WorldWideScience

Sample records for butyrate attenuates lipopolysaccharide-induced

  1. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment.

    Science.gov (United States)

    Vasconcelos, Andrea R; Yshii, Lidia M; Viel, Tania A; Buck, Hudson S; Mattson, Mark P; Scavone, Cristoforo; Kawamoto, Elisa M

    2014-05-06

    Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection.

  2. Probucol attenuates lipopolysaccharide-induced leukocyte recruitment and inflammatory hyperalgesia: effect on NF-кB activation and cytokine production.

    Science.gov (United States)

    Zucoloto, Amanda Z; Manchope, Marília F; Staurengo-Ferrari, Larissa; Pinho-Ribeiro, Felipe A; Zarpelon, Ana C; Saraiva, André L L; Cecílio, Nerry Tatiana; Alves-Filho, José C; Cunha, Thiago M; Menezes, Gustavo B; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2017-08-15

    Probucol 4,4'- (Isopropylidenedithio)bis(2,6-di-tert-butylphenol) is a synthetic molecule clinically used for prevention and treatment of hypercholesterolemia and atherosclerosis. Recent studies have shown that the beneficial effects of probucol mainly derive from its anti-inflammatory and antioxidant properties. Gram-negative bacteria are common infectious agents and their wall components, e.g. lipopolysaccharide (LPS), are important elicitors of inflammation. LPS is sensed by tissue resident cells and it triggers a Toll-like receptor 4/MyD88-dependent signaling cascade resulting in endothelial activation, leukocyte recruitment and nociception. Therefore the present study aimed to investigate the anti-inflammatory and analgesic effects of probucol in models of LPS-induced acute inflammation. Probucol at 0.3-30mg/kg was administrated to male Swiss mice per oral 1h before intraplantar or intraperitoneal lipopolysaccharide stimulus. Probucol at 3mg/kg reduced lipopolysaccharide-induced mechanical and thermal hyperalgesia. These effects were accompanied by reduced leukocyte influx and cytokine production in both paw skin and peritoneum exudate. Unexpectedly, probucol did not alter lipopolysaccharide-induced tissue oxidative stress at anti-inflammatory /analgesic dose. On the other hand, probucol inhibited lipopolysaccharide-induced nuclear factor kappa B (NF-кB) activation in paw tissue as well as NF-кB activity in cultured macrophages in vitro, reinforcing the inhibitory effect of probucol over the NF-кB signaling pathway. In this sense, we propose that probucol acts on resident immune cells, such as macrophages, targeting the NF-кB pathway. As a result, it prevents the amplification and persistence of the inflammatory response by attenuating NF-кB-dependent cytokine production and leukocyte recruitment explaining its analgesic effects as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  4. Rabdosia japonica var. glaucocalyx Flavonoids Fraction Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Chun-jun Chu

    2014-01-01

    Full Text Available Rabdosia japonica var. glaucocalyx (Maxim. Hara, belonging to the Labiatae family, is widely used as an anti-inflammatory and antitumor drug for the treatment of different inflammations and cancers. Aim of the Study. To investigate therapeutic effects and possible mechanism of the flavonoids fraction of Rabdosia japonica var. glaucocalyx (Maxim. Hara (RJFs in acute lung injury (ALI mice induced by lipopolysaccharide (LPS. Materials and Methods. Mice were orally administrated with RJFs (6.4, 12.8, and 25.6 mg/kg per day for 7 days, consecutively, before LPS challenge. Lung specimens and the bronchoalveolar lavage fluid (BALF were isolated for histopathological examinations and biochemical analysis. The level of complement 3 (C3 in serum was quantified by a sandwich ELISA kit. Results. RJFs significantly attenuated LPS-induced ALI via reducing productions of the level of inflammatory mediators (TNF-α, IL-6, and IL-1β, and significantly reduced complement deposition with decreasing the level of C3 in serum, which was exhibited together with the lowered myeloperoxidase (MPO activity and nitric oxide (NO and protein concentration in BALF. Conclusions. RJFs significantly attenuate LPS-induced ALI via reducing productions of proinflammatory mediators, decreasing the level of complement, and reducing radicals.

  5. CELECOXIB ATTENUATES SYSTEMIC LIPOPOLYSACCHARIDE-INDUCED BRAIN INFLAMMATION AND WHITE MATTER INJURY IN THE NEONATAL RATS

    Science.gov (United States)

    FAN, L.-W.; KAIZAKI, A.; TIEN, L.-T.; PANG, Y.; TANAKA, S.; NUMAZAWA, S.; BHATT, A. J.; CAI, Z.

    2013-01-01

    Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20 mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire hanging maneuver test were performed 24 hr after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties. PMID:23485816

  6. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-02-01

    Melatonin, a naturally occurring neurohormone in the pineal gland, has been shown to exert antioxidant and anti-inflammatory effects. This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation.

  7. Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway.

    Science.gov (United States)

    Ershun, Zhou; Yunhe, Fu; Zhengkai, Wei; Yongguo, Cao; Naisheng, Zhang; Zhengtao, Yang

    2014-04-01

    Cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of CEP on a mouse model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms remain to be elucidated. The purpose of the present study was to investigate the effects of CEP on LPS-induced mouse mastitis. The mouse model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. CEP was administered intraperitoneally at 1 h before and 12 h after induction of LPS. The results show that CEP significantly attenuates the infiltration of neutrophils, suppresses myeloperoxidase activity, and reduces the levels of TNF-α, IL-1β, and IL-6 in LPS-induced mouse mastitis. Furthermore, CEP inhibited the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that CEP exerts potent anti-inflammatory effects on LPS-induced mouse mastitis. Accordingly, CEP might be a potential therapeutic agent for mastitis.

  8. Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways

    Directory of Open Access Journals (Sweden)

    Hah Jong

    2009-03-01

    Full Text Available Abstract Background Synthetic peptides containing the RGD sequence inhibit integrin-related functions in different cell systems. Here, we investigated the effects of synthetic Arg-Gly-Asp-Ser (RGDS peptide on key inflammatory responses to intratracheal (i.t. lipopolysaccharide (LPS treatment and on the integrin signaled mitogen-activated protein (MAP kinase pathway during the development of acute lung injury. Methods Saline or LPS (1.5 mg/kg was administered i.t. with or without a single dose of RGDS (1, 2.5, or 5 mg/kg, i.p., anti-αv or anti-β3 mAb (5 mg/kg, i.p.. Mice were sacrificed 4 or 24 h post-LPS. Results A pretreatment with RGDS inhibited LPS-induced increases in neutrophil and macrophage numbers, total protein levels and TNF-α and MIP-2 levels, and matrix metalloproteinase-9 activity in bronchoalveolar lavage (BAL fluid at 4 or 24 h post-LPS treatment. RGDS inhibited LPS-induced phosphorylation of focal adhesion kinase and MAP kinases, including ERK, JNK, and p38 MAP kinase, in lung tissue. Importantly, the inhibition of the inflammatory responses and the kinase pathways were still evident when this peptide was administered 2 h after LPS treatment. Similarly, a blocking antibody against integrin αv significantly inhibited LPS-induced inflammatory cell migration into the lung, protein accumulation and proinflammatory mediator production in BAL fluid, at 4 or 24 h post-LPS. Anti-β3 also inhibited all LPS-induced inflammatory responses, except the accumulation of BAL protein at 24 h post-LPS. Conclusion These results suggest that RGDS with high specificity for αvintegrins attenuates inflammatory cascade during LPS-induced development of acute lung injury.

  9. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  10. Lactobacilli-fermented cow's milk attenuated lipopolysaccharide-induced neuroinflammation and memory impairment in vitro and in vivo.

    Science.gov (United States)

    Musa, Nurul Huda; Mani, Vasudevan; Lim, Siong Meng; Vidyadaran, Sharmili; Abdul Majeed, Abu Bakar; Ramasamy, Kalavathy

    2017-11-01

    Nutritional interventions are now recommended as strategies to delay Alzheimer's disease (AD) progression. The present study evaluated the neuroprotective effect (anti-inflammation) of lactic acid bacteria (either Lactobacillus fermentum LAB9 or L. casei LABPC) fermented cow's milk (CM) against lipopolysaccharide (LPS)-activated microglial BV2 cells in vitro. The ability of CM-LAB in attenuating memory deficit in LPS-induced mice was also investigated. ICR mice were orally administered with CM-LAB for 28 d before induction of neuroinflammation by LPS. Learning and memory behaviour were assessed using the Morris Water Maze Test. Brain tissues were homogenised for measurement of acetylcholinesterase (AChE), antioxidative, lipid peroxidation (malondialdehyde (MDA)) and nitrosative stress (NO) parameters. Serum was collected for cytokine analysis. CM-LAB9 and CM-LABPC significantly (P < 0·05) decreased NO level but did not affect CD40 expression in vitro. CM-LAB attenuated LPS-induced memory deficit in mice. This was accompanied by significant (P < 0·05) increment of antioxidants (SOD, GSH, GPx) and reduction of MDA, AChE and also pro-inflammatory cytokines. Unfermented cow's milk (UCM) yielded greater cytokine lowering effect than CM-LAB. The present findings suggest that attenuation of LPS-induced neuroinflamation and memory deficit by CM-LAB could be mediated via anti-inflammation through inhibition of AChE and antioxidative activities.

  11. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1.

    Science.gov (United States)

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury.

  12. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.L. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Hu, G.C. [Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Zhu, S.S. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Li, J.F. [Department of Anesthesiology, Tengzhou Central People' s Hospital, Liaocheng, Shandong Province (China); Liu, G.J. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China)

    2014-10-14

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

  13. Isoflurane attenuates lipopolysaccharide-induced acute lung injury by inhibiting ROS-mediated NLRP3 inflammasome activation.

    Science.gov (United States)

    Yin, Ning; Peng, Zhendan; Li, Bin; Xia, Jiangyan; Wang, Zhen; Yuan, Jing; Fang, Lei; Lu, Xinjiang

    2016-01-01

    Nucleotide-binding domains and leucine-rich repeat (NLR) pyrin domains containing 3 (NLRP3) inflammasome are highly involved in the pathogenesis of acute lung injury (ALI) wherein alveolar macrophages (AMs) play a crucial role. Isoflurane (ISO) has been shown to attenuate ALI. However, the inhibitory effects of ISO on NLRP3 activation in lipopolysaccharide (LPS)-induced ALI remain unknown. Here, we showed that 1.4% ISO post-treatment reduced LPS-induced body weight loss, pulmonary histopathological injury, edema, and vascular permeability in rats. ISO attenuated LPS-triggered inflammation, as evidenced by reductions in the number of total cells, neutrophils, and macrophages, and the release of IL-1β and IL-18 in the bronchoalveolar lavage fluid. ISO treatment decreased the myeloperoxidase activity, F4/80-positive cells, and the mRNA expression of IL-1β and IL-18 in the lung tissues of LPS-treated rats. Mechanistically, ISO reduced NLRP3 activation and caspase-1 activity in a reactive oxygen species (ROS)-dependent manner. An in vitro study that ISO inhibited LPS-induced AM activation partly confirmed in vivo findings. Overall, these results indicate that ISO post-conditioning alleviated LPS-induced ALI possibly by inhibiting ROS-mediated NLRP3 inflammasome activation.

  14. Indenes and tetralenes analogues attenuates lipopolysaccharide-induced inflammation: An in-vitro and in-vivo study.

    Science.gov (United States)

    Mohanty, Shilpa; Gautam, Yashveer; Maurya, Anil Kumar; Negi, Arvind S; Prakash, Om; Khan, Feroz; Bawankule, Dnyaneshwar Umrao

    2016-02-05

    In an effort to evaluate novel pharmacological activity of 1-chloro-2-formyl indene and tetralene analogues possessing potential antitubercular and antistaphylococcal agents, we explored its anti-inflammatory potential against lipopolysaccharide(LPS)-induced inflammation using in-vitro and in-vivo bioassay. Synthesized analogues significantly inhibited the production and expression of pro-inflammatory cytokines against LPS-induced inflammation in macrophages isolated from mice. Among all the analogues, TAF-5 (1-Chloro-2-formyl-1-tetralene) exhibited most potent anti-inflammatory activity without any cytotoxic effect. We have further evaluated the therapeutic efficacy and safety of TAF-5 in in-vivo system using LPS-induced sepsis, a systemic inflammation model and acute oral toxicity respectively in mice. Oral administration of TAF-5 inhibited the pro-inflammatory cytokines in serum, attenuated the organs injuries and improved host survival in dose dependent manner. Acute oral toxicity study showed TAF-5 is non-toxic at higher dose in mice. These results suggest the suitability of indene and tetralene analogues as new chemical entities for further investigation towards the management of inflammation related diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced mastitis in rats via suppressing MAPK mediated inflammatory responses and oxidative stress.

    Science.gov (United States)

    Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping

    2015-05-01

    Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Taki-Nakano, Nozomi [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505 (Japan); Kotera, Jun [Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505 (Japan); Ohta, Hiroyuki, E-mail: ohta.h.ab@m.titech.ac.jp [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan)

    2016-05-13

    Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.

  17. Flavonoids of Polygonum hydropiper L. attenuates lipopolysaccharide-induced inflammatory injury via suppressing phosphorylation in MAPKs pathways.

    Science.gov (United States)

    Tao, Junyu; Wei, Yingyi; Hu, Tingjun

    2016-01-22

    Polygonum hydropiper L. is widely used as a traditional remedy for the treatment of dysentery, gastroenteritis. It has been used to relieve swelling and pain, dispel wind and remove dampness, eliminate abundant phlegm and inflammatory for a long time. Previous study showed that antioxidants especially flavonoids pretreatment alleviated sepsis-induced injury in vitro and in vivo. In the present study, the possible anti-inflammatory effect of flavonoids from normal butanol fraction of Polygonum hydropiper L. extract (FNP) against inflammation induced by lipopolysaccharide (LPS) was evaluated in vivo and in vitro. The content of total flavonoid of FNP was determined by the aluminum colorimetric method. The content of rutin, quercetin and quercitrin was determined by HPLC method. Mice received FNP orally 3 days before an intra-peritoneal (i.p.) injection of lipopolysaccharide (LPS). Total superoxidase dismutase (T-SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), glutathione (GSH), myeloperoxidase (MPO) and malondialdehyde (MDA) levels were measured. Tumor necrosis factor-α levels in serum and tissue was measured. mRNA expressions of pro-inflammatory cytokines in lung were assessed by Real-Time PCR. Histopathological changes were evaluated in lung, ileum and colon. We also investigated FNP on reactive oxygen species (ROS), nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8) production, inducible nitric oxide synthase (iNOS), Cyclooxygenase-2 (COX-2) protein expression, phosphorylation of MAPKs and AMPK in LPS-stimulated RAW264.7 cells. FNP increased the levels of T-SOD, T-AOC, GSH-PX and GSH, decreased the levels of TNF-α, MPO and MDA, attenuate the histopathological lesion in LPS-stimulated mice. FNP inhibited production of inflammatory cytokines, ROS and NO, protein expressions of iNOS and COX-2, phosphorylation of ERK, JNK and c-JUN in MAPKs, promoted phosphorylation of AMPKα suppressed by LPS. These results

  18. The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a CD200-dependent manner

    DEFF Research Database (Denmark)

    Cox, F F; Berezin, V; Bock, E

    2013-01-01

    200-deficient mice and preincubated with FGL prior to stimulation with lipopolysaccharide (LPS). Cells were assessed for mRNA expression of markers of microglial activation, CD11b, CD40 and intercellular adhesion molecule 1 (ICAM-1) and also the inflammatory cytokines, interleukin (IL)-1β, IL-6...... effects in vivo. More recent evidence has indicated that FGL has anti-inflammatory effects, decreasing age-related changes in microglial activation and production of inflammatory cytokines. These changes have been associated with an FGL-induced increase in expression of the glycoprotein, CD200, which...... and tumour necrosis factor (TNF)-α, while supernatant concentrations of these cytokine were also assessed. LPS significantly increased all these parameters and the effect was greater in cells prepared from CD200-deficient mice. Whereas FGL attenuated the LPS-induced changes in cells from wildtype mice...

  19. Blocking triggering receptor expressed on myeloid cells-1 attenuates lipopolysaccharide-induced acute lung injury via inhibiting NLRP3 inflammasome activation.

    Science.gov (United States)

    Liu, Tian; Zhou, Yong; Li, Ping; Duan, Jia-Xi; Liu, Yong-Ping; Sun, Guo-Ying; Wan, Li; Dong, Liang; Fang, Xiang; Jiang, Jian-Xin; Guan, Cha-Xiang

    2016-12-22

    Acute lung injury (ALI) is associated with high mortality and uncontrolled inflammation plays a critical role in ALI. TREM-1 is an amplifier of inflammatory response, and is involved in the pathogenesis of many infectious diseases. NLRP3 inflammasome is a member of NLRs family that contributes to ALI. However, the effect of TREM-1 on NLRP3 inflammasome and ALI is still unknown. This study aimed to determine the effect of TREM-1 modulation on LPS-induced ALI and activation of the NLRP3 inflammasome. We showed that LR12, a TREM-1 antagonist peptide, significantly improved survival of mice after lethal doses of LPS. LR12 also attenuated inflammation and lung tissue damage by reducing histopathologic changes, infiltration of the macrophage and neutrophil into the lung, and production of the pro-inflammatory cytokine, and oxidative stress. LR12 decreased expression of the NLRP3, pro-caspase-1 and pro-IL-1β, and inhibited priming of the NLRP3 inflammasome by inhibiting NF-κB. LR12 also reduced the expression of NLRP3 and caspase-1 p10 protein, and secretion of the IL-1β, inhibited activation of the NLRP3 inflammasome by decreasing ROS. For the first time, these data show that TREM-1 aggravates inflammation in ALI by activating NLRP3 inflammasome, and blocking TREM-1 may be a potential therapeutic approach for ALI.

  20. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Fu, Yunhe; Gao, Ruifeng; Cao, Yongguo; Guo, Mengyao; Wei, Zhengkai; Zhou, Ershun; Li, Yimeng; Yao, Minjun; Yang, Zhengtao; Zhang, Naisheng

    2014-05-01

    Curcumin, the main constituent of the spice turmeric, has been reported to have potent anti-inflammatory properties. However, the effect of curcumin on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The aim of this study was to investigate whether curcumin could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of the mammary gland. Curcumin was applied 1h before and 12h after LPS treatment. The results showed that curcumin attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting results showed that curcumin inhibited the phosphorylation of IκB-α and NF-κB p65 and the expression of TLR4. These results indicated that curcumin has protective effect on mice mastitis and the anti-inflammatory mechanism of curcumin on LPS-induced mastitis in mice may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Curcumin may be a potential therapeutic agent against mastitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism.

    Science.gov (United States)

    Pan, Li-Long; Liu, Xin-Hua; Gong, Qi-Hai; Zhu, Yi-Zhun

    2011-06-01

    The present study attempts to investigate the effects of S-propargyl-cysteine (SPRC), a sulfur-containing amino acid, on lipopolysaccharide (LPS)-induced inflammatory response in H9c2 cardiac myocytes. We found that SPRC prevented nuclear factor-κB (NF-κB) activation assessed by NF-κB p65 phosphorylation and IκBα degradation, suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and intracellular reactive oxygen species (ROS) production. Furthermore, incubation of H9c2 cells with SPRC induced phosphorylation of Akt in a time- and concentration-dependent manner. In addition, SPRC attenuated LPS-induced mRNA and protein expression of tumor necrosis factor-α (TNF-α), and mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS). The effects of SPRC were abolished by cystathionine γ-lyase [CSE-an enzyme that synthesizes hydrogen sulfide (H(2)S)] inhibitor, DL: -propargylglycine (PAG), SPRC-induced Akt phosphorylation and TNF-α release was also abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, SPRC also increased LPS-induced down-regulation expression of CSE and H(2)S level in H9c2 cells. PAG abolished SPRC-induced up-regulation of H(2)S level. Therefore, we concluded that SPRC produced an anti-inflammatory effect in LPS-stimulated H9c2 cells partly through the CSE/H(2)S pathway by impairing IκBα/NF-κB signaling and by activating PI3K/Akt signaling pathway.

  2. FJU-C4, a new 2-pyridone compound, attenuates lipopolysaccharide-induced systemic inflammation via p38MAPK and NF-κB in mice.

    Directory of Open Access Journals (Sweden)

    Jung-Sen Liu

    Full Text Available Despite advances in antibiotic therapy and intensive care, the mortality caused by systemic inflammatory response syndrome and severe sepsis remains high. The use of anti-inflammatory agents to attenuate inflammatory response during acute systemic inflammatory reactions may improve survival rates. Here we show that a newly synthesized 2-pyridone compound (FJU-C4 can suppress the expression of late inflammatory mediators such as iNOS and COX-2 in murine macrophages. The pro-inflammatory cytokines, including TNFα, IL-1β, and IL-6, were dose-dependently suppressed by FJU-C4 both in mRNA and protein levels. In addition, the expression of TNFα was inhibited from as early as 2 hours after exposure to LPS stimulation. The production of mature pro-inflammatory cytokines was also suppressed by pretreatment with FJU-C4 in either cell culture medium or mice serum when stimulated by LPS. FJU-C4 prolongs mouse survival and prevents mouse death from LPS-induced systemic inflammation when the dose of FJU-C4 is over 5 mg/kg. The activities of ERK, JNK, and p38MAPK were induced by LPS stimulation on murine macrophage cell line, but only p38MAPK signaling was dramatically suppressed by pretreatment with the FJU-C4 compound in a dose-dependent manner. NF-κB activation also was suppressed by FJU-C4 compound. These findings suggest that the FJU-C4 compound may act as a promising therapeutic agent against inflammatory diseases by inhibiting the p38MAPK and NF-κB signaling pathway.

  3. Ginkgo biloba extracts attenuate lipopolysaccharide-induced inflammatory responses in acute lung injury by inhibiting the COX-2 and NF-κB pathways.

    Science.gov (United States)

    Yao, Xin; Chen, Nan; Ma, Chun-Hua; Tao, Jing; Bao, Jian-An; Zong-Qi, Cheng; Chen, Zu-Tao; Miao, Li-Yan

    2015-01-01

    In the present study, we analyzed the role of Ginkgo biloba extract in lipopolysaccharide(LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS. G. biloba extract (12 and 24 mg·kg(-1)) and dexamethasone (2 mg·kg(-1)), as a positive control, were given by i.p. injection. The cells in the bronchoalveolar lavage fluid (BALF) were counted. The degree of animal lung edema was evaluated by measuring the wet/dry weight ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-a, interleukin-1b, and interleukin-6, were assayed by enzyme-linked immunosorbent assay. Pathological changes of lung tissues were observed by H&E staining. The levels of NF-κB p65 and COX-2 expression were detected by Western blotting. Compared to the LPS group, the treatment with the G. biloba extract at 12 and 24 mg·kg(-1) markedly attenuated the inflammatory cell numbers in the BALF, decreased NF-κB p65 and COX-2 expression, and improved SOD activity, and inhibited MPO activity. The histological changes of the lungs were also significantly improved. The results indicated that G. biloba extract has a protective effect on LPS-induced acute lung injury in mice. The protective mechanism of G. biloba extract may be partly attributed to the inhibition of NF-κB p65 and COX-2 activation. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Genistein suppresses Prevotella intermedia lipopolysaccharide-induced inflammatory response in macrophages and attenuates alveolar bone loss in ligature-induced periodontitis.

    Science.gov (United States)

    Choi, Eun-Young; Bae, Seung Han; Ha, Min Hee; Choe, So-Hui; Hyeon, Jin-Yi; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2016-02-01

    Genistein is a major isoflavone subclass of flavonoids found in soybean and a potent tyrosine kinase inhibitor. The present study aimed to assess the effect of genistein on the production of proinflammatory mediators in murine macrophages stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen associated with different forms of periodontal disease, and to evaluate its possible influence on alveolar bone loss in ligature-induced periodontitis using micro-computed tomography (micro-CT) analysis as well. LPS was isolated from P. intermedia ATCC 25611 by using the standard hot phenol-water method. Culture supernatants were analyzed for nitric oxide (NO) and interleukin-6 (IL-6). Inducible NO synthase (iNOS) protein expression was evaluated by immunoblot analysis. Real-time PCR was carried out to measure iNOS and IL-6 mRNA expression. In addition, effect of genistein on alveolar bone loss was evaluated in a rat model of experimental periodontitis using micro-CT analysis. Genistein significantly attenuated P. intermedia LPS-induced production of iNOS-derived NO and IL-6 with attendant decrease in their mRNA expression in RAW264.7 cells. In addition, when genistein was administered to rats, decreases in alveolar bone height and bone volume fraction induced by ligature placement were significantly inhibited. Genistein administration also prevented ligature-induced alterations in the microstructural parameters of trabecular bone, including trabecular thickness, trabecular separation, bone mineral density and structure model index. While additional studies are required, we suggest that genistein could be utilized for the therapy of human periodontitis in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Black tea extract prevents lipopolysaccharide-induced NF-κB signaling and attenuates dextran sulfate sodium-induced experimental colitis

    Directory of Open Access Journals (Sweden)

    Cho Sung-Bum

    2011-10-01

    Full Text Available Abstract Background Black tea has been shown to elicit anti-oxidant, anti-carcinogenic, anti-inflammatory and anti-mutagenic properties. In this study, we investigated the impact of black tea extract (BTE on lipopolysaccharide (LPS-induced NF-κB signaling in bone marrow derived-macrophages (BMM and determined the therapeutic efficacy of this extract on colon inflammation. Methods The effect of BTE on LPS-induced NF-κB signaling and pro-inflammatory gene expression was evaluated by RT-PCR, Western blotting, immunofluorescence and electrophoretic mobility shift assay (EMSA. The in vivo efficacy of BTE was assessed in mice with 3% dextran sulfate sodium (DSS-induced colitis. The severity of colitis was measured by weight loss, colon length and histologic scores. Results LPS-induced IL-12p40, IL-23p19, IL-6 and IL-1β mRNA expressions were inhibited by BTE. LPS-induced IκBα phosphorylation/degradation and nuclear translocation of NF-κB/p65 were blocked by BTE. BTE treatment blocked LPS-induced DNA-binding activity of NF-κB. BTE-fed, DSS-exposed mice showed the less weight loss, longer colon length and lower histologic score compared to control diet-fed, DSS-exposed mice. DSS-induced IκBα phosphorylation/degradation and phosphorylation of NF-κB/p65 were blocked by BTE. An increase of cleaved caspase-3 and poly (ADP-ribose polymerase (PARP in DSS-exposed mice was blocked by BTE. Conclusions These results indicate that BTE attenuates colon inflammation through the blockage of NF-κB signaling and apoptosis in DSS-induced experimental colitis model.

  6. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Chen, Haijin; Mo, Xiaodong; Yu, Jinlong; Huang, Zonghai

    2013-09-01

    Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, has been reported to exhibit anti-inflammatory properties. However, the effect of alpinetin on mastitis has not been investigated. The aim of this study was to investigate the protective effect of alpinetin against lipopolysaccharide (LPS)-induced mastitis and to clarify the possible mechanism. In the present study, primary mouse mammary epithelial cells and an LPS-induced mouse mastitis model were used to investigate the effect of alpinetin on mastitis and the possible mechanism. In vivo, we observed that alpinetin significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase; down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. In vitro, we also observed that alpinetin inhibited the expression of TLR4 and the production of TNF-α, IL-1β and IL-6 in LPS-stimulated primary mouse mammary epithelial cells. However, alpinetin could not inhibit the production of IL-1β and IL-6 in TNF-α-stimulated primary mouse mammary epithelial cells. In conclusion, our results suggest that the anti-inflammatory effects of alpinetin against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Alpinetin may be a promising potential therapeutic reagent for mastitis treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Suaeda japonica Makino Attenuates Lipopolysaccharide- Induced ...

    African Journals Online (AJOL)

    HP

    Konkuk University, Chungju, 380-701, 2Fanipin Korea Co, Ltd, Ochang 208-211, 3KuGen Healthcare Institute, Chungju, 380-. 150, Republic of Korea .... radical was measured using a JES-FA ESR spectrometer (Jeol Ltd., Tokyo, Japan). A spin adduct was measured on an ESR spectrometer exactly after 2 min. Experimental ...

  8. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  9. Butyrate pretreatment attenuates heart depression in a mice model of endotoxin-induced sepsis via anti-inflammation and anti-oxidation.

    Science.gov (United States)

    Wang, Fangyan; Jin, Zengyou; Shen, Kaiyi; Weng, Tingting; Chen, Zhisong; Feng, Jiahui; Zhang, Zhengzheng; Liu, Jiaming; Zhang, Xiaolong; Chu, Maoping

    2017-03-01

    The depressed heart function is the main complication to cause death of septic patients in clinic. It is urgent to find effective interventions for this intractable disease. In this study, we investigated whether butyrate could be protective for heart against sepsis and the underlying mechanism. Mice were randomly divided into three groups. Model group challenged with LPS (30 mg/kg, i.p.) only. Butyrate group received butyrate (200 mg/kg·d) for 3days prior to LPS administration (30 mg/kg). Normal group received saline only. 6h and 12h after LPS administration were chosen for detection the parameters to estimate the effects or mechanism of butyrate pretreatment on heart of sepsis. The data showed that septic heart depression was attenuated by butyrate pretreatment through improvement of heart function depression (Psepsis was significantly alleviated by butyrate pretreatment (P<0.01). As oxidative stress indicators, SOD and CAT activity, and MDA content in heart were deteriorated by LPS challenge, which was noticeably ameliorated by butyrate pretreatment (P<0.01 or P<0.05). In conclusion, pretreatment with butyrate attenuated septic heart depression via anti-inflammation and anti-oxidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Pyrroloquinoline quinone (PQQ inhibits lipopolysaccharide induced inflammation in part via downregulated NF-κB and p38/JNK activation in microglial and attenuates microglia activation in lipopolysaccharide treatment mice.

    Directory of Open Access Journals (Sweden)

    Chongfei Yang

    Full Text Available Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. Pyrroloquinoline quinone (PQQ is a naturally occurring redox cofactor that acts as an essential nutrient, antioxidant, and has been reported to exert potent immunosuppressive effects. In the present study, the anti-inflammatory effects of PQQ was investigated in LPS treated primary microglia cells. Our observations showed that pretreatment with PQQ significantly inhibited the production of NO and PGE2 and suppressed the expression of pro-inflammatory mediators such as iNOS, COX-2, TNF-a, IL-1b, IL-6, MCP-1 and MIP-1a in LPS treated primary microglia cells. The nuclear translocation of NF-κB and the phosphorylation level of p65, p38 and JNK MAP kinase pathways were also inhibited by PQQ in LPS stimulated primary microglia cells. Further a systemic LPS treatment acute inflammation murine brain model was used to study the suppressive effects of PQQ against neuroinflammation in vivo. Mice treated with PQQ demonstrated marked attenuation of neuroinflammation based on Western blotting and immunohistochemistry analysis of Iba1-against antibody in the brain tissue. Indicated that PQQ protected primary cortical neurons against microglia-mediated neurotoxicity. These results collectively suggested that PQQ might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation.

  11. N-Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2.

    Science.gov (United States)

    Wang, Ya; Plastina, Pierluigi; Vincken, Jean-Paul; Jansen, Renate; Balvers, Michiel; Ten Klooster, Jean Paul; Gruppen, Harry; Witkamp, Renger; Meijerink, Jocelijn

    2017-03-15

    Several studies indicate that the n-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA) contributes to an attenuated inflammatory status in the development of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. To explain these effects, different mechanisms are being proposed, including those involving endocannabinoids and related signaling molecules. Many of these compounds belong to the fatty acid amides, conjugates of fatty acids with biogenic amines. Conjugates of DHA with ethanolamine or serotonin have previously been shown to possess anti-inflammatory and potentially neuroprotective properties. Here, we synthesized another amine conjugate of DHA, N-docosahexaenoyl dopamine (DHDA), and tested its immune-modulatory properties in both RAW 264.7 macrophages and BV-2 microglial cells. N-Docosahexaenoyl dopamine significantly suppressed the production of nitric oxide (NO), the cytokine interleukin-6 (IL-6), and the chemokines macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1), whereas its parent compounds, dopamine and DHA, were ineffective. Further exploration of potential effects of DHDA on key inflammatory mediators revealed that cyclooxygenase-2 (COX-2) mRNA level and production of prostaglandin E2 (PGE2) were concentration-dependently inhibited in macrophages. In activated BV-2 cells, PGE2 production was also reduced, without changes in COX-2 mRNA levels. In addition, DHDA did not affect NF-kB activity in a reporter cell line. Finally, the immune-modulatory activities of DHDA were compared with those of N-arachidonoyl dopamine (NADA) and similar potencies were found in both cell types. Taken together, our data suggest that DHDA, a potentially endogenous endocannabinoid, may be an additional member of the group of immune-modulating n-3 fatty acid-derived lipid mediators.

  12. Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity.

    Science.gov (United States)

    Zhao, Wei-Xing; Zhang, Jun-Han; Cao, Jiang-Bei; Wang, Wei; Wang, Dong-Xin; Zhang, Xiao-Ying; Yu, Jun; Zhang, Yong-Yi; Zhang, You-Zhi; Mi, Wei-Dong

    2017-01-21

    Considerable evidence has shown that neuroinflammation and oxidative stress play an important role in the pathophysiology of postoperative cognitive dysfunction (POCD) and other progressive neurodegenerative disorders. Increasing evidence suggests that acetaminophen (APAP) has unappreciated antioxidant and anti-inflammatory properties. However, the impact of APAP on the cognitive sequelae of inflammatory and oxidative stress is unknown. The objective of this study is to explore whether APAP could have neuroprotective effects on lipopolysaccharide (LPS)-induced cognitive impairment in mice. A mouse model of LPS-induced cognitive impairment was established to evaluate the neuroprotective effects of APAP against LPS-induced cognitive impairment. Adult C57BL/6 mice were treated with APAP half an hour prior to intracerebroventricular microinjection of LPS and every day thereafter, until the end of the study period. The Morris water maze was used to assess cognitive function from postinjection days 1 to 3. Animal behavioural tests as well as pathological and biochemical assays were performed to evaluate LPS-induced hippocampal damage and the neuroprotective effect of APAP. Mice treated with LPS exhibited impaired performance in the Morris water maze without changing spontaneous locomotor activity, which was ameliorated by treatment with APAP. APAP suppressed the accumulation of pro-inflammatory cytokines and microglial activation induced by LPS in the hippocampus. In addition, APAP increased SOD activity, reduced MDA levels, modulated glycogen synthase kinase 3β (GSK3β) activity and elevated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Moreover, APAP significantly decreased the Bax/Bcl-2 ratio and neuron apoptosis in the hippocampus of LPS-treated mice. Our results suggest that APAP may possess a neuroprotective effect against LPS-induced cognitive impairment and inflammatory and oxidative stress via mechanisms involving its antioxidant and anti-inflammatory properties, as well as its ability to inhibit the mitochondrial permeability transition (MPT) pore and the subsequent apoptotic pathway.

  13. NLRP3 Inflammasome Contributes to Lipopolysaccharide-induced Depressive-Like Behaviors via Indoleamine 2,3-dioxygenase Induction.

    Science.gov (United States)

    Jeon, Seon-A; Lee, Eunju; Hwang, Inhwa; Han, Boyoung; Park, Sangjun; Son, Seunghwan; Yang, Jungmin; Hong, Sujeong; Kim, Chul Hoon; Son, Junghyun; Yu, Je-Wook

    2017-11-01

    Inflammation may play a significant role in the pathogenesis of depression, although the molecular target for the treatment of inflammation-mediated depressive symptoms remains to be elucidated. Recent studies have implicated the NLRP3 inflammasome in various psychiatric disorders, including depression. However, the underlying mechanism by which NLRP3 inflammasome activation mediates the progression of depressive-like behaviors remains poorly understood. We examined whether NLRP3 deficiency influenced depressive-like behaviors and cerebral inflammation following systemic administration of lipopolysaccharide in mice. To further assess the contribution of the NLRP3 inflammasome to the progression of depression, we evaluated the effects of NLRP3 signaling on levels of indoleamine 2,3-dioxygenase. Nlrp3-deficient mice exhibited significant attenuation of depressive-like behaviors and cerebral caspase-1 activation in a lipopolysaccharide-induced model of depression. Treatment with the antidepressant amitriptyline failed to block NLRP3-dependent activation of caspase-1, but inhibited lipopolysaccharide-promoted production of interleukin-1β mRNA via suppressing NF-κB signaling in mouse mixed glial cultures. Interestingly, lipopolysaccharide administration produced NLRP3-dependent increases in indoleamine 2,3-dioxygenase expression and activity of mouse brain. Furthermore, inflammasome-activating stimulations, but not treatment with the inflammasome product interleukin-1β, triggered indoleamine 2,3-dioxygenase mRNA induction in mixed glial cells. Our data indicate that the NLRP3 inflammasome is significantly implicated in the progression of systemic inflammation-induced depression. NLRP3-dependent caspase-1 activation produced significant increases in indoleamine 2,3-dioxygenase levels, which may play a significant role in lipopolysaccharide-induced depression. Collectively, our findings suggest that indoleamine 2,3-dioxygenase is a potential downstream mediator of the

  14. Inhibition of Lipopolysaccharide-Induced iNOS, COX- 2, and TNF ...

    African Journals Online (AJOL)

    Inhibition of Lipopolysaccharide-Induced iNOS, COX- 2, and TNF-α Expression by Aqueous Extract of Orixa Japonica in RAW 264.7 Cells via Suppression of NF- kB Activity. C-H Kang, YH Choi, I-W Choi, J-D Lee, G-Y Kim ...

  15. Involvement of nitric oxide in lipopolysaccharide induced anorexia.

    Science.gov (United States)

    Riediger, Thomas; Cordani, Caroline; Potes, Catarina Soares; Lutz, Thomas A

    2010-11-01

    Treatment with the bacterial endotoxin lipopolysaccharide (LPS) is a commonly used model to induce disease-related anorexia. Following LPS treatment inducible nitric oxide synthase (iNOS) is expressed in the hypothalamic arcuate nucleus (ARC), where nitric oxide (NO) inhibits orexigenic neurons. Intracellular STAT signaling is triggered by inflammatory stimuli and has been linked to the transcriptional regulation of iNOS. We evaluated whether pharmacological blockade of iNOS by the specific inhibitor 1400W attenuates LPS-induced anorexia. Furthermore, we hypothesized that the tolerance to the anorectic effect occurring after repeated LPS treatment is paralleled by a blunted STAT3 phosphorylation in the ARC. Rats treated with a subcutaneous injection of 1400W (10 mg/kg) showed an attenuated anorectic LPS response relative to control rats receiving only LPS (100 µg/kg; i.p.). Similarly, iNOS blockade attenuated LPS-induced adipsia, hyperthermia, inactivity and the concomitant drop in energy expenditure. While single LPS treatment increased STAT3 phosphorylation in the ARC, rats treated repeatedly with LPS showed no anorectic response and also no STAT3 phosphorylation in the ARC after the second and third LPS injections, respectively. Hence, pSTAT3 signaling in the ARC might be part of the intracellular cascades translating pro-inflammatory stimuli into suppression of food intake. The current findings substantiate a role of iNOS dependent NO formation in disease-related anorexia. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Embelia ribes ameliorates lipopolysaccharide-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Shirole, R L; Shirole, N L; Saraf, M N

    2015-06-20

    Embelia ribes Burm. f. (Fam. Myrsinaceae) locally known as Vidanga have been used for treating tumors, ascites, bronchitis, jaundice, diseases of the heart and brain in traditional Indian medicine. However, no scientific studies providing new insights in its pharmacological properties with respect to acute respiratory distress syndrome have been investigated. The present investigation aimed to elucidate the effectiveness of Embelin isolated from Embelia ribes seeds on attenuation of LPS-induced acute respiratory distress syndrome in murine models. Embelin (5, 10 and 20 mg/kg/day, i.p.) and Roflumilast (1 mg/kg/day, p.o.) were administered for four days and prior to LPS in rats (i.t.). Four hour after LPS challenge animals were anesthesized and bronchoalveolar lavage was done with ice-cold phosphate buffer. Assessment of BAL fluid was done for albumin, total protein, total cell and neutrophil count, TNF-α levels, nitrosoative stress. Superior lobe of right lung was used for histopathologic evaluation. Inferior lobe of right lung was used to obtain lung edema. Left lung was used for myeloperoxidase estimation. Arterial blood was collected immediately and analyzed for pH, pO2 and pCO2 were estimated. Pretreatment with embelin (5, 10 and 20 mg/kg, i.p.) decreased lung edema, mononucleated cellular infiltration, nitrate/nitrite, total protein, albumin concentrations, TNF-α in the bronchoalveolar lavage fluid and myeloperoxidase activity in lung homogenate. Embelin markedly prevented pO2 down-regulation and pCO2 augmentation. Additionally, it attenuated lung histopathological changes in acute respiratory distress syndrome model. The study demonstrates the effectiveness of Embelia ribes Burm. f. (Fam. Myrsinaceae) seeds in acute respiratory distress syndrome possibly related to its anti-inflammatory and protective effect against LPS induced airway inflammation by reducing nitrosative stress, reducing physiological parameters of blood gas change, TNF-α and mononucleated

  17. Simvastatin prevents lipopolysaccharide-induced septic shock in rats.

    Science.gov (United States)

    Yu, Li; Da, Xing-Wen; Wu, Xiao-Ling; He, Ao-di; Long, Ding

    2017-04-01

    Simvastatin is a hypolipidemic drug that inhibits hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase to control elevated cholesterol, or hypercholesterolemia. Previous studies have shown that simvastatin may attenuate inflammation in ischemia-reperfusion injury and sepsis. Herein, we hypothesized that simvastatin may prevent rats from lipopolysaccharide (LPS)-induced septic shock. In our study, rats were divided into a saline group, an LPS group and an LPS plus simvastatin group. Male Sprague-Dawley (SD) rats were pretreated with simvastatin (1 mg/kg) for 30 min before the addition of LPS (8 mg/kg), with variations in left ventricular pressure recorded throughout. Ninety min after LPS injection, whole blood was collected from the inferior vena cava, and neutrophils were separated from the whole blood using separating medium. The neutrophils were then lysed for Western blotting to detect the levels of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1). In addition, mesentery microcirculations of inlet diameter, outlet diameter and blood flow rate were measured in all three groups. The results indicated that simvastatin significantly promoted heart systolic function and increased the level of uPA while simultaneously inhibited the expression of PAI-1 as compared with LPS group. Moreover, simvastatin reversed the LPS-induced inhibition of mesentery microcirculation. Taken together, it was suggested that simvastatin can effectively protect the rats from LPS-induced septic shock.

  18. Theophylline improves lipopolysaccharide-induced alveolarization arrest through inflammatory regulation.

    Science.gov (United States)

    He, Hua; Chen, Fei; Ni, Wensi; Li, Jianhui; Zhang, Yongjun

    2014-07-01

    Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification with decreased numbers of alveoli and increased airspace. BPD, frequently suffered by very low birth weight infants, has been closely associated with intrauterine infection. However, the underlying mechanisms of BPD remain unclear. In the present study, it was identified that administration of intra-amniotic lipopolysaccharide (LPS) to pregnant rats on embryonal day 16.5 (E16.5) induced significant alveolarization arrest similar to that of BPD in neonatal pups, and theophylline injected subcutaneously into the newborns improved the pathological changes. To further investigate the underlying mechanism of the morphogenesis amelioration of theophylline, cytokine antibody arrays were performed with the lung lysates of neonatal rats. The results indicated that LPS upregulated a series of pro-inflammatory cytokines and theophylline significantly attenuated the expression levels of pro-inflammatory cytokines tumor necrosis factor‑α, macrophage inflammatory protein (MIP)-1α and MIP-2, and markedly elevated the production of tumor growth factor (TGF)-β family members TGF-β1, TGF-β2 and TGF-β3, which are anti‑inflammatory cytokines. Accordingly, it was hypothesized that theophylline may protect against BPD and improve chorioamnionitis‑induced alveolar arrest by regulating the balance between pro‑and anti-inflammatory cytokine expression.

  19. Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia.

    Directory of Open Access Journals (Sweden)

    Ching-Hua Yeh

    Full Text Available Peripheral innate immune response may induce sickness behavior through activating microglia, excessive cytokines production, and neuroinflammation. Dexmedetomidine (Dex has anti-inflammatory effect. We investigated the effects of Dex on lipopolysaccharide (LPS-induced neuroinflammation and sickness behavior in mice.BALB/c mice were intraperitoneally (i.p. injected with Dex (50 ug/kg or vehicle. One hour later, the mice were injected (i.p. with Escherichia coli LPS (0.33 mg/kg or saline (n = 6 in each group. We analyzed the food and water intake, body weight loss, and sucrose preference of the mice for 24h. We also determined microglia activation and cytokines expression in the brains of the mice. In vitro, we determine cytokines expression in LPS-treated BV-2 microglial cells with or without Dex treatment.In the Dex-pretreated mice, LPS-induced sickness behavior (anorexia, weight loss, and social withdrawal were attenuated and microglial activation was lower than vehicle control. The mRNA expression of TNF-α, MCP-1, indoleamine 2, 3 dioxygenase (IDO, caspase-3, and iNOS were increased in the brain of LPS-challenged mice, which were reduced by Dex but not vehicle.Dexmedetomidine diminished LPS-induced neuroinflammation in the mouse brain and modulated the cytokine-associated changes in sickness behavior.

  20. Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating Toll-like receptor 4 signaling.

    Directory of Open Access Journals (Sweden)

    Jian Wu

    Full Text Available BACKGROUND: Bupleurum polysaccharides (BPs, isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS triggers innate immune responses through Toll-like receptor 4 (TLR4 on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS's pathogenecity could be associated with the modulating of TLR4 signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: LPS stimulated expression and activation of factors in the TLR4 signaling system, including TLR4, CD14, IRAK4, TRAF6, NF-κB, and JNK, determined using immunocytochemical and/or Western blot assays. BPs significantly inhibited these effects of LPS. LPS increased pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12p40, and IFN-β and NO production, evaluated using ELISA and Griess reaction assays, respectively. BPs antagonized these effects of LPS. Interestingly, BPs alone augmented secretion of some pro-inflammatory cytokines of non-LPS stimulated macrophages and enhanced phagocytic activity towards fluorescent E.coli bioparticles. In a rat model of acute lung injury (ALI with pulmonary hemorrhage and inflammation, BPs ameliorated lung injuries and suppressed TLR4 expression. SIGNIFICANCE: The therapeutic properties of BPs in alleviating inflammatory diseases could be attributed to its inhibitory effect on LPS-mediated TLR4 signaling.

  1. Moderate Exercise Attenuates Lipopolysaccharide-Induced Inflammation and Associated Maternal and Fetal Morbidities in Pregnant Rats.

    Directory of Open Access Journals (Sweden)

    Karina T Kasawara

    Full Text Available Fetal growth restriction (FGR and coagulopathies are often associated with aberrant maternal inflammation. Moderate-intensity exercise during pregnancy has been shown to increase utero-placental blood flow and to enhance fetal nutrition as well as fetal and placental growth. Furthermore, exercise is known to reduce inflammation. To evaluate the effect of moderate-intensity exercise on inflammation associated with the development of maternal coagulopathies and FGR, Wistar rats were subjected to an exercise regime before and during pregnancy. To model inflammation-induced FGR, pregnant rats were administered daily intraperitoneal injections of E. coli lipopolysaccharide (LPS on gestational days (GD 13.5-16.5 and sacrificed at GD 17.5. Control rats were injected with saline. Maternal hemostasis was assessed by thromboelastography. Moderate-intensity exercise prevented LPS-mediated increases in white blood cell counts measured on GD 17.5 and improved maternal hemostasis profiles. Importantly, our data reveal that exercise prevented LPS-induced FGR. Moderate-intensity exercise initiated before and maintained during pregnancy may decrease the severity of maternal and perinatal complications associated with abnormal maternal inflammation.

  2. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice

    Science.gov (United States)

    Song, Yeong Ok; Kim, Mijeong; Woo, Minji; Baek, Jang-Mi; Kang, Keon-Hee; Kim, Sang-Ho; Roh, Seong-Soo; Park, Chan Hum; Jeong, Kap-Seop; Noh, Jeong-Sook

    2017-01-01

    The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling. PMID:28617322

  3. Rabdosia japonica var. glaucocalyx Flavonoids Fraction Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice

    National Research Council Canada - National Science Library

    Chu, Chun-Jun; Xu, Nai-Yu; Li, Xian-Lun; Xia, Long; Zhang, Jian; Liang, Zhi-Tao; Zhao, Zhong-Zhen; Chen, Dao-Feng

    2014-01-01

    Rabdosia japonica var. glaucocalyx (Maxim.) Hara, belonging to the Labiatae family, is widely used as an anti-inflammatory and antitumor drug for the treatment of different inflammations and cancers. Aim of the Study...

  4. Lipopolysaccharide induced MAP kinase activation in RAW 264.7 cells attenuated by cerium oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Vellaisamy Selvaraj

    2015-09-01

    Full Text Available High mortality rates are associated with the life threatening disease of sepsis. Improvements in septic patient survivability have failed to materialize with currently available treatments. This article represents data regarding a study published in biomaterials (Vellaisamy et al., Biomaterials, 2015, in press. with the purpose of evaluating whether severe sepsis mortality and associated hepatic dysfunction induced by lipopolysaccharide (LPS can be prevented by cerium oxide nanoparticles (CeO2NPs treatment in male Sprague Dawley rats. Here we provide the information about the method and processing of raw data related to our study publish in Biomaterials and Data in Brief (Vellaisamy et al., Biomaterials, 2015, in press; Vellaisamy et al., Data in Brief, 2015, in press.. The data contained in this article evaluates the contribution of MAPK signaling in LPS induced sepsis. Macrophage cells (RAW 264.7 were treated with a range of cerium oxide nanoparticle concentration in the presence and absence of LPS. Immunoblotting was performed on the cell lysates to evaluate the effect of cerium oxide nanoparticle treatment on LPS induced changes in Mitogen Activated Protein Kinases (MAPK p-38, ERK 1/2, and SAPK/JNK phosphorylation.

  5. Discoloration of Polyvinyl Butyral

    Science.gov (United States)

    Kim, Q.; Shumka, A.

    1986-01-01

    Report presents results of study of discoloration in polyvinyl butyral (PVB). Clear PVB gradually turns yellowish brown in simulated-aging tests and outdoor environmental tests. Discoloration severely reduces solar-cell output. Using methods of modern analytical chemistry - transmission absorption, Fourier transform infrared absorption, atomic absorption spectroscopy, and scanning-electron microscopy - study uncovered major cause of yellowing.

  6. Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats.

    Science.gov (United States)

    Goel, Ashish; Digvijaya; Garg, Arun; Kumar, Ashok

    2016-02-01

    Cognitive disorders in mankind are not uncommon. Apart from neurodegenerative diseases such as Alzheimer's (AD), various stresses also affect cognitive functions. Plants are known to be potential source of compounds that ameliorate several diseases including cognitive impairment. Here, we evaluated effect of aqueous extract of caper (Capparis spinosa) buds on lipopolysaccharide-induced cognitive impairment in rats using two different oral doses i.e. 10 (pre-treatment) and 30 mg/rat(post-treatment) through assessment of behavioural (Morris Water maze test and Y maze test), biochemical (Cholinesterase assay) and histopathological (H&E staining) parameters. Lipopolysaccharide (from E. coli) administration resulted in an increased neurodegeneration and time taken to reach the platform (in Morris water maze). The increased neurodegeneration in CA1 region of hippocampus was significantly reduced in animals which received caper bud extract; they showed marked reduction in time taken to reach the platform at both the dose levels. The experiment demonstrated that caper bud extract exhibits potential protective effect against learning and memory damage induced by chronic administration of lipopolysaccharide (175 μg/kg) for 7 days. The results suggest that the caper bud extract could be explored for its use in the treatment of cognitive disorders.

  7. Murine P-glycoprotein deficiency alters intestinal injury repair and blunts lipopolysaccharide-induced radioprotection.

    Science.gov (United States)

    Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G

    2012-09-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.

  8. Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation.

    Science.gov (United States)

    Yu, Peter H; Lu, Li-Xin; Fan, Hui; Kazachkov, Mychaylo; Jiang, Zhong-Jian; Jalkanen, Sirpa; Stolen, Craig

    2006-03-01

    Semicarbazide-sensitive amine oxidase (SSAO) resides on the vascular endothelium and smooth muscle cell surface and is capable of deaminating short chain aliphatic amines and producing toxic aldehydes and hydrogen peroxide. The enzyme, also known as a vascular adhesion protein-1, is involved in the inflammation process. This intriguing protein with dual functions is increased in the serum of diabetic and heart failure patients. In the present study we assessed the involvement of SSAO in a lipopolysaccharide-induced pulmonary inflammation model using transgenic mice that overexpress human vascular adhesion protein-1. Overexpression of SSAO activity increased the formation of protein-formaldehyde deposits in tissues. Lysine residues of proteins were the primary targets for cross-linkage with formaldehyde derived from deamination of methylamine. Lipo-polysaccharide-induced increases in inflammatory cells in the bronchoalveolar lavage (BAL) fluid were significantly higher in the transgenic than in the nontransgenic mice. BAL cell counts were also higher in the untreated transgenic than in nontransgenic mice. Blocking SSAO activity with a selective inhibitor significantly reduced the number of neutrophils as well as levels of macrophage inflammatory protein-1alpha, granulocyte colony-stimulating factor, tumor necrosis factor-alpha, and interleukin-6 in the BAL fluid. Inhalation of methylamine also increased BAL neutrophil counts. Together, these results suggest a role for SSAO-mediated deamination in pulmonary inflammation.

  9. Cytokine and acute phase protein gene expression in liver biopsies from dairy cows with a lipopolysaccharide - induced mastitis

    DEFF Research Database (Denmark)

    Vels, J; Røntved, Christine M.; Bjerring, Martin

    2009-01-01

    A minimally invasive liver biopsy technique was tested for its applicability to study the hepatic acute phase response (APR) in dairy cows with Escherichia coli lipopolysaccharide (LPS)-induced mastitis. The hepatic mRNA expression profiles of the inflammatory cytokines, tumor necrosis factor (TNF......, a minimally invasive liver biopsy technique can be used for studying the hepatic APR in diseased cattle. Lipopolysaccharide-induced mastitis resulted in a time-dependent production of inflammatory cytokines and SAA and Hp in the liver of dairy cows....

  10. Suppression of RAGE and TLR9 by Ketamine Contributes to Attenuation of Lipopolysaccharide-Induced Acute Lung Injury.

    Science.gov (United States)

    Yang, Chunyan; Song, Yulong; Wang, Hui

    2017-06-01

    The present study aimed to investigate the protective role of ketamine in lipopolysaccharide (LPS)-induced acute lung injury (ALI) by the inhibition of the receptor for advanced glycation end products (RAGE) and toll-like receptor 9 (TLR9). ALI was induced in rats by intratracheal instillation of LPS (5 mg/kg), and ketamine (5, 7.5, and 10 mg/kg) was injected intraperitoneally 1 h after LPS administration. Meanwhile, A549 alveolar epithelial cells were incubated with LPS in the presence or absence of ketamine. After 24 h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Ketamine posttreatment at doses of 5, 7.5, and 10 mg/kg decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, posttreatment with ketamine-inhibited inflammatory cells and inflammatory mediators including tumor necrosis factor-α, interleukin-6, and high-mobility group box 1 in BALF. Furthermore, we demonstrated that ketamine-inhibited LPS-induced RAGE and TLR9 protein up-expressions and the phosphorylation of I-κB-α and nuclear factor-κB (NF-κB) p65 in vivo and in vitro. The results presented here suggest that the protective mechanism of ketamine may be attributed partly to decreased production of inflammatory mediators through the inhibition of RAGE/TLR9-NF-κB pathway.

  11. Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-κB signaling pathway.

    Science.gov (United States)

    Ruifeng, Gao; Yunhe, Fu; Zhengkai, Wei; Ershun, Zhou; Yimeng, Li; Minjun, Yao; Xiaojing, Song; Zhengtao, Yang; Naisheng, Zhang

    2014-04-15

    Chlorogenic acid (CGA), one of the most abundant polyphenols in the diet, has been reported to have potent anti-inflammatory properties. However, the effect of CGA on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The purpose of the present study was to elucidate whether CGA could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. CGA was administered intraperitoneally with the dose of 12.5, 25, and 50mg/kg respectively 1h before and 12h after induction of LPS. In this study, the effect of CGA on LPS-induced mice mastitis was assessed through histopathological examination, ELISA assay, and western blot analysis. The results showed that CGA significantly reduced TNF-α, IL-1β, and IL-6 production compared with LPS group. Besides, western blot analysis showed that CGA could inhibit the expression of TLR4 and the phosphorylation of NF-κB and IκB induced by LPS. These results suggested that anti-inflammatory effects of CGA against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathway. Therefore, CGA may be a potent therapeutic reagent for the prevention of the immunopathology encountered during Escherichia coli elicited mastitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Bowman-Birk inhibitor and genistein among soy compounds that synergistically inhibit nitric oxide and prostaglandin E2 pathways in lipopolysaccharide-induced macrophages

    Science.gov (United States)

    Inflammation has an important role in the development of chronic diseases. In this study, we evaluated the anti-inflammatory properties of eight soybean bioactive compounds using lipopolysaccharide-induced RAW 264.7 macrophages. Genistein, daidzein, mix isoflavone glucosides, saponin A group glyco...

  13. Piperine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Modulating NF-κB Signaling Pathways.

    Science.gov (United States)

    Lu, Ying; Liu, Jingyao; Li, Hongyan; Gu, Lina

    2016-02-01

    Piperine, one of the active components of black pepper, has been reported to have antioxidant and anti-inflammatory activities. However, the effects of piperine on lipolysaccharide (LPS)-induced acute lung injury (ALI) have not been reported. Thus, the protective effects of piperine against LPS-induced ALI were investigated in this study. LPS-induced lung injury was assessed by histological study, myeloperoxidase (MPO) activity, and inflammatory cytokine production. Our results demonstrated that piperine attenuated LPS-induced MPO activity, lung edema, and inflammatory cytokines TNF-α, IL-6, and IL-1β production. Histological studies showed that piperine obviously attenuated LPS-induced lung injury. In addition, piperine significantly inhibited LPS-induced NF-κB activation. In conclusion, our results demonstrated that piperine had a protective effect on LPS-induced ALI. The anti-inflammatory mechanism of piperine is through inhibition of NF-κB activation. Piperine may be a potential therapeutic agent for ALI.

  14. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  15. Metabotropic glutamate receptors mediate lipopolysaccharide-induced fever and sickness behavior.

    Science.gov (United States)

    Weiland, Tracey J; Anthony-Harvey-Beavis, Debra; Voudouris, Nicholas J; Kent, Stephen

    2006-05-01

    Several mechanisms have been proposed for neuroimmune communication supporting the sickness syndrome (fever, anorexia, inactivity, and cachexia) following infection. We examined the role of glutamate as a neurochemical intermediary of sickness behavior induced by intraperitoneal lipopolysaccharide (LPS). Mice implanted with biotelemetry devices capable of detecting body temperature (Tb) were administered LPS (50 or 500 microg/kg i.p., serotype 0111:B4) with or without i.p. pretreatment with vehicle or broad-spectrum antagonists selective for N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic (AMPA)/kainite, or metabotropic glutamate (mGlu) receptors. While NMDA and AMPA/kainate receptor antagonism failed to attenuate LPS-induced sickness behavior, antagonism of metabotropic receptors with l(+)-AP3 reduced the febrile (0-11h: control: 37.32+/-0.16 degrees C, l(+)-AP3: 36.66+/-0.27), anorexic (control: -87+/-5%, l(+)-AP3: 48+/-12% scotophase food intake), and cachexic (control: -8.9+/-0.4%, l(+)-AP3: -6.1+/-1.3% body weight) effects of 500 microg/kg LPS, and produced a biphasic Tb effect in response to 50 microg/kg LPS (1h: -0.90+/-0.26; 6h: 1.78+/-0.35 degrees C relative to baseline). At this dose the Tb of l(+)-AP3-treated mice was 1.18 degrees C lower than controls 2h post-injection, and 0.68 degrees C greater that controls 8h post-injection. These results suggest a role for mGlu receptors in mediating fever, anorexia, and cachexia possibly via activation of extra-vagal pathways, since the attenuating effect of l(+)-AP3 increased with increasing dosages of LPS. Given the critical role ascribed to mGlu receptors in neurotransmitter release and astrocytic processes, it is possible that these observations reflect an l(+)-AP3-induced attenuation of these systems.

  16. Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Song, Yan; Zhao, Hongfeng; Liu, Jinyang; Fang, Chao; Miao, Renying

    2016-04-01

    Citral is an active compound of lemongrass oil which has been reported to have anti-inflammatory effects. In this study, we investigated the effects of citral on lipopolysaccharide (LPS)-induced inflammatory response in a rat model of peritonitis and human umbilical vein endothelial cells (HUVECs). LPS was intraperitoneally injected into rats to establish a peritonitis model. The HUVECs were treated with citral for 12 h before exposure to LPS. The levels of TNF-α and IL-8 were measured using ELISA. Western blotting was used to detect the expression of VCAM-1, ICAM-1, NF-κB, and PPAR-γ. The results showed that citral had a protective effect against LPS-induced peritonitis. Citral decreased the levels of WBCs and inflammatory cytokines TNF-α and IL-6. Citral also inhibited LPS-induced myeloperoxidase (MPO) activity in the peritoneal tissue. Treatment of HUVECs with citral significantly inhibited TNF-α and IL-8 expression induced by LPS. LPS-induced VCAM-1 and ICAM-1 expression were also suppressed by citral. Meanwhile, we found that citral inhibited LPS-induced NF-κB activation in HUVECs. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, citral inhibits LPS-induced inflammatory response via activating PPAR-γ which attenuates NF-κB activation and inflammatory mediator production.

  17. Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-γ.

    Science.gov (United States)

    Shen, Yongbin; Sun, Zhanfeng; Guo, Xiaotong

    2015-01-15

    Citral, a component of lemongrass oil, has been reported to have many pharmacological activities such as anti-bacterial and anti-inflammatory effects. However, the effects of citral on acute lung injury (ALI) and the molecular mechanisms have not been reported. The aim of this study was to detect the effects of citral on lipopolysaccharide (LPS)-induced acute lung injury and investigate the molecular mechanisms. LPS-induced acute lung injury model was used to detect the anti-inflammatory effect of citral in vivo. The alveolar macrophages were used to investigate the molecular mechanism of citral in vitro. The results showed that pretreatment with citral remarkably attenuated pulmonary edema, histological severities, TNF-α, IL-6 and IL-1β production in LPS-induced ALI in vivo. In vitro, citral inhibited LPS-induced TNF-α, IL-6 and IL-1β production in alveolar macrophages. LPS-induced NF-κB activation was also inhibited by citral. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, this is the first to demonstrate that citral protects LPS-induced ALI in mice. The anti-inflammatory mechanism of citral is associated with activating PPAR-γ, thereby inhibiting LPS-induced inflammatory response. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Anti-inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Induced Mastitis in Mice.

    Science.gov (United States)

    Jiang, Kangfeng; Ma, Xiaofei; Guo, Shuai; Zhang, Tao; Zhao, Gan; Wu, Haichong; Wang, Xiaoyan; Deng, Ganzhen

    2017-12-04

    Rosmarinic acid (RA), a type of food additives mainly extracted from rosemary, has been reported to possess anti-inflammatory activities in some previous studies. However, the effects of RA on lipopolysaccharide (LPS)-induced mastitis have not been reported. Here, we investigated the anti-inflammatory effects of RA on LPS-induced mastitis in mice and elucidated the potential mechanisms in mouse mammary epithelial cells (mMECs). RA treatment significantly ameliorated the mammary structural damage, and reduced the activity of myeloperoxidase. ELISA and qPCR results indicated that RA dose-dependently decreased the expression of TNF-α, IL-1β, and IL-6 both in tissues and mMECs. Furthermore, RA remarkably suppressed the protein levels of TLR4, MyD88, IRAK1, TRAF6, and p-IKKβ. In addition, RA was also found to inhibit LPS-induced NF-κB signaling pathway activation. These results suggest that RA effectively attenuates LPS-induced mastitis by inhibiting the TLR4/MyD88/NF-κB signaling pathway.

  19. Keratinocyte growth factor-2 is protective in lipopolysaccharide-induced acute lung injury in rats.

    Science.gov (United States)

    Tong, Lin; Bi, Jing; Zhu, Xiaodan; Wang, Guifang; Liu, Jie; Rong, Linyi; Wang, Qin; Xu, Nuo; Zhong, Ming; Zhu, Duming; Song, Yuanlin; Bai, Chunxue

    2014-09-15

    Keratinocyte growth factor-2 (KGF-2) plays a key role in lung development, but its role in acute lung injury has not been well characterized. Lipopolysaccharide instillation caused acute lung injury, which significantly elevated lung wet-to-dry weight ratio, protein and neutrophils in bronchoalveolar lavage fluid (BALF), inhibited surfactant protein A and C expression in lung tissue, and increased pathological injury. Pretreatment with KGF-2 improved the above lung injury parameters, partially restored surfactant protein A and C expression, and KGF-2 given 2-3 days before LPS challenge showed maximum lung injury improvement. Pretreatment with KGF-2 also markedly reduced the levels of TNF-α, MIP-2, IL-1β and IL-6 in BALF and the levels of IL-1β and IL-6 in lung tissue. Histological analysis showed there was increased proliferation of alveolar type II epithelial cells in lung parenchyma, which reached maximal 2 days after KGF-2 instillation. Intratracheal administration of KGF-2 attenuates lung injury induced by LPS, suggesting KGF-2 may be potent in the intervention of acute lung injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Preventive effects of valnemulin on lipopolysaccharide-induced acute lung injury in mice.

    Science.gov (United States)

    Chen, Zhibao; Zhang, Xuemei; Chu, Xiao; Zhang, Xiaozhe; Song, Keji; Jiang, Youshuai; Yu, Lu; Deng, Xuming

    2010-10-01

    Valnemulin reportedly regulates inflammatory responses in addition to its in vitro antibacterial activity. In this study, we established a mouse model of lipopolysaccharide (LPS)-induced inflammatory lung injury and investigated the effect of valnemulin (100 mg/kg) on acute lung injury (ALI) 8 h after LPS challenge. We prepared bronchoalveolar lavage fluid (BALF) for measuring protein concentrations, cytokine levels, and superoxidase dismutase (SOD) activity, and collected lungs for assaying wet-to-dry weight (W/D) ratios, myeloperoxidase (MPO) activity, cytokine mRNA expression, and histological change. We found that the pre-administration of valnemulin significantly decreases the W/D ratio of lungs, protein concentrations, and the number of total cells, neutrophils, macrophages, and leukomonocytes, and histologic analysis indicates that valnemulin significantly attenuates tissue injury. Furthermore, valnemulin significantly increases LPS-induced SOD activity in BALF and decreases lung MPO activity as well. In addition, valnemulin also inhibits the production of tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta, which is consistent with mRNA expression in lung. The results showed that valnemulin had a protective effect on LPS-induced ALI in mice.

  1. Punicalagin ameliorates lipopolysaccharide-induced acute respiratory distress syndrome in mice.

    Science.gov (United States)

    Peng, Jingjing; Wei, Dong; Fu, Zengqiang; Li, Dong; Tan, Yong; Xu, Tao; Zhou, Jinjun; Zhang, Tao

    2015-04-01

    Punicalagin, a bioactive ellagitannin isolated from pomegranate, has been reported to have anti-inflammatory property. In the present study, we analyzed the role of punicalagin against acute respiratory distress syndrome (ARDS) induced by lipopolysaccharide (LPS) in mice. Male BALB/c mice with ARDS, induced by intranasal instillation of LPS, were treated with punicalagin 1 h prior to LPS exposure. The effects of punicalagin on pro-inflammatory cytokines, myeloperoxidase activity, nuclear factor kappa B (NF-κB) activation, and the histopathological changes were evaluated. The results showed that punicalagin treatment attenuated LPS-induced lung edema, elevating TNF-α, IL-6, and IL-1β levels in the bronchoalveolar lavage fluid (BALF). Meanwhile, punicalagin significantly inhibited LPS-induced increases in the macrophage and neutrophil infiltration of lung tissues and myeloperoxidase activity. Furthermore, punicalagin inhibits Toll-like receptor 4 (TLR4) expression and NF-κB activation induced by LPS. In conclusion, this is the first study to demonstrate that punicalagin protects against LPS-induced ARDS in mice. The underlying mechanisms may include inhibition of TLR4-mediated NF-κB signaling pathways.

  2. Hepatoprotective effect of cryptotanshinone from Salvia miltiorrhiza in D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    Science.gov (United States)

    Jin, Quan; Jiang, Shuang; Wu, Yan-Ling; Bai, Ting; Yang, Yong; Jin, Xuejun; Lian, Li-Hua; Nan, Ji-Xing

    2014-01-15

    Cryptotanshinone from Salvia miltiorrhiza Bunge was investigated for hepatoprotective effects in d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. Cryptotanshinone (20 or 40 mg/kg) was orally administered 12 and 1h prior to GalN (700 mg/kg)/LPS (10 μg/kg) injection. The increased mortality and TNF-α levels by GalN/LPS were declined by cryptotanshinone pretreatment. In addition, cryptotanshinone attenuated GalN/LPS-induced apoptosis, characterized by the blockade of caspase-3, -8, and -9 activation, as well as the release of cytochrome c from the mitochondria. In addition, cryptotanshinone significantly suppressed JNK, ERK and p38 phosphorylation induced by GalN/LPS, and phosphorylation of TAK1 as well. Furthermore, cryptotanshinone significantly inhibited the activation of NF-κB and suppressed the production of proinflammatory cytokines. These findings suggested that hepatoprotective effect of cryptotanshinone is likely associated with its anti-apoptotic activity and the down-regulation of MAPKs and NF-κB associated at least in part with suppressing TAK1 phosphorylation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells.

    Science.gov (United States)

    Kim, Mina; Choi, Sang-Yoon; Lee, Pyeongjae; Hur, Jinyoung

    2015-09-01

    Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury, infection, and other stimuli that threaten neuronal survival. Microglia activation plays an important role in neurodegenerative diseases. Neochlorogenic acid (NCA) is a natural polyphenolic compound found in dried fruits and other plants. Although previous studies have shown that phenolic acids including NCA have outstanding antioxidant, antibacterial, antiviral, and antipyretic activities, there has not yet been investigated for anti-inflammatory effects. Therefore, for the first time we have examined the potential of NCA to inhibit microglial activation and pro-inflammatory responses in the brain. We found that lipopolysaccharide-induced inducible nitric oxide synthase, and cyclooxygenase-2 expression, and nitric oxide formation was suppressed by NCA in a dose-dependent manner in BV2 microglia. NCA also inhibited the production of pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1 beta. Furthermore, phosphorylated nuclear factor-kappa B p65 and p38 mitogen-activated protein kinase activation were blocked by NCA. Taken together, these results suggest that NCA exerts neuroprotective effects through the inhibition of pro-inflammatory pathways in activated microglia.

  5. Protective effect of adenosine receptors against lipopolysaccharide-induced acute lung injury

    Science.gov (United States)

    Gorshkov, Boris; Varn, Matthew N.; Zemskova, Marina A.; Zemskov, Evgeny A.; Sridhar, Supriya; Lucas, Rudolf; Verin, Alexander D.

    2014-01-01

    Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) affect 200,000 people a year in the USA. Pulmonary vascular and specifically endothelial cell (EC) barrier compromise is a hallmark of these diseases. We have recently shown that extracellular adenosine enhances human pulmonary (EC) barrier via activation of adenosine receptors (ARs) in cell cultures. On the basis of these data, we hypothesized that activation of ARs might exert barrier-protective effects in a model of ALI/ARDS in mice. To test this hypothesis, we examined the effects of pre- and posttreatment of adenosine and 5′-N-ethylcarboxamidoadenosine (NECA), a nonselective stable AR agonist, on LPS-induced lung injury. Mice were given vehicle or LPS intratracheally followed by adenosine, NECA, or vehicle instilled via the internal jugular vein. Postexperiment cell counts, Evans Blue Dye albumin (EBDA) extravasation, levels of proteins, and inflammatory cytokines were analyzed. Harvested lungs were used for histology and myeloperoxidase studies. Mice challenged with LPS alone demonstrated an inflammatory response typical of ALI. Cell counts, EBDA extravasation, as well as levels of proteins and inflammatory cytokines were decreased in adenosine-treated mice. Histology displayed reduced infiltration of neutrophils. NECA had a similar effect on LPS-induced vascular barrier compromise. Importantly, posttreatment with adenosine or NECA recovers lung vascular barrier and reduces inflammation induced by LPS challenge. Furthermore, adenosine significantly attenuated protein degradation of A2A and A3 receptors induced by LPS. Collectively, our results demonstrate that activation of ARs protects and restores vascular barrier functions and reduces inflammation in LPS-induced ALI. PMID:24414256

  6. Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury*

    Science.gov (United States)

    Lyu, An; Chen, Jia-jia; Wang, Hui-chuan; Yu, Xiao-hong; Zhang, Zhi-cong; Gong, Ping; Jiang, Lin-shu; Liu, Feng-hua

    2017-01-01

    Objective: Bovine endometritis is one of the most common reproductive disorders in cattle. The aim of this study was to investigate the anti-inflammation potential of punicalagin in lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and to uncover the underlying mechanisms. Methods: bEECs were stimulated with different concentrations (1, 10, 30, 50, and 100 μg/ml) of LPS for 3, 6, 9, 12, and 18 h. MTT assay was used to assess cell viability and to identify the conditions for inflammatory injury and effective concentrations of punicalagin. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression of pro-inflammatory cytokines. Western blotting was used to assess levels of inflammation-related proteins. Results: Treatment of bEECs with 30 µg/ml LPS for 12 h induced cell injury and reduced cell viability. Punicalagin (5, 10, or 20 µg/ml) pretreatment significantly decreased LPS-induced productions of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) in bEECs. Molecular research showed that punicalagin inhibited the activation of the upstream mediator nuclear factor-κB (NF-κB) by suppressing the production of inhibitor κBα (IκBα) and phosphorylation of p65. Results also indicated that punicalagin can suppress the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Conclusions: Punicalagin may attenuate LPS-induced inflammatory injury and provide a potential option for the treatment of dairy cows with Escherichia coli endometritis. PMID:28585424

  7. Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury.

    Science.gov (United States)

    Lyu, An; Chen, Jia-Jia; Wang, Hui-Chuan; Yu, Xiao-Hong; Zhang, Zhi-Cong; Gong, Ping; Jiang, Lin-Shu; Liu, Feng-Hua

    2017-06-01

    Bovine endometritis is one of the most common reproductive disorders in cattle. The aim of this study was to investigate the anti-inflammation potential of punicalagin in lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and to uncover the underlying mechanisms. bEECs were stimulated with different concentrations (1, 10, 30, 50, and 100 μg/ml) of LPS for 3, 6, 9, 12, and 18 h. MTT assay was used to assess cell viability and to identify the conditions for inflammatory injury and effective concentrations of punicalagin. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression of pro-inflammatory cytokines. Western blotting was used to assess levels of inflammation-related proteins. Treatment of bEECs with 30 µg/ml LPS for 12 h induced cell injury and reduced cell viability. Punicalagin (5, 10, or 20 µg/ml) pretreatment significantly decreased LPS-induced productions of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) in bEECs. Molecular research showed that punicalagin inhibited the activation of the upstream mediator nuclear factor-κB (NF-κB) by suppressing the production of inhibitor κBα (IκBα) and phosphorylation of p65. Results also indicated that punicalagin can suppress the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Punicalagin may attenuate LPS-induced inflammatory injury and provide a potential option for the treatment of dairy cows with Escherichia coli endometritis.

  8. Dietary Supplementation with Lactobacillus casei Alleviates Lipopolysaccharide-Induced Liver Injury in a Porcine Model

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2017-11-01

    Full Text Available This study aims to determine whether Lactobacillus casei (L. casei could relieve liver injury in piglets challenged with lipopolysaccharide (LPS. Piglets were randomly allocated into one of the three groups: control, LPS, and L. casei. The control and LPS groups were fed a corn- and soybean meal-based diet, whereas the L. casei group was fed the basal diet supplemented with 6 × 106 cfu/g L. casei. On Day 31 of the trial, piglets in the LPS and L. casei groups received intraperitoneal administration of LPS (100 µg/kg body weight, while the control group received the same volume of saline. Blood and liver samples were collected for analysis. Results showed that L. casei supplementation decreased the feed/gain ratio (p = 0.027 and diarrhea incidence (p < 0.001, and attenuated LPS-induced liver histomorphological abnormalities. Compared with the control group, LPS challenge dramatically increased glutamyl transpeptidase activity (p = 0.001 in plasma as well as the concentrations of Interleukin 6 (IL-6 (p = 0.048, Tumor necrosis factor-alpha (TNF-α (p = 0.041, and Malondialdehyde (MDA (p = 0.001 in the liver, while decreasing the hepatic SOD activity. LPS also increased (p < 0.05 the mRNA levels for IL-6, IL-8, TNF-α, Toll-like receptors 4 (TLR4, Nuclear factor κB (NF-κB and Heat shock protein 70 (HSP70 in the liver. The adverse effects of LPS challenge were ameliorated by L. casei supplementation. In conclusion, dietary L. casei alleviates LPS-induced liver injury via reducing pro-inflammatory cytokines and increasing anti-oxidative capacity.

  9. Low tidal volume ventilation preconditioning ameliorates lipopolysaccharide-induced acute lung injury in rats.

    Science.gov (United States)

    Zhang, Y; Gao, J; Wang, C-J; Zhou, L-J; Fang, X-Z; Yang, L-Q

    2016-07-01

    Effects of low tidal volume (LTV) ventilation preconditioning in endotoxin-induced acute lung injury (ALI) have not been studied. We investigated the effect of LTV ventilation pre-treatment on ALI induced by lipopolysaccharide (LPS) in rats. Male Sprague-Dawley rats were assigned to four groups (n = 8 each): (1) sham rats injected (i.p.) with 0.9% (physiologic) saline; sham rats pre-treated with tidal volume 6 ml/kg ventilation for 1 h followed by injection (i.p.) of physiologic saline (mechanical ventilation; MV-saline group); (2) LPS group (rats injected with LPS (i.p.); rats pre-treated with tidal volume 6 ml/kg ventilation for 1 h before injection (i.p.) with LPS (MV-LPS group). Animals were observed for 6 h. ALI extent was evaluated by lung wet-to-dry ratio, Evans Blue Dye extravasation, and histologic examination. We measured levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. Apoptotic index (AI) and the expression of pulmonary RhoA, ROCK2 mRNA, and ROCK1 protein in lung alveolar cells was determined. Lipopolysaccharide caused severe ALI, as evidenced by increases in ALI extent, impairment of pulmonary functions, and increases in pulmonary levels of TNF-α, IL-1β, IL-6, and AI. LTV ventilation preconditioning mitigated LPS-induced increases in release of pulmonary pro-inflammatory cytokines and AI of alveolar cells. Expression of pulmonary RhoA, ROCK2 mRNA, and ROCK1 protein was upregulated by LPS and reduced by LTV ventilation pre-treatment. Low tidal volume ventilation preconditioning can attenuate release of pulmonary pro-inflammatory cytokines and decrease the AI induced by severe sepsis. Early protection seems to be mediated partly through inhibition of activation of a Rho pathway. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Paroxetine ameliorates lipopolysaccharide-induced microglia activation via differential regulation of MAPK signaling.

    Science.gov (United States)

    Liu, Rong-Pei; Zou, Ming; Wang, Jian-Yong; Zhu, Juan-Juan; Lai, Jun-Mei; Zhou, Li-Li; Chen, Song-Fang; Zhang, Xiong; Zhu, Jian-Hong

    2014-03-12

    Paroxetine, a selective serotonin reuptake inhibitor for counteracting depression, has been recently suggested as having a role in prevention of dopaminergic neuronal degeneration in substantia nigra, a hallmark of Parkinson's disease (PD). The pathogenesis of this type of neurological disorders often involves the activation of microglia and associated inflammatory processes. Thus in this study we aimed to understand the role of paroxetine in microglia activation and to elucidate the underlying mechanism(s). BV2 and primary microglial cells were pretreated with paroxetine and stimulated with lipopolysaccharide (LPS). Cells were assessed for the responses of pro-inflammatory mediator and cytokines, and the related signaling pathways were evaluated and analyzed in BV2 cells. Paroxetine significantly inhibited LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α and IL-1β. Further analysis showed inducible nitric oxide synthase (iNOS) and mRNA expression of TNF-α and IL-1β were attenuated by paroxetine pretreatment. Analyses in signaling pathways demonstrated that paroxetine led to suppression of LPS-induced JNK1/2 activation and baseline ERK1/2 activity, but had little effect on the activation of p38 and p65/NF-κB. Interference with specific inhibitors revealed that paroxetine-mediated suppression of NO production was via JNK1/2 pathway while the cytokine suppression was via both JNK1/2 and ERK1/2 pathways. Furthermore, conditioned media culture showed that paroxetine suppressed the microglia-mediated neurotoxicity. Paroxetine inhibits LPS-stimulated microglia activation through collective regulation of JNK1/2 and ERK1/2 signaling. Our results indicate a potential role of paroxetine in neuroprotection via its anti-neuroinflammatory effect besides targeting for depression.

  11. Butyrate and the colonocyte. Implications for neoplasia.

    Science.gov (United States)

    Velázquez, O C; Lederer, H M; Rombeau, J L

    1996-04-01

    Butyrate is produced in the colon of mammals as a result of microbial fermentation of dietary fiber, undigested starch, and proteins. Butyrate may be an important protective agent in colonic carcinogenesis. Trophic effects on normal colonocytes in vitro and in vivo are induced by butyrate. In contrast, butyrate arrests the growth of neoplastic colonocytes and inhibits the preneoplastic hyperproliferation induced by some tumour promoters in vitro. We speculate that selective effects on G-protein activation may explain this paradox of butyrate's effects in normal versus neoplastic colonocytes. Butyrate induces differentiation of colon cancer cell lines. It also regulates the expression of molecules involved in colonocyte growth and adhesion and inhibits the expression of several protooncogenes relevant to colorectal carcinogenesis. Additional studies are needed to evaluate butyrate's antineoplastic effects in vivo and to understand its mechanism(s) of action.

  12. Dynamic Regulation of Delta-Opioid Receptor in Rat Trigeminal Ganglion Neurons by Lipopolysaccharide-induced Acute Pulpitis.

    Science.gov (United States)

    Huang, Jin; Lv, Yiheng; Fu, Yunjie; Ren, Lili; Wang, Pan; Liu, Baozhu; Huang, Keqiang; Bi, Jing

    2015-12-01

    Delta-opioid receptor (DOR) and its endogenous ligands distribute in trigeminal system and play a very important role in modulating peripheral inflammatory pain. DOR activation can trigger p44/42 mitogen-activated protein kinase (ERK1/2) and Akt signaling pathways, which participate in anti-inflammatory and neuroprotective effects. In this study, our purpose was to determine the dynamic changes of DOR in trigeminal ganglion (TG) neurons during the process of acute dental pulp inflammation and elucidate its possible mechanism. Forty rats were used to generate lipopolysaccharide-induced acute pulpitis animal models at 6, 12, and 24 hours and sham-operated groups. Acute pulpitis was confirmed by hematoxylin-eosin staining, and TG neuron activation was determined by anti-c-Fos immunohistochemistry. DOR protein and gene expression in TG was investigated by immunohistochemistry, Western blotting, and real-time polymerase chain reaction, and DOR expression in trigeminal nerves and dental pulp was also determined by immunohistochemistry. To further investigate the mechanism of DOR modulating acute inflammation, the change of pErk1/2 and pAkt in TG was examined by immunohistochemistry. Lipopolysaccharide could successfully induce acute pulpitis and activated TG neurons. Acute pulpitis could dynamically increase DOR protein and gene expression at 6, 12, and 24 hours in TG, and DOR dimerization was significantly increased at 12 and 24 hours. Acute pulpitis also induced the dynamic change of DOR protein in trigeminal nerve and dental pulp. Furthermore, ERK1/2 and Akt signaling pathways were inhibited in TG after acute pulpitis. Increased DOR expression and dimerization may play important roles in peripheral acute inflammatory pain. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells.

    Science.gov (United States)

    Kumar, Anoop; Alrefai, Waddah A; Borthakur, Alip; Dudeja, Pradeep K

    2015-10-01

    Butyrate, a key short-chain fatty acid metabolite of colonic luminal bacterial action on dietary fiber, serves as a primary fuel for the colonocytes, ameliorates mucosal inflammation, and stimulates NaCl absorption. Absorption of butyrate into the colonocytes is essential for these intracellular effects. Monocarboxylate transporter 1 (MCT1) plays a major role in colonic luminal butyrate absorption. Previous studies (Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. Adv Immunol 121: 91-119, 2014.) showed decreased MCT1 expression and function in intestinal inflammation. We have previously shown (Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. Am J Physiol Gastrointest Liver Physiol 290: G30-G35, 2006.) impaired butyrate absorption in human intestinal epithelial Caco-2 cells due to decreased MCT1 level at the apical cell surface following enteropathogenic E. coli (EPEC) infection. Current studies, therefore, examined the potential role of probiotic Lactobacilli in stimulating MCT1-mediated butyrate uptake and counteracting EPEC inhibition of MCT1 function. Of the five species of Lactobacilli, short-term (3 h) treatment with L. acidophilus (LA) significantly increased MCT1-mediated butyrate uptake in Caco-2 cells. Heat-killed LA was ineffective, whereas the conditioned culture supernatant of LA (LA-CS) was equally effective in stimulating MCT1 function, indicating that the effects are mediated by LA-secreted soluble factor(s). Furthermore, LA-CS increased apical membrane levels of MCT1 protein via decreasing its basal endocytosis, suggesting that LA-CS stimulation of butyrate uptake could be secondary to increased levels of MCT1 on the apical cell surface. LA-CS also attenuated EPEC inhibition of butyrate uptake and EPEC-mediated endocytosis of MCT1. Our studies highlight distinct role of specific LA-secreted molecules in modulating colonic butyrate absorption.

  14. Antagonistic Effects of Sodium Butyrate and N-(4-Hydroxyphenyl-retinamide on Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Rainer Kuefer

    2007-03-01

    Full Text Available Butyrates and retinoids are promising antineoplastic agents. Here we analyzed effects of sodium butyrate and N-(4-hydroxyphenyl-retinamide (4-HPR on prostate cancer cells as monotherapy or in combination in vitro and in vivo. Sodium butyrate and 4-HPR induced concentration-dependent growth inhibition in prostate cancer cells in vitro. The isobologram analysis revealed that sodium butyrate and 4-HPR administered together antagonize effects of each other. For the in vivo studies, a water-soluble complex (4-HPR with a cyclodextrin was created. A single dose of sodium butyrate and 4-HPR showed a peak level in chicken plasma within 30 minutes. Both compounds induced inhibition of proliferation and apoptosis in xenografts of the chicken chorioallantoic membrane. Analysis of the cytotoxic effects of the drugs used in combination demonstrated an antagonistic effect on inhibition of proliferation and on induction of apoptosis. Prolonged jun N-terminal kinase phosphorylation induced by sodium butyrate and 4-HPR was strongly attenuated when both compounds were used in combination. Both compounds induced inhibition of NF-κ,B. This effect was strongly antagonized in LNCaP cells when the compounds were used in combination. These results indicate that combinational therapies have to be carefully investigated due to potential antagonistic effects in the clinical setting despite promising results of a monotherapy.

  15. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  16. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  17. Flavonoid fraction of guava leaf extract attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-κB signalling pathway in Labeo rohita macrophages.

    Science.gov (United States)

    Sen, Shib Sankar; Sukumaran, V; Giri, Sib Sankar; Park, Se Chang

    2015-11-01

    Psidium guajava L. is a well-known traditional medicinal plant widely used in folk medicine. To explore the anti-inflammatory activity of the flavonoid fraction of guava leaf extract (FGLE), we investigated its ability to suppress the levels of inflammatory mediators elevated by lipopolysaccharide (LPS) in Labeo rohita head-kidney (HK) macrophages. HK macrophages of L. rohita were treated with LPS in the presence or absence of the FGLE. We examined the inhibitory effect of FGLE on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The inhibitory effect of FGLE on nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR and western blot. The effect of FGLE on proinflammatory cytokines tumour necrosis factor alpha (TNF-α) or interleukin-1β (IL-1β) was also investigated by ELISA and RT-PCR. The phosphorylation of three mitogen activated protein kinases (MAPK) molecules ERK, JNK and p38 was analysed by western blot analysis. FGLE inhibited LPS-induced NO and PGE2 production. It also effectively inhibited TNF-α, IL-1β, IL-10, iNOS, and COX-2 production in a concentration-dependent manner. In addition, FGLE suppressed the mRNA expression levels of TNF-α and IL-1β in LPS-stimulated HK macrophages. RT-PCR and western blot analysis showed that FGLE decreased both the mRNA and protein expression levels of LPS-induced iNOS and COX-2 in HK macrophages. FGLE suppresses the phosphorylation of MAPK molecules in LPS-stimulated HK macrophages. FGLE also significantly inhibited LPS-induced NF-κB transcriptional activity. The molecular mechanism by which FGLE suppresses the expression of inflammatory mediators appears to involve the inhibition of NF-κB activation, through the suppression of LPS-induced IκB-α degradation. Together these results suggest that FGLE contains potential therapeutic agent(s), which regulate NF-κB activation, for the treatment of inflammatory conditions in L. rohita macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-Galactosamine sensitized rats: Role of nitric oxide synthase 2 and heme oxygenase-1

    Czech Academy of Sciences Publication Activity Database

    Farghali, H.; Černý, D.; Kameníková, L.; Martínek, J.; Hořínek, A.; Kmoníčková, Eva; Zídek, Zdeněk

    2009-01-01

    Roč. 21, 3-4 (2009), s. 216-225 ISSN 1089-8603 R&D Projects: GA ČR GA305/07/0061 Grant - others:GA ČR(CZ) GA305/09/0004; GA MZd(CZ) NR9379 Institutional research plan: CEZ:AV0Z50390512 Keywords : resveratrol * lipopolysacchride * nitrix oxide Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.506, year: 2009

  19. Hypaphorine Attenuates Lipopolysaccharide-Induced Endothelial Inflammation via Regulation of TLR4 and PPAR-γ Dependent on PI3K/Akt/mTOR Signal Pathway.

    Science.gov (United States)

    Sun, Haijian; Zhu, Xuexue; Cai, Weiwei; Qiu, Liying

    2017-04-17

    Endothelial lesion response to injurious stimuli is a necessary step for initiating inflammatory cascades in blood vessels. Hypaphorine (Hy) from different marine sources is shown to exhibit anti-inflammatory properties. However, the potential roles and possible molecular mechanisms of Hy in endothelial inflammation have yet to be fully clarified. We showed that Hy significantly inhibited the positive effects of lipopolysaccharide (LPS) on pro-inflammatory cytokines expressions, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein 1 (MCP-1) and vascular cellular adhesion molecule-1 (VCAM-1), as well as induction of the phosphorylation of Akt and mTOR in HMEC-1 cells. The downregulated peroxisome proliferator-activated receptor γ (PPAR-γ) and upregulated toll-like receptor 4 (TLR4) expressions in LPS-challenged endothelial cells were prevented by Hy. Inhibition of both PI3K and mTOR reversed LPS-stimulated increases in TLR4 expressions and decreases in PPAR-γ levels. Genetic silencing of TLR4 or PPAR-γ agonist pioglitazone obviously abrogated the levels of pro-inflammatory cytokines in LPS-treated HMEC-1 cells. These results suggest that Hy may exert anti-inflammatory actions through the regulation of TLR4 and PPAR-γ dependent on PI3K/Akt/mTOR signal pathways. Hy may be considered as a therapeutic agent that can potentially relieve or ameliorate endothelial inflammation-associated diseases.

  20. Blocking triggering receptor expressed on myeloid cells-1 attenuates lipopolysaccharide-induced acute lung injury via inhibiting NLRP3 inflammasome activation

    OpenAIRE

    Liu, Tian; Zhou, Yong; Li, Ping; Duan, Jia-Xi; Liu, Yong-Ping; Sun, Guo-Ying; Wan, Li; Dong, Liang; Fang, Xiang; Jiang, Jian-Xin; Guan, Cha-Xiang

    2016-01-01

    Acute lung injury (ALI) is associated with high mortality and uncontrolled inflammation plays a critical role in ALI. TREM-1 is an amplifier of inflammatory response, and is involved in the pathogenesis of many infectious diseases. NLRP3 inflammasome is a member of NLRs family that contributes to ALI. However, the effect of TREM-1 on NLRP3 inflammasome and ALI is still unknown. This study aimed to determine the effect of TREM-1 modulation on LPS-induced ALI and activation of the NLRP3 inflamm...

  1. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    Science.gov (United States)

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.

  2. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  3. Protective mechanisms of acacetin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice.

    Science.gov (United States)

    Cho, Hong-Ik; Park, Jin-Hyun; Choi, Hyo-Sun; Kwak, Jong Hwan; Lee, Dong-Ung; Lee, Sang Kook; Lee, Sun-Mee

    2014-11-26

    This study examined the hepatoprotective effects of acacetin (1), a flavonoid isolated from Agastache rugosa, against d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced fulminant hepatic failure. Mice were given an intraperitoneal injection of 1 (25, 50, and 100 mg/kg), or the vehicle alone (5% dimethyl sulfoxide-saline), 1 h before GalN (800 mg/kg)/LPS (40 μg/kg) treatment and sacrificed at 6 h after GalN/LPS injection. GalN/LPS markedly increased mortality and serum aminotransferase activity, and these increases were attenuated by 1. GalN/LPS increased serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels, while 1 attenuated TNF-α levels and further increased IL-6 levels. GalN/LPS increased protein expression of toll-like receptor 4, phosphorylation of extracellular signal-related kinase, and p38 and c-Jun N-terminal kinase and increased nuclear protein expression of nuclear factor κB; these increases were attenuated by 1. GalN/LPS increased Atg5 and Atg7 protein expressions, and these increases were augmented by 1. GalN/LPS activated autophagic flux as indicated by decreased microtubule-associated protein 1 light chain 3-II and sequestosome1/p62 protein expression. This activation was enhanced by 1. These findings suggest that 1 protects against GalN/LPS-induced liver injury by suppressing TLR4 signaling and enhancing autophagic flux.

  4. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yoshioka

    2016-02-01

    Full Text Available Dopamine (DA has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS-induced nitric oxide (NO production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (−-(6aR,12bR-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208–243 and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ, accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  5. Effects of catalpol on mitochondrial function and working memory in mice after lipopolysaccharide-induced acute systemic inflammation.

    Science.gov (United States)

    Zhang, Aihong; Hao, Shuang; Bi, Jing; Bao, Yongming; Zhang, Xiuli; An, Lijia; Jiang, Bo

    2009-09-01

    The aim of this study was to investigate whether catalpol could facilitate recovery from lipopolysaccharide (LPS)-induced cognitive deficits and protect brain mitochondrial function from LPS-induced acute systemic inflammation. In the study, except control group, mice were challenged with a single dose of LPS (100 microg/mouse, i.p.) to mimic an acute peripheral infection. The results showed that LPS enhanced nuclear factor kappa B (NF-kappaB) activation and induced a loss in mitochondrial integrity as shown by a significant decrease in membrane potential and increase in mitochondrial permeability transition pore opening. Pretreatment with catalpol (10 mg/kg d, i.p.) for 10d before injection of LPS reversed the memory deficits induced by LPS, protected brain mitochondrial function, and attenuated LPS-induced NF-kappaB activation. Taken together, these data indicate that catalpol may possess therapeutic potential against LPS-induced acute systemic inflammation by attenuating NF-kappaB activation and protecting mitochondrial function in cerebral cortex and hippocampus.

  6. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    Science.gov (United States)

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  7. Propionate Protects against Lipopolysaccharide-Induced Mastitis in Mice by Restoring Blood-Milk Barrier Disruption and Suppressing Inflammatory Response.

    Science.gov (United States)

    Wang, Jingjing; Wei, Zhengkai; Zhang, Xu; Wang, Yanan; Yang, Zhengtao; Fu, Yunhe

    2017-01-01

    Mastitis, an inflammation of the mammary glands, is a major disease affecting dairy animal worldwide. Propionate is one of the main short-chain fatty acid that can exert multiple effects on the inflammatory process. The purpose of this study is to investigate the mechanisms underlying the protective effects of sodium propionate against lipopolysaccharide (LPS)-induced mastitis model in mice. The data mainly confirm that inflammation and blood-milk barrier breakdown contribute to progression of the disease in this model. In mice with LPS, sodium propionate attenuates the LPS-induced histopathological changes, inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) production, myeloperoxidase activity in mammary tissues. Given their importance in the blood-milk barrier, tight junction proteins occludin and claudin-3 are further investigated. Our results show that sodium propionate strikingly increases the expressions of occludin and claudin-3 and reduces the blood-milk barrier permeability in this model. Furthermore, in LPS-stimulated mouse mammary epithelial cells (mMECs), LPS increased the expressions of phosphorylated (p)-p65, p-IκB proteins, which is attenuated by sodium propionate. Finally, we examine the possibility that propionate acts as a histone deacetylase (HDAC) inhibitor, the results show that both sodium propionate and trichostatin A increase the level of histone H3 acetylation and inhibit the increased production of TNF-α, IL-6, and IL-1β in LPS-stimulated mMECs. These data suggest that sodium propionate protects against LPS-induced mastitis mainly by restoring blood-milk barrier disruption and suppressing inflammation via NF-κB signaling pathway and HDAC inhibition.

  8. Propionate Protects against Lipopolysaccharide-Induced Mastitis in Mice by Restoring Blood–Milk Barrier Disruption and Suppressing Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Jingjing Wang

    2017-09-01

    Full Text Available Mastitis, an inflammation of the mammary glands, is a major disease affecting dairy animal worldwide. Propionate is one of the main short-chain fatty acid that can exert multiple effects on the inflammatory process. The purpose of this study is to investigate the mechanisms underlying the protective effects of sodium propionate against lipopolysaccharide (LPS-induced mastitis model in mice. The data mainly confirm that inflammation and blood–milk barrier breakdown contribute to progression of the disease in this model. In mice with LPS, sodium propionate attenuates the LPS-induced histopathological changes, inflammatory cytokines tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and interleukin-1β (IL-1β production, myeloperoxidase activity in mammary tissues. Given their importance in the blood–milk barrier, tight junction proteins occludin and claudin-3 are further investigated. Our results show that sodium propionate strikingly increases the expressions of occludin and claudin-3 and reduces the blood–milk barrier permeability in this model. Furthermore, in LPS-stimulated mouse mammary epithelial cells (mMECs, LPS increased the expressions of phosphorylated (p-p65, p-IκB proteins, which is attenuated by sodium propionate. Finally, we examine the possibility that propionate acts as a histone deacetylase (HDAC inhibitor, the results show that both sodium propionate and trichostatin A increase the level of histone H3 acetylation and inhibit the increased production of TNF-α, IL-6, and IL-1β in LPS-stimulated mMECs. These data suggest that sodium propionate protects against LPS-induced mastitis mainly by restoring blood–milk barrier disruption and suppressing inflammation via NF-κB signaling pathway and HDAC inhibition.

  9. Detection and molecular characterization of butyrate-producing ...

    African Journals Online (AJOL)

    Butyrate-producing gut microflora synthesizes and secretes butyrate which serves as source of energy and stimulates rumen development in young animals. ... screen butyrate-producing lactic acid bacteria (LAB) for probiotic use in animals in order to manipulate their gut flora for the benefit of host health and productivity.

  10. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure.

    Science.gov (United States)

    Cresci, Gail A M; Mayor, Paul C; Thompson, Stuart A

    2017-03-01

    Campylobacter jejuni frequently infects humans causing many gastrointestinal symptoms, fever, fatigue and several long-term debilitating diseases. Current treatment for campylobacteriosis includes rehydration and in some cases, antibiotic therapy. Probiotics are used to treat several gastrointestinal diseases. Butyrate is a short-chain fatty acid known to promote intestinal health. Interaction of butyrate with its respective receptor (HCAR2) and transporter (SLC5A8), both expressed in the intestine, is associated with water and electrolyte absorption as well as providing defense against colon cancer and inflammation. Alterations in gut microbiota influence the presence of HCAR2 and SLC5A8 in the intestine. We hypothesized that adherence and/or invasion of C. jejuni and alterations in HCAR2 and SLC5A8 expression would be minimized with butyrate or Lactobacillus GG (LGG) pretreatment of Caco-2 cells. We found that both C. jejuni adhesion but not invasion was reduced with butyrate pretreatment. While LGG pretreatment did not prevent C. jejuni adhesion, it did result in reduced invasion which was associated with altered cell supernate pH. Both butyrate and LGG protected HCAR2 and SLC5A8 protein expression following C. jejuni infection. These results suggest that the first stages of C. jejuni infection of Caco-2 cells may be minimized by LGG and butyrate pretreatment. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Qiuyu Wang

    2018-02-01

    Full Text Available Lipopolysaccharides (LPS are major outer membrane components of Gram-negative bacteria and produce strong inflammatory responses in animals. Most antibiotics have shown little clinical anti-endotoxin activity while some antimicrobial peptides have proved to be effective in blocking LPS. Here, the anti-LPS activity of the synthetic peptide AWRK6, which is derived from antimicrobial peptide dybowskin-2CDYa, has been investigated in vitro and in vivo. The positively charged α-helical AWRK6 was found to be effective in blocking the binding of LBP (LPS binding protein with LPS in vitro using ELISA. In a murine endotoxemia model, AWRK6 offered satisfactory protection efficiency against endotoxemia death, and the serum levels of LPS, IL-1β, IL-6, and TNF-α were found to be attenuated using ELISA. Further, histopathological analysis suggested that AWRK6 could improve the healing of liver and lung injury in endotoxemia mice. The results of real-time PCR and Western blotting showed that AWRK6 significantly reversed LPS-induced TLR4 overexpression and IκB depression, as well as the enhanced IκB phosphorylation. Additionally, AWRK6 did not produce any significant toxicity in vivo and in vitro. In summary, AWRK6 showed efficacious protection from LPS challenges in vivo and in vitro, by blocking LPS binding to LBP, without obvious toxicity, providing a promising strategy against LPS-induced inflammatory responses.

  12. Glutathione peroxidase-1 modulates lipopolysaccharide-induced adhesion molecule expression in endothelial cells by altering CD14 expression.

    Science.gov (United States)

    Lubos, Edith; Mahoney, Christopher E; Leopold, Jane A; Zhang, Ying-Yi; Loscalzo, Joseph; Handy, Diane E

    2010-07-01

    CD14 contributes to LPS signaling in leukocytes through formation of toll-like receptor 4/CD14 receptor complexes; however, a specific role for endogenous cell-surface CD14 in endothelial cells is unclear. We have found that suppression of glutathione peroxidase-1 (GPx-1) in human microvascular endothelial cells increases CD14 gene expression compared to untreated or siControl (siCtrl)-treated conditions. Following LPS treatment, GPx-1 deficiency augmented LPS-induced intracellular reactive oxygen species accumulation, CD14 expression, and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein expression compared to LPS-treated control cells. GPx-1 deficiency also transiently augmented LPS-induced vascular cell adhesion molecule-1 (VCAM-1) expression. Adenoviral overexpression of GPx-1 significantly diminished LPS-mediated responses in adhesion molecule expression. Consistent with these findings, LPS responses were also greater in endothelial cells derived from GPx-1-knockout mice, whereas adhesion molecule expression was decreased in cells from GPx-1-overexpressing transgenic mice. Knockdown of CD14 attenuated LPS-mediated up-regulation of ICAM-1 and VCAM-1 mRNA and protein, and it mitigated the effects of GPx-1 deficiency on LPS-induced adhesion molecule expression. Taken together, these data suggest that GPx-1 modulates the endothelial cell response to LPS, in part, by altering CD14-mediated effects.

  13. Effect of acupuncture on Lipopolysaccharide-induced anxiety-like behavioral changes: involvement of serotonin system in dorsal Raphe nucleus.

    Science.gov (United States)

    Yang, Tae Young; Jang, Eun Young; Ryu, Yeonhee; Lee, Gyu Won; Lee, Eun Byeol; Chang, Suchan; Lee, Jong Han; Koo, Jin Suk; Yang, Chae Ha; Kim, Hee Young

    2017-12-11

    Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN.

  14. The novel role of platelet-activating factor in protecting mice against lipopolysaccharide-induced endotoxic shock.

    Directory of Open Access Journals (Sweden)

    Young-Il Jeong

    Full Text Available BACKGROUND: Platelet-activating factor (PAF has been long believed to be associated with many pathophysiological processes during septic shock. Here we present novel activities for PAF in protecting mice against LPS-mediated endotoxic shock. PRINCIPAL FINDINGS: In vivo PAF treatment immediately after LPS challenge markedly improved the survival rate against mortality from endotoxic shock. Administration of PAF prominently attenuated LPS-induced organ injury, including profound hypotension, excessive polymorphonuclear neutrophil infiltration, and severe multiple organ failure. In addition, PAF treatment protects against LPS-induced lymphocytes apoptosis. These protective effects of PAF was correlated with significantly decreases in the production of the inflammatory mediators such as TNF-alpha, IL-1beta, IL-12, and IFN-gamma, while increasing production of the anti-inflammatory cytokine IL-10 in vivo and in vitro. CONCLUSIONS: Taken together, these results suggest that PAF may protect mice against endotoxic shock via a complex mechanism involving modulation of inflammatory and anti-inflammatory mediators.

  15. The effects of morin on lipopolysaccharide-induced acute lung injury by suppressing the lung NLRP3 inflammasome.

    Science.gov (United States)

    Tianzhu, Zhang; Shihai, Yang; Juan, Du

    2014-12-01

    In previous study, the anti-inflammatory effect of morin had been found. In this study, we investigated anti-inflammatory effects of morin on acute lung injury using lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-18, and IL-6 were assayed by enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed by hematoxylin and eosin (HE) staining. The protein level of lung NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome was measured by Western blotting. The data showed that treatment with the morin markedly attenuated inflammatory cell numbers in the BALF, decreased lung NLRP3 inflammasome protein level, and improved SOD activity and inhibited MPO activity. Histological studies demonstrated that morin substantially inhibited LPS-induced neutrophils in lung tissue compared with model group. The results indicated that the morin had a protective effect on LPS-induced ALI in mice.

  16. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells.

    Science.gov (United States)

    Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min

    2017-01-01

    Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF- κ B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF- κ B signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF- κ B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.

  17. Depression-like behaviors and heme oxygenase-1 are regulated by Lycopene in lipopolysaccharide-induced neuroinflammation.

    Science.gov (United States)

    Zhang, Fang; Fu, Yanyan; Zhou, Xiaoyan; Pan, Wei; Shi, Yue; Wang, Mei; Zhang, Xunbao; Qi, Dashi; Li, Lei; Ma, Kai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2016-09-15

    Previous studies have demonstrated that lycopene possesses anti-inflammatory properties in the central nervous system. However, the potential role and the molecular mechanisms of lycopene in lipopolysaccharide (LPS)-challenge inflammation and depression-like behaviors has not been clearly investigated. The present study aimed to assess the effects and the potential mechanisms of lycopene on LPS-induced depression-like behaviors. Lycopene was orally administered (60mg/kg) every day for seven days followed by intraperitoneal LPS injection (1mg/kg). The Forced swim test and tail suspension test were used to detect changes in the depression-like behaviors. ELISA was used to measure the expression of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) in the plasma. Immunoblotting was performed to measure the expression of interleukin-1β (IL-1β) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that pretreatment with lycopene could ameliorate depression-like behaviors. Moreover, lycopene relieved neuronal cell injury in hippocampal CA1 regions. Furthermore, lycopene decreased LPS-induced expression of IL-1β and HO-1 in the hippocampus together with decreasing level of IL-6 and TNF-α in the plasma. Taken together, these results suggest that lycopene can attenuate LPS-induced inflammation and depression-like behaviors, which may be involved in regulating HO-1 in the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    Science.gov (United States)

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  19. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, J. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China); Xiao, F. [Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China)

    2013-12-02

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M{sub 3} receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

  20. Protective effect of total flavonoid C-glycosides from Abrus mollis extract on lipopolysaccharide-induced lipotoxicity in mice.

    Science.gov (United States)

    Wang, Yun; Jiang, Zhen-Zhou; Chen, Mi; Wu, Mei-Juan; Guo, Hong-Li; Sun, Li-Xin; Wang, Hao; Zhang, Shuang; Wang, Tao; Zhang, Lu-Yong

    2014-06-01

    Abrus mollis is a widely used traditional Chinese medicine for treating acute and chronic hepatitis, steatosis, and fibrosis. It was found that the total flavonoid C-glycosides from Abrus mollis extract (AME) showed potent antioxidant, anti-inflammatory, and hepatoprotective activities. To further investigate the hepatoprotective effect of AME and its possible mechanisms, lipopolysaccharide (LPS)-induced liver injury models were applied in the current study. The results indicated that AME significantly attenuated LPS-induced lipid accumulation in mouse primary hepatocytes as measured by triglyceride (TG) and total cholesterol (TC) assays and Oil Red O staining. Meanwhile, AME exerted a protective effect on LPS-induced liver injury as shown by decreased liver index, serum aminotransferase levels, and hepatic lipid accumulation. Real-time PCR and immunoblot data suggested that AME reversed the LPS-mediated lipid metabolism gene expression, such as sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase 1 (ACC1). In addition, LPS-induced overexpression of activating transcription factor 4 (ATF4), X-box-binding protein-1 (XBP-1), and C/EBP homologous protein (CHOP) were dramatically reversed by AME. Furthermore, AME also decreased the expression of LPS-enhanced interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2). Here, it is demonstrated for the first time that AME ameliorated LPS-induced hepatic lipid accumulation and that this effect of AME can be attributed to its modulation of hepatic de novo fatty acid synthesis. This study also suggested that the hepatoprotective effect of AME may be related to its down-regulation of unfolded protein response (UPR) activation. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  1. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice.

    Science.gov (United States)

    Robertson, Sarah A; Care, Alison S; Skinner, Rebecca J

    2007-05-01

    Interleukin 10 (IL10) is a potent immune-regulating cytokine and inhibitor of inflammatory cytokine synthesis. To evaluate the anti-inflammatory role of IL10 in pregnancy, the response of genetically IL10-deficient mice to low-dose lipopolysaccharide (LPS)-induced abortion was examined. When IL10-null mutant C57Bl/6 (Il10(-/-)) and control (Il10(+/+)) mice were administered low-dose LPS on Day 9.5 of gestation, IL10 deficiency predisposed to fetal loss accompanied by growth restriction in remaining viable fetuses, with an approximately 10-fold reduction in the threshold dose for 100% abortion. After LPS administration, inflammatory cytokines tumor necrosis factor-alpha (TNFA) and IL6 were markedly increased in serum, uterine, and conceptus tissues in Il10(-/-) mice compared with Il10(+/+) mice, with elevated local synthesis of Tnfa and Il6 mRNAs in the gestational tissues. IL1A and IL12p40 were similarly elevated in serum and gestational tissues, whereas interferon gamma (IFNG) and soluble TNFRII content were unchanged in the absence of IL10. Recombinant IL10 rescued the increased susceptibility to LPS-induced fetal loss in Il10(-/-) mice but did not improve outcomes in Il10(+/+) mice. IL10 genotype also influenced the responsiveness of mice to a TNFA antagonist, etanercept. Fetal loss in Il10(-/-) mice was partly alleviated by moderate or high doses of etanercept, whereas Il10(+/+) mice were refractory to high-dose etanercept, consistent with attenuation by IL10 status of TNFA bioavailability after etanercept treatment. These data show that IL10 modulates resistance to inflammatory stimuli by downregulating expression of proinflammatory cytokines TNFA, IL6, IL1A, and IL12, acting to protect against inflammation-induced pathology in the implantation site.

  2. Acanthopanax trifoliatus inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Tzu-Mei Chien

    2015-10-01

    Full Text Available Acanthopanax trifoliatus is a well-known herb that is used for the treatment of bruising, neuralgia, impotence, and gout in Taiwan. This herb exhibits multifunctional activities, including anticancer, anti-inflammation, and antioxidant effects. This paper investigated the in vitro and in vivo anti-inflammatory effect of A. trifoliatus. High-performance liquid chromatography analysis established the fingerprint chromatogram of the ethyl acetate fraction of A. trifoliatus (EAAT. The anti-inflammatory effect of EAAT was detected using lipopolysaccharide (LPS stimulation of the mouse macrophage cell line RAW264.7 in vitro and LPS-induced lung injury in vivo. The effects of EAAT on LPS-induced production of inflammatory mediators in RAW264.7 murine macrophages and the mouse model were measured using enzyme-linked immunosorbent assay and Western blot. EAAT attenuated the production of LPS-induced nitric oxide (NO, tumor necrosis factor-alpha, interleukin-1β (IL-1β, and IL-6 in vitro and in vivo. Pretreatment with EAAT markedly reduced LPS-induced histological alterations in lung tissues. Furthermore, EAAT significantly reduced the number of total cells and protein concentration levels in the bronchoalveolar lavage fluid. Western blotting test results revealed that EAAT blocked protein expression of inducible NO synthase, cyclooxygenase-2, phosphorylation of Nuclear factor-kappa-B Inhibitor alpha (IκB-α protein, and mitogen-activated protein kinases in LPS-stimulated RAW264.7 cells as well as LPS-induced lung injury. This study suggests that A. trifoliatus may be a potential therapeutic candidate for the treatment of inflammatory diseases.

  3. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    Science.gov (United States)

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  4. Toll-like receptor 4 regulates lipopolysaccharide-induced inflammation and lactation insufficiency in a mouse model of mastitis.

    Science.gov (United States)

    Glynn, Danielle J; Hutchinson, Mark R; Ingman, Wendy V

    2014-05-01

    Lactation mastitis is a debilitating inflammatory breast disease in postpartum women. Disease severity is associated with markers of inflammation rather than bacterial load, suggesting that immune-signaling pathways activated in the host are important in the disease pathology. The role of the innate pattern recognition receptor toll-like receptor 4 (TLR4) in progression and resolution of mastitislike disease was investigated in a mouse model. Lipopolysaccharide in Matrigel (10 μg/10 μl) was administered into the teat canal of lactating Tlr4 null mutant and wild-type mice to induce a localized area of inflammation. Mastitis induction resulted in a marked influx of RB6-positive neutrophils and F4/80-positive macrophages, which was higher in Tlr4(-/-) mice compared to wild-type mice. Tlr4 null mutation resulted in an altered immune-signaling fingerprint following induction of mastitis, with attenuated serum cytokines, including CXCL1, CCL2, interleukin 1 beta, and tumor necrosis factor alpha compared to wild-type mice. In both genotypes, the localized area of inflammation had resolved after 7 days, and milk protein was evident. However, the mammary glands of wild-type mice exhibited reduced capacity for milk production, with decreased percent area populated with glandular epithelium and decreased abundance of nuclear phosphorylated signal transducer and activator of transcription 5 compared to Tlr4 null mice. This study demonstrates that inflammatory pathways activated in the host are critically important in mastitis disease progression and suggests that lactation insufficiency associated with mastitis may be a consequence of TLR4-mediated inflammation, rather than the bacterial infection itself.

  5. Leptin fails to blunt the lipopolysaccharide-induced activation of the hypothalamic-pituitary-adrenal axis in rats.

    Science.gov (United States)

    Basharat, Saadia; Parker, Jennifer A; Murphy, Kevin G; Bloom, Stephen R; Buckingham, Julia C; John, Christopher D

    2014-05-01

    Obesity is a risk factor for sepsis morbidity and mortality, whereas the hypothalamic-pituitary-adrenal (HPA) axis plays a protective role in the body's defence against sepsis. Sepsis induces a profound systemic immune response and cytokines serve as excellent markers for sepsis as they act as mediators of the immune response. Evidence suggests that the adipokine leptin may play a pathogenic role in sepsis. Mouse endotoxaemic models present with elevated leptin levels and exogenously added leptin increased mortality whereas human septic patients have elevated circulating levels of the soluble leptin receptor (Ob-Re). Evidence suggests that leptin can inhibit the regulation of the HPA axis. Thus, leptin may suppress the HPA axis, impairing its protective role in sepsis. We hypothesised that leptin would attenuate the HPA axis response to sepsis. We investigated the direct effects of an i.p. injection of 2 mg/kg leptin on the HPA axis response to intraperitoneally injected 25 μg/kg lipopolysaccharide (LPS) in the male Wistar rat. We found that LPS potently activated the HPA axis, as shown by significantly increased plasma stress hormones, ACTH and corticosterone, and increased plasma interleukin 1β (IL1β) levels, 2 h after administration. Pre-treatment with leptin, 2 h before LPS administration, did not influence the HPA axis response to LPS. In turn, LPS did not affect plasma leptin levels. Our findings suggest that leptin does not influence HPA function or IL1β secretion in a rat model of LPS-induced sepsis, and thus that leptin is unlikely to be involved in the acute-phase endocrine response to bacterial infection in rats.

  6. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  7. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition.

    Science.gov (United States)

    Suzuki, Toshio; Tada, Yuji; Gladson, Santhi; Nishimura, Rintaro; Shimomura, Iwao; Karasawa, Satoshi; Tatsumi, Koichiro; West, James

    2017-10-16

    Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune

  8. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS. Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3. However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP, mixed lineage kinase domain-like protein (MLKL, total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI staining. Levels of TNF-a, Interleukin (IL-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in

  9. Retraction Statement: Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways.

    Science.gov (United States)

    2017-09-01

    'Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways' by Slusarczyk, J., Trojan, E., Glombik, K., Piotrowska, A., Budziszewska, B., Kubera, M., Popiolek-Barczyk, K., Lason, W., Mika, J. and Basta-Kaim, A. The above article from the Journal of Neurochemistry published on 14 February 2016 on Wiley Online Library ( www.onlinelibrary.com), and in Volume 136, pp. 958-970, is being retracted by agreement between the corresponding author Agnieszka Basta-Kaim, the Journal's Editor-in-Chief Jörg Schulz, and John Wiley & Sons Ltd. The Editorial Office was alerted by a science journalist that the same Western Blot lane had been used to represent two different proteins. The Western Blot signal of iNOS in Fig. 4a was supposedly identical to the Western Blot signal of phospho-JNK in Fig. 6b. The corresponding author stated that "on the final step of figure 6 preparation the first author made, by mistake, an incorrect attachment of representative p-JNK blots." A corrected Fig. 6b is enclosed below. The second concern reaching the Editorial Office was that the same Western Blot signal appeared to have been used to represent two different experimental conditions: the iNOS control signal (-/- LPS/TIA Fig. 4a) appears as a horizontal and vertical mirror image of the last signal in this line (+/10 LPS/TIA Fig. 4a). The raw membrane which was used to produce Fig. 4a is enclosed on the next page and highlights the steps that were undertaken during figure preparation. Although the initial concern was not proven, concerns remained regarding the question how an inadvertent flipping of the first Western blot lane could happen. A corrected Fig. 4a prepared by the corresponding author from the raw image of iNOS western blot depicted above, without flipped first lane, is presented below: Although the corresponding author provided a large amount of evidence to explain disparities in the

  10. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria

    Science.gov (United States)

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was β-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in the triculture, in which both hydrogen and acetate were utilized, than in the coculture, in which acetate accumulated. Yeast extract, rumen fluid, and clarified digestor fluid stimulated butyrate degradation, while the effect of Trypticase was less pronounced. Penicillin G, d-cycloserine, and vancomycin caused complete inhibition of butyrate utilization by the cultures. No growth or degradation of butyrate occurred when 2-bromoethanesulfonic acid or chloroform, specific inhibitors of methanogenic bacteria, was added to the cultures and common electron acceptors such as sulfate, nitrate, and fumarate were not used with butyrate as the electron donor. Addition of hydrogen or oxygen to the gas phase immediately stopped growth and butyrate degradation by the cultures. Butyrate was, however, metabolized at approximately the same rate when hydrogen was removed from the cultures and was metabolized at a reduced rate in the cultures previously exposed to hydrogen. Images PMID:16347292

  11. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model.

    Science.gov (United States)

    Zuo, Wen-Qi; Hu, Yu-Juan; Yang, Yang; Zhao, Xue-Yan; Zhang, Yuan-Yuan; Kong, Wen; Kong, Wei-Jia

    2015-05-29

    it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.

  12. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Science.gov (United States)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  13. Reductive Carboxylation of Propionate to Butyrate in Methanogenic Ecosystems

    Science.gov (United States)

    Tholozan, J. L.; Samain, E.; Grivet, J. P.; Moletta, R.; Dubourguier, H. C.; Albagnac, G.

    1988-01-01

    During the batch degradation of sodium propionate by the anaerobic sludge from an industrial digestor, we observed a significant amount of butyrate formation. Varying the initial propionate concentrations did not alter the ratio of maximal butyrate accumulation to initial propionate concentration within a large range. By measuring the decrease in the radioactivity of [1-14C]butyrate during propionate degradation, we estimated that about 20% of the propionate was converted to butyrate. Labeled butyrate was formed from [1-14C]propionate with the same specific radioactivity, suggesting a possible direct pathway from propionate to butyrate. We confirmed this hypothesis by nuclear magnetic resonance studies with [13C]propionate. The results showed that [1-13C]-, [2-13C]-, and [3-13C]propionate were converted to [2-13C]-, [3-13C]-, and [4-13C]butyrate, respectively, demonstrating the direct carboxylation on the carboxyl group of propionate without randomization of the other two carbons. In addition, we observed an exchange reaction between C-2 and C-3 of the propionate, indicating that acetogensis may proceed through a randomizing pathway. The physiological significance and importance of various metabolic pathways involved in propionate degradation are discussed, and an unusual pathway of butyrate synthesis is proposed. PMID:16347557

  14. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications.

    Science.gov (United States)

    Velázquez, O C; Lederer, H M; Rombeau, J L

    1997-01-01

    Butyrate, a SCFA generated by microbial fermentation of dietary substrates, is produced in the colon of humans and may influence colonic disease. It is possible to manipulate the diet in order to enhance levels of butyrate in various regions of the large intestine. Butyrate is absorbed by colonocytes in the proximal colon via passive diffusion and by active transport mechanisms which are linked to various ion exchange transporters. In the distal colon, the main mechanism of absorption is passive diffusion of the lipid-soluble form. Butyrate and other SCFA are important for the absorption of electrolytes by the large intestine and may play a role in preventing certain types of diarrhea. The mechanism by which butyrate and other SCFA exerts control over fluid and electrolyte fluxes in the colon is not well delineated though it may occur through an energy generated fuel effect, the up-regulation of various electrolyte transport systems, as well as possible effects on neuroendocrine factors. Butyrate has been shown to have beneficial effects on some colonic pathologies. This SCFA may be protective against colorectal neoplasia. Butyrate regulates colonic motility, increases colonic blood flow and may enhance colonic anastomosis healing. Butyrate may reduce the symptoms from ulcerative colitis and diversion colitis and it may prevent the progression of colitis in general. Further investigations are needed to confirm these findings in controlled, randomized, double blinded clinical studies.

  15. Dietary supplementation of butyrate in growing rabbits

    Directory of Open Access Journals (Sweden)

    G. Radaelli

    2010-01-01

    Full Text Available The UE restrictions imposed on the antibiotic utilization in animal husbandry have increased the interest on alternative additives capable of improving animal digestive health. Among the numerous tested products, short chain fatty acids stimulated intestinal mucus production at different level and intestinal cells proliferation in rats (Meslin et al., 2001; Moreau et al., 2003. Short and medium chain fatty acids could also modulate intestinal microflora: in rabbits, the antimicrobial activity of caprilic and capric acids was proved on various strains of Clostridium perfringens and Escherichia coli (Marounek et al., 2002. The present trial aimed to evaluate the effect of butyrate inclusion and level on growth performance, health status, digestive physiology and slaughter traits in growing rabbits.

  16. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  17. Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling.

    Science.gov (United States)

    Reichardt, François; Chassaing, Benoit; Nezami, Behtash Ghazi; Li, Ge; Tabatabavakili, Sahar; Mwangi, Simon; Uppal, Karan; Liang, Bill; Vijay-Kumar, Matam; Jones, Dean; Gewirtz, Andrew T; Srinivasan, Shanthi

    2017-03-01

    A high-fat diet (60% kcal from fat) is associated with motility disorders inducing constipation and loss of nitrergic myenteric neurons in the proximal colon. Gut microbiota dysbiosis, which occurs in response to HFD, contributes to endotoxaemia. High levels of lipopolysaccharide lead to apoptosis in cultured myenteric neurons that express Toll-like receptor 4 (TLR4). Consumption of a Western diet (WD) (35% kcal from fat) for 6 weeks leads to gut microbiota dysbiosis associated with altered bacterial metabolites and increased levels of plasma free fatty acids. These disorders precede the nitrergic myenteric cell loss observed in the proximal colon. Mice lacking TLR4 did not exhibit WD-induced myenteric cell loss and dysmotility. Lipopolysaccharide-induced in vitro enteric neurodegeneration requires the presence of palmitate and may be a result of enhanced NO production. The present study highlights the critical role of plasma saturated free fatty acids that are abundant in the WD with respect to driving enteric neuropathy and colonic dysmotility. The consumption of a high-fat diet (HFD) is associated with myenteric neurodegeneration, which in turn is associated with delayed colonic transit and constipation. We examined the hypothesis that an inherent increase in plasma free fatty acids (FFA) in the HFD together with an HFD-induced alteration in gut microbiota contributes to the pathophysiology of these disorders. C57BL/6 mice were fed a Western diet (WD) (35% kcal from fat enriched in palmitate) or a purified regular diet (16.9% kcal from fat) for 3, 6, 9 and 12 weeks. Gut microbiota dysbiosis was investigated by fecal lipopolysaccharide (LPS) measurement and metabolomics (linear trap quadrupole-Fourier transform mass spectrometer) analysis. Plasma FFA and LPS levels were assessed, in addition to colonic and ileal nitrergic myenteric neuron quantifications and motility. Compared to regular diet-fed control mice, WD-fed mice gained significantly more weight

  18. Butyrate production under aerobic growth conditions by engineered Escherichia coli.

    Science.gov (United States)

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Yakushi, Toshiharu; Matsushita, Kazunobu

    2017-05-01

    Butyrate is an important industrial platform chemical. Although several groups have reported butyrate production under oxygen-limited conditions by a native producer, Clostridium tyrobutylicum, and by a metabolically engineered Escherichia coli, efforts to produce butyrate under aerobic growth conditions have met limited success. Here, we constructed a novel butyrate synthetic pathway that functions under aerobic growth conditions in E. coli, by modifying the 1-butanol synthetic pathway reported previously. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, and endogenous thioesterase(s) of E. coli. To evaluate the potential of this pathway for butyrate production, culture conditions, including pH, oxygen supply, and concentration of inorganic nitrogen sources, were optimized in a mini-jar fermentor. Under the optimal conditions, butyrate was produced at a concentration of up to 140 mM (12.3 g/L in terms of butyric acid) after 54 h of fed-batch culture. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway.

    Science.gov (United States)

    Chen, Xiaoqing; Su, Wenru; Wan, Taoshang; Yu, Jianfeng; Zhu, Wenjie; Tang, Fen; Liu, Guangming; Olsen, Nancy; Liang, Dan; Zheng, Song Guo

    2017-10-15

    Autoimmune uveitis, a group of potentially blinding intraocular inflammatory diseases, remains a therapeutic challenge for ophthalmologists. Butyrates, which belong to the short-chain fatty acid family, possess immunomodulatory properties and therapeutic potential in several inflammatory disorders. However, the roles of butyrates in uveitis and their underlying immunomodulatory mechanisms remain elusive. Here, we report that treatment with sodium butyrate (NaB) significantly attenuated the ocular inflammatory response in mice with experimental autoimmune uveitis (EAU) at 14days after immunization, with significant decreases in inflammatory cell infiltration and inflammatory cytokine production in the retinas. Furthermore, NaB treatment decreased the frequency and number of Th17 cells and increased the frequency and number of T regulatory (Treg) cells in both draining lymph nodes and spleens of EAU mice. In vitro, NaB treatment directly converted the differentiation of naive T cells from Th17 cells toward Treg cells. Mechanistically, the NaB-mediated inhibition of Th17 cell differentiation may occur via inhibition of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)/interleukin-6 receptor pathway. Moreover, the NaB-mediated inhibition on Th17 cell differentiation and uveitis were abrogated when an HO-1 inhibitor, SnPP, was used. These findings suggest that NaB inverts the differentiation of Th17 cells toward Treg cells and attenuates experimental autoimmune uveitis by modulating the Nrf2/HO-1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of acetic, propionic and butyric acids given intraruminally at ...

    African Journals Online (AJOL)

    Effects of acetic, propionic and butyric acids given intraruminally at different molar proportions or individually on rumen papillae growth and IGF-I and IGFBP-3 in plasma, liver and rumen tissue in growing sheep nourished by total intragastric infusions.

  1. Effects of dietary probiotic, prebiotic and butyric acid glycerides on ...

    African Journals Online (AJOL)

    Primalac), prebiotic (Fermacto) and butyric acid glycerides (Baby C4) on broiler performance and serum composition. Seven hundred and four day-old broilers were randomly distributed in a 222 factorial arrangement with two levels of probiotic ...

  2. Fermentative production of butyric acid from wheat straw: Economic evaluation

    DEFF Research Database (Denmark)

    Baroi, G. N.; Gavala, Hariklia N.; Westermann, P.

    2017-01-01

    . Two scenarios (S1 and S2) were examined assuming a plant with an annual capacity of 10,000 tonnes of product installed in India (due to significantly lower feedstock prices). S1 resulted in a product of 89% butyric acid mixed with acetic acid and S2 produced butyric acid of 99% purity. Unit production......The economic feasibility of biochemical conversion of wheat straw to butyric acid was studied in this work. Basic process steps included physicochemical pretreatment, enzymatic hydrolysis and saccharification, fermentation with in-situ acids separation by electrodialysis and product purification...... cost was estimated at 2.75 and 3.31 $ per kg product for S1 and S2 respectively. The main part of production cost was attributed to steam for the purification step and electricity for the in-situ acids separation. This unit production cost combined with an estimated butyric acid selling price (year...

  3. Controlled Morphology of Porous Polyvinyl Butyral Nanofibers

    Directory of Open Access Journals (Sweden)

    Daniela Lubasova

    2011-01-01

    Full Text Available A simple and effective method for the fabrication of porous nanofibers based on the solvent evaporation methods in one-step electrospinning process from the commercial polyvinyl butyral (PVB is presented. The obtained nanofibers are prevalently amorphous with diameters ranging from 150 to 4350 nm and specific surface area of approximately 2–20 m2/g. Pore size with irregular shape of the porous PVB fibers ranged approximately from 50 to 200 nm. The effects of polymer solution concentration, composition of the solvents mixture, and applied voltage on fiber diameter and morphology were investigated. The theoretical approach for the choice of poor and good solvents for PVB was explained by the application Hansen solubility parameter (HSP and two-dimensional graph. Three basic conditions for the production of porous PVB nanofibers were defined: (i application of good/poor solvent mixture for spinning solution, (ii differences of the evaporation rate between good/poor solvent, and (iii correct ratios of good/poor solvent (v/v. The diameter of prepared porous PVB fibers decreased as the polymer concentration was lowered and with higher applied voltage. These nanofiber sheets with porous PVB fibers could be a good candidate for high-efficiency filter materials in comparison to smooth fibers without pores.

  4. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  5. Colonic mucin synthesis is increased by sodium butyrate.

    Science.gov (United States)

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis.

  6. Tackling multiple antibiotic resistance in enteropathogenic Escherichia coli (EPEC) clinical isolates: a diarylheptanoid from Alpinia officinarum shows promising antibacterial and immunomodulatory activity against EPEC and its lipopolysaccharide-induced inflammation.

    Science.gov (United States)

    Subramanian, Krishnan; Selvakkumar, Chinnasamy; Vinaykumar, Kontham Sanathkumar; Goswami, Nabajyoti; Meenakshisundaram, Sankaranarayanan; Balakrishnan, Arun; Lakshmi, Baddireddi Subhadra

    2009-03-01

    Antibiotic treatment for infectious diseases commonly leads to host inflammatory responses. Molecules with bifunctional antibacterial and anti-inflammatory properties could provide a solution for such clinical manifestations. Here we report such bifunctional activity for a diarylheptanoid (5-hydroxy-7-(4''-hydroxy-3-methoxyphenyl)-1-phenyl-3-heptanone) isolated from Alpinia officinarum, a medicinal plant belonging to the Zingiberaceae family, against enteropathogenic Escherichia coli (EPEC). The diarylheptanoid showed inhibitory and bactericidal activity against EPEC clinical isolates and efficiently suppressed EPEC lipopolysaccharide-induced inflammation in human peripheral blood mononuclear cells. In silico docking analysis revealed that the diarylheptanoid could interact with subunit A of E. coli DNA gyrase. Such molecules with bifunctional activity may be potential therapeutics for infectious diseases.

  7. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-01-01

    Full Text Available Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.

  8. Immunomodulatory Effect of Chinese Herbal Medicine Formula Sheng-Fei-Yu-Chuan-Tang in Lipopolysaccharide-Induced Acute Lung Injury Mice

    OpenAIRE

    Chia-Hung Lin; Ching-Hua Yeh; Li-Jen Lin; Shulhn-Der Wang; Jen-Shu Wang; Shung-Te Kao

    2013-01-01

    Traditional Chinese medicine formula Sheng-Fei-Yu-Chuan-Tang (SFYCT), consisting of 13 medicinal plants, was used to treat patients with lung diseases. This study investigated the immunoregulatory effect of SFYCT on intratracheal lipopolysaccharides- (LPS-) challenged acute lung injury (ALI) mice. SFYCT attenuated pulmonary edema, macrophages, and neutrophils infiltration in the airways. SFYCT decreased inflammatory cytokines, including tumor necrosis factor- ? (TNF ? ), interleukin-1 ? , and...

  9. Butyrate increases colonocyte protein synthesis in ulcerative colitis.

    Science.gov (United States)

    Frankel, W; Lew, J; Su, B; Bain, A; Klurfeld, D; Einhorn, E; MacDermott, R P; Rombeau, J

    1994-07-01

    Butyrate promotes epithelial cell healing and improves symptoms when administered rectally in patients with distal ulcerative colitis (UC). It was hypothesized that butyrate may enhance healing in patients with UC by stimulating colonocyte proliferation and/or protein production. Mucosa from the descending colon was obtained from patients with UC (n = 5), Crohn's disease (n = 8), diverticulitis (n = 6), and cancer (normal tissue 10 cm from tumor; n = 10). Epithelial cells were isolated using dispase/collagenase and differential sedimentation and incubated for 4 hr at 37 degrees C with either Na butyrate (10 mM) or NaCl (10 mM). Protein synthesis was assessed by [14C]leucine incorporation and proliferation was determined with [3H]thymidine. Mean viability and purity were >88%. Spontaneous proliferation was significantly increased in UC when compared to diverticulitis and normal controls. Butyrate significantly increased protein synthesis in UC epithelial cells when compared to saline control. The therapeutic effects of butyrate in patients with UC may be due to its use by epithelial cells as a metabolic fuel to increase protein production and promote healing.

  10. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways.

    Science.gov (United States)

    Cho, Hong-Ik; Hong, Jeong-Min; Choi, Joo-Wan; Choi, Hyo-Sun; Kwak, Jong Hwan; Lee, Dong-Ung; Kook Lee, Sang; Lee, Sun-Mee

    2015-10-05

    Agastache rugosa (A. rugosa, Labiatae), a perennial herb spread throughout Korean fields, is widely consumed as a wild edible vegetable and is used in folk medicine. This study examined the hepatoprotective mechanisms of β-caryophyllene (BCP), a major bicyclic sesquiterpene of A. rugosa, against D-galactosamine (GalN) and lipopolysaccharide (LPS)-induced hepatic failure. Mice were given an intraperitoneal injection of BCP (50, 100 and 200 mg/kg) 1 h before GalN (800 mg/kg)/LPS (40 μg/kg) injection and were killed 1 h or 6 h after GalN/LPS injection. GalN/LPS markedly increased mortality and serum aminotransferase activity, both of which were attenuated by BCP. BCP also attenuated increases in serum tumor necrosis factor-α, interleukin 6, and high-mobility group protein B1 levels by GalN/LPS. GalN/LPS significantly increased toll-like receptor (TLR) 4 and receptor for advanced glycation end products (RAGE) protein expression, extracellular signal-related kinase, p38 and c-Jun N-terminal kinase phosphorylation, nuclear factor κB (NF-κB), early growth response protein-1, and macrophage inflammatory protein-2 protein expression. These increases were attenuated by BCP. Furthermore, BCP suppressed increased TLR4 and RAGE protein expression and proinflammatory cytokines production in LPS-treated isolated Kupffer cells. Our findings suggest that BCP protects against GalN/LPS-induced liver injury through down-regulation of the TLR4 and RAGE signaling. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Allicin Decreases Lipopolysaccharide-Induced Oxidative Stress and Inflammation in Human Umbilical Vein Endothelial Cells through Suppression of Mitochondrial Dysfunction and Activation of Nrf2

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2017-04-01

    Full Text Available Background: Allicin, a major component of garlic, is regarded as a cardioprotective agent and is associated with increased endothelial function. Methods: The effects of allicin on lipopolysaccharide (LPS-induced vascular oxidative stress and inflammation in cultured human umbilical vein endothelial cells (HUVECs and the mechanisms underlying these effects were studied. The protective effects were measured using cell viability, a lactate dehydrogenase (LDH assay and cell apoptosis as indicators, and the anti-oxidative activity was determined by measuring reactive oxygen species (ROS generation, oxidative products and endogenous antioxidant enzyme activities. HUVEC mitochondrial function was assessed by determining mitochondrial membrane potential (MMP collapse, cytochrome c production and mitochondrial ATP release. To investigate the potential underlying mechanisms, we also measured the expression of dynamic mitochondrial proteins using western blotting. Furthermore, we evaluated the Nrf2 antioxidant signaling pathway using an enzyme-linked immunosorbent assay (ELISA. Results: Our results demonstrated that allicin enhanced HUVEC proliferation, which was suppressed by LPS exposure, and LDH release. Allicin ameliorated LPS-induced apoptosis, suppressed ROS overproduction, reduced lipid peroxidation and decreased the endogenous antioxidant enzyme activities in HUVECs. These protective effects were associated with the inhibition of mitochondrial dysfunction as indicated by decreases in the MMP collapse, cytochrome c synthesis and mitochondrial ATP release. In addition, allicin attenuated the LPS-induced inflammatory responses, including endothelial cell adhesion and TNF-α and IL-8 production. Furthermore, allicin increased the expression of LXRα in a dose-dependent manner. Allicin-induced attenuation of inflammation was inhibited by LXRα siRNA treatment. Finally, allicin activated NF-E2-related factor 2 (Nrf2, which controls the defense against

  12. Allicin Decreases Lipopolysaccharide-Induced Oxidative Stress and Inflammation in Human Umbilical Vein Endothelial Cells through Suppression of Mitochondrial Dysfunction and Activation of Nrf2.

    Science.gov (United States)

    Zhang, Min; Pan, Huichao; Xu, Yinjie; Wang, Xueting; Qiu, Zhaohui; Jiang, Li

    2017-01-01

    Allicin, a major component of garlic, is regarded as a cardioprotective agent and is associated with increased endothelial function. The effects of allicin on lipopolysaccharide (LPS)-induced vascular oxidative stress and inflammation in cultured human umbilical vein endothelial cells (HUVECs) and the mechanisms underlying these effects were studied. The protective effects were measured using cell viability, a lactate dehydrogenase (LDH) assay and cell apoptosis as indicators, and the anti-oxidative activity was determined by measuring reactive oxygen species (ROS) generation, oxidative products and endogenous antioxidant enzyme activities. HUVEC mitochondrial function was assessed by determining mitochondrial membrane potential (MMP) collapse, cytochrome c production and mitochondrial ATP release. To investigate the potential underlying mechanisms, we also measured the expression of dynamic mitochondrial proteins using western blotting. Furthermore, we evaluated the Nrf2 antioxidant signaling pathway using an enzyme-linked immunosorbent assay (ELISA). Our results demonstrated that allicin enhanced HUVEC proliferation, which was suppressed by LPS exposure, and LDH release. Allicin ameliorated LPS-induced apoptosis, suppressed ROS overproduction, reduced lipid peroxidation and decreased the endogenous antioxidant enzyme activities in HUVECs. These protective effects were associated with the inhibition of mitochondrial dysfunction as indicated by decreases in the MMP collapse, cytochrome c synthesis and mitochondrial ATP release. In addition, allicin attenuated the LPS-induced inflammatory responses, including endothelial cell adhesion and TNF-α and IL-8 production. Furthermore, allicin increased the expression of LXRα in a dose-dependent manner. Allicin-induced attenuation of inflammation was inhibited by LXRα siRNA treatment. Finally, allicin activated NF-E2-related factor 2 (Nrf2), which controls the defense against oxidative stress and inflammation. Taken

  13. Bigelovii A Protects against Lipopolysaccharide-Induced Acute Lung Injury by Blocking NF-κB and CCAAT/Enhancer-Binding Protein δ Pathways

    Directory of Open Access Journals (Sweden)

    Chunguang Yan

    2016-01-01

    Full Text Available Optimal methods are applied to acute lung injury (ALI and the acute respiratory distress syndrome (ARDS, but the mortality rate is still high. Accordingly, further studies dedicated to identify novel therapeutic approaches to ALI are urgently needed. Bigelovii A is a new natural product and may exhibit anti-inflammatory activity. Therefore, we sought to investigate its effect on lipopolysaccharide- (LPS- induced ALI and the underlying mechanisms. We found that LPS-induced ALI was significantly alleviated by Bigelovii A treatment, characterized by reduction of proinflammatory mediator production, neutrophil infiltration, and lung permeability. Furthermore, Bigelovii A also downregulated LPS-stimulated inflammatory mediator expressions in vitro. Moreover, both NF-κB and CCAAT/enhancer-binding protein δ (C/EBPδ activation were obviously attenuated by Bigelovii A treatment. Additionally, phosphorylation of both p38 MAPK and ERK1/2 (upstream signals of C/EBPδ activation in response to LPS challenge was also inhibited by Bigelovii A. Therefore, Bigelovii A could attenuate LPS-induced inflammation by suppression of NF-κB, inflammatory mediators, and p38 MAPK/ERK1/2—C/EBPδ, inflammatory mediators signaling pathways, which provide a novel theoretical basis for the possible application of Bigelovii A in clinic.

  14. Immunomodulatory Effect of Chinese Herbal Medicine Formula Sheng-Fei-Yu-Chuan-Tang in Lipopolysaccharide-Induced Acute Lung Injury Mice

    Directory of Open Access Journals (Sweden)

    Chia-Hung Lin

    2013-01-01

    Full Text Available Traditional Chinese medicine formula Sheng-Fei-Yu-Chuan-Tang (SFYCT, consisting of 13 medicinal plants, was used to treat patients with lung diseases. This study investigated the immunoregulatory effect of SFYCT on intratracheal lipopolysaccharides- (LPS- challenged acute lung injury (ALI mice. SFYCT attenuated pulmonary edema, macrophages, and neutrophils infiltration in the airways. SFYCT decreased inflammatory cytokines, including tumor necrosis factor-α (TNFα, interleukin-1β, and interleukin-6 and inhibited nitric oxide (NO production but increased anti-inflammatory cytokines, interleukin-4, and interleukin-10, in the bronchoalveolar lavage fluid of LPS-challenged mice. TNFα and monocyte chemotactic protein-1 mRNA expression in the lung of LPS-challenged mice as well as LPS-stimulated lung epithelial cell and macrophage were decreased by SFYCT treatment. SFYCT treatment also decreased the inducible nitric oxide synthase expression and phosphorylation of nuclear factor-κB (NF-κB in the lung of mice and macrophage with LPS stimulation. SFYCT treatment dose dependently decreased the LPS-induced NO and reactive oxygen species generation in LPS-stimulated macrophage. In conclusion, SFYCT attenuated lung inflammation during LPS-induced ALI through decreasing inflammatory cytokines production while increasing anti-inflammatory cytokines production. The immunoregulatory effect of SFYCT is related to inhibiting NF-κB phosphorylation.

  15. Immunomodulatory effect of chinese herbal medicine formula sheng-fei-yu-chuan-tang in lipopolysaccharide-induced acute lung injury mice.

    Science.gov (United States)

    Lin, Chia-Hung; Yeh, Ching-Hua; Lin, Li-Jen; Wang, Shulhn-Der; Wang, Jen-Shu; Kao, Shung-Te

    2013-01-01

    Traditional Chinese medicine formula Sheng-Fei-Yu-Chuan-Tang (SFYCT), consisting of 13 medicinal plants, was used to treat patients with lung diseases. This study investigated the immunoregulatory effect of SFYCT on intratracheal lipopolysaccharides- (LPS-) challenged acute lung injury (ALI) mice. SFYCT attenuated pulmonary edema, macrophages, and neutrophils infiltration in the airways. SFYCT decreased inflammatory cytokines, including tumor necrosis factor- α (TNF α ), interleukin-1 β , and interleukin-6 and inhibited nitric oxide (NO) production but increased anti-inflammatory cytokines, interleukin-4, and interleukin-10, in the bronchoalveolar lavage fluid of LPS-challenged mice. TNF α and monocyte chemotactic protein-1 mRNA expression in the lung of LPS-challenged mice as well as LPS-stimulated lung epithelial cell and macrophage were decreased by SFYCT treatment. SFYCT treatment also decreased the inducible nitric oxide synthase expression and phosphorylation of nuclear factor- κ B (NF- κ B) in the lung of mice and macrophage with LPS stimulation. SFYCT treatment dose dependently decreased the LPS-induced NO and reactive oxygen species generation in LPS-stimulated macrophage. In conclusion, SFYCT attenuated lung inflammation during LPS-induced ALI through decreasing inflammatory cytokines production while increasing anti-inflammatory cytokines production. The immunoregulatory effect of SFYCT is related to inhibiting NF- κ B phosphorylation.

  16. The calcineurin inhibitor cyclosporine A improves lipopolysaccharide-induced vascular dysfunction but does not rescue from cardiovascular collapse in endotoxemic mice

    DEFF Research Database (Denmark)

    Stæhr, Mette; Khatam-Lashgari, Apameh; Vanhoutte, Paul M

    2013-01-01

    in a myograph. Arterial blood pressure and heart rate were measured continuously with indwelling catheters in conscious mice treated with CsA and a bolus injection of LPS (2 mg/kg). The α1-adrenoceptor agonist phenylephrine induced stable tension of aortic rings that were attenuated significantly by LPS. Co......-incubation of rings with LPS and CsA (1 × 10(-7) mol/L-1 × 10(-5) mol/L) restored vascular reactivity to phenylephrine. Intravenous administration of CsA (20 and 40 mg/kg/day) to mice induced a significant increase (by approximately 10 mmHg) in mean arterial blood pressure (MAP), with no effect on heart rate. An LPS...... and suppression of systemic NO formation by cyclosporine A are not sufficient to prevent cardiovascular collapse, which is caused primarily by compromised cardiac function....

  17. The effects of captopril on lipopolysaccharide induced learning and memory impairments and the brain cytokine levels and oxidative damage in rats.

    Science.gov (United States)

    Abareshi, Azam; Hosseini, Mahmoud; Beheshti, Farimah; Norouzi, Fatemeh; Khazaei, Majid; Sadeghnia, Hamid Reza; Boskabady, Mohammad Hossein; Shafei, Mohammad Naser; Anaeigoudari, Akbar

    2016-12-15

    Renin-angiotensin system has a role in inflammation and also involves in learning and memory. In the present study, the effects of captopril on lipopolysaccharide (LPS) induced learning and memory impairments, hippocampal cytokine levels and brain tissues oxidative damage was investigated. The rats were divided and treated : [1] saline (Control), [2] LPS (1mg/kg), [3-5] 10, 50 or 100mg/kg captopril 30min before LPS. The treatment was started since six days before the behavioral experiments and continued during the behavioral tests (LPS injection two h before each behavioral experiment). Administration of LPS prolonged the escape latency and traveled path to find the platform in Morris water maze (MWM) test (Plearning and memory impairments in rats which were accompanied with attenuating hippocampal cytokine levels and improving the brain tissues oxidative damage criteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. COX-2–prostacyclin signaling through endothelial nitric oxide is not necessary for lipopolysaccharide-induced hypotension and bradycardia in conscious unrestrained mice

    DEFF Research Database (Denmark)

    Stæhr, Mette

    caused a concomitant decrease in mean arterial blood pressure (MAP) and heart rate (HR) that was significant after 2-3h and sustained through the experiment (8h). The LPS-induced changes in MAP and HR were not different from control in COX-2-/- mice and in eNOS-/- mice. Intravenous infusion...... of a prostacyclin receptor (IP) antagonist, (BR5064, 0.1 mg/kg bolus followed by infusion at a rate of 0.005 mg/kg/h for 8 h), effectively blocked the hypotensive effect of an IP agonist (beraprost 20 µg/kg), but did not attenuate the LPS-induced decrease in MAP and HR. LPS decreased eNOS mRNA level in liver...

  19. Folic acid protects against lipopolysaccharide-induced preterm delivery and intrauterine growth restriction through its anti-inflammatory effect in mice.

    Directory of Open Access Journals (Sweden)

    Mei Zhao

    Full Text Available Increasing evidence demonstrates that maternal folic acid (FA supplementation during pregnancy reduces the risk of neural tube defects, but whether FA prevents preterm delivery and intrauterine growth restriction (IUGR remains obscure. Previous studies showed that maternal lipopolysaccharide (LPS exposure induces preterm delivery, fetal death and IUGR in rodent animals. The aim of this study was to investigate the effects of FA on LPS-induced preterm delivery, fetal death and IUGR in mice. Some pregnant mice were orally administered with FA (0.6, 3 or 15 mg/kg 1 h before LPS injection. As expected, a high dose of LPS (300 μg/kg, i.p. on gestational day 15 (GD15 caused 100% of dams to deliver before GD18 and 89.3% of fetuses dead. A low dose of LPS (75 μg/kg, i.p. daily from GD15 to GD17 resulted in IUGR. Interestingly, pretreatment with FA prevented LPS-induced preterm delivery and fetal death. In addition, FA significantly attenuated LPS-induced IUGR. Further experiments showed that FA inhibited LPS-induced activation of nuclear factor kappa B (NF-κB in mouse placentas. Moreover, FA suppressed LPS-induced NF-κB activation in human trophoblast cell line JEG-3. Correspondingly, FA significantly attenuated LPS-induced upregulation of cyclooxygenase (COX-2 in mouse placentas. In addition, FA significantly reduced the levels of interleukin (IL-6 and keratinocyte-derived cytokine (KC in amniotic fluid of LPS-treated mice. Collectively, maternal FA supplementation during pregnancy protects against LPS-induced preterm delivery, fetal death and IUGR through its anti-inflammatory effects.

  20. Protective effect of SKLB010 against D-galactosamine/lipopolysaccharide-induced acute liver failure via nuclear factor-κB signaling pathway in macrophages.

    Science.gov (United States)

    Xie, Caifeng; Jingjing, Wang; Li, Xiaolu; Zeng, Fei; Ma, Liang; Li, Chunyan; Wei, Zhe; Peng, Aihua; Chen, Lijuan

    2014-08-01

    Acute liver failure is characterized by the sudden loss of hepatic function and a high mortality. SKLB010, a derivative of thiazolidinediones, has been proved to be effective in protecting mice from acute liver failure caused by concanavalin A and carbon tetrachloride in our previous work. The purpose of the current study was to evaluate whether SKLB010 could prevent acute liver injury caused by d-galactosamine/lipopolysaccharide (LPS) in mice, and to investigate the underlying mechanisms. In the macrophage-mediated D-GalN/LPS model of acute liver injury, serum enzyme activity was suppressed and liver injury was attenuated by SKLB010. The serum levels of TNF-α and hepatic TNF-α mRNA expression were also markedly decreased after the treatment of SKLB010. In the liver of mice receiving injections of D-GalN/LPS, hepatocytes apoptosis and the infiltration of monocytes/macrophages were blocked by SKLB010. Furthermore, the survival rate of mice following D-GalN/LPS treatment was significantly improved by a single injection with SKLB010. In vivo, the luminescence intensity was suppressed by SKLB010 in NF-κB-luc mice after D-GalN/LPS treatment. In vitro, the production of tumor necrosis factor (TNF)-α and nitrite/nitrate in LPS-stimulated RAW264.7 macrophages was decreased by SKLB010 in a dose-dependent manner. Our further studies demonstrated that SKLB010 inhibited the phosphorylation of IκBα and p38MAPK, and the DNA binding activity of NF-κB in RAW264.7 cells. In conclusion, treatment with only a single injection of SKLB010 could significantly attenuate acute inflammation in mice induced by D-GalN/LPS, and these effects are likely associated with the inhibition of NF-κB activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Glaucocalyxin B Alleviates Lipopolysaccharide-Induced Parkinson’s Disease by Inhibiting TLR/NF-κB and Activating Nrf2/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-12-01

    Full Text Available Background/Aims: Parkinson’s disease (PD is a common neurodegenerative disease in the old population, characterized by dopaminergic neuron loss, inflammation and oxidative stress injury in the substantia nigra. Glaucocalyxin B (GLB, an ent-kauranoid diterpenoid isolated from Rabdosia japonica, has anti-inflammation and anti-tumor effects. However, its effects on PD remain unclear. Methods: PD was introduced in rats via injection of lipopolysaccharide (LPS into cerebral corpus striatum, and GLB was given intracerebroventricularly to these rats. Their walking, climbing and sensory states were detected by Stepping, Whisker and Cylinder Tests. The expression of tyrosine hydroxylase (TH, glial fibrillary acidic protein (GFAP, CD11b and ionized calcium binding adaptor molecule (IBA-1 were detected by immunohischemical staining. The levels of a series of inflammatory factors, oxidative stress-related factors and apoptosis-related factors were measured by real-time PCR, immunoblotting and ELISA. In addition, Toll-like receptor (TLR/nuclear factor kappa B (NF-κB and nuclear factor erythroid 2-related factor 2 (Nrf2/heme oxygenase (HO-1 pathways were investigated to illustrate the underlying mechanism. In vitro, microglial cells exposed to LPS were treated with GLB. Results: The injection of LPS caused walking, climbing and sensory disturbances in rats, induced inflammation, oxidative stress response and apoptosis, and activated TLR/NF-κB and Nrf2/ HO-1 pathways in the cerebral tissue. GLB administration attenuated LPS-induced alterations. The TLR/NF-κB pathway was deactivated and Nrf2/HO-1 was activated after application of GLB. In vitro, cytotoxic effects induced by the conditioned medium derived from microglial cells exposed to LPS in PC12 cells were attenuated by GLB. Conclusion: GLB suppresses LPS-induced PD symptoms by modification of TLR/NF-κB and Nrf2/HO-1 pathways in vivo and in vitro.

  2. Ghrelin protects against palmitic acid or lipopolysaccharide-induced hepatocyte apoptosis through inhibition of MAPKs/iNOS and restoration of Akt/eNOS pathways.

    Science.gov (United States)

    Mao, Yuqing; Wang, Jianbo; Yu, Fujun; Li, Zhengyang; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2016-12-01

    Ghrelin has been shown to exert various biological functions. However, the effect and mechanism of ghrelin on PA- or LPS-induced liver injury remains unknown. Normal human hepatocyte lines (LO2 and 7701) were pretreated with ghrelin (10 -8 M) for 30min before stimulation with lipopolysaccharide (LPS) or palmitic acid (PA). The proliferation and apoptosis of cells were detected with CCK8, Hoechst staining and flow cytometric analysis. Levels of NO of cell supernatants were examined by enzyme-linked immunosorbent assay (ELISA). The protein levels and mRNA of target genes of endothelial NOS (eNOS) and inducible NOS (iNOS) were measured by western blotting, immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR). The expression of Bax, Bcl2, caspase 3, p-Akt, p-P38 and p-JNK were detected by western blotting. Results of CCK8, Hoechst staining and flow cytometric analysis showed that ghrelin-pretreatment attenuated LPS- or PA- induced cellular proliferation inhibition and apoptosis induction. ELISA results revealed that ghrelin pretreatment reduced levels of NO of cell supernatants (Pghrelin- pretreated group were significantly reduced compared with LPS- or PA- treated group, while protein levels of eNOS were restored by ghrelin pretreatment. Results of qRT-PCR showed that mRNA levels of Bax, iNOS were reduced by ghrelin pretreatment, while levels of mRNA of Bcl2 and eNOS were increased (Pghrelin pretreatment, while the protein levels of p-JNK, p-P38 and caspase 3 were reduced. The restoration of eNOS could be reversed by an Akt inhibitor. Ghrelin pretreatment attenuated LPS- or PA-induced hepatocyte apoptosis, which may least partly via inhibition of mitogen-activated protein kinases (MAPKs)/iNOS and restoration of Akt/eNOS pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Effect of indole butyric acid on micrografting of cactus | Moghadam ...

    African Journals Online (AJOL)

    Effect of indole butyric acid on micrografting of cactus. ARL Moghadam, ZO Ardebili, L Rezaie. Abstract. Grafting is a common technique to propagate cacti species. Gymnocalycium mihanovichii is an ornamental plant and they should be grafted to root stock containing chlorophyll. In this research, exogenous auxin ...

  4. Effect of butyric acid supplementation and whole wheat inclusion on ...

    African Journals Online (AJOL)

    Effect of butyric acid supplementation and whole wheat inclusion on the performance and carcass traits of broilers. ... South African Journal of Animal Science ... Dietary supplementation with BA had no effect on average weight gain (AWG) or feed conversion ratio (FCR) in the starter, grower/finisher and over whole (0 - 42 d) ...

  5. Butyrate Suppresses The Severity Of Acetic Acid-Induced Ulcerative ...

    African Journals Online (AJOL)

    Short chain fatty acids are increasingly used as food additives due to the health benefits they have. Recently, they have been implicated in protecting patients against intestinal disorders but without a well-known mechanism. We explored the benefits of a major short chain fatty acid, butyrate on experimental ulcerative colitis ...

  6. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  7. Effects of acetic, propionic and butyric acids given intraruminally at ...

    African Journals Online (AJOL)

    USER

    2010-04-19

    Apr 19, 2010 ... gluconeogenesis (Bergman, 1990). However, the contri- bution of propionate to blood glucose via gluconeogenesis could probably be covered by the glucose infused into the abomasum. Effects of acetic, propionic and butyric acids given individually on rumen papillae size, and IGF-I, IGFBP-. 3, GH and ...

  8. Alternate splicing regulated by butyrate in the bovine epithelial cell

    Science.gov (United States)

    As a signaling molecule and a potent inhibitor of histone deacetylases (HADCs), butyrate exerts its impacts on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. In this study, we examined the effect of...

  9. Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate

    Science.gov (United States)

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...

  10. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit

    NARCIS (Netherlands)

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K.; Meijer, Onno C.; Berbée, Jimmy F. P.; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K.; Rensen, Patrick C. N.; Wang, Yanan

    2017-01-01

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects

  11. Sesquiterpenoids from the Root of Panax ginseng Attenuates Lipopolysaccharide-Induced Depressive-Like Behavior through the Brain-Derived Neurotrophic Factor/Tropomyosin-Related Kinase B and Sirtuin Type 1/Nuclear Factor-κB Signaling Pathways.

    Science.gov (United States)

    Wang, Weidong; Liu, Xiaofeng; Liu, Jinping; Cai, Enbo; Zhao, Yan; Li, Haijun; Zhang, Lianxue; Li, Pingya; Gao, Yugang

    2018-01-10

    The previous study indicated sesquiterpenoids from the root of Panax ginseng (SPG) exhibited a significant antidepressant-like effect, which might be mediated by the modification of the dopaminergic, GABAergic, and glutamatergic systems. This study was to investigate antidepressant effects and mechanisms on the lipopolysaccharide (LPS)-induced depression-like behavior of SPG. In the tail suspension test (TST) and forced swimming test (FST), SPG (0.25 and 1 mg/kg, i.g.) and fluoxetine (20 mg/kg, i.p.) effectively reduced the immobility time. SPG treatment significantly reduced serum levels of IL-6 and TNF-α and increased suppressed superoxide dismutase (SOD) activity in the hippocampus. In addition, SPG effectively upregulated the brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), and sirtuin type 1 (Sirt 1) expression in the hippocampus and downregulated the inhibitor of κB-α (IκB-α) and nuclear factor-κB (NF-κB) phosphorylation. These results suggested that SPG exhibited an antidepressant-like effect through the BDNF/TrkB and Sirt 1/NF-κB signaling pathways.

  12. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice

    Directory of Open Access Journals (Sweden)

    Eszter Pakai

    2018-02-01

    Full Text Available Neurokinin (NK signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS. A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ or absent (Tacr1−/− and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2 expression, and prostaglandin (PG E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1−/− compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1−/− mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1−/− and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1−/− mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1−/− mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the “cytokine-COX-2

  13. Interleukin-1 Receptor Antagonist Reduces Neonatal Lipopolysaccharide-Induced Long-Lasting Neurobehavioral Deficits and Dopaminergic Neuronal Injury in Adult Rats

    Directory of Open Access Journals (Sweden)

    Yi Pang

    2015-04-01

    Full Text Available Our previous study showed that a single lipopolysaccharide (LPS treatment to neonatal rats could induce a long-lasting neuroinflammatory response and dopaminergic system injury late in life. This is evidenced by a sustained activation of microglia and elevated interleukin-1β (IL-1β levels, as well as reduced tyrosine hydroxylase (TH expression in the substantia nigra (SN of P70 rat brain. The object of the current study was to test whether co-administration of IL-1 receptor antagonist (IL-1ra protects against LPS-induced neurological dysfunction later in life. LPS (1 mg/kg with or without IL-1ra (0.1 mg/kg, or sterile saline was injected intracerebrally into postnatal day 5 (P5 Sprague-Dawley male rat pups. Motor behavioral tests were carried out from P7 to P70 with subsequent examination of brain injury. Our results showed that neonatal administration of IL-1ra significantly attenuated LPS-induced motor behavioral deficits, loss of TH immunoreactive neurons, as well as microglia activation in the SN of P70 rats. These data suggest that IL-1β may play a pivotal role in mediating a chronic neuroinflammation status by a single LPS exposure in early postnatal life, and blockading IL-1β might be a novel approach to protect the dopaminergic system against perinatal infection/inflammation exposure.

  14. Astragalin suppresses inflammatory responses via down-regulation of NF-κB signaling pathway in lipopolysaccharide-induced mastitis in a murine model.

    Science.gov (United States)

    Li, Fengyang; Liang, Dejie; Yang, Zhengtao; Wang, Tiancheng; Wang, Wei; Song, Xiaojing; Guo, Mengyao; Zhou, Ershun; Li, Depeng; Cao, Yongguo; Zhang, Naisheng

    2013-10-01

    Mastitis is a prevalent and economic disease around the world and defined as infection and inflammation of the mammary gland. Astragalin, a bioactive component isolated from persimmon or Rosa agrestis, has been reported to have anti-inflammatory properties. To investigate the potential therapeutic effect of astragalin in mastitis, a murine model of mastitis was induced by administration of LPS in mammary gland. Astragalin was applied 1h before and 12h after LPS treatment. The results showed that astragalin attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO) and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting results showed that astragalin efficiently blunt decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα and the nuclear translocation of p65. These results suggested that astragalin exerts anti-inflammatory properties in LPS-mediated mastitis, possibly through inhibiting inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. Astragalin may be a potential therapeutic agent against mastitis. © 2013.

  15. Infusion of butyrate affects plasma glucose, butyrate, and ß-hydroxybutyrate but not plasma insulin in lactating dairy cows

    Science.gov (United States)

    The objective of this research was to investigate the effects on plasma metabolites and rumen measures when butyrate was infused into the rumen or abomasum of lactating cows. Jugular catheters were inserted into 5 ruminally fistulated Holstein cows (94.2 ± 26.3 days in milk [DIM]; 717 ± 45 kg body w...

  16. Identification of compounds in adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed hull extracts that inhibit lipopolysaccharide-induced inflammation in RAW 264.7 macrophages.

    Science.gov (United States)

    Huang, Din-Wen; Chung, Cheng-Pei; Kuo, Yueh-Hsiung; Lin, Yun-Lian; Chiang, Wenchang

    2009-11-25

    We investigated the effects of adlay seed hull (AH) extracts on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. An AH ethanol extract (AHE) was partitioned into ethyl acetate, n-butanol, and water fractions. Silica gel chromatography of the ethyl acetate fraction yielded 15 subfractions: AHE-Ea-A to AHE-Ea-O. Subfractions AHE-Ea-J, AHE-Ea-K, and AHE-Ea-M had anti-inflammatory activities, as they counteracted the increased cellular production of nitric oxide and prostaglandin E2 induced by lipopolysaccharide by down-regulating inducible nitric oxide synthase and cyclooxygenase 2 expression. Eriodictyol (1), the ceramide (2S,3S,4R)-2-[(2'R)-2'-hydroxytetracosanoyl-amino]-1,3,4-octadecanetriol (2), and p-coumaric acid (3) were found in the subfractions, and the first two compounds appeared to be primarily responsible for the anti-inflammatory activity. This is the first time that eriodictyol (1) and this ceramide (2) have been found in AH, and the anti-inflammatory properties of the AHE-Ea fraction can be attributed, at least in part, to the presence of these two compounds.

  17. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells

    Science.gov (United States)

    Liu, Zhimin; Li, Wenqing; Wang, Feng; Sun, Chunyang; Wang, Lu; Wang, Jun; Sun, Fei

    2012-10-01

    While the immunogenicity and cytotoxicity of gold nanoparticles (AuNPs) are noted by many researchers, the mechanisms by which AuNPs exert these effects are poorly understood. In this study, we investigated the effects of polyethylene glycolylated AuNPs (PEG@AuNPs) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin-6 (IL-6) production and the associated molecular mechanism in RAW264.7 cells. The results showed that PEG@AuNPs were internalized more quickly by LPS-activated RAW264.7 cells than unstimulated cells, and they reached saturation within 24 hours. PEG@AuNPs enhanced LPS-induced production of NO and IL-6 and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells, partially by activating p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor-kappaB pathways. In addition, the p38 MAPK inhibitor SB203580 attenuated PEG@AuNP-enhanced LPS-induced NO production and iNOS expression. Overproduction of NO and IL-6 is known to be closely correlated with the pathology of many diseases and inflammations. Thus, it is speculated that the highly biocompatible gold nanoparticles can induce immunotoxicity due to their potency to stimulate macrophages to release aberrant or excessive pro-inflammatory mediators.While the immunogenicity and cytotoxicity of gold nanoparticles (AuNPs) are noted by many researchers, the mechanisms by which AuNPs exert these effects are poorly understood. In this study, we investigated the effects of polyethylene glycolylated AuNPs (PEG@AuNPs) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin-6 (IL-6) production and the associated molecular mechanism in RAW264.7 cells. The results showed that PEG@AuNPs were internalized more quickly by LPS-activated RAW264.7 cells than unstimulated cells, and they reached saturation within 24 hours. PEG@AuNPs enhanced LPS-induced production of NO and IL-6 and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells, partially by activating

  18. The histone deacetylase inhibitor sodium butyrate protects against noise-induced hearing loss in Guinea pigs.

    Science.gov (United States)

    Yang, Deng-Hua; Xie, Jing; Liu, Ke; Peng, Zhe; Guo, Jing-Ying; Yu, Shu-Kui; Wang, Guo-Peng; Gong, Shu-Sheng

    2017-11-01

    Noise-induced hearing loss (NIHL) severely impacts the quality of life of affected individuals. Oxidative stress resulting from noise exposure is a significant cause of NIHL. Although histone deacetylase (HDAC) inhibitors were shown to protect against NIHL, the underlying mechanism remains unclear, and it is not known how they act on noise-induced oxidative stress. In the current study, we investigated the expression levels of acetyl-histone H3 (Lys9) (H3-AcK9), histone deacetylase 1 (HDAC1), and 3-nitrotyrosine (3-NT), an oxidative stress marker, in a guinea pig model of NIHL using immunohistology and Western blotting. We then assessed the effects of systemic administration of the HDAC inhibitor, sodium butyrate (SB), on noise-induced permanent threshold shifts (PTS), hair cell (HC) loss, and changes in the above mentioned markers. The results showed that SB attenuated noise-induced PTS and outer hair cell loss. SB treatment promoted H3-AcK9 expression and repressed HDAC1 expression in the nuclei of HCs and Hensen's cells after noise exposure. Furthermore, SB attenuated the noise-induced increase of 3-NT expression in HCs and Hensen's cells. These findings suggest that SB protects against NIHL by reversing the noise-induced histone acetylation imbalance and inhibiting oxidative stress in cochlear HCs and Hensen's cells. SB treatment may represent a potential strategy to prevent and treat NIHL. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Activation of the cholinergic anti-inflammatory pathway by nicotine ameliorates lipopolysaccharide-induced preeclampsia-like symptoms in pregnant rats.

    Science.gov (United States)

    Liu, Yuanyuan; Yang, Jinying; Bao, Junjie; Li, Xiaolan; Ye, Aihua; Zhang, Guozheng; Liu, Huishu

    2017-01-01

    Preeclampsia (PE) exerts a more intense systemic inflammatory response than normal pregnancy. Recently, the role of the cholinergic anti-inflammatory pathway (CAP) in regulating inflammation has been extensively studied. The aim of this study was to investigate the effect of nicotine, a selective cholinergic agonist, on lipopolysaccharide (LPS)-induced preeclampsia-like symptoms in pregnant rats and to determine the molecular mechanism underlying it. Rats were administered LPS (1.0 μg/kg) via tail vein injection on gestational day 14 to induce preeclampsia-like symptoms. Nicotine (1.0 mg/kg/d) and α-bungarotoxin (1.0 μg/kg/d) were injected subcutaneously into the rats from gestational day 14-19. Clinical symptoms were recorded. Serum and placentas were collected to determine cytokine levels using Luminex. The mRNA and protein expression levels of α7 nicotinic acetylcholine receptor (α7nAChR) were determined using Real time-PCR and Western blot analysis. Immunohistochemistry was performed to determine the level of activation of nuclear factor-κB (NF-κB) in placentas. Nicotine significantly ameliorated LPS-induced preeclampsia-like symptoms in pregnant rats (P treatment decreased the levels of LPS-induced pro-inflammatory cytokines in the serum (P preeclampsia (P preeclampsia rats. Our findings suggest that the activation of α7nAChR by nicotine attenuates preeclampsia-like symptoms, and this protective effect is likely the result of the inhibition of inflammation via the NF-κB p65 pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fructose-1,6-bisphosphate suppresses lipopolysaccharide-induced expression of ICAM-1 through modulation of toll-like receptor-4 signaling in brain endothelial cells.

    Science.gov (United States)

    Seok, Sun Mi; Park, Tae Yeop; Park, Hye-Si; Baik, Eun Joo; Lee, Soo Hwan

    2015-05-01

    Fructose-1,6-bisphosphate (FBP) is a glycolytic intermediate with salutary effects in various brain injury models, but its neuroprotective mechanism is incompletely understood. In this study, we examined the effects of FBP on the expression of adhesion molecules in cerebrovascular endothelial cells and explored the possible mechanisms therein involved. FBP significantly down-regulated lipopolysaccharide (LPS)-induced expression of adhesion molecules and leukocyte adhesion to brain endothelial cells and inhibited NF-κB activity, which is implicated in the expression of adhesion molecules. FBP abrogated ICAM-1 expression and NF-κB activation induced by macrophage-activating lipopeptide 2-kDa (MALP-2) or overexpression of MyD88 or TRAF6. FBP suppressed TRAF6-induced phosphorylation of TAK1, IKKβ and IκBα, but fail to affect NF-κB activity induced by ectopic expression of IKKβ. In addition, LPS-induced IRAK-1 phosphorylation was inhibited by FBP, suggesting the presence of multiple molecular targets of FBP in MyD88-dependent signaling pathway. FBP significantly attenuated ICAM-1 expression and NF-κB activity induced by poly[I:C] or overexpression of TRIF or TBK1. FBP significantly repressed the expression of interferon-β (IFN-β) and the activation of IFN regulatory factor 3 (IRF3) induced by LPS, poly[I:C] or overexpression of TRIF or TBK1, but fail to affect IRF3 activity induced by ectopic expression of constitutively active IRF3. Overall, our results demonstrate that FBP modulates both MyD88- and TRIF-dependent signaling pathways of TLR4 and subsequent inflammatory responses in brain endothelial cells, providing insight into its neuroprotective mechanism in brain injury associated with inflammation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of a thrombomodulin-derived peptide on monocyte adhesion and intercellular adhesion molecule-1 expression in lipopolysaccharide-induced endothelial cells.

    Science.gov (United States)

    Xu, Yan; Xu, Xun; Jin, Huiyi; Yang, Xiaolu; Gu, Qing; Liu, Kun

    2013-01-01

    It has been documented that GC31, a 31-animo acid peptide from human thrombomodulin, has potent anti-inflammatory properties in endotoxin-induced uveitis and lipopolysaccharide (LPS)-induced RAW264.7 cells, while the role of GC31 in the endothelial cells has not yet been fully understood. Therefore, the aim of this study was to explore the effect of GC31 on intercellular adhesion molecule-1 (ICAM-1) expression in LPS-activated endothelial cells. Human umbilical vein endothelial cells (HUVECs) were incubated with LPS (1 μg/ml) and peptide GC31 or control peptide VP30 simultaneously. ICAM-1 messenger RNA and protein levels were evaluated with real-time PCR and western blot. The adhesion of U937 cells labeled with CM-H2DCFDA to HUVECs was examined with fluorescence microscope. Extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) activation, inhibitor of nuclear factor kappa B alpha (IκBα) degradation, and nuclear factor kappa B (NF-κB) nuclear translocation were detected with western blot. Upon LPS stimulation, GC31 suppressed the mRNA and protein expression of ICAM-1 in HUVECs and remarkably reduced monocyte-endothelial cell adhesion in a dose-dependent manner. Furthermore, GC31 significantly inhibited the degradation of IκBα and nuclear translocation of NF-κB and moderately blocked the activation of p38 MAPK and ERK1/2 in activated HUVECs. Our results suggested that GC31 suppressed LPS-mediated ICAM-1 expression by inhibiting the activation of NF-κB and partially by attenuating the activity of ERK1/2 and p38 MAPK in vascular endothelium, which may contribute to ameliorating vascular inflammatory diseases, such as uveitis.

  2. Lipopolysaccharide-induced toll-like receptor 4 signaling in esophageal squamous cell carcinoma promotes tumor proliferation and regulates inflammatory cytokines expression.

    Science.gov (United States)

    Zu, Yukun; Ping, Wei; Deng, Taoran; Zhang, Ni; Fu, Xiangning; Sun, Wei

    2017-02-01

    Emerging evidence suggests toll-like receptor 4 (TLR4) signaling contributes to cancer development and progression. However, the consequences of signaling via the TLR4 pathway in esophageal squamous cell carcinoma (ESCC) are still unclear. Here, we investigated the impact of Lipopolysaccharide (LPS)-induced TLR4 signaling on ESCC cell proliferation, inflammatory cytokines expression, and downstream molecular mechanisms. Seventy-eight ESCC and 26 normal esophageal specimens were analyzed by immunohistochemistry, and two cell lines (Eca-109 and TE-1) were used for in vitro studies. LPS, a natural agonist of TLR4, was used to activate TLR4 signaling. The effects of LPS-TLR4 signaling on cell proliferation and inflammatory cytokines regulation were examined. Specific inhibitors of mitogen-activated protein kinase (MAPK) (extracellular regulated protein kinase [ERK] and p38) signaling pathways were used to investigate the role of each pathway in LPS-TLR4 signaling. TLR4 protein was increased in ESCC tumor tissues compared with the adjacent normal tissues. TLR4 over-expression was significantly correlated with tumor differentiation grade, lymph node metastasis, and UICC stage. LPS-induced activation of TLR4 signaling promoted cancer cell proliferation, increased production of proinflammatory or immunosuppressive cytokines TNF-α, TGF-β and inhibited the anti-inflammatory cytokine IL-10. LPS-TLR4 signaling was associated with the activation of ERK and p38 MAPK signaling pathways. Further inactivation of the two pathways by specific inhibitors attenuated cell proliferation and inflammatory cytokines expression induced by LPS. Our results indicate that LPS-TLR4 signaling in cancer cells contributes to the progression of human ESCC. © 2016 International Society for Diseases of the Esophagus.

  3. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2016-03-01

    Full Text Available For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA, was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae. MOA modulates cytokine expression in lipopolysaccharide (LPS-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α, interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2, thus blocking nuclear translocation of activation protein (AP-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs and one of their downstream transcription factors, activator protein-1 (AP-1. Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.

  4. A20 Overexpression Inhibits Lipopolysaccharide-Induced NF-κB Activation, TRAF6 and CD40 Expression in Rat Peritoneal Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Xun-Liang Zou

    2014-04-01

    Full Text Available Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs. Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p < 0.01. In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p < 0.05. However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway.

  5. Whitmania Pigra Whitman Extracts Inhibit Lipopolysaccharide Induced Rat Vascular Smooth Muscle Cells Migration and their Adhesion Ability to THP-1 and RAW 264.7 Cells.

    Science.gov (United States)

    Li, Shuaishuai; Cheng, Long; An, Dengkun; Song, Shuliang; Liang, Hao; Chu, Fulong; Ji, Aiguo

    2017-03-01

    Atherosclerosis is a kind of chronic inflammatory disease. A crucial pathology change of atherosclerosis is the migration of activated VSMCs to the intima where they interact with leukocytes by expressing adhesion molecules, including intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Moreover, monocyte chemoattractant protein-1 (MCP-1) expressed by VSMCs plays an important role in recruiting monocytes and macrophages. Leech (Whitmania pigra Whitman) is a traditional Chinese medicine to treat cardiovascular diseases including atherosclerosis, however previous research has rarely reported the molecular mechanism for its curative effect. Thus, our study focuses on the effects of leech extracts on the expression of inflammatory factors, adhesion molecules and MCP-1 in rat VSMCs. In our present study, wound-healing assay and Boyden chamber model were applied to evaluate the anti-migration effect of LEE (Leech Enzyme Extracts) on LPS induced VSMCs. The anti-adhesion effect was assessed using DiI-labeled THP-1 and RAW264.7. LEE suppressed LPS-induced VSMCs migration and decreased the chemotaxis and adhesive capacity of THP-1 and RAW264.7 to LPS-stimulated VSMCs. LEE also attenuated the upregulation of a variety of pro-atherosclerotic factors by inhibiting the phosphorylation of p38 MAPK. LEE was also observed to prevent NF-κB p65 nuclear localization using immune-fluorescent staining. In conclusion, LEE suppresses LPS-induced upregulation of inflammatory factors, adhesion molecules and MCP-1 in rat VSMCs mainly via inhibiting the p38 MAPK/NF-κB pathways, thus partly uncovered LEE's molecular mechanisms for its therapeutic effect on atherosclerosis.

  6. Proteomic Analysis of the Effects of Aged Garlic Extract and Its FruArg Component on Lipopolysaccharide-Induced Neuroinflammatory Response in Microglial Cells

    Science.gov (United States)

    Mossine, Valeri V.; Nknolise, Dineo L.; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C. Michael; Mawhinney, Thomas P.; Brown, Paula N.; Fritsche, Kevin L.; Hannink, Mark; Lubahn, Dennis B.; Sun, Grace Y.; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  7. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Science.gov (United States)

    Zhou, Hui; Qu, Zhe; Mossine, Valeri V; Nknolise, Dineo L; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C Michael; Mawhinney, Thomas P; Brown, Paula N; Fritsche, Kevin L; Hannink, Mark; Lubahn, Dennis B; Sun, Grace Y; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  8. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  9. Butyrate inhibits seeding and growth of colorectal metastases to the liver in mice.

    Science.gov (United States)

    Velázquez, O C; Jabbar, A; DeMatteo, R P; Rombeau, J L

    1996-08-01

    The short-chain fatty acid butyrate inhibits growth of colorectal carcinoma cells in vitro. Mevalonate, a short-chain fatty acid structurally and metabolically related to butyrate, is important in signal transduction and is essential for cell growth. We investigated butyrate's effects on seeding and growth of colorectal tumor cells metastatic to the liver in vivo and hypothesized that butyrate's antiproliferative effects are associated with inhibition of mevalonate-mediated cell growth. Hepatic metastases were induced by injecting 1 x 10(5) MC-26 (N-methyl-N-nitrosourea-induced murine colorectal carcinoma) cells into the spleen of BALB/c mice. Mice were treated with a continuous intravenous infusion of butyrate (2 gm/kg/day) for 7 days starting 24 hours before tumor cells were injected. Study variables included liver weight and number of hepatic surface metastases. Proliferation studies on MC-26 cells were performed in vitro to examine the effects of butyrate alone or combined with mevalonate or mevastatin (an inhibitor of mevalonate synthesis). Butyrate reduced seeding and growth of colorectal tumor cells in vivo. Mevalonate diminished butyrate's antiproliferative action in vitro, whereas mevastatin potentiated this effect. These studies (1) show that butyrate inhibits seeding and growth of hepatic colorectal metastases in vivo, (2) associate butyrate's antiproliferative effects with inhibition of mevalonate-mediated cell growth, and (3) indicate that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors may have synergistic antiproliferative effects when combined with butyrate.

  10. Inhibition of Phosphodiesterase 4 by FCPR03 Alleviates Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of p38 and JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Hui Yu

    2018-02-01

    Full Text Available Inflammatory responses induced by peripheral administration of lipopolysaccharide (LPS triggers depressive-like behavioral syndrome in rodents. Inhibition of phosphodiesterase 4 (PDE4 produces a robust anti-inflammatory effect in inflammatory cells. Unfortunately, archetypal PDE4 inhibitors cause intolerable gastrointestinal side-effects, such as vomiting and nausea. N-isopropyl-3-(cyclopropylmethoxy-4-difluoromethoxy benzamide (FCPR03 is a novel, selective PDE4 inhibitor with little, or no, emetic potency. Our previous studies show that FCPR03 is effective in attenuating neuroinflammation in mice treated with LPS. However, whether FCPR03 could exert antidepressant-like effect induced by LPS is largely unknown. In the present study, mice injected intraperitoneally (i.p. with LPS was established as an in vivo animal model of depression. The antidepressant-like activities of FCPR03 were evaluated using a tail suspension test, forced swimming test, and sucrose preference test. We demonstrated that administration of FCPR03 (1 mg/kg produced antidepressant-like effects in mice challenged by LPS, as evidenced by decreases in the duration of immobility in the forced swim and tail suspension tests, while no significant changes in locomotor activity were observed. FCPR03 also increased sucrose preference in mice treated with LPS. In addition, treatment with FCPR03 abolished the downregulation of brain-derived neurotrophic factor induced by LPS and decreased the level of corticosterone in plasma. Meanwhile, periphery immune challenge by LPS induced enhanced phosphorylation of p38-mitogen activated protein kinase (p38 and c-Jun N-terminal kinase (JNK in both the cerebral cortex and hippocampus in mice. Interestingly, treatment with FCPR03 significantly blocked the role of LPS and reduced the levels of phosphorylated p38 and JNK. Collectively, these results indicate that FCPR03 shows antidepressant-like effects in mice challenged by LPS, and the p38/JNK

  11. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peng [Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Xue, Peng; Dong, Jian [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Peng, Hui [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences (China); Clewell, Rebecca [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Wang, Aiping [Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Wang, Yue [Institute for Medical Device Standardization Administration, National Institutes for Food and Drug Control, Beijing (China); Peng, Shuangqing [Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences (China); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  12. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  13. Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract

    NARCIS (Netherlands)

    Moquet, P.C.A.; Onrust, L.; Immerseel, Van F.; Ducatelle, R.; Hendriks, W.H.; Kwakkel, R.P.

    2016-01-01

    In the field of animal nutrition, butyrate is used as a zootechnical ingredient and can be used as an unprotected salt or in the form of protected derivatives such as butyrate glycerides or butyrate-loaded matrices. Dietary butyrate supplementation has been shown to improve growth performance and

  14. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  15. Inhibition of Lipopolysaccharide-Induced Neuroinflammatory Events ...

    African Journals Online (AJOL)

    spectrometer exactly after 2 min. Experimental conditions were as follows: central field, 3,475 G; modulation frequency, 100 kHz; modulation amplitude, 2 G; microwave power, 5 mW; gain, .... stimulation to BV-2 microglia increased the protein expressional levels of iNOS (Fig 4). However, the increased expression of iNOS in.

  16. Inhibition of lipopolysaccharide-induced neuroinflammatory events ...

    African Journals Online (AJOL)

    tetrazolium bromide (MTT) assay. Lipopolysaccharide (LPS) is used to activate BV-2 microglia. Nitric oxide (NO) levels were measured using Griess assay. Inducible NO synthase (iNOS) expressional levels were measured by Western blot analysis.

  17. Effects of dietary sodium butyrate on hepatic biotransformation and pharmacokinetics of erythromycin in chickens.

    Science.gov (United States)

    Csikó, G; Nagy, G; Mátis, G; Neogrády, Z; Kulcsár, Á; Jerzsele, A; Szekér, K; Gálfi, P

    2014-08-01

    Butyrate, a commonly applied feed additive in poultry nutrition, can modify the expression of certain genes, including those encoding cytochrome P450 (CYP) enzymes. In comparative in vitro and in vivo experiments, the effect of butyrate on hepatic CYP genes was examined in primary cultures of chicken hepatocytes and in liver samples of chickens collected from animals that had been given butyrate as a feed additive. Moreover, the effect of butyrate on the biotransformation of erythromycin, a marker substance for the activity of enzymes of the CYP3A family, was investigated in vitro and in vivo. Butyrate increased the expression of the avian-specific CYP2H1 both in vitro and in vivo. In contrast, the avian CYP3A37 expression was decreased in hepatocytes following butyrate exposure, but not in the in vivo model. CYP1A was suppressed by butyrate in the in vitro experiments, and overexpressed in vivo in butyrate-fed animals. The concomitant incubation of hepatocytes with butyrate and erythromycin led to an increased CYP2H1 expression and a less pronounced inhibition of CYP3A37. In in vivo pharmacokinetic experiments, butyrate-fed animals given a single i.m. injection of erythromycin, a slower absorption phase (longer T(half-abs) and delayed T(max)) but a rapid elimination phase of this marker substrate was observed. Although these measurable differences were detected in the pharmacokinetics of erythromycin, it is unlikely that a concomitant application of sodium butyrate with erythromycin or other CYP substrates will cause clinically significant feed-drug interaction in chickens. © 2014 John Wiley & Sons Ltd.

  18. Optimization of Enzymatically Prepared Hexyl Butyrate by Lipozyme IM-77

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2003-01-01

    Full Text Available Hexyl butyrate, a green note flavour compound, is widely used in the food industry. The ability of immobilised lipase (Lipozyme IM-77 from Rhizomucor miehei to catalyse the transesterification of hexanol and tributyrin was investigated in this study. Response surface methodology (RSM and five-level-five-factor central composite rotatable design (CCRD were employed to evaluate the effects of synthesis parameters, such as reaction time (2 to 10 h, temperature (25 to 65 °C, enzyme amount (10 to 50 %, substrate amount (in mol ratio of tributyrin to hexanol (1:1 to 3:1, and added water content (0 to 20 %, on percentage amount (in mol conversion of hexyl butyrate by transesterification. Reaction time and enzyme amount were the most important variables and substrate amount (in mol ratio had less effect on the percentage of amount (in mol conversion. Based on canonical analysis, the optimum synthesis conditions were: reaction time 8.3 h, temperature 50 °C, enzyme amount 42.7 %, substrate amount (in mol ratio 1.8:1, and added water 12.6 %. The predicted value was 96.2 % and actual experimental value 95.3 % of the amount (in mol conversion.

  19. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kasturi Ranganna

    2012-09-01

    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  20. Phylogenetic diversity of cultivalble butyrate-producing bacteria from pig gut content and feces

    DEFF Research Database (Denmark)

    Li, Xiaoqiong; Højberg, Ole; Canibe, Nuria

    2016-01-01

    Butyrate is a preferred energy source for colonocytes and is considered crucial for maintaining colonic health in humans and animals. To investigate the diversity of cultivable butyrate-producing bacteria in pig gut, bacteria were isolated from intestinal digesta (Exp. 1) and feces (Exp. 2) of fi...... fermentans, Clostridium perfringens, and Clostridium rectum but higher abundance of the commensal Megasphaera elsdenii....

  1. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Science.gov (United States)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  2. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-01-03

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    , today’s organic residues and wastes may become tomorrow’s platform for a variety of products for industrial use. Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Compared to other microbial......A major step towards the development of a sustainable industrial society is a shift from petroleum-based resources to renewable resources. An ongoing effort is focused on developing bio-refineries as an alternative way of producing fuels and chemical building-blocks from renewable resources. Thus...... strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...

  4. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?

    Science.gov (United States)

    Brahe, L K; Astrup, A; Larsen, L H

    2013-12-01

    It is increasingly recognized that there is a connection between diet, intestinal microbiota, intestinal barrier function and the low-grade inflammation that characterizes the progression from obesity to metabolic disturbances, making dietary strategies to modulate the intestinal environment relevant. In this context, the ability of some Gram-positive anaerobic bacteria to produce the short-chain fatty acid butyrate is interesting. A lower abundance of butyrate-producing bacteria has been associated with metabolic risk in humans, and recent studies suggest that butyrate might have an anti-inflammatory potential that can alleviate obesity-related metabolic complications, possibly due to its ability to enhance the intestinal barrier function. Here, we review and discuss the potential of butyrate as an anti-inflammatory mediator in metabolic diseases, and the potential for dietary interventions increasing the intestinal availability of butyrate. © 2013 The Authors. obesity reviews © 2013 International Association for the Study of Obesity.

  5. Butyric acid tolerance of rice mutant M4 families

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2007-01-01

    Full Text Available Hydromorphic soils have a low drainage capacity and are used mainly for the cultivation of irrigated rice.This condition favors the development of anaerobic microorganisms that produce phytotoxic substances. The objective of thisstudy was to evaluate the response of rice mutants to the phytotoxicity caused by butyric acid under anaerobic conditions. Theexperiment consisted of four treatments arranged in a randomized block design. Plants of 40 families were grown in ahydroponic system and the measured variables were root length and length of aerial part (LAP, number of roots (NR androot dry matter (RDM and aerial part dry matter (DMAP. The analysis of variance was performed, the relative performancecalculated and linear regressions were fitted. Only the treatment effect for NR and effect of interaction for LAP were notsignificant. Root length was most affected by the acid and the regressions expressed positive as well as negative effects for acidtolerance in the mutant families.

  6. In vitro dissolution and in vivo absorption of calcium [1-14C]butyrate in free or protected forms

    Science.gov (United States)

    Butyrate is a by-product of microbial carbohydrate fermentation that occurs primarily in the large intestine. When added to feed, butyrate quickly disappears in the upper digestive tract. Because butyrate is important for the epithelial cell development and for mucosal integrity, and for animal grow...

  7. In vitro and in vivo study of transcriptome alternation induced by butyrate in cattle using deep RNA-seq

    Science.gov (United States)

    Short-chain fatty acids (SCFAs,), especially butyrate, affect cell differentiation, proliferation, and motility. Furthermore, butyrate induces cell cycle arrest and apoptosis through its inhibition on histone deacetylases (HDACs). Butyrate is a potent inducer of histone hyper-acetylation in cells a...

  8. Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide

    Directory of Open Access Journals (Sweden)

    Nakwon Hwang

    2017-11-01

    Full Text Available Unbalanced dietary habits and gut dysmotility are causative factors in metabolic and functional gut disorders, including obesity, diabetes, and constipation. Reduction in luminal butyrate synthesis is known to be associated with gut dysbioses, and studies have suggested that restoring butyrate formation in the colon may improve gut health. In contrast, shifts in different types of gut microbiota may inhibit luminal butyrate synthesis, requiring different treatments to restore colonic bacterial butyrate synthesis. We investigated the influence of high-fat diets (HFD and low-fiber diets (LFD, and loperamide (LPM administration, on key bacteria and genes involved in reduction of butyrate synthesis in mice. MiSeq-based microbiota analysis and HiSeq-based differential gene analysis indicated that different types of bacteria and genes were involved in butyrate metabolism in each treatment. Dietary modulation depleted butyrate kinase and phosphate butyryl transferase by decreasing members of the Bacteroidales and Parabacteroides. The HFD also depleted genes involved in succinate synthesis by decreasing Lactobacillus. The LFD and LPM treatments depleted genes involved in crotonoyl-CoA synthesis by decreasing Roseburia and Oscilllibacter. Taken together, our results suggest that different types of bacteria and genes were involved in gut dysbiosis, and that selected treatments may be needed depending on the cause of gut dysfunction.

  9. Quantification of Transcriptome Responses of the Rumen Epithelium to Butyrate Infusion using RNA-seq Technology.

    Science.gov (United States)

    Baldwin, Ransom L; Wu, Sitao; Li, Weizhong; Li, Congjun; Bequette, Brian J; Li, Robert W

    2012-01-01

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms, play a critical role in energy metabolism and physiology of ruminants as well as in human health. In this study, the temporal effect of elevated butyrate concentrations on the transcriptome of the rumen epithelium was quantified via serial biopsy sampling using RNA-seq technology. The mean number of genes transcribed in the rumen epithelial transcriptome was 17,323.63 ± 277.20 (±SD; N = 24) while the core transcriptome consisted of 15,025 genes. Collectively, 80 genes were identified as being significantly impacted by butyrate infusion across all time points sampled. Maximal transcriptional effect of butyrate on the rumen epithelium was observed at the 72-h infusion when the abundance of 58 genes was altered. The initial reaction of the rumen epithelium to elevated exogenous butyrate may represent a stress response as Gene Ontology (GO) terms identified were predominantly related to responses to bacteria and biotic stimuli. An algorithm for the reconstruction of accurate cellular networks (ARACNE) inferred regulatory gene networks with 113,738 direct interactions in the butyrate-epithelium interactome using a combined cutoff of an error tolerance (ɛ = 0.10) and a stringent P-value threshold of mutual information (5.0 × 10(-11)). Several regulatory networks were controlled by transcription factors, such as CREBBP and TTF2, which were regulated by butyrate. Our findings provide insight into the regulation of butyrate transport and metabolism in the rumen epithelium, which will guide our future efforts in exploiting potential beneficial effect of butyrate in animal well-being and human health.

  10. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity.

    Directory of Open Access Journals (Sweden)

    Guillaume Dalmasso

    Full Text Available BACKGROUND: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. RESULTS: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1 promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by approximately 2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles. CONCLUSIONS: Collectively, our results demonstrate that butyrate increases PepT1 expression and activity in colonic epithelial cells, which provides a new understanding of PepT1 regulation during chronic inflammation.

  11. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    Science.gov (United States)

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication. Copyright © 2016 Elsevier Ltd. All

  12. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Science.gov (United States)

    Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia

    2016-01-01

    Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin) and genetic (si

  13. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  14. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens

    Directory of Open Access Journals (Sweden)

    Swadha Anand

    2016-12-01

    Full Text Available Biosynthesis of butyrate by commensal bacteria plays a crucial role in maintenance of human gut health while dysbiosis in gut microbiome has been linked to several enteric disorders. Contrastingly, butyrate shows cytotoxic effects in patients with oral diseases like periodontal infections and oral cancer. In addition to these host associations, few syntrophic bacteria couple butyrate degradation with sulfate reduction and methane production. Thus, it becomes imperative to understand the distribution of butyrate metabolism pathways and delineate differences in substrate utilization between pathogens and commensals.The bacteria utilize four pathways for butyrate production with different initial substrates (Pyruvate, 4-aminobutyrate, Glutarate and Lysine which follow a polyphyletic distribution. A comprehensive mining of complete/draft bacterial genomes indicated conserved juxtaposed genomic arrangement in all these pathways. This gene context information was utilized for an accurate annotation of butyrate production pathways in bacterial genomes. Interestingly, our analysis showed that inspite of a beneficial impact of butyrate in gut, not only commensals, but a few gut pathogens also possess butyrogenic pathways. The results further illustrated that all the gut commensal bacteria (Faecalibacterium, Roseburia, Butyrivibrio, commensal species of Clostridia etc ferment pyruvate for butyrate production. On the contrary, the butyrogenic gut pathogen Fusobacterium utilizes different amino acid metabolism pathways like those for Glutamate (4-aminobutyrate and Glutarate and Lysine for butyrogenesis which leads to a concomitant release of harmful by-products like ammonia in the process. The findings in this study indicate that commensals and pathogens in gut have divergently evolved to produce butyrate using distinct pathways. No such evolutionary selection was observed in oral pathogens (Porphyromonas and Filifactor which showed presence of pyruvate as

  15. Neuroprotective Effect of Sodium Butyrate against Cerebral Ischemia/Reperfusion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available Sodium butyrate (NaB is a dietary microbial fermentation product of fiber and serves as an important neuromodulator in the central nervous system. In this study, we further investigated that NaB attenuated cerebral ischemia/reperfusion (I/R injury in vivo and its possible mechanisms. NaB (5, 10 mg/kg was administered intragastrically 3 h after the onset of reperfusion in bilateral common carotid artery occlusion (BCCAO mice. After 24 h of reperfusion, neurological deficits scores were estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The levels of oxidative stress and inflammatory cytokines were assessed. Apoptotic neurons were measured by TUNEL; apoptosis-related protein caspase-3, Bcl-2, Bax, the phosphorylation Akt (p-Akt, and BDNF were assayed by western blot and immunohistochemistry. The results showed that 10 mg/kg NaB treatment significantly ameliorated neurological deficit and histopathology changes in cerebral I/R injury. Moreover, 10 mg/kg NaB treatment markedly restored the levels of MDA, SOD, IL-1β, TNF-α, and IL-8. 10 mg/kg NaB treatment also remarkably inhibited the apoptosis, decreasing the levels of caspase-3 and Bax and increasing the levels of Bcl-2, p-Akt, and BDNF. This study suggested that NaB exerts neuroprotective effects on cerebral I/R injury by antioxidant, anti-inflammatory, and antiapoptotic properties and BDNF-PI3K/Akt pathway is involved in antiapoptotic effect.

  16. The effect of fiber diet on colonic cancer formation: the role of butyrate

    Directory of Open Access Journals (Sweden)

    Ari F. Syam

    2003-06-01

    Full Text Available The majority of colon cancers occur sporadically. They are thougth to be caused by non-inherited factors such as a combination of diet and environmental factors, which result in somatic mutations of specific genes. Among dietary factors butyrate which is derived from fermentable fibers may have important role as chemoprotector against colorectal cancer. The source of butyrate in daily diet mostly come from wheat products especially wheat bran. At molecular level, butyrate causes hystone acetylation, favours differentiation, induces apoptosis and regulates the expressions of various oncogens. These effects suggest that butyrate may be protective against colorectal cancers. (Med J Indones 2003; 12: 127-31Keywords: colon cancer, dietary fiber, apoptosis

  17. ALA-Butyrate prodrugs for Photo-Dynamic Therapy

    Science.gov (United States)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2010-05-01

    The use of 5-aminolevulinic acid (ALA) administration has led to many applications of photodynamic therapy (PDT) in cancer. However, the hydrophilic nature of ALA limits its ability to penetrate the cells and tissues, and therefore the need for ALA derivatives became an urgent research target. In this study we investigated the activity of novel multifunctional acyloxyalkyl ester prodrugs of ALA that upon metabolic hydrolysis release active components such as, formaldehyde, and the histone deacetylase inhibitory moiety, butyric acid. Evaluation of these prodrugs under photo-irradiation conditions showed that butyryloxyethyl 5-amino-4-oxopentanoate (ALA-BAC) generated the most efficient photodynamic destruction compared to ALA. ALA-BAC stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells which resulted in generation of intracellular ROS, reduction of mitochondrial activity, leading to apoptotic and necrotic death of the cells. The apoptotic cell death induced by ALA / ALA-BAC followed by PDT equally activate intrinsic and extrinsic apoptotic signals and both pathways may occur simultaneously. The main advantage of ALA-BAC over ALA stems from its ability to induce photo-damage at a significantly lower dose than ALA.

  18. Ultrasound assisted synthesis of methyl butyrate using heterogeneous catalyst.

    Science.gov (United States)

    Dange, P N; Kulkarni, A V; Rathod, V K

    2015-09-01

    Ultrasound assisted esterification of butyric acid with methanol was investigated in an ultrasound irradiated isothermal batch reactor using acid ion-exchange resin (amberlyst-15) as a catalyst. Effect of parameters such as temperature (323-353 K), catalyst loading (0-8.5%w/w), alcohol to acid ratio, M (2-6), ultrasound power (0-145 W), duty cycle (0-85%) and amount of molecular sieves added (0-11%w/w) on the rate of reaction was studied. At optimized parameters, a maximum conversion of 91.64% was obtained in 120 min in presence of ultrasound. Experimental kinetic data were correlated by using Eley-Rideal (ER) and Langmuir-Hinshelwood-Hougen-Watson (LHH W) models taking into account reverse reaction. Studies showed that single site LHHW with reactants and products both adsorbing on catalyst surface was most suited for the obtained experimental data. Activation energy determined based on heterogeneous kinetics was in the range 49.31-57.54 kJ/mol while it was 18.29 kJ/mol using homogeneous model. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cyclic AMP synergizes with butyrate in promoting β-defensin 9 expression in chickens.

    Science.gov (United States)

    Sunkara, Lakshmi T; Zeng, Xiangfang; Curtis, Amanda R; Zhang, Guolong

    2014-02-01

    Host defense peptides (HDP) have both microbicidal and immunomodulatory properties. Specific induction of endogenous HDP synthesis has emerged as a novel approach to antimicrobial therapy. Cyclic adenosine monophosphate (cAMP) and butyrate have been implicated in HDP induction in humans. However, the role of cAMP signaling and the possible interactions between cAMP and butyrate in regulating HDP expression in other species remain unknown. Here we report that activation of cAMP signaling induces HDP gene expression in chickens as exemplified by β-defensin 9 (AvBD9). We further showed that, albeit being weak inducers, cAMP agonists synergize strongly with butyrate or butyrate analogs in AvBD9 induction in macrophages and primary jejunal explants. Additionally, oral supplementation of forskolin, an adenylyl cyclase agonist in the form of a Coleus forskohlii extract, was found to induce AvBD9 expression in the crop of chickens. Furthermore, feeding with both forskolin and butyrate showed an obvious synergy in triggering AvBD9 expression in the crop and jejunum of chickens. Surprisingly, inhibition of the MEK-ERK mitogen-activated protein kinase (MAPK) pathway augmented the butyrate-FSK synergy, whereas blocking JNK or p38 MAPK pathway significantly diminished AvBD9 induction in chicken macrophages and jejunal explants in response to butyrate and FSK individually or in combination. Collectively, these results suggest the potential for concomitant use of butyrate and cAMP signaling activators in enhancing HDP expression, innate immunity, and disease resistance in both animals and humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Butyrate Regulates the Expression of Pathogen-Triggered IL-8 in Intestinal Epithelia

    OpenAIRE

    Weng, Meiqian; Walker, W. Allan; Sanderson, Ian R.

    2007-01-01

    Inflammatory bowel disease (IBD) is characterized by an exaggerated immune response that involves pro-inflammatory cytokines including IL-8. Production of these pro-inflammatory cytokines is triggered by pathogen-associated molecular patterns (PAMP). Butyrate, a product of bacterial fermentation of carbohydrates, has been reported to modulate inflammation in IBD, possibly by regulating production of pro-inflammatory cytokines. However, this effect of butyrate is controversial. In this study, ...

  1. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate.

    Directory of Open Access Journals (Sweden)

    Robert W Li

    Full Text Available The capacity of the rumen microbiota to produce volatile fatty acids (VFAs has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Twenty one phyla were identified in the rumen microbiota of dairy cows. The rumen microbiota harbored 54.5±6.1 genera (mean ± SD and 127.3±4.4 operational taxonomic units (OTUs, respectively. However, the core microbiome comprised of 26 genera and 82 OTUs. Butyrate infusion altered molar percentages of 3 major VFAs. Butyrate perturbation had a profound impact on the rumen microbial composition. A 72 h-infusion led to a significant change in the numbers of sequence reads derived from 4 phyla, including 2 most abundant phyla, Bacteroidetes and Firmicutes. As many as 19 genera and 43 OTUs were significantly impacted by butyrate infusion. Elevated butyrate levels in the rumen seemingly had a stimulating effect on butyrate-producing bacteria populations. The resilience of the rumen microbial ecosystem was evident as the abundance of the microorganisms returned to their pre-disturbed status after infusion withdrawal. Our findings provide insight into perturbation dynamics of the rumen microbial ecosystem and should guide efforts in formulating optimal uses of probiotic bacteria treating human diseases.

  2. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  3. Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring.

    Science.gov (United States)

    Huang, Yanping; Gao, Shixing; Chen, Jinglong; Albrecht, Elke; Zhao, Ruqian; Yang, Xiaojing

    2017-02-21

    Maternal nutrition is important for the risk of the offspring to develop insulin resistance and adiposity later in life. The study was undertaken to determine effects of maternal butyrate supplementation on lipid metabolism and insulin sensitivity in the offspring skeletal muscle. The offspring of rats, fed a control diet or a butyrate diet (1% sodium butyrate) throughout gestation and lactation, was studied at weaning and at 60 days of age. The offspring of dams fed a butyrate diet had higher HOMA-insulin resistance and impaired glucose tolerance. This was associated with elevated mRNA and protein expressions of lipogenic genes and decreased amounts of lipolytic enzyme. Simultaneously, enhanced acetylation of histone H3 lysine 9 and histone H3 lysine 27 modification on the lipogenic genes in skeletal muscle of adult offspring was observed. Higher concentration of serum insulin and intramuscular triglyceride in skeletal muscle of offspring from the butyrate group at weaning were accompanied by increasing levels of lipogenic genes and enrichment of acetylation of histone H3 lysine 27. Maternal butyrate supplementation leads to insulin resistance and ectopic lipid accumulation in skeletal muscle of offspring, indicating the importance of short chain fatty acids in the maternal diet on lipid metabolism.

  4. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate.

    Science.gov (United States)

    Lewis, Kimberley; Lutgendorff, Femke; Phan, Van; Söderholm, Johan D; Sherman, Philip M; McKay, Derek M

    2010-07-01

    The gut microflora in some patients with Crohn's disease can be reduced in numbers of butyrate-producing bacteria and this could result in metabolic stress in the colonocytes. Thus, we hypothesized that the short-chain fatty acid, butyrate, is important in the maintenance and regulation of the barrier function of the colonic epithelium. Confluent monolayers of the human colon-derived T84 or HT-29 epithelial cell lines were exposed to dinitrophenol (DNP (0.1 mM), uncouples oxidative phosphorylation) + Escherichia coli (strain HB101, 10(6) cfu) +/- butyrate (3-50 mM). Transepithelial resistance (TER), and bacterial internalization and translocation were assessed over a 24-hour period. Epithelial ultrastructure was assessed by transmission electron microscopy. Epithelia under metabolic stress display decreased TER and increased numbers of pseudopodia that is consistent with increased internalization and translocation of the E. coli. Butyrate (but not acetate) significantly reduced the bacterial translocation across DNP-treated epithelia but did not ameliorate the drop in TER in the DNP+E. coli exposed monolayers. Inhibition of bacterial transcytosis across metabolically stressed epithelia was associated with reduced I-kappaB phosphorylation and hence NF-kappaB activation. Reduced butyrate-producing bacteria could result in increased epithelial permeability particularly in the context of concomitant exposure to another stimulus that reduces mitochondria function. We speculate that prebiotics, the substrate for butyrate synthesis, is a valuable prophylaxis in the regulation of epithelial permeability and could be of benefit in preventing relapses in IBD.

  5. Butyrate inhibits deoxycholate-induced increase in colonic mucosal DNA and protein synthesis in vivo.

    Science.gov (United States)

    Velázquez, O C; Seto, R W; Choi, J; Zhou, D; Breen, F; Fisher, J D; Rombeau, J L

    1997-11-01

    Crypt surface hyperproliferation is an intermediate biomarker of colon cancer risk. In vitro studies indicate that the short-chain fatty acid and antineoplastic agent butyrate may reverse the crypt surface hyperproliferation induced by the secondary bile acid and tumor promoter, deoxycholate. We hypothesized that butyrate may reverse deoxycholate-induced crypt surface proliferation in vivo. Thirty-one Sprague-Dawley rats (250-300 g) underwent surgical isolation of the colon and 24-hour luminal instillation of either sodium chloride, butyrate, deoxycholate, or butyrate plus deoxycholate (all solutions, 2 ml; pH 7; total sodium = 20 mM). Study variables included colon weight, mucosal DNA, mucosal protein, and proliferating cell nuclear antigen immunohistochemistry, labeling of which was determined in five crypt compartments from base to surface (12 crypts per rat). Labeling indexes were calculated as proliferating cell nuclear antigen immunohistochemistry-labeled cells divided by total counted cells in the whole colonic crypt and each of five crypt compartments. The phi(h) value (an index of premalignant risk) was calculated as the ratio of labeled cells in the two surface compartments divided by the total labeled cells. Deoxycholate significantly increased colon wet weight, mucosal protein, total crypt labeling indexes, crypt surface labeling indexes, and the phi(h) value and raised the mucosal DNA content. Butyrate alone slightly reduced total mucosal DNA and protein content. The combination of butyrate plus deoxycholate significantly decreased mucosal DNA and tended to reduce mucosal protein compared with deoxycholate alone. In contrast to prior in vitro findings, butyrate plus deoxycholate did not reverse the deoxycholate-induced surface hyperproliferative changes as measured by proliferating cell nuclear antigen labeling. Because co-treatment with butyrate plus deoxycholate inhibits deoxycholate-induced increases in total mucosal DNA and protein content, we

  6. Gamma amino butyric acid accumulation in medicinal plants without stress.

    Science.gov (United States)

    Anju, P; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F-254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague.

  7. Gamma amino butyric acid accumulation in medicinal plants without stress

    Science.gov (United States)

    Anju, P.; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Introduction: Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. Aim and Objective: The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. Materials and Methods: The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F–254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague. PMID:25861139

  8. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    Science.gov (United States)

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    Directory of Open Access Journals (Sweden)

    Eric Drago

    Full Text Available Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC, and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  10. Propolis Augments Apoptosis Induced by Butyrate via Targeting Cell Survival Pathways

    Science.gov (United States)

    Drago, Eric; Bordonaro, Michael; Lee, Seon; Atamna, Wafa; Lazarova, Darina L.

    2013-01-01

    Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors. PMID:24023824

  11. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells

    Science.gov (United States)

    Yan, Hui; Ajuwon, Kolapo M.

    2015-01-01

    Short chain fatty acids (SCFA), products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity. PMID:26713737

  12. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells.

    Directory of Open Access Journals (Sweden)

    Hui Yan

    Full Text Available Short chain fatty acids (SCFA, products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity.

  13. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...... that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...

  14. Inhibition of Histone Deacetylase by Butyrate Protects Rat Liver from Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2014-11-01

    Full Text Available We showed previously that pretreatment of butyrate, which is an endogenous histone deacetylase (HDAC inhibitor normally fermented from undigested fiber by intestinal microflora, seriously alleviated ischemia reperfusion (I/R-induced liver injury by inhibiting the nuclear factor κB (NF-κB pathway. The goal of this study was to investigate the effect of butyrate administrated at the onset of ischemia for HDAC inhibition in hepatic I/R injury. Sprague Dawley rats were subjected to warm ischemia for 60 min followed by 6 and 24 h of reperfusion. Butyrate was administrated at the onset of ischemia. Liver injury was evaluated by serum levels of aminotransferase, inflammatory factors, and histopathology. The levels of acetylated histone H3 and expression of heat shock protein (Hsp 70 were measured by Western blot. After reperfusion, the levels of acetylated histone H3 significantly decreased. Butyrate treatment markedly prevented the reduction of acetylated histone H3 and upregulated the expression of Hsp70, thereby reducing liver injury. Our study demonstrated that I/R resulted in marked reduction of histone acetylation; butyrate exerted a great hepatoprotective effect through HDAC inhibition and Hsp70 induction.

  15. Consolidated bioprocessing for butyric acid production from rice straw with undefined mixed culture

    Directory of Open Access Journals (Sweden)

    Binling Ai

    2016-10-01

    Full Text Available Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L•d. In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41% and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes.

  16. [Effect of dietary fiber in the quantitative expression of butyrate receptor GPR43 in rats colon].

    Science.gov (United States)

    Corte Osorio, L Y; Martínez Flores, H E; Ortiz Alvarado, R

    2011-01-01

    Short chain fatty acids (SCFA) acetate, propionate and butyrate are the major anions produced by the bacterial fermentation of dietary fiber (DF) in colon. Recently, butyrate has been recently studied because is important to maintain colonic functions and because it has been related with a protective effect in colorectal cancer, which is mainly, explained by its potential to regulate gene expression by inhibiting enzyme histonedeacetylase (HDAC). Several investigationsshown that SCFAreceptor GPR43 is involved insignal transduction mechanisms once they bind to ligands such as butyrate to generate different physiological effects in colonocytes. Determine if dietary fiber consumption from nopal (Opuntia ficus I.) containing a ratio of soluble-insoluble fiber 40/60, has a direct influence on the quantitative expression of butyrate-specific receptor GPR43. Wistar rats were fed with four different diets formulated at different concentrations of dietary fiber of 0, 5, 15 and 25% of dietary fiber from opuntia, respectively. The results shown an increase in the expression of GPR43 (93.1%) when rats was fed with a 5% fiber diet, using β-actin as a reference gene. The results of this investigation will contribute to determinate the relation of diet with intestinal health for the purpose of expanding the knowledge of butyric acid on colonic functions.

  17. [Sodium butyrate induces rat hepatic oval cells differentiating into mature hepatocytes in vitro].

    Science.gov (United States)

    Wang, Ping; Jia, Ji-Dong; Tang, Shu-Zhen; Yan, Zhong-Yu; You, Hong; Cong, Min; Wang, Bao-En; Chen, Li; An, Wei

    2004-12-01

    To elucidate the effects of sodium butyrate on rat hepatic oval cell differentiation in vitro. Hepatic oval cells were isolated from rats fed with a choline-deficient diet supplemented with 0.1% (w/w) ethonine for 4 to 6 weeks. The cultured hepatic oval cells were identified by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). After hepatic oval cells were treated with sodium butyrate, the morphological changes were studied through Giemsa staining and the albumin expression level was tested by Western blot. Immunohistochemical results showed the isolated cells were positive for both mature hepatocyte marker albumin and bile duct cell marker cytokeratin-19. Furthermore, RT-PCR results showed that the cells expressed stem cell marker c-kit, but not hematopoietic stem cell marker CD34. In short, the isolated cells were rat hepatic oval cells. 0.75 mmol/L sodium butyrate induced obvious phenotype changes of hepatic oval cells, including enlargement of the oval cells, a decrease in nucleus to cytoplasm ratio, and a 50% increase in the number of binucleated cells. Western blot results showed that 0.75 mmol/L sodium butyrate markedly raised the expression of albumin. Sodium butyrate, a differentiation promoting agent, can induce rat hepatic oval cells (liver progenitor cells) to differentiate into mature hepatocytes in vitro.

  18. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    Science.gov (United States)

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Pressure surge attenuator

    Science.gov (United States)

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  20. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: the effect of alcohol carbon chain length.

    Science.gov (United States)

    Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J

    2013-02-01

    The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter

    ’s platform for a variety of products for industrial use. Butyric acid is considered as a potential chemical building-block for the production of chemicals for e.g. polymeric compounds and the aim of this work was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces less acetic......Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development...... acid (higher selectivity), has a higher yield and a higher productivity of butyric acid from pre-treated lignocellulosic biomass. Pre-treated wheat straw was used as the main carbon source. After one year of serial adaptation and selection a mutant strain of C. tyrobutyricum was developed. This new...

  2. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis.

    Science.gov (United States)

    Meisel, Marlies; Mayassi, Toufic; Fehlner-Peach, Hannah; Koval, Jason C; O'Brien, Sarah L; Hinterleitner, Reinhard; Lesko, Kathryn; Kim, Sangman; Bouziat, Romain; Chen, Li; Weber, Christopher R; Mazmanian, Sarkis K; Jabri, Bana; Antonopoulos, Dionysios A

    2017-01-01

    Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin-15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and have a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). Although the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S ribosomal RNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (villin-IL-15 transgenic (v-IL-15tg) mice) shows distinct changes in the composition of the intestinal bacteria. Although some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate-producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate-induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases.

  3. Membrane complexes of Syntrophomonas wolfei involved in syntrophic butyrate degradation and hydrogen formation

    Directory of Open Access Journals (Sweden)

    Bryan Regis Crable

    2016-11-01

    Full Text Available Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in coculture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and cocultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic

  4. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    prices as a chemical are at $3.00 per gallon – wholesaling in 55 gallon drums for $6.80, with a worldwide market of 1.4 billion gallon per year. The market demand is expected to increase dramatically since butanol can now be produced economically from low-cost biomass. Butanol’s application as a replacement for gasoline will outpace ethanol, biodiesel and hydrogen when its safety and simplicity of use are seen. Butanol’s application for the Department of Defense as a clean-safe replacement for batteries when used in conjunction with fuel cell technology is seen as an application for the future. Disposable canisters made of PLA that carry butanol to be reformed and used to generate electricity for computers, night vision and stealth equipment can be easily disposed of. In a typical ABE fermentation, butyric, propionic and acetic acids are produced first by C. acetobutylicum; the culture then undergoes a metabolic shift and solvents (butanol, acetone, and ethanol) are formed (Fond et al., 1985). In conventional ABE fermentations, the butanol yield from glucose is low, typically at ~15% (w/w) and rarely exceeds 25% (0.77–1.3 gallons per bushel corn respectfully). The production of butanol is also limited by severe product inhibition. Butanol at a concentration of 10 g/L can significantly inhibit cell growth and the fermentation. Consequently, butanol titers in conventional ABE fermentations are usually lower than 13 g/L. The low butanol yield and butanol concentration made butanol production from glucose by ABE fermentation uneconomical.

  5. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Sean M. McNabney

    2017-12-01

    Full Text Available Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance.

  6. Effect of sodium butyrate on cell proliferation and cell cycle in porcine intestinal epithelial (IPEC-J2) cells.

    Science.gov (United States)

    Qiu, Yueqin; Ma, Xianyong; Yang, Xuefen; Wang, Li; Jiang, Zongyong

    2017-04-01

    Conflicting results have been reported that butyrate in normal piglets leads either to an increase or to a decrease of jejunal villus length, implying a possible effect on the proliferation of enterocytes. No definitive study was found for the biological effects of butyrate in porcine jejunal epithelial cells. The present study used IPEC-J2 cells, a non-transformed jejunal epithelial line to evaluate the direct effects of sodium butyrate on cell proliferation, cell cycle regulation, and apoptosis. Low concentrations (0.5 and 1 mM) of butyrate had no effect on cell proliferation. However, at 5 and 10 mM, sodium butyrate significantly decreased cell viability, accompanied by reduced levels of p-mTOR and PCNA protein. Sodium butyrate, in a dose-dependent manner, induced cell cycle arrest in G0/G1 phase and reduced the numbers of cells in S phase. In addition, relative expression of p21, p27, and pro-apoptosis bak genes, and protein levels of p21Waf1/Cip1, p27Kip1, cyclinD3, CDK4, and Cleave-caspase3 were increased by higher concentrations of sodium butyrate (1, 5, 10 mM), and the levels of cyclinD1 and CDK6 were reduced by 5 and 10 mM butyrate. Butyrate increased the phosphorylated form of the signaling molecule p38 and phosphorylated JNK. In conclusion, the present in vitro study indicated that sodium butyrate inhibited the proliferation of IPEC-J2 cells by inducing cell cycle arrest in the G0/G1 phase of cell cycles and by increasing apoptosis at high concentrations.

  7. Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation

    Directory of Open Access Journals (Sweden)

    Staton Carolyn A

    2010-10-01

    Full Text Available Abstract Background Neuropilin is a transmembrane receptor for vascular endothelial growth factor (VEGF and is expressed in normal endothelial cells and upregulated in cancer cells. Neuropilin-1 (NRP-1 has been shown to promote tumour cell migration and survival in colon cancer in response to VEGF binding. The expression profiles of neuropilins, associated co-receptors and known ligands have been mapped in three colorectal cell lines: Caco-2, HCT116 & HT29. We have previously shown that butyrate, a naturally occurring histone deacetylase inhibitor (HDACi produced by fermentation of fibre in the colon, causes apoptosis of colon cancer cell lines. Results Here we demonstrate that butyrate down-regulates NRP-1 and VEGF at the mRNA and protein level in colorectal cancer cell lines. NRP-1 is a known transcriptional target of Sp1, whose activity is regulated by acetylation. NRP-1 down-regulation by butyrate was associated with decreased binding affinity of Sp1 for canonical Sp-binding sites in the NRP-1 promoter. siRNA-mediated knock-down of Sp1 implied that Sp1 may have strong DNA binding activity but weak transactivation potential. Conclusion The downregulation of the key apoptotic and angiogenesis regulator NRP-1 by butyrate suggests a novel contributory mechanism to the chemopreventive effect of dietary fibre.

  8. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.

    Science.gov (United States)

    Rios-Covian, David; Gueimonde, Miguel; Duncan, Sylvia H; Flint, Harry J; de los Reyes-Gavilan, Clara G

    2015-11-01

    Cross-feeding is an important metabolic interaction mechanism of bacterial groups inhabiting the human colon and includes features such as the utilization of acetate by butyrate-producing bacteria as may occur between Bifidobacterium and Faecalibacterium genera. In this study, we assessed the utilization of different carbon sources (glucose, starch, inulin and fructooligosaccharides) by strains of both genera and selected the best suited combinations for evidencing this cross-feeding phenomenon. Co-cultures of Bifidobacterium adolescentis L2-32 with Faecalibacterium prausnitzii S3/L3 with fructooligosaccharides as carbon source, as well as with F. prausnitzii A2-165 in starch, were carried out and the production of short-chain fatty acids was determined. In both co-cultures, acetate levels decreased between 8 and 24 h of incubation and were lower than in the corresponding B. adolescentis monocultures. In contrast, butyrate concentrations were higher in co-cultures as compared to the respective F. prausnitzii monocultures, indicating enhanced formation of butyrate by F. prausnitzii in the presence of the bifidobacteria. Variations in the levels of acetate and butyrate were more pronounced in the co-culture with fructooligosaccharides than with starch. Our results provide a clear demonstration of cross-feeding between B. adolescentis and F. prausnitzii. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    Germination and growth of spores of butyric acid bacteria ( BAB) may cause severe defects in semihard cheeses. Silage is the main source of BAB spores in cheese milk. The objectives of the study were to determine the significance of grass silages and corn silages as sources of BAB spores and to

  10. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  12. Morphological development of polypropylene in immiscible blends with cellulose acetate butyrate

    Science.gov (United States)

    Isotactic polypropylenes (iPP) with different melt flow indexes were melt blended with cellulose acetate butyrate (CAB) and then prepared into microspheres or nanofibers following a novel process of producing well dispersed CAB/iPP immiscible blends and subsequent removal of the CAB matrix. The morp...

  13. Synthesis and Ionic Conductivity of Siloxane Based Polymer Electrolytes with Propyl Butyrate Pendant Groups

    Energy Technology Data Exchange (ETDEWEB)

    Jalagonia, Natia; Tatrishvili, Tamara; Markarashvili, Eliza; Aneli, Jimsher; Mukbaniani, Omar [Javakhishvili Tbilisi State University, Tbilisi (Georgia); Grazulevicius, Jouzas Vidas [Kaunas University of Technology, Kaunas (Lithuania)

    2016-02-15

    Hydrosilylation reactions of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl butyrate catalyzed by Karstedt's, H2PtCl6 and Pt/C catalyst were studied and 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane was obtained. The reaction order, activation energies and rate constants were determined. Ringopening polymerization of 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane in the presence of CaF2, LiF, KF and anhydrous potassium hydroxide in 60-70 .deg. C temperature range was carried out and methylsiloxane oligomers with regular arrangement of propyl butyrate pendant groups were obtained. The synthesized products were studied by FTIR and NMR spectroscopy. The polysiloxanes were characterized by wide-angle X-ray, gel-permeation chromatography and DSC analyses. Via sol-gel processes of oligomers doped with lithium trifluoromethylsulfonate or lithium bis (trifluoromethylsulfonyl)imide, solid polymer electrolyte membranes were obtained. The dependences of ionic conductivity of obtained polyelectrolytes on temperature and salt concentration were investigated, and it was shown that electric conductivity of the polymer electrolyte membranes at room temperature changed in the range 3.5x10{sup -4} - 6.4xa0{sup -7} S/cm.

  14. Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens

    NARCIS (Netherlands)

    Bui, Thi Phuong Nam; Shetty, Sudarshan Anand; Lagkouvardos, Ilias; Ritari, Jarmo; Chamlagain, Bhawani; Douillard, François P.; Paulin, Lars; Piironen, Vieno; Clavel, Thomas; Plugge, Caroline M.; Vos, de Willem M.

    2016-01-01

    Intestinimonas is a newly described bacterial genus with representative strains present in the intestinal tract of human and other animals. Despite unique metabolic features including the production of butyrate from both sugars and amino acids, there is to date no data on their diversity,

  15. Hydroxyapatite nanoparticles: electrospinning and calcination of hydroxyapatite/polyvinyl butyral nanofibers and growth kinetics

    NARCIS (Netherlands)

    Zakaria, S.M.; Zein, S.H. Sharif; Othman, M.R.; Jansen, J.A.

    2013-01-01

    Electrospinning of hydroxyapatite (HA)/polyvinyl butyral solution resulted in the formation of fibers with average diameter of 937-1440 nm. These fibers were converted into HA nanoparticles with size <100 nm after undergoing calcination treatment at 600 degrees C. The diameter of the fiber was

  16. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Science.gov (United States)

    2010-07-01

    .... (a) General. (1) A tolerance is established for the herbicide 4-(2-methyl-4-chlorophenoxy) butyric... established for the combined residues, free and conjugated, of the herbicide MCPB, 4-(4-chloro-2-methylphenoxy)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food...

  17. Epigenetic Regulation of Gene Expression Induced by Butyrate in Colorectal Cancer: Involvement of MicroRNA

    Directory of Open Access Journals (Sweden)

    Karen S Bishop

    2017-09-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer mortality globally. Development of CRC is closely associated with lifestyle, and diet may modulate risk. A Western-style diet is characterised by a high intake of red meat but low consumption of fruit, vegetables, and whole cereals. Such a diet is associated with CRC risks. It has been demonstrated that butyrate, produced by the fermentation of dietary plant fibre, can alter both genetic and epigenetic expressions. MicroRNAs (miRNAs are small non-coding RNAs that are commonly present in both normal and tumour cells. Aberrant miRNA expression is associated with CRC initiation, progression, and metastasis. In addition, butyrate can modulate cell proliferation, differentiation, apoptosis, and miRNA expression in CRC. In this review, the effects of butyrate on modulating miRNA expression in CRC will be discussed. Furthermore, evidence on the effect of butyrate on CRC risk through reducing oncogenic miRNA expression will be presented.

  18. Effect of method of delivery of sodium butyrate on rumen development in newborn calves

    DEFF Research Database (Denmark)

    Górka, P; Kowalski, Z M; Pietrzak, P

    2011-01-01

    The effect of sodium butyrate (SB) supplementation in milk replacer (MR) or in starter mixture (SM) or in both MR and SM on performance, selected blood parameters, and rumen development in newborn calves was determined. Twenty-eight male calves with a mean age of 5 (±1) d were randomly allocated...

  19. Equilibrium and thermodynamic parameters for heterogeneous esterification of butyric acid with methanol under microwave irradiation

    Directory of Open Access Journals (Sweden)

    P.N. Dange

    2017-03-01

    Full Text Available Synthesis of methyl butyrate was investigated in a microwave irradiated batch reactor in presence of acid ion-exchange resin catalyst, amberlyst-15. Methyl ester was heterogeneously produced by the reaction between butyric acid and methanol. Effect of reaction parameters of temperature (323–343 K, catalyst loading (0–10.5% w/w, alcohol to acid ratio, M (1–5, and amount of molecular sieves added (0–13.5% w/w on conversion were studied. Equilibrium conversion of 92.6% was achieved in 60 minutes under microwave irradiation. Equilibrium constants at varied temperatures and dependency of equilibrium constant on temperature were studied. Equilibrium constant and equilibrium conversion showed increase with the increase in temperature as expected as per le-Chatelier principle. Van't Hoff plot for esterification of butyric acid was linear with negative slope indicating that reaction was endothermic. Comparative study showed that microwave irradiated method for methyl butyrate synthesis to be very efficient and fast compared with conventional and ultrasound assisted routes under optimized reaction conditions.

  20. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning

    DEFF Research Database (Denmark)

    Nilsson, Anne C.; Östman, Elin M.; Knudsen, Knud Erik Bach

    2010-01-01

    fermentation and improved glucose tolerance. This work can be seen as an extension of that study, focusing on the tentative role of specific colonic metabolites, i.e. SCFA. Plasma concentrations of acetate, propionate, and butyrate were determined in the morning in healthy participants (5 women and 10 men...

  1. Inhibition of lipolysis in bovine adipose tissue by butyrate and β-hydroxybutyrate

    NARCIS (Netherlands)

    Metz, S.H.M.; Lopes-Cardozo, Matthijs; Bergh, S.G. van den

    1974-01-01

    In a previous paper it was shown that butyrate and DL-β-hydroxybutyrate, at a concentration of 10 mM, inhibit lipolysis in bovine adipose tissue in vitro. This inhibition was observed for basal lipolysis as well as for lipolysis stimulated by noradrenalin. Acetate, propionate and acetoacetate

  2. Evaluation of butyrate-induced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors.

    Science.gov (United States)

    Madhavarao, Chikkathur N; Agarabi, Cyrus D; Wong, Lily; Müller-Loennies, Sven; Braulke, Thomas; Khan, Mansoor; Anderson, Howard; Johnson, Gibbes R

    2014-01-01

    Bioreactor process changes can have a profound effect on the yield and quality of biotechnology products. Mannose-6-phosphate (M6P) glycan content and the enzymatic catalytic kinetic parameters are critical quality attributes (CQAs) of many therapeutic enzymes used to treat lysosomal storage diseases (LSDs). Here, we have evaluated the effect of adding butyrate to bioreactor production cultures of human recombinant β-glucuronidase produced from CHO-K1 cells, with an emphasis on CQAs. The β-glucuronidase produced in parallel bioreactors was quantified by capillary electrophoresis, the catalytic kinetic parameters were measured using steady-state analysis, and mannose-6-phosphorylation status was assessed using an M6P-specific single-chain antibody fragment. Using this approach, we found that butyrate treatment increased β-glucuronidase production up to approximately threefold without significantly affecting the catalytic properties of the enzyme. However, M6P content in β-glucuronidase was inversely correlated with the increased enzyme production induced by butyrate treatment. This assessment demonstrated that although butyrate dramatically increased β-glucuronidase production in bioreactors, it adversely impacted the mannose-6-phosphorylation of this LSD therapeutic enzyme. This strategy may have utility in evaluating manufacturing process changes to improve therapeutic enzyme yields and CQAs. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  3. The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Meike Kespohl

    2017-08-01

    Full Text Available Short-chain fatty acids (SCFAs, which are generated by the bacterial fermentation of dietary fibers, promote expansion of regulatory T cells (Tregs. Potential therapeutic value of SCFAs has been recently highlighted in the experimental models of T cell-mediated autoimmunity and allergic inflammation. These studies suggest that physiological intestinal concentrations of SCFAs within the millimolar range are crucial for dampening inflammation-mediated processes. Here, we describe opposing effects of SCFAs on T cell-mediated immune responses. In accordance with published data, lower butyrate concentrations facilitated differentiation of Tregs in vitro and in vivo under steady-state conditions. In contrast, higher concentrations of butyrate induced expression of the transcription factor T-bet in all investigated T cell subsets resulting in IFN-γ-producing Tregs or conventional T cells. This effect was mediated by the inhibition of histone deacetylase activity and was independent of SCFA-receptors FFA2 and FFA3 as well as of Na+-coupled SCFA transporter Slc5a8. Importantly, while butyrate was not able to induce the generation of Tregs in the absence of TGF-β1, the expression of T-bet and IFN-γ was triggered upon stimulation of CD4+ T cells with this SCFA alone. Moreover, the treatment of germ-free mice with butyrate enhanced the expression of T-bet and IFN-γ during acute colitis. Our data reveal that, depending on its concentration and immunological milieu, butyrate may exert either beneficial or detrimental effects on the mucosal immune system.

  4. Production of 4-hydroxybutyrate from succinate semialdehyde in butyrate biosynthesis in Porphyromonas gingivalis.

    Science.gov (United States)

    Yoshida, Yasuo; Sato, Mitsunari; Nagano, Keiji; Hasegawa, Yoshiaki; Okamoto, Takashi; Yoshimura, Fuminobu

    2015-12-01

    Despite evidence demonstrating the importance of butyrate-producing bacteria in host health and disease, the characterization of enzymes responsible for butyrate production has not been fully elucidated in the periodontopathogen, Porphyromonas gingivalis. LC-MS/MS and colorimetric analyses were employed to enzymatically characterize recombinant PGN_0724 in P. gingivalis as a succinate semialdehyde reductase. The concentration of short chain fatty acids in the culture supernatant of the wild-type bacteria and a mutant strain lacking the PGN_0724 gene were quantified using GC-MS. Incubation of recombinant PGN_0724 with succinate semialdehyde and NADH resulted in the production of 4-hydroxybutyrate as well as consumption of succinate semialdehyde. Double reciprocal plots showed that the reaction catalyzed by the PGN_0724 protein was associated with a ternary complex mechanism. The growth speed and final turbidity of the mutant strain were much lower than those of the wild-type cells. The capacity of the mutant strain to produce butyrate, isobutyrate, and isovalerate was 30%, 15%, and 45%, respectively, of that of the wild-type strain, while the mutant strain produced approximately 3.9-fold more propionate than the wild type. The pathway responsible for butyrate production is important for the growth of P. gingivalis and appears to be associated with production of the other short chain fatty acids. The aim of this study was to delineate the mechanisms involved in the production of 4-hydroxybutyrate, which is an intermediate in the biosynthetic pathway for production of butyrate, which is a virulence factor in P. gingivalis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu

    2016-03-01

    Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.

  6. Anti-Inflammatory Effect of Methylpenicinoline from a Marine Isolate of Penicillium sp. (SF-5995: Inhibition of NF-κB and MAPK Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages and BV2 Microglia

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Kim

    2014-11-01

    Full Text Available In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1 was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS-stimulated nitric oxide (NO production by suppressing the expression of inducible NO synthase (iNOS in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2 production by suppressing cyclooxygenase-2 (COX-2 expression in a concentration-dependent manner (from 10 μM to 80 μM without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β. In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α, thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.

  7. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    Science.gov (United States)

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. A Standardized Traditional Chinese Medicine Preparation Named Yejuhua Capsule Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Downregulating Toll-Like Receptor 4/Nuclear Factor-κB

    Directory of Open Access Journals (Sweden)

    Chu-Wen Li

    2015-01-01

    Full Text Available A standardized traditional Chinese medicine preparation named Yejuhua capsule (YJH has been clinically used in treatments of various acute respiratory system diseases with high efficacy and low toxicity. In this study, we were aiming to evaluate potential effects and to elucidate underlying mechanisms of YJH against lipopolysaccharide- (LPS- induced acute lung injury (ALI in mice. Moreover, the chemical analysis and chromatographic fingerprint study were performed for quality evaluation and control of this drug. ALI was induced by intratracheal instillation of LPS (5 mg/kg into the lung in mice and dexamethasone (5 mg/kg, p.o. was used as a positive control drug. Results demonstrated that pretreatments with YJH (85, 170, and 340 mg/kg, p.o. effectively abated LPS-induced histopathologic changes, attenuated the vascular permeability enhancement and edema, inhibited inflammatory cells migrations and protein leakages, suppressed the ability of myeloperoxidase, declined proinflammatory cytokines productions, and downregulated activations of nuclear factor-κB (NF-κB and expressions of toll-like receptor 4 (TLR4. This study demonstrated that YJH exerted potential protective effects against LPS-induced ALI in mice and supported that YJH was a potential therapeutic drug for ALI in clinic. And its mechanisms were at least partially associated with downregulations of TLR4/NF-κB pathways.

  9. Propofol Potentiates Sevoflurane-Induced Inhibition of Nuclear Factor--κB-Mediated Inflammatory Responses and Regulation of Mitogen-Activated Protein Kinases Pathways via Toll-like Receptor 4 Signaling in Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    Science.gov (United States)

    Liu, Wei; Zhu, Honghua; Fang, Hao

    2017-11-01

    Toll-like receptor 4 (TLR4)-induced initiation of mitogen-activated protein kinases and the nuclear factor-kappa B signaling cascade is reportedly involved in inflammatory responses during lung injury. Studies have found that volatile anesthetics, such as isoflurane and sevoflurane, inhibit inflammation. This investigation explored the protective effects of propofol and whether propofol potentiates the protective effects of sevoflurane against lipopolysaccharide (LPS)-induced acute lung injury. Male BALB/c mice were treated with LPS (10μg/mouse; intranasal instillation) to induce acute lung injury. Mice were exposed to sevoflurane (3%; 6 hours) alone or combined with propofol (10 or 20mg/kg body weight; subcutaneously) followed by sevoflurane for 1 hour before the LPS challenge. Sevoflurane with or without propofol attenuated pulmonary edema, restored altered lung architecture and reduced influx of inflammatory cells into bronchoalveolar lavage fluid after the LPS challenge. LPS-mediated overproduction of the proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 as well as nitric oxide, were reduced. Sevoflurane either alone or with propofol downregulated TLR4 and TLR4-mediated mitogen-activated protein kinase and nuclear factor-kappa B signaling. Combined exposure to propofol and sevoflurane was more effective than sevoflurane administered alone, suggesting the positive effects of propofol on sevoflurane-mediated anti-inflammatory effects. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  10. Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice.

    Science.gov (United States)

    Zhang, Tenghui; Ding, Chao; Zhao, Mingli; Dai, Xujie; Yang, Jianbo; Li, Yi; Gu, Lili; Wei, Yao; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2016-11-24

    High levels of immunoglobulin A (IgA)-coated bacteria may have a role in driving inflammatory bowel disease (IBD). We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL)-10 -/- mice. At 8 weeks of age, mice were allocated into three groups ( n = 4/group): normal (C57BL/6), IL-10 -/- , and IL-10 -/- treated with sodium butyrate (100 mM). Severity of colitis, inflammatory cytokine and short-chain fatty acid (SCFA) concentration in proximal colon contents, the percentage of IgA-coated bacteria and microbiota composition by 16S ribosomal RNA assessment of stool were measured after 4 weeks of treatment. Sodium butyrate ameliorated histological colitis and decreased levels of tumor necrosis factor (TNF)-α and IL-6 in IL-10 -/- mice compared with those without treatment. At the phylum level, a reduction in Bacteroidetes and an increase in Firmicutes in IL-10 -/- mice treated with sodium butyrate were observed. Additionally, Prevotellaceae species were reduced in IL-10 -/- mice treated with sodium butyrate as compared with those without treatment. The level of biodiversity was slightly increased and the amount of IgA-coated bacteria decreased in IL-10 -/- mice treated with sodium butyrate compared with those without treatment. Our results indicate that sodium butyrate protects against colitis, possibly through modifying the gut microbiota, enriching biodiversity and reducing the amount of colitogenic IgA-coated bacteria in IL-10 -/- mice.

  11. Sodium butyrate down-regulates tristetraprolin-mediated cyclin B1 expression independent of the formation of processing bodies.

    Science.gov (United States)

    Zheng, Xiang-Tao; Xiao, Xiao-Qiang; Dai, Ju-Ji

    2015-12-01

    Butyrate regulates multiple host cellular events including the cell cycle; however, little is known about the molecular mechanism by which butyrate induces a global down-regulation of the expression of genes associated with the cell cycle. Here, we demonstrate that treating HEK293T cells and the non-small-cell lung cancer cell line A549 with a high concentration of sodium butyrate reduces cyclin B1 expression. The underlying mechanism is related to the destabilization of its mRNA by tristetraprolin, which is up-regulated in response to sodium butyrate. Specifically, the sodium butyrate stimulation reduces the mRNA and protein expression of cyclin B1 and, conversely, upregulates tristetraprolin expression. Importantly, the overexpression of tristetraprolin in HEK293T decreases the mRNA and protein expression of cyclin B1; in contrast, knockdown of tristetraprolin mediated by small interfering RNA increases its expression in response to sodium butyrate treatment for both HEK293T and A549 cells. Furthermore, results from luciferase reporter assays and RNA immunoprecipitation indicate that sodium butyrate accelerates 3' UTR-dependent cyclin B1 decay by enhancing the binding of tristetraprolin to the 3' untranslated region of cyclin B1. Surprisingly, the overexpression of tristetraprolin prevents the formation of processing bodies, and the siRNA-mediated silencing of EDC4 does not restore the sodium butyrate-induced reduction of cyclin B1 expression. Thus, we confirm that NaBu regulates ZFP36-mediated cyclin B1 expression in a manner that is independent of the formation of P-bodies. The above findings disclose a novel mechanism of sodium butyrate-mediated gene expression regulation and might benefit its application in tumor treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Potential use of fucose-appended dendrimer/α-cyclodextrin conjugates as NF-κB decoy carriers for the treatment of lipopolysaccharide-induced fulminant hepatitis in mice.

    Science.gov (United States)

    Akao, Chiho; Tanaka, Takahiro; Onodera, Risako; Ohyama, Ayumu; Sato, Nana; Motoyama, Keiichi; Higashi, Taishi; Arima, Hidetoshi

    2014-11-10

    The purpose of the present study is to treat lipopolysaccharide (LPS)-induced fulminant hepatitis by NF-κB decoy complex with fucose-appended dendrimer (generation 2; G2) conjugate with α-cyclodextrin (Fuc-S-α-CDE (G2)). Fuc-S-α-CDE (G2, average degree of substitution of fucose (DSF2))/NF-κB decoy complex significantly suppressed nitric oxide and tumor necrosis factor-α (TNF-α) production from LPS-stimulated NR8383 cells, a rat alveolar macrophage cell line, by adequate physicochemical properties and fucose receptor-mediated cellular uptake. Intravenous injection of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex extended the survival of LPS-induced fulminant hepatitis model mice. In addition, Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex administered intravenously highly accumulated in the liver, compared to naked NF-κB decoy alone. Furthermore, the liver accumulation of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex was inhibited by the pretreatment with GdCl3, a specific inhibitor of Kupffer cell uptake. Also, the serum aspartate aminotransferase, alanine aminotransferase and TNF-α levels in LPS-induced fulminant hepatitis model mice were significantly attenuated by the treatment with Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex, compared with naked NF-κB decoy alone. Taken together, these results suggest that Fuc-S-α-CDE (G2, DSF2) has the potential for a novel Kupffer cell-selective NF-κB decoy carrier for the treatment of LPS-induced fulminant hepatitis in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of a DIVA vaccine with and without in-feed use of coated calcium-butyrate on transmission of Salmonella Typhimurium in pigs.

    Science.gov (United States)

    De Ridder, Lotte; Maes, Dominiek; Dewulf, Jeroen; Pasmans, Frank; Boyen, Filip; Haesebrouck, Freddy; Méroc, Estelle; Roels, Stefan; Leyman, Bregje; Butaye, Patrick; Van der Stede, Yves

    2013-12-04

    For satisfactory Salmonella control, good biosecurity along the pork production chain is crucial, although additional control measures on-farm need to be considered. This study evaluated the effect of two potential control measures against the spread of Salmonella Typhimurium via a transmission experiment with 56 piglets (3-15 weeks of age): two groups were orally vaccinated with 107 - 108 Colony Forming Units (CFU)/2 mL of a new attenuated Salmonella Typhimurium vaccine 'Salmoporc-∆rfaJ' with DIVA capacities (Differentiation between Infected and Vaccinated Animals) (n = 2x16); the feed of one group was additionally supplemented with coated calcium-butyrate salt. Two weeks post vaccination, four pigs per group were orally challenged with 107 CFU/2 mL of a Salmonella Typhimurium strain 112910a. Both groups were compared with a positive (challenged/untreated; n = 16) and negative (unchallenged/untreated; n = 8) control group. Until six weeks post challenge, blood, individual faecal and finally tissue samples were examined. Adjusted transmission ratios 'Ra' were estimated, based on the challenge strain isolation from faecal and/or tissue samples. In both intervention groups, Ra values were lower compared to the positive control group, although these differences were not significant. In the combination group DIVA vaccine + coated butyrate, less non-challenged contact animals excreted Salmonella and less tissue samples were found Salmonella-positive in all pigs, when compared to the positive control group (P Salmonella O-antigens, deleted in this vaccine. This was in contrast with an in-house whole-cell ELISA testing for various Salmonella antigens, in which Salmonella-specific antibodies were found pre-challenge in the serum of the vaccinated pigs. Both interventions showed a limited, non-significant reduction of Salmonella transmission between piglets. They may have applications towards Salmonella control and surveillance. Firstly, the number

  14. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    Science.gov (United States)

    Liu, Lixin; Lin, Ye; Liu, Lili; Bian, Yanjie; Zhang, Li; Gao, Xuejun; Li, Qingzhang

    2015-01-01

    ). These results suggest that 14-3-3γ was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-κB and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury. PMID:26204835

  15. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Lixin Liu

    2015-07-01

    (PPARγ. These results suggest that 14-3-3γ was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-κB and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury.

  16. Hydrocortisone 17-butyrate degradation in the presence of micro-organisms.

    Science.gov (United States)

    Rabouan-Guyon, S M; Fauvaud, C M; Courtois, P Y; Barthes, D M

    1997-02-01

    This study compared the degradation of hydrocortisone 17-butyrate (H17B) in the presence of six different bacteria, commonly found on psoriatic skin. H17B and its degradation products (hydrocortisone and hydrocortisone 21-butyrate (H21B)) were assayed by HPLC. In the absence of micro-organisms, we observed 16.6 +/- 7.1% degradation. In the presence of micro-organisms and otherwise similar conditions, we noted that H17B degradation was not modified by cocci (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae). Three bacilli increased degradation, Escherichia coli 59.1 +/- 19.4%, Klebsiella oxytoca 62.1 +/- 6.7% and Pseudomonas aeruginosa 56.0 +/- 17.9%. The degradation of H17B into hydrortisone and H21B may produce a loss of therapeutic activity.

  17. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria.

    Science.gov (United States)

    Nylund, L; Nermes, M; Isolauri, E; Salminen, S; de Vos, W M; Satokari, R

    2015-02-01

    The reports on atopic diseases and microbiota in early childhood remain contradictory, and both decreased and increased microbiota diversity have been associated with atopic eczema. In this study, the intestinal microbiota signatures associated with the severity of eczema in 6-month-old infants were characterized. Further, the changes in intestinal microbiota composition related to the improvement of this disease 3 months later were assessed. The severity of eczema correlated inversely with microbiota diversity (r = -0.54, P = 0.002) and with the abundance of butyrate-producing bacteria (r = -0.52, P = 0.005). During the 3-month follow-up, microbiota diversity increased (P microbiota and high abundance of butyrate-producing bacteria were associated with milder eczema, thus suggesting they have a role in alleviating symptoms of atopic eczema. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Butyric acid fermentation from pretreated and hydrolyzed wheat straw by C.tyrobutyricum

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Westermann, Peter; Gavala, Hariklia N.

    and xylose at a concentration of 71,6±0,2 g/l and 55,4±0,2 g/l respectively, with TS content 20,87% (g/g). From an economical point of view, the conversion of both sugars is very important. In fact C.tyrobutyricum has the capability to convert both hexose and pentose sugars. Results from batch experiments......Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Among other microbial strains, C.tyrobutyricum was found interesting due to its higher yield (more than 93% of the theoretical yield...

  19. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed El-Sakhawy

    2014-01-01

    Full Text Available Carboxymethyl cellulose acetate butyrate (CMCAB has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW thermoplastic polymers with high glass transition temperatures (Tg. CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD formulations.

  20. Biopolymer blends based on polylactic acid and polyhydroxy butyrate-co-valerate: effect of clay on mechanical and thermal properties

    CSIR Research Space (South Africa)

    John, MJ

    2015-11-01

    Full Text Available Biodegradable polymer blends consisting of polylactic acid (PLA) and polyhydroxy butyrate-co-valerate (PHBV) have been prepared by melt mixing in a twin screw extruder and followed by injection molding technique. Cereplast PLA containing starch...

  1. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    Science.gov (United States)

    Mai, Hoang Hoa; Solomon, H. M.; Taguchi, M.; Kojima, T.

    2008-04-01

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection.

  2. Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens

    OpenAIRE

    Nam Bui, Thi Phuong; Shetty, Sudarshan; Lagkouvardos, Ilias; Ritari, Jarmo; Chamlagain, Bhawani; Douillard, Francois; Paulin, Lars Göran; Piironen, Vieno; Clavel, Thomas; Plugge, Caroline M.; de Vos, Willem Meindert

    2016-01-01

    Intestinimonas is a newly described bacterial genus with representative strains present in the intestinal tract of human and other animals. Despite unique metabolic features including the production of butyrate from both sugars and amino acids, there is to date no data on their diversity, ecology, and physiology. Using a comprehensive phylogenetic approach, Intestinimomas was found to include at least three species that colonize primarily the human and mouse intestine. We focused on the most ...

  3. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  4. Lipase catalyzed transesterification of ethyl butyrate synthesis inn-hexane- a kinetic study.

    Science.gov (United States)

    Devi, N Annapurna; Radhika, G B; Bhargavi, R J

    2017-08-01

    Kinetics of lipase catalyzed transesterification of ethyl caprate and butyric acid was investigated. The objective of this work was to propose a reaction mechanism and develop a rate equation for the synthesis of ethyl butyrate by transesterification using surfactant coated lipase from Candida rugosa . The reaction rate could be described in terms of Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The values of kinetic parameters computed were V max  = 2.861 μmol/min/mg; K m(acid)  = 0.0746 M; K m(ester)  = 0.125 M; K i acid = 0.450 M. This study indicated a competitive enzyme inhibition by butyric acid during lipase catalyzed transesterification reaction. Experimental observations had clearly indicated that the substrates as well as product act as dead-end inhibitors.

  5. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs.

  6. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    Science.gov (United States)

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  7. Transfer of dietary fatty acids from butyric acid fortified canola oil into the meat of broilers

    Directory of Open Access Journals (Sweden)

    Stefano Rapaccini

    2010-01-01

    Full Text Available The literature reported positive beneficial effects of butyric acid and canola oil on production performance traits of broiler chickens. Three hundred hybrid Ross 708 (150 males and 150 females were randomly allotted to 10 pens per treatment with 5 males and 5 females per pen. Ten pens were administered a diet supplemented with soybean oil (control, ten pens the same basal diet but supplemented with a blend of mono-, di-, tri-glyceride of butyric acid added to soybean oil (T1 and ten pens the same basal diet supplemented with a mix of soybean and canola oil containing butyrate (T2. No differences in final body weight, dressing percentage, liver and thigh weight were found be- tween groups. The T2 birds showed the highest feed/gain ratio (P<0.05. The control group showed the highest value for breast weight while the highest quantity of abdominal fat was in T2 carcasses. Fatty acid profile was significantly influenced by the presence of oil supplements, not only quantitatively but also qualitatively.

  8. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice.

    Science.gov (United States)

    Jang, Se-Eun; Jeong, Jin-Ju; Choi, Su-Young; Kim, Hyunji; Han, Myung Joo; Kim, Dong-Hyun

    2017-05-23

    Oral administration of a probiotic mixture (PM; Respecta(®)) consisting of Lactobacillus rhamnosus HN001 (L1), Lactobacillus acidophilus La-14 (L2), and lactoferrin RCXTM results in colonization of these probiotics in the vagina of healthy women. Therefore, we examined whether vaginal colonization of the PM ingredients L1 and L2 could attenuate bacterial vaginosis (BV). BV was induced in mice via β-estradiol-3-benzoate-induced immunosuppression and intravaginal inoculation with Gardnerella vaginalis (GV). Inflammatory markers were analyzed using enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reaction, and flow cytometry. Oral or intravaginal administration of PM resulted in colonization of L1 and L2 in the vagina. Oral or intravaginal administration of L1, L2, or PM significantly inhibited GV-induced epithelial cell disruption, myeloperoxidase activity, NF-κB activation, and IL-1β and TNF-α expression (p < 0.05). Administration of these probiotics also inhibited IL-17 and RORγt expression but increased IL-10 and Foxp3 expression. Of these probiotics, L2 most effectively attenuated GV-induced BV, followed by L1 and PM. Oral administration was more effective against GV-induced BV than intravaginal administration. L1 and L2 also significantly inhibited the adherence of GV to HeLa cells (a human cervical cancer cell line) and GV growth in vitro. In addition, L1 and L2 inhibited lipopolysaccharide-induced NF-κB activation in macrophages and the differentiation of splenocytes into Th17 cells in vitro, but increased their differentiation into Treg cells. Our study suggests that L1, L2, and PM attenuated GV-induced vaginosis by regulating both vaginal and systemic innate and adaptive immune responses rather than direct competition or killing of GV in the vagina.

  9. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice

    Directory of Open Access Journals (Sweden)

    Se-Eun Jang

    2017-05-01

    Full Text Available Oral administration of a probiotic mixture (PM; Respecta® consisting of Lactobacillus rhamnosus HN001 (L1, Lactobacillus acidophilus La-14 (L2, and lactoferrin RCXTM results in colonization of these probiotics in the vagina of healthy women. Therefore, we examined whether vaginal colonization of the PM ingredients L1 and L2 could attenuate bacterial vaginosis (BV. BV was induced in mice via β-estradiol-3-benzoate-induced immunosuppression and intravaginal inoculation with Gardnerella vaginalis (GV. Inflammatory markers were analyzed using enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reaction, and flow cytometry. Oral or intravaginal administration of PM resulted in colonization of L1 and L2 in the vagina. Oral or intravaginal administration of L1, L2, or PM significantly inhibited GV-induced epithelial cell disruption, myeloperoxidase activity, NF-κB activation, and IL-1β and TNF-α expression (p < 0.05. Administration of these probiotics also inhibited IL-17 and RORγt expression but increased IL-10 and Foxp3 expression. Of these probiotics, L2 most effectively attenuated GV-induced BV, followed by L1 and PM. Oral administration was more effective against GV-induced BV than intravaginal administration. L1 and L2 also significantly inhibited the adherence of GV to HeLa cells (a human cervical cancer cell line and GV growth in vitro. In addition, L1 and L2 inhibited lipopolysaccharide-induced NF-κB activation in macrophages and the differentiation of splenocytes into Th17 cells in vitro, but increased their differentiation into Treg cells. Our study suggests that L1, L2, and PM attenuated GV-induced vaginosis by regulating both vaginal and systemic innate and adaptive immune responses rather than direct competition or killing of GV in the vagina.

  10. An iso-α-acid-rich extract from hops (Humulus lupulus) attenuates acute alcohol-induced liver steatosis in mice.

    Science.gov (United States)

    Hege, Marianne; Jung, Finn; Sellmann, Cathrin; Jin, Chengjun; Ziegenhardt, Doreen; Hellerbrand, Claus; Bergheim, Ina

    2018-01-01

    Results of in vitro and in vivo studies suggest that consumption of beer is less harmful for the liver than consumption of spirits. It also has been suggested that secondary plant compounds derived from hops such as xanthohumol or iso-α-acids may have beneficial effects on the development of liver diseases of various etiologies. The aim of this study was to determine whether iso-α-acids consumed in doses achieved by "normal" beer consumption have beneficial effects on health. Female C57 Bl/6 J mice, pretreated for 4 d with an iso-α-acid-rich extract (∼30% iso-α-acids from hops, 0.75 mg/kg body weight), were fed one bolus of ethanol (6 g/kg body weight intragastric) or an iso-caloric maltodextrin solution. Markers of liver damage, toll-like receptor-4 signaling, and lipid peroxidation were determined. Furthermore, the effect of isohumulone on the lipopolysaccharide-dependent activation of J774 A.1 macrophages, used as a model of Kupffer cells, was determined. In the liver, acute ethanol administration led to a significant accumulation of fat (∼10-fold), which was accompanied by significantly higher inducible nitric oxide synthase protein level, elevated nitric oxide production, and increased plasminogen activator inhibitor 1 protein concentration when compared to controls. In mice pretreated with iso-α-acids, these effects of alcohol were markedly attenuated. Pretreatment of J774 A.1 macrophages with isohumulone significantly attenuated lipopolysaccharide-induced mRNA expression of inducible nitric oxide synthase and interleukin-6 as well as the release of nitric oxide. Taken together, iso-α-acids markedly attenuated the development of acute alcohol-induced damage in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nrf2-mediated mucoprotective and anti-inflammatory actions of Artemisia extracts led to attenuate stress related mucosal damages

    Science.gov (United States)

    Park, Jong-Min; Han, Young-Min; Lee, Jin-Seok; Ko, Kwang Hyun; Hong, Sung-Pyo; Kim, Eun-Hee; Hahm, Ki-Baik

    2015-01-01

    The aim of this study was to compare biological actions between isopropanol and ethanol extracts of Artemisia including antioxidant, anti-inflammatory, and cytoprotective actions. Antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and confocal microscopy on lipopolysaccharide-induced RGM1 cells, cytoprotection effects evaluated by detecting heme oxygenase-1 (HO-1), Nf-E2 related factor2 (Nrf2) and heat shock protein 70 (HSP70), and anti-inflammatory effects investigated by measuring inflammatory mediators. Water immersion restraint stress was imposed to provoke stress related mucosal damages (SRMD) in rats. Isopropanol extracts of Artemisia showed the higher DPPH radical scavenging activity and lesser LPS-induced reactive oxygen species productions and increased HO-1 expression through increased nuclear translocation of Nrf2 transcription factor compared to ethanol extracts. The increased expression of HSP70 and decreased expression of endothelin-1 were only increased with isopropanol extracts. A concentration-dependent inhibition of LPS-induced COX-2 and iNOS even at a rather lower concentration than ethanol extract was achieved with isopropanol extracts. Cytokine protein array revealed Artemisia extracts significantly attenuated the levels of CXCL-1, CXCL-16, and MCP-1. These orchestrated actions led to significant rescue from SRMD. Conclusively, Artemisia extracts imposed significant antioxidant and anti-inflammatory activity against SRMD and isopropanol extracts were superior to ethanol extracts in these beneficiary actions of Artemisia. PMID:25759519

  12. [Determination of volatile fatty acids in the blood plasma of cattle before and after an infusion of propionate and butyrate].

    Science.gov (United States)

    Eulitz-Meder, C; Hartung, J; Geldermann, H

    1989-05-01

    Before and after infusion of propionate and butyrate the concentrations of volatile fatty acids (VFA) in the blood of heifers were determined by gas chromatography, in order to indicate activity and regulation of the carbohydrate metabolism. 14 heifers were loaded after food deprivation with intravenous infusions of propionate and butyrate. Concentrations of acetate, propionate, isobutyrate, butyrate, and valerate were measured in blood samples which were taken later on. The methods used for clearance and extraction as well as for gas chromatographic analysis are described. Retention times and blood concentrations are given for each VFA. Concentrations prior to infusion were for: acetate 10.14 +/- 2.51 microliters/ml; propionate 0.42 +/- 0.35 microliters/ml; iso-butyrate 3.72 +/- 1.37 microliters/ml; butyrate 3.44 +/- 0.68 microliters/ml blood plasma. The concentrations of the infused VFA showed a 100 (butyrate) to 1000 (propionate) fold increase followed by a subsequent decrease to the initial values. These investigations on the profile of VFA elucidated criteria of the energy metabolism.

  13. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli.

    Science.gov (United States)

    Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.

  14. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei.

    Directory of Open Access Journals (Sweden)

    Alexander Schmidt

    Full Text Available In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT, a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224 was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF

  15. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei.

    Science.gov (United States)

    Schmidt, Alexander; Müller, Nicolai; Schink, Bernhard; Schleheck, David

    2013-01-01

    In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a

  16. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy.

    Science.gov (United States)

    Gomez-Arango, Luisa F; Barrett, Helen L; McIntyre, H David; Callaway, Leonie K; Morrison, Mark; Dekker Nitert, Marloes

    2016-10-01

    The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women. © 2016 American Heart Association, Inc.

  17. Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice

    Directory of Open Access Journals (Sweden)

    Tenghui Zhang

    2016-11-01

    Full Text Available High levels of immunoglobulin A (IgA-coated bacteria may have a role in driving inflammatory bowel disease (IBD. We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL-10−/− mice. At 8 weeks of age, mice were allocated into three groups (n = 4/group: normal (C57BL/6, IL-10−/−, and IL-10−/− treated with sodium butyrate (100 mM. Severity of colitis, inflammatory cytokine and short-chain fatty acid (SCFA concentration in proximal colon contents, the percentage of IgA-coated bacteria and microbiota composition by 16S ribosomal RNA assessment of stool were measured after 4 weeks of treatment. Sodium butyrate ameliorated histological colitis and decreased levels of tumor necrosis factor (TNF-α and IL-6 in IL-10−/− mice compared with those without treatment. At the phylum level, a reduction in Bacteroidetes and an increase in Firmicutes in IL-10−/− mice treated with sodium butyrate were observed. Additionally, Prevotellaceae species were reduced in IL-10−/− mice treated with sodium butyrate as compared with those without treatment. The level of biodiversity was slightly increased and the amount of IgA-coated bacteria decreased in IL-10−/− mice treated with sodium butyrate compared with those without treatment. Our results indicate that sodium butyrate protects against colitis, possibly through modifying the gut microbiota, enriching biodiversity and reducing the amount of colitogenic IgA-coated bacteria in IL-10−/− mice.

  18. Steering Endogenous Butyrate Production in the Intestinal Tract of Broilers as a Tool to Improve Gut Health.

    Science.gov (United States)

    Onrust, Lonneke; Ducatelle, Richard; Van Driessche, Karolien; De Maesschalck, Celine; Vermeulen, Karen; Haesebrouck, Freddy; Eeckhaut, Venessa; Van Immerseel, Filip

    2015-01-01

    The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that are sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate-producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS) are such compounds as they can be converted to lactate, which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate-producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies.

  19. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health

    Directory of Open Access Journals (Sweden)

    Lonneke eOnrust

    2015-12-01

    Full Text Available The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that is sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS are such compounds as they can be converted to lactate which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies.

  20. Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor.

    Science.gov (United States)

    Long, X; Li, M; Li, L-X; Sun, Y-Y; Zhang, W-X; Zhao, D-Y; Li, Y-Q

    2017-10-20

    Altered visceral sensation is common in irritable bowel syndrome (IBS) and nerve growth factor (NGF) participates in visceral pain development. Sodium butyrate (NaB) could induce colonic hypersensitivity via peripheral up-regulation of NGF in animals. Enteric glial cells (EGCs) appear to be an important source of NGF. Whether butyrate could induce visceral hypersensitivity via increased EGC-derived NGF is still unknown. CRL-2690 cells were used for transcriptome analyses after butyrate treatment. Rats received butyrate enemas to induce colonic hypersensitivity. Colorectal distention test was performed to assess visceral sensitivity. Immunofluorescence studies were used to evaluate the co-expression of glial fibrillary acidic protein (GFAP) and NGF or growth associated protein 43 in animal model. NGF expression in rat colon was also investigated. In vitro, CRL-2690 cells were stimulated with NaB or trichostatin A (TSA). NGF or GFAP expression was also examined. Transcriptome analyses showed that butyrate induced marked changes of genes expression related to neurotrophic signaling pathways. NaB-treated rats showed increased visceral sensitivity. An improved NGF expression level was observed in NaB-treated rats. Meanwhile, a 2.1-fold increase in co-expression of GFAP and NGF was also determined in rats received NaB enemas. In cultured cells, both NaB and TSA treatment could cause obvious NGF expression. Thus, butyrate might regulate EGC function via histone deacetylase inhibition. Butyrate-EGC interplay may play a pivotal role in regulation of NGF expression and the development of colonic hypersensitivity in IBS-like animal model. © 2017 John Wiley & Sons Ltd.

  1. Effects of butyrate on the insulin homeostasis of chickens kept on maize- or wheat-based diets.

    Science.gov (United States)

    Kulcsár, Anna; Mátis, Gábor; Molnár, Andor; Petrilla, Janka; Husvéth, Ferenc; Huber, Korinna; Dublecz, Károly; Neogrády, Zsuzsanna

    2016-12-01

    The aim of the present study was to investigate the effects of butyrate as a feed supplement on the expression of insulin signalling proteins as potent regulators of metabolism and growth in Ross 308 broiler chickens fed maize- or wheat-based diets. Both diets were supplemented with non-protected butyrate (1.5 and 3.0 g/kg of diet, respectively) or with protected butyrate (0.2 g/kg of diet); the diet of the control groups was prepared without any additives (control). On day 42 of life, systemic blood samples were drawn for analyses of glucose and insulin concentrations, and tissue samples (liver, gastrocnemius muscle and subcutaneous adipose tissue) were taken for Western blotting examinations. The expression of key insulin signalling proteins (IRβ, PKCζ and mTOR) was assessed by semiquantitative Western blotting from the tissues mentioned. The type of diet had a remarkable influence on the insulin homeostasis of chickens. The wheat-based diet significantly increased IRβ and mTOR expression in the liver as well as mTOR and PKCζ expression in the adipose tissue when compared to animals kept on a maize-based diet. IRβ expression in the liver was stimulated by the lower dose of non-protected butyrate as well, suggesting the potential of butyrate as a feed additive to affect insulin sensitivity. Based on the results obtained, the present study shows new aspects of nutritional factors by comparing the special effects of butyrate as a feed additive and those of the cereal type, presumably in association with dietary non-starch polysaccharide- (NSP-) driven enteric shortchain fatty acid release including butyrate, influencing insulin homeostasis in chickens. As the tissues of chickens have physiologically lower insulin sensitivity compared to mammals, diet-associated induction of the insulin signalling pathway can be of special importance in improving growth and metabolic health.

  2. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia.

    Science.gov (United States)

    Vital, Marius; Gao, Jiarong; Rizzo, Mike; Harrison, Tara; Tiedje, James M

    2015-03-17

    Butyrate-producing bacteria have an important role in maintaining host health. They are well studied in human and medically associated animal models; however, much less is known for other Vertebrata. We investigated the butyrate-producing community in hindgut-fermenting Mammalia (n = 38), Aves (n = 8) and Reptilia (n = 8) using a gene-targeted pyrosequencing approach of the terminal genes of the main butyrate-synthesis pathways, namely butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk). Most animals exhibit high gene abundances, and clear diet-specific signatures were detected with but genes significantly enriched in omnivores and herbivores compared with carnivores. But dominated the butyrate-producing community in these two groups, whereas buk was more abundant in many carnivorous animals. Clustering of protein sequences (5% cutoff) of the combined communities (but and buk) placed carnivores apart from other diet groups, except for noncarnivorous Carnivora, which clustered together with carnivores. The majority of clusters (but: 5141 and buk: 2924) did not show close relation to any reference sequences from public databases (identity <90%) demonstrating a large 'unknown diversity'. Each diet group had abundant signature taxa, where buk genes linked to Clostridium perfringens dominated in carnivores and but genes associated with Ruminococcaceae bacterium D16 were specific for herbivores and omnivores. Whereas 16S rRNA gene analysis showed similar overall patterns, it was unable to reveal communities at the same depth and resolution as the functional gene-targeted approach. This study demonstrates that butyrate producers are abundant across vertebrates exhibiting great functional redundancy and that diet is the primary determinant governing the composition of the butyrate-producing guild.

  3. Radiofrequency attenuator and method

    Science.gov (United States)

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  4. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  5. Effect of sodium butyrate and Yucca schidigera extract on bone characteristics in growing pigs

    Directory of Open Access Journals (Sweden)

    Puzio Iwona

    2016-03-01

    Full Text Available Introduction: The aim of this study was to investigate the influence of diet supplementation with sodium butyrate and Yucca schidigera extract (0.2% and 0.3% on femur quality of growing pigs (n = 45. Material and Methods: At the age of 28, 35 and 56 d, five piglets from each group fed a different diet were euthanised and the femora were collected for further analyses. The bone characteristics were assessed based on weight, length, densitometric analysis of BMC and BMD, pQCT analysis (area, mineral content, volumetric density of trabecular and cortical part of metaphysis and diaphysis, respectively, ultimate strength, and geometrical parameters (cross-sectional area and second moment of inertia. Results: There were no significant differences in femur bone parameters among experimental groups on the 28th d of life. On the 35th d of life, piglets with 0.2% supplementation of sodium butyrate and Yucca schidigera extract had significantly lower values of weight and second moment of inertia, and significantly higher trabecular BMD and BMC compared to other experimental groups. In 56-day-old pigs, the higher values were observed in both experimental groups regarding BMC, ultimate strength, geometrical parameters, cortical BMC, diaphyseal total area, and endosteal circumference (P < 0.05. Significant differences between experimental groups were observed only in bone weight and cortical thickness. Conclusion: This study proved that simultaneous supplementation with sodium butyrate and Yucca schidigera extract positively influences bone quality in pigs in the post-weaning period. However, there were no differences in bone characteristics between the addition of 0.2% and 0.3% preparations.

  6. Deoxycholate inhibits in vivo butyrate-mediated BrDU labeling of the colonic crypt.

    Science.gov (United States)

    Velázquez, O C; Seto, R W; Bain, A M; Fisher, J; Rombeau, J L

    1997-05-01

    The short-chain fatty acid butyrate (NaBu) selectively increases colonic crypt base proliferation and inhibits "premalignant" crypt surface hyperproliferation while the secondary bile acid deoxycholate (DCA) induces surface hyperproliferation, in vitro. We hypothesized that NaBu and DCA have similar selective and antagonistic effects on the colonic crypt proliferative pattern, in vivo. Fifty-six adult SD rats underwent surgical isolation of the colon and 24-hr intraluminal instillation with physiological (10 mM) and pharmacological (25 mM) levels of butyrate alone or combined with a physiological DCA level (5 microM). Bromodeoxyuridine-labeling indices (LI) were determined as labeled cells divided by total cells, for the whole crypt and five crypt compartments from base to surface. Treatment with NaBu increased total LI when compared to NaCl. This effect was significant only at the crypt base. Both doses of NaBu resulted in similar LI with no further response at the higher concentration. In contrast to prior in vitro studies, DCA alone at this concentration did not affect LI, but when combined with NaBu, DCA inhibited the effects of NaBu at the crypt base and surface. The conclusions are: (1) the in vivo proliferative effects of NaBu are selective to the crypt base, (2) an in vivo low physiological DCA level does not promote crypt surface hyperproliferation but does inhibit butyrate's proliferative effect, and (3) NaBu and DCA interact in a complex and antagonistic manner to selectively modulate crypt base and surface proliferation, in the rat colon, in vivo. These findings may have clinical relevance since colonic levels of NaBu and DCA are affected by diet.

  7. In Vitro Effects of Dietary Inulin on Human Fecal Microbiota and Butyrate Production.

    Science.gov (United States)

    Jung, Tae-Hwan; Jeon, Woo-Min; Han, Kyoung-Sik

    2015-09-01

    Administration of dietary fibers has various health benefits, mainly by increasing numbers of beneficial bacteria and enhancing production of short-chain fatty acids in the colon. There has been growing interest in the addition of dietary fiber to human diet, due to its prebiotic effects. This study aimed to evaluate the prebiotic activity of inulin using an in vitro batch fermentation system with human fecal microbiota. Fermentation of inulin resulted in a significantly greater ratio of Lactobacillus or Bifidobacteria to Enterobacteria strains as an index of healthy human intestine and elevated butyrate concentration, which are related to improvement of gut health.

  8. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  9. Effect of Indole-3-Butyric Acid on in vitro Root Development in Lentil (Lens culinaris Medik.)

    OpenAIRE

    Khawar, Khalid Mahmood; ÖZCAN, Sebahattin

    2002-01-01

    Lentil is an important crop of the family Leguminosae and is notoriously recalcitrant to rooting in vitro. Shoots of cultivar \\"Ali Dayı\\" of lentil obtained after culturing seeds for 10 days on MS medium were isolated and rooted on MS medium containing indole-3-butyric acid (IBA) at concentrations of 0.25, 0.5, 1.0 and 2.0 mg/l. The primary response was obtained after 4 weeks; 0.25 mg/l IBA gave the best results, with a rooting percentage of 25%, mean number of 7.87 roots...

  10. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  11. Effect of dietary supplementation with butyrate and probiotic on the survival of Pacific white shrimp after challenge with Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Norha Constanza Bolívar Ramírez

    Full Text Available ABSTRACT This study evaluated the performance, immunology, and survival of the Pacific white shrimp Litopenaeus vannamei to experimental challenge to Vibrio alginolyticus based on the use of the probiotic Lactobacillus plantarum and the combined use of probiotic and butyrate. Four different diets resulted from the addition of additives: butyrate, probiotic, butyrate + probiotic, and control (no additives. The attractiveness of the diets was assessed by the percentage of positive choices and rejections, using a dual-choice Y-maze format aquarium. The shrimps were fed during four weeks and performance parameters, intestinal microbiota, and immunological parameters were all evaluated. Subsequently, the shrimps were challenged with V. alginolyticus and after 48 h, survival and immunological parameters were evaluated. The results showed increased attractiveness and intake, but only with diets supplemented with sodium butyrate. However, other diets were not rejected. No difference in performance or immunological parameters was observed among the different diets. Also, among the treatments, no difference in Vibrio spp., or total heterotrophic bacteria counts, was found in the intestinal tract. However, the lactic acid bacteria count was higher in the intestinal tract of shrimps fed diets supplemented with probiotic. After bacterial challenge, shrimp fed all diets had a greater survival when compared with the control group. Lactobacillus plantarum and sodium butyrate increase the resistance of shrimp to infection with V. alginolyticus, but do so without affecting performance, immunological parameters, or Vibrio spp., and total heterotrophic bacteria counts in the intestinal tract.

  12. Effect of different butyrate supplementations on growth and health of weaning pigs challenged or not with E. coli K88

    Directory of Open Access Journals (Sweden)

    Paolo Trevisi

    2010-01-01

    Full Text Available In a full factorial design (4 diets X challenge, Yes/No, 72 weaning pigs were assigned to one of the diets: Control; experimental diets, obtained with the addition of 2 g/kg free sodium butyrate (fNaB, or 0.6 g/kg fat-protected sodium butyrate (pNaB, or 2 g/kg INVE-NutriAd commercial mixture (Mix, based on 75 g/kg protected butyrate. Oral challenge with Escherichia coli K88 was done on 2/3 of pigs on d 7. Pigs were slaughtered on d 13. The mortality in challenged pigs, tended to be higher in control group (50.0% than in the three supplemented groups (23.5%. Growth tended to be increased averagely by the supplements (p=0.100 after the challenge, that also significantly reduced growth. In general the diet did not affect the fecal shedding of Escherichia coli and Lactobacilli, the K88-specific IgA activity in blood, the morphology of oxyntic mucosa and the expression of H+/K+-ATPase gene. The supplementations tended to increase villous length of jejunum (p=0.101. On the whole, growth, villous height and surviving rate can be positively affected either when the supplementation is done by free butyrate, by protected butyrate or by the special Inve Nutri-Ad product and these effects are distributed both on pigs infected or not with Escherichia coli K88.

  13. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium

    Directory of Open Access Journals (Sweden)

    Aliyu Salihu

    2014-12-01

    Full Text Available The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.

  14. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    Li CongJun

    2006-09-01

    Full Text Available Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867 with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens.

  15. Evidence for lipopolysaccharide-induced differentiation of RAW264 ...

    Indian Academy of Sciences (India)

    Unknown

    trol (A, B) and LPS-treated (C, D) cells were removed from the slide chambers and fixed in ice-cold methanol for 30 min. Slides were then washed and stained with Leukostat solutions I and II, ... described in § 2. Slides were observed under a microscope with a digital camera and images of 9–12 different fields were cap-.

  16. Lipopolysaccharide induces IFN-γ production in human NK cells

    Directory of Open Access Journals (Sweden)

    Leonid M Kanevskiy

    2013-01-01

    Full Text Available NK cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS. Recently TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS induced IFN-γ production in the presence of IL-2 in cell populations containing >98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DRbright, CD14+, CD3+ and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4–CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.

  17. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation.

    Science.gov (United States)

    Sun, Yue; Shang, Dejing

    2015-01-01

    Antimicrobial peptides (AMPs) are usually small molecule peptides, which display broad-spectrum antimicrobial activity, high efficiency, and stability. For the multiple-antibiotic-resistant strains, AMPs play a significant role in the development of novel antibiotics because of their broad-spectrum antimicrobial activities and specific antimicrobial mechanism. Besides broad-spectrum antibacterial activity, AMPs also have anti-inflammatory activity. The neutralization of lipopolysaccharides (LPS) plays a key role in anti-inflammatory action of AMPs. On the one hand, AMPs can readily penetrate the cell wall barrier by neutralizing LPS to remove Gram-negative bacteria that can lead to infection. On the contrary, AMPs can also inhibit the production of biological inflammatory cytokines to reduce the inflammatory response through neutralizing circulating LPS. In addition, AMPs also modulate the host immune system by chemotaxis of leukocytes, to promote immune cell proliferation, epithelialization, and angiogenesis and thus play a protective role. This review summarizes some recent researches about anti-inflammatory AMPs, with a focus on the interaction of AMPs and LPS on the past decade.

  18. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Junya Kawai

    2014-01-01

    Full Text Available Pleurotus eryngii (P. eryngii is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI. Intranasal instillation of lipopolysaccharide (LPS (10 μg/site/mouse induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.

  19. Allicin Protects against Lipopolysaccharide-Induced Acute Lung ...

    African Journals Online (AJOL)

    Committee for the Purpose of Control and. Supervision ... with 100 μL of Hoechst 33342 (5 μg/mL) for 30 min and visualized under a fluorescent microscope (Leica Microsystems, Wetzlar,. Germany). Real time PCR .... claudin-4 in the lung tissues was determined by real time PCR with β-actin used as a control; * p < 0.05 vs.

  20. Lipopolysaccharide-induced acute renal failure in conscious rats

    DEFF Research Database (Denmark)

    Jonassen, Thomas E N; Graebe, Martin; Promeneur, Dominique

    2002-01-01

    In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone......-alpha and lactate, inhibited the LPS-induced tachycardia, and exacerbated the acute LPS-induced fall in GFR. Furthermore, Ro-20-1724-treated rats were unable to maintain MAP. We conclude 1) PDE3 or PDE4 inhibition exacerbates LPS-induced renal failure in conscious rats; and 2) LPS treated rats develop an escape......, a phosphodiesterase type 3 (PDE3) inhibitor, and Ro-20-1724, a PDE4 inhibitor, on LPS-induced changes in renal function. Intravenous infusion of LPS (4 mg/kg b.wt. over 1 h) caused an immediate decrease in glomerular filtration rate (GFR) and proximal tubular outflow without changes in mean arterial pressure (MAP...

  1. Allicin Protects against Lipopolysaccharide-Induced Acute Lung ...

    African Journals Online (AJOL)

    0.05) while in vitro results indicate that allicin administration significantly improved the A549 cell viability in a dose-dependent manner as measured by CCK-8 and EdU incorporation assay. Besides, flow cytometry analysis showed that cell apoptosis rate was significantly reduced in a concentration- dependent manner after ...

  2. Lipopolysaccharide induced inflammation in the perivascular space in lungs

    Directory of Open Access Journals (Sweden)

    Pabst Reinhard

    2008-07-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS contained in tobacco smoke and a variety of environmental and occupational dusts is a toxic agent causing lung inflammation characterized by migration of neutrophils and monocytes into alveoli. Although migration of inflammatory cells into alveoli of LPS-treated rats is well characterized, the dynamics of their accumulation in the perivascular space (PVS leading to a perivascular inflammation (PVI of pulmonary arteries is not well described. Methods Therefore, we investigated migration of neutrophils and monocytes into PVS in lungs of male Sprague-Dawley rats treated intratracheally with E. coli LPS and euthanized after 1, 6, 12, 24 and 36 hours. Control rats were treated with endotoxin-free saline. H&E stained slides were made and immunohistochemistry was performed using a monocyte marker and the chemokine Monocyte-Chemoattractant-Protein-1 (MCP-1. Computer-assisted microscopy was performed to count infiltrating cells. Results Surprisingly, the periarterial infiltration was not a constant finding in each animal although LPS-induced alveolitis was present. A clear tendency was observed that neutrophils were appearing in the PVS first within 6 hours after LPS application and were decreasing at later time points. In contrast, mononuclear cell infiltration was observed after 24 hours. In addition, MCP-1 expression was present in perivascular capillaries, arteries and the epithelium. Conclusion PVI might be a certain lung reaction pattern in the defense to infectious attacks.

  3. Allicin Protects against Lipopolysaccharide-Induced Acute Lung ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of allicin, an active component of garlic, on lipopolysaccharide (LPS)- induced acute lung injury. Methods: Wistar rats were subjected to LPS intravenous injection with or without allicin treatment to induce acute lung injury (ALI) model. Also, A549 cells were stimulated with LPS in the ...

  4. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  5. Litopenaeus vannamei notch affects lipopolysaccharides induced reactive oxygen species.

    Science.gov (United States)

    Ning, Pei; Zheng, Zhihong; Aweya, Jude Juventus; Yao, Defu; Li, Shengkang; Ma, Hongyu; Wang, Fan; Zhang, Yueling

    2018-04-01

    Notch signaling pathway was originally discovered in the development stage of drosophila but has recently been found to play essential roles in innate immunity. Most previous studies on Notch have focused on mammals, whereas, in this study, we employed the shrimp Litopenaeus vannamei as a model to study the functions of Notch in invertebrate innate immune system. Our results showed that LvNotch was highly expressed in hemocytes and could be strongly induced by lipopolysaccharides (LPS) injection. Small interfering RNA (siRNA)-mediated knockdown of LvNotch could significantly increase LPS induced L. vannamei mortality, which might be due to the fact that LPS induced ROS was greatly enhanced in LvNotch knockdown shrimps. Further, quantitative polymerase chain reaction (qPCR) analysis revealed that LvNotch could affect the expression of multiple genes, including dorsal, relish, anti-lipopolysaccharide factor 1 (ALF1), ALF3 and NADH dehydrogenases which were upregulated, and Hypoxia-inducible factor (HIF, α/β) which were downregulated in LPS treated shrimps. In summary, LvNotch is important in the control of inflammation-induced ROS production in shrimp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evidence for lipopolysaccharide-induced differentiation of RAW264 ...

    Indian Academy of Sciences (India)

    Effect of lipopolysaccharide (LPS) on RAW264.7 macrophage cell line was studied. ... School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India; Analytical Services Branch, HELD, National Institute for Occupational Safety and Health, Center of Disease Control and Prevention, Morgantown, WV 26506, ...

  7. Hesperidin prevents lipopolysaccharide-induced endotoxicity in rats.

    Science.gov (United States)

    Rotimi, Solomon Oladapo; Bankole, Goodness Esther; Adelani, Isaacson Bababode; Rotimi, Oluwakemi Anuoluwapo

    2016-10-01

    Lipopolysaccharide (LPS) is a major trigger of septic shock resulting in multiple organ damage through excessive stimulation of the host's immune cells resulting in the release of cytokines. Previous studies have shown that hesperidin has several beneficial properties against inflammation and oxidative stress. The influence of hesperidin on endotoxemia, endothelial dysfunction, inflammation, and oxidative stress was investigated using a murine model of sepsis. Rats were pretreated for 15 d with three doses (50 mg/kg, 100 mg/kg, and 200 mg/kg) of hesperidin prior to LPS administration. Afterwards, the levels of biomarkers of endotoxemia, endothelial dysfunction, and oxidative stress were assessed. Reverse transcriptase PCR technique was used to assess the expression of hepatic proinflammatory cytokines. Hesperidin pretreatment significantly (p hesperidin pretreatment. Hesperidin also showed anti-oxidative properties through the significant (p hesperidin can prevent endotoxemia-induced oxidative stress as well as inflammatory and endothelial perturbation in rats when administered for as few as 15 d before exposure to endotoxin.

  8. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    Science.gov (United States)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluating lipopolysaccharide-induced oxidative stress in bovine granulosa cells.

    Science.gov (United States)

    Bromfield, John J; Iacovides, Sossi M

    2017-09-02

    The purpose of this study was to evaluate the capacity of bovine granulosa cells to generate reactive oxygen intermediates in response to lipopolysaccharide. We hypothesized that granulosa cells increase reactive oxygen intermediates in response to Gram-negative lipopolysaccharide in a similar manner to immune cells. Bovine peripheral blood mononuclear cells and granulosa cells were cultured in the presence of lipopolysaccharide. Oxidative stress was evaluated using the fluorescent marker dye CellROX, and oxidative stress-related genes were measured using real-time RT-PCR. As expected, peripheral blood mononuclear cells increased oxidative stress in response to lipopolysaccharide as measured by accumulation of the fluorescent marker dye CellROX. While granulosa cells demonstrate the capacity to increase accumulation of CellROX dye in response to a positive control menadione, lipopolysaccharide had no effect on accumulation of CellROX dye. The expression of GSR, SOD1, and SOD2 were variable in peripheral blood mononuclear cells treated with lipopolysaccharide but were consistently upregulated when co-incubated with the antioxidant, N-acetyl cysteine. The expression of oxidative stress-related genes was not altered in granulosa cells, with the exception of elevated SOD1 following lipopolysaccharide exposure in the absence of antioxidant. Combined, these data suggest that while reactive stress is important in pathogen killing and inflammation in immune cells, granulosa cells do not increase oxidative stress in response to lipopolysaccharide.

  10. Theophylline potentiates lipopolysaccharide-induced NO production in cultured astrocytes.

    Science.gov (United States)

    Ogawa, Mizue; Takano, Katsura; Kawabe, Kenji; Moriyama, Mitsuaki; Ihara, Hideshi; Nakamura, Yoichi

    2014-01-01

    Elucidation of the functions of astrocytes is important for understanding of the pathogenic mechanism of various neurodegenerative diseases. Theophylline is a common drug for bronchial asthma and occasionally develops side-effects, such as acute encephalopathy; although the pathogenic mechanism of the side-effects is unknown. The lipopolysaccharide (LPS)-induced nitricoxide (NO) production is generally used for an index of the activation of astrocyte in vitro. In this study, in order to elucidate the effect of theophylline on the astrocytic functions, we examined the LPS-induced NO production and the expression of iNOS in cultured rat cortex astrocytes.Theophylline alone could not induce the NO production; however, NO production induced by LPS was enhanced by theophylline in a dose-dependent manner; and by isobutylmethylxanthine, a phosphodiesterase inhibitor. The theophylline enhancement of LPS-induced NO production was further increased by dibutyryl cyclic AMP, a membrane-permeable cAMP analog; and by forskolin, an adenylate cyclase activator. When the cells were preincubated with Rp-8-Br-cAMP, an inhibitor of protein kinase A, the theophylline enhancement of LPS-induced NO production was decreased. The extent of iNOS protein expression induced by LPS was also enhanced by theophylline.It is likely that phosphodiesterase inhibition is a major action mechanism for the theophylline enhancement of LPS-induced NO production in astrocytes. Theophylline-induced acute encephalopathy might be due to the hyper-activation of astrocytes via cAMP signaling to produce excess amount of NO.

  11. Natural attenuation of herbicides

    DEFF Research Database (Denmark)

    Tuxen, Nina; Højberg, Anker Lajer; Broholm, Mette Martina

    2002-01-01

    A field injection experiment in a sandy, aerobic aquifer showed that two phenoxy acids MCPP (mecoprop) and dichlorprop were degraded within I in downgradient of the injection wells after an apparent lag period. The plume development and microbial measurements indicated that microbial growth....... The observations may be important for application of natural attenuation as a remedy in field scale systems....

  12. A bipartite butyrate-responsive element in the human calretinin (CALB2) promoter acts as a repressor in colon carcinoma cells but not in mesothelioma cells.

    Science.gov (United States)

    Häner, Katrin; Henzi, Thomas; Pfefferli, Martine; Künzli, Esther; Salicio, Valerie; Schwaller, Beat

    2010-02-15

    The short-chain fatty acid butyrate plays an essential role in colonic mucosa homeostasis through the capacity to block the cell cycle, regulate differentiation and to induce apoptosis. The beneficial effect of dietary fibers on preventing colon cancer is essentially mediated through butyrate, derived from luminal fermentation of fibers by intestinal bacteria. In epithelial cells of the colon, both in normal and colon cancer cells, the expression of several genes is positively or negatively regulated by butyrate likely through modulation of histone acetylation and thereby affecting the transcriptional activity of genes. Calretinin (CALB2) is a member of the EF-hand family of Ca(2+)-binding proteins and is expressed in a majority of poorly differentiated colon carcinoma and additionally in mesothelioma of the epithelioid and mixed type. Since CALB2 is one of the genes negatively regulated by butyrate in colon cancer cells and butyrate decreases calretinin protein expression levels in those cells, we investigated whether expression is regulated via putative butyrate-responsive elements (BRE) in the human CALB2 promoter. We identified two elements that act as butyrate-sensitive repressors in all colon cancer cell lines tested (CaCo-2, HT-29, Co-115/3). In contrast, in cells of mesothelial origin, MeT-5A and ZL34, the same two elements do not operate as butyrate-sensitive repressors and calretinin expression levels are insensitive to butyrate indicative of cell type-specific regulation of the CALB2 promoter. Calretinin expression in colon cancer cells is negatively regulated by butyrate via a bipartite BRE flanking the TATA box and this may be linked to butyrate's chemopreventive activity. (c) 2009 Wiley-Liss, Inc.

  13. Stimulation of tissue-type plasminogen activator gene expression by sodium butyrate and trichostatin A in human endothelial cells involves histone acetylation.

    Science.gov (United States)

    Arts, J; Lansink, M; Grimbergen, J; Toet, K H; Kooistra, T

    1995-08-15

    We have previously shown that the pleiotropic agent sodium butyrate strongly stimulates tissue-type plasminogen activator (t-PA) expression in human umbilical vein endothelial cells (HUVEC). Here we provide the following evidence that the butyrate-induced t-PA expression in HUVEC involves histone H4 acetylation. (1) t-PA induction by butyrate occurs at the transcriptional level and does not require new protein synthesis, indicating a direct effect. (2) t-PA induction by butyrate can be fully mimicked by a specific, structurally unrelated, histone deacetylase inhibitor, trichostatin A. (3) At optimally stimulatory conditions, a combination of butyrate and trichostatin A does not enhance t-PA production more than each of the compounds alone, indicating that both compounds act through a common regulatory mechanism. (4) Induction of t-PA transcription by butyrate and trichostatin A was found to be preceded by histone H4 acetylation; at suboptimal inducing concentrations of butyrate and trichostatin A, the degree of acetylation of histone H4 caused by each agent was similarly reduced. These results are consistent with a role for histone H4 acetylation in t-PA induction by butyrate in HUVEC.

  14. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    Directory of Open Access Journals (Sweden)

    Edgar C. Clausen

    2012-08-01

    Full Text Available In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partial cell recycle mode to improve fermenter yield and productivity. Experiments with fermentation in batch, continuous culture and continuous culture with partial cell recycle by ultrafiltration were conducted. The results show that a continuous fermentation can be sustained for more than 120 days, which is the first reported long-term production of butyric acid in a continuous operation. Further, the results also show that partial cell recycle via membrane ultrafiltration has a great influence on the selectivity and productivity of butyric acid, with an increase in selectivity from ≈9% to 95% butyric acid with productivities as high as 1.13 g/Lh. Continuous fermentation with low dilution rate and high cell recycle ratio has been found to be desirable for optimum productivity and selectivity toward butyric acid and a comprehensive model explaining this phenomenon is given.

  15. Stimulation of tissue-type plasminogen activator gene expression by sodium butyrate and trichostatin A in human endothelial cells involves histone acetylation

    NARCIS (Netherlands)

    Arts, J.; Lansink, T.; Grimbergen, J.; Toet, K.H.; Kooistra, T.

    1995-01-01

    We have previously shown that the pleiotropic agent sodium butyrate strongly stimulates tissue-type plasminogen activator (t-PA) expression in human umbilical vein endothelial cells (HUVEC). Here we provide the following evidence that the butyrate-induced t-PA expression in HUVEC involves histone H4

  16. Single-dose infusion of sodium butyrate, but not lactose, increases plasma ß-hydroxybutyrate and insulin in lactating dairy cows

    Science.gov (United States)

    Several previous studies have identified beneficial effects of butyrate on rumen development and intestinal health in pre-ruminants. These encouraging findings have led to further investigations related to butyrate supplementation in the mature ruminant. However, the maximum tolerable dosage rate of...

  17. Fluid dynamic bowtie attenuators

    Science.gov (United States)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Fluence field modulated CT allows for improvements in image quality and dose reduction. To date, only 1-D modulators have been proposed, the extension to 2-D modulation is difficult with solid-metal attenuation-based modulators. This work proposes to use liquids and gas to attenuate the x-ray beam which can be arrayed allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Gaseous Xenon and liquid Iodine, Zinc Chloride, and Cerium Chloride were studied. Additionally, we performed some proof-of-concept experiments in which (1) a single cell of liquid was connected to a reservoir which allowed the liquid thickness to be modulated and (2) a 96 cell array was constructed in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with Zinc Chloride allowing for the smallest thickness; 1.8, 2.25, 3, and 3.6 cm compensated for 30 cm of soft tissue at 80, 100, 120, and 140 kV respectively. The 96 cell Iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter to primary ratio. Successful modulation of a single cell was performed at 0, 90, and 130 degrees using a simple piston/actuator. The thickness of liquids and the Xenon gas pressure seem logistically implementable within the constraints of CBCT and diagnostic CT systems.

  18. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  19. Stimulation of the Megasphaera elsdenii’s butyrate production in continuous culture by a yeast additive

    Directory of Open Access Journals (Sweden)

    Oscar Soto-Cruz

    2001-06-01

    Full Text Available Continuous culture study of the ruminal bacterium Megasphaera elsdenii using lactate as carbon source is reported. Butyrate, the minor product in batch culture, was the main product in continuous culture. Under steady state conditions the biomass concentration was increased from 0.46 to 0.72 g l-1. Addition of Yea Sacc did not result an increased availability of carbon. The produced amounts of valerate and CO2 were calculated by using a combined carbon and degree of reduction balances. According to these results, the lactate catabolism of M. elsdenii was changed by the presence of yeast additive, yielding more butyrate and diminishing the production of valerate, while acetate and propionate production was not affected. Results reported in this work suggested that soluble compounds present in the yeast additive filtrate enhanced the anabolism of M. elsdenii and modified the carbon fluxes through its pathways by increasing butyrate and decreasing valerate production in continuous culture.Estudo em cultura contínua da bactéria ruminal Megasphaera elsdenii que utiliza lactato como fonte de carbono foi realizada. Butirato, foi o produto produzido em menor concentração na cultura em batelada, porém em cultura contínua foi o produto de maior concentração. Sob condições definidas a concentração de biomassa aumentou de 0.46 a 0.72 g l-1. A adição do aditivo Yea Sacc não resultou num aumento da disponibilidade do carbono. As quantidades produzidas de valerato e CO2 foram calculadas pelo uso combinado do balanço e grau de redução do carbono. De acordo com esses resultados, o catabolismo de lactato de M. elsdenii foi mudado pela adição de aditivo a base de levedura. Maior rendimento em butirato e redução na produção de valerato foi observada, por outro lado a produção deacetato e propionato não foi afetada. Os resultados desse trabalho sugerem que os componentes solúveis presentes no aditivo a base de levedura aumentam o

  20. Dietary fibres modulate the composition and activity of butyrate-producing bacteria in the large intestine of suckling piglets

    NARCIS (Netherlands)

    Mu, Chunlong; Zhang, Lingli; He, Xiangyu; Smidt, Hauke; Zhu, Weiyun

    2017-01-01

    Dietary fibres have been shown to affect early-life microbiota colonization in the large intestine of suckling piglets, however, much less is known as to whether they also modulate the composition and activity of butyrate-producing bacteria. Here, we investigated the effect of dietary fibres on the

  1. Sodium Butyrate Ameliorates High-Concentrate Diet-Induced Inflammation in the Rumen Epithelium of Dairy Goats.

    Science.gov (United States)

    Dai, Hongyu; Liu, Xinxin; Yan, Jinyu; Aabdin, Zain Ul; Bilal, Muhammad Shahid; Shen, Xiangzhen

    2017-01-25

    To investigate the effect of sodium butyrate on high-concentrate diet-induced local inflammation of the rumen epithelium, 18 midlactating dairy goats were randomly assigned to 3 groups: a low-concentrate diet group as the control (concentrate:forage = 4:6), a high-concentrate (HC) diet group (concentrate:forage = 6:4), and a sodium butyrate (SB) group (concentrate:forage = 6:4, with 1% SB by weight). The results showed that, with the addition of sodium butyrate, the concentration of lipopolysaccharide (LPS) in rumen fluid (2.62 × 104 ± 2.90 × 103 EU/mL) was significantly lower than that in the HC group (4.03 × 104 ± 2.77 × 103 EU/mL). The protein abundance of pp65, gene expression of proinflammatory cytokines, and activity of myeloperoxidase (MPO) and matrix metalloproteinase (MMP)-2,9 in the rumen epithelium were significantly down-regulated by SB compared with those in the HC group. With sodium butyrate administration, the concentration of NH3-N (19.2 ± 0.890 mM) in the rumen fluid was significantly higher than that for the HC group (12.7 ± 1.38 mM). Severe disruption of the rumen epithelium induced by HC was also ameliorated by dietary SB. Therefore, local inflammation and disruption of the rumen epithelium induced by HC were alleviated with SB administration.

  2. ChIp-seq of bovine cells (MDBK) to study butyrate-induced histone modification with 10 datasets

    Science.gov (United States)

    Next-generation sequencing was combined with chromatin immunoprecipitation (ChIP) technology to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3, H4 in rumen cells of the cow. Ten variants of histone H3 and H4 modification were m...

  3. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells

    Science.gov (United States)

    This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3, H4, and their...

  4. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    Science.gov (United States)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  5. Hydroxyapatite nanoparticles: electrospinning and calcination of hydroxyapatite/polyvinyl butyral nanofibers and growth kinetics.

    Science.gov (United States)

    Zakaria, Siti Maisurah; Sharif Zein, Sharif Hussein; Othman, Mohd Roslee; Jansen, John A

    2013-07-01

    Electrospinning of hydroxyapatite (HA)/polyvinyl butyral solution resulted in the formation of fibers with average diameter of 937-1440 nm. These fibers were converted into HA nanoparticles with size <100 nm after undergoing calcination treatment at 600°C. The diameter of the fiber was found to be influenced by applied voltage and spinning distance. The injection flowrate did not affect the diameter significantly. The electrospinning method successfully reduced the commercial HA particle size in the range of 400-1100 nm into <100 nm. The dispersion of the finally calcined HA nanoparticles was improved significantly after anionic sodium dodecyl sulfate surfactant was introduced. The experimental data of HA growth kinetics were subjected to the integral method of analysis, and the rate law of the reaction was found to follow the first order reaction. Copyright © 2012 Wiley Periodicals, Inc.

  6. Photochromic properties of the N-Salicylideneaniline in Polyvinyl Butyral matrix: Experimental and theoretical investigations

    Science.gov (United States)

    Shahab, Siyamak; Filippovich, Liudmila; Aharodnikova, M.; Almodarresiyeh, Hora A.; Hajikolaee, Fatemeh Haji; Kumar, Rakesh; Mashayekhi, Mahsa

    2017-04-01

    In the present work, isomerization, photophysical properties, thermal conductivity (λ) and spectral study of the N-Salicylideneaniline: 2-[(E)-(phenylimino)methyl]phenol (SA) under the action of UV radiation in the Polyvinyl Butyral (PVB) matrix were studied using the Indicator method and Density Functional Theory (DFT). The electronic absorption spectra of SA and its isomers (SA1 and SA2) in dimethylformamide (DMF) solutions were also calculated. The nature of absorption bands of SA, SA1 and SA2 in the visible and near ultraviolet spectral regions was interpreted. The excitation energies, electronic transitions and oscillator strengths for SA, SA1 and SA2 have also been calculated. Thermal Conductivity of PVB-films containing SA before and after UV radiation was also measured. A Photochromic PVB - film on the basis of SA for application in optical devices and display technologies was made.

  7. Conformational preferences and internal rotation of methyl butyrate by microwave spectroscopy

    Science.gov (United States)

    Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Hays, Brian M.; Kleiner, Isabelle; Nguyen, Ha Vinh Lam; Zwier, Timothy S.

    2017-07-01

    The broadband rotational spectrum of methyl butyrate from 8 to 18 GHz, recorded using a chirp-pulsed Fourier transform microwave (FTMW) spectrometer, was combined with high resolution FTMW measurements over the 2-26.5 GHz region to provide a comprehensive account of its microwave spectrum under jet-cooled conditions. Two low-energy conformers, one with a fully extended, heavy-atom planar anti/anti structure (a, a), and the other with a gauche propyl chain (g±, a), were assigned in the spectrum. Torsional A/E splittings due to the internal rotation of the methoxy methyl group were resolved for both lower energy conformers, and were fitted using the program XIAM and BELGI, providing an estimate of the barrier to methyl internal rotation of V3 ≈ 420 cm-1. The conformational landscape of methyl butyrate occurs on a two-dimensional potential energy surface, which was mapped out by quantum chemical calculations at the B2PLYP-D3BJ/aug-cc-pVTZ level of theory. The low torsional barrier about the Csbnd C(dbnd O)O bond leads to collisional removal of population originally in the (a, g±) and (g±, g±) minima into the (a, a) and (g±, a) minima, respectively, during the cooling in the expansion. Analysis of experimental intensities in the spectrum provide percent populations downstream in the expansion of 41 ± 4% (a, a), and 59 ± 6% (g±, a).

  8. Leptin counteracts sodium butyrate-induced apoptosis in human colon cancer HT-29 cells via NF-kappaB signaling.

    Science.gov (United States)

    Rouet-Benzineb, Patricia; Aparicio, Thomas; Guilmeau, Sandra; Pouzet, Cécile; Descatoire, Véronique; Buyse, Marion; Bado, André

    2004-04-16

    This study shows that leptin induced a rapid phosphorylation of p42/44 mitogen-activated protein kinase, an enhancement of both NF-kappaB DNA binding and transcriptional activities, and a concentration-dependent increase of HT-29 cell proliferation. These effects are consistent with the presence of leptin receptors on cell membranes. The leptin induction of cell growth was associated with an increase of cell population in S and G2/M phase compared with control cells found in G0/G1 phase of the cell cycle. Moreover, cyclin D1 immunoreactivity was enhanced in leptin-treated HT-29 cells and this increase was essentially associated with cell population in G0/G1 phase. On the other hand, we observed that sodium butyrate inhibited cell proliferation by blocking HT-29 cells in G0/G1 phase of the cell cycle. Interestingly, at physiological concentration, leptin prevented sodium butyrate-induced morphological nucleus changes, DNA laddering and suppressed butyrate-induced cell cycle arrest. This anti-apoptotic effect of leptin was associated with HT-29 cell proliferation and activation NF-kappaB pathways. However, the phosphorylation of p42/44 MAP kinase in response to leptin was reduced in butyrate-treated cells. These data demonstrated that leptin is a potent mitogenic factor for intestinal epithelial cells through the MAP kinase and NF-kappaB pathways. They also showed, for the first time, that leptin promotes colon cancer HT-29 cell survival upon butyrate challenge by counteracting the apoptotic programs initiated by this short chain fatty acid probably through the NF-kappaB pathways. Although further studies are required to unravel the precise mechanism, these data may have significance in the pathogenesis of colorectal cancer and ulcerative colitis diseases.

  9. Wheat bran decreases aberrant crypt foci, preserves normal proliferation, and increases intraluminal butyrate levels in experimental colon cancer.

    Science.gov (United States)

    Compher, C W; Frankel, W L; Tazelaar, J; Lawson, J A; McKinney, S; Segall, S; Kinosian, B P; Williams, N N; Rombeau, J L

    1999-01-01

    Dietary wheat bran protects against colon cancer, but the mechanism(s) of this effect is not known. Butyrate, produced by colonic bacterial fermentation of dietary polysaccharides, such as wheat bran, induces apoptosis and decreases proliferation in colon cancer cell lines. Whether similar effects occur in vivo is not well defined. We hypothesized that wheat bran's antineoplastic effects in vivo may be mediated in part by butyrate's modulation of apoptosis and proliferation. Male F344 rats were fed wheat bran-supplemented or an isocaloric, isonitrogenous fiber-free diet. Rats were treated with one dose of the carcinogen azoxymethane or vehicle with sacrifice after 5 days (tumor initiation); or two doses (days O and 7) with sacrifice after 56 days (tumor promotion). Study variables included fecal butyrate levels and the intermediate biomarkers of colon carcinogenesis, aberrant crypt foci (ACF), and changes in crypt cell proliferation and apoptosis. During tumor initiation, wheat bran produced greater apoptosis (p = .01), a trend toward less proliferation, and preserved the normal zone of proliferation (p = .01). At tumor promotion, wheat bran decreased the number of ACF (proximal colon, p = .005; distal colon, p = .047) and maintained the normal proliferative zone. The fiber-free diet shifted the zone of proliferation into the premalignant pattern in both studies. Wheat bran produced significantly higher fecal butyrate (p = .01; .004, .00001) levels than the fiber-free diet throughout the tumor promotion study. Wheat bran increased apoptosis and controlled proliferation during tumor initiation and resulted in decreased ACF. Wheat bran's antineoplastic effects occurred early after carcinogen exposure, and were associated with increased fecal butyrate levels.

  10. Single-dose infusion of sodium butyrate, but not lactose, increases plasma β-hydroxybutyrate and insulin in lactating dairy cows.

    Science.gov (United States)

    Herrick, K J; Hippen, A R; Kalscheur, K F; Schingoethe, D J; Casper, D P; Moreland, S C; van Eys, J E

    2017-01-01

    Several studies have identified beneficial effects of butyrate on rumen development and intestinal health in preruminants. These encouraging findings led to further investigations related to butyrate supplementation in the mature ruminant. However, the effects of elevated butyrate concentrations on rumen metabolism have not been investigated, and consequently the maximum tolerable dosage rate of butyrate has not been established. Therefore, the first objective of this work was to evaluate the effect of a short-term increase in rumen butyrate concentration on key metabolic indicators. The second objective was to evaluate the source of butyrate, either directly dosed in the rumen or indirectly supplied via lactose fermentation in the rumen. Jugular catheters were inserted into 4 ruminally fistulated Holstein cows in a 4×4 Latin square with 3-d periods. On d 1 of each period, 1h after feeding, cows were ruminally dosed with 1 of 4 treatments: (1) 2L of water (CON), (2) 3.5g/kg of body weight (BW) of lactose (LAC), (3) 1g/kg of BW of butyrate (1GB), or (4) 2g/kg of BW of butyrate (2GB). Sodium butyrate was the source of butyrate, and NaCl was added to CON (1.34g/kg of BW), LAC (1.34g/kg of BW), and 1GB (0.67g/kg of BW) to provide equal amounts of sodium as the 2GB treatment. Serial plasma and rumen fluid samples were collected during d 1 of each period. Rumen fluid pH was greater in cows given the 1GB and 2GB treatments compared with the cows given the LAC treatment. Cows administered the 1GB and 2GB treatments had greater rumen butyrate concentrations compared with LAC. Those cows also had greater plasma butyrate concentrations compared with cows given the LAC treatment. Plasma β-hydroxybutyrate was greater and insulin tended to be greater for butyrate treatments compared with LAC. No difference in insulin was found between the 1GB and 2GB treatments. Based on plasma and rumen metabolites, singly infusing 3.5g/kg of BW of lactose into the rumen is not as effective

  11. Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Shang, Wenting; Yang, Xiaoxi; Zhang, Shujuan; Zhang, Xiaogang; Chen, Jiawei [Renmin Univ. of China, Beijing (China)

    2013-09-15

    The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

  12. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets

    DEFF Research Database (Denmark)

    Bartholome, Anne L; Albin, David M; Baker, David H

    2004-01-01

    BACKGROUND: Supplementation of total parenteral nutrition (TPN) with a mixture of short-chain fatty acids (SCFA) enhances intestinal adaptation in the adult rodent model. However, the ability and timing of SCFA to augment adaptation in the neonatal intestine is unknown. Furthermore, the specific...... SCFA inducing the intestinotrophic effects and underlying regulatory mechanism(s) are unclear. Therefore, we examined the effect of SCFA supplemented TPN on structural aspects of intestinal adaptation and hypothesized that butyrate is the SCFA responsible for these effects. METHODS: Piglets (n = 120......) were randomized to (1) control TPN or TPN supplemented with (2) 60 mmol/L SCFA (36 mmol/L acetate, 15 mmol/L propionate and 9 mmol/L butyrate), (3) 9 mmol/L butyrate, or (4) 60 mmol/L butyrate. Within each group, piglets were further randomized to examine acute (4, 12, or 24 hours) and chronic (3 or 7...

  13. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin's downstream effects on glutamate and GABA (gamma amino butyric acid) release.

    Science.gov (United States)

    Stahl, Stephen M

    2015-08-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. These actions modify the release of both glutamate and GABA (gamma amino butyric acid) within various brain circuits.

  14. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Fredholm, Simon; Willerslev-Olsen, Andreas

    2017-01-01

    Short chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are products of microbial macronutrients fermentation that distribute systemically and are believed to modulate host immune responses. Recent data have indicated that certain SCFAs, such as butyrate and propionate, directly...... modulate human dendritic cell (DC) function. Given the role of DCs in initiating and shaping the adaptive immune response, we now explore how SCFAs affect the activation of antigen-specific CD8+ T cells stimulated with autologous, MART1 peptide-pulsed DC. We show that butyrate reduces the frequency...... of peptide-specific CD8+ T cells and, together with propionate, inhibit the activity of those cells. On the contrary, acetate does not affect them. Importantly, butyrate and propionate inhibit the production of IL-12 and IL-23 in the DCs and exogenous IL-12 fully restores the activation of the MART-1...

  15. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate.

    Science.gov (United States)

    Yuan, Xinxu; Wang, Lei; Bhat, Owais M; Lohner, Hannah; Li, Pin-Lan

    2018-02-13

    Short chain fatty acids (SCFAs), a family of gut microbial metabolites, have been reported to promote preservation of endothelial function and thereby exert anti-atherosclerotic action. However, the precise mechanism mediating this protective action of SCFAs remains unknown. The present study investigated the effects of SCFAs (acetate, propionate and butyrate) on the activation of Nod-like receptor pyrin domain 3 (Nlrp3) inflammasome in endothelial cells (ECs) and associated carotid neointima formation. Using a partial ligated carotid artery (PLCA) mouse model fed with the Western diet (WD), we found that butyrate significantly decreased Nlrp3 inflammasome formation and activation in the carotid arterial wall of wild type mice (Asc +/+ ), which was comparable to the effect of gene deletion of the adaptor protein apoptosis-associated speck-like protein gene (Asc -/- ). Nevertheless, both acetate and propionate markedly enhanced the formation and activation of the Nlrp3 inflammasome as well as carotid neointima formation in the carotid arteries with PLCA in Asc +/+ , but not Asc -/- mice. In cultured ECs (EOMA cells), butyrate was found to significantly decrease the formation and activation of Nlrp3 inflammasomes induced by 7-ketocholesterol (7-Ket) or cholesterol crystals (CHC), while acetate did not inhibit Nlrp3 inflammasome activation induced by either 7-Ket or CHC, but itself even activated Nlrp3 inflammsomes. Mechanistically, the inhibitory action of butyrate on the Nlrp3 inflammasome was attributed to a blockade of lipid raft redox signaling platforms to produce O2 •- upon 7-Ket or CHC stimulations. These results indicate that SCFAs have differential effects on endothelial Nlrp3 inflammasome activation and associated carotid neointima formation. Published by Elsevier B.V.

  16. Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin.

    Science.gov (United States)

    Ferreira, L S; Bittar, C M M

    2011-02-01

    This study was conducted to examine the influence of supplementation of sodium butyrate, sodium monensin or calcium propionate in a starter diet on the performance and selected plasma metabolites (plasma glucose, non-esterified fatty acids and β-hydroxybutyrate) of Holstein calves during pre- and post-weaning periods. Twenty-four newborn Holstein calves were housed in individual hutches until 10 weeks of life, receiving water free choice, and fed four liters of milk daily. Calves were blocked according to weight and date of birth, and allocated to one of the following treatments, according to the additive in the starter: (i) sodium butyrate (150 g/kg); (ii) sodium monensin (30 mg/kg); and (iii) calcium propionate (150 g/kg). During 10 weeks, calves received starter ad libitum, while coast cross hay (Cynodon dactylon (L.) pers.) was offered after weaning, which occurred at the 8th week of age. Weekly, calves were weighted and evaluated for body measurements. Blood samples were taken weekly after the fourth week of age, 2 hours after the morning feeding, for determination of plasma metabolites. No differences were observed among treatments for starter or hay intake, BW and daily gain of the animals. Mean concentrations of selected plasma metabolites were similar in calves fed a starter supplemented with sodium butyrate, sodium monensin and calcium propionate. There was significant reduction in the concentrations of plasma glucose as calves aged. The inclusion of sodium butyrate, calcium propionate or sodium monensin as additives in starter feeds resulted in equal animal performance, before and after weaning, suggesting that sodium monensin may be replaced by organic acid salts.

  17. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    Science.gov (United States)

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  18. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    Science.gov (United States)

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate

    Science.gov (United States)

    Lee, R. J.; Jawad, Z. A.; Ahmad, A. L.; Ngo, J. Q.; Chua, H. B.

    2017-06-01

    With the rapid development of modern civilization, carbon dioxide (CO2) is produced in large quantities and mainly generated from industrial sectors. The gas emission is the major contributor to global warming. To address this issue, the membrane technology is implemented for the CO2 removal, due to the energy efficiency and economic advantages presented. Cellulose acetate butyrate (CAB) is selected as the polymeric material, due to the excellent film-forming properties and capable of developing a defect-free layer of neat membrane. This study described the fabrication development of CAB using a wet phase inversion method with different casting conditions. Where the composition of the casting solutions (3-5 wt %) and solvent evaporation time (4-6 min) were determined. The outcomes of these dominant parameters were then used to determine the best CAB membrane for CO2/Nitrogen (N2) separation and supported by the characterization i.e. scanning electron micrograph. Gas permeation measurements showed satisfactory performance for CAB membrane fabricated with 5 min evaporation time and 4 wt% polymer composition (M2). Where, its permeance and selectivity are 120.19 GPU and 3.17, respectively. In summary, this study showed a brief outlined of the future direction and perspective of CAB membrane for CO2/N2 separation.

  20. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage.

    Science.gov (United States)

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-09-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

  1. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    Directory of Open Access Journals (Sweden)

    Yeong Chae Kim

    2013-09-01

    Full Text Available Non-protein amino acid, β-amino-n-butyric acid (BABA, has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM. BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

  2. Rhizogenic behavior of black pepper cultivars to indole-3-butyric acid

    Directory of Open Access Journals (Sweden)

    Welington Secundino

    2014-07-01

    Full Text Available Little information is available regarding vegetative propagation of the species Piper nigrum L. to generate technical recommendations for the production of seedlings on a commercial scale. The purpose of this study was to investigate the rhizogenic behavior of cultivars of this species regarding indol-3-butyric acid (IBA. The experiment was performed at a vegetation house equipped with an intermittent nebulization irrigation system. The experimental site was located in the University Center of Northern Espírito Santo (CEUNES of the Federal University of Espírito Santo (UFES, Brazil. The experimental design consisted of randomized blocks arranged in a 3 x 5 factorial scheme: three cultivars (Bragantina, Iaçará and Guajarina x five IBA concentrations (0; 1,500; 3,000; 4,500 and 6,000 mg kg-1, with four repetitions of 16 cuttings each. Total immersion of the cuttings in IBA is recommended for the Iaçará and Guajarina cultivars, and immersion of only the basal region is recommended for cv. Bragantina. The recommended IBA concentration for these cultivars is 4,000 mg kg-1.

  3. The effect of sugars on the retention of ethyl butyrate by gellan gels.

    Science.gov (United States)

    Evageliou, Vasiliki; Patsiakou, Anna

    2014-08-15

    The effect of sucrose, glucose and fructose on the retention of ethyl butyrate by low acyl gellan gels was investigated by static headspace gas chromatography. The air/biopolymer partition coefficient (K) and percentage of retention (R%) were determined. When 5 g of sample were left to equilibrate at 37 °C for 24 h, the obtained results were explained in terms of gel rigidity, as increased rigidity resulted in increased aroma retention. Glucose showed the greatest aroma release among the sugars and resulted in either the same or increased aroma release with increasing concentration. Increasing concentrations of fructose and sucrose did not alter aroma release significantly. For 15 g of sample mass, sucrose exhibited the lowest partition coefficient values among the sugars. The two higher sucrose concentrations resulted in decreased coefficient values. For fructose and glucose, aroma retention decreased with increasing concentration. The percentage of retention values were positive for all sugars, throughout their concentration range and for both experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Transparent Blend of Poly(Methylmethacrylate/Cellulose Acetate Butyrate for the Protection from Ultraviolet

    Directory of Open Access Journals (Sweden)

    Raouf Mahmood Raouf

    2016-04-01

    Full Text Available The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV radiation exposure to transparent poly(methylmethacrylate (PMMA, which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB. The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend.

  5. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation.

    Science.gov (United States)

    Swain, Basudev; Ryang Park, Jae; Yoon Shin, Dong; Park, Kyung-Soo; Hwan Hong, Myung; Gi Lee, Chan

    2015-10-01

    Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30v ol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Enhancement of Human Prolactin Synthesis by Sodium Butyrate Addition to Serum-Free CHO Cell Culture

    Directory of Open Access Journals (Sweden)

    Herbert Rodrigues Goulart

    2010-01-01

    Full Text Available Sodium butyrate (NaBu has been used as a productivity enhancer for the synthesis of recombinant proteins in Chinese hamster ovary (CHO cells. Thus, the influence of NaBu on the production of recombinant human prolactin (hPRL from CHO cells was investigated for the first time. CHO cell cultures were submitted to a treatment with different concentrations of NaBu (0.25 to 4 mM. Quantitative and qualitative analyses by reverse-phase high-performance liquid chromatography (RP-HPLC and Western blot or SDS-PAGE, carried out directly on CHO-conditioned medium, showed that the highest hPRL expression was obtained with 1 mM NaBu. In vitro biological assays based on noble rat lymphoma (Nb2 and mouse pro-B lymphoma (Ba/F3-LLP cells were carried out on purified hPRL. Its bioactivity in the presence of NaBu was not apparently different from that of the First International Reference Reagent of recombinant hPRL (WHO 97/714. Our results show that NaBu increased the synthesis of recombinant hPRL in CHO cells, apparently without compromising either its structure or function.

  7. Indole butyric acid and substrates influence on multiplication of blackberry 'Xavante'

    Directory of Open Access Journals (Sweden)

    Ibrar Hussain

    2014-10-01

    Full Text Available Blackberry is a shrubby plant specie which has a high economic importance among agriculture crops. Brazil is the major country of Latin America with the highest future scope for blackberries. For availability of good quality and maximum quantity of seedlings, the present study was carried out at the Universidade Estadual de Londrina,PR from January to March in 2013. The aim of the study was to evaluate the multiplication of blackberry 'Xavante' cuttings under different type of substrates treated with different levels of indole butyric acid (IBA. The experiment was laid out in randomized complete block design with 2 factors, i.e., substrate (rice husk, vermiculite and coconut fiber and IBA (0; 1,000; 2,000 and 3,000mg L-1, with 5 replications. Each replicate consisted of 10 cuttings. The variables studied were: cutting rooting, cutting survival, leaf retention, cuttings with new leaves, number of major roots, length of major roots and roots dry weight. Most of the variables were significantly affected by both substrate and IBA. Rice husk and vermiculite performed better than coconut fiber and provided the same results for most of the variables, while coconut fiber showed lower performance for all of the variables studied. IBA significantly affected the rooting and the number of major roots. It is concluded that for multiplication of blackberry 'Xavante', both rice husk and vermiculite can be used along 2,000mg L-1 of IBA

  8. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    Science.gov (United States)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  9. Electronic Structures and Optical Properties of Phenyl C71 Butyric Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Cai-Rong Zhang

    2013-01-01

    Full Text Available Phenyl C71 butyric acid methyl ester (PC71BM has been adopted as electron acceptor materials in bulk heterojunction solar cells with relatively higher power conversion efficiency. The understanding of the mechanism and performance for the devices based upon PC71BM requires the information of conformations, electronic structures, optical properties, and so forth. Here, the geometries, IR and Raman, electronic structures, polarizabilities, and hyperpolarizabilities of PC71BM isomers are studied by using density functional theory (DFT; the absorption and excitation properties are investigated via time-dependent DFT with B3LYP, PBE0, and CAM-B3LYP functionals. The calculated results show that [6,6]PC71BM is more stable than [5,6]PC71BM due to the lower total energy. The vibrational modes of the isomers at IR and Raman peaks are quite similar. As to absorption properties, CAM-B3LYP functional is the suitable functional for describing the excitations of PC71BM because the calculated results with CAM-B3LYP functional agree well with that of the experiment. The analysis of transition configurations and molecular orbitals demonstrated that the transitions at the absorption maxima in UV/Vis region are localized π-π* transitions in fullerenes cages. Furthermore, the larger isotropic polarizability of PC71BM indicates that the response of PC71BM to applied external electric field is stronger than that of PC61BM, and therefore resulting into better nonlinear optical properties.

  10. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  11. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes

    Science.gov (United States)

    Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

    2015-04-01

    Mixtures of polyvinylpyrrolidone/polyvinyl butyral (PVP/PVB) are attractive binders for the preparation of carbon electrodes for aqueous electrolyte supercapacitors. The use of PVP/PVB offers several key advantages: They are soluble in ethanol and can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector. Infrared spectroscopy and contact angle measurements show that the PVP-to-PVB ratio determines the degree of binder hydrophilicity. Within our study, the most favorable performance was obtained for AC electrodes with a composition of AC + 1.5 mass% PVP + 6.0 mass% PVB; such electrodes were mechanically stabile and water resistant with a PVP release of less than 5% of total PVP while PVB itself is water insoluble. Compared to when using PVDF, the specific surface area (SSA) of the assembled electrodes was 10% higher, indicating a reduced pore blocking tendency. A good electrochemical performance was observed in different aqueous electrolytes for composite electrodes with the optimized binder composition: 160 F g-1 at 1 A g-1 for 1 M H2SO4 and 6 M KOH and 120 F g-1 for 1 M NaCl. The capacitance was slightly reduced by 2.5% after cycling to 1.2 V with 1.28 A g-1 in 1 M NaCl for 10,000 times.

  12. A survey on anticancer effects of artemisinin, iron, miconazole, and butyric acid on 5637 (bladder cancer and 4T1 (Breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Amir Ali Shahbazfar

    2014-01-01

    The groups treated with miconazole showed identical changes, with less severity compared to combination therapy groups. In butyric acid-treated groups, the only detectable changes were, mild cell swelling, few apoptosis, and rare necrosis. Conclusions: A combination therapy with artemisinin can be more effective against cancer cells than monotherapy with that. Butyric acid was not effective on cancer cells. Miconazole deviated the nature of cell death from apoptosis to necrosis and it must be used under caution.

  13. Diastereoselective Three-Component Reactions of Chiral Nickel(II Glycinate for Convenient Synthesis of Novel α-Amino-β-Substituted-γ,γ-Disubstituted Butyric Acids

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2014-01-01

    Full Text Available The convenient, high yielding and diastereoselective synthesis of α-amino-β-substituted-γ,γ-disubstituted butyric acid derivatives was carried out by a three-component tandem reaction of a chiral equivalent of nucleophilic glycine. The reaction was performed smoothly under mild conditions and enabled the construction of two or three adjacent chiral centers in one step, thus affording a novel and convenient route to α-amino-β-substituted-γ,γ-disubstituted butyric acid derivatives.

  14. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes.

    OpenAIRE

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2015-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic ac...

  15. Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    OpenAIRE

    Guerron, Alfredo D.; Rashmi Rawat; Arpana Sali; Spurney, Christopher F.; Emidio Pistilli; Hee-Jae Cha; Pandey, Gouri S.; Ramkishore Gernapudi; Dwight Francia; Viken Farajian; ESCOLAR, DIANA M.; Laura Bossi; Magali Becker; Patricia Zerr; Sabine de la Porte

    2010-01-01

    Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 mo...

  16. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model.

    Science.gov (United States)

    Gholami, Mahdi; Ghasemi-Niri, Seyedeh Farnaz; Maqbool, Faheem; Baeeri, Maryam; Memariani, Zahra; Pousti, Iraj; Abdollahi, Mohammad

    2016-06-01

    This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate.

    Science.gov (United States)

    Elias, Nursyafiqah; Chandren, Sheela; Attan, Nursyafreena; Mahat, Naji Arafat; Razak, Fazira Ilyana Abdul; Jamalis, Joazaizulfazli; Wahab, Roswanira Abdul

    2017-11-15

    In this study, nanocellulose (NC) was successfully extracted from oil palm frond leaves (OPFL) using a combination of bleaching, alkaline treatment and acid hydrolysis. X-ray diffractogram revealed the extracted NC was crystalline with a crystallinity index of 70.2%. This indicates its suitability as nano-fillers for preparing the chitosan/nanocellulose (CS-NC) supports to immobilize Candida rugosa lipase (CRL) to produce the CRL/CS-NC biocatalysts. FTIR, FESEM and TGA characterizations of the CRL/CS-NC confirm the CRLs were successfully conjugated to the CS-NC supports. The air-dried CS-NC supports gave satisfactory immobilization of the CRLs (5.2mg/g) with the resultant CRL/CS-NCs catalysed conversions of ≥80% of butyl butyrate within 6h. Time course reaction profile revealed that 76.3% butyl butyrate conversion was achieved at 4h immobilization time using 3mg/mL of CRL/CS-NCs. NMR analyses on the purified butyl butyrate confirmed that the ester was successfully synthesized. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Subclinical ketosis on dairy cows in transition period in farms with contrasting butyric acid contents in silages.

    Science.gov (United States)

    Vicente, Fernando; Rodríguez, María Luisa; Martínez-Fernández, Adela; Soldado, Ana; Argamentería, Alejandro; Peláez, Mario; de la Roza-Delgado, Begoña

    2014-01-01

    This study examines the relationship between subclinical ketosis (SCK) in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05). As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake).

  19. Sodium Butyrate Prevents Memory Impairment by Re-establishing BDNF and GDNF Expression in Experimental Pneumococcal Meningitis.

    Science.gov (United States)

    Barichello, Tatiana; Generoso, Jaqueline S; Simões, Lutiana R; Faller, Cristiano Julio; Ceretta, Renan A; Petronilho, Fabricia; Lopes-Borges, Jéssica; Valvassori, Samira S; Quevedo, João

    2015-08-01

    Pneumococcal meningitis is a serious infection of the central nervous system (CNS) with high fatality rates that causes reduced psychomotor performance, slight mental slowness, impairments in attention executive functions and learning and memory deficiencies. Previously, we demonstrated a correlation between memory impairment and decreased levels of brain-derived neurotropic factor (BDNF) in the hippocampi of rats subjected to pneumococcal meningitis. Emerging evidence demonstrates that histone acetylation regulates neurotrophins; therefore, a potential molecular intervention against cognitive impairment in bacterial meningitis may be the histone deacetylase (HDAC) inhibitor, sodium butyrate, which stimulates the acetylation of histones and increases BDNF expression. In this study, animals received either artificial cerebrospinal fluid as a placebo or a Streptococcus pneumoniae suspension at a concentration of 5 × 10(9) colony-forming units (CFU/mL). The animals received antibiotic treatment as usual and received saline or sodium butyrate as an adjuvant treatment. Ten days after, meningitis was induced; the animals were subjected to open-field habituation and the step-down inhibitory avoidance task. Immediately after these behavioural tasks, the animals were killed, and their hippocampi were removed to evaluate the expression of BDNF, nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). In the meningitis group that received saline, the animals presented memory impairment in both behavioural tasks, and hippocampal BDNF and GDNF expression was decreased. Sodium butyrate was able to prevent memory impairment and re-establish hippocampal neurotrophin expression in experimental pneumococcal meningitis.

  20. Subclinical Ketosis on Dairy Cows in Transition Period in Farms with Contrasting Butyric Acid Contents in Silages

    Directory of Open Access Journals (Sweden)

    Fernando Vicente

    2014-01-01

    Full Text Available This study examines the relationship between subclinical ketosis (SCK in dairy cows and the butyric acid content of the silage used in their feeding. Twenty commercial farms were monitored over a period of 12 months. The feed at each farm and the silages used in its ration were sampled monthly for proximal analysis and for volatile fatty acid analysis. A total of 2857 urine samples were taken from 1112 cows to examine the ketonuria from about 30 days prepartum to 100 postpartum. Wide variation was recorded in the quality of silages used in the preparation of diets. Approximately 80% of the urine samples analyzed had no detectable ketone bodies, 16% returned values indicative of slight SCK, and the remainder, 4%, showed symptoms of ketosis. Most of the cases of hyperkenuria were associated with the butyric acid content of the silage used (r2=0.56; P<0.05. As the metabolizable energy content of the feed was similar, no relationship was observed between the proportion of cows with SCK and the energy content of the feed. In our study, the probability of dairy cows suffering SCK is higher when they are eating feed made from silage with a high butyric acid content (35.2 g/kg DM intake.

  1. Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments

    Directory of Open Access Journals (Sweden)

    Jianchao Zhang

    2016-08-01

    Full Text Available Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake. The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes (CNTs in the sediment enrichments. Observations made with fluorescence in situ hybridization (FISH and scanning electron microscope (SEM indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation.

  2. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  3. Downregulation of the Expression of GLUT1 Plays a Role in Apoptosis Induced by Sodium Butyrate in HT-29 Cell Line

    Directory of Open Access Journals (Sweden)

    Guang-Jin Yuan

    2006-02-01

    Full Text Available The regulation of glucose and sodium butyrate transporters(glucose transporter1-5 and Monocarboxylate transporter 1 and their relationship with cell apoptosis induced bysodium butyrate in colonic caner cell line HT-29 were studied. Cell apoptosis was detectedby flow cytometric assay. The expression of MCT1 and GLUT1-5 mRNA were detected byRT-PCR and the uptake of glucose was detected using 2-deoxy-[3H]glucose. The expressionof bax and bcl-x/l were detected by westernblot assay. We found that sodium butyrateinduced apoptosis in HT-29 cell line. The expression of GLUT1 mRNA, bcl-x/l, as well theuptake of glucose was inhibited by sodium butyrate. The expression of MCT1 and GLUT2,GLUT3, GLUT5 was not regulated by sodium butyrate. However, the concentration ofglucose had positive correlation with the expression of bcl-x/l protein and negativecorrelation with the apoptosis induced by sodium butyrate. All the results suggested thatdownregulation of the expression of GLUT1 was associated with the apoptosis induced bysodium butyrate in HT-29 cell line.

  4. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis.

    Science.gov (United States)

    Simeoli, Raffaele; Mattace Raso, Giuseppina; Pirozzi, Claudio; Lama, Adriano; Santoro, Anna; Russo, Roberto; Montero-Melendez, Trinidad; Berni Canani, Roberto; Calignano, Antonio; Perretti, Mauro; Meli, Rosaria

    2017-06-01

    Butyrate has shown benefits in inflammatory bowel diseases. However, it is not often administered orally because of its rancid smell and unpleasant taste. The efficacy of a more palatable butyrate-releasing derivative, N-(1-carbamoyl-2-phenylethyl) butyramide (FBA), was evaluated in a mouse model of colitis induced by dextran sodium sulphate (DSS). Male 10 week-old BALB/c mice received DSS (2.5%) in drinking water (for 5 days) followed by DSS-free water for 7 days (DSS group). Oral FBA administration (42.5 mg·kg-1 ) was started 7 days before DSS as preventive (P-FBA), or 2 days after DSS as therapeutic (T-FBA); both treatments lasted 19 days. One DSS-untreated group received only tap water (CON). FBA treatments reduced colitis symptoms and colon damage. P-FBA and T-FBA significantly decreased polymorphonuclear cell infiltration score compared with the DSS group. FBA reversed the imbalance between pro- and anti-inflammatory cytokines (reducing inducible NOS protein expression, CCL2 and IL-6 transcripts in colon and increasing TGFβ and IL-10). Morever, P-FBA and T-FBA limited neutrophil recruitment (by expression and localization of the neutrophil granule protease Ly-6G), restored deficiency of the butyrate transporter and improved intestinal epithelial integrity, preventing tight-junction impairment (zonulin-1 and occludin). FBA, similar to its parental compound sodium butyrate, inhibited histone deacetylase-9 and restored H3 histone acetylation, exerting an anti-inflammatory effect through NF-κB inhibition and the up-regulation of PPARγ. FBA reduces inflammatory intestinal damage in mice indicating its potential as a postbiotic derivative without the problems associated with the oral administration of sodium butyrate. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British

  5. Effect of feeding sodium butyrate in the late finishing period on Salmonella carriage, seroprevalence, and growth of finishing pigs.

    Science.gov (United States)

    Walia, Kavita; Argüello, Hector; Lynch, Helen; Leonard, Finola C; Grant, Jim; Yearsley, Dermot; Kelly, Sinead; Duffy, Geraldine; Gardiner, Gillian E; Lawlor, Peadar G

    2016-09-01

    Pork is an important source of human salmonellosis and low-cost on-farm control measures may provide a useful element in reducing the prevalence of this pathogen in food. This study investigated the effectiveness of dietary supplementation with sodium butyrate administered to finisher pigs for ∼4-weeks prior to slaughter to control Salmonella shedding on highly contaminated farms. Two trials (A and B) were conducted on two commercial pig farms, which had a history of high Salmonella seroprevalence. In both trials, pens (14 pens of 12 pigs/pen in Trial A and 12 pens of 12-17 pigs/pen in Trial B) were randomly assigned to a control (finisher feed without additive) or a treatment group (the same feed with 3kg sodium butyrate/t) for 24-28days, depending on the trial. Faeces were collected from each pig on days 0, 12 and 24/28, and blood, caecal digesta and ileocaecal/mesenteric lymph nodes were collected from the slaughterhouse. Pigs were weighed at the start and end of the trials, feed intake was recorded, and carcass quality parameters were recorded at slaughter. In Trial A, Salmonella shedding was reduced in the treatment compared to the control group at the end of the trial (30% versus 57% probability of detecting Salmonella in faeces, respectively; pSalmonella recovery rates were observed in the caecal digesta or lymph nodes in either trial. Furthermore, feed intake, weight gain, and feed conversion efficiency (FCE) did not differ between groups (p>0.05) in either trial. Numerical improvements in weight gain and FCE were found with sodium butyrate treatment, which gave a cost benefit of €0.04/kg of live-weight gain. Overall, results suggest that strategic feeding of sodium butyrate, at 3kg/t of feed, to finishing pigs for 24-28days prior to slaughter was effective in reducing Salmonella shedding and seroprevalance but perhaps only in the absence of co-infection with other pathogens. However, sodium butyrate supplementation at this rate did not influence

  6. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  7. Integrated Microfluidic Variable Optical Attenuator

    Science.gov (United States)

    2005-11-28

    indices , the optical output power is gradually attenuated. We obtain a maximum attenuation of 28 dB when the fluid refractive index changes from 1.557 to...Electron. 23, pp. 1348-1354 (2005). 14. J. M. Ruano, V. Benoit, J. S. Aitchison , and J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for...different refractive indices flowing in a microfluidic channel as the cladding for a segment of straight optical waveguide. Recently, the integration of

  8. STUDI BIODEGRADASI POLI HIDROKSI BUTIRAT DALAM MEDIA CAIR (Biodegradation of Poly Hydroxy Butyrate in Liquid Medium

    Directory of Open Access Journals (Sweden)

    Eka Sari

    2007-11-01

    Full Text Available ABSTRAK  Poli hidroksi butirat (PHS termasuk dalam golongan bioplastik. Plastik jenis ini diharapkan dapat menjadi plastik altematif yang ramah lingkungan sebagai pengganti plastik sintetis yang bersifat sangat suI it terdegradasi. Penelitian ini bertujuan menguji potensi biodegradabilitas PHS komersial dalam media cair dengan menggunakan lumpur aktif dan unit pengolahan limbah pabrik plastik sintetik. Identifikasi proses degradasi dilakukan dengan cara mengamati perubahan karakteristik PHS yang meliputi perubahan visual, perubahan morfologi permukaan, penurunan berat, perubahan kristalinitas, dan perubahan berat molekul selama 15 pekan inkubasi. Hasil penelitian menunjukkan bahwa kerusakan PHS se1ama proses degradasi dapat dilihat secara visual. Disamping itu, morfologi permukaan mengalami perubahan signifikan. Adapun penurunan berat, kristalinitas, dan berat molekul berturut-turut mencapai 22,91 %,57.44 %, dan 29,52 %.   ABSTRACT  Poly hidroxy butyrate (PHB is a member of bioplastic group. This type of plastic is expected to be alternative plastic which is environmently friendly to replace synthetic plastic that is known to be very difficult to degrade. This research aims to test the biodegradability of commercial PHB in liquid mediums used activated sludge from waste water treatment plant in plastic synthetic factory. Identification of biodegradation process  was done by monitoring the changes of PHB characteristics including visual change, surface morphology change, reduction of weight, reduction of crystallinity, and reduction of molecular weight during 15 weeks incubation. The result shows that  the damage of PHB sample during biodegradation could be seen visually and liquid medium show the existence of change which can be seen visually and the surface morphology of PHB changed significantly. Weight reduction, crystallinity  reduction, and molecular  weight reduction  revealed of 22.91%, 57.44%, and 29.52% respectively.

  9. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Yu, Miao; Ping, Fan; Zheng, Jia; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D) and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD) rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ). Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin), high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin), or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs) and community richness (Chao1) index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  10. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    Full Text Available Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ. Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin, high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin, or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs and community richness (Chao1 index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  11. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  12. Epigenetically reprogramming of human embryonic stem cells by 3-Deazaneplanocin A and sodium butyrate

    Directory of Open Access Journals (Sweden)

    Soheila Azghadi

    2011-01-01

    Full Text Available Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit. Human embryonic stem cell (hESC lines are derived from the inner cell mass (ICM of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state, and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs. Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction. Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively.

  13. Effects of Feeding Methylthio Butyric Acid Isopropyl Ester on Postpartum Performance and Metabolism in Dairy Cows

    Directory of Open Access Journals (Sweden)

    K. Xia

    2012-05-01

    Full Text Available The present experiment aimed to evaluate the effect of HMBi on the production performance and metabolism in dairy cows. Thirty multiparous Holstein dairy cows under similar conditions were randomly assigned to three dietary treatments; i Control, a basal diet; ii T1, a basal diet plus HMBi (0 g prepartum and 18 g postpartum; and iii T2, a basal diet plus HMBi (10 g prepartum and 18 g postpartum. Treatments were initiated 21 d before expected calving and continued through 91 d postpartum. HMBi was top-dressed onto the total mixed ration of each cow. Treatments did not affect dry matter intake, plasma urea nitrogen, peak milk yield, days to peak milk yield, nonesterified fatty acid, glutamate pyruvate transaminase, glutamic oxalaetic transaminase, milk fat content, milk protein content, milk lactose content, and milk solid non-fat content. The milk composition yields were increased by the HMBi-supplemented treatment. The T1 and T2 treatments increased the yields of 4% fat-corrected milk yield, milk fat, milk protein, and milk lactose compared with the control. Although there was no difference in the milk composition of the control and T2-treated cows, the T2-treated cows exhibited higher milk fat yield (increased by 74 g/d, lower milk urea nitrogen (reduced by 3.41%, and plasma β-hydroxy butyrate than the control cows. The results indicate that HMBi supplementation to diet has beneficial effects, and that there is no difference between supplementation at prepartum and starting only at parturition.

  14. Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn.

    Science.gov (United States)

    Bian, Fang; Xiao, Yangyan; Zaheer, Mahira; Volpe, Eugene A; Pflugfelder, Stephen C; Li, De-Quan; de Paiva, Cintia S

    2017-03-05

    Epithelial cells are involved in the regulation of innate and adaptive immunity in response to different stresses. The purpose of this study was to investigate if alkali-injured corneal epithelia activate innate immunity through the nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway. A unilateral alkali burn (AB) was created in the central cornea of C57BL/6 mice. Mice received either no topical treatment or topical treatment with sodium butyrate (NaB), β-hydroxybutyric acid (HBA), dexamethasone (Dex), or vehicle (balanced salt solution, BSS) quater in die (QID) for two or five days (d). We evaluated the expression of inflammasome components including NLRP3, apoptosis-associated speck-like protein (ASC), and caspase-1, as well as the downstream cytokine interleukin (IL)-1β. We found elevation of NLRP3 and IL-1β messenger RNA (mRNA) transcripts, as well as levels of inflammasome component proteins in the alkali-injured corneas compared to naïve corneas. Treatment with NLRP3 inhibitors using NaB and HBA preserved corneal clarity and decreased NLRP3, caspase-1, and IL-1β mRNA transcripts, as well as NLRP3 protein expression on post-injury compared to BSS-treated corneas. These findings identified a novel innate immune signaling pathway activated by AB. Blocking the NLRP3 pathway in AB mouse model decreases inflammation, resulting in greater corneal clarity. These results provide a mechanistic basis for optimizing therapeutic intervention in alkali injured eyes.

  15. Benzodiazepine augmented γ-amino-butyric acid signaling increases mortality from pneumonia in mice.

    Science.gov (United States)

    Sanders, Robert D; Godlee, Alexandra; Fujimori, Toshifumi; Goulding, John; Xin, Gang; Salek-Ardakani, Samira; Snelgrove, Robert J; Ma, Daqing; Maze, Mervyn; Hussell, Tracy

    2013-07-01

    Benzodiazepines are used for treating anxiety, epilepsy, muscle spasm, alcohol withdrawal, palliation, insomnia, and sedation as they allosterically modulate γ-amino-butyric acid type A (GABAA) receptors. Despite widespread use, the importance and mechanism of their immune side-effects are poorly understood. Herein we sought to elucidate the impact and mechanism of benzodiazepine-induced susceptibility to infection at anxiolytic doses in mice. Animal randomized controlled trial. Laboratory. Adult female C57BL/6 and BALB/c mice. The effect of a subsedative, anxiolytic dose of diazepam (2 mg kg intraperitoneal) was investigated in a murine Streptococcus pneumoniae pneumonia model. Mortality, bacterial and cytokine load, cell recruitment, and intracellular pH were measured. Diazepam treatment did not affect immune homeostasis in the lung. However, diazepam increased mortality and bacterial load from S. pneumoniae pneumonia. The increases in mortality and bacterial load were reversed by a GABAA antagonist, bicuculline, indicating dependence on GABAA receptor signaling. While cell recruitment was unaltered by diazepam, the cytokine response to infection was affected, suggesting that local responses to the pathogen were perturbed. Macrophage and monocytes expressed benzodiazepine sensitive (α1-γ2) GABAA receptors. Interestingly macrophage GABAA receptor expression was regulated by bacterial toll-like receptor agonists and cytokines indicating an endogenous role in the immune response. Functionally diazepam appeared to counteract the endogenous down-regulation of GABAA signaling during infection. Consistent with augmented GABAA signaling, diazepam provoked intracellular acidosis in macrophage, leading to impaired cytokine production, bacterial phagocytosis and killing. In contrast, selective benzodiazepines that do not target the α1 GABAA subunit did not affect macrophage function ex vivo or increase susceptibility to pneumonia in vivo. Our data highlight the

  16. Tea tree oil attenuates experimental contact dermatitis.

    Science.gov (United States)

    Wallengren, Joanna

    2011-07-01

    Herbs and minerals have been used in clinical dermatology for hundreds of years and herbal ingredients are becoming increasingly popular with the public in treatment of various dermatological conditions characterised by inflammation and pruritus. The aim of this study was to compare the efficacy of traditional topical therapeutic agents with a moderate potency topical glucocorticoid on experimental contact dermatitis and contact urticaria. The effects of ichthammol 10% pet, zinc oxide 20% pet, camphor 20% pet, levomenthol 10% pet, tea tree oil 20 or 50% and clobetason butyrate 0.05% ointment were studied in the following experimental models: elicitation of allergic contact dermatitis to nickel, irritant contact dermatitis to benzalkonium chloride, and in immediate reactions to histamine and benzoic acid (non-immunological contact utricaria) respectively. Delayed reactions were evaluated using a clinical scoring system and immediate reactions were estimated by planimetry. Histamine-induced pruritus was evaluated using VAS. Tea tree oil reduced allergic contact dermatitis by 40.5% (p = 0.003), zinc oxide by 17.4% (p = 0.04) and clobetason butyrate by 23.5% (p = 0.01). Zinc oxide reduced histamine induced flare by 18.5% (p = 0.01), ichthammol by 19.2% (p = 0.02) and clobetason butyrate by 44.1% (p = 0.02). Irritant contact dermatitis and non-immunological contact urticaria were not influenced by the pre-treatments. Pruritus induced by histamine also remained unchanged. In conclusion, tea tree oil seems to be a more effective anti-eczematic agent than zinc oxide and clobetasone butyrate, while clobetasone butyrate is superior to both ichthammol and zinc oxide in topical treatment of urticarial reactions.

  17. Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum-evidence from a mathematical model.

    Science.gov (United States)

    Millat, Thomas; Voigt, Christine; Janssen, Holger; Cooksley, Clare M; Winzer, Klaus; Minton, Nigel P; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2014-11-01

    The hetero-dimeric CoA-transferase CtfA/B is believed to be crucial for the metabolic transition from acidogenesis to solventogenesis in Clostridium acetobutylicum as part of the industrial-relevant acetone-butanol-ethanol (ABE) fermentation. Here, the enzyme is assumed to mediate re-assimilation of acetate and butyrate during a pH-induced metabolic shift and to faciliate the first step of acetone formation from acetoacetyl-CoA. However, recent investigations using phosphate-limited continuous cultures have questioned this common dogma. To address the emerging experimental discrepancies, we investigated the mutant strain Cac-ctfA398s::CT using chemostat cultures. As a consequence of this mutation, the cells are unable to express functional ctfA and are thus lacking CoA-transferase activity. A mathematical model of the pH-induced metabolic shift, which was recently developed for the wild type, is used to analyse the observed behaviour of the mutant strain with a focus on re-assimilation activities for the two produced acids. Our theoretical analysis reveals that the ctfA mutant still re-assimilates butyrate, but not acetate. Based upon this finding, we conclude that C. acetobutylicum possesses a CoA-tranferase-independent butyrate uptake mechanism that is activated by decreasing pH levels. Furthermore, we observe that butanol formation is not inhibited under our experimental conditions, as suggested by previous batch culture experiments. In concordance with recent batch experiments, acetone formation is abolished in chemostat cultures using the ctfa mutant.

  18. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  19. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    and development, and process improvement for higher yield, productivity and selectivity. Compared with other microbial strains Clostridium tyrobutyricum has been well characterised, exhibits higher yield and selectivity and can utilize glucose and xylose simultaneously. However, a prerequisite for cost effective...... that disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...

  20. Electronic properties of electron-doped [6,6]-phenyl-C61-butyric acid methyl ester and silylmethylfullerene

    Science.gov (United States)

    Furutani, Sho; Okada, Susumu

    2017-06-01

    Electronic properties of electron-doped chemically decorated C60 fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and silylmethylfullerene (SIMEF), by a planar electrode were studied using density functional theory combined with the effective screening medium method to simulate the heterointerface between the chemically decorated C60 and cationic counter materials. We find that the distribution of accumulated electrons and induced electric field depend on the molecular arrangement with respect to the external electric field of the electrode. We also show that the quantum capacitance of the molecule is sensitive to molecular arrangement owing to the asymmetric distribution of the accumulated electrons.

  1. Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum.

    Science.gov (United States)

    Jakobsdottir, Greta; Jädert, Cecilia; Holm, Lena; Nyman, Margareta E

    2013-11-14

    SCFA are important end products formed during colonic fermentation of dietary fibre (DF). It has been suggested that propionic and butyric acids affect metabolic parameters, low-grade systemic inflammation, insulin resistance and obesity. The aim of the present study was to investigate whether the various SCFA profiles observed after fermentation in the caecum of rats fed pectin, guar gum and fructo-oligosaccharides (FOS) were also represented in hepatic portal and aortic serum. The SCFA in serum were extracted using hollow fibre-supported liquid membrane extraction before GLC analysis. The concentrations of acetic, propionic and butyric acids in caecal content correlated well with those in portal serum (Pacids between the caecal content and aortic serum (Pacid concentration in caecal content was also reflected in the aortic serum (P= 0·019) of rats fed FOS. FOS gave rather low amounts of the SCFA, especially butyric acid, but caecal tissue weight was higher with FOS than with the other two diets. This may be explained by rapid fermentation and quick utilisation/absorption of the SCFA. The present study also showed that propionic acid was metabolised/utilised to a higher extent than butyric acid by colonocytes before reaching the liver. We conclude that the formation of propionic and butyric acids in the caecum is reflected by increased concentrations in the aortic blood. This approach may therefore simplify the evaluation and study of SCFA from DF in human subjects.

  2. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes.

    Science.gov (United States)

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2015-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes.

  3. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers.

    Science.gov (United States)

    Jerzsele, A; Szeker, K; Csizinszky, R; Gere, E; Jakab, C; Mallo, J J; Galfi, P

    2012-04-01

    Necrotic enteritis caused by Clostridium perfringens leads to serious economical losses to the poultry industry. There is a growing need to find effective, nontoxic, antibiotic alternatives to prevent and cure the disease. In our study, the efficacy of protected sodium butyrate at 1.5 g/kg (BP70), a Bacillus amyloliquefaciens spore suspension with 10(9) cfu/g (BAL; Ecobiol), a protected blend of essential oils (1%) at 1.5 g/kg (EO), and a combination of sodium butyrate with essential oils (1%) protected with vegetable fat at 1.5 g/kg (BP70+EO; Natesse) was investigated in an artifical C. perfringens-infection model. Body weight gain, gross pathological and histopathological lesion scores, villus lengths, and villus length:crypt depth ratio was determined and compared with the control group. Broilers infected with C. perfringens and treated with essential oils or the combination of sodium butyrate and essential oils showed significantly better BW gain (P crypt depth ratio (P < 0.001), and decreased gross pathological and histopathological lesion scores (P < 0.05) compared with the control. Sodium butyrate alone and B. amyloliquefaciens spore suspension had no beneficial effects on the course of the disease in this study. According to our results, the protected combination of sodium butyrate and essential oils, as well as the protected essential oils, can be potential candidates for the prevention and treatment of necrotic enteritis in broiler chickens.

  4. Effects of sodium butyrate supplementation on reproductive performance and colostrum composition in gilts.

    Science.gov (United States)

    He, B; Wang, M; Guo, H; Jia, Y; Yang, X; Zhao, R

    2016-10-01

    Nutrients are essential for the health and survival of human beings and animals. Also, they play a major role in enhancing reproductive efficiency. The aim of the current study was to investigate the effects of sodium butyrate (SB) on reproductive performance and colostrum composition in gilts. A total of 40 Large White×Landrace replacement gilts (at the age of 160 to 175 days) were fed either a standard diet (control group, n=20) or standard diet top dressed with encapsulated SB at the level of 500 mg/kg (SB group, n=20) from 1 month before mating to 7 days after farrowing. The rate of gilts regular return to estrus after insemination was lower in SB group than the control group. The total number of piglets born (P=0.179) and the litter weight at birth (P=0.063) did not differ between the two treatment groups. However, the mean BW at day 7 tended to be greater in SB group (P=0.051) and average daily gain of piglets was greater (P=0.011) compared with control group. Colostrum samples were collected at parturition and the concentrations of total protein (P=0.197), cholesterol (P=0.161) and lactose (P=0.923) were not influenced by SB supplementation. However, compared with control gilts, colostrum from SB-treated gilts contained lower triglyceride (P=0.050). Moreover, colostrum concentrations of prolactin (P=0.005) and leptin (P=0.006) were significantly lower in SB group. No significant differences were noted for the colostral concentrations of cortisol (P=0.899), thyroxine (P=0.891) or triiodothyronine (P=0.194). The concentration of lipopolysaccharide in colostrum was not influenced by SB supplementation (P=0.972). However, colostrum from SB-treated gilts had significantly lower tumor necrosis factor α (TNFα) (P=0.030) and higher immunoglobulin A (IgA) (P=0.042). Collectively, SB supplementation could reduce the rate of gilts return to estrus, alter the composition of colostrum and enhance the growth rate of piglets. Moreover, SB could alter the immune function

  5. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  6. Síntese enzimática de butirato de isoamila empregando lipases microbianas comerciais Enzymatic synthesis isoamyl butyrate employing commercial microbial lipases

    Directory of Open Access Journals (Sweden)

    Vitor Cardoso Aragão

    2009-01-01

    Full Text Available Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-1 of Lipozyme TL IM, 30 ºC, 180 rpm of agitation, isoamyl alcohol to butyric acid molar ratio of 1:1 and acid substrate concentration of 0.06 M.

  7. Attenuation in silica-based optical fibers

    DEFF Research Database (Denmark)

    Wandel, Marie Emilie

    2006-01-01

    In this thesis on attenuation in silica based optical fibers results within three main topics are reported. Spectral attenuation measurements on transmission fibers are performed in the wide wavelength range 290 nm – 1700 nm. The measured spectral attenuation is analyzed with special emphasis...... on absorption peaks in order to investigate the cause of an unusual high attenuation in a series of transmission fibers. Strong indications point to Ni2+ in octahedral coordination as being the cause of the high attenuation. The attenuation of fibers having a high core refractive index is analyzed and the cause...... of the high attenuation measured in such fibers is described as being due to scattering of light on fluctuations of the core diameter. A novel semi-empirical model for predicting the attenuation of high index fibers is presented. The model is shown to be able to predict the attenuation of high index fibers...

  8. Nutrient balance of layers fed diets with different calcium levels and the inclusion of phytase and/or sodium butyrate

    Directory of Open Access Journals (Sweden)

    MM Vieira

    2011-06-01

    Full Text Available In this study, Hisex Brown layers in lay were evaluated between 40 and 44 weeks of age to evaluate the inclusion of bacterial phytase (Ph and sodium butyrate (SB to diets containing different calcium levels (CaL. Performance, average egg weight and eggshell percentage, in addition to nutrient metabolizability and Ca and P balance were evaluated for 28 days. Birds were distributed according to a completely randomized experimental design with a 3x2x2 factorial arrangement, with three calcium levels (2.8, 3.3, 3.8%; the addition or not of phytase (500PhU/kg and the addition or not of sodium butyrate (20mEq/kg, composing 12 treatments with eight replicates of one bird each. There was no additive effect of phytase or SB on the evaluated responses. Feed intake and feed conversion ratio were influenced by CaL, with the best performance obtained with 3.3% dietary Ca. Ca balance was positively affected by dietary Ca, and P balance by the addition of phytase. Ca dietary concentration, estimated to obtain Ca body balance, was 3.41%, corresponding to an apparent retention of 59.9% of Ca intake.

  9. Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes.

    Science.gov (United States)

    Moens, F; De Vuyst, L

    2017-05-30

    Four selected butyrate-producing colon bacterial strains belonging to Clostridium cluster IV (Butyricicoccus pullicaecorum DSM 23266 T and Faecalibacterium prausnitzii DSM 17677 T ) and XIVa (Eubacterium hallii DSM 17630 and Eubacterium rectale CIP 105953 T ) were studied as to their capacity to degrade inulin-type fructans and concomitant metabolite production. Cultivation of these strains was performed in bottles and fermentors containing a modified medium for colon bacteria, including acetate, supplemented with either fructose, oligofructose, or inulin as the sole energy source. Inulin-type fructan degradation was not a general characteristic among these strains. B. pullicaecorum DSM 23266 T and E. hallii DSM 17630 could only ferment fructose and did not degrade oligofructose or inulin. E. rectale CIP 105953 T and F. prausnitzii DSM 17677 T fermented fructose and could degrade both oligofructose and inulin. All chain length fractions of oligofructose were degraded simultaneously (both strains) and both long and short chain length fractions of inulin were degraded either simultaneously (E. rectale CIP 105953 T ) or consecutively (F. prausnitzii DSM 17677 T ), indicating an extracellular polymer degradation mechanism. B. pullicaecorum DSM 23266 T and E. hallii DSM 17630 produced high concentrations of butyrate, CO 2 , and H 2 from fructose. E. rectale CIP 105953 T produced lactate, butyrate, CO 2 , and H 2 , from fructose, oligofructose, and inulin, whereas F. prausnitzii DSM 17677 T produced butyrate, formate, CO 2 , and traces of lactate from fructose, oligofructose, and inulin. Based on carbon recovery and theoretical metabolite production calculations, an adapted stoichiometrically balanced metabolic pathway for butyrate, formate, lactate, CO 2 , and H 2 production by members of both Clostridium cluster IV and XIVa butyrate-producing bacteria was constructed.

  10. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress.

    Science.gov (United States)

    Kabel, Ahmed M; Omar, Mohamed S; Elmaaboud, Maaly A Abd

    2016-10-01

    Bleomycin is one of the anticancer agents used frequently in management of various types of tumors. Pulmonary fibrosis is the major limiting factor for the use of bleomycin. Mechanisms of fibrosis may include disordered wound healing, infiltration with inflammatory cells and fibroblasts and release of reactive oxygen species and growth factors. The aim of this study was to investigate the effect of valproic acid and butyrate on lung fibrosis induced by bleomycin, and to clarify their mechanisms of action. Fifty male Wistar rats were divided into 5 equal groups as follows: control group; bleomycin group; bleomycin+valproic acid group; bleomycin+butyrate group and bleomycin+valproic acid+butyrate group. Weight of rats, lung tissue hydroxyproline, malondialdehyde, superoxide dismutase and catalase were measured. Also, bronchoalveolar lavage (BAL) was analyzed for total and differential leukocytic count, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor-beta 1 (TGF-β1). Lung tissue was examined histopathologically and immunostained for nuclear factor kappa B (NF-κB). Valproic acid and/or butyrate resulted in significant improvement of the body weight gain, oxidative stress, TGF-β1, IL-6, TNF-α, hydroxyproline and BAL cellularity together with significant improvement of the histopathological and immunohistochemical picture. The use of valproic acid/butyrate combination was better than the use of each of these drugs alone in bleomycin-induced pulmonary fibrosis. In conclusion, valproic acid/butyrate combination may be used prophylactically for amelioration of bleomycin-induced pulmonary fibrosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Seismic attenuation imaging with causality

    NARCIS (Netherlands)

    Hak, B.; Mulder, W.A.

    2010-01-01

    Seismic data enable imaging of the Earth, not only of velocity and density but also of attenuation contrasts. Unfortunately, the Born approximation of the constant-density visco-acoustic wave equation, which can serve as a forward modelling operator related to seismic migration, exhibits an

  12. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  13. Compact plasmonic variable optical attenuator

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Rosenzveig, Tiberiu; Hermannsson, Pétur Gordon

    2008-01-01

    We demonstrate plasmonic nanowire-based thermo-optic variable optical attenuators operating in the 1525-1625 nm wavelength range. The devices have a footprint as low as 1 mm, extinction ratio exceeding 40 dB, driving voltage below 3 V, and full modulation bandwidth of 1 kHz. The polarization...

  14. Flagella overexpression attenuates Salmonella pathogenesis.

    Directory of Open Access Journals (Sweden)

    Xinghong Yang

    Full Text Available Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE, was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC's adjuvant effect and conferred robust protection against wild-type Salmonella challenge.

  15. Flagella Overexpression Attenuates Salmonella Pathogenesis

    Science.gov (United States)

    Yang, Xinghong; Thornburg, Theresa; Suo, Zhiyong; Jun, SangMu; Robison, Amanda; Li, Jinquan; Lim, Timothy; Cao, Ling; Hoyt, Teri; Avci, Recep; Pascual, David W.

    2012-01-01

    Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC’s adjuvant effect and conferred robust protection against wild-type Salmonella challenge. PMID:23056473

  16. Síntese enzimática de butirato de isoamila empregando lipases microbianas comerciais Enzymatic synthesis isoamyl butyrate employing commercial microbial lipases

    OpenAIRE

    Vitor Cardoso Aragão; Andréia Anschau; Barbara Daniele Almeida Porciuncula; Cleidi Thiesen; Susana Juliano Kalil; Carlos André Veiga Burkert; Janaína Fernandes de Medeiros Burkert

    2009-01-01

    Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-...

  17. Phase diagrams for the system water/butyric acid/propylene carbonate at T = 293.2-313.2 K and p = 101.3 kPa

    Science.gov (United States)

    Shekarsaraee, Sina; Nahzomi, Hossein Taherpour; Nasiri-Touli, Elham

    2017-11-01

    Phase diagrams for the system water/butyric acid/propylene carbonate were plotted at T = 293.2, 303.2, 313.2 K and p = 101.3 kPa. Acidimetric titration and refractive index methods were used to determine tie-line data. Solubility data revealed that the studied system exhibits type-1 behavior of liquid-liquid equilibrium. The experimental data were regressed and acceptably correlated using the UNIQUAC and NRTL models. As a result, propylene carbonate is a suitable separating agent for aqueous mixture of butyric acid.

  18. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscapes alteration in bovine cells

    Science.gov (United States)

    Volatile short-chain fatty acids (VFAs, acetate, propionate, and butyrate) are nutrients especially critical to ruminants. Beyond their nutritional impact, clear evidence is beginning to link modifications in chromatin structure induced by butyrate to cell cycle progression, DNA replication and over...

  19. Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation.

    Science.gov (United States)

    He, Jintian; Dong, Li; Xu, Wen; Bai, Kaiwen; Lu, Changhui; Wu, Yanan; Huang, Qiang; Zhang, Lili; Wang, Tian

    2015-01-01

    Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P IUGR, which was efficiently (P IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets.

  20. Lung attenuation measurements in healthy young adults.

    NARCIS (Netherlands)

    Smit, H.J.M.; Golding, R.P.; Schramel, F.M.N.H.; Devillé, W.L.; Manoliu, R.A.; Postmus, P.E.

    2003-01-01

    Background: High-resolution computed tomography (HRCT) attenuation measurements may be more sensitive in finding early emphysematous changes in relatively young subjects than lung function measurements. Objectives: To define lung attenuation parameters in smokers and never-smokers. Methods: A

  1. Inner Core Anisotropy in Attenuation

    Science.gov (United States)

    Yu, W.; Wen, L.

    2004-12-01

    It is now well established that the compressional velocity in the Earth's inner core varies in both direction and geographic location. The compressional waves travel faster along the polar directions than along the equatorial directions. Such polar-equatorial difference is interpreted as a result of inner core anisotropy in velocity (with a magnitude of about 3%) and such anisotropy appears to be stronger in the ``western hemisphere" (180oW -40oE) than in the ``eastern hemisphere" (40oE-180oE). Along the equatorial paths, the compressional velocity also exhibits a hemispheric pattern with the eastern hemisphere being about 1% higher than the western hemisphere. Possible explanations for the causes of the velocity in anisotropy and the hemispheric difference in velocity along the equatorial paths include different geometric inclusions of melt or different alignments of iron crystals which are known to be anisotropic in velocities. Here, we report an observation of ubiquitous correlation between small (large) amplitude and fast (slow) travel time of the PKIKP waves sampling the top 300 km of the inner core. We study this correlation by jointly analyzing the differential travel times and amplitude ratios of the PKiKP-PKIKP and the PKPbc-PKIKP phases recorded by the Global Seismographic Network (1990-2001), various regional seismic networks (BANJO, BLSP, FREESIA, GEOFON, GEOSCOPE, Kazakhstan, Kyrgyz, MEDNET, and OHP), and several PASSCAL Networks deployed in Alaska and Antarctica (XE: 1999-2001, XF: 1995-1996, and YI: 1998-1999). Our dataset consists of 310 PKiKP-PKIKP and 240 PKPbc-PKIKP phases, selected from a total of more than 16,000 observations. PKIKP waves exhibit relatively smaller amplitudes for those sampling the eastern hemisphere along the equatorial paths and even smaller amplitudes for those sampling the polar paths in the western hemisphere. One simple explanation for the velocity-attenuation relation is that the inner core is anisotropic in attenuation

  2. Evaluation of different protections of butyric acid aiming for release in the last part of the gastrointestinal tract of piglets.

    Science.gov (United States)

    Mallo, J J; Balfagón, A; Gracia, M I; Honrubia, P; Puyalto, M

    2012-12-01

    Three tests, 2 in vivo and 1 in vitro, were conducted to compare how 2 forms of protection of butyric acid (BA) affect its liberation along the gastrointestinal tract (GIT) of piglets. The 2 forms of BA were vegetable fat-encapsulated sodium butyrate (SBE) and monoglyceride of butyric acid (MB). In the first trial, 528 piglets were weaned at 21 d of age and assigned to 3 diets in 8 replicate pens of 22 piglets per pen for 39 d. The 3 diets were (i) prestarter and starters I and II (Con), (ii) C + SBE (6 kg/t in both prestarter and starter feeds), and (iii) C + MB (2.5 kg/t in the prestarter feed, 2 kg/t in the starter feed I, and 0 kg/t in the starter feed II). Piglets receiving C and SBE feeds tended to show higher BW (18.74, 18.66, and 17.82 kg; P piglets; no significant differences were observed in feed intake or FCR. In the second trial, 8 pens of 4 piglets each (4 pens per treatment), weaned at 21 d, were given either a standard postweaning program with SBE (2 kg/t) or with MB (2 kg/t) and received the same amount of BA. Body weight, feed intake, and FCR were evaluated at days 14 and 28 of trial. At the end of the trial, 1 animal per pen was euthanized and the concentration of BA and VFA in duodenum, jejunum, ileum, colon, and cecum were quantified with HPLC. There were no statistical differences in growth, feed intake, or FCR. However, SBE-fed animals had higher concentration of VFA in colon than MB-fed animals. There were relevant numerical differences in the rest of the GIT sections but they were not statistically significant. The in vitro digestion of the products confirmed that BA can be released more easily from SBE (157.2 g of BA/kg of product after 7 h) than from MB (56.4 g of BA/kg of product after 7 h). It is concluded that the addition of SBE allows more BA to reach the distal sections of the GIT than MB.

  3. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  4. A fully integrated optofluidic attenuator

    Science.gov (United States)

    Müller, Philipp; Kloss, Anton; Liebetraut, Peter; Mönch, Wolfgang; Zappe, Hans

    2011-12-01

    A fast and reliable, fully integrated optofluidic optical attenuator is demonstrated. The concept employs only liquid and thus has no mechanically moving parts. Transparent and opaque aqueous liquid droplets are displaced using an on-chip electrowetting actuator and, due to the flexibility in the choice of liquids, various transmission spectra can be defined. The microfluidic attenuator system is fabricated using wafer-level bonding and dry film resists resulting in an ultra-compact (11×23×1.6 mm3) device requiring no external components for operation. The measured dynamic range of optical transmission is up to 47 dB, while the response times are below 100 ms for a 2 mm input beam. Using a novel double-actuator configuration, actuation speeds of the liquids of up to 39 mm s-1 were measured.

  5. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  6. SOUND ATTENUATION IN FERROELECTRIC SOLIDS

    OpenAIRE

    Naithani, U.; Semwal, B.

    1981-01-01

    An expression for the sound-attenuation constant in doped displacive ferroelectrics, in the presence of an external electric field, is obtained by using the double-time thermal- Green's -functions technique. The mass and force constant changes between the impurity and the host lattice atoms are taken into account in the Silverman Hamiltonian augmented with higher -order anharmonic and electric-moment terms. The defect-dependent, electric- field-dependent, and anharmonic contributions to the a...

  7. Flagella Overexpression Attenuates Salmonella Pathogenesis

    OpenAIRE

    Xinghong Yang; Theresa Thornburg; Zhiyong Suo; SangMu Jun; Amanda Robison; Jinquan Li; Timothy Lim; Ling Cao; Teri Hoyt; Recep Avci; Pascual, David W.

    2012-01-01

    Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to...

  8. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization.

    Science.gov (United States)

    Fu, Hongxin; Yang, Shang-Tian; Wang, Minqi; Wang, Jufang; Tang, I-Ching

    2017-06-01

    Clostridium tyrobutyricum can utilize glucose and xylose as carbon source for butyric acid production. However, xylose catabolism is inhibited by glucose, hampering butyric acid production from lignocellulosic biomass hydrolysates containing both glucose and xylose. In this study, an engineered strain of C. tyrobutyricum Ct-pTBA overexpressing heterologous xylose catabolism genes (xylT, xylA, and xylB) was investigated for co-utilizing glucose and xylose present in hydrolysates of plant biomass, including soybean hull, corn fiber, wheat straw, rice straw, and sugarcane bagasse. Compared to the wild-type strain, Ct-pTBA showed higher xylose utilization without significant glucose catabolite repression, achieving near 100% utilization of glucose and xylose present in lignocellulosic biomass hydrolysates in bioreactor at pH 6. About 42.6g/L butyrate at a productivity of 0.56g/L·h and yield of 0.36g/g was obtained in batch fermentation, demonstrating the potential of C. tyrobutyricum Ct-pTBA for butyric acid production from lignocellulosic biomass hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thalidomide is more efficient than sodium butyrate in enhancing GATA-1 and EKLF gene expression in erythroid progenitors derived from HSCs with β-globin gene mutation.

    Science.gov (United States)

    Jalali Far, Mohammad Ali; Dehghani Fard, Ali; Hajizamani, Saiedeh; Mossahebi-Mohammadi, Majid; Yaghooti, Hamid; Saki, Najmaldin

    2016-01-01

    Efficient induction of fetal hemoglobin (HbF) is considered as an effective therapeutic approach in beta thalassemia. HbF inducer agents can induce the expression of γ-globin gene and produce high levels of HbF via different epigenetic and molecular mechanisms. Thalidomide and sodium butyrate are known as HbF inducer drugs. CD133(+) stem cells were isolated from umbilical cord blood of a newborn with minor β-thalassemia in order to evaluate the effects of these two drugs on the in vitro expression of GATA-1 and EKLF genes as erythroid transcription factors. CD133(+) stem cells were expanded and differentiated into erythroid lineage and then treated with thalidomide and sodium butyrate and finally analyzed by quantitative real-time PCR. Statistical analysis was performed using student's t-test by SPSS software. Thalidomide and sodium butyrate increased GATA-1 and EKLF gene expression, compared to the non-treated control (P<0.05). Thalidomide was more efficient than sodium butyrate in augmenting expression of GATA-1 and EKLF genes. It seems that GATA-1 and EKLF have crucial roles in the efficient induction of HbF by thalidomide.

  10. Bioprotective carnitinoids: lipoic acid, butyrate, and mitochondria-targeting to treat radiation injury: mitochondrial drugs come of age.

    Science.gov (United States)

    Steliou, Kosta; Faller, Douglas V; Pinkert, Carl A; Irwin, Michael H; Moos, Walter H

    2015-06-01

    Preclinical Research Given nuclear-power-plant incidents such as the 2011 Japanese Fukushima-Daiichi disaster, an urgent need for effective medicines to protect against and treat the harmful biological effects of radiation is evident. To address such a challenge, we describe potential strategies herein including mitochondrial and epigenetic-driven methods using lipoic and butyric acid ester conjugates of carnitine. The antioxidant and other therapeutically beneficial properties of this class of agents may protect against ionizing radiation and resultant mitochondrial dysfunction. Recent studies of the compounds described herein reveal the potential-although further research and development is required to prove the effectiveness of this approach-to provide field-ready radiation-protective drugs. © 2015 Wiley Periodicals, Inc.

  11. Dynamic Mechanical Properties of Aramid Fabrics Impregnated with Carbon Nanotube/Poly (Vinyl Butyral/Ethanol Solution

    Directory of Open Access Journals (Sweden)

    V. Obradović

    2013-09-01

    Full Text Available In this study six samples of polyurethane/p-aramid multiaxial fabric forms (Colon fabrics were coated with 10 wt.% poly (vinyl butyral (PVB/ethanol solution with the addition of multiwalled carbon nanotubes (MWCNT. The solution was impregnated on both sides of each of the fabrics. All composite samples consisted of four layers of the impregnated fabrics. The MWCNT/PVB content was 0, 0.1 and 1 wt.%. The three samples of the fabrics with different MWCNT/PVB content were coated with γ-aminopropyltriethoxysilane (AMEO silane/ethanol solution due to the surface modification. The mechanical properties of the prepared composite samples were studied by dynamic mechanical analysis (DMA. The 60% increase in storage modulus was achieved by addition of MWCNT and impregnation of aramid fabrics with AMEO silane. The pristine multiwalled carbon nanotubes (MWCNT were introduced in order to enhance additionally the mechanical properties of the materials for ballistic protection.

  12. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  13. Novel potentiometry immunoassay with amplified sensitivity for diphtheria antigen based on Nafion, colloidal Ag and polyvinyl butyral as matrixes.

    Science.gov (United States)

    Tang, Dianping; Yuan, Ruo; Chai, Yaqin; Zhang, Linyan; Zhong, Xia; Dai, Jianyuan; Liu, Yan

    2004-11-30

    A novel potentiometry immunoassay with amplified sensitivity has been developed for the detection of diphtheria antigen (Diph) via immobilizing diphtheria antibody (anti-Diph) on a platinum electrode based on Nafion, colloidal Ag (Ag), and polyvinyl butyral (PVB) as matrixes in this study. The modified procedure was further characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The influence and factors influencing the performance of resulting immunosensor were studied in detail. The resulting immunosensor exhibited sigmoid curve with log Diph concentrations, high sensitivity (51.4 mV/decade), wide linear range from 8 to 800 ng ml(-1) with a detection limit of 1.5 ng ml(-1), rapid potentiometric response (6 months). Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme-linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting diphtheria antigen in the clinical diagnosis.

  14. The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis

    Directory of Open Access Journals (Sweden)

    M. G. Eshak

    2016-05-01

    Full Text Available Aim: To study the efficacy of Na-butyrate encapsulated in palm fat on performance of broiler chickens experimentally infected with necrotic enteritis (NE with the determination of its protective effect against the changes in the gene expression profiles and deoxyribonucleic acid (DNA fragmentation. Materials and Methods: A total of 800 one-day-old male Arbor Acres Plus broiler chickens were randomly allocated into four groups for 5 weeks. Na-butyrate was supplemented at dosages of 1 kg/ton for starter diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher diet (presence or absence. Birds of groups 1 and 2 were inoculated by crop gavages with 4×108 CFU/ml/bird of Clostridium perfringens in phosphate buffered saline for 4 successive days, from 14 to 17 days of age to produce NE. Results: Addition of Na-butyrate, encapsulated in palm fat, to ration of experimentally infected broilers with NE resulted in increased final body weight, at 35 days of age, reduced total feed consumption, improved feed conversion ratio, reduced cumulative mortality, and increased production number. There were increased intestinal diameter, intestinal length, and significantly increased the weight of bursa of Fabricius(BF with higher hemagglutination inhibition titers against Newcastle disease (ND vaccination versus untreated infected and untreated negative control birds. The results showed increased expression levels of alpha-toxin and glyceraldehyde-3-phosphate dehydrogenase in the bursa tissues of broilers infected with C. perfringens. However, the expression levels of these genes in broilers treated with Na-butyrate were similar to the non-infected control group. Supplementation of broilers with Na-butyrate increased the expression level of insulin-like growth factor-1 (IGF-1 and decreased the DNA fragmentation induced by C. perfringens. Conclusion: Na-butyrate significantly improved chicken broiler body weights, increased relative weights of BF, increased

  15. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mátis Gábor

    2013-01-01

    Full Text Available Abstract Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus

  16. Acetate and butyrate as substrates for hydrogen production through photo-fermentation: Process optimization and combined performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Venkata Mohan, S.; Prathima Devi, M.; Peri, Dinakar; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, AP 500 007 (India)

    2009-09-15

    Organic acids viz., acetate and butyrate were evaluated as primary substrates for the production of biohydrogen (H{sub 2}) through photo-fermentation process using mixed culture at mesophilic temperature (34 C). Experiments were performed by varying parameters like operating pH, presence/absence of initiator substrate (glucose) and vitamin solution, type of nitrogen source (mono sodium salt of glutamic acid and amino glutamic acid) and gas (nitrogen/argon) used to create anaerobic microenvironment. Experimental data showed the feasibility of H{sub 2} production along with substrate degradation utilizing organic acids as metabolic substrate but was found to be dependent on the process parameters evaluated. Maximum specific H{sub 2} production and substrate degradation were observed with acetic acid [3.51 mol/Kg COD{sub R}-day; 1.22 Kg COD{sub R}/m{sup 3}-day (92.96%)] compared to butyric acid [3.33 mol/Kg COD{sub R}-day; 1.19 Kg COD{sub R}/m{sup 3}-day (88%)]. Higher H{sub 2} yield was observed under acidophilic microenvironment in the presence of glucose (co-substrate), mono sodium salt of glutamic acid (nitrogen source) and vitamins. Argon induced microenvironment was observed to be effective compared to nitrogen induced microenvironment. Combined process efficiency viz., H{sub 2} production and substrate degradation was evaluated employing data enveloping analysis (DEA) methodology based on the relative efficiency. Integration of dark fermentation with photo-fermentation appears to be an economically viable route for sustainable biohydrogen production if wastewater is used as substrate. (author)

  17. Physical characteristics and attenuation of foam earplugs

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.R.; Broughton, R.M.; Wilmoth, J.N.; Borton, T.E.; Mozo, B.T.

    1982-01-01

    The purpose of this investigation was twofold: (1) to determine the physical characteristics of five types of foam earplugs; and (2) to relate their physical characteristics to attenuation of noise. The results indicate that: (1) all commercial polymer foam earplugs have similar physical properties, (2) frequency is the single most important variable in determining attenuation of commercial foam earplugs, (3) all earplugs evaluated provided essentially the same attenuation at frequencies >500 Hz. One non-commercial earplug provided significantly more attenuation at 125 Hz than the other earplugs. This non-commercial experimental plug has significantly different physical and chemical properties. No other consistent effects of physical properties on attenuation were found.

  18. Method for Estimating Total Attenuation from a Spatial Map of Attenuation Slope for Quantitative Ultrasound Imaging

    OpenAIRE

    Pawlicki, Alexander D.; O'Brien, William D.

    2013-01-01

    Estimating total ultrasound attenuation from backscatter data is essential in the field of quantitative ultrasound (QUS) because of the need to compensate for attenuation when estimating the backscatter coefficient and QUS parameters. This work uses a reference phantom method of attenuation estimation to create a spatial map of attenuation slope (AS) from backscatter radio-frequency (RF) data of three phantoms and a rat mammary adenocarcinoma tumor (MAT). The attenuation maps show changes in ...

  19. Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B12 Production by Intestinal Symbionts.

    Science.gov (United States)

    Belzer, Clara; Chia, Loo Wee; Aalvink, Steven; Chamlagain, Bhawani; Piironen, Vieno; Knol, Jan; de Vos, Willem M

    2017-09-19

    Akkermansia muciniphila has evolved to specialize in the degradation and utilization of host mucus, which it may use as the sole source of carbon and nitrogen. Mucus degradation and fermentation by A. muciniphila are known to result in the liberation of oligosaccharides and subsequent production of acetate, which becomes directly available to microorganisms in the vicinity of the intestinal mucosa. Coculturing experiments of Amuciniphila with non-mucus-degrading butyrate-producing bacteria Anaerostipes caccae, Eubacterium hallii, and Faecalibacterium prausnitzii resulted in syntrophic growth and production of butyrate. In addition, we demonstrate that the production of pseudovitamin B12 by E. hallii results in production of propionate by A. muciniphila, which suggests that this syntrophy is indeed bidirectional. These data are proof of concept for syntrophic and other symbiotic microbe-microbe interactions at the intestinal mucosal interface. The observed metabolic interactions between Amuciniphila and butyrogenic bacterial taxa support the existence of colonic vitamin and butyrate production pathways that are dependent on host glycan production and independent of dietary carbohydrates. We infer that the intestinal symbiont A. muciniphila can indirectly stimulate intestinal butyrate levels in the vicinity of the intestinal epithelial cells with potential health benefits to the host.IMPORTANCE The intestinal microbiota is said to be a stable ecosystem where many networks between microorganisms are formed. Here we present a proof of principle study of microbial interaction at the intestinal mucus layer. We show that indigestible oligosaccharide chains within mucus become available for a broad range of intestinal microbes after degradation and liberation of sugars by the species Akkermansia muciniphila This leads to the microbial synthesis of vitamin B12, 1,2-propanediol, propionate, and butyrate, which are beneficial to the microbial ecosystem and host epithelial

  20. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  1. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    2010-06-01

    Full Text Available The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  2. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.

    Science.gov (United States)

    Chen, Chuan; Shen, Yin; An, Dongshan; Voordouw, Gerrit

    2017-04-01

    Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera (Paracoccus-Thauera), Desulfobulbus, and Syntrophomonas-Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 107/ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex.IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO2 was needed to prevent souring in both. Our data

  3. Method for estimating total attenuation from a spatial map of attenuation slope for quantitative ultrasound imaging.

    Science.gov (United States)

    Pawlicki, Alexander D; O'Brien, William D

    2013-04-01

    Estimating total ultrasound attenuation from backscatter data is essential in the field of quantitative ultrasound (QUS) because of the need to compensate for attenuation when estimating the backscatter coefficient and QUS parameters. This work uses a reference phantom method of attenuation estimation to create a spatial map of attenuation slope (AS) from backscatter radio-frequency (RF) data of three phantoms and a rat mammary adenocarcinoma tumor (MAT). The attenuation maps show changes in attenuation between different regions of the phantoms and the MAT tumor. Analyses of the attenuation maps of the phantoms suggest that the AS estimates are in good quantitative agreement with the known values for the phantoms. Furthermore, estimates of total attenuation from the attenuation maps are likewise in good quantitative agreement with known values.

  4. Rg propagation: Scatter versus Attenuation

    Science.gov (United States)

    Cleveland, M.; Phillips, W. S.; MacCarthy, J.

    2016-12-01

    At near local distances, the Rg seismic phase is often the largest seismic arrival for shallow sources. While Rg is classically defined for the period range of 8-12 s, we use the term generically to refer to short-period observations of Rayleigh waves from shallow sources [e.g. Langston, 1987; Bonner and Russell, 2013]. There is significant interest in using Rg as a basis for seismic discrimination and magnitude (e.g. Bonner and Russell, 2013). However, the propagation of this phase is poorly understood. At Nevada National Security Site, while Rg is well observed near the source, it quickly disappears at greater distances. This observation raises the fundamental question of how much of the Rg energy is simply attenuating versus scattering into other seismic phases. Understanding this is critical to interpreting not only the observed Rg seismic energy, but also the possible enrichment of other seismic phases resulting from Rg scattering. In this study, we use waveform data from the Bighorn Arch Seismic Experiment (BASE) and Source Physics Experiment (SPE) to investigate Rg propagation, looking to identify how much energy from the phase attenuates with distance and how much scatters into other seismic phases.

  5. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  7. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study

    Directory of Open Access Journals (Sweden)

    Robert Šket

    2017-05-01

    Full Text Available We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day and experimental phases [21-day normoxic bed rest (NBR, hypoxic bedrest (HBR], and hypoxic ambulation (HAmb in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2 and partial pressure of inspired O2 (PiO2 were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude, respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables. The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but and butyrate kinase (buk genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05. In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%, experimentally structured metabolites (12.8%, and gut metabolite-immunological markers (11.9%, with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward

  8. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows.

    Science.gov (United States)

    Storm, A C; Hanigan, M D; Kristensen, N B

    2011-08-01

    The effect of reticuloruminal epithelial blood flow on the absorption of propionate as a volatile fatty acid (VFA) marker in 8 lactating Holstein cows was studied under washed rumen conditions. The cows were surgically prepared with ruminal cannulas and permanent catheters in an artery and mesenteric, right ruminal, and hepatic portal veins. The experiment was designed with 2 groups of cows: 4 cows adapted to high crude protein (CP) and 4 to low CP. All cows were subjected to 3 buffers: butyric, ammonia, and control in a randomized replicated 3 × 3 incomplete Latin square design. The buffers (30 kg) were maintained in a temporarily emptied and washed rumen for 40 min. The initial concentration of VFA was 84.2 mmol/L. Butyrate was increased from 4 to 36 mmol/L in butyric buffer by replacement of acetate, and ammonia (NH(3)) was increased from 2.5 to 22.5 mmol/L in ammonia buffer by replacement of NaCl. Increasing amounts of deuterium oxide (D(2)O) were added to the buffers as the order of buffer sequence increased (6, 12, and 18 g of D(2)O). Ruminal clearance of D(2)O was used to estimate epithelial blood flow. To increase accuracy of the epithelial blood flow estimates, data of ruminal liquid marker (Cr-EDTA), and initial and final buffer volumes were fitted to a dynamic simulation model. The model was used to estimate ruminal liquid passages, residual liquid, and water influx (saliva and epithelia water) for each combination of cow and buffer (n=24). Epithelial blood flow increased 49±11% for butyric buffer compared with control. The ruminal disappearance of propionate (marker VFA) was affected by buffer and followed the same pattern as for epithelial blood flow. The correlation between ruminal disappearance of propionate and epithelial blood flow (r=0.56) indicates that the removal of propionate can be limited by epithelial blood flow. The ruminal disappearance of propionate increased 30±12% for the butyric compared with ammonia buffer and 12.5±8% when

  9. Breast imaging using waveform attenuation tomography

    Science.gov (United States)

    Li, Cuiping; Sandhu, Gursharan Y.; Boone, Michael; Duric, Neb

    2017-03-01

    Ex vivo studies using our ultrasound waveform attenuation algorithm have shown promising results for detection and characterization of lesions of different types. Our preliminary in vivo study shows that the waveform attenuation image has much higher resolution and can better delineate breast lesions boundaries than the corresponding ray-based attenuation image. In this study, we preprocessed our time domain waveforms acquired with a ring array and explored the directional transducer beam pattern to better match calculated wave fields with respect to the acquired wave fields. We have applied waveform attenuation to in vivo data and compared the resulting waveform attenuation images with the ray-based counterparts to assess the resolution and accuracy of the waveform attenuation reconstruction.

  10. Wave attenuation charcteristics of tethered float system

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.

    parameters. The effect of drag on wave attenuation is studied for varying drag coefficient values. Theoretical results are compared with experimental values and it is found that theory overestimates wave attenuation which may probably be due to various... 15 and 16, respectively. These figures show that theory overestimates the wave attenuation and this may probably be due to various linearisations involved in the theoretical formulation. Experimental results are also not very accurate because...

  11. Lung attenuation measurements in healthy young adults.

    OpenAIRE

    Smit, H.J.M.; Golding, R.P.; Schramel, F.M.N.H.; Devillé, W.L.; Manoliu, R.A.; Postmus, P. E.

    2003-01-01

    Background: High-resolution computed tomography (HRCT) attenuation measurements may be more sensitive in finding early emphysematous changes in relatively young subjects than lung function measurements. Objectives: To define lung attenuation parameters in smokers and never-smokers. Methods: A prospective comparative study in a university hospital setting was designed with 20 healthy smoking and 20 nonsmoking volunteers. Attenuation measurements on spirometrically controlled HRCT at three leve...

  12. Noiseless attenuation using an optical parametric amplifier

    Science.gov (United States)

    Brewster, R. A.; Nodurft, I. C.; Pittman, T. B.; Franson, J. D.

    2017-10-01

    The process of heralded noiseless amplification, and the inverse process of heralded noiseless attenuation, have potential applications in the context of quantum communications. Although several different physical implementations of heralded noiseless amplifiers have now been demonstrated, the research on heralded noiseless attenuators has been largely confined to a beam-splitter based approach. Here we show that an optical parametric amplifier (OPA), combined with appropriate heralding, can also serve as a heralded noiseless attenuator. The counterintuitive use of an optical amplifier as an attenuator is only possible due to the probabilistic nature of the device.

  13. Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3 propanediol and butyric acid

    DEFF Research Database (Denmark)

    Varrone, Cristiano; Floriotis, Georgis; Heggeset, Tonje M. B.

    2017-01-01

    This study investigated the performance of different mixed microbial cultures (MMC) able to ferment crude glycerol generated from animal fat-based biodiesel to produce 1,3 propanediol (1,3 PDO) and butyric acid, under non-sterile conditions. Eight different continuous flow stirred-tank reactors...... (CSTR) were set up with different inoculum types and growth media. The distribution of metabolic products under variable operating conditions was determined. All MMC were characterized from a kinetic point of view and overall stoichiometric reactions were constructed. Changes in the microbial...... communities were monitored by means of Next Generation Sequencing (NGS). Maximum substrate degradation rate reached approximately 110 g/L/d of glycerol (with a productivity of 38 g/L/d and 11 g/L/d for 1,3 PDO and butyric acid, respectively), obtained with an hydraulic retention time of 12 h and 60 g/L feed...

  14. Improvement of adherence and anticorrosion properties of an epoxy-polyamide coating on steel by incorporation of an indole-3 butyric acid-modified nanomagnetite

    OpenAIRE

    Trinh, Anh Truc; Nguyen, Thu Trang; Thai, Thu Thuy; To, Thi Xuan Hang; Nguyen, Xuan Hoan; Nguyen, Anh Son; Aufray, Maëlenn; Pébère, Nadine

    2016-01-01

    International audience; In this study, synthesized magnetite (Fe 3 O 4 ) nanoparticles were treated with a corrosion inhibitor, indole-3 butyric acid (IBA) and incorporated in an epoxy-polyamide coating. The coating was applied on a carbon steel substrate. For comparison, coatings with- out particles or with nontreated Fe 3 O 4 particles were also prepared. The IBA-modified nanomagnetite (IBA–Fe 3 O 4 ) was characterized by infrared spec- troscopy and Zeta potential measurements. The inhibiti...

  15. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study.

    Science.gov (United States)

    Šket, Robert; Treichel, Nicole; Debevec, Tadej; Eiken, Ola; Mekjavic, Igor; Schloter, Michael; Vital, Marius; Chandler, Jenna; Tiedje, James M; Murovec, Boštjan; Prevoršek, Zala; Stres, Blaž

    2017-01-01

    We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p exercise in NBR) that were exacerbated by systemic hypoxia (HBR) and significantly alleviated by exercise, despite hypoxia (HAmb). Butyrate producing community in colon exhibited apparent resilience toward short-term modifications in host exercise or hypoxia. Progressive constipation (decreased intestinal motility) and increased local inflammation marker suggest that changes in microbial colonization and metabolism were taking place at the location of small intestine.

  16. Interplay between Dopamine and γ2- AminoButyric Acid type A receptors' surface dynamics during maturation of neurons and development of hippocampal networks.

    OpenAIRE

    Matias, Miguel Albino

    2015-01-01

    MATIAS, Miguel Albino - Interplay between Dopamine and γ2- AminoButyric Acid type A receptors' surface dynamics during maturation of neurons and development of hippocampal networks. Coimbra : [s.n.], 2015. Dissertação de Mestrado em Biologia Celular e Molecular. A dynamic synapse is crucial not only in the regulation of synaptic transmission but also for maturation and development of neurons and neuronal circuits. This is particularly important in the case of receptors, whic...

  17. Vegetative propagation of Plukenetia polyadenia by cuttings: effects of leaf area and indole-3-butyric acid concentration

    Directory of Open Access Journals (Sweden)

    R. Solis

    Full Text Available Abstract The seeds of Plukenetia polyadenia have high levels of unsaturated fatty acids and are used as medicine and food for native people in the Peruvian and Brazilian Amazon. The objective of this study was to develop a method for vegetative propagation of Plukenetia polyadenia by rooting of cuttings. The experiment was laid out in a randomized complete block design with 12 treatments and 3 replications of 8 cuttings, in a 3 × 4 factorial arrangement. The factors were: 3 levels of leaf area (25, 50 and 75% and 3 indole-3-butyric acid - IBA concentrations (9.84, 19.68 and 29.52mM and a control without IBA. Data were submitted to analysis of variance and means were compared by Tukey test at 5% probability. Our results show that the use of cuttings with 50% of leaf area and treatment with 29.52mM of IBA induced high percentages of rooting (93% and the best root formation. Vegetative propagation of Plukenetia polyadenia by cuttings will be used as a tool to conserve and propagate germplasm in breeding programs.

  18. Vegetative propagation of Plukenetia polyadenia by cuttings: effects of leaf area and indole-3-butyric acid concentration.

    Science.gov (United States)

    Solis, R; Pezo, M; Diaz, G; Arévalo, L; Cachique, D

    2017-01-01

    The seeds of Plukenetia polyadenia have high levels of unsaturated fatty acids and are used as medicine and food for native people in the Peruvian and Brazilian Amazon. The objective of this study was to develop a method for vegetative propagation of Plukenetia polyadenia by rooting of cuttings. The experiment was laid out in a randomized complete block design with 12 treatments and 3 replications of 8 cuttings, in a 3 × 4 factorial arrangement. The factors were: 3 levels of leaf area (25, 50 and 75%) and 3 indole-3-butyric acid - IBA concentrations (9.84, 19.68 and 29.52mM) and a control without IBA. Data were submitted to analysis of variance and means were compared by Tukey test at 5% probability. Our results show that the use of cuttings with 50% of leaf area and treatment with 29.52mM of IBA induced high percentages of rooting (93%) and the best root formation. Vegetative propagation of Plukenetia polyadenia by cuttings will be used as a tool to conserve and propagate germplasm in breeding programs.

  19. Optimization of conditions to achieve high content of gamma amino butyric acid in germinated black rice, and changes in bioactivities

    Directory of Open Access Journals (Sweden)

    Chaiyavat CHAIYASUT

    Full Text Available Abstract The present study estimated the optimum germination conditions to achieve high content of Gamma-amino butyric acid (GABA and other phytochemicals in Thai black rice cultivar Kum Payao (BR. The Box–Behnken design of response surface methodology was employed to optimize the germination conditions. The changes in the GABA, phytochemical content, impact of salt, and temperature stress variation on phytochemical content, and stability of GABA were studied. The results showed that 12 h of soaking at pH 7, followed by 36 h of germination was the optimum condition to achieve maximum GABA content (0.2029 mg/g of germinated BR (GBR. The temperature (8 and 30 °C, and salt (50-200 mM NaCl content affected the phytochemicals of GBR, especially GABA, and anthocyanins. Obviously, the antioxidant capability, and enzyme (α-amylase and α-glucosidase inhibiting nature of BR was significantly (P < 0.001 increased after germination. The storage of GBR at 4 °C significantly, preserved the GABA content (∼80% for 45 days. Primarily, the current study revealed the changes in phytochemical content, and bioactivity of Thai black rice cr. Kum Payao during germination. More studies should be carried out on pharmacological benefits of GABA-rich GBR.

  20. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends.

    Science.gov (United States)

    Xing, Chenyang; Wang, Hengti; Hu, Qiaoqiao; Xu, Fenfen; Cao, Xiaojun; You, Jichun; Li, Yongjin

    2013-02-15

    The eco-friendly poly(propylene carbonate) (PPC)/cellulose acetate butyrate (CAB) blends were prepared by melt-blending in a batch mixer for the first time. PPC and CAB were partially miscible because of the drastically shifted glass transition temperatures of both PPC and CAB, which originated from the specific interactions between carbonyl groups and hydroxyl groups. The incorporation of CAB into PPC matrix enhanced not only tensile strength and modulus of PPC dramatically, but also improved heat resistance and thermal stability of PPC significantly. The tensile strength and the modulus of PPC/CAB=50/50 blend are 27.7 MPa and 1.24 GPa, which are 21 times and 28 times higher than those of the unmodified PPC, respectively. Moreover, the elongation at break of PPC/CAB=50/50 blend is as high as 117%. In addition, the obtained blends exhibited good transparency, which is very important for the package materials. The results in this work pave new possibility for the massive application of eco-friendly polymer materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.

    Science.gov (United States)

    Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek

    2013-10-01

    Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Multiple Facets of Arabidopsis Seedling Development Require 
Indole-3-Butyric Acid–Derived Auxin[W

    Science.gov (United States)

    Strader, Lucia C.; Wheeler, Dorthea L.; Christensen, Sarah E.; Berens, John C.; Cohen, Jerry D.; Rampey, Rebekah A.; Bartel, Bonnie

    2011-01-01

    Levels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not well understood. One auxin precursor is indole-3-butyric acid (IBA), which undergoes peroxisomal β-oxidation to release free indole-3-acetic acid (IAA). We identified ENOYL-COA HYDRATASE2 (ECH2) as an enzyme required for IBA response. Combining the ech2 mutant with previously identified iba response mutants resulted in enhanced IBA resistance, diverse auxin-related developmental defects, decreased auxin-responsive reporter activity in both untreated and auxin-treated seedlings, and decreased free IAA levels. The decreased auxin levels and responsiveness, along with the associated developmental defects, uncover previously unappreciated roles for IBA-derived IAA during seedling development, establish IBA as an important auxin precursor, and suggest that IBA-to-IAA conversion contributes to the positive feedback that maintains root auxin levels. PMID:21406624

  3. [The evaluation of hormone and metabolite profiles after the infusion of glucose, propionate and butyrate in cattle].

    Science.gov (United States)

    Fuhrmann, H; Eulitz-Meder, C; Geldermann, H; Sallmann, H P

    1989-06-01

    Lactational performance in high-yielding dairy cows has its limits in metabolic processes. Energy metabolism is maintained by mobilization of body reserves via hormonal regulation, resulting in lipolysis and sometimes ketoacidosis. For characterization of such conditions the intraruminal and intravascular application of glucose and volatile fatty acids was used in ruminant physiology. On the other hand the results of such experiments were correlated to actual and potential milk yield. For this investigation pairs of monozygous Holstein Friesian twins were tested as heifers and as cows by intravenous infusion of glucose, propionate and butyrate after 18 hours of feed withdrawal. Insulin, growth hormone, glucose, free fatty acids and beta-hydroxybutyrate were measured before, during and up to 4 hours after infusion of substrates. Each substrate caused a transient change in plasma concentrations of metabolites and hormones. Differences between heifers and cows are discussed with the time series of the mean concentrations. The reaction profile of each animal was characterized by different parameters. Analysis of these parameters revealed a close relation between hormones and metabolites even under the conditions of the load-test.

  4. Chemical chaperone 4-phenyl butyric acid (4-PBA) reduces hepatocellular lipid accumulation and lipotoxicity through induction of autophagy.

    Science.gov (United States)

    Nissar, Ashraf U; Sharma, Love; Mudasir, Malik A; Nazir, Lone A; Umar, Sheikh A; Sharma, Parduman R; Vishwakarma, Ram A; Tasduq, Sheikh A

    2017-09-01

    Defective autophagy has been linked to lipotoxicity in several cellular models. We aimed to investigate autophagy in lipid-stimulated hepatoma (Huh7) cells and tested whether 4-phenyl butyric acid (4-PBA), a chemical chaperone, has a beneficial role in hepatic fat accumulation and lipotoxicity. We report that long-term (24 h) exposure of hepatocytes to palmitate block autophagic flux that leads to lipid accumulation and cell death. Western blotting analysis showed increased accumulation of SQSTM1/p62, and decreased expression of Beclin1 and Atg7 in palmitate-treated cells. Autophagy inhibition by 3-methyladenine (3-MA) in palmitate-treated cells neither increased SQSTMI/p62 accumulation nor cell death, thus suggesting complete blockade of autophagy by palmitate. 4-PBA reduced lipid accumulation and cell death that were associated with restoration of autophagy. siRNA-mediated knockdown of Atg7 and presence of autophagy inhibitors, 3-MA and chloroquine, resulted in the decrease in lipid-lowering effect of 4-PBA, suggesting that 4-PBA mediates its lipid-lowering effect via autophagy. Apoptotic parameters, including altered Bcl2:Bax ratio and PARP1 cleavage induced by palmitate, were improved by 4-PBA. Our results indicate that palmitate impairs autophagy and increases lipid accumulation in Huh7 cells, whereas 4-PBA plays a protective role in lipid accumulation and lipotoxicity through activation of autophagy. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    Directory of Open Access Journals (Sweden)

    Jorge Pliego

    2015-01-01

    Full Text Available Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  6. Role of clevidipine butyrate in the treatment of acute hypertension in the critical care setting: a review

    Directory of Open Access Journals (Sweden)

    Ahmed S Awad

    2010-06-01

    Full Text Available Ahmed S Awad, Michael E GoldbergDepartment of Anesthesiology, Cooper University Hospital, UMDNJ-Robert Wood Johnson Medical School, Camden Campus, Camden, New Jersey, USAAbstract: Acutely elevated blood pressure in the critical care setting is associated with a higher risk of acute end-organ damage (eg, myocardial ischemia, stroke, and renal failure and perioperative bleeding. Urgent treatment and careful blood pressure control are crucial to prevent significant morbidity. Clevidipine butyrate (Cleviprex™ is an ultrashort-acting, third-generation intravenous calcium channel blocker. It is an arterial-selective vasodilator with no venodilatory or myocardial depressive effects. Clevidipine has an extremely short half-life of approximately 1 minute as it is rapidly metabolized by blood and tissue esterases. These metabolites are then primarily eliminated through urine and fecal pathways. The rapid onset and the short duration of action permit tighter and closer adjustment of the blood pressure than is possible with other intravenous agents.Keywords: calcium channel blocker, antihypertensive medications, end-organ damage, hypertensive crisis, hypertensive urgency

  7. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers.

    Science.gov (United States)

    Lin, Qianqian; Li, Yang; Yang, Mujie

    2012-10-20

    Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core-sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of ~75kHz/%RH from 20 to 90%RH, ultrafast response (1s and 2s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The effect of indole-butyric acid and kinetin on rooting of rose cuttings in winter and summer

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2013-12-01

    Full Text Available The effect of indole-butyric acid, both alone and with a low concentration of kinetin, on the rooting of rose cuttings in winter and summer, is presented in this paper. The experiments were conducted using 500 and 1000 mg/l IBA with or without the addition of 5 mg/l kinetin. The growth regulators were applied by dipping the base of a cutting for 5 s in an aqueous solution of these substances. Cuttings 5-6 cm in length were made from the mid-part of a stem of a rose grown in a greenhouse. The experiments were carried out using 'Queen of Bermuda' and 'Baccara' cuttings. The investigations showed that treating rose cuttings rooted in winter with an IBA solution had a significant promotive effect on the quantity of rooted cuttings, number of formed roots on the cutting, as well as on the length of the longest root. A distinctive increase in the number of breaking buds was also seen on the cuttings treated with IBA. The IBA solution applied to cuttings rooted in the summer significantly decreased the number of rooted cuttings and breaking buds. However, no significant influence on the number and length of formed roots was found. Addition of kinetin to the IBA solutions did not have any effect on the rooting of rose cuttings either in winter or summer.

  9. Study of the levels of beta hydroxy butyrate, glucose, protein and albumin in Holstein cows with subclinical ketosis

    Directory of Open Access Journals (Sweden)

    B Amouoghli Tabrizi

    2007-08-01

    Full Text Available The objective of this study was to comparatively evaluate the levels of beta hydroxy butyrate (BHB, glucose, protein and albumin in serum of healthy Holstein cows and those with subclinical ketosis. In this survey, blood samples were collected at two stages from cows selected at 7 dairy farms in Shahriar province of Tehran. Five to 7 ml of blood were taken from the coccygeal vein of 100 cows during the last week of pregnancy when the animals were dry and once again 2 months after parturition from the same cows, their sera separated and the amounts of BHB, glucose, protein and albumin determined by enzymatic techniques and commercially available kits. With the cut point of BHB at 1.2, 1.4 and 1.7 mmol/lit, the percentage of cows affected with subclinical ketosis were 18, 14 and 4 percent, respectively. Mean levels of BHB in ketotic cows was significantly higher than healthy cows before and after parturition while mean levels of glucose, protein and albumin was significantly lower during the same periods (P

  10. Sodium butyrate into the insular cortex during conditioned taste-aversion acquisition delays aversive taste memory extinction.

    Science.gov (United States)

    Núñez-Jaramillo, Luis; Reyes-López, Julian; Miranda, María Isabel

    2014-04-16

    Histone acetylation is one mechanism that promotes gene expression, and it increases during learning of various tasks. Specifically, novel taste consumption produces an increased acetylation of histone lysine residues in the insular cortex (IC), where protein synthesis is crucial during memory consolidation of conditioned taste aversion (CTA). However, the role of this elevated histone acetylation during CTA learning has not been examined directly. Thus, the present study investigated the effects of sodium butyrate (NaBu), a histone deacetylase inhibitor, injected into the IC during CTA acquisition. Male Wistar rats, IC bilaterally implanted, were injected 60 min before saccharine presentation, with a total volume of 0.5 µl of NaBu solution (100, 500, and 10 µg/0.5 µl) or saline; 30 min later animals were injected intraperitoneally with lithium chloride, a malaise-inducing drug. The next day, CTA retrieval was tested. No effects of NaBu were observed during acquisition or retrieval, but during extinction trials, a significant delay in aversive memory extinction was observed in the group injected with the lowest NaBu dose. This result indicates that NaBu in the IC strengthens CTA and delays aversive memory extinction, and suggests that histone acetylation could increase long-term taste-aversive memory strength.

  11. Butyrate stimulates the growth of human intestinal smooth muscle cells by activation of yes-associated protein.

    Science.gov (United States)

    Dai, Li-Na; Yan, Jun-Kai; Xiao, Yong-Tao; Wen, Jie; Zhang, Tian; Zhou, Ke-Jun; Wang, Yang; Cai, Wei

    2017-08-23

    Intestinal smooth muscle cells play a critical role in the remodeling of intestinal structure and functional adaptation after bowel resection. Recent studies have shown that supplementation of butyrate (Bu) contributes to the compensatory expansion of a muscular layer of the residual intestine in a rodent model of short-bowel syndrome (SBS). However, the underlying mechanism remains elusive. In this study, we found that the growth of human intestinal smooth muscle cells (HISMCs) was significantly stimulated by Bu via activation of Yes-Associated Protein (YAP). Incubation with 0.5 mM Bu induced a distinct proliferative effect on HISMCs, as indicated by the promotion of cell cycle progression and increased DNA replication. Notably, YAP silencing by RNA interference or its specific inhibitor significantly abolished the proliferative effect of Bu on HISMCs. Furthermore, Bu induced YAP expression and enhanced the translocation of YAP from the cytoplasm to the nucleus, which led to changes in the expression of mitogenesis genes, including TEAD1, TEAD4, CTGF, and Cyr61. These results provide evidence that Bu stimulates the growth of human intestinal muscle cells by activation of YAP, which may be a potential treatment for improving intestinal adaptation. © 2017 Wiley Periodicals, Inc.

  12. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    Science.gov (United States)

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synergistic Effect of Sodium Butyrate and Thalidomide in the Induction of Fetal Hemoglobin Expression in Erythroid Progenitors Derived from Cord Blood CD133 + Cells

    Directory of Open Access Journals (Sweden)

    Ali Dehghanifard

    2012-07-01

    Full Text Available Background: The use of drugs with the ability to induce production of fetal hemoglobin as a novel therapeutic approach in treating β-Hemoglobinopathies is considered. γ-globin gene expression inducer drugs including sodium butyrate and thalidomide can reduce additional α-globin chains accumulation in erythroid precursors. Materials and Methods: In this experimental study, MACS kit was used to isolate CD133+ cells of umbilical cord blood. Further, the effect of two drugs of thalidomide and sodium butyrate were separately and combined studied on the induction of quantitative expression of β-globin and γ-globin genes in erythroid precursor cells derived from CD133+ stem cells in-vitro. For this purpose, the technique SYBR green Real-time PCR was used.Results: Flow cytometry results showed that approximately 95% of purified cells were CD133+. Real-time PCR results also showed the increased levels of γ-globin mRNA in the cell groups treated with thalidomide, sodium butyrate and combination of drugs as 2.6 and 1.2 and 3.5 times respectively, and for β-globin gene, it is respectively 1.4 and 1.3 and 1.6 times compared with the control group (p<0.05.Conclusion: The study results showed that the mentioned drug combination can act as a pharmaceutical composition affecting the induction of fetal hemoglobin expression in erythroid precursor cells derived from CD133 + cells.

  14. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Hanigan, M.D.; Kristensen, Niels Bastian

    2011-01-01

    and mesenteric, right ruminal, and hepatic portal veins. The experiment was designed with 2 groups of cows: 4 cows adapted to high crude protein (CP) and 4 to low CP. All cows were subjected to 3 buffers: butyric, ammonia, and control in a randomized replicated 3 × 3 incomplete Latin square design. The buffers...... (30 kg) were maintained in a temporarily emptied and washed rumen for 40 min. The initial concentration of VFA was 84.2 mmol/L. Butyrate was increased from 4 to 36 mmol/L in butyric buffer by replacement of acetate, and ammonia (NH3) was increased from 2.5 to 22.5 mmol/L in ammonia buffer...... liquid marker (Cr-EDTA), and initial and final buffer volumes were fitted to a dynamic simulation model. The model was used to estimate ruminal liquid passages, residual liquid, and water influx (saliva and epithelia water) for each combination of cow and buffer (n = 24). Epithelial blood flow increased...

  15. Structural characterization of N-linked oligosaccharides of laminin from rat kidney: changes during diabetes and modulation by dietary fiber and butyric acid.

    Science.gov (United States)

    Kumar, Adishesha Puneeth; Nandini, Chilkunda D; Salimath, Paramahans V

    2011-01-01

    Carbohydrates of laminin, a family of large multidomain glycoproteins, have been implicated in various cellular activities including maintaining the protein structure, its function and also basement membrane integrity. During the course of our investigation, we observed that purified laminin from kidneys of control, diabetic, and dietary fiber- and butyric acid-treated diabetic rats showed differences in binding to extracellular matrix components. This prompted us to determine whether there are structural changes in laminin oligosaccharides. In this study, we have characterized a few major N-linked oligosaccharides isolated from purified laminin in various experimental groups, viz. normal, diabetic and diabetic rats fed with dietary fiber and butyric acid. Sugar composition, as identified by GLC, revealed the presence of mannose, galactose and N-acetylglucosamine. In order to study fine structures of the oligosaccharides, N-linked oligosaccharides of laminin were released by Peptide-N-glycosidase F digestion, end-labeled with 2-anthranilic acid and fractionated by lectin affinity chromatography. Furthermore, structural elucidation carried out by MALDI-TOF MS/MS analysis showed variations in the oligosaccharide sequence of laminin during diabetes which were altered by the feeding of dietary fiber and butyric acid. © 2010 The Authors Journal compilation © 2010 FEBS.

  16. Effects of phenylbutazone, indomethacin, prostaglandin E2, butyrate, and glutamine on restitution of oxidant-injured right dorsal colon of horses in vitro.

    Science.gov (United States)

    Rötting, Anna K; Freeman, David E; Constable, Peter D; Eurell, Jo Ann C; Wallig, Matthew A

    2004-11-01

    To study the effects of phenylbutazone, indomethacin, prostaglandin E2 (PGE2), glutamine, and butyrate on restitution of oxidant-injured right dorsal colon of horses in vitro. Right dorsal colon from 9 adult horses euthanatized for reasons other than gastrointestinal tract disease. Mucosal segments from the right dorsal colon were injured via exposure to HOCl and incubated in Ussing chambers in solutions containing phenylbutazone, indomethacin, indomethacin and PGE2, glutamine, and butyrate. Transepithelial resistance and mucosal permeability to mannitol were measured, and all mucosal segments were examined histologically. The HOCl-injured mucosa had lower resistance and higher permeability to mannitol, compared with control tissue. Histologic changes were also evident. Resistance of HOCl-injured mucosa recovered partially during the incubation period, and glutamine improved recovery. Phenylbutazone and indomethacin increased resistance, but these increases were not significant. Butyrate and PGE2 had no effects, compared with nontreated HOCl-injured tissues. Mucosal permeability to mannitol was lower in glutamine-treated tissue, compared with nontreated tissue. Histologic changes reflected the resistance and permeability changes. According to our findings, phenylbutazone and indomethacin do not seem to interfere with restitution of oxidant-injured mucosa of equine colon in vitro, and glutamine could facilitate mucosal restitution.

  17. Multiple attenuation using eigenvalue decomposition | Aigbedion ...

    African Journals Online (AJOL)

    Multiple reflections constitute one of the most troublesome forms of coherent noise in seismic exploration, especially in marine surveys. There are many approaches to attenuating or suppressing multiples, but none can remove all multiple reflections under all conditions. We have eveloped two new methods to attenuate ...

  18. ATTENUATION AND FLANKING TRANSMISSION IN LIGHTWEIGHT STRUCTURES

    DEFF Research Database (Denmark)

    Brunskog, Jonas; Lhomond, Alice; Ohlrich, Mogens

    2007-01-01

    In this paper the attenuation and flanking transmissions of impact noise in lightweight building structures is studied using a modal approach. The structural field is mainly analysed, putting the main attention to the parts being important in the modelling. The amount of attenuation produced...

  19. Precision Model for Microwave Rotary Vane Attenuator

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1979-01-01

    A model for a rotary vane attenuator is developed to describe the attenuator reflection and transmission coefficients in detail. All the parameters of the model can be measured in situ, i.e., without diassembling any part. The tranmission errors caused by internal reflections are calculated from...

  20. Attenuation coefficients for water quality trading.

    Science.gov (United States)

    Keller, Arturo A; Chen, Xiaoli; Fox, Jessica; Fulda, Matt; Dorsey, Rebecca; Seapy, Briana; Glenday, Julia; Bray, Erin

    2014-06-17

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio.

  1. Ultrasound fields in an attenuating medium

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gandhi,, D; O'Brien,, W.D., Jr.

    1993-01-01

    of the rectangles and sums all contributions to arrive at the spatial impulse response for the aperture and field point. This approach makes it possible to model all transducer apertures, and the program can readily calculate the emitted, pulse-echo and continuous wave field. Attenuation is included by splitting...... it into a frequency dependent part and frequency independent part. The latter results in an attenuation factor that is multiplied onto the responses from the individual elements, and the frequency dependent part is handled by attenuating the basic one-dimensional pulse. The influence on ultrasound fields from......Ultrasound fields propagating in tissue will undergo changes in shape not only due to diffraction, but also due to the frequency dependent attenuation. Linear fields can be fairly well predicted for a non-attenuating medium like water by using the Tupholme-Stepanishen method for calculating...

  2. A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose

    Directory of Open Access Journals (Sweden)

    Beauvieux Marie-Christine

    2011-06-01

    Full Text Available Abstract Background Butyrate, end-product of intestinal fermentation, is known to impair oxidative phosphorylation in rat liver and could disturb glycogen synthesis depending on the ATP supplied by mitochondrial oxidative phosphorylation and cytosolic glycolysis. Methods In 48 hr-fasting rats, hepatic changes of glycogen and total ATP contents and unidirectional flux of mitochondrial ATP synthesis were evaluated by ex vivo 31P NMR immediately after perfusion and isolation of liver, from 0 to 10 hours after force-feeding with (butyrate 1.90 mg + glucose 14.0 mg.g-1 body weight or isocaloric glucose (18.2 mg.g-1 bw; measurements reflected in vivo situation at each time of liver excision. The contribution of energetic metabolism to glycogen metabolism was estimated. Results A net linear flux of glycogen synthesis (~11.10 ± 0.60 μmol glucosyl units.h-1.g-1 liver wet weight occurred until the 6th hr post-feeding in both groups, whereas butyrate delayed it until the 8th hr. A linear correlation between total ATP and glycogen contents was obtained (r2 = 0.99 only during net glycogen synthesis. Mitochondrial ATP turnover, calculated after specific inhibition of glycolysis, was stable (~0.70 ± 0.25 μmol.min-1.g-1 liver ww during the first two hr whatever the force-feeding, and increased transiently about two-fold at the 3rd hr in glucose. Butyrate delayed the transient increase (1.80 ± 0.33 μmol.min-1.g-1 liver ww to the 6th hr post-feeding. Net glycogenolysis always appeared after the 8th hr, whereas flux of mitochondrial ATP synthesis returned to near basal level (0.91 ± 0.19 μmol.min-1.g-1 liver ww. Conclusion In liver from 48 hr-starved rats, the energy need for net glycogen synthesis from exogenous glucose corresponds to ~50% of basal mitochondrial ATP turnover. The evidence of a late and transient increase in mitochondrial ATP turnover reflects an energetic need, probably linked to a glycogen cycling. Butyrate, known to reduce oxidative

  3. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study

    Science.gov (United States)

    Šket, Robert; Treichel, Nicole; Debevec, Tadej; Eiken, Ola; Mekjavic, Igor; Schloter, Michael; Vital, Marius; Chandler, Jenna; Tiedje, James M.; Murovec, Boštjan; Prevoršek, Zala; Stres, Blaž

    2017-01-01

    We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward the developed symptoms of low magnitude obesity-related syndromes was primarily driven by the onset of inactivity (lack of exercise in

  4. Transport and attenuation of radiations

    CERN Document Server

    Nimal, J C

    2003-01-01

    This article treats of the calculation methods used for the dimensioning of the protections against radiations. The method consists in determining for a given point the flux of particles coming from a source at a given time. A strong attenuation (of about some few mu Sv.h sup - sup 1) is in general expected between the source and the areas accessible to the personnel or the public. The calculation has to take into account a huge number of radiation-matter interactions and to solve the integral-differential transport equation which links the particles flux to the source. Several methods exist from the simplified physical model with numerical developments to the more or less precise resolution of the transport equation. These methods allows also the calculation of the uncertainties of equivalent dose rates, heat sources, structure damages using the data covariances (efficient cross-sections, modeling, etc..): 1 - transport equation; 2 - Monte-Carlo method; 3 - semi-numerical methods S sub N; 4 - methods based o...

  5. Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens

    Directory of Open Access Journals (Sweden)

    Arbab Sikandar

    2017-05-01

    Full Text Available Objective This study aimed to examine the effect of sodium butyrate (SB on growth performance, immune status, organs weights, and microarchitecture of lymphoid organs and small intestine. Methods A total of 120, 1-d-old broiler chicks were distributed into the following four treatment groups: corn-soy based basal diet (BD without supplement (control, or the same BD supplemented with 0.1 g/kg zinc bacitracin (ZnB, 0.5 g/kg SB (SB-0.5, or 1.0 g/kg SB (SB-1, respectively. Six birds/group were killed on d-21 and d-35, and samples were collected. Results Cell-mediated immune response at 48 h post-Phytohemagglutinin-P injection, and antibody titer against Newcastle disease vaccine and sheep red blood cells on d-35 was noted higher (p<0.05 in SB-1 compared to ZnB and control. Lower (p<0.05 feed conversion ratio (FCR was attained by the supplemented groups. Thymus and spleen weighed more (p<0.05 in SB-1, and bursa registered more (p<0.05 weight in both SB groups compared to control. On d-21, areas of thymus medulla and spleen germinal centers were noted higher (p<0.05 in SB-1 group. The villus height and villus surface area increased (p<0.05 in duodenum and jejunum in both SB groups on d-21, and in SB-1 on d-35, respectively compared to ZnB and control. On d-21, number of goblet cells containing mucins of acidic nature increased (p<0.05 in all the segments of small intestines in SB-1 group compared to control, and on d-35 in ileum compared to other groups. Conclusion In conclusion, SB improved growth performance and immunity as well as modulated morphology of lymphoid organs and gut mucosa in broiler chickens.

  6. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  7. Effect of indole-3-butyric acid and Trichoderma harzianum Rifai on asexual cape gooseberry propagation (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Oscar Humberto Alvarado-Sanabria

    2014-12-01

    Full Text Available The growth and development of cape gooseberry plants obtained from cuttings is affected by microorganisms in the substrate and by the concentration of plant growth regulators applied during planting. Using a factorial design, the effect of four concentrations of indole-3-butyric acid (IBA (0, 800, 1,200, and 1,600 mg L-1 and four suspensions of Trichoderma harzianum (0, 2·10(6, 3·10(6, and 4·10(6 cfu/mL on the growth of cape gooseberry cuttings was evaluated. Apical cuttings were used, 20 cm long, from 20-month-old plants of the Colombian ecotype, which were planted in pots (2 L using peat moss with burned rice husks as the substrate at a 3:1 ratio (v/v. The 800 mg L-1 of IBA application showed the highest accumulation of total dry mass (DM and root DM. Moreover, 800 mg L-1 of IBA resulted in the highest leaf chlorophyll content, showing significant differences from 1,600 mg L-1, which had the lowest value. The 3·10(6 cfu/mL suspension of T. harzianum caused a greater accumulation of root DM and total DM and a higher leaf area in the plants. The most favorable interaction between the factors, which favors the growth of cape gooseberry plants obtained from cuttings, was observed with the application of 800 mg L-1 of IBA and 3·10(6 cfu/mL of T. harzianum.

  8. Hyaluronan Mixed Esters of Butyric and Retinoic Acid Affording Myocardial Survival and Repair without Stem Cell Transplantation*

    Science.gov (United States)

    Lionetti, Vincenzo; Cantoni, Silvia; Cavallini, Claudia; Bianchi, Francesca; Valente, Sabrina; Frascari, Irene; Olivi, Elena; Aquaro, Giovanni D.; Bonavita, Francesca; Scarlata, Ignazio; Maioli, Margherita; Vaccari, Valentina; Tassinari, Riccardo; Bartoli, Antonietta; Recchia, Fabio A.; Pasquinelli, Gianandrea; Ventura, Carlo

    2010-01-01

    Possible cardiac repair by adult stem cell transplantation is currently hampered by poor cell viability and delivery efficiency, uncertain differentiating fate in vivo, the needs of ex vivo cell expansion, and consequent delay in transplantation after the onset of heart attack. By the aid of magnetic resonance imaging, positron emission tomography, and immunohistochemistry, we show that injection of a hyaluronan mixed ester of butyric and retinoic acid (HBR) into infarcted rat hearts afforded substantial cardiovascular repair and recovery of myocardial performance. HBR restored cardiac [18F]fluorodeoxyglucose uptake and increased capillary density and led to the recruitment of endogenous Stro-1-positive stem cells. A terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay demonstrated that HBR-treated hearts exhibited a decrease in the number of apoptotic cardiomyocytes. In isolated rat cardiomyocytes and Stro-1 stem cells, HBR enhanced the transcription of vascular endothelial growth factor, hepatocyte growth factor, kdr, akt, and pim-1. HBR also increased the secretion of vascular endothelial growth factor and hepatocyte growth factor, suggesting that the mixed ester may have recruited both myocardial and Stro-1 cells also. An increase in capillarogenesis was induced in vitro with medium obtained from HBR-exposed cells. In the infarcted myocardium, HBR injection increased histone H4 acetylation significantly. Acetyl-H4 immunoreactivity increased in rat cardiomyocytes and Stro-1 cells exposed to HBR, compared with untreated cells. In conclusion, efficient cardiac regenerative therapy can be afforded by HBR without the need of stem cell transplantation or vector-mediated gene delivery. PMID:20097747

  9. Effects of β-hydroxy-β-methyl butyrate on working memory and cognitive flexibility in an animal model of aging.

    Science.gov (United States)

    Hankosky, Emily R; Sherrill, Luke K; Ruvola, Lauren A; Haake, Rachel M; Kim, Taehyeon; Hammerslag, Lindsey R; Kougias, Daniel G; Juraska, Janice M; Gulley, Joshua M

    2017-09-01

    Normal aging results in cognitive decline and nutritional interventions have been suggested as potential approaches for mitigating these deficits. Here, we used rats to investigate the effects of short- and long-term dietary supplementation with the leucine metabolite β-hydroxy-β-methyl butyrate (HMB) on working memory and cognitive flexibility. Beginning ∼12 months of age, male and female Long-Evans rats were given twice daily access to sipper tubes containing calcium HMB (450 mg/kg) or vehicle (285 mg/kg calcium lactate) in a sucrose solution (20% w/v). Supplementation continued for 1 or 7 months (middle- and old-age (OA) groups, respectively) before testing began. Working memory was assessed by requiring rats to respond on a previously sampled lever following various delays. Cognitive flexibility was assessed by training rats to earn food according to a visual strategy and then, once acquired, shifting to an egocentric response strategy. Treatment with HMB improved working memory performance in middle-age (MA) males and OA rats of both sexes. In the cognitive flexibility task, there was a significant age-dependent deficit in acquisition of the visual strategy that was not apparent in OA males treated with HMB. Furthermore, HMB ameliorated an apparent deficit in visual strategy acquisition in MA females. Together, these findings suggest that daily nutritional supplementation with HMB facilitates learning and improves working memory performance. As such, HMB supplementation may mitigate age-related cognitive deficits and may therefore be an effective tool to combat this undesirable feature of the aging process.

  10. Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1

    Science.gov (United States)

    Sánchez-Tena, S.; Vizán, P.; Dudeja, P.K.; Centelles, J.J.; Cascante, M.

    2016-01-01

    Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (−)-epicatechin (EC) and (−)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer. PMID:23994611

  11. The standardized extract of Loeselia mexicana possesses anxiolytic activity through the γ-amino butyric acid mechanism.

    Science.gov (United States)

    Herrera-Ruiz, Maribel; González-Carranza, Adolfo; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Huerta-Reyes, Maira; Navarro-García, Víctor M

    2011-11-18

    Loeselia mexicana (Lam.) Brand has been used in Mexican Traditional Medicine to treat "espanto" or "susto" (fear), which is a culturally affiliated syndrome whose symptomatology comprises loss of appetite, difficulty in sleeping, and also nausea and fatigue, with a sensation of fear or risk - real or imagined - to external stimuli. The anxiolytic effect of the standardized methanol extract of Loeselia mexicana, with regard to its content of coumarin daphnoretin, was researched utilizing the elevated plus maze (EPM) in order to demonstrate whether the biological effect produced by the plant is antagonized by drugs that block γ-amino butyric acid (GABA)ergic transmission. The methanolic extract of Loeselia mexicana (LmMeOH) was tested at different doses on the EPM and then the interaction of this extract was evaluated in the same model with different GABAergic drugs, such as flumazenil (FLU) 10mg/kg, bicuculline (BIC) 5mg/kg, pentylenetetrazole (PTZ) 10mg/kg, and picrotoxin (PTX) 2mg/kg. The effect of all of these treatments was evaluated by means of the open field test (OFT). Coumarin content was measured by the high performance liquid chromatography (HPLC) technique. The 200- and 400-mg/kg doses of methanolic extract containing 3.14 and 6.28 mg of daphnoretin, respectively, induced an anxiolytic effect in the EPM without modification of the spontaneous motor activity. The anxiolytic activity of 200mg/kg of methanolic extract in EPM-exposed mice was antagonized by PTX, BIC, and FLU, but not by PTZ. The data presented here indicate that the Loeselia mexicana Brand methanolic extract possesses a significant anxiolytic effect that appears to be mediated in part by activation of the GABAergic system. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of histone deacetylase inhibitor sodium butyrate on heroin seeking behavior in the nucleus accumbens in rats.

    Science.gov (United States)

    Chen, Wei-Sheng; Xu, Wen-Jin; Zhu, Hua-Qiang; Gao, Lei; Lai, Miao-Jun; Zhang, Fu-Qiang; Zhou, Wen-Hua; Liu, Hui-Fen

    2016-12-01

    Histone acetylation and other modifications of the chromatin are important regulators of gene expression and may contribute to drug-induced behaviors and neuroplasticity. Inhibition of histone deacetylases (HDAC) activity results in the change of some drug-induced behaviors,however, relatively little is known about the effects of HDAC inhibitors on heroin-seeking behavior. In the present study, male rats were trained to self-administer heroin under a FR1 schedule for consecutive 14 days, followed by 14 daily 2h extinction session in the operant chamber. After training, the heroin priming (250μg/kg) was introduced for the reinstatement of heroin-seeking behavior. Pretreatment with sodium butyrate (NaB) (200 or 400mg/kg, i.p.), an inhibitor of HDAC, failed to affect heroin self-administration. Additionally,systemic administration of NaB (400mg/kg, i.p.)increased significantly the reinstatement of heroin-seeking induced by heroin priming when NaB administered 12h, but not 6h before the reinstatement test. The same effect was observed after the intracerebroventricular injection of NaB (5μL, 100μg/μL). Moreover, the levels of histone H3 acetylation at lysine 18(H3K18)and H4 acetylation at lysine 5 or lysine 8(H4K5 or H4K8)in the accumbens nucleus core and shell were remarkably increased during the reinstatement and were further strengthened after intracerebroventricular injection of NaB. These results demonstrated that activation of histone acetylation may be involved in the heroin-seeking behavior, and identifying these epigenetic changes will be critical in proposing a novel pharmacological strategy for treating heroin addiction. Copyright © 2016. Published by Elsevier B.V.

  13. Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation.

    Science.gov (United States)

    Lionetti, Vincenzo; Cantoni, Silvia; Cavallini, Claudia; Bianchi, Francesca; Valente, Sabrina; Frascari, Irene; Olivi, Elena; Aquaro, Giovanni D; Bonavita, Francesca; Scarlata, Ignazio; Maioli, Margherita; Vaccari, Valentina; Tassinari, Riccardo; Bartoli, Antonietta; Recchia, Fabio A; Pasquinelli, Gianandrea; Ventura, Carlo

    2010-03-26

    Possible cardiac repair by adult stem cell transplantation is currently hampered by poor cell viability and delivery efficiency, uncertain differentiating fate in vivo, the needs of ex vivo cell expansion, and consequent delay in transplantation after the onset of heart attack. By the aid of magnetic resonance imaging, positron emission tomography, and immunohistochemistry, we show that injection of a hyaluronan mixed ester of butyric and retinoic acid (HBR) into infarcted rat hearts afforded substantial cardiovascular repair and recovery of myocardial performance. HBR restored cardiac [(18)F]fluorodeoxyglucose uptake and increased capillary density and led to the recruitment of endogenous Stro-1-positive stem cells. A terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay demonstrated that HBR-treated hearts exhibited a decrease in the number of apoptotic cardiomyocytes. In isolated rat cardiomyocytes and Stro-1 stem cells, HBR enhanced the transcription of vascular endothelial growth factor, hepatocyte growth factor, kdr, akt, and pim-1. HBR also increased the secretion of vascular endothelial growth factor and hepatocyte growth factor, suggesting that the mixed ester may have recruited both myocardial and Stro-1 cells also. An increase in capillarogenesis was induced in vitro with medium obtained from HBR-exposed cells. In the infarcted myocardium, HBR injection increased histone H4 acetylation significantly. Acetyl-H4 immunoreactivity increased in rat cardiomyocytes and Stro-1 cells exposed to HBR, compared with untreated cells. In conclusion, efficient cardiac regenerative therapy can be afforded by HBR without the need of stem cell transplantation or vector-mediated gene delivery.

  14. Attenuation caused by infrequently updated covariates in survival analysis

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Liestøl, Knut

    2003-01-01

    Attenuation; Cox regression model; Measurement errors; Survival analysis; Time-dependent covariates......Attenuation; Cox regression model; Measurement errors; Survival analysis; Time-dependent covariates...

  15. In vivo crypt surface hyperproliferation is decreased by butyrate and increased by deoxycholate in normal rat colon: associated in vivo effects on c-Fos and c-Jun expression.

    Science.gov (United States)

    Velázquez, O C; Zhou, D; Seto, R W; Jabbar, A; Choi, J; Lederer, H M; Rombeau, J L

    1996-01-01

    Studies on colon carcinogenesis suggest that the short-chain fatty acid butyrate may be protective, whereas the secondary bile acid deoxycholate may promote tumor development. Crypt surface hyperproliferation is regarded as a biomarker of colon cancer risk and can be modulated in vitro by the differentiation inducer butyrate and the tumor promoter deoxycholate. We hypothesized that butyrate decreases and deoxycholate increases crypt surface proliferation in vivo and that these effects are mediated by changes in the expression of the protooncogenes c-Fos and c-Jun, which are known to regulate proliferation and differentiation. Twenty-five adult Sprague-Dawley rats underwent colonic isolation and 24-hour intraluminal instillation of 10 mmol/L sodium chloride, 10 mmol/ L sodium butyrate, or 10 mmol/L sodium deoxycholate. Proliferation of the whole crypt and five crypt compartments from base to surface was assessed by proliferating cell nuclear antigen immunohistochemistry. The øh value, an index of "premalignant" hyperproliferation, was calculated as the ratio of labeled cells in the two surface compartments divided by the labeled cells in the entire crypt. Expression of c-Fos and c-Jun was evaluated by Western blot. Crypt surface proliferation and the øh value were significantly decreased by butyrate and increased by deoxycholate. Butyrate increased colonic expression of c-Jun, whereas deoxycholate significantly induced c-Fos. The in vivo effects on surface proliferation are consistent with a potential protective [corrected] role for butyrate and a promotive role for deoxycholate in colon carcinogenesis. The concurrently observed effects on colonic c-Jun and c-Fos expression represent a novel finding and suggest that direct or indirect modulation of protooncogene expression may be the mechanism by which these dietary byproducts regulate proliferation in vivo.

  16. Seismic attenuation system for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liszkai, Tamas; Cadell, Seth

    2018-01-30

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vessel are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.

  17. Electron Effective-Attenuation-Length Database

    Science.gov (United States)

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  18. Post-Retrieval Extinction Attenuates Cocaine Memories

    OpenAIRE

    Sartor, Gregory C.; Aston-Jones, Gary

    2013-01-01

    Recent studies have shown that post-retrieval extinction training attenuates fear and reward-related memories in both humans and rodents. This noninvasive, behavioral approach has the potential to be used in clinical settings to treat maladaptive memories that underlie several psychiatric disorders, including drug addiction. However, few studies to date have used a post-retrieval extinction approach to attenuate addiction-related memories. In the current study, we attempted to disrupt cocaine...

  19. Attenuation of Shock Waves using Perforated Plates

    Science.gov (United States)

    Pavan Kumar, CH V. L. C. S.; Hitesh Reddy, C.; Rahul Sai, L.; Dharani Kumar, K. S. S.; Nagaraja, S. R.

    2017-08-01

    The shock/blast waves generated due to explosions cause wide spread damage to the objects in its path. Different techniques have been used to attenuate shock wave over pressure, to reduce the catastrophic effects. Perforated plates can be used effectively to attenuate the shock wave pressure. In this paper shock wave interaction with perforated plates is simulated using COMSOL multiphysics software. The pressure drop varied from 43.75% to 26% for porosity varying from 10% to 40.

  20. Attenuation coefficients for water quality trading

    OpenAIRE

    Keller, AA; Chen, X.; Fox, J; Fulda, M; Dorsey, R.; Seapy, B; Glenday, J; E Bray

    2014-01-01

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction t...

  1. Attenuation limits in longitudinal phononic crystals

    Science.gov (United States)

    Luschi, L.; Iannaccone, G.; Pieri, F.

    2017-12-01

    The acoustic attenuation inside the bandgaps is, together with the bandgap width, a fundamental design parameter for phononic-crystal-based systems. We discuss approximate expressions for the maximum attenuation inside the bandgaps of one-dimensional longitudinal phononic crystals and its dependence on the acoustic contrast and the fractional bandwidth. We provide different approximations at small and large fractional bandwidths, computed from the trace of the transmission matrix of the crystal elementary cell. We show that, for relatively small gaps, the attenuation is roughly proportional to the fractional bandwidth, in analogy with the flexural case. For larger gaps, a large attenuation can be obtained only for high (and possibly impractical) acoustic contrasts. Approximate expressions are validated through comparison with FEM results. We also derive asymptotic upper limits for the bandgap borders and show that high contrasts do not necessarily lead to wide bandgaps, a fact connected to geometrical phase inversion for the acoustic wave in the crystal. We finally compare the attenuation of flexural and longitudinal waves at a fixed fractional bandwidth and derive regions of optimum attenuation for the two propagation modes.

  2. Mechanisms of geometrical seismic attenuation

    Directory of Open Access Journals (Sweden)

    Igor B. Morozov

    2011-07-01

    Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.