Text Available Differential scanning calorimetry (DSC was applied to estimate the impact of the toxic oxidant potassium permanganate (PM on the intracellular structural and functional alterations at whole cell level using soil bacteria Arthrobacter oxydans as a model culture. Differential scanning calorimetry (DSC was applied in order to estimate the impact of the toxic oxidant potassium permanganate (PM on the intracellular structural and functional alterations at the whole cell level using the soil bacteria Arthrobacter oxydans as a model culture. We compared the total melting heat and the temperature of DNA-protein complex (DNP melting at the PM application prior to the calorimetry measurement and after 24-h exposure at the concentration range 0.02–1.4 mM. The initial oxidative effect caused changes in the pattern of the whole cell melting spectra (mainly at the temperature range 56–78°C, the decrease of Tmax °C DNP melting, and did not influence significantly the total heat of bacterial melting at different concentrations of PM. The prolonged effect of permanganate up to 24 h was characterized by a biphasic dose-dependent response to stress estimated by the DSC technique and the colony-forming assay. The low doses of PM (0.02 and 0.2 mM stimulated cell proliferation, and increased the total whole cell melting heat and the temperature of DNP melting. The toxic effect of PM up to 0.04 mM reduced cell viability, changed the character of multipeaked thermograms, and lowered the total melting heat and the temperature of DNP melting in a concentration-dependent manner. This study presents the DSC method for evaluating and monitoring the effects of exposure to potential human and environmental toxicants.

  14. Destructive effects of butyrate on the cell envelope of Helicobacter pylori.

    Science.gov (United States)

    Yonezawa, Hideo; Osaki, Takako; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Woo, Timothy Derk Hoong; Takahashi, Motomichi; Matsubara, Sachie; Kawakami, Hayato; Ochiai, Kuniyasu; Kamiya, Shigeru

    2012-04-01

    Helicobacter pylori can be found in the oral cavity and is mostly detected by the use of PCR techniques. Growth of H. pylori is influenced by various factors in the mouth, such as the oral microflora, saliva and other antimicrobial substances, all of which make colonization of the oral cavity by H. pylori difficult. In the present study, we analysed the effect of the cell supernatant of a representative periodontal bacterium Porphyromonas gingivalis on H. pylori and found that the cell supernatant destroyed the H. pylori cell envelope. As P. gingivalis produces butyric acid, we focused our research on the effects of butyrate and found that it significantly inhibited the growth of H. pylori. H. pylori cytoplasmic proteins and DNA were detected in the extracellular environment after treatment with butyrate, suggesting that the integrity of the cell envelope was compromised and indicating that butyrate has a bactericidal effect on H. pylori. In addition, levels of extracellular H. pylori DNA increased following treatment with the cell supernatant of butyric acid-producing bacteria, indicating that the cell supernatant also has a bactericidal effect and that this may be due to its butyric acid content. In conclusion, butyric acid-producing bacteria may play a role in affecting H. pylori colonization of the oral cavity. PMID:22194341

  15. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion.

    Directory of Open Access Journals (Sweden)

    Bin Liu

    Full Text Available Hepatic ischemia/reperfusion (I/R injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation.

  16. Duodenal histology and carcass quality of feedlot cattle supplemented with calcium butyrate and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Thiago Simas de Oliveira Moreira

    2016-01-01

    Full Text Available The experiment was carried out at the Comigo Technology Center, in Rio Verde, State of Goiás, Brazil, with the objective of evaluating the effects of supplementation with calcium butyrate, as a growth promoting agent for the duodenal mucosa and Bacillus subtilis as a probiotic performance enhancer in feedlot cattle. Calcium butyrate (5 and 10 g per animal per day and Bacillus (10 g per animal per day were added to a basal diet. There were used 85 Nelore bulls, with average weight of 315 ± 7 kg. The experiment lasted 118 days, including the adaptation period, until slaughter at 30 months of age. Diets were distributed in a completely randomized design with four treatments, where: T1 = control (basal diet; T2 = basal diet + 5 g calcium butyrate; T3 = basal diet + 10 g calcium butyrate and T4 = basal diet + 10 g calcium butyrate + 10 g probiotic with four replications and five to six animals per replication. It was used a forage: concentrate ratio of 30:70, the roughage used was the corn silage. Height and width measurements of intestinal villi were taken, and carcass and meat quality were evaluated. The supplementation of calcium butyrate and Bacillus subtilis positively influenced (p < 0.05 the carcass marbling level and calcium butyrate increased the villus height in the small intestine.

  17. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Institute of Scientific and Technical Information of China (English)

    HE Guo-qing; KONG Qing; CHEN Qi-he; RUAN Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.

  18. Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain) through Culture-Dependent and Independent Approaches.

    Science.gov (United States)

    Pascual, Javier; Blanco, Silvia; García-López, Marina; García-Salamanca, Adela; Bursakov, Sergey A; Genilloud, Olga; Bills, Gerald F; Ramos, Juan L; van Dillewijn, Pieter

    2016-01-01

    Little is known of the bacterial communities associated with the rhizosphere of wild plant species found in natural settings. The rhizosphere bacterial community associated with wild thyme, Thymus zygis L., plants was analyzed using cultivation, the creation of a near-full length 16S rRNA gene clone library and 454 amplicon pyrosequencing. The bacterial community was dominated by Proteobacteria (mostly Alphaproteobacteria and Betaproteobacteria), Actinobacteria, Acidobacteria, and Gemmatimonadetes. Although each approach gave a different perspective of the bacterial community, all classes/subclasses detected in the clone library and the cultured bacteria could be found in the pyrosequencing datasets. However, an exception caused by inconclusive taxonomic identification as a consequence of the short read length of pyrotags together with the detection of singleton sequences which corresponded to bacterial strains cultivated from the same sample highlight limitations and considerations which should be taken into account when analysing and interpreting amplicon datasets. Amplicon pyrosequencing of replicate rhizosphere soil samples taken a year later permit the definition of the core microbiome associated with Thymus zygis plants. Abundant bacterial families and predicted functional profiles of the core microbiome suggest that the main drivers of the bacterial community in the Thymus zygis rhizosphere are related to the nutrients originating from the plant root and to their participation in biogeochemical cycles thereby creating an intricate relationship with this aromatic plant to allow for a feedback ecological benefit. PMID:26741495

  19. Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain through Culture-Dependent and Independent Approaches.

    Directory of Open Access Journals (Sweden)

    Javier Pascual

    Full Text Available Little is known of the bacterial communities associated with the rhizosphere of wild plant species found in natural settings. The rhizosphere bacterial community associated with wild thyme, Thymus zygis L., plants was analyzed using cultivation, the creation of a near-full length 16S rRNA gene clone library and 454 amplicon pyrosequencing. The bacterial community was dominated by Proteobacteria (mostly Alphaproteobacteria and Betaproteobacteria, Actinobacteria, Acidobacteria, and Gemmatimonadetes. Although each approach gave a different perspective of the bacterial community, all classes/subclasses detected in the clone library and the cultured bacteria could be found in the pyrosequencing datasets. However, an exception caused by inconclusive taxonomic identification as a consequence of the short read length of pyrotags together with the detection of singleton sequences which corresponded to bacterial strains cultivated from the same sample highlight limitations and considerations which should be taken into account when analysing and interpreting amplicon datasets. Amplicon pyrosequencing of replicate rhizosphere soil samples taken a year later permit the definition of the core microbiome associated with Thymus zygis plants. Abundant bacterial families and predicted functional profiles of the core microbiome suggest that the main drivers of the bacterial community in the Thymus zygis rhizosphere are related to the nutrients originating from the plant root and to their participation in biogeochemical cycles thereby creating an intricate relationship with this aromatic plant to allow for a feedback ecological benefit.

  20. Electrochemical Characterization of Cellulose Acetate Butyrate-Prmutit Composite Membrane in Aqueous Uni-Uni Valent Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    A.K. Tiwari

    2015-06-01

    Full Text Available Co-mixed cellulose acetate butyrate and permutit in a definite composition was prepared and coded as MRS-2. The membrane potential was measured with uni-uni valent electrolyte, NaCl solutions using saturated calomel electrodes (SCEs.The effective fixed charge density of the membrane was determined by TMS method and it showed dependence on the porosity, charge on the membrane matrix, charge and size of permeating ions. Other important electrochemical parameters were calculated. Conductance-time data were generated for the kinetic study of the permeating ions in terms of membrane permeability, flow and flux parameters. Donnan membrane equilibrium condition was examined. Membrane adsorbability showed concave dependence with external electrolyte solution and convex type dependence was showed by swelling and conductance parameters. This membrane had no characteristic of anomalous osmosis, indicates that there is no water flooding will take place during membrane operation.

  1. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  2. Butyrate stimulates IL-32α expression in human intestinal epithelial cell lines

    Institute of Scientific and Technical Information of China (English)

    Ayako; Kobori; Shigeki; Bamba; Hirotsugu; Imaeda; Hiromitsu; Ban; Tomoyuki; Tsujikawa; Yasuharu; Saito; Yoshihide; Fujiyama; Akira; Andoh

    2010-01-01

    AIM: To investigate the effects of butyrate on interleukin (IL)-32α expression in epithelial cell lines. METHODS: The human intestinal epithelial cell lines HT-29, SW480, and T84 were used. Intracellular IL- 32α was determined by Western blotting analyses. IL- 32α mRNA expression was analyzed by real-time poly-merase chain reaction. RESULTS: Acetate and propionate had no effects on IL-32α mRNA expression. Butyrate significantly enhanced IL-32α expression in all cell lines. Butyrate also up-regulated IL-1β-i...

  3. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria.

    Science.gov (United States)

    Tsukahara, Takamitsu; Koyama, Hironari; Okada, Masaaki; Ushida, Kazunari

    2002-08-01

    Gluconic acid reaches the large intestine to stimulate lactic acid bacteria. However, the fermentation pattern of gluconic acid has yet to be elucidated. Accordingly, we examined the fermentation properties induced by gluconic acid in the pig cecal digesta in vitro. We also tested sorbitol and glucose, substrates for which the fermentation rate and patterns are known. The gluconic acid-utilizing bacteria were further isolated from pig cecal digesta and identified to examine the effect of gluconic acid on hind gut fermentation. Gluconic acid was fermented more slowly than were the other two substrates. Gluconic acid stimulated butyrate production; the butyrate molar percentage reached 26%, which is considered a high butyrate production. The majority of gluconic acid fermenters were identified as lactic acid bacteria, such as Lactobacillus reuteri and L. mucosae, and acid-utilizing bacteria, such as Megasphaera elsdenii and Mitsuokella multiacida. The gluconic acid fermented by lactic acid bacteria, and the lactate and acetate that were produced were used to form butyrate by acid-utilizing bacteria, such as M. elsdenii. Gluconic acid may be useful as a prebiotic to stimulate butyrate production in the large intestine.

  4. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    Science.gov (United States)

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

  5. Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner

    OpenAIRE

    Avadhanula, Vasanthi; Rodriguez, Carina A.; DeVincenzo, John P.; Wang, Yan; Webby, Richard J; Ulett, Glen C.; Adderson, Elisabeth E.

    2006-01-01

    Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known recept...

  6. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    OpenAIRE

    Gbenga Adedeji Adewumi; Folarin Anthony Oguntoyinbo; Santosh eKeisam; Wahengbam eRomi; Kumaraswamy eJeyaram

    2013-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 regio...

  7. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds

    OpenAIRE

    Adewumi, Gbenga A.; Oguntoyinbo, Folarin A.; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2013-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of ...

  8. ALA-Butyrate prodrugs for Photo-Dynamic Therapy

    Science.gov (United States)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2010-05-01

    The use of 5-aminolevulinic acid (ALA) administration has led to many applications of photodynamic therapy (PDT) in cancer. However, the hydrophilic nature of ALA limits its ability to penetrate the cells and tissues, and therefore the need for ALA derivatives became an urgent research target. In this study we investigated the activity of novel multifunctional acyloxyalkyl ester prodrugs of ALA that upon metabolic hydrolysis release active components such as, formaldehyde, and the histone deacetylase inhibitory moiety, butyric acid. Evaluation of these prodrugs under photo-irradiation conditions showed that butyryloxyethyl 5-amino-4-oxopentanoate (ALA-BAC) generated the most efficient photodynamic destruction compared to ALA. ALA-BAC stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells which resulted in generation of intracellular ROS, reduction of mitochondrial activity, leading to apoptotic and necrotic death of the cells. The apoptotic cell death induced by ALA / ALA-BAC followed by PDT equally activate intrinsic and extrinsic apoptotic signals and both pathways may occur simultaneously. The main advantage of ALA-BAC over ALA stems from its ability to induce photo-damage at a significantly lower dose than ALA.

  9. Anticarcinogenic actions of tributyrin, a butyric acid prodrug.

    Science.gov (United States)

    Heidor, Renato; Ortega, Juliana Festa; de Conti, Aline; Ong, Thomas Prates; Moreno, Fernando Salvador

    2012-12-01

    Bioactive food compounds (BFCs) exhibit potential anticarcinogenic effects that deserve to be explored. Butyric acid (BA) is considered a promising BFC and has been used in clinical trials; however, its short half-life considerably restricts its therapeutic application. Tributyrin (TB), a BA prodrug present in milk fat and honey, has more favorable pharmacokinetic properties than BA, and its oral administration is also better tolerated. In vitro and in vivo studies have shown that TB acts on multiple anticancer cellular and molecular targets without affecting non-cancerous cells. Among the TB mechanisms of action, the induction of apoptosis and cell differentiation and the modulation of epigenetic mechanisms are notable. Due to its anticarcinogenic potential, strategies as lipid emulsions, nanoparticles, or structured lipids containing TB are currently being developed to improve its organoleptic characteristics and bioavailability. In addition, TB has minimal toxicity, making it an excellent candidate for combination therapy with other agents for the control of cancer. Despite the lack of data available in the literature, TB is a promising molecule for anticancer strategies. Therefore, additional preclinical and clinical studies should be performed using TB to elucidate its molecular targets and anticarcinogenic potential.

  10. Butyrate-mediated acquisition of chemoresistance by human colon cancer cells.

    Science.gov (United States)

    Kang, Hyang Ri; Choi, Hyeon Gyeom; Jeon, Chae Kyung; Lim, Soo-Jeong; Kim, So Hee

    2016-08-01

    Butyrate is a short-chain fatty acid produced by the intestinal microflora and it not only induces apoptosis but also inhibits the proliferation of cancer cells. Recently, it has been reported that butyrate may cause resistance in colon cancer cells. Therefore, we investigated the effects of increased resistance to butyrate in HCT116 colon cancer cells. We established HCT116 cells resistant to butyrate (HCT116/BR) by treating HCT116 parental cells (HCT116/PT) with increasing concentrations of butyrate to a maximum of 1.6 mM for 3 months. The butyrate concentrations that inhibited cell growth by 50% (IC50) were 0.508 and 5.50 mM in HCT116/PT and HCT116/BR cells. The values after treatment with paclitaxel, 5-fluorouracil (5-FU), doxorubicin and trichostatin A (TSA) were 2.42, 2.36, 4.31 and 11.3-fold higher, respectively, in HCT116/BR cells compared with HCT116/PT cells. The protein expression of drug efflux pumps, such as P-glycoprotein (P-gp), breast cancer-resistant protein (BCRP) and the multidrug resistance associated protein 1 (MRP1), did not differ between HCT116/PT and HCT116/BR cells. The expression level of the anti-apoptotic Bcl-xL protein was increased while those of pro-apoptotic Bax and Bim proteins were reduced in HCT116/BR cells. There were no significant differences in cell motility and invasion. This study suggests that exposure of colon cancer cells to butyrate results in development of resistance to butyrate, which may play a role in the acquisition of chemoresistance in colon cancer. PMID:27277338

  11. Butyrate-induced GPR41 Activation Inhibits Histone Acetylation and Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Jin Wu; Zongli Zhou; Yinghe Hu; Suzhen Dong

    2012-01-01

    Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41 (GPR41).In addition,it is an inhibitor of histone deacetylase (HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the Gl-stage,while its activation by butyrate can cause more cells to pass the Gl checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.

  12. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate.

    Directory of Open Access Journals (Sweden)

    Robert W Li

    Full Text Available The capacity of the rumen microbiota to produce volatile fatty acids (VFAs has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Twenty one phyla were identified in the rumen microbiota of dairy cows. The rumen microbiota harbored 54.5±6.1 genera (mean ± SD and 127.3±4.4 operational taxonomic units (OTUs, respectively. However, the core microbiome comprised of 26 genera and 82 OTUs. Butyrate infusion altered molar percentages of 3 major VFAs. Butyrate perturbation had a profound impact on the rumen microbial composition. A 72 h-infusion led to a significant change in the numbers of sequence reads derived from 4 phyla, including 2 most abundant phyla, Bacteroidetes and Firmicutes. As many as 19 genera and 43 OTUs were significantly impacted by butyrate infusion. Elevated butyrate levels in the rumen seemingly had a stimulating effect on butyrate-producing bacteria populations. The resilience of the rumen microbial ecosystem was evident as the abundance of the microorganisms returned to their pre-disturbed status after infusion withdrawal. Our findings provide insight into perturbation dynamics of the rumen microbial ecosystem and should guide efforts in formulating optimal uses of probiotic bacteria treating human diseases.

  13. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  14. Cortical and subcortical gamma amino acid butyric acid deficits in anxiety and stress disorders: Clinical implications

    Science.gov (United States)

    Goddard, Andrew W

    2016-01-01

    Anxiety and stress disorders are a major public health issue. However, their pathophysiology is still unclear. The gamma amino acid butyric acid (GABA) neurochemical system has been strongly implicated in their pathogenesis and treatment by numerous preclinical and clinical studies, the most recent of which have been highlighted and critical review in this paper. Changes in cortical GABA appear related to normal personality styles and responses to stress. While there is accumulating animal and human neuroimaging evidence of cortical and subcortical GABA deficits across a number of anxiety conditions, a clear pattern of findings in specific brain regions for a given disorder is yet to emerge. Neuropsychiatric conditions with anxiety as a clinical feature may have GABA deficits as an underlying feature. Different classes of anxiolytic therapies support GABA function, and this may be an area in which newer GABA neuroimaging techniques could soon offer more personalized therapy. Novel GABAergic pharmacotherapies in development offer potential improvements over current therapies in reducing sedative and physiologic dependency effects, while offering rapid anxiolysis. PMID:27014597

  15. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    International Nuclear Information System (INIS)

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (Voc) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the Voc, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased Voc, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  16. Electronic Structures and Optical Properties of Phenyl C71 Butyric Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Cai-Rong Zhang

    2013-01-01

    Full Text Available Phenyl C71 butyric acid methyl ester (PC71BM has been adopted as electron acceptor materials in bulk heterojunction solar cells with relatively higher power conversion efficiency. The understanding of the mechanism and performance for the devices based upon PC71BM requires the information of conformations, electronic structures, optical properties, and so forth. Here, the geometries, IR and Raman, electronic structures, polarizabilities, and hyperpolarizabilities of PC71BM isomers are studied by using density functional theory (DFT; the absorption and excitation properties are investigated via time-dependent DFT with B3LYP, PBE0, and CAM-B3LYP functionals. The calculated results show that [6,6]PC71BM is more stable than [5,6]PC71BM due to the lower total energy. The vibrational modes of the isomers at IR and Raman peaks are quite similar. As to absorption properties, CAM-B3LYP functional is the suitable functional for describing the excitations of PC71BM because the calculated results with CAM-B3LYP functional agree well with that of the experiment. The analysis of transition configurations and molecular orbitals demonstrated that the transitions at the absorption maxima in UV/Vis region are localized π-π* transitions in fullerenes cages. Furthermore, the larger isotropic polarizability of PC71BM indicates that the response of PC71BM to applied external electric field is stronger than that of PC61BM, and therefore resulting into better nonlinear optical properties.

  17. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    Science.gov (United States)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  18. Bacterial deposition in a parallel plate and a stagnation point flow chamber : microbial adhesion mechanisms depend on the mass transport conditions

    NARCIS (Netherlands)

    Bakker, DP; Busscher, HJ; van der Mei, HC

    2002-01-01

    Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica, suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanis

  19. Characterization by culture-dependent and culture-1 independent methods of the 2 bacterial population of suckling-lamb packaged in different atmospheres

    NARCIS (Netherlands)

    Oses, S.M.; Diez, A.M.; Melero, B.; Luning, P.A.; Jaime, I.; Rovira, J.

    2013-01-01

    This study offers insight into the dynamics of bacterial populations in fresh cuts of suckling lamb under four different atmospheric conditions: air (A), and three Modified Atmosphere Packaging (MAP) environments, 15%O2/30%CO2/55%N2 (C, commercial), 70%O2/30%CO2 (O), and 15%O2/85%CO2 (H) for 18 days

  20. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  1. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  2. MODIFICATION OF SUGARCANE BAGASSE WITH ACETIC ANHYDRIDE AND BUTYRIC ANHYDRIDE IN IONIC LIQUID 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

    OpenAIRE

    Di Chen; Ai-Ping Zhang,; Chuan-Fu Liu; Run-Cang Sun

    2012-01-01

    Bagasse acetate butyrates were prepared homogeneously in 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) ionic liquid from ball-milled sugarcane bagasse by acylation with acetic anhydride and butyric anhydride. The parameters, including reaction temperature, reaction time, feeding method of adding anhydrides, the dosage of total anhydrides to SCB, and the molar ratio of acetic anhydride to butyric anhydride, were considered, and the extent of acylation was measured by weight percent gain (WP...

  3. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia

    OpenAIRE

    Vital, Marius; Gao, Jiarong; Rizzo, Mike; Harrison, Tara; Tiedje, James M.

    2014-01-01

    Butyrate-producing bacteria have an important role in maintaining host health. They are well studied in human and medically associated animal models; however, much less is known for other Vertebrata. We investigated the butyrate-producing community in hindgut-fermenting Mammalia (n=38), Aves (n=8) and Reptilia (n=8) using a gene-targeted pyrosequencing approach of the terminal genes of the main butyrate-synthesis pathways, namely butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (...

  4. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

    NARCIS (Netherlands)

    D.H. Park; R. Mirabella; P.A. Bronstein; G.M. Preston; M.A. Haring; C.K. Lim; A. Collmer; R.C. Schuurink

    2010-01-01

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome h

  5. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  6. Rapid Estimation of Enantioselectivity in Lipase-catalyzed Resolution of Glycidyl Butyrate Using pH Indicator

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; WANG Lei; WANG Li-cheng; LI Chun-yuan; WANG Ren; MIAO Qing-hua; YANG Ming; WANG Zhi

    2009-01-01

    A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the dif-ference of hydrolysis rates for the racemic ester and its slow reacting enantiomer under the same condition because the difference mainly depends on the enantioselective ratio(E values). The higher the enantiose-lectivity of enzyme, the larger the difference of hydrolysis rate. The bromothymol blue(BTB) can be used as pH indicator for microplate reader to monitor the formation of acid in lipase-catalyzed hydrolysis ofesters. This method has been successfully used to rapidly estimate the enantioselectivity of several lipases in the resolution of glycidyl butyrate.

  7. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses.

    Science.gov (United States)

    Jiang, Ling; Wang, Jufang; Liang, Shizhong; Wang, Xiaoning; Cen, Peilin; Xu, Zhinan

    2009-07-01

    Butyrate fermentation by immobilized Clostridium tyrobutyricum was successfully carried out in a fibrous bed bioreactor using cane molasses. Batch fermentations were conducted to investigate the influence of pH on the metabolism of the strain, and the results showed that the fermentation gave a highest butyrate production of 26.2 g l(-1) with yield of 0.47 g g(-1) and reactor productivity up to 4.13 g l(-1)h(-1) at pH 6.0. When repeated-batch fermentation was carried out, long-term operation with high butyrate yield, volumetric productivity was achieved. Several cane molasses pretreatment techniques were investigated, and it was found that sulfuric acid treatment gave better results regarding butyrate concentration (34.6+/-0.8 g l(-1)), yield (0.58+/-0.01 g g(-1)), and sugar utilization (90.8+/-0.9%). Also, fed-batch fermentation from cane molasses pretreated with sulfuric acid was performed to further increase the concentration of butyrate up to 55.2 g l(-1). PMID:19297150

  8. Blocking the butyrate-formation pathway impairs hydrogen production in Clostridium perfringens

    Institute of Scientific and Technical Information of China (English)

    Ruisong Yu; Ruofan Wang; Ting Bi; Weining Sun; Zhihua Zhou

    2013-01-01

    Inactivating competitive pathways will improve fermentative hydrogen production by obligate anaerobes,such as those of genus Clostridium.In our previous study,the hydrogen yield of Clostridium perfringens W13 in which L-lactate dehydrogenase was inactivated increased by 44% when compared with its original strain W12.In this study,we explored whether blocking butyrate formation pathway would increase hydrogen yield.The acetyl-CoA acetyltransferase gene (atoB) encodes the first enzyme in this pathway,which ultimately forms butyrate.Clostridium perfringens W14 and W15 were constructed by inactivating atoB in W13 and W12,respectively.The hydrogen yield of W14 and W15 was 44% and 33% of those of W13 and W12,respectively.Inactivation of atoB decreased the pyruvate synthesis and its conversion to acetyl-CoA in both mutants,and increased ethanol formation in W14 and W15.Proteomic analysis revealed that the expressions of five proteins involved in butyrate formation pathway were up-regulated in W14.Our results suggest that butyrate formation deficiency improved ethanol production but not hydrogen production,indicating the importance of butyrate formation pathway for hydrogen production in C.perfringens.

  9. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles.

    Directory of Open Access Journals (Sweden)

    Elise S Pelzer

    Full Text Available Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%. We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

  10. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Science.gov (United States)

    Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2012-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life. PMID:23316189

  11. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Directory of Open Access Journals (Sweden)

    Gbenga Adedeji Adewumi

    2013-01-01

    Full Text Available In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, Staphylococcus saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and Uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA combined with 16S-23S rRNA gene internal transcribed spacer (ITS PCR amplification, restriction analysis (ITS-PCR-RFLP and randomly amplified polymorphic DNA (RAPD-PCR. This further discriminated Bacillus subtilis and its variants from food-borne pathogens such as Bacillus cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP for iru production to achieve product consistency, safety quality and improved shelf life.

  12. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Science.gov (United States)

    Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2012-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life.

  13. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    Science.gov (United States)

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.

  14. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    Science.gov (United States)

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  15. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  16. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  17. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter;

    acid (higher selectivity), has a higher yield and a higher productivity of butyric acid from pre-treated lignocellulosic biomass. Pre-treated wheat straw was used as the main carbon source. After one year of serial adaptation and selection a mutant strain of C. tyrobutyricum was developed. This new......Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development......’s platform for a variety of products for industrial use. Butyric acid is considered as a potential chemical building-block for the production of chemicals for e.g. polymeric compounds and the aim of this work was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces less acetic...

  18. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter;

    A major step towards the development of a sustainable industrial society is a shift from petroleum-based resources to renewable resources. An ongoing effort is focused on developing bio-refineries as an alternative way of producing fuels and chemical building-blocks from renewable resources. Thus......, today’s organic residues and wastes may become tomorrow’s platform for a variety of products for industrial use. Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Compared to other microbial...... acid at a high yield (0,32-0,46 g/g sugars) and selectivity (0,78-1 g/g acids). However, batch fermentations exhibited low sugars uptake rates, which resulted to long fermentation durations and low butyric acid productivities, especially at increasing concentrations of PHWS. The combination...

  19. A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose

    Directory of Open Access Journals (Sweden)

    Beauvieux Marie-Christine

    2011-06-01

    Full Text Available Abstract Background Butyrate, end-product of intestinal fermentation, is known to impair oxidative phosphorylation in rat liver and could disturb glycogen synthesis depending on the ATP supplied by mitochondrial oxidative phosphorylation and cytosolic glycolysis. Methods In 48 hr-fasting rats, hepatic changes of glycogen and total ATP contents and unidirectional flux of mitochondrial ATP synthesis were evaluated by ex vivo 31P NMR immediately after perfusion and isolation of liver, from 0 to 10 hours after force-feeding with (butyrate 1.90 mg + glucose 14.0 mg.g-1 body weight or isocaloric glucose (18.2 mg.g-1 bw; measurements reflected in vivo situation at each time of liver excision. The contribution of energetic metabolism to glycogen metabolism was estimated. Results A net linear flux of glycogen synthesis (~11.10 ± 0.60 μmol glucosyl units.h-1.g-1 liver wet weight occurred until the 6th hr post-feeding in both groups, whereas butyrate delayed it until the 8th hr. A linear correlation between total ATP and glycogen contents was obtained (r2 = 0.99 only during net glycogen synthesis. Mitochondrial ATP turnover, calculated after specific inhibition of glycolysis, was stable (~0.70 ± 0.25 μmol.min-1.g-1 liver ww during the first two hr whatever the force-feeding, and increased transiently about two-fold at the 3rd hr in glucose. Butyrate delayed the transient increase (1.80 ± 0.33 μmol.min-1.g-1 liver ww to the 6th hr post-feeding. Net glycogenolysis always appeared after the 8th hr, whereas flux of mitochondrial ATP synthesis returned to near basal level (0.91 ± 0.19 μmol.min-1.g-1 liver ww. Conclusion In liver from 48 hr-starved rats, the energy need for net glycogen synthesis from exogenous glucose corresponds to ~50% of basal mitochondrial ATP turnover. The evidence of a late and transient increase in mitochondrial ATP turnover reflects an energetic need, probably linked to a glycogen cycling. Butyrate, known to reduce oxidative

  20. CCAAT/enhancer-binding protein δ facilitates bacterial dissemination during pneumococcal pneumonia in a platelet-activating factor receptor-dependent manner

    OpenAIRE

    Duitman, JanWillem; Schouten, Marcel; Groot, Angelique P.; Borensztajn, Keren S.; Daalhuisen, Joost B.; Florquin, Sandrine; van der Poll, Tom; Spek, C Arnold

    2012-01-01

    CCAAT/enhancer-binding protein δ (C/EBPδ) recently emerged as an essential player in the inflammatory response to bacterial infections. C/EBPδ levels increase rapidly after a proinflammatory stimulus, and increasing C/EBPδ levels seem to be indispensable for amplification of the inflammatory response. Here we aimed to elucidate the role of C/EBPδ in host defense in community-acquired pneumococcal pneumonia. We show that C/EBPδ−/− mice are relatively resistant to pneumococcal pneumonia, as ind...

  1. The voltage dependence of GABAA receptor gating depends on extracellular pH.

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W

    2005-11-28

    Recent studies have indicated that changes in extracellular pH and in membrane voltage affect the gamma-amino-n-butyric acid type A receptor gating mainly by altering desensitization and binding. To test whether the effects of membrane potential and pH are additive, their combined actions were investigated. By analyzing the current responses to rapid gamma-amino-n-butyric acid applications, we found that the current to voltage relationship was close to linear at acid pH but the increasing pH induced an inward rectification. Desensitization was enhanced at depolarizing potentials, but this strongly depended on pH, being weak at acidic and strong at basic pH values. A similar trend was observed for the onset rate of responses to saturating gamma-amino-n-butyric acid concentration. These data provide evidence that the voltage sensitivity of GABAA receptors depends on extracellular pH.

  2. The voltage dependence of GABAA receptor gating depends on extracellular pH

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W.

    2007-01-01

    Recent studies have indicated that changes in extracellular pH and in membrane voltage affect the γ-amino-n-butyric acid type A receptor gating mainly by altering desensitization and binding. To test whether the effects of membrane potential and pH are additive, their combined actions were investigated. By analyzing the current responses to rapid γ-amino-n-butyric acid applications, we found that the current to voltage relationship was close to linear at acid pH but the increasing pH induced an inward rectification. Desensitization was enhanced at depolarizing potentials, but this strongly depended on pH, being weak at acidic and strong at basic pH values. A similar trend was observed for the onset rate of responses to saturating γ-amino-n-butyric acid concentration. These data provide evidence that the voltage sensitivity of GABAA receptors depends on extracellular pH. PMID:16272885

  3. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Science.gov (United States)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  4. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Yu, Qilin; Dang, Yan; Li, Yang; Quan, Xie

    2016-10-01

    Direct interspecies electron transfer (DIET) has been considered as an alternative to interspecies H2 transfer (IHT) for syntrophic metabolism, but the microorganisms capable of metabolizing the key intermediates, such as propionate and butyrate, via DIET have yet to be described. A strategy of culturing the enrichments with ethanol as a DIET substrate to stimulate the communities for the syntrophic metabolism of propionate and/or butyrate was proposed in this study. The results showed that the syntrophic propionate and/or butyrate degradation was significantly improved in the ethanol-stimulated reactor when propionate/butyrate was the sole carbon source. The conductivity of the ethanol-stimulated enrichments was as 5 folds (for propionate)/76 folds (for butyrate) as that of the traditional enrichments (never ethanol fed). Microbial community analysis revealed that Geobacter species known to proceed DIET were only detected in the ethanol-stimulated enrichments. Together with the significant increase of Methanosaeta and Methanosarcina species in these enrichments, the potential DIET between Geobacter and Methanosaeta or Methanosarcina species might be established to improve the syntrophic propionate and/or butyrate degradation. Further experiments demonstrated that granular activated carbon (GAC) could improve the syntrophic metabolism of propionate and/or butyrate of the ethanol-stimulated enrichments, while almost no effects on the traditional enrichments. Also, the high H2 partial pressure could inhibit the syntrophic propionate and/or butyrate degradation of the traditional enrichments, but its effect on that of the ethanol-stimulated enrichments was negligible. PMID:27403870

  5. New lactic acid bacterial strains from traditional Mongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source.

    Science.gov (United States)

    Kimoto-Nira, Hiromi; Yamasaki, Seishi; Sasaki, Keisuke; Moriya, Naoko; Takenaka, Akio; Suzuki, Chise

    2015-03-01

    Attachment of lactic acid bacteria to the mucosal surface of the gastrointestinal tract is a major property of probiotics. Here, we examined the ability of 21 lactic acid bacterial strains isolated from traditional fermented milk products in Mongolia to adhere to porcine gastric mucin in vitro. Higher attachment was observed with Lactobacillus delbrueckii subsp. bulgaricus strains 6-8 and 8-1 than with Lactobacillus rhamnosus GG (positive control). Lactococcus lactis subsp. cremoris strain 7-1 adhered to mucin as effectively as did strain GG. Heat inactivation decreased the adhesive ability of strains 6-8 and 8-1 but did not affect strain 7-1. The adhesion of strains 6-8, 7-1 and 8-1 was significantly inhibited when the cells were pretreated with periodate and trypsin, indicating that proteinaceous and carbohydrate-like cell surface compounds are involved in the adhesion of these strains. The adhesion of strain 7-1 was affected by the type of carbohydrate present in the growth medium, being higher with fructose than with lactose, galactose or xylose as the carbon source. The sugar content of 7-1 cells grown on various carbohydrates was negatively correlated with its adhesive ability. We provide new probiotic candidate strains and new information regarding carbohydrate preference that influences lactic acid bacterial adhesion to mucin.

  6. Butyrate Produced by Commensal Bacteria Potentiates Phorbol Esters Induced AP-1 Response in Human Intestinal Epithelial Cells

    OpenAIRE

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M.

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect...

  7. Acetate and butyrate as substrates for hydrogen production through photo-fermentation: Process optimization and combined performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Venkata Mohan, S.; Prathima Devi, M.; Peri, Dinakar; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, AP 500 007 (India)

    2009-09-15

    Organic acids viz., acetate and butyrate were evaluated as primary substrates for the production of biohydrogen (H{sub 2}) through photo-fermentation process using mixed culture at mesophilic temperature (34 C). Experiments were performed by varying parameters like operating pH, presence/absence of initiator substrate (glucose) and vitamin solution, type of nitrogen source (mono sodium salt of glutamic acid and amino glutamic acid) and gas (nitrogen/argon) used to create anaerobic microenvironment. Experimental data showed the feasibility of H{sub 2} production along with substrate degradation utilizing organic acids as metabolic substrate but was found to be dependent on the process parameters evaluated. Maximum specific H{sub 2} production and substrate degradation were observed with acetic acid [3.51 mol/Kg COD{sub R}-day; 1.22 Kg COD{sub R}/m{sup 3}-day (92.96%)] compared to butyric acid [3.33 mol/Kg COD{sub R}-day; 1.19 Kg COD{sub R}/m{sup 3}-day (88%)]. Higher H{sub 2} yield was observed under acidophilic microenvironment in the presence of glucose (co-substrate), mono sodium salt of glutamic acid (nitrogen source) and vitamins. Argon induced microenvironment was observed to be effective compared to nitrogen induced microenvironment. Combined process efficiency viz., H{sub 2} production and substrate degradation was evaluated employing data enveloping analysis (DEA) methodology based on the relative efficiency. Integration of dark fermentation with photo-fermentation appears to be an economically viable route for sustainable biohydrogen production if wastewater is used as substrate. (author)

  8. A bacterial population analysis of granular sludge from an anaerobic digester treating a maize-processing waste

    Energy Technology Data Exchange (ETDEWEB)

    Howgrave-Graham, A.R.; Wallis, F.M. (Natal Univ., Pietermaritzburg (ZA). Dept. of Microbiology and Plant Pathology); Steyn, P.L. (Pretoria Univ. (South Africa))

    1991-01-01

    Microbial population studies were conducted on a dense granular sludge, with excellent settling, thickening and nutrient removal properties, from a South African clarigester treating effluent from a factory producing glucose and other carbohydrates from maize. The bacterial population comprised a heterogeneous group including acetogens, enterobacteria, sulphate-reducers, spirochaetes, heterofermentative lactobacilli and methanogens. The presence of these bacteria and lack of propionic acid and butyric acid bacteria suggests that the microbial activity of this anaerobic digester involved acetate and lactate metabolism rather than propionate or butyrate catabolism as a source of precursors for methane production. (author).

  9. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  10. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability

    Science.gov (United States)

    Chen, Kejie; Shanmugam, Nanda Kumar N.; Pazos, Michael A.; Hurley, Bryan P.; Cherayil, Bobby J.

    2016-01-01

    Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß). Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages) after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis. PMID:27505062

  11. Conversion regular patterns of acetic acid,propionic acid and butyric acid in UASB reactor

    Institute of Scientific and Technical Information of China (English)

    LIU Min; REN Nan-qi; CHEN Ying; ZHU Wen-fang; DING Jie

    2004-01-01

    On the basis of continuous tests and batch tests, conversion regular patterns of acetate, propionate and butyrate in activated sludge at different heights of the UASB reactor were conducted. Results indicated that the conversion capacity of the microbial is decided by the substrate characteristic when sole VFA is used as the only substrate. But when mixed substrates are used,the conversion regulations would have changed accordingly. Relationships of different substrates vary according to their locations. In the whole reactor, propionate's conversion is restrained by acetate and butyrate of high concentration. On the top and at the bottom of the reactor, conversion of acetate, but butyrate, is restrained by propionate. And in the midst, acetate's conversion is accelerated by propionate while that of butyrate is restrained. It is proved, based on the analysis of specific conversion rate, that the space distribution of the microbe is the main factor that affects substrates' conversion. The ethanol-type fermentation of the acidogenic-phase is the optimal acid-type fermentation for the two-phase anaerobic process.

  12. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  13. Minimizing the level of butyric acid bacteria spores in farm tank milk

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    A year-long survey of 24 dairy farms was conducted to determine the effects of farm management on the concentrations of butyric acid bacteria (BAB) spores in farm tank milk (FTM). The results were used to validate a control strategy derived from model simulations. The BAB spore concentrations were m

  14. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. 180.331 Section 180.331 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.331...

  15. Sodium butyrate improves growth performance of weaned piglets during the first period after weaning

    Directory of Open Access Journals (Sweden)

    Aldo Prandini

    2010-01-01

    Full Text Available The purpose of the present work was to evaluate whether the addition of sodium butyrate to feed could facilitate wean- ing and growth response in piglets. For 56 days two groups of 20 piglets (9.2±1.4 kg LW were fed an acidified basal diet (containing formic and lactic acid at 0.5 and 1.5 g/kg of feed, respectively without (control group or with sodium butyrate (SB at 0.8 g/kg. Average daily gain (ADG, daily feed intake (DFI, feed efficiency (FE and live weight (LW were recorded. In the first two weeks, butyrate supplementation increased ADG (+20%; P<0.05 and DFI (+16%; P<0.05. During the subsequent period (15 to 35 days animals fed SB had a higher DFI but lower feed efficiency (+10% and -14%, respectively; P<0.05 than animals fed the control diet. No other benefits were observed thereafter. The data presented showed that the use of sodium butyrate facilitated only the initial phase of adaptation to a solid diet in piglets.

  16. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.318...

  17. Butyrate enemas do not affect human colonic MUC2 and TFF3 expression

    NARCIS (Netherlands)

    Hamer, H.M.; Jonkers, D.M.A.E.; Renes, I.B.; Vanhoutvin, S.A.L.W.; Kodde, A.; Troost, F.J.; Venema, K.; Brummer, R.-J.M.

    2010-01-01

    INTRODUCTION: The colonic mucus layer plays an important role in the protection of the intestinal epithelium and mainly consists of mucin glycoproteins (primarily MUC2 in the colon) trefoil factor 3 (TFF3) and secretory IgA. Butyrate is a major end product of fermentation of dietary fibres and is as

  18. Protective effect of sodium butyrate on the cell culture model of Huntington disease

    Institute of Scientific and Technical Information of China (English)

    Zhang Baorong; Tian Jun; Yin Xinzhen; Luo Wei; Xia Kun

    2007-01-01

    This study aimed to develop a cell culture model of Huntington disease and observe the effect of sodium butyrate on this cell culture model. Exon 1 of both a wild type and a mutant IT15 gene from the genomic DNA of a healthy adult and a patient with Huntington disease was amplified and cloned into the eukaryotic expression vector pEGFP-C1. Human neuroblastoma SH-SYSY cells were transiently transfected with these recombinant plasmids in the absence and presence of sodium butyrate (0.1, 0.2, 0.5, 1.0 mmol/L). The MTT assay was used to measure cell viability. The results indicated that the N-terminal fragment of mutant huntingtin formed perinuclear and intranuclear aggregates and caused a decrease of SH-SY5Y cell viability. Sodium butyrate inhibited the decrease of SH-SYSY cell viability caused by the N-terminal fragment of mutant huntingtin. This suggests that sodium butyrate has a protective effect on this cell culture model of Huntington disease.

  19. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  20. Evaluation of butyrate-induced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors.

    Science.gov (United States)

    Madhavarao, Chikkathur N; Agarabi, Cyrus D; Wong, Lily; Müller-Loennies, Sven; Braulke, Thomas; Khan, Mansoor; Anderson, Howard; Johnson, Gibbes R

    2014-01-01

    Bioreactor process changes can have a profound effect on the yield and quality of biotechnology products. Mannose-6-phosphate (M6P) glycan content and the enzymatic catalytic kinetic parameters are critical quality attributes (CQAs) of many therapeutic enzymes used to treat lysosomal storage diseases (LSDs). Here, we have evaluated the effect of adding butyrate to bioreactor production cultures of human recombinant β-glucuronidase produced from CHO-K1 cells, with an emphasis on CQAs. The β-glucuronidase produced in parallel bioreactors was quantified by capillary electrophoresis, the catalytic kinetic parameters were measured using steady-state analysis, and mannose-6-phosphorylation status was assessed using an M6P-specific single-chain antibody fragment. Using this approach, we found that butyrate treatment increased β-glucuronidase production up to approximately threefold without significantly affecting the catalytic properties of the enzyme. However, M6P content in β-glucuronidase was inversely correlated with the increased enzyme production induced by butyrate treatment. This assessment demonstrated that although butyrate dramatically increased β-glucuronidase production in bioreactors, it adversely impacted the mannose-6-phosphorylation of this LSD therapeutic enzyme. This strategy may have utility in evaluating manufacturing process changes to improve therapeutic enzyme yields and CQAs.

  1. Butyrate: A dietary inhibitor of histone deacetylases and an epigenetic regulator

    Science.gov (United States)

    The short-chain fatty acids (SCFAs) acetate, propionate and butyrate, also known as volatile fatty acids (VFA), are produced in the gastrointestinal tract by microbial fermentation. Consumption of dietary fibers has been shown to have positive metabolic health effects, such as increasing satiety, an...

  2. Filtration properties of bacterial cellulose membranes

    OpenAIRE

    Lehtonen, Janika

    2015-01-01

    Bacterial cellulose has the same molecular formula as cellulose from plant origin, but it is characterized by several unique properties including high purity, crystallinity and mechanical strength. These properties are dependent on parameters such as the bacterial strain used, the cultivation conditions and post-growth processing. The possibility to achieve bacterial cellulose membranes with different properties by varying these parameters could make bacterial cellulose an interesting materi...

  3. Effects of 5-azacytidine and butyrate on differentiation and apoptosis of hepatic cancer cell lines.

    Science.gov (United States)

    Wang, X M; Wang, X; Li, J; Evers, B M

    1998-01-01

    OBJECTIVE: To determine the cellular effects of 5-azacytidine (5-azaC) and sodium butyrate on two human liver cancers, HepG2 and Hep3B. SUMMARY BACKGROUND DATA: Primary liver cancer is a significant health problem; treatment options are limited and prognosis is poor. Recent studies have focused on the role that programmed cell death (i.e., apoptosis) plays in both normal and neoplastic growth: certain genes can either suppress (e.g., Bcl-2, Bcl-xL) or promote (e.g., Bik, Bax, Bak) apoptosis. The identification of novel agents targeted to specific molecular pathways may be beneficial in the treatment of this disease. METHODS: Human liver cancer cell lines HepG2 and Hep3B were treated with 5-azaC alone, butyrate alone, or 5-azaC and butyrate. Morphologic and proliferative changes were assessed by light microscopy and 5-bromo-2'-deoxyuridine staining; flow cytometry was used to determine cell cycle characteristics. Apoptosis was assessed by DNA laddering and the in situ apoptosis detection assay using the TdT-mediated dUTP nick end labeling method. In addition, total RNA and protein were analyzed by ribonuclease protection and Western blot, respectively, to assess changes in the expression of apoptosis-related genes. RESULTS: Treatment with either 5-azaC or butyrate inhibited cell growth and induced apoptosis in both HepG2 and Hep3B cells; the combination of 5-azaC and butyrate was not more effective than either agent alone. 5-azaC alone resulted in a more differentiated-appearing morphology and G2 cell cycle arrest in both cell lines. Treatment with 5-azaC or butyrate affected the expression levels of proteins of the Bcl-2 family. CONCLUSIONS: Both 5-azaC and butyrate induced apoptosis in the HepG2 and Hep3B liver cancer cells; 5-azaC treatment alone produced G2 arrest in both cell lines. Proteins of the Bcl-2 family may play a role in the cellular changes that occur with treatment, but further studies are required to define this potential role. Products of the

  4. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  5. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  6. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  7. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Goulart Pacheco; Christiano Costa Esposito; Lucas CM Müller; Morgana TL Castelo-Branco; Leonardo Pereira Quintella; Vera Lucia A Chagas; Heitor Siffert P de Souza

    2012-01-01

    AIM:To investigate whether butyrate or glutamine enemas could diminish inflammation in experimental diversion colitis.METHODS:Wistar specific pathogen-free rats were submitted to a Hartmann's end colostomy and treated with enemas containing glutamine,butyrate,or saline.Enemas were administered twice a week in the excluded segment of the colon from 4 to 12 wk after the surgical procedure.Follow-up colonoscopy was performed every 4 wk for 12 wk.The effect of treatment was evaluated using video-endoscopic and histologic scores and measuring interleukin-1β,tumor necrosis factor-alpha,and transforming growth factor beta production in organ cultures by enzyme linked immunosorbent assay.RESULTS:Colonoscopies of the diverted segment showed mucosa with hyperemia,increased number of vessels,bleeding and mucus discharge.Treatment with either glutamine or butyrate induced significant reductions in both colonoscopic (P < 0.02) and histological scores (P < 0.01) and restored the densities of collagen fibers in tissue (P =0.015; P =0.001),the number of goblet cells (P =0.021; P =0.029),and the rate of apoptosis within the epithelium (P =0.043; P =0.011) to normal values.The high levels of cytokines in colon explants from rats with diversion colitis significantly decreased to normal values after treatment with butyrate or glutamine.CONCLUSION:The improvement of experimental diversion colitis following glutamine or butyrate enemas highlights the importance of specific luminal nutrients in the homeostasis of the colonic mucosa and supports their utilization for the treatment of human diversion colitis.

  8. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia.

    Science.gov (United States)

    Vital, Marius; Gao, Jiarong; Rizzo, Mike; Harrison, Tara; Tiedje, James M

    2015-04-01

    Butyrate-producing bacteria have an important role in maintaining host health. They are well studied in human and medically associated animal models; however, much less is known for other Vertebrata. We investigated the butyrate-producing community in hindgut-fermenting Mammalia (n = 38), Aves (n = 8) and Reptilia (n = 8) using a gene-targeted pyrosequencing approach of the terminal genes of the main butyrate-synthesis pathways, namely butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk). Most animals exhibit high gene abundances, and clear diet-specific signatures were detected with but genes significantly enriched in omnivores and herbivores compared with carnivores. But dominated the butyrate-producing community in these two groups, whereas buk was more abundant in many carnivorous animals. Clustering of protein sequences (5% cutoff) of the combined communities (but and buk) placed carnivores apart from other diet groups, except for noncarnivorous Carnivora, which clustered together with carnivores. The majority of clusters (but: 5141 and buk: 2924) did not show close relation to any reference sequences from public databases (identity Ruminococcaceae bacterium D16 were specific for herbivores and omnivores. Whereas 16S rRNA gene analysis showed similar overall patterns, it was unable to reveal communities at the same depth and resolution as the functional gene-targeted approach. This study demonstrates that butyrate producers are abundant across vertebrates exhibiting great functional redundancy and that diet is the primary determinant governing the composition of the butyrate-producing guild. PMID:25343515

  9. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  10. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon

    Institute of Scientific and Technical Information of China (English)

    Aldo Roda; Patrizia Simoni; Maria Magliulo; Paolo Nanni; Mario Baraldini; Giulia Roda; Enrico Roda

    2007-01-01

    AIM:To develop a new formulation with hydroxy propyl methyl cellulose and Shellac coating for extended and selective delivery of butyrate in the ileo-caecal region and colon.METHODS:One-gram sodium butyrate coated tablets containing 13C-butyrate were orally administered to 12 healthy subjects and 12 Crohn's disease patients and the rate of 13C-butyrate absorption was evaluated by 13CO2 breath test analysis for eight hours.Tauroursodeoxycholic acid(500 mg)was co-administered as a biomarker of oro-ileal transit time to determine also the site of release and absorption of butyrate by the time of its serum maximum concentration.RESULTS:The coated formulation delayed the 13C-butyrate release by 2-3 h with respect to the uncoated tablets.Sodium butyrate was delivered in the intestine of all subjects and a more variable transit time was found in Crohn's disease patients than in healthy subjects.The variability of the peak 13CO2 in the kinetic release of butyrate was explained by the inter-subject variability in transit time.However,the coating chosen ensured an efficient release of the active compound even in patients with a short transit time.CONCLUSION:Simultaneous evaluation of breath 13CO2 and tauroursodeoxycholic acid concentrationtime curves has shown that the new oral formulation consistently releases sodium butyrate in the ileo-cecal region and colon both in healthy subjects and Crohn's disease patients with variable intestinal transit time.This formulation may be of therapeutic value in inflammatory bowel disease patients due to the appropriate release of the active compound.

  11. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    Science.gov (United States)

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  12. Butyrate ingestion improves hepatic glycogen storage in the re-fed rat

    Directory of Open Access Journals (Sweden)

    Rigalleau Vincent

    2008-10-01

    Full Text Available Abstract Background Butyrate naturally produced by intestinal fiber fermentation is the main nutrient for colonocytes, but the metabolic effect of the fraction reaching the liver is not totally known. After glycogen hepatic depletion in the 48-hour fasting rat, we monitored the effect of (butyrate 1.90 mg + glucose 14.0 mg/g body weight versus isocaloric (glucose 18.2 mg/g or isoglucidic (glucose 14.0 mg/g control force-feeding on in vivo changes in hepatic glycogen and ATP contents evaluated ex vivo by NMR in the isolated and perfused liver. Results The change in glycogen was biphasic with (i an initial linear period where presence of butyrate in the diet increased (P = 0.05 the net synthesis rate (0.20 ± 0.01 μmol/min.g-1 liver wet weight, n = 15 versus glucose 14.0 mg/g only (0.16 ± 0.01 μmol/min.g-1 liver ww, n = 14, and (ii a plateau of glycogen store followed by a depletion. Butyrate delayed the establishment of the equilibrium between glycogenosynthetic and glycogenolytic fluxes from the 6th to 8th hour post-feeding. The maximal glycogen content was then 97.27 ± 10.59 μmol/g liver ww (n = 7 at the 8th hour, which was significantly higher than with the isocaloric control diet (64.34 ± 8.49 μmol/g, n = 12, P = 0.03 and the isoglucidic control one (49.11 ± 6.35 μmol/g liver ww, n = 6, P = 0.003. After butyrate ingestion, ATP content increased from 0.95 ± 0.29 to a plateau of 2.14 ± 0.23 μmol/g liver ww at the 8th hour post-feeding (n = 8 [P = 0.04 versus isoglucidic control diet (1.45 ± 0.19 μmol/g, n = 8 but was not different from the isocaloric control diet (1.70 ± 0.18 μmol/g, n = 12]. Conclusion The main hepatic effect of butyrate is a sparing effect on glycogen storage explained (i by competition between butyrate and glucose oxidation, glucose being preferentially directed to glycogenosynthesis during the post-prandial state; and (ii by a likely reduced glycogenolysis from the newly synthesized glycogen. This first

  13. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  14. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  15. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  16. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production.

    Directory of Open Access Journals (Sweden)

    Mitsuharu Matsumoto

    Full Text Available BACKGROUND: Chronic low-grade inflammation is recognized as an important factor contributing to senescence and age-related diseases. In mammals, levels of polyamines (PAs decrease during the ageing process; PAs are known to decrease systemic inflammation by inhibiting inflammatory cytokine synthesis in macrophages. Reductions in intestinal luminal PAs levels have been associated with intestinal barrier dysfunction. The probiotic strain Bifidobacterium animalis subsp. lactis LKM512 is known to increase intestinal luminal PA concentrations. METHODOLOGY/PRINCIPAL FINDINGS: We supplemented the diet of 10-month-old Crj:CD-1 female mice with LKM512 for 11 months, while the controls received no supplementation. Survival rates were compared using Kaplan-Meier survival curves. LKM512-treated mice survived significantly longer than controls (P<0.001; moreover, skin ulcers and tumors were more common in the control mice. We then analyzed inflammatory and intestinal conditions by measuring several markers using HPLC, ELISA, reverse transcription-quantitative PCR, and histological slices. LKM512 mice showed altered 16S rRNA gene expression of several predominant intestinal bacterial groups. The fecal concentrations of PAs, but not of short-chain fatty acids, were significantly higher in LKM512-treated mice (P<0.05. Colonic mucosal function was also better in LKM512 mice, with increased mucus secretion and better maintenance of tight junctions. Changes in gene expression levels were evaluated using the NimbleGen mouse DNA microarray. LKM512 administration also downregulated the expression of ageing-associated and inflammation-associated genes and gene expression levels in 21-month-old LKM512-treated mice resembled those in 10-month-old untreated (younger mice. CONCLUSION/SIGNIFICANCE: Our study demonstrated increased longevity in mice following probiotic treatment with LKM512, possibly due to the suppression of chronic low-grade inflammation in the colon

  17. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed El-Sakhawy

    2014-01-01

    Full Text Available Carboxymethyl cellulose acetate butyrate (CMCAB has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW thermoplastic polymers with high glass transition temperatures (Tg. CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD formulations.

  18. Butyric acid fermentation from pretreated and hydrolyzed wheat straw by C.tyrobutyricum

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Westermann, Peter; Gavala, Hariklia N.

    and xylose at a concentration of 71,6±0,2 g/l and 55,4±0,2 g/l respectively, with TS content 20,87% (g/g). From an economical point of view, the conversion of both sugars is very important. In fact C.tyrobutyricum has the capability to convert both hexose and pentose sugars. Results from batch experiments......Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Among other microbial strains, C.tyrobutyricum was found interesting due to its higher yield (more than 93% of the theoretical yield...

  19. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter;

    For a couple a decades, in the frame of bio-based chemicals and materials, there has been focus on biological butyric acid production due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Major challenges for biological production are strain selection...... and development, and process improvement for higher yield, productivity and selectivity. Compared with other microbial strains Clostridium tyrobutyricum has been well characterised, exhibits higher yield and selectivity and can utilize glucose and xylose simultaneously. However, a prerequisite for cost effective...... production of butyric acid is the use of cheap feedstocks as carbon source as well as a process allowing for increased productivity. The present work focuses on butyric acid fermentation of pre-treated and hydrolysed wheat straw (PHWS), consisted of around 72 and 55 g/L glucose and xylose, respectively...

  20. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, G.; Geveke, M.; Diekmann, H. (Hannover Univ. (Germany). Inst. fuer Mikrobiologie); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research)

    1991-12-01

    Population dynamics during start-up of a fluidized-bed reactor with butyrate or butyrate plus acetate as sole substrates as well as biofilm development on the sand substratum were studied microbiologically, immunologically and by scanning electron microscopy. An adapted syntrophic consortium consisting of Syntrophospora sp., Methanothrix soehngenii, Methanosarcina mazei and Methanobrevibacter arboriphilus or Methanogenium sp. achieved high-rate butyrate degradation to methane and carbon dioxide. Desulfovibrio sp., Methanocorpusculum sp., and Methanobacterium sp. were also present in lower numbers. Immunological analysis demonstrated methanogens antigenically related to Methanobrevibacter ruminantium M1, Methanosarcina mazei S6, M. thermophila TM1, Methanobrevibacter arboriphilus AZ and Methanothrix soehngenii Opfikon in the biofilm. Immunological analysis also showed that the organisms isolated from the butyrate-degrading culture used as a source of inoculum were related to M. soehngenii Opfikon, Methanobacterium formicium MF and Methanospirillum hungatei JF1. (orig.).

  1. Cortical and subcortical gamma amino acid butyric acid deficits in anxiety and stress disorders: Clinical implications

    OpenAIRE

    Goddard, Andrew W

    2016-01-01

    Anxiety and stress disorders are a major public health issue. However, their pathophysiology is still unclear. The gamma amino acid butyric acid (GABA) neurochemical system has been strongly implicated in their pathogenesis and treatment by numerous preclinical and clinical studies, the most recent of which have been highlighted and critical review in this paper. Changes in cortical GABA appear related to normal personality styles and responses to stress. While there is accumulating animal an...

  2. Monitoring the cold crystallization of poly(3-hydroxy butyrate) via dielectric spectroscopy

    OpenAIRE

    Napolitano, Simone; Wübbenhorst, Michael

    2007-01-01

    Dielectric spectroscopy has been used to monitor the cold crystallization kinetics of poly(3-hydroxy butyrate), PHB, just above the glass transition temperature of the amorphous chains. Although the polymer shows a relatively complex dielectric scenario, an easy and fast analysis of the crystallization kinetics was performed by choosing an appropriate temperature range in which the structural relaxation is the only process present in the spectra of the amorphous samples. It was possible to mo...

  3. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    Science.gov (United States)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  4. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation

    OpenAIRE

    Carrion, Sandra Leon; Sutter, Carrie Hayes; Sutter, Thomas R.

    2014-01-01

    Epidermal growth factor (EGF) receptor (EGFR) signaling is a critical determinant of keratinocyte proliferation and differentiation in both normal and diseased skin. Here we explore the effects of combined treatment with the differentiation-promoting agent sodium butyrate (SB) and the EGFR inhibitor (EGFRI) PD153035 on terminal differentiation of normal human epidermal keratinocytes (NHEKs). Cells treated with SB showed increased expression of the levels of mRNA and protein of the differentia...

  5. An Acute Butyr-Fentanyl Fatality: A Case Report with Postmortem Concentrations.

    Science.gov (United States)

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Wright, Jennifer; Mena, Othon

    2016-03-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of butyr-fentanyl in a fatality attributed principally to the drug. A man who had a history of intravenous drug abuse was found unresponsive on the bathroom floor of his home. Drug paraphernalia was located on the bathroom counter. Toxicology testing, which initially screened positive for fentanyl by enzyme-linked immunosorbent assay, subsequently confirmed butyr-fentanyl, which was then quantitated by gas chromatography-mass spectrometry-specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. The butyr-fentanyl peripheral blood concentration was quantitated at 58 ng/mL compared with the central blood concentration of 97 ng/mL. The liver concentration was 320 ng/g, the vitreous was 40 ng/mL, the urine was 670 ng/mL and the gastric contained 170 mg. Acetyl-fentanyl was also detected in all biological specimens tested. Peripheral blood concentration was quantitated at 38 ng/mL compared with the central blood concentration of 32 ng/mL. The liver concentration was 110 ng/g, the vitreous was 38 ng/mL, the urine was 540 ng/mL and the gastric contained <70 mg. The only other drug detected was a relatively low concentration of benzoylecgonine. The cause of death was certified as acute butyr-fentanyl, acetyl-fentanyl and cocaine intoxication, and the manner of death was certified as accident. PMID:26683128

  6. A MyD88-dependent IFNγR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge

    Institute of Scientific and Technical Information of China (English)

    Eric M Pietras; Lloyd S Miller; Carl T Johnson; Ryan M O'Connell; Paul W Dempsey; Genhong Cheng

    2011-01-01

    Monocytes are mobilized to sites of infection via interaction between the chemokine MCP-1 and its receptor, CCR2, at which point they differentiate into macrophages that mediate potent antimicrobial effects. In this study, we investigated the mechanisms by which monocytes are mobilized in response to systemic challenge with the intracellular bacterium Francisella tularensis. We found that mice deficient in MyD88, interferon-γ (IFNγ)R or CCR2 all had defects in the expansion of splenic monocyte populations upon F. tularensis challenge, and in control of F. tularensis infection. Interestingly, MyD88-deficient mice were defective in production of IFNγ, and IFNγR deficient mice exhibited defective production of MCP-1, the ligand for CCR2. Transplantation of IFNγR-deficient bone marrow (BM) into wild-type mice further suggested that mobilization of monocytes in response to F. tularensis challenge required IFNγR expression on BM-derived cells. These studies define a critical host defense circuit wherein MyD88-dependent IFNγ production signals via IFNγR expressed on BM-derived cells, resulting in MCP-1 production and activation of CCR2-dependent mobilization of monocytes in the innate immune response to systemic F. tularensis challenge.

  7. Upregulation of 25-hydroxyvitamin D3-1α-hydroxylase by butyrate in Caco-2 cells

    Institute of Scientific and Technical Information of China (English)

    Oliver Schr(o)der; Sinan Turak; Carolin Daniel; Tanja Gaschott; Jürgen Stein

    2005-01-01

    AIM: To investigate the possible involvement of 25-hydroxyvitamin D3-1α-hydroxylase [1α-25(OH)2D3] in butyrate-induced differentiation in human intestinal cell line Caco-2 cells.METHODS: Caco-2 cells were incubated either with 3 mmol/L butyrate and 1 μmol/L 25(OH)2D3 or with 1μmol/L 1α-25(OH)2D3 for various time intervals ranging from 0 to 72 h. Additionally, cells were co-incubated with butyrate and either 25(OH)2D3 or 1α-25(OH)2D3.1α-25(OH)2D3 mRNA was determined semi-quantitatively using the fluorescent dye PicoGreen. Immunoblotting was used for the detection of 1α-25(OH)2D3 protein.Finally, enzymatic activity was measured by ELISA.RESULTS: Both butyrate and 1α-25(OH)2D3 stimulated differentiation of Caco-2 cells after a 48 h incubation period, while 25(OH)2D3 had no impact on cell differentiation. Synergistic effects on differentiation were observed when cells were co-incubated with butyrate and vitamin D metabolite. Butyrate transiently upregulated 1α-25(OH)2D3 mRNA followed by a timely delayed protein upregulation. Coincidently, enzymatic activity was enhanced significantly. The induction of the enzyme allowed for comparable differentiating effects of both vitamin D metabolites.CONCLUSION: Our experimental data pr ovide a further mechanism for the involvement of the vitamin D signaling pathway in colonic epithelial cell differentiation by butyrate. The enhancement of 1α-25(OH)2D3 followed by antiproliferative effects of the vitamin D prohormone in the Caco-2 cell line suggest that 25(OH)2D3 in combination with butyrate may offer a new therapeutic approach for the treatment of colon cancer.

  8. The Effect of Sodium Butyrate in Combination with ATRA on the Proliferation/Differentiation of SKM-1

    Institute of Scientific and Technical Information of China (English)

    黄梅; 刘文励; 李春蕊; 邓金牛; 周剑锋; 张东华; 孙汉英

    2004-01-01

    To explore the molecular mechanisms of sodium butyrate working on SKM-1 cell proliferation/differentiation and to study its synergistic effect with all-trans retinoic acid (ATRA), SKM1 cells were grown in the absence or presence of sodium butyrate and/or ATRA. The percentage of viable cells was determined by trypan blue exclusion. Differentiation was determined by nitroblue tetrazolium (NBT) reduction and cell surface adhesion molecules was analyzed by FACS. Cell cycle distribution was examined after DNA staining by propidium iodide. D-type cyclins, cdks and P21 mRNA were studied by reverse transcription-polymerase chain reaction. Our results showed that sodiun butyrate and/or ATRA blocked cells mainly in the G0/G1 phase of the cell cycle. ATRA inhibited the mRNA expression of CDK6, CDK4, cyclinD3 and cyclinD1. Sodium butyrate inhibited the mRNA expression of CDK2, cyclinD2 and cyclinD1. ATRA and sodium butyrate inhibited the mRNA expression of CDK6, CDK4, CDK2, cyclinD1, cyclinD2 and cyclinD3. Both ATRA and/or sodium butyrate stimulated p21 expression at the mRNA levels. Our results suggest that the effect of sodium butyrate on cell proliferation/differentiation might be linked to its ability to induce expression of p21 mRNA and inhibit the cyclin-cdk complexes. Our observations support the notion that the sodium butyrate works synergistically with ATRA.

  9. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs. PMID:25189844

  10. An Acute Butyr-Fentanyl Fatality: A Case Report with Postmortem Concentrations.

    Science.gov (United States)

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Wright, Jennifer; Mena, Othon

    2016-03-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of butyr-fentanyl in a fatality attributed principally to the drug. A man who had a history of intravenous drug abuse was found unresponsive on the bathroom floor of his home. Drug paraphernalia was located on the bathroom counter. Toxicology testing, which initially screened positive for fentanyl by enzyme-linked immunosorbent assay, subsequently confirmed butyr-fentanyl, which was then quantitated by gas chromatography-mass spectrometry-specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. The butyr-fentanyl peripheral blood concentration was quantitated at 58 ng/mL compared with the central blood concentration of 97 ng/mL. The liver concentration was 320 ng/g, the vitreous was 40 ng/mL, the urine was 670 ng/mL and the gastric contained 170 mg. Acetyl-fentanyl was also detected in all biological specimens tested. Peripheral blood concentration was quantitated at 38 ng/mL compared with the central blood concentration of 32 ng/mL. The liver concentration was 110 ng/g, the vitreous was 38 ng/mL, the urine was 540 ng/mL and the gastric contained fentanyl, acetyl-fentanyl and cocaine intoxication, and the manner of death was certified as accident.

  11. Butyric acid glycerides in the diet of broiler chickens: effects on gut histology and carcass composition

    Directory of Open Access Journals (Sweden)

    Andrea Martini

    2010-01-01

    Full Text Available Aim of the study was to verify the effects of butyric acid glycerides, as a supplemental ingredient in the diet, on live performance of broiler chickens and on the morphology of their small intestine, since short chain fatty acids are known as selective protection factors against intestinal microbial parasites, potent growth promoters of the gut wall tissues, also in terms of immune modulation response. An experiment was carried out on 150 Ross 308 female chickens, allotted to 5 treatments, over a 35 d ays period: the control, with soybean oil as the energy supplement, and 4 treatments with increasing amounts (0.2, 0.35, 0.5, 1% mixed feed of a mixture of butyric acid glycerides (mono-, di- and tri- glycerides. Treated animals showed a higher live weight at slaughtering (P<0.05 with a better feed conversion rate. The carcase characteristics were not influenced, but the small intestine wall resulted slightly modified with shorter villi, longer microvilli (P<0.01 and larger crypts depth in jejunum (P<0.01, only with lowest concentration of the supplement (0.2%. It is concluded that butyric acid glycerides are an efficient supplement to broilers’ diets, deserving particular attention as a possible alternative to antimicrobial drugs, which have been banned in Europe.

  12. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  13. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei.

    Directory of Open Access Journals (Sweden)

    Alexander Schmidt

    Full Text Available In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT, a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224 was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF

  14. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  15. The epithelial αvβ3-integrin boosts the MYD88-dependent TLR2 signaling in response to viral and bacterial components.

    Directory of Open Access Journals (Sweden)

    Tatiana Gianni

    2014-11-01

    Full Text Available TLR2 is a cell surface receptor which elicits an immediate response to a wide repertoire of bacteria and viruses. Its response is usually thought to be proinflammatory rather than an antiviral. In monocytic cells TLR2 cooperates with coreceptors, e.g. CD14, CD36 and αMβ2-integrin. In an earlier work we showed that αvβ3-integrin acts in concert with TLR2 to elicit an innate response to HSV, and to lipopolysaccharide. This response is characterized by production of IFN-α and -β, a specific set of cytokines, and NF-κB activation. We investigated the basis of the cooperation between αvβ3-integrin and TLR2. We report that β3-integrin participates by signaling through Y residues located in the C-tail, known to be involved in signaling activity. αvβ3-integrin boosts the MYD88-dependent TLR2 signaling and IRAK4 phosphorylation in 293T and in epithelial, keratinocytic and neuronal cell lines. The replication of ICP0minus HSV is greatly enhanced by DN versions of MYD88, of Akt - a hub of this pathway, or by β3integrin-silencing. αvβ3-integrin enables the recruitment of TLR2, MAL, MYD88 at lipid rafts, the platforms from where the signaling starts. The PAMP of the HSV-induced innate response is the gH/gL virion glycoprotein, which interacts with αvβ3-integrin and TLR2 independently one of the other, and cross-links the two receptors. Given the preferential distribution of αvβ3-integrin to epithelial cells, we propose that αvβ3-integrin serves as coreceptor of TLR2 in these cells. The results open the possibility that TLR2 makes use of coreceptors in a variety of cells to broaden its spectrum of activity and tissue specificity.

  16. Bacterial Hydrodynamics

    Science.gov (United States)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  17. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  18. Bacterial Communities: Interactions to Scale

    Science.gov (United States)

    Stubbendieck, Reed M.; Vargas-Bautista, Carol; Straight, Paul D.

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  19. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  20. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health

    Directory of Open Access Journals (Sweden)

    Lonneke eOnrust

    2015-12-01

    Full Text Available The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that is sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS are such compounds as they can be converted to lactate which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies.

  1. Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets.

    Science.gov (United States)

    Xu, Jumei; Chen, Xue; Yu, Shuiqing; Su, Yong; Zhu, Weiyun

    2016-01-01

    Butyrate in the gut of animals has potential properties including regulating the innate immune, modulating the lipid metabolism, and protecting gut healthy. So far, only limited information on the impact of butyrate on the neonatal is available. This study aimed to investigate effects of oral administration of sodium butyrate (SB) on gut microbiota and the expression of inflammatory cytokine in neonatal piglets. Ten litters of crossbred newborn piglets were randomly allocated to the SB and control (CO) groups, each group consisted of five litters (replicates). Piglets in the SB group were orally administrated with 7 to 13 ml sodium butyrate solution (150 mmol/l) per day from the age of 1 to 7 days, respectively; piglets in the CO group were treated with the same dose of physiological saline. On days 8 and 21 (of age), gut digesta and tissues were collected for the analysis of microbiota, butyrate concentration and gene expression of inflammatory cytokine. Results showed that there was no difference in the butyrate concentration in the gut of piglets on days 8 and 21 between two groups. Real-time PCR assay showed that SB had no effect on the numbers of total bacteria in the stomach, ileum, and colon. MiSeq sequencing of the V3-V4 region of the 16S rRNA gene revealed that SB increased the richness in the stomach and colon, and the diversity of colonic microbiota on day 8 (P microbiota and the expression of inflammatory cytokines. The results show that early intervention with sodium butyrate can modulate the ileum inflammatory cytokine in neonatal piglets with low impact on intestinal microbial structure, which suggests oral administration of SB may have a benefit role in the health of neonatal piglets. PMID:27611998

  2. Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves

    OpenAIRE

    Kato, Shin-ichi; Sato, Katsuyoshi; Chida, Haruka; Roh., Sang-gun; Ohwada, Shyuichi; SATO, Shusuke; Guilloteau, Paul

    2011-01-01

    Although the growth-promoting action of sodium-butyrate (Na-butyrate) used as a feed additive has been observed in calves and pigs, the precise mechanisms involved remain to be clarified. In this study, pre-weaning calves were given milk formula (MF) supplemented with butyrate for 6 weeks to investigate its effects on postprandial changes in the plasma concentrations of metabolic hormones, and, simultaneously, on growth performance, the weight of the digestive organs and rumen papilla develop...

  3. Optical Properties of MEH-PPV and MEH-PPV/ [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester Thin Films

    Directory of Open Access Journals (Sweden)

    B.M. Omer

    2012-12-01

    Full Text Available Thin films of Poly [2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV were prepared from chloroform, 1,2-dichlorobenzene and toluene solutions by spin coating technique on quartz substrates. Absorption and photoluminescence (PL spectra of the polymer thin films prepared from different solvents were measured. It was concluded from the UV-Vis absorption and PL spectra that the optical properties of MEH-PPV films strongly affected by solvents used for spin coating. A strong photoluminescence quenching was observed in (1:4 MEH-PPV: [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester (Modified Fullerene composite which provides evidence of photoinduced charge transfer. Further, with Atomic Force Microscope (AFM it has been demonstrated that the surface morphology of the MEH-PPV: Modified fullerene thin films are strongly dependent on the preparation condition (solvents.

  4. Broadband gain in poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Melancon, Justin M.; Živanović, Sandra R., E-mail: sz@latech.edu [Institute for Micromanufacturing and Electrical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272 (United States)

    2014-10-20

    Substantial broadband photoconductive gain has been realized for organic, thin-film photodetectors with a poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester (P3HT:PCBM) active layer at low bias voltages. External quantum efficiencies upwards of 1500% were achieved when a semicontinuous gold layer was introduced at the anode interface. Significant gain was also observed in the sub-band gap, near infrared region where the external quantum efficiency approached 100% despite the lack of a sensitizer. The gain response was highly dependent on the thickness of the active layer of the photodetector with the best results achieved with the thinnest devices. The gain is the result of the injection of secondary electrons due to hole charge trapping at the semicontinuous gold layer.

  5. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    Science.gov (United States)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  6. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets

    DEFF Research Database (Denmark)

    Le Gall, Maud; Gallois, Mélanie; Sève, Bernard;

    2009-01-01

    Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning......) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11-12 d) weaning and SB before and after weaning (for 35-36 d). Growth performance, feed intake...... and various end-point indices of GIT anatomy and physiology were investigated at slaughter. The pigs supplemented with SB before weaning grew faster after weaning than the controls (P

  7. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  8. Thermoacoustical and Excess Properties of Binary Mixtures of Ethyl Butyrate with Methanol and Vinyl Acetate

    Directory of Open Access Journals (Sweden)

    Jagdish Prasad Shukla

    2010-06-01

    Full Text Available This paper aims to portray the nature of interaction present in the mixture of ethyl butyrate with methanol and vinyl acetate by computing various thermodynamic parameters at 298.15 K. Excess thermodynamic properties correlated with Redlich–Kister polynomial equation reveals the extent of interaction present in the mixture. Acoustical relations giving the molecular radii of liquid mixtures suggest the change in structure with composition quite well. A comparative study of various empirical and semi-empirical relations such as Flory’s Statistical Theory, Goldsack and Sarvas, Sanchez theory etc. for predicting ultrasonic velocity of the mixtures with the experimental values have been done.

  9. In Vitro Effects of Dietary Inulin on Human Fecal Microbiota and Butyrate Production.

    Science.gov (United States)

    Jung, Tae-Hwan; Jeon, Woo-Min; Han, Kyoung-Sik

    2015-09-01

    Administration of dietary fibers has various health benefits, mainly by increasing numbers of beneficial bacteria and enhancing production of short-chain fatty acids in the colon. There has been growing interest in the addition of dietary fiber to human diet, due to its prebiotic effects. This study aimed to evaluate the prebiotic activity of inulin using an in vitro batch fermentation system with human fecal microbiota. Fermentation of inulin resulted in a significantly greater ratio of Lactobacillus or Bifidobacteria to Enterobacteria strains as an index of healthy human intestine and elevated butyrate concentration, which are related to improvement of gut health.

  10. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  11. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium.

    Science.gov (United States)

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-06-06

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn't induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates.

  12. Effect of different butyrate supplementations on growth and health of weaning pigs challenged or not with E. coli K88

    Directory of Open Access Journals (Sweden)

    Paolo Trevisi

    2010-01-01

    Full Text Available In a full factorial design (4 diets X challenge, Yes/No, 72 weaning pigs were assigned to one of the diets: Control; experimental diets, obtained with the addition of 2 g/kg free sodium butyrate (fNaB, or 0.6 g/kg fat-protected sodium butyrate (pNaB, or 2 g/kg INVE-NutriAd commercial mixture (Mix, based on 75 g/kg protected butyrate. Oral challenge with Escherichia coli K88 was done on 2/3 of pigs on d 7. Pigs were slaughtered on d 13. The mortality in challenged pigs, tended to be higher in control group (50.0% than in the three supplemented groups (23.5%. Growth tended to be increased averagely by the supplements (p=0.100 after the challenge, that also significantly reduced growth. In general the diet did not affect the fecal shedding of Escherichia coli and Lactobacilli, the K88-specific IgA activity in blood, the morphology of oxyntic mucosa and the expression of H+/K+-ATPase gene. The supplementations tended to increase villous length of jejunum (p=0.101. On the whole, growth, villous height and surviving rate can be positively affected either when the supplementation is done by free butyrate, by protected butyrate or by the special Inve Nutri-Ad product and these effects are distributed both on pigs infected or not with Escherichia coli K88.

  13. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium

    Directory of Open Access Journals (Sweden)

    Aliyu Salihu

    2014-12-01

    Full Text Available The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.

  14. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium.

    Science.gov (United States)

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn't induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  15. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    Li CongJun

    2006-09-01

    Full Text Available Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867 with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens.

  16. Postnatal development of the myenteric glial network and its modulation by butyrate.

    Science.gov (United States)

    Cossais, François; Durand, Tony; Chevalier, Julien; Boudaud, Marie; Kermarrec, Laetitia; Aubert, Philippe; Neveu, Isabelle; Naveilhan, Philippe; Neunlist, Michel

    2016-06-01

    The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development. PMID:27056724

  17. Dietary toxicity of calcium beta-hydroxy-beta-methyl butyrate (CaHMB).

    Science.gov (United States)

    Baxter, J H; Carlos, J L; Thurmond, J; Rehani, R N; Bultman, J; Frost, D

    2005-12-01

    HMB, 3-hydroxy-3-methyl butyrate, is of interest as a dietary supplement and a possible component of functional and medical foods. The purpose of this study was to evaluate the toxicity of the calcium salt of HMB, calcium 3-hydroxy-3-methyl butyrate (CaHMB, monohydrate, food grade), when administered daily in the diet of rats for at least 90 days. Male and female Crl:CD (SD)IGS BR animals were assigned to four groups. Each group received diets containing the carrier or 1%, 2%, or 5% of CaHMB mixed with diet. Assessment of toxicity was based on mortality, clinical observations, body weights, food consumption, and clinical and anatomic pathology evaluations. Administration of CaHMB in basal diet for 91 days was tolerated well. There were no unscheduled sacrifices or deaths. There were no CaHMB-related adverse effects on clinical observations, body weights, food consumption, clinical chemistry, hematology, absolute or relative organ weights, or macroscopic or microscopic observations. A statistically significant increase in inorganic phosphorous was observed in male animals in the 5% feeding group; however, this effect was not considered adverse. Based on the results of this study, the no-observed-adverse-effect level (NOAEL) was considered to be 5% of CaHMB mixed with diet (3.49 g/kg BW for males and 4.16 g/kg BW for females). PMID:16006030

  18. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro.

    Science.gov (United States)

    Scott, Karen P; Martin, Jennifer C; Duncan, Sylvia H; Flint, Harry J

    2014-01-01

    Dietary macronutrients affect the composition of the gut microbiota, and prebiotics are used to improve and maintain a healthy gut. The impact of prebiotics on dominant gut bacteria other than bifidobacteria, however, is under-researched. Here, we report carbohydrate utilisation patterns for representative butyrate-producing anaerobes, belonging to the Gram-positive Firmicutes families Lachnospiraceae and Ruminococcaceae, by comparison with selected Bacteroides and Bifidobacterium species. Growth assessments using anaerobic Hungate tubes and a new rapid microtitre plate assay were generally in good agreement. The Bacteroides strains tested showed some growth on basal medium with no added carbohydrates, utilising peptides in the growth medium. The butyrate-producing strains exhibited different growth profiles on the substrates, which included starch, inulin, fructooligosaccharides (FOS), galactooligosaccharides (GOS) and xylooligosaccharides (XOS). Eleven were able to grow on short-chain FOS, but this number decreased as the chain length of the fructan substrates increased. Long-chain inulin was utilised by Roseburia inulinivorans, but by none of the Bifidobacterium species examined here. XOS was a more selective growth substrate than FOS, with only six of the 11 Firmicutes strains able to use XOS for growth. These results illustrate the selectivity of different prebiotics and help to explain why some are butyrogenic. PMID:23909466

  19. Synthesis of Clevidipine Butyrate%氯维地平的合成

    Institute of Scientific and Technical Information of China (English)

    张婧; 纪宪勇; 孙翔; 王杰

    2011-01-01

    Clevidipine butyrate, an antihypertensive agent, was synthesized from 2-cyanoethyl acetoacetate (2), 2,3-dichlorobenzaldehyde and methyl 3-aminocrotonate by Hantzsch cyclocondensation and followed by selective hydrolysis with sodium sulfide at room temperature to give 4-(2,3-dichlorophenyl)-l,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid monomethyl ester, which was then subjected to reaction with chloromethyl butyrate with an overall yield of about 59% (based on 2).%3-羟基丙腈和双乙烯酮在三乙胺作用下制得乙酰乙酸(2ˉ氰基乙基)酯(2),再与2,3-二氯苯甲醛和3ˉ氨基巴豆酸甲酯经Hantzsch缩合闭环,接着用硫化钠在常温下选择性水解得4-(2,3-二氯苯基)-1-4-二氢-2,6-二甲基-3,5-吡啶二羧酸单甲酯,最后与正丁酸氯甲酯反应即得抗高血压药氯维地平,总收率约59%(以2计).

  20. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-01-01

    Full Text Available Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.

  1. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.

    Science.gov (United States)

    Silva, Elton Luiz; Lima, Flávia Alves; Carneiro, Guilherme; Ramos Jonas Periera; Gomes, Dawidson Assis; de Souza-Fagundes, Elaine Maria; Ferreira, Lucas Antônio Miranda

    2016-02-01

    All-trans retinoic acid, a hydrophobic drug, has become one of the most successful examples of differentiation agents used for treatment of acute promyelocytic leukemia. On the other hand, histone deacetylase inhibitors, such as cholesteryl butyrate, present differentiating activity and.can potentiate action of drugs such as all-trans retinoic acid. Solid lipid nanoparticles represent a promising alternative for administration of hydrophobic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of all-trans retinoic acid-loaded solid lipid nanoparticles for leukemia treatment. The influence of in situ formation of an ion pairing between all-trans retinoic acid and lipophilic amines on the characteristics of the particles (size, zeta potential, encapsulation efficiency) was evaluated. Cholesteryl butyrate, a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for HL-60, Jurkat, and THP-1 cell lines. The encapsulation efficiency of all-trans retinoic acid in cholesteryl butyrate-solid lipid nanoparticles was significantly increased by the presence of the amine. Inhibition of cell viability by all-trans retinoic acid-loaded solid lipid nanoparticles was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for all-trans retinoic acid-loaded cholesteryl butyrate-solid lipid nanoparticles, with a clear increase in subdiploid DNA content. The ion pair formation in SLN containing cholesteryl butyrate can be explored as a simple and inexpensive strategy to improve the efficacy and bioavail-ability of ATRA in the treatment of the cancer and metabolic diseases in which this retinoid plays an important role. PMID:27433579

  2. Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets

    Science.gov (United States)

    Xu, Jumei; Chen, Xue; Yu, Shuiqing; Su, Yong; Zhu, Weiyun

    2016-01-01

    Butyrate in the gut of animals has potential properties including regulating the innate immune, modulating the lipid metabolism, and protecting gut healthy. So far, only limited information on the impact of butyrate on the neonatal is available. This study aimed to investigate effects of oral administration of sodium butyrate (SB) on gut microbiota and the expression of inflammatory cytokine in neonatal piglets. Ten litters of crossbred newborn piglets were randomly allocated to the SB and control (CO) groups, each group consisted of five litters (replicates). Piglets in the SB group were orally administrated with 7 to 13 ml sodium butyrate solution (150 mmol/l) per day from the age of 1 to 7 days, respectively; piglets in the CO group were treated with the same dose of physiological saline. On days 8 and 21 (of age), gut digesta and tissues were collected for the analysis of microbiota, butyrate concentration and gene expression of inflammatory cytokine. Results showed that there was no difference in the butyrate concentration in the gut of piglets on days 8 and 21 between two groups. Real-time PCR assay showed that SB had no effect on the numbers of total bacteria in the stomach, ileum, and colon. MiSeq sequencing of the V3-V4 region of the 16S rRNA gene revealed that SB increased the richness in the stomach and colon, and the diversity of colonic microbiota on day 8 (P piglets on day 8 (P piglets with low impact on intestinal microbial structure, which suggests oral administration of SB may have a benefit role in the health of neonatal piglets. PMID:27611998

  3. Negative polarity of phenyl-C{sub 61} butyric acid methyl ester adjacent to donor macromolecule domains

    Energy Technology Data Exchange (ETDEWEB)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E., E-mail: hekatz@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Wu, Meng-Yin [Department of Electrical and Computer Engineering, University of Wisconsin, 415 Engineering Drive, Madison, Wisconsin 53706 (United States); Johns, Gary L.; Markovic, Nina [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Arnold, Michael S. [Department of Materials Science and Engineering, University of Wisconsin, 248 MS and E Building, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-01-19

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

  4. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Directory of Open Access Journals (Sweden)

    Maria Consolata Miletta

    Full Text Available Butyrate is a short-chain fatty acid (SCFA closely related to the ketone body ß-hydroxybutyrate (BHB, which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR, GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  5. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    Directory of Open Access Journals (Sweden)

    Edgar C. Clausen

    2012-08-01

    Full Text Available In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partial cell recycle mode to improve fermenter yield and productivity. Experiments with fermentation in batch, continuous culture and continuous culture with partial cell recycle by ultrafiltration were conducted. The results show that a continuous fermentation can be sustained for more than 120 days, which is the first reported long-term production of butyric acid in a continuous operation. Further, the results also show that partial cell recycle via membrane ultrafiltration has a great influence on the selectivity and productivity of butyric acid, with an increase in selectivity from ≈9% to 95% butyric acid with productivities as high as 1.13 g/Lh. Continuous fermentation with low dilution rate and high cell recycle ratio has been found to be desirable for optimum productivity and selectivity toward butyric acid and a comprehensive model explaining this phenomenon is given.

  6. Short-term infusion of sodium butyrate, but not lactose, increases plasma ß-hydroxybutyrate and insulin in lactating dairy cows

    Science.gov (United States)

    Several previous studies have identified beneficial effects of butyrate on rumen development and intestinal health in pre-ruminants. These encouraging findings have led to further investigations related to butyrate supplementation in the mature ruminant. However, the maximum tolerable dosage rate of...

  7. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds.

    Science.gov (United States)

    Hill, Allyson T; Ying, Sheng; Plaxton, William C

    2014-02-15

    The aim of the present study was to characterize the native protein kinase [BTPC (bacterial-type phosphoenolpyruvate carboxylase)-K (BTPC Ser451 kinase)] that in vivo phosphorylates Ser451 of the BTPC subunits of an unusual Class-2 PEP (phosphoenolpyruvate) carboxylase hetero-octameric complex of developing COS (castor oil seeds). COS BTPC-K was highly purified by PEG fractionation and hydrophobic size-exclusion anion-exchange and affinity chromatographies. BTPC-K phosphorylated BTPC strictly at Ser451 (Km=1.0 μM; pH optimum=7.3), a conserved target residue occurring within an intrinsically disordered region, as well as the protein histone III-S (Km=1.7 μM), but not a COS plant-type PEP carboxylase or sucrose synthase or α-casein. Its activity was Ca2+- (K0.5=2.7 μM) and ATP- (Km=6.6 μM) dependent, and markedly inhibited by trifluoperazine, 3-phosphoglycerate and PEP, but insensitive to calmodulin or 14-3-3 proteins. BTPC-K exhibited a native molecular mass of ~63 kDa and was soluble rather than membrane-bound. Inactivation and reactivation occurred upon BTPC-K's incubation with GSSG and then DTT respectively. Ser451 phosphorylation by BTPC-K inhibited BTPC activity by ~50% when assayed under suboptimal conditions (pH 7.3, 1 mM PEP and 10 mM L-malate). Our collective results indicate a possible link between cytosolic Ca2+ signalling and anaplerotic flux control in developing COS.

  8. Low fucose containing bacterial polysaccharide facilitate mitochondria-dependent ROS-induced apoptosis of human lung epithelial carcinoma via controlled regulation of MAPKs-mediated Nrf2/Keap1 homeostasis signaling.

    Science.gov (United States)

    Chowdhury, Sougata Roy; Sengupta, Suman; Biswas, Subir; Sen, Ramkrishna; Sinha, Tridib Kumar; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2015-12-01

    Reactive oxygen species (ROS), the key mediators of cellular oxidative stress and redox dysregulation involved in cancer initiation and progression, have recently emerged as promising targets for anticancer drug discovery. Continuous free radical assault upsets homeostasis in cellular redox system and regulates the associated signaling pathways to mediate stress-induced cell death. This study investigates the dose-specific pro-oxidative behavior of a bacterial fucose polysaccharide, which attenuated proliferation of different cancer cells. In the fermentation process, Bacillus megaterium RB-05 [GenBank Accession Number HM371417] was found to biosynthesize a polysaccharide with low-fucose content (4.9%), which conferred the maximum anti-proliferative activity (750 µg/mL) against human lung cancer epithelial cells (A549) during preliminary screening. Structural elucidation and morphological characterization of the duly purified polysaccharide was done using HPLC, GC-MS, (1)H/(13)C NMR, and microscopy. The polysaccharide exhibited concentration- and time-dependent anti-proliferative effects against A549 cells by inducing intracellular ROS level and regulating the mitochondrial membrane-permeability following the apoptotic pathway. This process encompasses activation of caspase-8/9/3/7, increase in the ratio of Bax/Bcl2 ratio, translocation of Bcl2-associated X protein (Bax) and cytochrome c, decrease in expression of anti-apoptotic members of Bcl2 family, and phosphorylation of mitogen activated protein kinases (MAPKs). Apoptosis was attenuated upon pretreatment with specific caspase-inhibitors. Simultaneously, during apoptosis, the ROS-mediated stress as well as activated MAPKs triggered nuclear translocation of transcription factors like nuclear factor (erythroid-derived)-like 2 (Nrf2) and promoted further transcription of downstream cytoprotective genes, which somehow perturbed the chemotherapeutic efficacy of the polysaccharide, although using CuPP, a chemical

  9. Preparation, release and physicochemical characterisation of ethyl butyrate and hexanal inclusion complexes with β- and γ-cyclodextrin.

    Science.gov (United States)

    Zhang, Yang; Zhou, Yibin; Cao, Shengnan; Li, Songnan; Jin, Shanshan; Zhang, Shu

    2015-01-01

    Complexes of ethyl butyrate and hexanal encapsulated by β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were prepared by coprecipitation, and gas chromatography was used to quantity the flavour compounds in the complexes. The ethyl butyrate-γ-CD complex had the highest inclusion ratio (12.20%) followed by the ethyl butyrate-β-CD, hexanal-β-CD and hexanal-γ-CD complexes (11.29, 4.41 and 3.33%, respectively). Release experiments were performed under different relative humidities (RH 93, 75 and 52%) and temperatures (4 and 25 °C). The flavour release behaviours of the complexes were described by the Avrami equation. The rate of flavour release was enhanced with both increasing temperature and RH, although the effect of RH was stronger. Physicochemical characterisation using FT-IR, XRD, DSC and SEM analyses demonstrated that crystalline complexes were formed. Both β-CD and γ-CD were able to encapsulate ethyl butyrate and hexanal, and lower RH and temperature were more suitable for the storage of these complexes. PMID:26471403

  10. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Science.gov (United States)

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. PMID:26672465

  11. Effects of dietary humic and butyric acid on growth performance and response to lipopolysaccharide in young pigs

    Science.gov (United States)

    Humic acid (MFG) and fat protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS) induced in...

  12. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    Science.gov (United States)

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  13. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    Science.gov (United States)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  14. The effect of sugars on the retention of ethyl butyrate by gellan gels.

    Science.gov (United States)

    Evageliou, Vasiliki; Patsiakou, Anna

    2014-08-15

    The effect of sucrose, glucose and fructose on the retention of ethyl butyrate by low acyl gellan gels was investigated by static headspace gas chromatography. The air/biopolymer partition coefficient (K) and percentage of retention (R%) were determined. When 5 g of sample were left to equilibrate at 37 °C for 24 h, the obtained results were explained in terms of gel rigidity, as increased rigidity resulted in increased aroma retention. Glucose showed the greatest aroma release among the sugars and resulted in either the same or increased aroma release with increasing concentration. Increasing concentrations of fructose and sucrose did not alter aroma release significantly. For 15 g of sample mass, sucrose exhibited the lowest partition coefficient values among the sugars. The two higher sucrose concentrations resulted in decreased coefficient values. For fructose and glucose, aroma retention decreased with increasing concentration. The percentage of retention values were positive for all sugars, throughout their concentration range and for both experiments.

  15. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Ying; Hu, Peng-Chao; Ma, Yan-Bin; Fan, Rong; Gao, Fang-Fang; Zhang, Jing-Wei; Wei, Lei

    2016-01-01

    This study investigated the effects of sodium butyrate (NaB) on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and analyzed the relevant mechanism. Here, we demonstrated that a certain concentration of NaB effectively induced MCF-7 cell apoptosis. Cell counting kit-8 (CCK-8) assay was used to detect cell viability and the apoptosis rate. Western blotting was used to detect changes in the Bcl-2 expression level. We observed cell shape changes with microscopy. Immunofluorescence revealed some apoptotic nuclei. Electron microscopy revealed thick nucleoli, chromatin margination, reduced mitochondria, and dramatic vacuoles. Collectively, our findings elucidated the morphological mechanism by which NaB changed the ultrastructure of MCF-7 cells.

  16. Synergistic Effect of Probiotics, Butyrate and l-Carnitine in Treatment of IBD

    Directory of Open Access Journals (Sweden)

    Mahsa Moeinian

    2013-07-01

    Full Text Available Genetic, environmental factors, dysregulation of immune system, intestinal microbes and oxidative stress are the most important factors that play the role in the pathogenesis of inflammatory bowel disease (IBD. Current treatments do not always result in complete remission and usually accompanied with several adverse effects. Recent studies showed that nuclear factor-kappa B (NF-κB, tumor necrosis factor-α (TNF-α and oxidative stress play the pivotal role in the induction of inflammation. Butyrate, l-Carnitine, and probiotics have the potential to control inflammation by reduction of main inflammatory cytokines, including NF-κB and TNF-α. They also stimulate antioxidant enzymes and inhibit IκB kinase (IKK. Regarding the beneficial effects of these three compounds in inflammation via several mechanisms, we hypothesize that the mixture of these compounds would be synergistically effective in reduction of inflammation and alleviation of IBD. Further experimental investigations are needed, to evaluate the hypothesis.

  17. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  18. Research Progress of Physiological Function of Butyric Acid%丁酸的生理功能研究进展

    Institute of Scientific and Technical Information of China (English)

    卢忆; 张晓阳; 马艳莉; 李里特

    2013-01-01

    丁酸是一种重要的短链脂肪酸,是结肠细胞重要的能量来源,可控制细胞增殖,具有多种生理功能.近年来大量研究表明,丁酸有促进肠道发育、维持肠道功能与健康、增强机体免疫性能、抗肿瘤、抗氧化等功能,但目前对于丁酸生理功能的研究多停留在利用动物模型或细胞进行单独研究的阶段.本文从肠道组织功能与健康、物质代谢、免疫功能、肿瘤细胞等几个方面综述了丁酸功能的研究进展,并进行了展望,旨在为丁酸的进一步研究与应用提供思路.%Butyric acid, as one of the most important kinds of short chain fatty acids, can provide energy source for colon cells and control cell proliferation. As shown by recent researches, butyric acid has many physiological functions including promoting intestinal development, maintaining intestinal health and function, enhancing immune performance, anti-tumor, anti-oxidation and so on. But researches on butyric acid have mostly been limited to the stage of using animal models and separate cells to study single function. This paper reviewed the influence of butyric acid on intestinal tissue, metabolism, immune system, tumour cells and so on, aiming at providing references for further exploitation of butyric acid.

  19. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T

    International Nuclear Information System (INIS)

    The short fatty acid, butyrate, which is produced by intestinal anaerobic bacteria in the colon, has inhibitory activity on histone deacetylases (HDACs). Treatment of the human colon cancer cell line, LS174T, with 1-2 mM sodium butyrate stimulated MUC2 mucin production, as determined by histological PAS staining of carbohydrate chains of mucin, and confirmed at the protein and mRNA levels by immunoblotting with anti-MUC2 antibody and real-time RT-PCR, respectively. Increases in acetylated histone H3 in the LS174T cells treated with butyrate suggest inhibition of HDACs in these cells. Butyrate-stimulated MUC2 production in the LS174T cells was inhibited by the MEK inhibitor, U0126, implicating the involvement of extracellular signal-regulated kinase (ERK) cascades in this process. Proliferation of the LS174T cells was inhibited by butyrate treatment. Although apoptotic nuclear DNA fragmentation could not be detected, cell-cycle arrest at the G0/G1 phase in the butyrate-treated cells was demonstrated by flow cytometry. Thus butyrate, an HDAC inhibitor, inhibits proliferation of LS174T cells but stimulates MUC2 production in individual cells

  20. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  1. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Sabita N., E-mail: sabivan@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Department of Biological Sciences, Alabama State University, Montgomery, AL 36104 (United States); Kala, Rishabh [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  2. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    International Nuclear Information System (INIS)

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  3. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth. PMID:21452895

  4. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  5. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-). PMID:22350013

  6. Densities, Viscosities, and Surface and Interfacial Tensions of the Ternary Mixture Water + Ethyl Butyrate + Methanol at 303.15 K

    OpenAIRE

    Kijevcanin, Mirjana Lj.; Ribeiro, Inês S. A.; Ferreira, Abel G. M.; Fonseca, Isabel M. A.

    2003-01-01

    The excess molar volumes, VE, viscosity deviations, Δη, and excess surface tensions were calculated from the measured density, viscosity, and surface tension values, σ, over the whole miscibility composition range for the ternary system water + ethyl butyrate + methanol and their constituent binaries, at 303.15 K and atmospheric pressure. The liquid interfacial tension was measured in the liquid−liquid equilibrium range at the same conditions of temperature and pressure. A Redlich−Kister type...

  7. Vancomycin treatment and butyrate supplementation modulate gut microbe composition and severity of neointimal hyperplasia after arterial injury

    OpenAIRE

    Ho, Karen J.; Xiong, Liqun; Hubert, Nathaniel J.; Nadimpalli, Anuradha; Wun, Kelly; Chang, Eugene B; Kibbe, Melina R.

    2015-01-01

    Abstract Gut microbial metabolites are increasingly recognized as determinants of health and disease. However, whether host–microbe crosstalk influences peripheral arteries is not understood. Neointimal hyperplasia, a proliferative and inflammatory response to arterial injury, frequently limits the long‐term benefits of cardiovascular interventions such as angioplasty, stenting, and bypass surgery. Our goal is to assess the effect of butyrate, one of the principal short chain fatty acids prod...

  8. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    OpenAIRE

    Shifeng Li; Yanming Shen; Min Xiao; Dongbin Liu; Lihui Fan; Zhigang Zhang

    2014-01-01

    Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA) and indole-3-butyric acid (IBA) simultaneous intercalated MgAl-layered double hydroxides (LDHs) was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilaye...

  9. Induction of B-lymphocyte antigens on the chronic myeloid leukemic cell line K562 using sodium butyrate.

    Science.gov (United States)

    Fraser, J K; Berridge, M V

    1987-05-01

    Chronic myeloid leukemia (CML) is a disorder arising from a defect in the hemopoietic stem cell. Consequently, the malignant clone can involve all cells within the stem cell's capacity for differentiation, including erythrocytes, granulocytes, monocytes, megakaryocytes, and lymphocytes. Similarly, the K562 cell line, which was derived from a patient with CML, has been shown to be capable of differentiation towards erythrocytes, granulocytes, monocytes, and megakaryocytes, and in this respect may represent a model of the hemopoietic stem cell. However, although K562 shows properties of a myeloid stem cell, no lymphocyte-specific features or differentiation have yet been described. In the present study, K562 cells have been induced to differentiate by culture in the presence of sodium butyrate. The direction and extent of induced differentiation over 12 days were determined with a panel of monoclonal antibodies and with cytochemical stains. This treatment consistently induced expression of pre-B-cell markers, including B-lymphocyte-specific B4 and B1, and of the common acute lymphoblastic leukemia antigen (CALLA), recognized by J5. In addition to the increased expression of B-lymphocyte markers, butyrate induction of K562 resulted in a decrease in granulocyte markers, increases in certain monocyte and platelet markers, and an increase in beta 2 microglobulin expression. Butyrate-induced expression of B-lymphocyte markers was not observed with the myelomonocytic cell line U937. The expression of B-lymphocyte-specific antigens on butyrate-induced K562 may result from the relaxed control of gene expression, but alternatively these observations may indicate the lymphoid-myeloid stem cell nature of K562.

  10. Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin.

    Science.gov (United States)

    Ferreira, L S; Bittar, C M M

    2011-02-01

    This study was conducted to examine the influence of supplementation of sodium butyrate, sodium monensin or calcium propionate in a starter diet on the performance and selected plasma metabolites (plasma glucose, non-esterified fatty acids and β-hydroxybutyrate) of Holstein calves during pre- and post-weaning periods. Twenty-four newborn Holstein calves were housed in individual hutches until 10 weeks of life, receiving water free choice, and fed four liters of milk daily. Calves were blocked according to weight and date of birth, and allocated to one of the following treatments, according to the additive in the starter: (i) sodium butyrate (150 g/kg); (ii) sodium monensin (30 mg/kg); and (iii) calcium propionate (150 g/kg). During 10 weeks, calves received starter ad libitum, while coast cross hay (Cynodon dactylon (L.) pers.) was offered after weaning, which occurred at the 8th week of age. Weekly, calves were weighted and evaluated for body measurements. Blood samples were taken weekly after the fourth week of age, 2 hours after the morning feeding, for determination of plasma metabolites. No differences were observed among treatments for starter or hay intake, BW and daily gain of the animals. Mean concentrations of selected plasma metabolites were similar in calves fed a starter supplemented with sodium butyrate, sodium monensin and calcium propionate. There was significant reduction in the concentrations of plasma glucose as calves aged. The inclusion of sodium butyrate, calcium propionate or sodium monensin as additives in starter feeds resulted in equal animal performance, before and after weaning, suggesting that sodium monensin may be replaced by organic acid salts.

  11. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    Science.gov (United States)

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  12. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  13. ROOTING OF GUANANDI (Calophyllum brasiliense CAMBESS CUTTINGS USING INDOLE-BUTYRIC ACID

    Directory of Open Access Journals (Sweden)

    Eduardo Ciriello

    2015-12-01

    Full Text Available Commercial reforestation of Brazilian native species to produce hardwood for sawmills has been recently intensified in the country. Among the potential species planted by the logging industry is guanandi (Calophyllum brasiliense Cambess because it is widely distributed in the country, highly adapted to different soil and climate conditions, good bole form and high quality timber. The development of genetic improvement programs should prioritize gains in productivity and yields in the medium and long term. For such programs to be successful, the study of vegetative propagation techniques to abbreviate steps in forest improvement and allow its mass production is fundamental. To assess the viability of vegetative propagation of the species, two successive experiments were carried out during two years testing the best type of cutting, hormone concentration and management. Different cuttings types submitted to increasing doses of indole-butyric acid (IBA were tested to evaluate survival, sprouting, rooting and callus formation. Results indicate that the species is viable for vegetative propagation with 85 to 90% rooting of cuttings from seedlings in the IBA concentrations of 3000 to 7000 mg.L-1. For the cuttings, sprouting from the base of adult trees 3000 mg.L-1 was the best concentration of IBA.

  14. Enhancement of Human Prolactin Synthesis by Sodium Butyrate Addition to Serum-Free CHO Cell Culture

    Directory of Open Access Journals (Sweden)

    Herbert Rodrigues Goulart

    2010-01-01

    Full Text Available Sodium butyrate (NaBu has been used as a productivity enhancer for the synthesis of recombinant proteins in Chinese hamster ovary (CHO cells. Thus, the influence of NaBu on the production of recombinant human prolactin (hPRL from CHO cells was investigated for the first time. CHO cell cultures were submitted to a treatment with different concentrations of NaBu (0.25 to 4 mM. Quantitative and qualitative analyses by reverse-phase high-performance liquid chromatography (RP-HPLC and Western blot or SDS-PAGE, carried out directly on CHO-conditioned medium, showed that the highest hPRL expression was obtained with 1 mM NaBu. In vitro biological assays based on noble rat lymphoma (Nb2 and mouse pro-B lymphoma (Ba/F3-LLP cells were carried out on purified hPRL. Its bioactivity in the presence of NaBu was not apparently different from that of the First International Reference Reagent of recombinant hPRL (WHO 97/714. Our results show that NaBu increased the synthesis of recombinant hPRL in CHO cells, apparently without compromising either its structure or function.

  15. Rhizogenic behavior of black pepper cultivars to indole-3-butyric acid

    Directory of Open Access Journals (Sweden)

    Welington Secundino

    2014-07-01

    Full Text Available Little information is available regarding vegetative propagation of the species Piper nigrum L. to generate technical recommendations for the production of seedlings on a commercial scale. The purpose of this study was to investigate the rhizogenic behavior of cultivars of this species regarding indol-3-butyric acid (IBA. The experiment was performed at a vegetation house equipped with an intermittent nebulization irrigation system. The experimental site was located in the University Center of Northern Espírito Santo (CEUNES of the Federal University of Espírito Santo (UFES, Brazil. The experimental design consisted of randomized blocks arranged in a 3 x 5 factorial scheme: three cultivars (Bragantina, Iaçará and Guajarina x five IBA concentrations (0; 1,500; 3,000; 4,500 and 6,000 mg kg-1, with four repetitions of 16 cuttings each. Total immersion of the cuttings in IBA is recommended for the Iaçará and Guajarina cultivars, and immersion of only the basal region is recommended for cv. Bragantina. The recommended IBA concentration for these cultivars is 4,000 mg kg-1.

  16. Statistical design for formulation optimization of hydrocortisone butyrate-loaded PLGA nanoparticles.

    Science.gov (United States)

    Yang, Xiaoyan; Patel, Sulabh; Sheng, Ye; Pal, Dhananjay; Mitra, Ashim K

    2014-06-01

    The aim of this investigation was to develop hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) with ideal encapsulation efficiency (EE), particle size, and drug loading (DL) under emulsion solvent evaporation technique utilizing various experimental statistical design modules. Experimental designs were used to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. Plackett-Burman design for independent variables was first conducted to prescreen various formulation and process variables during the development of NP. Selected primary variables were further optimized by central composite design. This process leads to an optimum formulation with desired EE, particle size, and DL. Contour plots and response surface curves display visual diagrammatic relationships between the experimental responses and input variables. The concentration of PLGA, drug, and polyvinyl alcohol and sonication time were the critical factors influencing the responses analyzed. Optimized formulation showed EE of 90.6%, particle size of 164.3 nm, and DL of 64.35%. This study demonstrates that statistical experimental design methodology can optimize the formulation and process variables to achieve favorable responses for HB-loaded NP.

  17. Performance evaluation of biofilters and biotrickling filters in odor control of n-butyric acid.

    Science.gov (United States)

    Ding, Ying; Han, Zhiying; Wu, Weixiang; Shi, Dezhi; Chen, Yingxu; Li, Wenhong

    2011-01-01

    With the rapid development of swine production in China, odor pollution associated with piggery facilities has become an increasing environmental concern. N-butyric acid (n-BA) is one of the key odor compounds selected to represent volatile fatty acids (VFAs) found in piggery facilities. In this study, two biofilters (BFs) packed with compost (BFC) or sludge (BFS) and two biotrickling filters (BTFs) packed with pall rings (BTFP) or multidimensional hollow balls (BTFM), respectively, were compared with regard to their performances in the removal of n-BA. The non-biological removal capacities of packing material of the bioreactors on a per unit volume basis were BFS>BFC>BTFM>BTFP. Maximum biological removal capacities per unit volume of packing material of the bioreactors all exceeded 9.1 kg/m(3)·d and in the order of BFC>BTFM>BFS>BTFP. Kinetic analysis as well as overall evaluation by radar graphs showed that the BTFs achieved superior removal rates to the BFs in the order of BTFM>BTFP>BFC>BFS. The biotrickling filter packed with multidimensional hollow balls could be an effective technology for VFAs removal. Results from this research provide economical and effective alternatives for odor control in piggery facilities.

  18. Transparent Blend of Poly(Methylmethacrylate/Cellulose Acetate Butyrate for the Protection from Ultraviolet

    Directory of Open Access Journals (Sweden)

    Raouf Mahmood Raouf

    2016-04-01

    Full Text Available The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV radiation exposure to transparent poly(methylmethacrylate (PMMA, which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB. The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend.

  19. Constitutive Investigation on Viscoelasticity of PolyVinyl Butyral: Experiments Based on Dynamic Mechanical Analysis Method

    Directory of Open Access Journals (Sweden)

    Bohan Liu

    2014-01-01

    Full Text Available PolyVinyl Butyral (PVB film is now widely used in automotive industry and architectures serving as the protective interlayer. The dynamic modulus of PVB is measured through systematic experiments based on Dynamic Mechanical Analysis (DMA method at various temperatures, heating rates, and vibration frequencies. Further, viscoelasticity of PVB influenced by time and temperature is systematically studied. Fitted empirical formulas describing the relationship between glass transition temperature and frequency, as well as the heating rate of PVB, are established. The master curve of PVB at 293 K is suggested based on the experiment data as to express the dynamic modulus variation at various frequencies in a wider range. Constitutive behavior of PVB is then analyzed based on Generalized Maxwell (GM model and Fractional Derivative (FD model, respectively. It is shown that PVB has higher efficiency of energy dissipation in its high energy absorption state, while both fifth-order GM model and FD model can characterize the viscoelasticity of PVB at glassy transition area. Results may offer useful fundamental experimental data and important constitutive characteristics of PVB and shed lights on further studies on viscoelasticity behavior of PVB and energy mitigation ability of laminated glass.

  20. Carboxymethylcellulose acetate butyrate/poly(4-vinyl-N-pentyl pyridinium bromide blends as antimicrobial coatings

    Directory of Open Access Journals (Sweden)

    L. S. Blachechen

    2015-09-01

    Full Text Available Blends of carboxymethyl cellulose acetate butyrate (CMCAB, a cellulose derivative, and poly(4-vinyl-N-pentyl pyridinium bromide (QPVP-C5, an antimicrobial polymer, were prepared by casting method and characterized by means of Fourier transform infrared vibrational spectroscopy (FTIR, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and contact angle measurements. Miscibility between CMCAB and QPVP-C5 was evidenced by DSC measurements of blends, which showed a single thermal event of Tg, and SEM images, which revealed homogenous morphology, regardless the blend composition. Moreover, thermal stability of QPVP-C5 was substantially enhanced, when it was mixed with CMCAB. Upon increasing the QPVP-C5 content in the blend the wettability and antimicrobial activity against Gram-positive bacteria Micrococcus luteus increased, indicating the surface enrichment by pyridinium groups. In fact, blends with 70 wt% QPVP-C5 reduced 5 log and 4 log the colony-forming units of Micrococcus luteus and Escherichia coli, respectively.

  1. Fructose Degradation in the Haloarchaeon Haloferax volcanii Involves a Bacterial Type Phosphoenolpyruvate-Dependent Phosphotransferase System, Fructose-1-Phosphate Kinase, and Class II Fructose-1,6-Bisphosphate Aldolase

    OpenAIRE

    Pickl, Andreas; Johnsen, Ulrike; Schönheit, Peter

    2012-01-01

    The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly ...

  2. A survey on anticancer effects of artemisinin, iron, miconazole, and butyric acid on 5637 (bladder cancer and 4T1 (Breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Amir Ali Shahbazfar

    2014-01-01

    The groups treated with miconazole showed identical changes, with less severity compared to combination therapy groups. In butyric acid-treated groups, the only detectable changes were, mild cell swelling, few apoptosis, and rare necrosis. Conclusions: A combination therapy with artemisinin can be more effective against cancer cells than monotherapy with that. Butyric acid was not effective on cancer cells. Miconazole deviated the nature of cell death from apoptosis to necrosis and it must be used under caution.

  3. Possible mechanism for the regulation of glucose on proliferation, inhibition and apoptosis of colon cancer cells induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To study the effect of glucose on sodium butyrateinduced proliferation inhibition and apoptosis in HT-29 cell line, and explored its possible mechanisms.METHODS: HT-29 cells were grown in RPMI-1640 medium supplemented with 10% fetal calf serum, and were allowed to adhere for 24 h, and then replaced with experimental medium. Cell survival rates were detected by MTT assay. Apoptosis was detected by TUNEL assay. Glucose transport protein 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) mRNA expression was detected by RT-PCR.RESULTS: Low concentration of glucose induced apoptosis and regulated proliferation in HT-29 cell line, and glucose can obviously inhibit the effect of proliferation inhibition and apoptosis induced by sodium butyrate. Glucose also down-regulated the expression of MCT1mRNA (0.28 ± 0.07 vs 0.19 ± 0.10, P < 0.05), and decreased the expression of GLUT1mRNA slightly (0.18 ± 0.04 vs 0.13 ± 0.03, P < 0.05).CONCLUSION: Glucose can regulate the effect of proliferation inhibition and apoptosis induced by sodium butyrate and this influence may be associated with the intracellular concentration of glucose and sodium butyrate.

  4. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    Science.gov (United States)

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  5. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model.

    Science.gov (United States)

    Gholami, Mahdi; Ghasemi-Niri, Seyedeh Farnaz; Maqbool, Faheem; Baeeri, Maryam; Memariani, Zahra; Pousti, Iraj; Abdollahi, Mohammad

    2016-06-01

    This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases. PMID:26972417

  6. Subclinical Ketosis on Dairy Cows in Transition Period in Farms with Contrasting Butyric Acid Contents in Silages

    Directory of Open Access Journals (Sweden)

    Fernando Vicente

    2014-01-01

    Full Text Available This study examines the relationship between subclinical ketosis (SCK in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05. As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake.

  7. Investigation of extraction fraction in confined impinging jet reactors for tri-butyl-phosphate extracting butyric acid process☆

    Institute of Scientific and Technical Information of China (English)

    Zhengming Gao; Manting Zhao; Yun Yu; Zhipeng Li; Jing Han

    2016-01-01

    The extraction fraction E and overall volumetric mass transfer coefficient kLa of TBP extracting butyric acid pro-cess in confined impinging jet reactors (CIJR) with two jets were investigated. The main variables tested were the concentration of tri-butyl-phosphate (TBP) and butyric acid, the impinging velocity V, the impinging velocity ratio of two phases Vorg/Vaq, the nozzle inner diameter di and the distance L between the jet axes and the top wall of the impinging chamber. The results showed that E and kLa increase with an increase of the impinging ve-locity V, the concentration of TBP Corg, and the impinging velocity ratio Vorg/Vaq. However, E and kLa decrease with an increase of the inner diameter di from 1 to 2 mm, the concentration of butyric acid Caq from 0.5%(v/v) to 2%(v/v). The factor L ranging from 3 to 11 mm has a negligible effect on E and kLa. A correlation on these variables and kLa was proposed based on the experimental data. These results indicated good mass transfer performance of CIJR in the extraction operation.

  8. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments.

    Science.gov (United States)

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  9. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 104 cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered

  10. Downregulation of the Expression of GLUT1 Plays a Role in Apoptosis Induced by Sodium Butyrate in HT-29 Cell Line

    Directory of Open Access Journals (Sweden)

    Guang-Jin Yuan

    2006-02-01

    Full Text Available The regulation of glucose and sodium butyrate transporters(glucose transporter1-5 and Monocarboxylate transporter 1 and their relationship with cell apoptosis induced bysodium butyrate in colonic caner cell line HT-29 were studied. Cell apoptosis was detectedby flow cytometric assay. The expression of MCT1 and GLUT1-5 mRNA were detected byRT-PCR and the uptake of glucose was detected using 2-deoxy-[3H]glucose. The expressionof bax and bcl-x/l were detected by westernblot assay. We found that sodium butyrateinduced apoptosis in HT-29 cell line. The expression of GLUT1 mRNA, bcl-x/l, as well theuptake of glucose was inhibited by sodium butyrate. The expression of MCT1 and GLUT2,GLUT3, GLUT5 was not regulated by sodium butyrate. However, the concentration ofglucose had positive correlation with the expression of bcl-x/l protein and negativecorrelation with the apoptosis induced by sodium butyrate. All the results suggested thatdownregulation of the expression of GLUT1 was associated with the apoptosis induced bysodium butyrate in HT-29 cell line.

  11. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  12. Proteomics in the Study of Bacterial Keratitis

    Directory of Open Access Journals (Sweden)

    Rachida Bouhenni

    2015-12-01

    Full Text Available Bacterial keratitis is a serious ocular infection that can cause severe visual loss if treatment is not initiated at an early stage. It is most commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, or Serratia species. Depending on the invading organism, bacterial keratitis can progress rapidly, leading to corneal destruction and potential blindness. Common risk factors for bacterial keratitis include contact lens wear, ocular trauma, ocular surface disease, ocular surgery, lid deformity, chronic use of topical steroids, contaminated ocular medications or solutions, and systemic immunosuppression. The pathogenesis of bacterial keratitis, which depends on the bacterium-host interaction and the virulence of the invading bacterium, is complicated and not completely understood. This review highlights some of the proteomic technologies that have been used to identify virulence factors and the host response to infections of bacterial keratitis in order to understand the disease process and develop improved methods of diagnosis and treatment. Although work in this field is not abundant, proteomic technologies have provided valuable information toward our current knowledge of bacterial keratitis. More studies using global proteomic approaches are warranted because it is an important tool to identify novel targets for intervention and prevention of corneal damage caused by these virulent microorganisms.

  13. Capturing One of the Human Gut Microbiome’s Most Wanted: Reconstructing the Genome of a Novel Butyrate-Producing, Clostridial Scavenger from Metagenomic Sequence Data

    Science.gov (United States)

    Jeraldo, Patricio; Hernandez, Alvaro; Nielsen, Henrik B.; Chen, Xianfeng; White, Bryan A.; Goldenfeld, Nigel; Nelson, Heidi; Alhquist, David; Boardman, Lisa; Chia, Nicholas

    2016-01-01

    The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP) researchers generated a list of “most wanted” taxa: bacteria both prevalent among healthy volunteers and distantly related to any sequenced organisms. Unfortunately, the challenge of assembling high-quality genomes from a tangle of metagenomic reads has slowed progress in learning about these uncultured bacteria. Here, we describe how recent advances in sequencing and analysis allowed us to assemble “most wanted” genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP’s criteria for a “most wanted” taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/Clostridium leptum subgroup species Butyricicoccus pullicaecorum (71–76% average nucleotide identity). Gene function analysis indicates that the species is an obligate anaerobe, forms spores, and produces the anti-inflammatory short-chain fatty acids acetate and butyrate. It also appears to take up metabolically costly molecules such as cobalamin, methionine, and branch-chained amino acids from the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient-scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases such as colon cancer and inflammatory bowel disease. In conclusion, we have assembled essentially complete genomes from stool metagenomic data, yielding

  14. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  15. Influence of indole-butyric acid and electro-pulse on in vitro rooting and development of olive (Olea europea L.) microshoots.

    Science.gov (United States)

    Padilla, Isabel Maria Gonzalez; Vidoy, I; Encina, C L

    2009-09-01

    The effects of indole-butyric acid (IBA) and electro-pulses on rooting and shoot growth were studied in vitro, using olive shoot cultures. Tested shoots were obtained from seedlings belonging to three Spanish cultivars, 'Arbequina', 'Manzanilla de Sevilla' and 'Gordal Sevillana', which have easy-, medium- and difficult-to-root rooting abilities, respectively. The standard two-step rooting method (SRM), consisting of root induction in olive rooting medium supplemented with 0, 0.1 or 1 mg/l IBA followed by root elongation in the same rooting medium without IBA, was compared with a novel one-step method consisting of shoot electro-pulses of 250, 1,250 or 2,500 V in a solution of IBA (0, 0.1 or 1 mg/l) and direct transferral to root elongation medium. The rooting percentage of the seedling-derived shoots obtained with the SRM was 76% for 'Arbequina' and 'Gordal Sevillana' cultivars and 100% for 'Manzanilla de Sevilla' cultivar, whereas with the electro-pulse method, the rooting percentages were 68, 64 and 88%, respectively. IBA dipping without pulse produced 0% rooting in 'Arbequina' seedling-derived shoots. The electroporation in IBA not only had an effect on shoot rooting but also on shoot growth and development, with longer shoots and higher axillary shoot sprouting and growth after some of the treatments. These effects were cultivar-dependent. The electro-pulse per se could explain some of these effects on shoot development. PMID:19655148

  16. BAY 61-3606, CDKi, and Sodium Butyrate Treatments Modulate p53 Protein Level and Its Site-Specific Phosphorylation in Human Vestibular Schwannomas In Vitro

    Directory of Open Access Journals (Sweden)

    Rohan Mitra

    2014-01-01

    Full Text Available This study is done to evaluate the effect of spleen tyrosine kinase inhibitor (BAY 61-3606, cyclin-dependent kinase inhibitor (CDKi, and sodium butyrate (Na-Bu on the level and phosphorylation of p53 protein and its binding to murine double minute 2 (MDM2 homologue in human vestibular schwannomas (VS. Primary cultures of the tumor tissues were treated individually with optimum concentrations of these small molecules in vitro. The results indicate modulation of p53 protein status and its binding ability to MDM2 in treated samples as compared to the untreated control. The three individual treatments reduced the level of total p53 protein. These treatments also decreased Ser392 and Ser15 phosphorylated p53 in tumor samples of young patients and Ser315 phosphorylated p53 in old patients. Basal level of Thr55 phosphorylated p53 protein was present in all VS samples and it remained unchanged after treatments. The p53 protein from untreated VS samples showed reduced affinity to MDM2 binding in vitro and it increased significantly after treatments. The MDM2/p53 ratio increased approximately 3-fold in the treated VS tumor samples as compared to the control. The differential p53 protein phosphorylation status perhaps could play an important role in VS tumor cell death due to these treatments that we reported previously.

  17. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases

    Directory of Open Access Journals (Sweden)

    Vorhölter Frank-Jörg

    2012-10-01

    Full Text Available Abstract Background Efficient perception of attacking pathogens is essential for plants. Plant defense is evoked by molecules termed elicitors. Endogenous elicitors or damage-associated molecular patterns (DAMPs originate from plant materials upon injury or pathogen activity. While there are comparably well-characterized examples for DAMPs, often oligogalacturonides (OGAs, generated by the activity of fungal pathogens, endogenous elicitors evoked by bacterial pathogens have been rarely described. In particular, the signal perception and transduction processes involved in DAMP generation are poorly characterized. Results A mutant strain of the phytopathogenic bacterium Xanthomonas campestris pv. campestris deficient in exbD2, which encodes a component of its unusual elaborate TonB system, had impaired pectate lyase activity and caused no visible symptoms for defense on the non-host plant pepper (Capsicum annuum. A co-incubation of X. campestris pv. campestris with isolated cell wall material from C. annuum led to the release of compounds which induced an oxidative burst in cell suspension cultures of the non-host plant. Lipopolysaccharides and proteins were ruled out as elicitors by polymyxin B and heat treatment, respectively. After hydrolysis with trifluoroacetic acid and subsequent HPAE chromatography, the elicitor preparation contained galacturonic acid, the monosaccharide constituent of pectate. OGAs were isolated from this crude elicitor preparation by HPAEC and tested for their biological activity. While small OGAs were unable to induce an oxidative burst, the elicitor activity in cell suspension cultures of the non-host plants tobacco and pepper increased with the degree of polymerization (DP. Maximal elicitor activity was observed for DPs exceeding 8. In contrast to the X. campestris pv. campestris wild type B100, the exbD2 mutant was unable to generate elicitor activity from plant cell wall material or from pectin. Conclusions To our

  18. Topical betamethasone butyrate propionate exacerbates pressure ulcers after cutaneous ischemia-reperfusion injury.

    Science.gov (United States)

    Uchiyama, Akihiko; Yamada, Kazuya; Perera, Buddhini; Ogino, Sachiko; Yokoyama, Yoko; Takeuchi, Yuko; Ishikawa, Osamu; Motegi, Sei-Ichiro

    2016-09-01

    Ischaemia-reperfusion (I/R) is involved in the development of various organ diseases. There has been increasing evidence that cutaneous I/R injury is associated with the pathogenesis of pressure ulcers (PUs), especially at the early stage presenting as non-blanchable erythema. However, there is no evidence-based treatment for early-stage PUs. Our objective was to assess the effects of topical steroid on the development of PUs after cutaneous I/R injury in mice. Cutaneous I/R was performed by trapping the dorsal skin between two magnetic plates for 12 h, followed by plate removal. Topical application of betamethasone butyrate propionate (BBP) in I/R areas significantly increased the size of PUs after I/R. The number of thromboses was increased, and CD31(+) vessels were decreased in the I/R area treated with topical BBP. The number of oxidative stress-associated DNA-damaged cells and apoptotic cells in the I/R area was increased by topical BBP treatment. In addition, the mRNA level of NADPH oxidase 4 (Nox4), the essential enzyme that produces reactive oxygen species, was significantly increased and that of NF-E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidant proteins, was inhibited in the I/R area treated by BBP. The number of CD68(+) macrophages and the level of transforming growth factor-beta in lesional skin were also decreased by BBP. These results suggest that a topical steroid might accelerate the formation of PUs induced by cutaneous I/R injury by aggravating oxidative stress-induced tissue damage. Topical steroids might not be recommended for the treatment of acute-phase decubitus ulcers. PMID:27094458

  19. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  20. Effect of Indole Butyric Acid on the Transportation of Stored Calcium in Malus hupehensis Rhed. Seedling

    Institute of Scientific and Technical Information of China (English)

    LI Jia; YANG Hong-qiang; YAN Tian-li; SHU Huai-rui

    2006-01-01

    Calcium (Ca) plays an important role in the metabolism of higher plants. Recently, research on Ca2+ in plants has been focused especially at the cellular and molecular levels. Uptake, transport, and distribution are also very important for Ca to accomplish its function at the whole-plant level. In this experiment, one-year-old apple seedlings (M. hupehensis Rehd.) were investigated to determine the distribution of stored Ca, the different forms of Ca, and Ca2+-ATPase activity after treatment with indole butyric acid (IBA). The results showed that the total Ca measured in mature leaves and Ca2+-ATPase activity in tender leaves were higher compared with those in the control (CK). Calcium nitrate and calcium chloride (ALe-Ca) and calcium phosphate and calcium carbonate (HAC-Ca) decreased in both mature leaves and shoots,whereas water-soluble calcium (H2O-Ca), calcium pectate (NaCl-Ca), and calcium oxalate (HCl-Ca) increased. The percentage of active calcium, calcium pectate, and water-soluble calcium increased, whereas the percentage of calcium phosphate and calcium carbonate decreased. When treated with IBA, calcium fractions and percentage of the different forms of Ca was enhanced in 40 part per million (ppm) IBA compared with 20 ppm IBA and water. The results indicated that IBA increased the percentage of both active calcium (NaCl-Ca and H2O-Ca) in tender shoots and boosted the transportation of stored Ca in plants. IBA promoted Ca2+-ATPase activity and Ca2+ uptake in tender shoots of M. hupehensis. It can improve the total Ca contents and the relative percentage of Ca.

  1. Neuroprotective Effect of Sodium Butyrate against Cerebral Ischemia/Reperfusion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available Sodium butyrate (NaB is a dietary microbial fermentation product of fiber and serves as an important neuromodulator in the central nervous system. In this study, we further investigated that NaB attenuated cerebral ischemia/reperfusion (I/R injury in vivo and its possible mechanisms. NaB (5, 10 mg/kg was administered intragastrically 3 h after the onset of reperfusion in bilateral common carotid artery occlusion (BCCAO mice. After 24 h of reperfusion, neurological deficits scores were estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The levels of oxidative stress and inflammatory cytokines were assessed. Apoptotic neurons were measured by TUNEL; apoptosis-related protein caspase-3, Bcl-2, Bax, the phosphorylation Akt (p-Akt, and BDNF were assayed by western blot and immunohistochemistry. The results showed that 10 mg/kg NaB treatment significantly ameliorated neurological deficit and histopathology changes in cerebral I/R injury. Moreover, 10 mg/kg NaB treatment markedly restored the levels of MDA, SOD, IL-1β, TNF-α, and IL-8. 10 mg/kg NaB treatment also remarkably inhibited the apoptosis, decreasing the levels of caspase-3 and Bax and increasing the levels of Bcl-2, p-Akt, and BDNF. This study suggested that NaB exerts neuroprotective effects on cerebral I/R injury by antioxidant, anti-inflammatory, and antiapoptotic properties and BDNF-PI3K/Akt pathway is involved in antiapoptotic effect.

  2. Biomechanics of bacterial walls: studies of bacterial thread made from Bacillus subtilis.

    OpenAIRE

    Thwaites, J J; Mendelson, N H

    1985-01-01

    Bacterial threads of up to 1 m in length have been produced from filaments of separation-suppressed mutants of Bacillus subtilis. Individual threads may contain 20,000 cellular filaments in parallel alignment. The tensile properties of bacterial threads have been examined by using conventional textile engineering techniques. The kinetics of elongation at constant load are indicative of a viscoelastic material. Both Young's modulus and breaking stress are highly dependent upon relative humidit...

  3. The problem of bacterial diarrhoea.

    Science.gov (United States)

    Harries, J T

    1976-01-01

    The reported incidence of "pathogenic" bacteria, as judged by serotype, in the stools of children with acute diarrhoea has varied from 4 to 33% over the last twenty years. Techniques such as tissue culture provide a means for detecting enterotoxin-producing strains of bacteria, strains which often do not possess "pathogenic" serotypes. "Pathogenicity" requires redefinition, and the aetiological importance of bacteria in diarrhoea is probably considerably greater than previous reports have indicated. Colonization of the bowel by a pathogen will result in structural and/or mucosal abnormalities, and will depend on a series of complex interactions between the external environment, the pathogen, and the host and its resident bacterial flora. Enteropathogenic bacteria may be broadly classified as (i) invasive (e.g. Shigella, Salmonella and some Escherichia coli) which predominantly affect the distal bowel, or (ii) non-invasive (e.g. Vibrio cholerae and E. coli) which affect the proximal bowel. V. cholerae and E. coli elaborate heat-labile enterotoxins which activate adenylate cyclase and induce small intestinal secretion; the secretory effects of heat-stable E. coli and heat-labile Shigella dysenteriae enterotoxins are not accompanied by cyclase activation. The two major complications of acute diarrhoea are (i) hypernatraemic dehydration with its attendant neurological, renal and vascular lesions, and (ii) protracted diarrhoea which may lead to severe malnutrition. Deconjugation of bile salts and colonization of the small bowel with toxigenic strains of E. coli may be important in the pathophysiology of the protracted diarrhoea syndrome. The control of bacterial diarrhoea requires a corrdinated political, educational, social, public health and scientific attack. Bacterial diarrhoea is a major health problem throughout the world, and carries an appreciable morbidity and mortality. This is particularly the case during infancy, and in those developing parts of the world

  4. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  5. Content Determination of Hydrocortisone Butyrate in Hydrocortisone Butyrate Gel by HPLC%HPLC法测定丁酸氢化可的松凝胶中丁酸氢化可的松的含量

    Institute of Scientific and Technical Information of China (English)

    王秋桐; 王伟; 侯海玲; 王玉华

    2013-01-01

    目的:建立测定丁酸氢化可的松凝胶中丁酸氢化可的松含量的方法.方法:采用高效液相色谱法.色谱柱为PhenomenC18柱,流动相为乙腈-0.5%醋酸水溶液(51:49,v/V),检测波长为240nm,流速为1.0 ml/min,柱温为25℃,进样量为20μl,灵敏度为1.0 AUFS.结果:丁酸氢化可的松的进样量在97.6~878.4 ng范围内与峰面积积分值呈良好的线性关系(r=0.9991);平均回收率为99.5%,RSD=0.45%(n=9).结论:该方法简便、灵敏、准确,可用于丁酸氢化可的松凝胶的质量控制.%OBJECTIVE: To develop a method for the content determination of hydrocortisone butyrate in Hydrocortisone butyrate gel. METHODS: HPLC method was adopted. The determination was performed on Phenomen C18 column with mobile phase consisted of acetonitrile-0.5% acetic acid (51:49) at flow rate of 1.0 ml/min. The column temperature was 25 ℃ and injection volume was 20 μl. The sensitivity of the sample was 1.0 AUFS. RESULTS: The linear range of hydrocortisone butyrate was 97.6-878.4 ng (r=0.999 1) with an average recovery of 99.5% (RSD=0.45% , n=9). CONCLUSION: The method is proven to be simple, accurate and precise for the quality control of Hydrocortisone butyrate gel.

  6. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence.

    Science.gov (United States)

    Park, Duck Hwan; Mirabella, Rossana; Bronstein, Philip A; Preston, Gail M; Haring, Michel A; Lim, Chun Keun; Collmer, Alan; Schuurink, Robert C

    2010-10-01

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.

  7. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  8. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  9. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  10. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  11. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  12. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.

    Science.gov (United States)

    Ghorbaniaghdam, Atefeh; Henry, Olivier; Jolicoeur, Mario

    2013-04-01

    A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis-Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle. PMID:22976819

  13. Enteral nutrient solutions. Limiting bacterial growth.

    Science.gov (United States)

    Paauw, J D; Fagerman, K E; McCamish, M A; Dean, R E

    1984-06-01

    Bacterial contamination of enteral nutrient solutions ( ENS ) in FFcess of food product standards is known to occur in the hospital setting. The large amounts of bacteria often given with ENS have been shown to create a reservoir for nosocomial infections, and nonpathogenic bacteria have been implicated. Patient tolerance is dependent on immune status and the bacterial load delivered to the gut. The purpose of this study was to evaluate the bacterial growth-sustaining properties of various ENS and to devise methods to limit bacterial growth. Five commercial products were prepared under sterile conditions. After inoculation with approximately 5 X 10(3) organisms/cm3 of Enterobacter cloacae, each solution was hung at room temperature for 24 hours with samples drawn at fixed intervals and plated for bacterial counts. Bacterial growth rates in Ensure, Travasorb , and Vital were markedly higher than those in Precision and Vivonex. Vivonex was noted to contain potassium sorbate (KS) used as a fungistatic agent. Recent studies have identified KS as a broad-spectrum bacteriostatic food preservative that is federally approved for this use. KS (0.03%) was added to Travasorb inoculated with 5 X 10(3) organisms/cm(3) of E. cloacae. The bacterial growth rate was reduced by 75 per cent, and the final count of 2-3 X 10(4) organisms/ml was within the federally regulated limit for milk. This study suggests that initial inoculum, growth rate, and hang time can be altered to provide a significant reduction in final bacterial counts in ENS . PMID:6428286

  14. Bioinformatic Comparison of Bacterial Secretomes

    Institute of Scientific and Technical Information of China (English)

    Catharine Song; Aseem Kumar; Mazen Saleh

    2009-01-01

    The rapid increasing number of completed bacterial genomes provides a good op-portunity to compare their proteomes. This study was undertaken to specifically compare and contrast their secretomes-the fraction of the proteome with pre-dicted N-terminal signal sequences, both type Ⅰ and type Ⅱ. A total of 176 theoreti-cal bacterial proteomes were examined using the ExProt program. Compared with the Gram-positives, the Gram-negative bacteria were found, on average, to con-tain a larger number of potential Sec-dependent sequences. In the Gram-negative bacteria but not in the others, there was a positive correlation between proteome size and secretome size, while there was no correlation between secretome size and pathogenicity. Within the Gram-negative bacteria, intracellular pathogens were found to have the smallest secretomes. However, the secretomes of certain bacte-ria did not fit into the observed pattern. Specifically, the secretome of Borrelia burgdoferi has an unusually large number of putative lipoproteins, and the signal peptides of mycoplasmas show closer sequence similarity to those of the Gram-negative bacteria. Our analysis also suggests that even for a theoretical minimal genome of 300 open reading frames, a fraction of this gene pool (up to a maximum of 20%) may code for proteins with Sec-dependent signal sequences.

  15. STUDY ON IMMOBILIZED PORCINE PANCREATIC LIPASE CATALYZING TRANSESTERIFICATION BETWEEN METHYL—BUTYRATE AND 1—BUTANOL IN NONAQUEOUS SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    XieZhidong; LueXianyu; 等

    1996-01-01

    Transesterification between methyl-butyrate and 1-butanol in nonaqueous systems was catalyzed by porcine pancreatic lipase which was immobilized on cross-linked polystyrene.Organic solvents,substrate concentration,contents of water and other parameters which affect the immobilized enzyme activity were studied.Lipase immobilized on hydrophobic crosslinked polystyrene can reduce its diffusion limit in the reaction.It was found that the activity of immobilized lipase in organic systems was two times as high as that of free lipase.

  16. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers.

    Science.gov (United States)

    Jerzsele, A; Szeker, K; Csizinszky, R; Gere, E; Jakab, C; Mallo, J J; Galfi, P

    2012-04-01

    Necrotic enteritis caused by Clostridium perfringens leads to serious economical losses to the poultry industry. There is a growing need to find effective, nontoxic, antibiotic alternatives to prevent and cure the disease. In our study, the efficacy of protected sodium butyrate at 1.5 g/kg (BP70), a Bacillus amyloliquefaciens spore suspension with 10(9) cfu/g (BAL; Ecobiol), a protected blend of essential oils (1%) at 1.5 g/kg (EO), and a combination of sodium butyrate with essential oils (1%) protected with vegetable fat at 1.5 g/kg (BP70+EO; Natesse) was investigated in an artifical C. perfringens-infection model. Body weight gain, gross pathological and histopathological lesion scores, villus lengths, and villus length:crypt depth ratio was determined and compared with the control group. Broilers infected with C. perfringens and treated with essential oils or the combination of sodium butyrate and essential oils showed significantly better BW gain (P < 0.05), increased villus length and villus length:crypt depth ratio (P < 0.001), and decreased gross pathological and histopathological lesion scores (P < 0.05) compared with the control. Sodium butyrate alone and B. amyloliquefaciens spore suspension had no beneficial effects on the course of the disease in this study. According to our results, the protected combination of sodium butyrate and essential oils, as well as the protected essential oils, can be potential candidates for the prevention and treatment of necrotic enteritis in broiler chickens. PMID:22399722

  17. Sodium butyrate enemas in the treatment of acute radiation-induced proctitis in patients with prostate cancer and the impact on late proctitis. A prospective evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Andrea; Herrmann, Markus K.A.; Kertesz, Tereza; Christiansen, Hans; Hermann, Robert M.; Hess, Clemens F. [University Hospital, Goettingen (Germany). Department of Radiotherapy and Radiooncology; Pradier, Olivier [University Hospital, Brest (France). Department of Radiotherapy and Radiooncology; Schmidberger, Heinz [University Hospital, Mainz (Germany). Department of Radiotherapy and Radiooncology

    2008-12-15

    To evaluate prospectively the effect of sodium butyrate enemas on the treatment of acute and the potential influence on late radiation-induced proctitis. 31 patients had been treated with sodium butyrate enemas for radiation-induced acute grade II proctitis which had developed after 40 Gy in median. During irradiation the toxicity was evaluated weekly by the Common Toxicity Criteria (CTC) and subsequently yearly by the RTOG (Radiation Therapy Oncology Group) and LENT-SOMA scale. 23 of 31 patients (74%) experienced a decrease of CTC grade within 8 days on median. A statistical significant difference between the incidence and the severity of proctitis before start of treatment with sodium butyrate enemas compared to 14 days later and compared to the end of irradiation treatment course, respectively, was found. The median follow-up was 50 months. Twenty patients were recorded as suffering from no late proctitis symptom. Eleven patients suffered from grade I and 2 of these patients from grade II toxicity, too. No correlation was seen between the efficacy of butyrate enemas on acute proctitis and prevention or development of late toxicity, respectively. Sodium butyrate enemas are effective in the treatment of acute radiation-induced proctitis in patients with prostate cancer but have no impact on the incidence and severity of late proctitis. (orig.)

  18. Promotion and Inhibition of Ruminal Epithelium Growth by Butyric Acid and Insulin-Like Growth Factor-1 (IGF-1) in Dairy Goats

    Institute of Scientific and Technical Information of China (English)

    LIU Da-cheng; ZHOU Xiang-li; LIU Guo-juan; GAO Min; HU Hong-lian

    2014-01-01

    Isolated ruminal epithelia from caudal blind sacs of dairy goats were incubated with butyrate and insulin-like growth factor-1 (IGF-1) at different concentrations. Proportions of ruminal epithelium in different phases of the cell division cycle were determined by lfow cytometric analysis. The proportion of epithelial cells in S phase and G2-M phase (PS&G2-M) increased signiifcantly (P<0.01) whereas the proportion of epithelial cells in G0-G1 phase (PG0-G1) decreased after incubation with IGF-1. PS&G2-M decreased whereas PG0-G1increased markedly (P<0.01) after incubation with sodium butyrate. PS&G2-M incubated with IGF-1 and butyrate sodium together increased more than that incubated with IGF-1 alone; PG0-G1, however, decreased signiifcantly (P<0.01). Our results indicate that IGF-1 enhances whereas sodium butyrate inhibits the proliferation of rumen epithelial cells. Furthermore, butyrate and IGF-1, together, have a synergic effect on the proliferation of rumen epithelium.

  19. Effect of different doses of coated butyric acid on growth performance and energy utilization in broilers.

    Science.gov (United States)

    Kaczmarek, S A; Barri, A; Hejdysz, M; Rutkowski, A

    2016-04-01

    We recently applied four dietary treatments in experiments I and II to determine the effect of protected calcium butyrate (BP) on growth performance and nutrient digestibility in broiler chickens. A group of one-day-old male Ross 308 broiler chicks (total 960, 480 per trial) were used in the study. In experiment I, the basal diets were fed with protected BP inclusion (0.2, 0.3, or 0.4 g/kg of finished feed) (BP) or without (C). In experiment II, 4 different diets were tested: 1) basal diet with no supplementation (C), 2) basal diet supplemented with protected BP (0.3 g/kg) (BP), 3) basal diet supplemented with avilamycin (6 mg/kg, active substance) a common antibiotic growth promoter (AGP) (Av), and 4) basal diet supplemented with the combination of both avilaymicin and BP. In experiment I, considering the entire study period, the use of BP improved feed conversion ratio (Penergy corrected for nitrogen (AMEN) were improved after BP supplementation (P<0.05). In experiment II, A or AB diets improved (P<0.05) body weight gain compared to the control treatment. The diets Av, BP, and AvB improved (P<0.05) feed conversion ratio compared to the control treatment. Birds from the treatment diet were characterized by having the thickest mucosa (P<0.05). On days 14, 35, and 42, the use of AB diets improved AMENcontent compared to the control treatment (P<0.05). The apparent ileal digestibility of amino acid data showed that Av or AvB treated birds were characterized by higher Asp, Glu, Cys, Gly, and Ala ileal digestibility than the control animals (P<0.05). The use of Av, BP, or AvB increased ileal digestibility of Thr, Ser, and Pro (P<0.05). There is an indication that BP, alone or in combination with avilamycin, improve the digestion and absorptive processes and consequently birds performance results. PMID:26740137

  20. Sterile-α- and Armadillo Motif-Containing Protein Inhibits the TRIF-Dependent Downregulation of Signal Regulatory Protein α To Interfere with Intracellular Bacterial Elimination in Burkholderia pseudomallei-Infected Mouse Macrophages

    OpenAIRE

    Baral, Pankaj; Utaisincharoen, Pongsak

    2013-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, evades macrophage killing by suppressing the TRIF-dependent pathway, leading to inhibition of inducible nitric oxide synthase (iNOS) expression. We previously demonstrated that virulent wild-type B. pseudomallei inhibits the TRIF-dependent pathway by upregulating sterile-α- and armadillo motif-containing protein (SARM) and by inhibiting downregulation of signal regulatory protein α (SIRPα); both molecules are negative regulators o...

  1. Effect of butyrate on aromatase cytochrome P450 levels in HT29, DLD-1 and LoVo colon cancer cells.

    Science.gov (United States)

    Rawłuszko, Agnieszka Anna; Sławek, Sylwia; Gollogly, Armin; Szkudelska, Katarzyna; Jagodziński, Paweł Piotr

    2012-03-01

    Epidemiological studies suggest that colonic production of butyrate and estrogen may be involved in human susceptibility to colorectal cancer (CRC). Estrone (E1) can be produced by the aromatase pathway during the conversion of androstenedione (A) to E1. Therefore, we studied the effect of sodium butyrate (NaBu) on the CYP19A1 transcript and protein levels and on the conversion of A to E1 in HT29, DLD-1 and LoVo CRC cells. We found that NaBu significantly downregulated CYP19A1 transcript and protein levels, a phenomenon that was associated with reduced conversion of A to E1 in HT29, DLD-1 and LoVo cells. Our studies demonstrated that, although butyrate exhibited a protective role in CRC development, this compound may reduce aromatase activity and the production of E1 in colon cancer cells.

  2. Síntese enzimática de butirato de isoamila empregando lipases microbianas comerciais Enzymatic synthesis isoamyl butyrate employing commercial microbial lipases

    Directory of Open Access Journals (Sweden)

    Vitor Cardoso Aragão

    2009-01-01

    Full Text Available Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-1 of Lipozyme TL IM, 30 ºC, 180 rpm of agitation, isoamyl alcohol to butyric acid molar ratio of 1:1 and acid substrate concentration of 0.06 M.

  3. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E; Dang, Yan; Woodard, Trevor L; Nevin, Kelly P; Lovley, Derek R

    2016-06-01

    Promoting direct interspecies electron transfer (DIET) to enhance syntrophic metabolism may be a strategy for accelerating the conversion of organic wastes to methane, but microorganisms capable of metabolizing propionate and butyrate via DIET under methanogenic conditions have yet to be identified. In an attempt to establish methanogenic communities metabolizing propionate or butyrate with DIET, enrichments were initiated with up-flow anaerobic sludge blanket (UASB), similar to those that were previously reported to support communities that metabolized ethanol with DIET that relied on direct biological electrical connections. In the absence of any amendments, microbial communities enriched were dominated by microorganisms closely related to pure cultures that are known to metabolize propionate or butyrate to acetate with production of H2. When biochar was added to the reactors there was a substantial enrichment on the biochar surface of 16S rRNA gene sequences closely related to Geobacter and Methanosaeta species known to participate in DIET. PMID:26967338

  4. Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, KiSeob; Lee, JunYoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Park, JeaHeel; Ha, KiRyong [Keimyung University, Seoul (Korea, Republic of)

    2014-08-15

    In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 .deg. C to 7.1% and 48 nW at 70 .deg. C, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

  5. Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

    International Nuclear Information System (INIS)

    In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 .deg. C to 7.1% and 48 nW at 70 .deg. C, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change

  6. Fractal Analysis of Lipase-Catalysed Synthesis of Butyl Butyrate in a Microbioreactor Under the Influence of Noise

    Science.gov (United States)

    Patnaik, Pratap R.

    2013-03-01

    Microbioreactors operated in real environments are often subject to noise from the environment. This is commonly manifested as fluctuations in the flow rates of the feed streams. Previous studies with larger bioreactors have shown that noise can seriously impair the performance. Given this possibility, the effects of noise on the performance of a microbioreactor have been analyzed for the trans-esterification of vinyl butyrate by 1-butanol by immobilized lipase B to produce butyl butyrate. As in previous work for macrobioreactors, the analysis was done with (i) no noise, (ii) unfiltered noise, and (iii) noise filtered by four different methods, and the fractal dimension of the product was used as an index of the performance. All fractal dimensions decreased with increasing dilution rates, and significant stochastic chaos was likely at low dilution rates. Of the four types of filters, the auto-associative neural filter (ANF) was the most effective in reducing chaos and restoring of smooth, nearly noise-free performance. The ANF also does not require a process model, which is a significant advantage for real systems. Simulations also revealed that even in the absence of noise, deterministic chaos is possible at low dilution rates; this underscores the importance of efficient filtering under such conditions when external noise too is present. The results thus establish the importance of noise in microbioreactor behavior and the usefulness of the fractal dimension in characterizing the effects.

  7. γ-氨基丁酸转运体与癫(癎)%γ-amino butyric acid transporter and epilepsy

    Institute of Scientific and Technical Information of China (English)

    董文涛

    2011-01-01

    根据γ-氨基丁酸转运体(γ-amino butyric acid transporter,GAT)5种不同亚型的脑区及亚细胞分布特点,GAT1和GAT3两者与癫(癎)的发生和发展关系最为密切.GAT表达异常或功能受损是癫(癎)发作时神经元高兴奋性的原因之一.γ-氨基丁酸能抑制性回路减少及其表达的GAT下降,原发性GAT表达上调,是癫(癎)发生的反应性改变或者癫(癎)发生的原因.%According to 5 different subtypes of γ-amino butyric acid transporter(GAT)in brain regions and subcellular distribution.GAT1 and GAT3 are closely related with occurrence and development of epilepsy.The abnormal expression of GAT or their function damaged contribute to hyperexcitable neurons In seizures.GABAergic inhibit circuit reduces and the down-regulation of GAT expression,primary up-regulation of GAT expression is a reactive changes or cause of epilepsy.

  8. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    International Nuclear Information System (INIS)

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells

  9. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  10. Formaldehyde Stress Responses in Bacterial Pathogens.

    Science.gov (United States)

    Chen, Nathan H; Djoko, Karrera Y; Veyrier, Frédéric J; McEwan, Alastair G

    2016-01-01

    Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed. PMID:26973631

  11. BUTYRATE SUPPLEMENTATION AFFECTS mRNA ABUNDANCE OF GENES INVOLVED IN GLYCOLYSIS, OXIDATIVE PHOSPHORYLATION AND LIPOGENESIS IN THE RUMEN EPITHELIUM OF HOLSTEIN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Anne Hermen Laarman

    2013-01-01

    Full Text Available Energy availability in epithelial cells is a crucial link for maintaining epithelial barrier integrity; energy depletion is linked to impaired barrier function in several epithelia. This study aimed to elucidate the effects of exogenous butyrate on mRNA abundance of genes indirectly involved in rumen epithelial barrier integrity. Sixteen mid-lactation Holstein cows fed a total mixed ration received a concentrate mix to induce Subacute Ruminal Acidosis (SARA. For 7 days, while being fed the concentrate mix, cows were assigned either a control treatment or a butyrate treatment, in which cows were fed butyrate at 2.5% daily dry matter intake in the form of a calcium salt. On days 6 and 7, rumen pH was measured continuously and on day 7, rumen biopsies took place. Rumen pH fell below 5.6 for more than 3 hours per day in both treatments, con-firming the occurrence of SARA. Microarray and pathway analysis, confirmed by real time PCR, showed that exogenous butyrate significantly increased the mRNA abundance of hexokinase 2 (fold change: 2.07, pyruvate kinase (1.19, cytochrome B-complex 3 (1.18 and ATP Synthase, F0 subunit (1.66, which en-code important glycolytic enzymes. Meanwhile, butyrate decreased mRNA abundance of pyruvate dehydrogenase kinase 2(-2.38, ATP citrate lyase (-2.00 and mitochondrial CoA transporter (-2.27, which en-code enzymes involved in lipogenesis. These data suggest exogenous butyrate induces a shift towards energy mobilization in the rumen epithelium, which may aid barrier function in the rumen epithelium during SARA.

  12. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  13. Effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823

    Institute of Scientific and Technical Information of China (English)

    Song-Lin Shi; Yong-Ye Wang; Ying Liang; Qi-Fu Li

    2006-01-01

    AIM: To investigate the effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823.METHODS: Effects of tachyplesin and n-sodium butyrate on proliferation of BGC-823 cells were determined with trypan blue dye exclusion test and HE staining. Effects of tachyplesin and n-sodium butyrate on cell cycle were detected by flow cytometry. Protein levels of c-erbB-2, c-myc, p53 and p16 were examined by immunocytochemistry.RESULTS: The inhibiting effects were similar after 2.0 mg/L tachyplesin and 2.0 mmol/L n-sodium butyrate treatment, the inhibitory rate of cellular growth was 62.66% and 60.19% respectively, and the respective maximum mitotic index was decreased by 49.35% and 51.69% respectively. Tachyplesin and n-sodium butyrate treatment could markedly increase the proportion of cells at G0/G1 phase and decrease the proportion at S phase.The expression levels of oncogene c-erbB-2, c-myc, and mtp53 proteins were down-regulated while the expression level of tumor suppressor gene p16 protein was up-regulated after the treatment with tachyplesin or n-sodium butyrate. The effects of 1.0 mg/L tachyplesin in combination with 1.0 mmol/L n-sodium butyrate were obviously superior to their individual treatment in changing cell cycle distribution and expression of c-erbB-2,c-myc, mtp53 and p16 protein. The inhibitory rate of cellular growth of BGC-823 cells after combination treatment was 62.29% and the maximum mitotic index was decreased by 51.95%.CONCLUSION: Tachyplesin as a differentiation inducer of tumor cells has similar effects as n-sodium butyrate on proliferation of tumor cells, expression of correlative oncogene and tumor suppressor gene. It also has a synergistic effect on differentiation of tumor cells.

  14. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets

    DEFF Research Database (Denmark)

    Bartholome, Anne L; Albin, David M; Baker, David H;

    2004-01-01

    BACKGROUND: Supplementation of total parenteral nutrition (TPN) with a mixture of short-chain fatty acids (SCFA) enhances intestinal adaptation in the adult rodent model. However, the ability and timing of SCFA to augment adaptation in the neonatal intestine is unknown. Furthermore, the specific...... and decreasing apoptosis within 4 hours postresection. The intestinotrophic mechanism(s) underlying butyrate's effects may involve GLP-2. Ultimately, butyrate administration may enable an infant with short-bowel syndrome to successfully transition to enteral feedings by maximizing their absorptive area....

  15. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  16. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  17. Current conduction in poly(3-hexylthiophene) and in poly(3-hexylthiophene) doped [6,6]-phenyl C61-butyric acid methylester composite thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Chiguvare, Zivayi [Witwatersrand Univ., Johannesburg (South Africa). School of Physics (DST/CoESM, MPRI); Parisi, Juergen [Oldenburg Univ. (Germany). Energy and Semiconductor Research

    2012-10-15

    Transport properties of poly(3-hexylthiophene) (P3HT), and of its blend with [6,6]-phenyl C61-butyric acid methylester (PCBM), were studied by analysing temperature dependent current-voltage characteristics of spin cast thin films sandwiched between aluminium electrodes in a metal-insulator-metal (MIM) configuration. It was found that in Al/P3HT/Al devices, the current is limited by space charge that accumulates near the hole injecting electrode due to the poor bulk transport properties of P3HT. At low temperatures and high applied electric fields the current density obeys a power law of the form J {proportional_to} V{sup m}, characteristic of space charge limited current (SCLC) in the presence of exponentially distributed traps within the band gap. These traps are filled by charge that is injected by quantum mechanical tunnelling, which is adequately described by the Fowler-Nordheim (FN) theory. By calculating the majority charge carrier mobility in Al/P3HT/Al and Al/P3HT:PCBM/Al devices from the Ohmic, SCLC, and FN tunnelling fits at different temperatures, we have obtained that the charge carrier mobility in P3HT is two orders smaller than the electron mobility in the P3HT:PCBM blend at room temperature, but comparable at low temperatures. This information is important in determining the origin of open circuit voltage and short circuit current limit in solar cells that employ this blend as the active layer. (orig.)

  18. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    Science.gov (United States)

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  19. BACTERIAL DESEASES IN SEA FISH

    Directory of Open Access Journals (Sweden)

    Ivančica Strunjak-Perović

    1997-10-01

    Full Text Available With development of the fish culturing in the sea, the interest in their health also increased. The reason for this are diseases or rather mortality that occur in such controlled cultures and cause great economic losses. By growing large quantities of fish in rather small species, natural conditions are changed, so fish is more sensitive and prone to infection agents (viruses, bacteria, parasites. Besides, a large fish density in the cultural process accelerates spreading if the diseases, but also enables a better perception of them. In wild populations sick specimen very quickly become predator’s prey, witch makes it difficult to note any pathological changes in such fish. There are lots of articles on viral, bacterial and parasitic diseases nowdays, but this work deals exclusively with bacterial deseases that occur in the controlled sea cultures (vibriosis, furunculosis, pastherelosis, nocardiosis, mycobaceriosis, edwardsielosis, yersiniosis, deseases caused by bacteria of genera Flexibacter, Pseudomonas, Aeromonas, Streptococus and bacteria nephryithis. Yet, the knowledge of these deseases vary, depending on wether a fish species is being cultured for a longer period of time or is only being introduced in the controlled culture.

  20. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  1. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  2. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  3. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  4. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  5. Modeling intraocular bacterial infections.

    Science.gov (United States)

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  6. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Hanigan, M.D.; Kristensen, Niels Bastian

    2011-01-01

    and mesenteric, right ruminal, and hepatic portal veins. The experiment was designed with 2 groups of cows: 4 cows adapted to high crude protein (CP) and 4 to low CP. All cows were subjected to 3 buffers: butyric, ammonia, and control in a randomized replicated 3 × 3 incomplete Latin square design. The buffers...

  7. Study on the Effects of Increasing Production Rate of Ruminal Acetate and Butyrate on Their Absorption and Passage in Alimentary Tract of Sheep

    Institute of Scientific and Technical Information of China (English)

    DU Rui-ping; LU De-xun

    2011-01-01

    Six Inner Mongolian semifine-wool wethers(1.5 years old,29-31 kg BW) fitted with a ruminal and a duodenum cannula were used to study the effects of increasing production rate of ruminal acetate and butyrate on their absorption and passage in alimentary tract by simulating continuous feeding and pulse-continuous infusion technology.The sheep were

  8. Study on the Effects of Increasing Production Rate of Ruminal Acetate and Butyrate on Their Absorption and Passage in Alimentary Tract of Sheep

    Institute of Scientific and Technical Information of China (English)

    DU Rui-ping; LU De-xun

    2011-01-01

    Six Inner Mongolian semifine-wool wethers (1.5 years old,29-31 kg BW) fitted with a ruminal and a duodenum cannula were used to study the effects of increasing production rate of ruminal acetate and butyrate on their absorption and passage in alimentary tract by simulating continuous feeding and pulsecontinuous infusion technology.The sheep were divided into two groups randomly and fed the same basal diet,one group was for acetate measuring and the other group was for butyrate measuring.Diet was formulated according to maintain requirement of Inner Mongolian sheep and consisted of hay 69.64%,corn 18.11%,soybean meal 15.57%,wheat bran 5.57%,and premix 1.11%,the diet contained DM 92.34%,CP9.74%,ME 8.47 MJ/kg,Ca 0.31%,P 0.21%(dry matter basis).Three infusion levels of acetate and butyrate were designed to reach 2.5,3.0 and 4.0 multiple on the basis of basal production rate.The rumen and duodenum fluid samples were collected for measuring pH,Co-EDTA,acetate and butyrate concentration.

  9. The response of Culex quinquefasciatus (Diptera: Culicidae)to traps baited with carbon dioxide, 1-octen-3-ol, acetone, butyric acid and human foot odour in Tanzania

    NARCIS (Netherlands)

    Mboera, L.E.G.; Takken, W.; Sambu, E.Z.

    2000-01-01

    The responses of Culex quinquefasciatus Say to traps baited with carbon dioxide, 1-octen-3-ol, acetone, butyric acid and human foot odour were studied in the field in Muheza, north-east Tanzania using Counterflow Geometry (CFG) and Centers for Disease Control (CDC) traps. It was found that significa

  10. Importance of glycolipid synthesis for butyric acid-induced sensitization to Shiga toxin and intracellular sorting of toxin in A431 cells

    NARCIS (Netherlands)

    Sandvig, K.; Garred, Ø.; van Helvoort, A.; van Meer, G.; van Deurs, B.

    1996-01-01

    The human epidermoid carcinoma cell line A431 becomes highly sensitive to Shiga toxin upon treatment with butyric acid. This strong sensitization (>1000-fold) is accompanied by an increase in the fraction of cell-associated toxin transported to the Golgi apparatus and to the endoplasmic reticulum (E

  11. Study on the Catalytic Synthesis of Isoamyl Butyrate by Sodium Bisulfate%硫酸氢钠催化合成丁酸异戊酯的研究

    Institute of Scientific and Technical Information of China (English)

    刘华亭; 赵汝其; 林进

    2001-01-01

      The synthesis of isoamyl butyrate by using sodium bisulfate as catalyst had been studied. The effect of reactants and catalyst amounts on yield were investigated. The results showed that the appropriate conditions should be: weight of catalyst was 0.5 g (for the case of butyric acid 0.2 mol); molar ratio of isoamyl alcohol to butyric acid was 1.2:1; reaction time 1.0 h; the dewatering reagent (toluene) was 10 mL. The yield of isoamyl butyrate was about 99.2%.%  研究了以硫酸氢钠为催化剂,丁酸和异戊醇为原料合成丁酸异戊酯,并考察了影响反应的因素.结果表明,醇酸摩尔比为1.2:1,催化剂用量为0.5g(丁酸为0.2mol的情况下),带水剂甲苯为10mL,反应时间为1.0 h是最适宜的反应条件,酯化率达99.2%.

  12. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR INTRAVENOUS AND INHALATION-ROUTE PHARMACOKINETICS OF BUTYL ACETATE AND METABOLITES N-BUTANOL AND N-BUTYRIC ACID

    Science.gov (United States)

    Risk assessment for n-butyl acetate and metabolites n-butanol and n-butyric acid (the butyl series) can be accomplished with limited toxicity data and pharmacokinetic data for each compound through application of the "family approach" (Barton et al., 2000). The necessary quantita...

  13. Effects of β-hydroxy β-methyl butyrate supplementation to sows in late gestation on absorption and hepatic metabolism of glucose and amino acids during transition

    DEFF Research Database (Denmark)

    Flummer, Christine; Lyby, H; Storli, K S;

    2012-01-01

    A multicatheter sow model was established to study the effects of dietary β-hydroxy β-methyl butyrate (HMB) supplementation on net portal flux (NPF) and net hepatic flux (NHF) of HMB, glucose, and the AA Ala, Gly, Ile, Leu, Phe, Tyr, and Val. Eight second parity sows were fitted with permanent in...

  14. Experimental and theoretical study of excess molar volumes and enthalpies for the ternary mixture butyl butyrate + 1-octanol + decane at 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garabal, Sandra; Jimenez, Eulogio; Segade, Luisa; Casas, Herminio; Franjo, Carlos; Legido, Jose L.; Paz Andrade, M. Inmaculada

    2003-10-14

    This paper reports measurements on excess thermodynamic properties for the ternary system: butyl butyrate+1-octanol+decane at the temperature 308.15 K and atmospheric pressure. The binary and ternary experimental data were correlated using the Redlich-Kister and Cibulka equation, respectively. Experimental values were compared with the predictions obtained by several contribution models and several empirical equations.

  15. DIELECTRIC PROPERTIES OF POLYVINYL ALCOHOL, POLY(METHYL METHACRYLATE), POLYVINYL BUTYRAL RESIN AND POLYIMIDE AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Tuncer, Enis [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL

    2008-01-01

    Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. For this reason dielectric properties of electrical insulation materials are needed for low temperature power applications. In this work we report the dielectric properties of four polymers: polyvinyl alcohol (PVA), poly(methyl methacrylate) (PMMA), polyvinyl butyral resin (PVB), and polyimide (PI--Kapton\\textregistered). The dielectric measurements are performed with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 45K to 350K. The dielectric breakdown characteristics of the polymers are measured in a liquid nitrogen bath at atmospheric pressure. It is observed that PI and \\pmma\\ dissolved in toluene have the lowest dielectric losses for temperatures lower than $100\\ \\kelvin$. \\Blx\\ and PI have the smallest spread in their breakdown strength data.

  16. Body composition of piglets from sows fed the leucine metabolite β-hydroxy β-methyl butyrate in late gestation

    DEFF Research Database (Denmark)

    Flummer, Christine; Kristensen, Niels Bastian; Theil, Peter Kappel

    2012-01-01

    Supplementation of the leucine metabolite β-hydroxy β-methyl butyrate (HMB) to sows during late gestation or lactation has been shown to improve piglet health, survival, and growth. This study aimed to investigate long-term effects of HMB supplementation to late-gestating sows on body...... characteristics of piglets at weaning. Sows were fed a standard lactation diet from day –15 relative to parturition and throughout the experiment and a diet supplemented with (HMB; n = 2) or without [control (CON); n = 3] 15 mg Ca(HMB)2/kg BW in morning meals from day –10 until parturition. Fifty-six suckling...... piglets were weighed at day 28 and water content was assessed by deuterium oxide dilution. Piglets were euthanized, organ weights and lengths were recorded, the empty carcass was analyzed for dry matter, ash, and crude protein content, and body fat content was calculated. Two litters were treated...

  17. The changes in telomerase activity and telomere length in HeLa cells undergoing apop- tosis induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The changes in telomerase activity and telomere length during apoptosis in HeLa cells as induced by sodium butyrate (SB) have been studied. After a 48 h SB treatment, HeLa cells demonstrated characteristic apoptotic hallmarks including chromatin condensation, formation of apoptotic bodies and DNA Laddering which were caused by the cleavage and degradation of DNA between nucleosomes. There were no significant changes in telomerase activity of apoptotic cells, while the telomere length shortened markedly. In the meanwhile, cells became more susceptible to apoptotic stimuli and telomere became more vulnerable to degradation after telomerase activity was inhibited. All the results suggest that the apoptosis induced by SB is closely related to telomere shortening, while telomerase enhances resistance of HeLa cells to apoptotic stimuli by protecting telomere.

  18. Photovoltaic Properties of Poly (3-Hexylthiophene: [6, 6]-Phenyl C61-Butyric Acid 3-Ethylthiophene Thin Films

    Directory of Open Access Journals (Sweden)

    B.M. Omer

    2013-07-01

    Full Text Available We fabricated and studied the electrical and photovoltaic properties of organic solar cell based on poly (3-hexylthiophene (P3HT as an electron donor blended with the acceptor [6, 6]-Phenyl C61-Butyric Acid 3-Ethylthiophene Ester (modified fullerene. The active layer composed of (3:1, w/w mixture of P3HT and the modified fullerene was sandwiched between indium tin oxide (ITO and aluminum (Al. The ideality factor n and barrier hight b values were determined from the dark current density-voltage characteristics and found as 2.45 and 0.78 eV, respectively. The device shows photovoltaic behavior with an open circuit voltage of 400 mV, short circuit current of 22.9 A/cm2 and fill factor 0.32 under 2.8 mW/cm2 light intensity.

  19. Heme uptake in bacterial pathogens

    OpenAIRE

    Contreras, Heidi; Chim, Nicholas; Credali, Alfredo; Goulding, Celia W.

    2014-01-01

    Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within...

  20. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mátis Gábor

    2013-01-01

    Full Text Available Abstract Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus

  1. The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis

    Directory of Open Access Journals (Sweden)

    M. G. Eshak

    2016-05-01

    Full Text Available Aim: To study the efficacy of Na-butyrate encapsulated in palm fat on performance of broiler chickens experimentally infected with necrotic enteritis (NE with the determination of its protective effect against the changes in the gene expression profiles and deoxyribonucleic acid (DNA fragmentation. Materials and Methods: A total of 800 one-day-old male Arbor Acres Plus broiler chickens were randomly allocated into four groups for 5 weeks. Na-butyrate was supplemented at dosages of 1 kg/ton for starter diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher diet (presence or absence. Birds of groups 1 and 2 were inoculated by crop gavages with 4×108 CFU/ml/bird of Clostridium perfringens in phosphate buffered saline for 4 successive days, from 14 to 17 days of age to produce NE. Results: Addition of Na-butyrate, encapsulated in palm fat, to ration of experimentally infected broilers with NE resulted in increased final body weight, at 35 days of age, reduced total feed consumption, improved feed conversion ratio, reduced cumulative mortality, and increased production number. There were increased intestinal diameter, intestinal length, and significantly increased the weight of bursa of Fabricius(BF with higher hemagglutination inhibition titers against Newcastle disease (ND vaccination versus untreated infected and untreated negative control birds. The results showed increased expression levels of alpha-toxin and glyceraldehyde-3-phosphate dehydrogenase in the bursa tissues of broilers infected with C. perfringens. However, the expression levels of these genes in broilers treated with Na-butyrate were similar to the non-infected control group. Supplementation of broilers with Na-butyrate increased the expression level of insulin-like growth factor-1 (IGF-1 and decreased the DNA fragmentation induced by C. perfringens. Conclusion: Na-butyrate significantly improved chicken broiler body weights, increased relative weights of BF, increased

  2. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Eun; Park, Ji-Woon; Hwang, Jungho, E-mail: hwangjh@yonsei.ac.kr

    2014-01-01

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10{sup −3} S/m from 4.3 × 10{sup −9} S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer.

  3. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    International Nuclear Information System (INIS)

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10−3 S/m from 4.3 × 10−9 S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer

  4. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    Science.gov (United States)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  5. BACTERIAL INFECTIONS IN RECIPIENTS OF RENAL ALLOGRAFT

    Directory of Open Access Journals (Sweden)

    A. V. Vatazin

    2012-01-01

    Full Text Available The study is devoted to analysis of microflora spectrum in various biological materials in patients after renal transplantation. The character of the flora is strongly dependent on the infectious process localization. Gram- positive and gram-negative bacteria are found in approximately equal proportions with a slight predominance of gram-positive flora. Isolated bacteria in most cases had pronounced polyvalent antibiotic resistance. The performed analysis substantiated recommendations for rational antibiotic therapy of various bacterial infections. 

  6. Bacterial tactic responses.

    Science.gov (United States)

    Armitage, J P

    1999-01-01

    Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a

  7. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    Full Text Available BACKGROUND: The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. CONCLUSIONS/SIGNIFICANCE: These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with

  8. Bacterial chemoreceptors and chemoeffectors.

    Science.gov (United States)

    Bi, Shuangyu; Lai, Luhua

    2015-02-01

    Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.

  9. Bacterial Colony Optimization

    Directory of Open Access Journals (Sweden)

    Ben Niu

    2012-01-01

    Full Text Available This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO. BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism is developed to simplify the bacterial optimization, which is spread over the whole optimization process. However, the other behaviors such as elimination, reproduction, and migration are implemented only when the given conditions are satisfied. Two types of interactive communication schemas: individuals exchange schema and group exchange schema are designed to improve the optimization efficiency. In the simulation studies, a set of 12 benchmark functions belonging to three classes (unimodal, multimodal, and rotated problems are performed, and the performances of the proposed algorithms are compared with five recent evolutionary algorithms to demonstrate the superiority of BCO.

  10. [Bacterial diseases of rape].

    Science.gov (United States)

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  11. Bacterial transformation of terpenoids

    International Nuclear Information System (INIS)

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references

  12. Supramolecular bacterial systems

    OpenAIRE

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found in living systems, it was possible to integrate chemically-synthesized and naturally-occurring components to create platforms with interesting bioactive properties. Bacterial cells and recombinant ...

  13. Bacterial Colony Optimization

    OpenAIRE

    Ben Niu; Hong Wang

    2012-01-01

    This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli) lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO). BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism i...

  14. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  15. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  16. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  17. Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Isabel Gómez-Hurtado

    Full Text Available BACKGROUND: Gut is the major source of endogenous bacteria causing infections in advanced cirrhosis. Intestinal barrier dysfunction has been described in cirrhosis and account for an increased bacterial translocation rate. HYPOTHESIS AND AIMS: We hypothesize that microbiota composition may be affected and change along with the induction of experimental cirrhosis, affecting the inflammatory response. ANIMALS AND METHODS: Progressive liver damage was induced in Balb/c mice by weight-controlled oral administration of carbon tetrachloride. Laparotomies were performed at weeks 6, 10, 13 and 16 in a subgroup of treated mice (n = 6/week and control animals (n = 4/week. Liver tissue specimens, mesenteric lymph nodes, intestinal content and blood were collected at laparotomies. Fibrosis grade, pro-fibrogenic genes expression, gut bacterial composition, bacterial translocation, host's specific butyrate-receptor GPR-43 and serum cytokine levels were measured. RESULTS: Expression of pro-fibrogenic markers was significantly increased compared with control animals and correlated with the accumulated dose of carbon tetrachloride. Bacterial translocation episodes were less frequent in control mice than in treated animals. Gram-positive anaerobic Clostridia spp count was decreased in treated mice compared with control animals and with other gut common bacterial species, altering the aerobic/anaerobic ratio. This fact was associated with a decreased gene expression of GPR43 in neutrophils of treated mice and inversely correlated with TNF-alpha and IL-6 up-regulation in serum of treated mice along the study protocol. This pro-inflammatory scenario favoured blood bacterial translocation in treated animals, showing the highest bacterial translocation rate and aerobic/anaerobic ratio at the same weeks. CONCLUSIONS: Gut microbiota alterations are associated with the development of an inflammatory environment, fibrosis progression and bacterial translocation in

  18. The Pyridoxal 5′-Phosphate (PLP-Dependent Enzyme Serine Palmitoyltransferase (SPT: Effects of the Small Subunits and Insights from Bacterial Mimics of Human hLCB2a HSAN1 Mutations

    Directory of Open Access Journals (Sweden)

    Ashley E. Beattie

    2013-01-01

    Full Text Available The pyridoxal 5′-phosphate (PLP-dependent enzyme serine palmitoyltransferase (SPT catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b, and mutations in both hLCB1 (e.g., C133W and C133Y and hLCB2a (e.g., V359M, G382V, and I504F have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1, an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F, and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form.

  19. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    OpenAIRE

    Heloisa Helena Karnas Hoefel; Liana Lautert

    2006-01-01

    The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and M...

  20. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  1. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure.

    Science.gov (United States)

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-09-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (pp-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  2. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  3. The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins

    OpenAIRE

    1985-01-01

    Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation-- trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The ...

  4. Efecto del consumo de la fibra dietética en la expresión cuantitativa del receptor de butirato GPR43 en colon de ratas Effect of dietary fiber in the quantitative expression of butyrate receptor GPR43 in rats colon

    Directory of Open Access Journals (Sweden)

    L. Y. Corte Osorio

    2011-10-01

    Full Text Available Introducción: Los ácidos grasos de cadena corta (AGCC acetato, propionato y butirato, son productos de fermentación de la fibra dietética (FD en el intestino grueso. Recientemente, el butirato ha sido estudiado ya que es considerado indispensable para el mantenimiento de las funciones del colon y por su relación con la protección del cáncer colorrectal. Esto se atribuye a la capacidad de butirato de regular la expresión génica por mecanismos como la inhibición de la enzima histona deacetilasa. Se ha reportado que el receptor de AGCC, GPR43 está involucrado en el proceso de transducción de señales intracelulares una vez que se unen a ligandos como butirato para generar los efectos fisiológicos del butirato en los colonocitos. Objetivo: Determinar si el consumo de FD de nopal (Opuntia ficus I tiene influencia directa sobre la expresión cuantitativa del receptor específico de butirato GPR43. Métodos: Ratas adultas Wistar se sometieron a cuatro diferentes dietas variando el contenido de FD en 0, 5, 15 y 25% de FD denopal, respectivamente. Resultados y discusión: Los resultados mostraron un aumento significativo de la expresión relativa de GPR43 (93,1% cuando se suministró a las ratas una dieta conteniendo 5% de FD de nopal, usando como gen de referencia β-actina. Los resultados de esta investigación aportarán nuevos datos a los estudios que determinan la relación de la dieta con la salud intestinal, con el fin de ampliar el conocimiento sobre los efectos del ácido butírico en las funciones colónicas.Introduction: Short chain fatty acids (SCFA acetate, propionate and butyrate are the major anions produced by the bacterial fermentation of dietary fiber (DF in colon. Recently, butyrate has been recently studied because is important to maintain colonic functions and because it has been related with a protective effect in colorectal cancer, which is mainly, explained by its potential to regulate gene expression by inhibiting

  5. Preparation and Catalytic Activity of SO42-/TiO-La2O3 in Synthesis of Butyl Butyrate

    Institute of Scientific and Technical Information of China (English)

    YANG Shui-jin; LUO Yi; BAI Ai-min; HU Zhen-zhu; CHEN Fang

    2004-01-01

    Butyl butyrate is a very important compound, which is transparent liquid and has the pear,apple flavor. Natural exist is in the fruit, such as apple, pear, banana, grape and strawberry, etc.Primarily used for to prepare the edible spice and is also widely used in industrial intermediate product, solvent and synthetic perfumery. Until now, there are many methods to synthesize it.Conventionally H2SO4 was reported, but it causes many problems, such as the erosion of equipment,easily causes the vice-reaction, difficulty for after-treatment, environment pollution etc. A new environmentally friendly catalyst, SO42-/TiO2-La2O3 was prepared. And catalytic activity of catalyst in esterification of n-butanoic acid and n-butyl alcohol with SO42-/TiO2-La2O3 as catalyst has been no report up to now. Therefore, studying on the synthetic catalyst has theoretical and practical significances. The catalytic activity of catalyst in esterification of n-butanoic acid and n-butyl alcohol was measured.In this paper, we fast reported the preparation of SO42-/riO2-La2O3 and discussed the factors influencing the synthesis catalyst. The catalyst rare earth solid superacid SO42-/TiO2-La2O3 was The precipitate was filtered and washed thoroughly with distilled water until chloride ions were free.furnace at 480 ℃ for 3 h, and finally stored in a desiccator until use.The factors influencing the synthesis were discussed and the best conditions were found out. The experiment indicated that this catalyst has the following advantage. The amount of catalyst was little and getting high yield, its product has a good quanlity and is favour of reducing erosion of equipment, avoiding environment pollution. The optimum conditions are: molar ratio of n-butanoic acid to n-butyl alcohol was 1:1.5, the quantity of catalyst was equal to 1.5% of feed stocks, the reaction temperature was 93-114 ℃, and the reaction time was 1.0 h. Rare earth solid superacid SO42-/TiO2-La2O3 is an excellent catalyst for

  6. The Putative Role of the Non-Gastric H+/K+-ATPase ATP12A (ATP1AL1 as Anti-Apoptotic Ion Transporter: Effect of the H+/K+ ATPase Inhibitor SCH28080 on Butyrate-Stimulated Myelomonocytic HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Martin Jakab

    2014-10-01

    Full Text Available Background/Aims: The ATP12A gene codes for a non-gastric H+/K+ ATPase, which is expressed in a wide variety of tissues. The aim of this study was to test for the molecular and functional expression of the non-gastric H+/K+ ATPase ATP12A/ATP1AL1 in unstimulated and butyrate-stimulated (1 and 10 mM human myelomonocytic HL-60 cells, to unravel its potential role as putative apoptosis-counteracting ion transporter as well as to test for the effect of the H+/K+ ATPase inhibitor SCH28080 in apoptosis. Methods: Real-time reverse-transcription PCR (qRT-PCR was used for amplification and cloning of ATP12A transcripts and to assess transcriptional regulation. BCECF microfluorimetry was used to assess changes of intracellular pH (pHi after acute intracellular acid load (NH4Cl prepulsing. Mean cell volumes (MCV and MCV-recovery after osmotic cell shrinkage (Regulatory Volume Increase, RVI were assessed by Coulter counting. Flow-cytometry was used to measure MCV (Coulter principle, to assess apoptosis (phosphatidylserine exposure to the outer leaflet of the cell membrane, caspase activity, 7AAD staining and differentiation (CD86 expression. Results: We found by RT-PCR, intracellular pH measurements, MCV measurements and flow cytometry that ATP12A is expressed in human myelomonocytic HL-60 cells. Treatment of HL-60 cells with 1 mM butyrate leads to monocyte-directed differentiation whereas higher concentrations (10 mM induce apoptosis as assessed by flow-cytometric determination of CD86 expression, caspase activity, phosphatidylserine exposure on the outer leaflet of the cell membrane and MCV measurements. Transcriptional up-regulation of ATP12A and CD86 is evident in 1 mM butyrate-treated HL-60 cells. The H+/K+ ATPase inhibitor SCH28080 (100 µM diminishes K+-dependent pHi recovery after intracellular acid load and blocks RVI after osmotic cell shrinkage. After seeding, HL-60 cells increase their MCV within the first 24 h in culture, and subsequently

  7. Collective decision making in bacterial viruses.

    Science.gov (United States)

    Weitz, Joshua S; Mileyko, Yuriy; Joh, Richard I; Voit, Eberhard O

    2008-09-15

    For many bacterial viruses, the choice of whether to kill host cells or enter a latent state depends on the multiplicity of coinfection. Here, we present a mathematical theory of how bacterial viruses can make collective decisions concerning the fate of infected cells. We base our theory on mechanistic models of gene regulatory dynamics. Unlike most previous work, we treat the copy number of viral genes as variable. Increasing the viral copy number increases the rate of transcription of viral mRNAs. When viral regulation of cell fate includes nonlinear feedback loops, very small changes in transcriptional rates can lead to dramatic changes in steady-state gene expression. Hence, we prove that deterministic decisions can be reached, e.g., lysis or latency, depending on the cellular multiplicity of infection within a broad class of gene regulatory models of viral decision-making. Comparisons of a parameterized version of the model with molecular studies of the decision structure in the temperate bacteriophage lambda are consistent with our conclusions. Because the model is general, it suggests that bacterial viruses can respond adaptively to changes in population dynamics, and that features of collective decision-making in viruses are evolvable life history traits.

  8. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs.

    Science.gov (United States)

    Manzanilla, E G; Nofrarías, M; Anguita, M; Castillo, M; Perez, J F; Martín-Orúe, S M; Kamel, C; Gasa, J

    2006-10-01

    We evaluated the effects of 3 additives, sodium butyrate (AC), avilamycin (AB), and a combination of plant extracts (XT), on the productive performance and the intestinal environment of the early-weaned pig. The XT was a standardized mixture with 5% (wt/wt) carvacrol (from Origanum spp.), 3% cinnamaldehyde (from Cinnamonum spp.), and 2% capsicum oleoresin (from Capsicum annum). Pigs (n = 32) weaned at 18 to 22 d of age with an initial BW of 6.0 +/- 0.10 kg were allocated to 8 pens that, in turn, were allocated to 4 treatments. The treatments included a basal diet (CT) or the basal diet supplemented with 0.3% of AC, 0.04% of AB, or 0.03% of XT. Productive performance was determined during the initial 14 d postweaning. On d 19 and 21 of the experiment, the pigs were killed to allow collection of digesta and intestinal tissue to evaluate variables indicative of aspects of the gastrointestinal environment. Treatments AB and AC improved G:F (P = 0.012 and 0.003, respectively) compared with the CT. Butyrate included in the diet was only detected in the stomach but not in cranial jejunum. When compared with CT, AC produced a lower ileal starch digestibility (P = 0.002) and a lower whole-tract OM and starch digestibility (P = 0.001 and 0.003, respectively), related to a lower VFA concentration in the cranial colon (P = 0.082) and a numerically reduced branched VFA percentage in the rectum. The AB treatment diminished propionate production in caudal colon (P = 0.002) and rectum (P = 0.012) compared with CT. The AC group exhibited deeper crypt depth in the jejunum without variations in villus height compared with CT (P = 0.042). The AC and AB groups also increased goblet cell presence in the colon (P = 0.001 and 0.032, respectively). On the other hand, AB and XT diminished intraepithelial lymphocytes in the jejunum (P = 0.003 and 0.034, respectively). The XT increased lymphocyte presence in the colon (P = 0.003). These results show the important influence of AB and AC on

  9. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  10. The Bacterial Microflora of Fish, Revised

    Directory of Open Access Journals (Sweden)

    B. Austin

    2006-01-01

    Full Text Available The results of numerous studies indicate that fish possess bacterial populations on or in their skin, gills, digestive tract, and light-emitting organs. In addition, the internal organs (kidney, liver, and spleen of healthy fish may contain bacteria, but there is debate about whether or not muscle is actually sterile. Using traditional culture-dependent techniques, the numbers and taxonomic composition of the bacterial populations generally reflect those of the surrounding water. More modern culture-independent approaches have permitted the recognition of previously uncultured bacteria. The role of the organisms includes the ability to degrade complex molecules (therefore exercising a potential benefit in nutrition, to produce vitamins and polymers, and to be responsible for the emission of light by the light-emitting organs of deep-sea fish. Taxa, including Pseudomonas, may contribute to spoilage by the production of histamines in fish tissue.

  11. Antimicrobials for bacterial bioterrorism agents.

    Science.gov (United States)

    Sarkar-Tyson, Mitali; Atkins, Helen S

    2011-06-01

    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  12. Enhanced transfection efficiency and improved cell survival after electroporation of G2/M-synchronized cells and treatment with sodium butyrate.

    OpenAIRE

    Goldstein, S; Fordis, C M; Howard, B H

    1989-01-01

    To achieve high transfection efficiency in human fibroblasts with good preservation of proliferative capacity we developed an electroporation procedure that combines two distinct modalities: use of recipient cells synchronized in the late G2/mitotic phase of the cell cycle and treatment of cells post-electroporation with 5 mM butyrate. This combination enabled reduction of plasmid DNA concentration and electroporation voltage, both associated with cytotoxicity, while greatly enhancing transfe...

  13. Cross-Feeding between Bifidobacterium longum BB536 and Acetate-Converting, Butyrate-Producing Colon Bacteria during Growth on Oligofructose▿

    OpenAIRE

    Falony, Gwen; Vlachou, Angeliki; Verbrugghe, Kristof; De Vuyst, Luc

    2006-01-01

    In vitro coculture fermentations of Bifidobacterium longum BB536 and two acetate-converting, butyrate-producing colon bacteria, Anaerostipes caccae DSM 14662 and Roseburia intestinalis DSM 14610, with oligofructose as the sole energy source, were performed to study interspecies interactions. Two clearly distinct types of cross-feeding were identified. A. caccae DSM 14662 was not able to degrade oligofructose but could grow on the fructose released by B. longum BB536 during oligofructose break...

  14. Effect of Sodium Butyrate on Lung Vascular TNFSF15 (TL1 A) Expression: Differential Expression Patterns in Pulmonary Artery and Microvascular Endothelial Cells

    OpenAIRE

    Safaya, Surinder; Klings, Elizabeth S.; Odhiambo, Adam; Li, Guihua; Farber, Harrison W.; Martin H Steinberg

    2009-01-01

    Vascular endothelial growth inhibitor TNFSF15 (TL1 A), a ligand for TNFRSF25 (DR3) and decoy receptor TNFRSF6B (DcR3), is expressed in human pulmonary arterial (HPAEC) and lung microvascular (HMVEC) endothelial cells where it might modulate inflammation and sickle vasculopathy. Pulmonary disease, endothelial abnormalities and inflammation are prominent features of sickle cell disease (SCD). Butyrate has opposing effects on endogenous TNFSF15 expression in pulmonary endothelium, acting as an i...

  15. Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces.

    Science.gov (United States)

    Li, Li; Jiang, Hongxin; Kim, Hyun-Jung; Yum, Man-Yu; Campbell, Mark R; Jane, Jay-Lin; White, Pamela J; Hendrich, Suzanne

    2015-09-01

    An in vitro semi-continuous long-term (3 wk) anaerobic incubation system simulating lower gut fermentation was used to determine variability in gut microbial metabolism between 4 predigested high amylose-resistant starch residues (SR): SRV, SRVI, SRVII, and SRGEMS in human fecal samples. Subjects participated twice, 5 mo apart: 30 in Phase I (15 lean, 9 overweight and 6 obese), 29 in Phase II (15 lean, 9 overweight, 5 obese); 13 of 15 lean subjects participated in both phases. Of the 4 SRs, SRV displayed the highest gelatinization temperature, peak temperature, enthalpy changes, and the least digestibility compared with the other SRs. In both phases, compared with blank controls, all SRs increased butyrate ∼2-fold which stabilized at week 2 and only SRV caused greater propionate concentration (∼30%) after 3 wk which might have been partly mediated by its lesser digestibility. Fecal samples from lean and overweight/obese subjects incubated with SRs showed similar short-chain fatty acid production across both time points, which suggests that resistant starch may benefit individuals across BMIs.

  16. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    Science.gov (United States)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  17. Role of clevidipine butyrate in the treatment of acute hypertension in the critical care setting: a review

    Directory of Open Access Journals (Sweden)

    Ahmed S Awad

    2010-06-01

    Full Text Available Ahmed S Awad, Michael E GoldbergDepartment of Anesthesiology, Cooper University Hospital, UMDNJ-Robert Wood Johnson Medical School, Camden Campus, Camden, New Jersey, USAAbstract: Acutely elevated blood pressure in the critical care setting is associated with a higher risk of acute end-organ damage (eg, myocardial ischemia, stroke, and renal failure and perioperative bleeding. Urgent treatment and careful blood pressure control are crucial to prevent significant morbidity. Clevidipine butyrate (Cleviprex™ is an ultrashort-acting, third-generation intravenous calcium channel blocker. It is an arterial-selective vasodilator with no venodilatory or myocardial depressive effects. Clevidipine has an extremely short half-life of approximately 1 minute as it is rapidly metabolized by blood and tissue esterases. These metabolites are then primarily eliminated through urine and fecal pathways. The rapid onset and the short duration of action permit tighter and closer adjustment of the blood pressure than is possible with other intravenous agents.Keywords: calcium channel blocker, antihypertensive medications, end-organ damage, hypertensive crisis, hypertensive urgency

  18. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    Directory of Open Access Journals (Sweden)

    Jorge Pliego

    2015-01-01

    Full Text Available Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  19. The effect of indole-butyric acid and kinetin on rooting of rose cuttings in winter and summer

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2013-12-01

    Full Text Available The effect of indole-butyric acid, both alone and with a low concentration of kinetin, on the rooting of rose cuttings in winter and summer, is presented in this paper. The experiments were conducted using 500 and 1000 mg/l IBA with or without the addition of 5 mg/l kinetin. The growth regulators were applied by dipping the base of a cutting for 5 s in an aqueous solution of these substances. Cuttings 5-6 cm in length were made from the mid-part of a stem of a rose grown in a greenhouse. The experiments were carried out using 'Queen of Bermuda' and 'Baccara' cuttings. The investigations showed that treating rose cuttings rooted in winter with an IBA solution had a significant promotive effect on the quantity of rooted cuttings, number of formed roots on the cutting, as well as on the length of the longest root. A distinctive increase in the number of breaking buds was also seen on the cuttings treated with IBA. The IBA solution applied to cuttings rooted in the summer significantly decreased the number of rooted cuttings and breaking buds. However, no significant influence on the number and length of formed roots was found. Addition of kinetin to the IBA solutions did not have any effect on the rooting of rose cuttings either in winter or summer.

  20. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    Science.gov (United States)

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively.

  1. Synergistic Effect of Sodium Butyrate and Thalidomide in the Induction of Fetal Hemoglobin Expression in Erythroid Progenitors Derived from Cord Blood CD133 + Cells

    Directory of Open Access Journals (Sweden)

    Ali Dehghanifard

    2012-07-01

    Full Text Available Background: The use of drugs with the ability to induce production of fetal hemoglobin as a novel therapeutic approach in treating β-Hemoglobinopathies is considered. γ-globin gene expression inducer drugs including sodium butyrate and thalidomide can reduce additional α-globin chains accumulation in erythroid precursors. Materials and Methods: In this experimental study, MACS kit was used to isolate CD133+ cells of umbilical cord blood. Further, the effect of two drugs of thalidomide and sodium butyrate were separately and combined studied on the induction of quantitative expression of β-globin and γ-globin genes in erythroid precursor cells derived from CD133+ stem cells in-vitro. For this purpose, the technique SYBR green Real-time PCR was used.Results: Flow cytometry results showed that approximately 95% of purified cells were CD133+. Real-time PCR results also showed the increased levels of γ-globin mRNA in the cell groups treated with thalidomide, sodium butyrate and combination of drugs as 2.6 and 1.2 and 3.5 times respectively, and for β-globin gene, it is respectively 1.4 and 1.3 and 1.6 times compared with the control group (p<0.05.Conclusion: The study results showed that the mentioned drug combination can act as a pharmaceutical composition affecting the induction of fetal hemoglobin expression in erythroid precursor cells derived from CD133 + cells.

  2. A Perspective on the Enhancer Dependent Bacterial RNA Polymerase

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2015-05-01

    Full Text Available Here we review recent findings and offer a perspective on how the major variant RNA polymerase of bacteria, which contains the sigma54 factor, functions for regulated gene expression. We consider what gaps exist in our understanding of its genetic, biochemical and biophysical functioning and how they might be addressed.

  3. Dependence of bacterial chemotaxis on gradient shape and adaptation rate.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    2008-12-01

    Full Text Available Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way. In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-Changeux signal processing by mixed chemoreceptor clusters, the adaptation dynamics described by ordinary differential equations, and a detailed model of cell tumbling. Our model dramatically reduces computational costs and allows the highly efficient simulation of E. coli chemotaxis. We use the model to investigate chemotaxis in different gradients, and suggest a new, constant-activity type of gradient to systematically study chemotactic behavior of virtual bacteria. Using the unique properties of this gradient, we show that optimal chemotaxis is observed in a narrow range of CheA kinase activity, where concentration of the response regulator CheY-P falls into the operating range of flagellar motors. Our simulations also confirm that the CheB phosphorylation feedback improves chemotactic efficiency by shifting the average CheY-P concentration to fit the motor operating range. Our results suggest that in liquid media the variability in adaptation times among cells may be evolutionary favorable to ensure coexistence of subpopulations that will be optimally tactic in different gradients. However, in a porous medium (agar such variability appears to be less important, because agar structure poses mainly negative selection against subpopulations with low levels of adaptation enzymes. RapidCell is available from the authors upon request.

  4. Choosing Between Yeast and Bacterial Expression Systems: Yield Dependent

    Science.gov (United States)

    Miller, Rebecca S.; Malone, Christine C.; Moore, Blake P.; Burk, Melissa; Crawford, Lisa; Karr, Laurel J.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Green fluorescent protein (GFP) is a naturally occurring fluorescent protein isolated from the jellyfish Aequorea victoria. The intrinsic fluorescence of the protein is due to a chromophore located in the center of the molecule. Its usefulness has been established as a marker for gene expression and localization of gene products. GFP has recently been utilized as a model protein for crystallization studies at NASA/MSFC, both in earth-based and in microgravity experiments. Because large quantities of purified protein were needed, the cDNA of GFP was cloned into the Pichia pastoris pPICZ(alpha) C strain, with very little protein secreted into the media. Microscopic analysis prior to harvest showed gigantic green fluorescent yeast, but upon harvesting most protein was degraded. Trial fermentations of GFP cloned into pPICZ A for intracellular expression provided unsatisfactory yield. GFP cloned into E, coli was overexpressed at greater than 150 mg/liter, with purification yields at greater than 100mg/liter.

  5. Oxygen-­dependent regulation of bacterial lipid production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Dohnalkova, Alice; Noguera, Daniel R.; Donohue, Timothy J.

    2015-05-12

    Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the somewhat unique ability to increase membrane production at low O₂ tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reporter of membrane lipid content. We show that, under low-O₂ and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O₂ tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low O2 conditions. We also found that an intact PrrBA pathway is required for low O2-induced fatty acid accumulation. Our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O₂ tension.

  6. [Small intestine bacterial overgrowth].

    Science.gov (United States)

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  7. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  8. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...

  9. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    Science.gov (United States)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  10. Mechanical reaction-diffusion model for bacterial population dynamics

    CERN Document Server

    Ngamsaad, Waipot

    2015-01-01

    The effect of mechanical interaction between cells on the spreading of bacterial population was investigated in one-dimensional space. A nonlinear reaction-diffusion equation has been formulated as a model for this dynamics. In this model, the bacterial cells are treated as the rod-like particles that interact, when contacting each other, through the hard-core repulsion. The repulsion introduces the exclusion process that causes the fast diffusion in bacterial population at high density. The propagation of the bacterial density as the traveling wave front in long time behavior has been analyzed. The analytical result reveals that the front speed is enhanced by the exclusion process---and its value depends on the packing fraction of cell. The numerical solutions of the model have been solved to confirm this prediction.

  11. Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Soraya eChaturongakul

    2014-08-01

    Full Text Available Complex interactions between bacteriophages and their bacterial hosts play significant roles in shaping the structure of environmental microbial communities, not only by genetic transduction but also by modification of bacterial gene expression patterns. Survival of phages solely depends on their ability to infect their bacterial hosts, most importantly during phage entry. Successful dynamic adaptation of bacteriophages when facing selective pressures, such as host adaptation and resistance, dictates their abundance and diversification. Co-evolution of the phage tail fibers and bacterial receptors determine bacterial host ranges, mechanisms of phage entry and other infection parameters. This review summarizes the current knowledge about the physical interactions between tailed bacteriophages and bacterial pathogens (e.g., Salmonella enterica and Pseudomonas aeruginosa and the influences of the phage on host gene expression. Understanding these interactions can offer insights into phage-host dynamics and suggest novel strategies for the design of bacterial pathogen biological controls.

  12. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  13. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  14. BACTERIAL FLORA OF RAINBOW TROUT LARVAE AND FRY (ONCORHYNCHUS MYKISS

    Directory of Open Access Journals (Sweden)

    Damir Kapetanović

    2003-09-01

    Full Text Available There are no information in available literature about the structure of bacterial flora in rainbow trout larvae and fry in the first days of their lives. The objective of our work has been to follow bacteroflora between the third and the eighth week of their lives. During 35 days of experiment bacteroflora of rainbow trout has been examined, along with following physico–chemical characteristics of water quality as well as it’s influence on health. Samples for bacteriological examination were taken from gill, heart and kidney areas and innoculated on the plates. Bacterial colonies were examined macroscopically, slides with Gram staining, and afterwords biochemical tests were performed. For identification, APILAB Plus programme (bio Mérieux, France was used. Bacterial population of rainbow trout larvae and fry changed in dependence with their age. Physico–chemical characteristics of water ranged within optimal values. Most of bacterial colonies originated from gill isolates (64,4 %, than from heart (21,8 % and kidney areas (13,8 %. The bacterial flora of larvae in incubator was composed mostly of Gram–positive bacteria (75,1 %, genera: Renibacterium (25 %, Lactobacillus (16,7 %, Staphilococcus (16,7 % and Corynebacterium (16,7 %. The transfer of larvae from incubator into the pools resulted in reducing bacterial flora (–66,7 % after 45 minute stay in the pool. Gram–negative bacteria, which have been represented in larvae in incubator with low percent (24, 9 %, after the transfer of larvae to the pools became dominant and represented more than 95 % of rainbow trout larvae and fry bacterial flora. Flavobacterium, Acinetobacter and Yersinia were the predominant Gram–negative genera in larvae in incubator, whereas Aeromonas, Pseudomonas, Flavobacterium and Pasteurella were the main isolates from rainbow trout larvae and fry until the end of experiment. Bacterial flora of larvae in incubator mostly consists of Gram–positive bacteria

  15. Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions.

    Science.gov (United States)

    Ludwig-Müller, Jutta

    2007-01-01

    Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes. PMID:16325963

  16. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. PMID:22099187

  17. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication.

  18. Increasing complexity of the bacterial cytoskeleton

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Löwe, Jan

    2005-01-01

    Bacteria contain cytoskeletal elements involved in major cellular processes including DNA segregation and cell morphogenesis and division. Distant bacterial homologues of tubulin (FtsZ) and actin (MreB and ParM) not only resemble their eukaryotic counterparts structurally but also show similar...... functional characteristics, assembling into filamentous structures in a nucleotide-dependent fashion. Recent advances in fluorescence microscopic imaging have revealed that FtsZ and MreB form highly dynamic helical structures that encircle the cells along the inside of the cell membrane. With the discovery...

  19. Path Dependency

    OpenAIRE

    Mark Setterfield

    2015-01-01

    Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.

  20. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  1. Vegetative propagation of Litsea monopetala, a wild tropical medicinal plant: Effects of indole-3-butyric acid (IBA) on stem cuttings

    Institute of Scientific and Technical Information of China (English)

    Tarit Kumar Baul; Mohammad Mosharraf Hossain; Mohammad Mezbahuddin; bMohammed Mohiuddin

    2011-01-01

    In this study we investigated the rooting ability and the growth performance of juvenile single-node leafy stem cuttings of Litsea mo- nopetala (Roxb) Pers. Collected from two mature mother trees preserved in the hill forest of Chittagong district, Bangladesh. The rooting ability of cuttings was studied under 0%, 0.1%, 0.2% and 0.4% indole-3-butyric acid (IBA) treatments. Significantly better rooting response (p ≤ 0.05) was observed with 0.1% IBA compared to control (0% IBA). The mean number of roots and the length of the longest root of cuttings in different treatments showed no significant difference (P≤50.05). After transfer into polythane bags from non-mist propagator, rooted cuttings treated with 0%, 0.1% and 0.2% IBA demonstrated the highest (100 ± 0.00%) sur- vival capacity. The mean number of shoots developed in cuttings in the polythene bags in first three weeks varied significantly (p≤0.05) among the treatments. Effects of three fertilizer treatments, viz. T0 (no fertilizer), T1 (10g Urea, 20g TSP, 10g MOP dissolved in I L water) and T2 (10g Urea, 20g TSP, 10g MOP dissolved in 2 L water) on initial growth of stecklings were also measured over a 90-days period. The increment of leaf area of stecklings was significantly higher (p≤0.05) under T0 com- pared with that under T1 and T2 while the increment of stem length, collar diameter and root biomass varied insignificantly among different fertilizer treatments. The results suggest that rooting juvenile single-node leafy stem cuttings could be an effective mean of regenerating L. Mo- nopetala. The application of 0.1% IBA concentration is recommended for rooting of juvenile leafy stem cuttings and application of fertilizer appeared unnecessary for the subsequent growth of steeklings in poly- thene bags.

  2. Efficient derivation of functional hepatocytes from mouse induced pluripotent stem cells by a combination of cytokines and sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi; YANG Yang; ZHANG Jian; WANG Guo-ying; LIU Wei; QIU Dong-bo; HEI Zi-qing; YING Qi-long; CHEN Gui-hua

    2011-01-01

    Background Hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation to support many forms of hepatic insufficiency.Unfortunately,the lack of donor livers makes it difficult to obtain enough viable human hepatocytes for hepatocyte-based therapies.Therefore,it is urgent to find new ways to provide ample hepatocytes.Induced pluripotent stem (iPS) cells,a breakthrough in stem cell research,may terminate these hinders for cell transplantation.For the promise of iPS cells to be realized in liver diseases,it is necessary to determine if and how efficient they can be differentiated into functional hepatocytes.Methods In this study,we directly compared the hepatic-differentiation capacity of mouse iPS cells and embryonic stem (ES) cells with three different induction approaches:conditions via embryonic body (EB) formation plus cytokines,conditions by combination of dimethyl sulfoxide and sodium butyrate and chemically defined,serum free monolayer conditions.Among these three induction conditions,more homogenous populations can be promoted under chemically defined,serum free conditions.The cells generated under these conditions exhibited hepatic functions in vitro,including glycogen storage,indocynine green (ICG) uptake and release as well as urea secretion.Although efficient hepatocytes differentiation from mouse iPS cells were observed,mouse iPS cells showed relatively lower hepatic induction efficiency compared with mouse ES cells.Results Mouse iPS cells would be efficiently differentiated into functional hepatocytes in vitro,which may be helpful in facilitating the development of hepatocytes for transplantation and for research on drug discovery.Conclusion We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe procedures that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells in vitro.

  3. Positioning of bacterial chemoreceptors.

    Science.gov (United States)

    Jones, Christopher W; Armitage, Judith P

    2015-05-01

    For optimum growth, bacteria must adapt to their environment, and one way that many species do this is by moving towards favourable conditions. To do so requires mechanisms to both physically drive movement and provide directionality to this movement. The pathways that control this directionality comprise chemoreceptors, which, along with an adaptor protein (CheW) and kinase (CheA), form large hexagonal arrays. These arrays can be formed around transmembrane receptors, resulting in arrays embedded in the inner membrane, or they can comprise soluble receptors, forming arrays in the cytoplasm. Across bacterial species, chemoreceptor arrays (both transmembrane and soluble) are localised to a variety of positions within the cell; some species with multiple arrays demonstrate this variety within individual cells. In many cases, the positioning pattern of the arrays is linked to the need for segregation of arrays between daughter cells on division, ensuring the production of chemotactically competent progeny. Multiple mechanisms have evolved to drive this segregation, including stochastic self-assembly, cellular landmarks, and the utilisation of ParA homologues. The variety of mechanisms highlights the importance of chemotaxis to motile species.

  4. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  5. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  6. Spatial structuring of bacterial communities within individual Ginkgo biloba trees.

    Science.gov (United States)

    Leff, Jonathan W; Del Tredici, Peter; Friedman, William E; Fierer, Noah

    2015-07-01

    Plant-associated microorganisms affect the health of their hosts in diverse ways, yet the distribution of these organisms within individual plants remains poorly understood. To address this knowledge gap, we assessed the spatial variability in bacterial community diversity and composition found on and in aboveground tissues of individual Ginkgo biloba trees. We sampled bacterial communities from > 100 locations per tree, including leaf, branch and trunk samples and used high-throughput sequencing of the 16S rRNA gene to determine the diversity and composition of these communities. Bacterial community structure differed strongly between bark and leaf samples, with bark samples harbouring much greater bacterial diversity and a community composition distinct from leaves. Within sample types, we observed clear spatial patterns in bacterial diversity and community composition that corresponded to the samples' proximity to the exterior of the tree. The composition of the bacterial communities found on trees is highly variable, but this variability is predictable and dependent on sampling location. Moreover, this work highlights the importance of carefully considering plant spatial structure when characterizing the microbial communities associated with plants and their impacts on plant hosts.

  7. Bacterial communities in the rumen of Holstein heifers differ when fed orchardgrass as pasture versus as hay

    Directory of Open Access Journals (Sweden)

    Riazzudin eMohammed

    2014-12-01

    Full Text Available The rich and diverse microbiota of the rumen provides ruminant animals the capacity to utilize highly fibrous feedstuffs as their energy source, but there is surprisingly little information on the composition of the microbiome of ruminants fed all-forage diets, despite the importance of such agricultural production systems worldwide. In three 28-d periods, three ruminally-cannulated Holstein heifers sequentially grazed orchardgrass pasture (OP, then were fed orchardgrass hay (OH, then returned to OP. These heifers displayed greater shifts in ruminal bacterial community composition (determined by automated ribosomal intergenic spacer analysis and by pyrotag sequencing of 16S rRNA genes than did two other heifers maintained 84 d on the same OP. Phyla Firmicutes and Bacteroidetes dominated all ruminal samples, and quantitative PCR indicated that members of the genus Prevotella averaged 23 % of the 16S rRNA gene copies, well below levels previously reported with cows fed total mixed rations. Differences in bacterial community composition and ruminal volatile fatty acid (VFA profiles were observed between the OP and OH despite similarities in gross chemical composition. Compared to OP, feeding OH increased the molar proportion of ruminal acetate (P = 0.02 and decreased the proportion of ruminal butyrate (P < 0.01, branched-chain VFA (P < 0.01 and the relative population size of the abundant genus Butyrivibrio (P < 0.001, as determined by pyrotag sequencing. Despite the low numbers of animals examined, the observed changes in VFA profile in the rumens of heifers on OP vs. OH are consistent with the shifts in Butyrivibrio abundance and its known physiology as a butyrate producer that ferments both carbohydrates and proteins.

  8. Climate factors influencing bacterial count in background air samples.

    Science.gov (United States)

    Harrison, Roy M; Jones, Alan M; Biggins, Peter D E; Pomeroy, Nigel; Cox, Christopher S; Kidd, Stephen P; Hobman, Jon L; Brown, Nigel L; Beswick, Alan

    2005-01-01

    Total (as opposed to culturable) bacterial number counts are reported for four sites in the United Kingdom measured during campaigns over four separate seasons. These are interpreted in relation to simple climatic factors, i.e. temperature, wind speed and wind direction. Temperature has a marked effect at all four sites with data for a rural coastal site conforming best to a simple exponential model. Data for the other rural and urban locations show a baseline similar to that determined at the coastal rural location, but with some very significant positive excursions. The temperature dependence of bacterial number is found to conform to that typical of bacterial growth rates. At the coastal rural location, bacterial numbers normalised for temperature show no dependence on wind speed whilst at the inland sites there is a decrease with increasing wind speed of the form expected for a large area source. Only one site appeared to show a systematic relationship of bacterial concentrations to wind direction that being a site in the suburbs of Birmingham with highest number concentrations observed on a wind sector approaching from the city centre. PCR techniques have been used to identify predominant types of bacteria and results are presented which show that Bacillus was the dominant genus observed at the three inland sites during the winter and summer seasons. Pseudomonas appeared with comparable frequency at certain sites and seasons. There was in general a greater diversity of bacteria at the coastal site than at the inland sites.

  9. Bacterial Mobilization of Nutrients From Biochar-Amended Soils.

    Science.gov (United States)

    Schmalenberger, A; Fox, A

    2016-01-01

    Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur. PMID:26917243

  10. Meningitis bacteriana Bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Ana Teresa Alvarado Guevara

    2006-03-01

    causales son virales lo cual conlleva a las diferentes sub-clasificaciones. También en ciertos casos puede ser ocasionada por hongos, bacterias atípicas, micobacterias y parásitos.In Costa Rica the bacterial meningitis had turn into a high-priority subject in which to monitoring epidemiologist. It had been talked about in the last months, to dice an increase in the attention is published of this subject, due to this phenomenon it becomes necessary to make a revision of topic. Meningitis is an inflammation of leptomeninges and colonization of the subarachnoid cerebrospinal fluid (LCR due to different agents, which produces meningeal symptoms (ex. migraine, neck rigidity, and photophobia and pleocytosis in LCR. De pending on the variables to take into account is possible to group it in different classifications, taking into account the time of evolution are possible to be divided in acute or chronic, to first with few hours or days of beginning of the symptoms, whereas the chronicle also presents a silence course but of the disease of approximately 4 weeks of instauration. There is a difference according to its etiologic agent; they can be infectious and non-infectious. Examples of common non-infectious causes include medications (ex, nonsteroidal anti-inflammatory drugs, and antibiotics and carcinomatosis. A classification exists as well according to the causal agent. The acute bacterial meningitis remarks a bacterial origin of the syndrome, which characterizes by the by an acute onset of meningeal symptoms and neutrophilic pleocytosis. Each one of the bacteriological agents, parasitic or fungus finishes by characterizing the different presentations of the clinical features (ex, meningocóccica meningitis, Cryptococcus meningitis. Finally, there is also the aseptic meningitis, denominated in this form because it’s nonpyogenic cellular response caused by many types of agents. The patients show an acute beginning of symptoms, fever and lymphocytic pleocytosis. After

  11. Bacterial Culture of Neonatal Sepsis

    OpenAIRE

    AH Movahedian; R Moniri; Z Mosayebi

    2006-01-01

    Neonatal bacterial sepsis is one of the major cause of morbidity and mortality in neonates. This retrospective study was performed to determine the incidence of bacterial sepsis with focus on Gram negative organisms in neonates admitted at Beheshti Hospital in Kashan, during a 3-yr period, from September 2002 to September 2005. Blood culture was performed on all neonates with risk factors or signs of suggestive sepsis. Blood samples were cultured using brain heart infusion (BHI) broth accordi...

  12. Mast cells in bacterial infections

    OpenAIRE

    Rönnberg, Elin

    2014-01-01

    Mast cells are implicated in immunity towards bacterial infection, but the molecular mechanisms by which mast cells contribute to the host response are only partially understood. Previous studies have examined how mast cells react to purified bacterial cell wall components, such as peptidoglycan and lipopolysaccharide. To investigate how mast cells react to live bacteria we co-cultured mast cells and the gram-positive bacteria Streptococcus equi (S. equi) and Staphylococcus aureus (S. aureus)...

  13. Bacterial Alkaloids Prevent Amoebal Predation.

    Science.gov (United States)

    Klapper, Martin; Götze, Sebastian; Barnett, Robert; Willing, Karsten; Stallforth, Pierre

    2016-07-25

    Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae. PMID:27294402

  14. Exercise Dependence

    OpenAIRE

    Vardar, Erdal

    2012-01-01

    Exercise dependence define a condition in which a person performs excessive exercise resulting in deterioration of his or her physical and mental health wellness. Despite many clinical research studies on exercise dependence, exact diagnostic criteria has not been developed yet. Clinical evidences concerning etiology, epidemiology, underlying mechanisms and treatment of exercise dependence are still not sufficient. Moreover, evaluation of this clinical disorder within dependency perspective...

  15. Effect of Sodium Butyrate and 1,25-(OH)2D3 on Proliferation and hTERT Expression of Human Colon Cancer Cells%丁酸钠和1,25-(OH)2D3对人结肠癌细胞增殖和hTERT表达的影响

    Institute of Scientific and Technical Information of China (English)

    章颖; 于成功

    2011-01-01

    Background: Telomerase activity plays a crucial role in the immortalization of tumor cells and is tightly regulated by human telomerase reverse transcriptase (hTERT). Bioactive agents such as sodium butyrate and lα,25-dihydroxyvitamin D3 [1,25-(OH)2D3] have been demonstrated to have a potential anti-tumor effect. Aims: To investigate the effect of sodium butyrate and 1,25-(OH)2D3 on proliferation of human colon cancer cells and its potential mechanism. Methods:Human colon cancer HT29 cells were treated with sodium butyrate (0.5-2.0 mmol/L), 1,25-(OH)2D3 (10-8-10-6mol/L) and their combination [1.0 mmol/L sodium butyrate + 10-7mol/L 1,25-(OH)2D3], respectively. The growth inhibition of HT29 cells was measured by MTT assay, the cell cycle and apoptosis were assessed by flow cytometry, and hTERT mRNA expression was determined by RT-PCR. Results: Both sodium butyrate and 1,25-(OH)2D3 inhibited the growth of HT29 cells in a dose- and time-dependent manner. Sodium butyrate (1.0 mmol/L) and 1,25-(OH)2D3 (10-7mol/L) could arrest cell cycle in G0/G1 phase, induce apoptosis, and down-regulate hTERT mRNA expression in HT29 cells. Co-administration of sodium butyrate and 1,25-(OH)2D3 was more effective than used alone (P<0.05). Conclusions: Sodium butyrate and 1,25(OH)2D3 can inhibit the proliferation of human colon cancer cells. The mechanism might be related to inhibition of telomerase activity, arrest of cell cycle and induction of apoptosis by down-regulating hTERT expression. Co-administation of the two drugs has synergistic effect on human colon cancer cells.%背景:端粒酶在肿瘤细胞永生化过程中起重要作用,人端粒酶逆转录酶(hTERT)是调节端粒酶活性的关键因素.有研究发现生物活性制剂丁酸钠和1α,25-二羟维生素D3[1,25-(OH)2D31具有潜在抗肿瘤效应.目的:观察丁酸钠和1,25-(OH)2D3对人结肠癌细胞增殖的影响及其可能机制.方法:以不同浓度丁酸钠(0.5~2.0 mmol/L)、1,25-(OH)2D3(10-8~10

  16. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria.

    Directory of Open Access Journals (Sweden)

    Sujatha Srinivasan

    Full Text Available BACKGROUND: Bacterial vaginosis (BV is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. METHODOLOGY/PRINCIPAL FINDINGS: Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel's clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs significantly associated with each of the four Amsel's criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. CONCLUSIONS/SIGNIFICANCE: The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased

  17. Polysaccharides and bacterial plugging

    Energy Technology Data Exchange (ETDEWEB)

    Fogler, H.S.

    1991-11-01

    Before any successful application of Microbial Enhanced Oil Recovery process can be realized, an understanding of the cells' transport and retentive mechanisms in porous media is needed. Cell transport differs from particle transport in their ability to produce polysaccharides, which are used by cells to adhere to surfaces. Cell injection experiments have been conducted using Leuconostoc cells to illustrate the importance of cellular polysaccharide production as a transport mechanism that hinders cell movement and plugs porous media. Kinetic studies of the Leuconostoc cells, carried out to further understand the plugging rates of porous media, have shown that the cells' growth rates are approximately equal when provided with monosaccharide (glucose and fructose) or sucrose. The only difference in cell metabolism is the production of dextran when sucrose is supplied as a carbon source. Experimentally it has also been shown that the cells' growth rate is weakly dependent upon the sucrose concentration in the media, and strongly dependent upon the concentration of yeast extract. The synthesis of cellular dextran has been found to lag behind cell generation, thus indicating that the cells need to reach maturity before they are capable of expressing the detransucrase enzyme and synthesizing insoluble dextran. Dextran yields were found to be dependent upon the sucrose concentration in the media. 10 refs., 9 figs., 9 tabs.

  18. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    Science.gov (United States)

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment. PMID:24600849

  19. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    Science.gov (United States)

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment.

  20. 水-丁酸-壬醇三相系统的液液平衡%Liquid-Liquid Equilibria of Water + Butyric Acid + Nonanol Ternary System

    Institute of Scientific and Technical Information of China (English)

    S.üsmail K1rbaslar; Sema Yüksel; Erol ínce; ísmail Boz

    2004-01-01

    Liquid-liquid equilibrium (LLE) data for the water + butyric acid + nonanol system have been determined experimentally at the temperatures of 298.15 K, 308.15 K and 318.15 K. Tie-line compositions were correlated by Othmer-Tobias method. The universal quasichemical functional group activity coefficient (UNIFAC) and modified UNIFAC methods were used to predict the phase equilibrium in the system using the interaction parameters between CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  1. Effects of Exogenous Indole Butyric Acid and Callus Formation on the Anti-oxidant Activity, Total Phenolic, and Anthocyanin Constituents of Mulberry Cuttings

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to evaluate the effects of exogenous indole butyric acid (IBA) and callus formation on the antioxidant activity, total phenolics, and anthocyanin constituents of Morus nigra L. and M. alba L. cuttings, we investigated the variations before and after the treatment. The results indicate that anti-oxidant ability, total phenolic, and anthocyanin constituents of the callus stems of both Morus species were higher than those of non-callus forming species. There were also increases observed in anti-oxidant ability, total phenolic,and anthocyanin constituents of calli treated with IBA (1 000-3 000 mg/L).

  2. Empirical prediction of net splanchnic release of ketogenic nutrients, acetate, butyrate and β-hydroxybutyrate in ruminants: a meta-analysis.

    Science.gov (United States)

    Loncke, C; Nozière, P; Bahloul, L; Vernet, J; Lapierre, H; Sauvant, D; Ortigues-Marty, I

    2015-03-01

    For energy feeding systems for ruminants to evolve towards a nutrient-based system, dietary energy supply has to be determined in terms of amount and nature of nutrients. The objective of this study was to establish response equations of the net hepatic flux and net splanchnic release of acetate, butyrate and β-hydroxybutyrate to changes in diet and animal profiles. A meta-analysis was applied on published data compiled from the FLuxes of nutrients across Organs and tissues in Ruminant Animals database, which pools the results from international publications on net splanchnic nutrient fluxes measured in multi-catheterized ruminants. Prediction variables were identified from current knowledge on digestion, hepatic and other tissue metabolism. Subsequently, physiological and other, more integrative, predictors were obtained. Models were established for intakes up to 41 g dry matter per kg BW per day and diets containing up to 70 g concentrate per 100 g dry matter. Models predicted the net hepatic fluxes or net splanchnic release of each nutrient from its net portal appearance and the animal profile. Corrections were applied to account for incomplete hepatic recovery of the blood flow marker, para-aminohippuric acid. Changes in net splanchnic release (mmol/kg BW per hour) could then be predicted by combining the previously published net portal appearance models and the present net hepatic fluxes models. The net splanchnic release of acetate and butyrate were thus predicted from the intake of ruminally fermented organic matter (RfOM) and the nature of RfOM (acetate: residual mean square error (RMSE)=0.18; butyrate: RMSE=0.01). The net splanchnic release of β-hydroxybutyrate was predicted from RfOM intake and the energy balance of the animals (RMSE=0.035), or from the net portal appearance of butyrate and the energy balance of the animals (RMSE=0.050). Models obtained were independent of ruminant species, and presented low interfering factors on the residuals, least

  3. Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson.

    Science.gov (United States)

    2012-06-01

    The following article from Proteins: Structure, Function, and Bioinformatics, "Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation," by Jiasheng Diao, Yunglin D. Ma, and Miriam S. Hasson, published online on 21 October 2010 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the journal Editor in Chief, Bertrand Garcia-Moreno, and Wiley Periodicals. The retraction has been agreed because it was established by internal investigation performed by Purdue University that the authors of this article are not the owners of the data and have no right to publication.

  4. 甲烷磺酸铜催化合成丁酸异戊酯的性能研究%Catalytic synthesis of isoamyl butyrate with copper methanesulfonate

    Institute of Scientific and Technical Information of China (English)

    史凯迎; 鄢红玉; 石洪波

    2012-01-01

    以甲烷磺酸铜作为合成丁酸异戊酯的催化剂,考察了催化剂用量、反应时间、醇酸物质的量比对酯化率的影响.实验表明,丁酸0.167 mol,醇酸物质的量比1.2:1,甲烷磺酸铜用量0.125%(基于丁酸的物质的量分数,下同),反应时间1.5~2.0 h,环己烷5 mL作带水剂,在回流温度下酯化率可达97.8%;与CuSO4·5H2O等其他几种Lewis酸相比,甲烷磺酸铜具有较高的催化活性,反应后易与产物分离,催化剂重复使用8次,酯化率仍达到93.0%以上.%Copper methanesulfonate is used as catalyst in esterification of isoamyl alcohol with butyric acid, the amount of catalyst, reaction time and the ratio of alcohol to acid, which effected the reaction have been investigated. Under the following conditions: 0. 167 mol butyric acid, 1. 2! 1 molar ratio of isoamyl alcohol to butyric acid, 0. 5% catalyst (molar percent of butyric acid, the following as it) , 1. 5-2. 0 h, 5 mL cyclohexane that act as water-carrying agent and at reflux temperature; the yield can reach 97. 8%. Compared with some other Lewis acids, such as CuSQ4 ·5H2, copper methanesulfonate has merits of easy seperation, and it was used repeatedly 8 times without obvious loss of activity. Furthermore, the acid conversation still kept above 93. 0%.

  5. Influence of the nano-micro structure of the surface on bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Carolina Díaz

    2007-03-01

    Full Text Available Biomaterials failures are frequently associated to the formation of bacterial biofilms on the surface. The aim of this work is to study the adhesion of non motile bacteria streptococci consortium and motile Pseudomonas fluorescens. Substrates with micro and nanopatterned topography were used. The influence of surface characteristics on bacterial adhesion was investigated using optical and epifluorescence microscopy, scanning electron microscopy (SEM and atomic force microscopy (AFM. Results showed an important influence of the substratum nature. On microrough surfaces, initial bacterial adhesion was less significant than on smooth surfaces. In contrast, nanopatterned samples showed more bacterial attachment than the smooth control. It was also noted a remarkable difference in morphology, orientation and distribution of bacteria between the smooth and the nanostructured substrate. The results show the important effect of substratum nature and topography on bacterial adhesion which depended on the relation between roughness characteristics dimensions and bacterial size.

  6. Direct optical monitoring of flow generated by bacterial flagellar rotation

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, Silke R.; Nedev, Spas; Carretero-Palacios, Sol; Lohmüller, Theobald, E-mail: t.lohmueller@lmu.de, E-mail: feldmann@lmu.de; Feldmann, Jochen, E-mail: t.lohmueller@lmu.de, E-mail: feldmann@lmu.de [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Munich (Germany); Mader, Andreas; Opitz, Madeleine [Chair for Experimental Physics: Soft Matter Physics and Biophysics, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Munich (Germany)

    2014-03-03

    We report on a highly sensitive approach to measure and quantify the time dependent changes of the flow generated by the flagella bundle rotation of single bacterial cells. This is achieved by observing the interactions between a silica particle and a bacterium, which are both trapped next to each other in a dual beam optical tweezer. In this configuration, the particle serves as a sensitive detector where the fast-Fourier analysis of the particle trajectory renders, it possible to access information about changes of bacterial activity.

  7. The Human Vaginal Bacterial Biota and Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Sujatha Srinivasan

    2008-01-01

    Full Text Available The bacterial biota of the human vagina can have a profound impact on the health of women and their neonates. Changes in the vaginal microbiota have been associated with several adverse health outcomes including premature birth, pelvic inflammatory disease, and acquisition of HIV infection. Cultivation-independent molecular methods have provided new insights regarding bacterial diversity in this important niche, particularly in women with the common condition bacterial vaginosis (BV. PCR methods have shown that women with BV have complex communities of vaginal bacteria that include many fastidious species, particularly from the phyla Bacteroidetes and Actinobacteria. Healthy women are mostly colonized with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners, though a variety of other bacteria may be present. The microbiology of BV is heterogeneous. The presence of Gardnerella vaginalis and Atopobium vaginae coating the vaginal epithelium in some subjects with BV suggests that biofilms may contribute to this condition.

  8. Dependency Parsing

    CERN Document Server

    Kubler, Sandra; Nivre, Joakim

    2009-01-01

    Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes of parsing models that are in current use: transition-based, graph-based, and grammar-based models. It continues with a chapter on evaluation and one on the comparison of different methods, and it close

  9. New Treatments for Bacterial Keratitis

    Directory of Open Access Journals (Sweden)

    Raymond L. M. Wong

    2012-01-01

    Full Text Available Purpose. To review the newer treatments for bacterial keratitis. Data Sources. PubMed literature search up to April 2012. Study Selection. Key words used for literature search: “infectious keratitis”, “microbial keratitis”, “infective keratitis”, “new treatments for infectious keratitis”, “fourth generation fluoroquinolones”, “moxifloxacin”, “gatifloxacin”, “collagen cross-linking”, and “photodynamic therapy”. Data Extraction. Over 2400 articles were retrieved. Large scale studies or publications at more recent dates were selected. Data Synthesis. Broad spectrum antibiotics have been the main stay of treatment for bacterial keratitis but with the emergence of bacterial resistance; there is a need for newer antimicrobial agents and treatment methods. Fourth-generation fluoroquinolones and corneal collagen cross-linking are amongst the new treatments. In vitro studies and prospective clinical trials have shown that fourth-generation fluoroquinolones are better than the older generation fluoroquinolones and are as potent as combined fortified antibiotics against common pathogens that cause bacterial keratitis. Collagen cross-linking was shown to improve healing of infectious corneal ulcer in treatment-resistant cases or as an adjunct to antibiotics treatment. Conclusion. Fourth-generation fluoroquinolones are good alternatives to standard treatment of bacterial keratitis using combined fortified topical antibiotics. Collagen cross-linking may be considered in treatment-resistant infectious keratitis or as an adjunct to antibiotics therapy.

  10. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...... examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive...

  11. Hopanoids as functional analogues of cholesterol in bacterial membranes.

    Science.gov (United States)

    Sáenz, James P; Grosser, Daniel; Bradley, Alexander S; Lagny, Thibaut J; Lavrynenko, Oksana; Broda, Martyna; Simons, Kai

    2015-09-22

    The functionality of cellular membranes relies on the molecular order imparted by lipids. In eukaryotes, sterols such as cholesterol modulate membrane order, yet they are not typically found in prokaryotes. The structurally similar bacterial hopanoids exhibit similar ordering properties as sterols in vitro, but their exact physiological role in living bacteria is relatively uncharted. We present evidence that hopanoids interact with glycolipids in bacterial outer membranes to form a highly ordered bilayer in a manner analogous to the interaction of sterols with sphingolipids in eukaryotic plasma membranes. Furthermore, multidrug transport is impaired in a hopanoid-deficient mutant of the gram-negative Methylobacterium extorquens, which introduces a link between membrane order and an energy-dependent, membrane-associated function in prokaryotes. Thus, we reveal a convergence in the architecture of bacterial and eukaryotic membranes and implicate the biosynthetic pathways of hopanoids and other order-modulating lipids as potential targets to fight pathogenic multidrug resistance.

  12. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.; Butcher, Rebecca E.; Kan, Wan-Ting; Bird, Catherina H.; Ung, Kheng; Browne, Kylie A.; Baran, Katherine; Bashtannyk-Puhalovich, Tanya A.; Faux, Noel G.; Wong, Wilson; Porter, Corrine J.; Pike, Robert N.; Ellisdon, Andrew M.; Pearce, Mary C.; Bottomley, Stephen P.; Emsley, Jonas; Smith, A. Ian; Rossjohn, Jamie; Hartland, Elizabeth L.; Voskoboinik, Ilia; Trapani, Joseph A.; Bird, Phillip I.; Dunstone, Michelle A.; Whisstock, James C. (PMCI-A); (Monash); (Nottingham)

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.

  13. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    Directory of Open Access Journals (Sweden)

    Heloisa Helena Karnas Hoefel

    2006-12-01

    Full Text Available The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and Medline searching for the word nursing and bacterial resistance, antibiotics control, hospital infections, administration drugs, errors and adverse events. There were chose 58 papers about nursing and/or were basics for international and Brazilian studies. Results: It was described international classifications errors and consequences analyzing their possible influences on antibiotics effects. Based on these knowledge, interventions are recommended to implement safety practice and care.

  14. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    Directory of Open Access Journals (Sweden)

    Hongzhen Luo

    Full Text Available In this study, an efficient acetone-butanol-ethanol (ABE fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1 extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2 enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3 direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  15. Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance

    DEFF Research Database (Denmark)

    Flummer, Christine; Theil, Peter Kappel

    2012-01-01

    colostrum period (0.0 vs. 4.8%, P < 0.05). The HMB supplementation did not affect colostrum composition (P > 0.10). Supplementation with HMB increased milk content of fat (7.40 vs. 6.47 ± 0.30%; P < 0.05), dry matter (19.0 vs. 18.2 ± 0.26; P < 0.05), and energy (4.81 vs. 4.47 ±0.12 kJ/g; P < 0.05) and......This trial was conducted to investigate whether β-hydroxy β-methyl butyrate (HMB) supplementation during late gestation and throughout lactation would influence colostrum and milk production of sows and neonatal piglet survival (0 to 24 h). Control sows (CON; n = 8) were fed a standard lactation.......05] whereas plasma 3-hydroxy butyrate was reduced in HMB sows during lactation. In conclusion, HMB supplemented to sows improved the colostrum production but inhibited piglet growth at peak lactation....

  16. Quality Evaluation of Clevidipine Butyrate Emulsion for Intravenous Injection%丁酸氯维地平静脉脂肪乳剂的质量评价

    Institute of Scientific and Technical Information of China (English)

    杨丽霞; 全东琴; 王涛

    2013-01-01

    目的:通过对丁酸氯维地平静脉脂肪乳各指标进行检测,对所制备的丁酸氯维地平静脉脂肪乳的质量进行评价,确保制剂的稳定、安全、有效.方法:制备静脉脂肪乳剂,通过测定制剂含量、粒径、电位、pH值、过氧化值、游离脂肪酸值、甲氧基苯胺值等指标对制剂进行质量评价.结果:丁酸氯维地平的峰面积(Y)与浓度(X)在0.1~100 μg·mL-1范围内具有良好线性关系,Y=51801X+17659,R2=0.9999(n=3),检测限为0.8ng,所制备的丁酸氯维地平静脉脂肪乳剂的平均含量为97.06%,平均粒径243.2± 2.08nm,zeta电位-36.2±0.25,pH 7.03±0.11,过氧化值0.01 mL,游离脂肪酸值0.20± 0.01,甲氧基苯胺值2.08±0.07,渗透压306±8.96 mOsmol·Kg-1.结论:所制备丁酸氯维地平脂肪乳的含量符合要求,标示含量在90.0%-110.0%的限度范围,渗透压及pH均与人体血液环境相接近,平均粒径小且分布集中,过氧化值、游离脂肪酸值及甲氧基苯胺值均较低,制备的乳剂性质稳定、重复性好,能够达到国外进口同种制剂的标准.%Objective: To evaluate the quality of clevidipine butyrate emulsion for intravenous injection by detecting each indicator of it, in order to ensure the stability safety and validity of the emulsion. Methods: High pressure homogenization method was used to prepare clevidipine butyrate emulsion for intravenous injection, the quality of clevidipine butyrate emulsion was evaluated by the determination of the content, the mean particle size, zeta potential, pH value, peroxide value, acid value, and osmotic pressure of clevidipine butyrate emulsion. Results: The peak area of clevidipine butyrate (Y) and concentration (X) in the 0.1~100 μg·mL-1 range has a good linear relationship within the framework Y=51801X+17659 R2=0.9999(n=3), the detection limit of clevidipine butyrate was 0.8 ng. The mean content of Clevidipine butyrate emulsion was 97.06 %, the mean particle size, Zeta

  17. Synthesis of Cellulose Acetate Butyrate under Microwave Irradiation%微波辅助合成醋酸丁酸纤维素的研究

    Institute of Scientific and Technical Information of China (English)

    柴多里; 张小翠; 崔庆飞

    2011-01-01

    Using refined cotton,butyric acid,acetic acid as raw materials and concentrated sulfuric acid as the catalyst,cellulose acetate butyrate(CAB-381) was synthesized by the method of microwave irradiation.The CABs' butyric value and acetyl value were determin%以精制棉、正丁酸、冰醋酸等为原料,浓硫酸为催化剂,采用微波辅助的方法合成了醋酸丁酸纤维素(CAB-381)。用化学分析方法对产物的丁酰(乙酰)基值进行测定,结果表明:微波辅助合成的CAB-381和美国伊士曼公司的产品CAB-381的丁酰基值和乙酰基值比较接近,分别为38.0和37.7、13.5和13.6;红外谱图也基本一致。在微波辅助的作用下,加快了酰化的反应速度,缩短了反应时间。与传统方法相比,产品的丁酰值提高了9.8%,产品产率高出11.97%。

  18. Long-term dietary pattern of fecal donor correlates with butyrate production and markers of protein fermentation during in vitro fecal fermentation.

    Science.gov (United States)

    Yang, Junyi; Rose, Devin J

    2014-09-01

    Diet influences gut microbiota composition. Therefore, we hypothesized that diet would impact the extent of dietary fiber utilization and the types of metabolic end-products produced by the microbiota during in vitro fecal fermentation. By obtaining long-term dietary records from fecal donors, we aimed to determine the correlations between dietary intake variables and dietary fiber degradation and short-/branched-chain fatty acid (BCFA) and ammonia production during in vitro fecal fermentation. Eighteen subjects completed 1-year diet history questionnaires and provided fecal samples that were used for in vitro fermentation of a whole wheat substrate. The percentage of dietary fiber fermented was not correlated with nutrient intakes; however, butyrate production was correlated with fecal donor intake of many nutrients of which principal component analysis revealed were mostly contributed by grain-, nut-, and vegetable-based foods. Negative correlations were found for propionate with intake of total carbohydrate, added sugar, and sucrose and for ammonia and BCFA production with intake of unsaturated fats. Thus, our analysis did not support our first hypothesis: the percentage of dietary fiber fermented during in vitro fermentation was not correlated with dietary records. However, production of butyrate; BCFA; ammonia; and, to a lesser extent, propionate was correlated with the diet records of fecal donors, thus supporting our second hypothesis. These results suggest that diets high in plant-based foods and high in unsaturated fats are associated with microbial metabolism that is consistent with host health.

  19. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  20. Phylogenetic organization of bacterial activity.

    Science.gov (United States)

    Morrissey, Ember M; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; Hayer, Michaela; McHugh, Theresa A; Marks, Jane C; Price, Lance B; Hungate, Bruce A

    2016-09-01

    Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions. PMID:26943624