WorldWideScience

Sample records for butyl ether oxidation

  1. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    KAUST Repository

    Cai, Liming

    2014-03-01

    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.

  2. Aquatic Life Criteria - Methyl Tertiary-Butyl Ether (MTBE)

    Science.gov (United States)

    Information pertaining to the 1999 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Methyl Tertiary-Butyl Ether (MTBE) for freshwater and salt water. Information includes the safe levels of MTBE that should protect the majority of species.

  3. TREATMENT OF METHYL TERT-BUTYL ETHER CONTAMINATED WATER USING PHOTOCATALYSIS

    Science.gov (United States)

    The feasibility of photo-oxidation treatment of methyl tert-butyl ether (MTBE) in water was investigated in three ways, 1) using a slurry falling film photo-reactor, 2) a batch solar reactor system, and 3) a combination of air-stripping and gas phase photooxidation system. MTBE-c...

  4. Kinetics and Photodegradation Study of Aqueous Methyl tert-Butyl Ether Using Zinc Oxide: The Effect of Particle Size

    Directory of Open Access Journals (Sweden)

    Zaki S. Seddigi

    2013-01-01

    Full Text Available Zinc oxide of different average particle sizes 25 nm, 59 nm, and 421 nm as applied in the photodegradation of MTBE. This study was carried out in a batch photoreactor having a high pressure mercury lamp. Zinc oxide of particle size of 421 nm was found to be the most effective in degrading MTBE in an aqueous solution. On using this type of ZnO in a solution of 100 ppm MTBE, the concentration of MTBE has decreased to 5.1 ppm after a period of five hours. The kinetics of the photocatalytic degradation of MTBE was found to be a first order reaction.

  5. Biodegradation of methyl tert-butyl ether by Kocuria sp.

    Directory of Open Access Journals (Sweden)

    Kiković Dragan D.

    2012-01-01

    Full Text Available Methyl tert-butyl ether (MTBE has been used to replace the toxic compounds from gasoline and to reduce emission of air pollutants. Due to its intensive use, MTBE has become one of the most important environment pollutants. The aim of this paper is isolation and identification of the bacteria from wastewater sample of “HIP Petrohemija” Pančevo (Serbia, capable of MTBE biodegradation. The results of the investigation showed that only the bacterial isolate 27/1 was capable of growth on MTBE. The result of sequence analyzes of 16S rDNA showed that this bacterial isolate belongs to the Kocuria sp. After the incubation period of 86 days, the degradation rates of initial MTBE concentration of 25 and 125 μg/ml were 55 and 36%, respectively. These results indicated that bacteria Kocuria sp. is successfully adapted on MTBE and can be potentially used in bioremediation of soils and waters contaminated with MTBE.

  6. An efficient and highly selective ortho-tert-butylation of p-cresol with methyl tert-butyl ether catalyzed by sulfonated ionic liquids

    Directory of Open Access Journals (Sweden)

    Alamdari Reza Fareghi

    2014-01-01

    Full Text Available A novel series of sulfonic acid-functionalized ionic liquids (SFILs was found to act as efficient catalysts for ortho-tert-butylation of p-cresol with methyl tert-butyl ether (MTBE as the tert-butylating agent without an added solvent. The mono o-tert-butylated product was obtained in up to 80.4% isolated yield and 95.2% selectivity under such green conditions. No O-tert-butylated byproducts were formed.

  7. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    Science.gov (United States)

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m 3 ). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. ADVANCED OXIDATION PROCESS TECHNOLOGY (ULTRAVIOLET RADIATION/OZONE TREATMENT) FOR REMOVAL OF METHYL TERTIARY BUTYL ETHER (MTBE) IN GROUND WATER SUPPLIES.

    Science.gov (United States)

    U.S. EPA’s Office of Research and Development in Cincinnati, Ohio has been testing and evaluating MTBE removal in dechlorinated tap water using three oxidant combinations: hydrogen peroxide/ozone, ultraviolet irradiation (UV)/ozone, and UV/ozone/hydrogen peroxide. Pilot-scale st...

  9. EFFECTS OF STIMULATOR SUBSTANCES ON AEROBIC METHYL TERT-BUTYL ETHER BIODEGRADATION BY MICROBIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    M. Farrokhi ، S. Ahmadizad

    2009-04-01

    Full Text Available In this study dissolved humic substances and yeast extract were tested in different concentrations for enhancing methyl tert-butyl ether mineralization by isolated microorganisms from a variety of sources. All experiments were conducted at a constant temperature of 25ºC. Vials of 50 mL and 125 mL volume sealed with Teflon-lined Mini-Nert caps was used for microcosm experiments. In all experiments 1% sodium azide were used as control. Samples of bacterial cultures that metabolize methyl tert-butyl ether have been analysed by direct GC analysis using flame ionization detector. Cultures able to metabolize have been found in activated sludge and soils. These microorganisms weregram-positive bacterium. An aerobic microbial consortium was enriched in laboratory for four months. Methyl tert-butyl ether has been shown to biodegrade under aerobic and co-metabolic conditions. A microbial consortium isolated from activated sludges was identified as Cocobacillus. The concentration of the initial attached biomass was about 0.11 g/L of dry weight. The maximum mineralization rate and beneficial effects of stimulator substances on aerobic biodegradation of methyl tert-butyl ether occurred with the culture by combined concentrations of 500 mg/L of yeast extract and 20 mg/L of peat humic growth support of microbial consortium within 216 h and in presence of high oxygen levels and well mixing conditions. It was shown that adding, peat humic and yeast extract together, had better stimulatory effect on methyl tert-butyl ether biodegradation. Results clearly showed a stimulatory effect on methyl tert-butyl ether consumption higher than 20%. Consortium was capable of degrading concentrations of ≤1000 mg/L, whereas concentrations of >1000 mg/L, were not degraded.

  10. Method for determination of methyl tert-butyl ether and its degradation products in water

    Science.gov (United States)

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  11. Estimation of the fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    The fraction of biologically active methyl tert-butyl ether degraders in reactors is just as important for prediction of removal rates as knowledge of the kinetic parameters. The fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample, taken from a packed...

  12. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) (External Review Draft)

    Science.gov (United States)

    The IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) was released for external peer review in June 2017. EPA’s Science Advisory Board’s (SAB) Chemical Assessment Advisory Committee (CAAC) will conduct a peer review of the scientific basis supporting the ETB...

  13. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) (External Review Draft, 2009)

    Science.gov (United States)

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of ethyl tertiary butyl ether (ETBE) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  14. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    Science.gov (United States)

    Smith, L.A. Jr.

    1983-03-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

  15. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (Interagency Science Discussion Draft)

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from ot...

  16. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    Science.gov (United States)

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  17. Experimental and predicted properties of the binary mixtures containing an isomeric chlorobutane and butyl ethyl ether

    International Nuclear Information System (INIS)

    Montaño, Diego; Gascón, Ignacio; Schmid, Bastian; Gmehling, Jürgen; Lafuente, Carlos

    2012-01-01

    Highlights: ► Volumetric properties of a chlorobutane + buty ethyl ether have been studied. ► Isothermal VLE of a chlorobutane + buty ethyl ether has been determined. ► Excess volumes and excess Gibbs energies have been obtained from experimental data. ► The VTPR model has been satisfactorily used to predict densities and VLE data. - Abstract: Densities of the binary systems containing an isomer of chlorobutane (1-chlorobutane, 2-chlorobutane, 2-methyl-1-chloropropane, or 2-methyl-2-chloropropane) and butyl ethyl ether have been measured over the temperature range (283.15 to 313.15) K. Moreover, isothermal (vapour + liquid) equilibria have also been determined at three temperatures (T = (288.15, 298.15, and 308.15) K). Excess properties have been obtained from the experimental data and correlated. Finally, the VTPR model has been used to predict densities and (vapour + liquid) equilibria of the binary systems studied.

  18. Predicting methyl tert-butyl ether, tert-butyl formate, and tert-butyl alcohol levels in the environment using the fugacity approach.

    Science.gov (United States)

    Arp, Hans Peter H; Fenner, Kathrin; Schmidt, Torsten C

    2005-05-01

    Through its extensive use as a fuel oxygenate, methyl tert-butyl ether (MTBE) is found nearly ubiquitouslythroughout the environment. To better understand the environmental fate of MTBE, fugacity models are commonly used. However, models developed by the scientific community and by governmental bodies differ in their predictions of relative MTBE concentrations for relevant environmental compartments and of seasonal concentration variations; further, to date they have not considered the formation of transformation products. In this study, the sensitivity of predicted environmental concentrations of MTBE and its two major degradation products, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), to all types of model input parameters is analyzed in a probabilistic sensitivity analysis. This analysis allowed for an assessment of the most influential parameters for predicting soil, water, and air concentrations and thereby provided insight into why previous modeling studies on MTBE differed. Further, the information from the sensitivity analysis was used to parametrize a multispecies transformation model for predicting European concentration levels of MTBE and, for the first time, TBF and TBA. Water and air concentrations of MTBE predicted with the transformation model were in good agreement with measurements of environmental samples. No studies are available on environmental TBF and TBA levels to compare with model predictions; however, the modeling results indicate that, in the water phase, TBA concentrations may reach appreciable levels. One major uncertainty identified regarding the prediction of TBA levels was the fraction of TBA formed from atmospheric MTBE and TBF.

  19. Electrochemical degradation of methyl tert-butyl ether

    Directory of Open Access Journals (Sweden)

    Aleksandr B. Velichenko

    2014-12-01

    Full Text Available In this paper, we have examined the performance of PbO2 anodes in the EC degradation of MTBE. It was shown that electrochemical oxidation of MTBE at lead dioxide anodes is effective method of anodic conversion of the organic pollutant to acetic acid as untoxic product. Proposed method is formally reagent treatment of water at the same time it does not need addition of any reagent in reaction media. All needed reagents formed directly from the solvent (water thanks to electrochemical reactions. According to obtained data the main electrochemical stages of the process of anodic conversion of MTBE are formation of hydroxyl-radicals and molecular oxygen. Then formed compounds take part in stages of chemical MTBE oxidation and intermediate species that led to deeper oxidation to form acetic acid as the result. Proposed mechanism of MTBE electrochemical oxidation is in satisfactory agreement with experimental data. Dependence of MTBE conversion rate from the nature of micro-doped and composite lead dioxide anodes is explained by difference in hydroxyl-radical bond strength with an electrode surface that determined it reaction ability in secondary chemical reactions of organic compounds oxidation.

  20. Hybrid polymerization of iso-butyl vinyl ether

    Science.gov (United States)

    Jiang, Bo; Yang, Lixing; Zhou, Yong; Huang, Guanglin; Lin, Libin

    2002-03-01

    The radiation-induced hybrid polymerization in the presence of the N-alkoxypyridinium salt having relatively stable nonnucleophilic anion (PF 6-) has been investigated in the paper. Based on the analysis of experimental data and the GPC spectrum, the onium salts not only oxidize α-alkoxyalkyl radicals, produced from IBVE in dichloromethane by irradiation, to the corresponding cations, but also give nonnucleophilic anions PF 6- for the polymerization system. The experimental results clearly demonstrate that free radical and cationic polymerization mechanisms occurred simultaneously in IBVE/EMP +PF 6-/CH 2Cl 2 systems on irradiation with γ-ray.

  1. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

  2. Hydrolysis of tert-butyl formate: Kinetics, products, and implications for the environmental impact of methyl tert-butyl ether

    Science.gov (United States)

    Church, Clinton D.; Pankow, James F.; Tratnyek, Paul G.

    1999-01-01

    Asessing the environmental fate of methyl tert-butyl ether (MTBE) has become a subject of renewed interest because of the large quantities of this compound that are being used as an oxygenated additive in gasoline. Various studies on the fate of MTBE have shown that it can be degraded to tert-butyl formate (TBF), particularly in the atmosphere. Although it is generally recognized that TBF is subject to hydrolysis, the kinetics and products of this reaction under environmentally relevant conditions have not been described previously. In this study, we determined the kinetics of TBF hydrolysis as a function of pH and temperature. Over the pH range of 5 to 7, the neutral hydrolysis pathway predominates, with kN = (1.0 ± 0.2) × 10−6/s. Outside this range, strong pH effects were observed because of acidic and basic hydrolyses, from which we determined that kA = (2.7 ± 0.5) × 10−3/(M·s) and kB = 1.7 ± 0.3/(M·s). Buffered and unbuffered systems gave the same hydrolysis rates for a given pH, indicating that buffer catalysis was not significant under the conditions tested. The activation energies corresponding to kN, kA, and kBwere determined to be 78 ± 5, 59 ± 4, and 88 ±11 kJ/mol, respectively. In all experiments, tert-butyl alcohol was found at concentrations corresponding to stoichiometric formation from TBF. Based on our kinetics data, the expected half-life for hydrolysis of TBF at pH = 2 and 4°C (as per some standard preservation protocols for water sampling) is 6 h. At neutral pH and 22°C, the estimated half-life is 5 d, and at pH = 11 and 22°C, the value is only 8 min.

  3. Enhancement of methyl tert-butyl ether degradation by the addition of readily metabolizable organic substrates

    International Nuclear Information System (INIS)

    Chen Dongzhi; Chen Jianmeng; Zhong Weihong

    2009-01-01

    Supplements with readily metabolizable organic substrates were investigated to increase the biomass and enhance degradation of methyl tert-butyl ether (MTBE) due to the low biomass yield of MTBE which has been one of the factors for low-rate MTBE degradation. The influence of various organic substrates on the rate of aerobic degradation of methyl tert-butyl ether (MTBE) by Methylibium petroleiphilum PM1 was investigated, and only yeast extract (YE), beef extract and tryptone exhibited stimulatory effect. With the concentration of each substrate being 100 mg/L, the average MTBE removal rate could increase to 1.29, 1.20 and 1.04 mg/(L h), respectively, in comparison with 0.71 mg/(L h) when carried out in medium without addition. The stimulatory effects of YE addition, as well as induction period required by MTBE degradation, varied dramatically with the storage conditions, pre-culture medium and concentrations of the inoculums. The extent of stimulatory effects of YE might be closely related to the proportion of induction period in the total time of MTBE-degradation. The removal efficiency increased from about 50% to 90.5% with the addition of YE in a packed-bed reactor loaded with calcium alginate immobilized cells.

  4. Draft Genome Sequence of Paenibacillus etheri sp. nov. SH7T, a Methyl Tert-Butyl Ether Degrader.

    Science.gov (United States)

    Purswani, Jessica; Guisado, Isabel M; Gonzalez-Lopez, Jesus; Pozo, Clementina

    2016-02-18

    We report here the draft genome sequence of Paenibacillus etheri sp. nov. SH7(T) (= CECT 8558(T) = DSM 29760(T)), isolated from a hydrocarbon-contaminated soil pilot plant in Granada, Spain. The bacterium was isolated and sequenced due to its methyl tert-butyl ether (MTBE)-degrading properties. Copyright © 2016 Purswani et al.

  5. INTERACTION OF METHYL-TERT BUTYL ETHER AND WATER STRESS ON SEED GERMINATION AND SEEDLING GROWTH IN SOIL MICROCOSMS

    Science.gov (United States)

    Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...

  6. Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-09-01

    Full Text Available Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE, which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8, accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA. When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition.

  7. Degradation of a recalcitrant xenobiotic compound: methyl tert-butyl ether (MTBE) metabolism by mycobacterium austroafricanum; Degradation d'un compose xenobiotique recalcitrant: metabolisme du methyl tert-butyl ether (MTBE) par mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Francois, A.

    2002-11-01

    Methyl tert-butyl ether (MTBE) is introduced up to 15% (vol/vol) in gasoline in order to obtain a good octane number and to prevent carbon monoxide emissions. However, as a consequence of storage tanks leakage, MTBE became one of the major pollutants of aquifers because of its very low biodegradability. The present study aimed at investigating the biodegradation of MTBE by Mycobacterium austroafricanum IFP 2012. The MTBE metabolic pathway was partially elucidated owing to the identification of some intermediates (tert-butyl formate (TBF), tert-butyl alcohol (TBA), a-hydroxy-isobutyric acid and acetone) and some enzymatic activities (MTBE/TBA monooxygenase (non hemic and inducible), TBF esterase, 2-propanol: NDMA oxidoreductase and another monooxygenase involved in acetone degradation). The involvement of TBF and the requirement of cobalt could be explanations for the low natural attenuation of MTBE; whereas the methoxy group does not seem to be implicated. (author)

  8. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp.

    Science.gov (United States)

    Lee, Eun-Hee; Cho, Kyung-Suk

    2009-08-15

    It was examined the substrate interactions of benzene (B), tolulene (T), ethylbenzene (E), xylene (X), and methyl tert-butyl ether (M) in binary, ternary, quaternary, and quinary mixtures by Rhodococcus sp. EH831 that could aerobically degrade all of five single components. The specific degradation rates (SDRs) of B, T, E, X, and M were 234, 913, 131, 184 and 139 micromol g-dry cell weight (DCW)(-1)h(-1), respectively. In binary, ternary, quaternary, and quinary mixtures of them, ethylbenzene was the strongest inhibitor for the other substrates, and methyl tert-butyl ether was the weakest inhibitor. Interestingly, no degradation of benzene and methyl tert-butyl ether was found in the coexistence of ethylbenzene. The degradation of benzene followed only after toluene became exhausted when both was present. Ethylbenzene was least inhibited by methyl tert-butyl ether and most inhibited by toluene.

  9. UV absorption spectra and kinetics for alkyl and alkyl peroxy radicals originating from di-tert-butyl ether

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Langer, S.

    1995-01-01

    Alkyl, (CH3)(3)COC(CH3)(2)CH2, and alkyl peroxy, (CH3)(3)COC(CH3)(2)CH2O2, radicals from di-tert-butyl ether (DTBE), have been studied in the gas phase at 296 K. A pulse radiolysis UV absorption technique was used to measure the spectra and kinetics. Absorption cross sections were quantified over...

  10. Polymerization behavior of butyl bis(hydroxymethyl)phosphine oxide ...

    Indian Academy of Sciences (India)

    lenovo

    Polymerization behavior of butyl bis(hydroxymethyl)phosphine oxide: Phosphorus containing polyethers for. Li‒ion conductivities. Heeralal Vignesh Babu, Billakanti Srinivas and Krishnamurthi Muralidharan*. School of Chemistry, University of Hyderabad, Hyderabad - 500046, India. Table of Contents. TGA plots of SPE2.

  11. Degradation of methyl tert-butyl ether by gel immobilized Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Chen, Dongzhi; Chen, Jianmeng; Zhong, Weihong; Cheng, Zhuowei

    2008-07-01

    Cells of Methylibium petroleiphilum PM1 were immobilized in gel beads to degrade methyl tert-butyl ether (MTBE). Calcium alginate, agar, polyacrylamide and polyvinvyl alcohol were screened as suitable immobilization matrices, with calcium alginate demonstrating the fastest MTBE-degradation rate. The rate was accelerated by 1.8-fold when the beads had been treated in physiological saline for 24h at 28 degrees C. MTBE degradation in mineral salts medium (MSM) was accompanied by the increase of biomass. The half-life of MTBE-degradation activity for the encapsulated cells stored at 28 degrees C was about 120 h, which was obviously longer than that of free cells (approximately 36 h). Efficient reusability of the beads up to 30 batches was achieved in poor nutrition solution as compared to only 6 batches in MSM. The immobilized cells could be operated in a packed-bed reactor for degradation of 10 mg L(-1) MTBE in groundwater with more than 99% removal efficiency at hydraulic retention time of 20 min. These results suggested that immobilized cells of PM1 in bioreactor might be applicable to a groundwater treatment system for the removal of MTBE.

  12. Magnetic Scanometric DNA Microarray Detection of Methyl Tertiary Butyl Ether Degrading Bacteria for Environmental Monitoring

    Science.gov (United States)

    Chan, Mei-Lin; Jaramillo, Gerardo; Hristova, Krassimira R.; Horsley, David A.

    2010-01-01

    A magnetoresistive biosensing platform based on a single magnetic tunnel junction (MTJ) scanning probe and DNA microarrays labeled with magnetic particles has been developed to provide an inexpensive, sensitive and reliable detection of DNA. The biosensing platform was demonstrated on a DNA microarray assay for quantifying bacteria capable of degrading methyl tertiary-butyl ether (MTBE), where concentrations as low as 10 pM were detectable. Synthetic probe bacterial DNA was immobilized on a microarray glass slide surface, hybridized with the 48 base pair long biotinylated target DNA and subsequently incubated with streptavidin-coated 2.8 μm diameter magnetic particles. The biosensing platform then makes use of a micron-sized MTJ sensor that was raster scanned across a 3 mm by 5 mm glass slide area to capture the stray magnetic field from the tagged DNA and extract two dimensional magnetic field images of the microarray. The magnetic field output is then averaged over each 100 μm diameter DNA array spot to extract the magnetic spot intensity, analogous to the fluorescence spot intensity used in conventional optical scanners. The magnetic scanning result is compared with results from a commercial laser scanner and particle coverage optical counting to demonstrate the dynamic range and linear sensitivity of the biosensing platform as a potentially inexpensive, sensitive and portable alternative for DNA microarray detection for field applications. PMID:20889328

  13. Artificial Neural Network Approach to Predict Biodiesel Production in Supercritical tert-Butyl Methyl Ether

    Directory of Open Access Journals (Sweden)

    Obie Farobie

    2016-05-01

    Full Text Available In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE. The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict biodiesel yield conducted under supercritical MTBE condition. The result shows that artificial neural network is a powerful tool for modeling and predicting biodiesel yield conducted under supercritical MTBE condition that was proven by a high value of coefficient of determination (R of 0.9969, 0.9899, and 0.9658 for training, validation, and testing, respectively. Using this approach, the highest biodiesel yield was determined of 0.93 mol/mol (corresponding to the actual biodiesel yield of 0.94 mol/mol that was achieved at 400 °C, under the reactor pressure of 10 MPa, oil-to-MTBE molar ratio of 1:40 within 15 min of reaction time.

  14. Toxicity and biofilm-based selection for methyl tert-butyl ether bioremediation technology.

    Science.gov (United States)

    Guisado, I M; Purswani, J; Catón-Alcubierre, L; González-López, J; Pozo, C

    2016-12-01

    Extractive membrane biofilm reactor (EMBFR) technology offers productive solutions for volatile and semi-volatile compound removal from water bodies. In this study, the bacterial strains Paenibacillus etheri SH7 T (CECT 8558), Agrobacterium sp. MS2 (CECT 8557) and Rhodococcus ruber strains A5 (CECT 8556), EE6 (CECT 8612) and EE1 (CECT 8555), previously isolated from fuel-contaminated sites, were tested for adherence on tubular semipermeable membranes in laboratory-scale systems designed for methyl tert-butyl ether (MTBE) bioremediation. Biofilm formation on the membrane surface was evaluated through observation by field-emission scanning electron microscope (FESEM) as well as the acute toxicity (as EC 50 ) of the bacterial growth media. Moreover, extracellular polymeric substance (EPS) production for each strain under different MTBE concentrations was measured. Strains A5 and MS2 were biofilm producers and their adherence increased when the MTBE flowed through the inner tubular semipermeable membrane. No biofilm was formed by Paenibacillus etheri SH7 T , nevertheless, the latter and strain MS2 exhibited the lowest toxicity after growth on the EMBFR. The results obtained from FESEM and toxicity analysis demonstrate that bacterial strains R. ruber EE6, A5, P. etheri SH7 T and Agrobacterium sp. MS2 could be excellent candidates to be used as selective inocula in EMBFR technology for MTBE bioremediation.

  15. Effects of diethylene glycol butyl ether and butoxyethoxyacetic acid on rat and human erythrocytes.

    Science.gov (United States)

    Udden, M M

    2005-03-28

    The toxicity of diethylene glycol butyl ether (DGBE), and its principal metabolite, butoxyethoxyacetic acid (BEAA), were assessed in vitro for rat and human red blood cells. Rat erythrocytes showed evidence of mild hemolysis when exposed to BEAA at concentrations of 5 or 10 mM for 4 h. BEAA treated rat red blood cells also showed evidence of sub-hemolytic damage: increased spherocytosis, a shift in distribution of cell size to larger cells, a significant increase in mean cellular volume, and a decrease in cellular deformability. However, DGBE had no effect on rat red blood cell morphology, cell size, hemolysis or deformability. There was no hemolysis when human red blood cells were exposed to DGBE or BEAA at the same concentrations. No changes in mean cellular volume, distribution of cell size, or morphologic appearance of human red blood cells were observed. No evidence for decreased deformability of human red blood cells exposed to DGBE or BEAA was found. In conclusion, BEAA has weak hemolytic activity and sub-hemolytic effects in vitro on rat erythrocytes, which is consistent with the finding of mild hemolysis when the parent compound DGBE is administered to rats by gavage. The absence of hemolysis or sub-hemolytic damage when human red blood cells were exposed to BEAA or DGBE in vitro indicates that it is unlikely that hemolysis will occur as a result of human exposure to DGBE.

  16. Two-year drinking water carcinogenicity study of methyl tertiary-butyl ether (MTBE) in Wistar rats.

    Science.gov (United States)

    Dodd, Darol; Willson, Gabrielle; Parkinson, Horace; Bermudez, Edilberto

    2013-07-01

    Methyl tertiary-butyl ether (MTBE) has been used as a gasoline additive to reduce tailpipe emissions and its use has been discontinued. There remains a concern that drinking water sources have been contaminated with MTBE. A two-year drinking water carcinogenicity study of MTBE was conducted in Wistar rats (males, 0, 0.5, 3, 7.5 mg ml(-1); and females, 0, 0.5, 3, and 15 mg ml(-1)). Body weights were unaffected and water consumption was reduced in MTBE-exposed males and females. Wet weights of male kidneys were increased at the end of two years of exposure to 7.5 mg ml(-1) MTBE. Chronic progressive nephropathy was observed in males and females, was more severe in males, and was exacerbated in the high MTBE exposure groups. Brain was the only tissue with a statistically significant finding of neoplasms. One astrocytoma (1/50) was found in a female rat (15 mg ml(-1)). The incidence of brain astrocytomas in male rats was 1/50, 1/50, 1/50 and 4/50 for the 0, 0.5, 3 and 7.5 mg ml(-1) exposure groups, respectively. This was a marginally significant statistical trend, but not statistically significant when pairwise comparisons were made or when multiple comparisons were taken into account. The incidence of astrocytoma fell within historical control ranges for Wistar rats, and the brain has not been identified as a target organ following chronic administration of MTBE, ethyl tert-butyl ether, or tertiary butyl alcohol (in drinking water) to mice and rats. We conclude that the astrocytomas observed in this study are not associated with exposure to MTBE. Copyright © 2011 John Wiley & Sons, Ltd.

  17. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (External Review Draft)

    Science.gov (United States)

    EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database.

  18. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    Science.gov (United States)

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Involvement of a novel enzyme, MdpA, in methyl tert-butyl ether degradation in Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Kane, Staci; Hristova, Krassimira R

    2008-11-01

    Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr(59) distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum.

  20. Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites.

    Science.gov (United States)

    Kane, S R; Beller, H R; Legler, T C; Koester, C J; Pinkart, H C; Halden, R U; Happel, A M

    2001-12-01

    The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-(14)C]MTBE was mineralized to (14)CO(2). Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely related to a known MTBE-degrading bacterium, strain PM1. At only one site, the presence of water-soluble gasoline components significantly inhibited MTBE degradation and led to a more pronounced accumulation of the metabolite tert-butyl alcohol. Overall, these results suggest that the effects of oxygen and water-soluble gasoline components on in situ MTBE degradation will vary from site to site and that phylogenetic analysis may be a promising predictor of MTBE biodegradation potential.

  1. Study of an aquifer contaminated by ethyl tert-butyl ether (ETBE): Site characterization and on-site bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, Francoise, E-mail: francoise.fayolle@ifpen.fr [IFP Energies nouvelles, 1 et 4 avenue de Bois-Preau, 92852 Rueil-Malmaison (France); Durand, Jonathan [Institut EGID Bordeaux 3, 1 Allee Daguin 33607 Pessac Cedex (France); SERPOL, 2 chemin du Genie, BP 80, 69633 Venissieux Cedex (France); Cheucle, Mathilde [SERPOL, 2 chemin du Genie, BP 80, 69633 Venissieux Cedex (France); Rosell, Monica [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Michelland, Rory Julien [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1, Villeurbanne (France); CNRS, UMR5557, Ecologie Microbienne (France); Tracol, Jean-Philippe [SERPOL, 2 chemin du Genie, BP 80, 69633 Venissieux Cedex (France); Le Roux, Francoise [IFP Energies nouvelles, 1 et 4 avenue de Bois-Preau, 92852 Rueil-Malmaison (France); Grundman, Genevieve [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1, Villeurbanne (France); CNRS, UMR5557, Ecologie Microbienne (France); Atteia, Olivier [Institut EGID Bordeaux 3, 1 Allee Daguin 33607 Pessac Cedex (France); Richnow, Hans H. [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Dumestre, Alain [SERPOL, 2 chemin du Genie, BP 80, 69633 Venissieux Cedex (France); and others

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Ethyl tert-butyl ether (ETBE) (>300 mg L{sup -1}) found in a groundwater (gas-station). Black-Right-Pointing-Pointer No significant carbon or hydrogen isotopic fractionation of ETBE along the plume. Black-Right-Pointing-Pointer MC-IFP culture degraded ETBE (0.91 mg L{sup -1} h{sup -1}) and BTEX (0.64 mg L{sup -1} h{sup -1}). Black-Right-Pointing-Pointer A pilot plant (2 m{sup 3}) inoculated with MC-IFP degraded ETBE in groundwater (15 Degree-Sign C). Black-Right-Pointing-Pointer ethB gene (ETBE biodegradation) amplified during bioaugmentation (5 Multiplication-Sign 10{sup 6}ethB gene copies L{sup -1}). - Abstract: Ethyl tert-butyl ether (ETBE) was detected at high concentration (300 mg L{sup -1}) in the groundwater below a gas-station. No significant carbon neither hydrogen isotopic fractionation of ETBE was detected along the plume. ETBE and BTEX biodegradation capacities of the indigenous microflora Pz1-ETBE and of a culture (MC-IFP) composed of Rhodococcus wratislaviensis IFP 2016, Rhodococcus aetherivorans IFP 2017 and Aquincola tertiaricarbonis IFP 2003 showed that ETBE and BTEX degradation rates were in the same range (ETBE: 0.91 and 0.83 mg L{sup -1} h{sup -1} and BTEX: 0.64 and 0.82 mg L{sup -1} h{sup -1}, respectively) but tert-butanol (TBA) accumulated transiently at a high level using Pz1-ETBE (74 mg L{sup -1}). An on-site pilot plant (2 m{sup 3}) filled with polluted groundwater and inoculated by MC-IFP, successfully degraded four successive additions of ETBE and gasoline. However, an insignificant ETBE isotopic fractionation was also accompanying this decrease which suggested the involvement of low fractionating-strains using EthB enzymes, but required of additional proofs. The ethB gene encoding a cytochrome P450 involved in ETBE biodegradation (present in R. aetherivorans IFP 2017) was monitored by quantitative real-time polymerase chain reaction (q-PCR) on DNA extracted from water sampled in the pilot plant

  2. Study of an aquifer contaminated by ethyl tert-butyl ether (ETBE): Site characterization and on-site bioremediation

    International Nuclear Information System (INIS)

    Fayolle-Guichard, Françoise; Durand, Jonathan; Cheucle, Mathilde; Rosell, Mònica; Michelland, Rory Julien; Tracol, Jean-Philippe; Le Roux, Françoise; Grundman, Geneviève; Atteia, Olivier; Richnow, Hans H.; Dumestre, Alain

    2012-01-01

    Highlights: ► Ethyl tert-butyl ether (ETBE) (>300 mg L −1 ) found in a groundwater (gas-station). ► No significant carbon or hydrogen isotopic fractionation of ETBE along the plume. ► MC-IFP culture degraded ETBE (0.91 mg L −1 h −1 ) and BTEX (0.64 mg L −1 h −1 ). ► A pilot plant (2 m 3 ) inoculated with MC-IFP degraded ETBE in groundwater (15 °C). ► ethB gene (ETBE biodegradation) amplified during bioaugmentation (5 × 10 6 ethB gene copies L −1 ). - Abstract: Ethyl tert-butyl ether (ETBE) was detected at high concentration (300 mg L −1 ) in the groundwater below a gas-station. No significant carbon neither hydrogen isotopic fractionation of ETBE was detected along the plume. ETBE and BTEX biodegradation capacities of the indigenous microflora Pz1-ETBE and of a culture (MC-IFP) composed of Rhodococcus wratislaviensis IFP 2016, Rhodococcus aetherivorans IFP 2017 and Aquincola tertiaricarbonis IFP 2003 showed that ETBE and BTEX degradation rates were in the same range (ETBE: 0.91 and 0.83 mg L −1 h −1 and BTEX: 0.64 and 0.82 mg L −1 h −1 , respectively) but tert-butanol (TBA) accumulated transiently at a high level using Pz1-ETBE (74 mg L −1 ). An on-site pilot plant (2 m 3 ) filled with polluted groundwater and inoculated by MC-IFP, successfully degraded four successive additions of ETBE and gasoline. However, an insignificant ETBE isotopic fractionation was also accompanying this decrease which suggested the involvement of low fractionating-strains using EthB enzymes, but required of additional proofs. The ethB gene encoding a cytochrome P450 involved in ETBE biodegradation (present in R. aetherivorans IFP 2017) was monitored by quantitative real-time polymerase chain reaction (q-PCR) on DNA extracted from water sampled in the pilot plant which yield up to 5 × 10 6 copies of ethB gene per L −1 .

  3. Etherification of n-butanol to di-n-butyl ether over Keggin-, Wells-Dawson-, and Preyssler-type heteropolyacid catalysts.

    Science.gov (United States)

    Kim, Jeong Kwon; Choi, Jung Ho; Park, Dong Ryul; Song, In Kyu

    2013-12-01

    Etherification of n-butanol to di-n-butyl ether was carried out over various structural classes of heteropolyacid (HPA) catalysts, including Keggin- (H3PW12O40), Wells-Dawson- (H6P2W18O62), and Preyssler-type (H14[NaP5W30O110]) HPA catalysts. Successful formation of HPA catalysts was well confirmed by FT-IR, 31P NMR, and ICP-AES analyses. Acid properties of HPA catalysts were determined by NH3-TPD (temperature-programmed desorption) measurements. Acid strength of the catalysts increased in the order of H14[NaP5W30O110] HPAs served as an important factor determining the catalytic performance in the etherification of n-butanol to di-n-butyl ether.

  4. Detection and Quantification of Methyl tert-Butyl Ether-Degrading Strain PM1 by Real-Time TaqMan PCR

    OpenAIRE

    Hristova, Krassimira R.; Lutenegger, Christian M.; Scow, Kate M.

    2001-01-01

    The fuel oxygenate methyl tert-butyl ether (MTBE), a widely distributed groundwater contaminant, shows potential for treatment by in situ bioremediation. The bacterial strain PM1 rapidly mineralizes and grows on MTBE in laboratory cultures and can degrade the contaminant when inoculated into groundwater or soil microcosms. We applied the TaqMan quantitative PCR method to detect and quantify strain PM1 in laboratory and field samples. Specific primers and probes were designed for the 16S ribos...

  5. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China

    Directory of Open Access Journals (Sweden)

    Dalin Hu

    2016-02-01

    Full Text Available Methyl tertiary butyl ether (MTBE, a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet  little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01 and both were lower than 50 ppm (an occupational threshold limit value. The calculated cancer risks (CRs at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.

  6. [Biodegradation of methyl tert-butyl ether by stabilized immobilized Methylibium petroleiphilum PM1 cells and its biodegradation kinetics analysis].

    Science.gov (United States)

    Cheng, Zhuo-wei; Fu, Ling-xiao; Jiang, Yi-feng; Chen, Jian-meng; Zhang, Rong

    2011-05-01

    Methylibium petroleiphilum PM1, which is capable of degrading methyl tert-butyl ether (MTBE) , was immobilized in calcium alginate gel beads. Several methods were explored to increase the strength of these gel beads. The central composite design analysis indicated that the introduction of 0.2 mol x L(-1) Ca2+ into the crosslinking solution, 1.38 mmol x L(-1) Ca2+ into the growth medium and 0.1% polyethyleneimine (PEI) as the chemical crosslinking agent could increase the stability of the Ca-alginate gel beads with no loss of biodegradation activity. The stabilized immobilized cells could be used 400 h continuously with no breakage and no bioactivity loss. Examination of scanning electron microscope demonstrated that a membrane surrounding the gel beads was formed and the cells could grow and breed well in the stabilized calcium alginate gel beads. Kinetic analysis of the gel bead-degradation indicated that the rate-limiting step was biochemical process instead of intraparticle diffusion process. The diameter of 3 mm affected the biodegradability less while high concentration of PEI induced much more serious mass transfer restraint.

  7. Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds

    International Nuclear Information System (INIS)

    An, Youn-Joo

    2005-01-01

    An earthworm bioassay was conducted to assess ecotoxicity in methyl tert-butyl ether (MTBE)-amended soils. Ecotoxicity of MTBE to earthworms was evaluated by a paper contact method, natural field soil test, and an OECD artificial soil test. All tests were conducted in closed systems to prevent volatilization of MTBE out of test units. Test earthworm species were Perionyx excavatus and Eisenia andrei. Mortality and abnormal morphology of earthworms exposed to different concentrations of MTBE were examined. MTBE was toxic to both earthworm species and the severity of response increased with increasing MTBE concentrations. Perionyx excavatus was more sensitive to MTBE than Eisenia andrei in filter papers and two different types of soils. MTBE toxicity was more severe in OECD artificial soils than in field soils, possibly due to the burrowing behavior of earthworms into artificial soils. The present study demonstrated that ecotoxicity of volatile organic compounds such as MTBE can be assessed using an earthworm bioassay in closed soil microcosm with short-term exposure duration. - Earthworm bioassay can be a good protocol to assess soil ecotoxicity of volatile organic compounds such as MTBE

  8. Preparation and tribological behaviors of poly (ether ether ketone) nanocomposite films containing graphene oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Song Haojie, E-mail: shj6922@163.com; Li Na; Yang Jin; Min Chunying [Jiangsu University, School of Materials Science and Engineering (China); Zhang Zhaozhu [Chinese Academy of Sciences, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics (China)

    2013-02-15

    The composite films of poly (ether ether ketone) (PEEK) filled with different proportions of graphene oxide (GO) nanosheets were prepared by the cast method. The tribological behaviors of the composite films under boundary lubrication (water and liquid paraffin oil lubrication) were investigated and compared with that under dry sliding on an UMT-2 friction and wear machine, by running a steel sphere against the composite films. The results were as follows: GO nanosheets as the filler greatly improve the wear resistance of PEEK under boundary lubrication, though the composites show a different dependence of wear resistance on the filler content. Scanning electron microscopy and optical microscopy performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of GO could be attributed to their small size and extremely thin laminated structure, which allow the GO to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

  9. Fatty acid methyl esters synthesis from non-edible vegetable oils using supercritical methanol and methyl tert-butyl ether

    International Nuclear Information System (INIS)

    Lamba, Neha; Modak, Jayant M.; Madras, Giridhar

    2017-01-01

    Highlights: • FAMEs were synthesized from non-edible oils using supercritical MeOH and MTBE. • Effect of time, temperature, pressure and molar ratio on conversions was studied. • Rate constants of reaction with methanol and MTBE differ by an order of magnitude. • Non-catalytic supercritical reactions are one order faster than acid catalyzed synthesis. - Abstract: Fatty acid methyl esters (FAMEs) are useful as biodiesel and have environmental benefits compared to conventional diesel. In this study, these esters were synthesized non-catalytically from non-edible vegetable oils: neem oil and mahua oil with two different methylating agents: methanol and methyl tert-butyl ether (MTBE). The effects of temperature, pressure, time and molar ratio on the conversion of triglycerides were studied. The temperature was varied in the range of 523–723 K with molar ratios upto 50:1 and a reaction time of upto 150 min. Conversion of neem and mahua oil to FAMEs with supercritical methanol was found to be 83% in 15 min and 99% in 10 min, respectively at 698 K. Further, a conversion of 46% of mahua oil and 59% of neem oil was obtained in 15 min at 723 K using supercritical MTBE. The rate constants evaluated using pseudo first order reaction kinetics were in the range of 4.7 × 10 −6 to 1.0 × 10 −3 s −1 for the investigated range of temperatures. The activation energies obtained were in the range of 62–113 kJ/mol for the reaction systems investigated. The supercritical synthesis was found to be superior to the catalytic synthesis of the corresponding FAMEs.

  10. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Kane, Staci R; Chakicherla, Anu Y; Chain, Patrick S G; Schmidt, Radomir; Shin, Maria W; Legler, Tina C; Scow, Kate M; Larimer, Frank W; Lucas, Susan M; Richardson, Paul M; Hristova, Krassimira R

    2007-03-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

  11. Chronic Carcinogenicity Study of Gasoline Vapor Condensate (GVC) and GVC Containing Methyl Tertiary-Butyl Ether in F344 Rats

    Science.gov (United States)

    Benson, Janet M.; Gigliotti, Andrew P.; March, Thomas H.; Barr, Edward B.; Tibbetts, Brad M.; Skipper, Betty J.; Clark, Charles R.; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m3 for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints. PMID:21432714

  12. An extractive membrane biofilm reactor as alternative technology for the treatment of methyl tert-butyl ether contaminated water.

    Science.gov (United States)

    Guisado, I M; Purswani, J; González-López, J; Pozo, C

    2016-09-01

    Among the strategies developed for contaminated groundwater bioremediation, those based on the use of bacteria adhering to inert supports and establishing biofilms have gained great importance in this field. Extractive membrane biofilm reactor (EMBFR) technology offers productive solutions for the removal of volatile and semi-volatile compounds. EMBFR technology is based on the use of extractive semipermeable membranes through which contaminants migrate to the biological compartment in which microorganisms with pollutant biotransformation and/or mineralization capacities can grow, forming an active biofilm on the membrane surface. The objective of this study was to assess the use of three bacterial strains (Paenibacillus sp. SH7 CECT 8558, Agrobacterium sp. MS2 CECT 8557, and Rhodococcus ruber EE6 CECT 8612), as inoculum in a lab-scale EMBFR running for 28 days under aerobic conditions to eliminate methyl tert-butyl ether (MTBE) from water samples. Three different hydraulic retention times (1, 6, and 12 h) were employed. MTBE degradation values were determined daily by a gas GC-MS technique, as well as suspended bacterial growth. The biofilm established by the bacterial strains on the semipermeable membrane was detected by Field-Emission Scanning Electron Microscopy (FESEM) at the end of each experiment. The acute toxicity of the treated effluents and biomedium was determined by Microtox © assay (EC 50 ).The results achieved from the MTBE degradation, biofilm formation, and toxicity analysis indicated that bacterial strains MS2 and EE6 were the best options as selective inoculum, although further research is needed, particularly with regard to their possible use as a mixed culture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1238-1245, 2016. © 2016 American Institute of Chemical Engineers.

  13. Whole-genorne analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Staci R. [Lawrence Livermore National Laboratory (LLNL); Chakicherla, Anu Y. [Lawrence Livermore National Laboratory (LLNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Schmidt, Radomir [University of California, Davis; Shin, M [U.S. Department of Energy, Joint Genome Institute; Legler, Tina C. [Lawrence Livermore National Laboratory (LLNL); Scow, Kate M. [University of California, Davis; Larimer, Frank W [ORNL; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Hristova, Krassimira R. [University of California, Davis

    2007-03-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C, to C,,) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an similar to 4-Mb circular chromosome and an similar to 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (similar to 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

  14. Volumetric Behaviour of the Ternary System (Methyl Tert-butyl ether + Methylbenzene + Butan-1-ol) and Its Binary sub-System (Methyl Tert-Butyl Ether + Butan-1-ol) within the Temperature Range (298.15–328.15) K

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Troncoso, J.; Škvorová, M.; Havlica, Jaromír; Petrus, P.; Sedláková, Zuzana

    2015-01-01

    Roč. 90, NOV 2015 (2015), s. 59-70 ISSN 0021-9614 R&D Projects: GA ČR(CZ) GAP105/12/0664; GA MŠk(CZ) LD14094 Grant - others:GNIL(IT) 408 REGALIs (CN2012/120) Institutional support: RVO:67985858 Keywords : methylbenzene * density * methyl-tert-butyl ether Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.196, year: 2015

  15. Excess enthalpy, density, and speed of sound determination for the ternary mixture (methyl tert-butyl ether + 1-butanol + n-hexane)

    Energy Technology Data Exchange (ETDEWEB)

    Mascato, Eva [Departamento de Fisica Aplicada, Facultade de Ciencias, Universidade de Vigo, E-36310 Vigo (Spain); Mariano, Alejandra [Laboratorio de Fisicoquimica, Departamento de Quimica, Facultad de Ingenieria, Universidad Nacional del Comahue, 8300 Neuquen (Argentina); Pineiro, Manuel M. [Departamento de Fisica Aplicada, Facultade de Ciencias, Universidade de Vigo, E-36310 Vigo (Spain)], E-mail: mmpineiro@uvigo.es; Legido, Jose Luis [Departamento de Fisica Aplicada, Facultade de Ciencias, Universidade de Vigo, E-36310 Vigo (Spain); Paz Andrade, M.I. [Departamento de Fisica Aplicada, Facultade de Fisica, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain)

    2007-09-15

    Density, ({rho}), and speed of sound, (u), from T = 288.15 to T = 308.15 K, and excess molar enthalpies, (h{sup E}) at T = 298.15 K, have been measured over the entire composition range for (methyl tert-butyl ether + 1-butanol + n-hexane). In addition, excess molar volumes, V{sup E}, and excess isentropic compressibility, {kappa}{sub s}{sup E}, were calculated from experimental data. Finally, experimental excess enthalpies results are compared with the estimations obtained by applying the group-contribution models of UNIFAC (in the versions of Dang and Tassios, Larsen et al., Gmehling et al.), and DISQUAC.

  16. Isolate PM1 populations are dominant and novel methyl tert-butyl ether-degrading bacterial in compost biofilter enrichments.

    Science.gov (United States)

    Bruns, M A; Hanson, J R; Mefford, J; Scow, K M

    2001-03-01

    The gasoline additive MTBE, methyl tert-butyl ether, is a widespread and persistent groundwater contaminant. MTBE undergoes rapid mineralization as the sole carbon and energy source of bacterial strain PM1, isolated from an enrichment culture of compost biofilter material. In this report, we describe the results of microbial community DNA profiling to assess the relative dominance of isolate PM1 and other bacterial strains cultured from the compost enrichment. Three polymerase chain reaction (PCR)-based profiling approaches were evaluated: denaturing gradient gel electrophoresis (DGGE) analysis of 230 bp 16S rDNA fragments; thermal gradient gel electrophoresis (TGGE) analysis of 575 bp 16S rDNA fragments; and non-denaturing polyacrylamide gel electrophoresis of 300-1,500 bp fragments containing 16S/23S ribosomal intergenic transcribed spacer (ITS) regions. Whereas all three DNA profiling approaches indicated that PM1-like bands predominated in mixtures from MTBE-grown enrichments, ITS profiling provided the most abundant and specific sequence data to confirm strain PM1's presence in the enrichment. Moreover, ITS profiling did not produce non-specific PCR products that were observed with T/DGGE. A further advantage of ITS community profiling over other methods requiring restriction digestion (e.g. terminal restriction fragment length polymorphisms) was that it did not require an additional digestion step or the use of automated sequencing equipment. ITS bands, excised from similar locations in profiles of the enrichment and PM1 pure culture, were 99.9% identical across 750 16S rDNA positions and 100% identical across 691 spacer positions. BLAST comparisons of nearly full-length 16S rDNA sequences showed 96% similarity between isolate PM1 and representatives of at least four different genera in the Leptothrix subgroup of the beta-Proteobacteria (Aquabacterium, Leptothrix, Rubrivivax and Ideonella). Maximum likelihood and parsimony analyses of 1,249 nucleotide

  17. Gene mdpC plays a regulatory role in the methyl-tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1.

    Science.gov (United States)

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2015-04-01

    Among the few bacteria known to utilize methyl tert-butyl ether (MTBE) as a sole carbon source, Methylibium petroleiphilum PM1 is a well-characterized organism with a sequenced genome; however, knowledge of the genetic regulation of its MTBE degradation pathway is limited. We investigated the role of a putative transcriptional activator gene, mdpC, in the induction of MTBE-degradation genes mdpA (encoding MTBE monooxygenase) and mdpJ (encoding tert-butyl alcohol hydroxylase) of strain PM1 in a gene-knockout mutant mdpC(-). We also utilized quantitative reverse transcriptase PCR assays targeting genes mdpA, mdpJ and mdpC to determine the effects of the mutation on transcription of these genes. Our results indicate that gene mdpC is involved in the induction of both mdpA and mdpJ in response to MTBE and tert-butyl alcohol (TBA) exposure in PM1. An additional independent mechanism may be involved in the induction of mdpJ in the presence of TBA. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... ether, and ethylene oxide. 721.7000 Section 721.7000 Protection of Environment ENVIRONMENTAL PROTECTION... ethylene oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  19. The application of silicalite-1/fly ash cenosphere (S/FAC) zeolite composite for the adsorption of methyl tert-butyl ether (MTBE).

    Science.gov (United States)

    Lu, Jia; Xu, Fang; Wang, Deju; Huang, Jue; Cai, Weimin

    2009-06-15

    Silicalite-1/fly ash cenosphere (S/FAC) zeolite composite has been applied for batch adsorption of methyl tert-butyl ether (MTBE) from water systems. Here the key experimental conditions, including the ratio of initial MTBE concentration to the amount weight of S/FAC, adsorption time and temperature, have been discussed in detail. The results show that approximately 93-95% MTBE could be adsorbed with initial concentration of MTBE solution 1000 microg l(-1). The column flow-through experiments also prove the high capacity of S/FAC composite for MTBE removal. The distinct advantages of S/FAC zeolite composite as adsorbent lie in (1) enhanced adsorption rate and capacity based on hierarchical micro and meso/macroporosity of S/FAC; (2) more easily operation and recycling process by assembly of nano-sized silicalite-1 zeolite on FAC support.

  20. Viscosities of binary mixtures of some n-ethoxyethanols with ethyl tert-butyl ether at T = (293.15, 298.15, and 303.15) K

    International Nuclear Information System (INIS)

    Cwiklinska, Aneta; Dzikowski, Tomasz; Szychowski, Dariusz; Kinart, Wojciech J.; Kinart, Cezary M.

    2007-01-01

    Viscosities at T = (293.15, 298.15, and 303.15) K in the binary mixtures of ethyl tert-butyl ether with 2-ethoxyethanol, 2-(2-ethoxyethoxy)ethanol, and 2-[2-(2-ethoxyethoxy)ethoxy]ethanol have been measured over the entire range of mixture compositions. From the experimental data, deviations in the viscosity (Δln η) and excess energies of activation for viscous flow (ΔG *E ) have been calculated. The viscosity data were correlated with equations of Hind et al., Grunberg and Nissan, Auslaender, and McAllister. The results for Δln η and ΔG *E are discussed in terms of intermolecular interactions and structure of studied binary mixtures

  1. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  2. Involvement of a Novel Enzyme, MdpA, in Methyl tert-Butyl Ether Degradation in Methylibium petroleiphilum PM1 ▿

    Science.gov (United States)

    Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Kane, Staci; Hristova, Krassimira R.

    2008-01-01

    Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr59 distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum. PMID:18791002

  3. Effect of benzene and ethylbenzene on the transcription of methyl-tert-butyl ether degradation genes of Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2016-09-01

    Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.

  4. Anodic oxidation of chloride ions in 1-butyl-3-methyl-limidazolium tetrafluoroborate ionic liquid

    International Nuclear Information System (INIS)

    Zhang, Qibo; Hua, Yixin; Wang, Rui

    2013-01-01

    Highlights: • The anodic oxidation of Cl − in BMIMBF 4 is electrochemically irreversible with diffusion controlled. • The oxidation of Cl − in BMIMBF 4 is more likely to form tri-chloride ion, Cl 3 − but not chlorine, Cl 2 . • The minute amount of Cl 2 detected after electrolysis forms according to the equilibrium of Cl 2 + Cl − ⇌ Cl 3 − . -- Abstract: The oxidation behavior of chloride ions on platinum electrodes was investigated in a natural ionic liquid, 1-butyl-3-methyl-limidazolium tetrafluoroborate (BMIMBF 4 ) in the presence of high concentrations of 1-butyl-3-methyl-limidazolium chloride (BMIMCl). Analysis of the electrode reaction was explored using cyclic voltammetry, and chronoamperometry with a platinum micro-disk electrode, and bulk potentiostatic electrolysis and UV–vis spectroscopy. The anodic oxidation of chloride ions on the platinum micro-disk electrode in the mixture was considered to be an irreversible process with diffusion controlled as revealed by cyclic voltammetry. The diffusion coefficient, D, and the number of electrons transferred, n, for anodic oxidation of Cl − in BMIMBF 4 derived from results of chronoamperometry revealed that the oxidation of chloride ions was more likely to form tri-chloride ion, Cl 3 − but not chlorine, Cl 2 . Bulk electrolysis and UV–vis spectroscopy further confirmed that the tri-chloride ion was the main product from the overall oxidation of the chloride ion

  5. Aspects of reaction of N-oxide radical with ethers in 13C NMR spectrum

    International Nuclear Information System (INIS)

    Kolodziejski, W.

    1980-01-01

    The stable radical N-oxide 2,2,6,6-tetramethylpiperidine was dissolved in ethers. The 13 C NMR spectra were recorded in the temperature 313K at the frequency 22,625 MHz on the spectrometers with Fourier transformation. The dissolution of the radical in ether caused the contact shifts in NMR spectra. The shifts were measured. (A.S.)

  6. Fluazifop-P-butyl induced ROS generation with IAA (indole-3-acetic acid) oxidation in Acanthospermum hispidum D.C.

    Science.gov (United States)

    Liu, Zhihang; Li, Pingliang; Sun, Xiaoxue; Zhou, Fei; Yang, Congjun; Li, Lingxu; Matsumoto, Hiroshi; Luo, Xiaoyong

    2017-11-01

    Acanthospermum hispidum D.C. was particularly susceptible to fluazifop-P-butyl, an aryloxyphenoxypropionate herbicide, and the primary action site for the herbicide was shoot apical meristem, which is also the main site of indole-3-acetic acid (IAA) biosynthesis and action. Membrane lipid peroxidation caused by increasing levels of reactive oxygen species (ROS) was considered as an action mechanism of fluazifop-P-butyl in A. hispidum. To further clarify the ROS inducing mechanism of fluazifop-P-butyl in the plant, the interactions between fluazifop-P-butyl and auxin compounds IAA or 2,4-dichlorophenoxyacetic acid (2,4-D) were studied. Haloxyfop-P-methyl, an AOPP herbicide which is inactive on A. hispidum, was used for comparison. The results showed that the growth inhibition and malondialdehyde or H 2 O 2 increases induced by fluazifop-P-butyl on A. hispidum were reversed by IAA or 2,4-D. The IAA content was decreased but the contents of three IAA oxidation metabolites, indole-3-methanol, indole-3-aldehyde and indole-3-carboxylic acid were increased by fluazifop-P-butyl in A. hispidum, but not by haloxyfop-P-methyl. The growth of A. hispidum was not inhibited by three IAA oxidative compounds. Moreover, the activities of IAA oxidase and peroxidase were increased by fluazifop-P-butyl but not by haloxyfop-P-methyl, and the increase was reversed by IAA or 2,4-D. We suggest that there is an antagonistic effect between fluazifop-P-butyl and IAA or 2,4-D, and the IAA oxidation may be involved in the action mechanism of fluazifop-P-butyl in A. hispidum. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The radiation chemistry of poly(arylene ether phosphine oxide)s

    International Nuclear Information System (INIS)

    Hill, D.J.T.; Hopewell, J.L.; O'Donnell, J.H.; Pomery, P.J.

    1995-01-01

    Electron spin resonance spectroscopy has been used to study the radicals which are formed on the gamma radiolysis of selected poly(arylene ether phosphene oxide)s which have been irradiated either at 77 or 303 K. At 77 K both neutral and anionic radicals are formed, but the anionic radicals are unstable above 200 K. Two types of neutral radicals were observed. They were the phenyl and phenoxyl radicals formed by homolytic scission of the backbone ether bonds. 31 P NMR spectroscopy showed that no new structures involving phosphorus were formed, but there was an indication that crosslinking may take place at aromatic rings adjacent to phosphorus atoms. Solution viscosity measurements indicated that the polymers undergo nett chain scission on irradiation, but the nett scission yield is very small. (author)

  8. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N.

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  9. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Keun-Chan; Stringfellow, William T.

    2003-10-02

    Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split

  10. Aerobic degradation of methyl tert-butyl ether in a closed symbiotic system containing a mixed culture of Chlorella ellipsoidea and Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Zhong, Weihong; Li, Yixiao; Sun, Kedan; Jin, Jing; Li, Xuanzhen; Zhang, Fuming; Chen, Jianmeng

    2011-01-30

    The contamination of groundwater by methyl tert-butyl ether (MTBE) is one of the most serious environmental problems around the world. MTBE degradation in a closed algal-bacterial symbiotic system, containing a mixed culture of Methylibium petroleiphilum PM1 and Chlorella ellipsoidea, was investigated. The algal-bacterial symbiotic system showed increased MTBE degradation. The MTBE-degradation rate in the mixed culture (8.808 ± 0.007 mg l(-1) d(-1)) was higher than that in the pure bacterial culture (5.664 ± 0.017 mg l(-1) d(-1)). The level of dissolved oxygen was also higher in the mixed culture than that in the pure bacterial culture. However, the improved efficiency of MTBE degradation was not in proportional to the biomass of the alga. The optimal ratio of initial cell population of bacteria to algae was 100:1. An immobilized culture of mixed bacteria and algae also showed higher MTBE degradation rate than the immobilized pure bacterial culture. A mixed culture with algae and PM1 immobilized separately in different gel beads showed higher degradation rate (8.496 ± 0.636 mg l(-1) d(-1)) than that obtained with algae and PM1 immobilized in the same gel beads (5.424 ± 0.010 mg l(-1) d(-1)). Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2017-01-01

    Full Text Available Methyl tert-butyl ether (MTBE has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC. A polypyrrole (PPy-modified GAC composite (PPy/GAC was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR and Brunauer-Emmett-Teller (BET surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation, the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.

  12. Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1. Reactor startup, steady-state performance, and culture characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, N.Y.; Deshusses, M.A. [Univ. of California, Riverside, CA (United States). Dept. of Chemical and Environmental Engineering

    1999-09-01

    An aerobic microbial consortium able to biodegrade methyl tert-butyl ether (MTBE) was enriched in two waste air biotrickling filters after continuous operation for 6 months. After this acclimation phase, the two laboratory-scale biotrickling filters were able to degrade up to 50 g of MTBE per cubic meter of reactor per hour, a value comparable to other gasoline constituents. Such high performance could be sustained for at least 4--6 weeks. After the acclimation phase, the MTBE degrading biotrickling filters were characterized by their almost full conversion of MTBE to carbon dioxide and the absence of any degradation byproducts in either the gas or the liquid phase. They also exhibited a very high specific degradation activity per amount of biomass, and a low rate of biomass accumulation. An observed biomass yield of 0.1 g g{sup {minus}1} and a specific growth rate of 0.025 day{sup {minus}1} were determined for the biotrickling filter process culture. Further data on MTBE mass transfer and on the dynamic behavior of the biotrickling filter are presented in part 2 of this paper. Overall, the results demonstrate that MTBE can be effectively biodegraded under carefully controlled environmental conditions.

  13. Concentrations and potential health risks of methyl tertiary-butyl ether (MTBE) in air and drinking water from Nanning, South China.

    Science.gov (United States)

    Zhang, Li'e; Qin, Jian; Zhang, Zhiyong; Li, Qin; Huang, Jiongli; Peng, Xiaowu; Qing, Li; Liang, Guiqiang; Liang, Linhan; Huang, Yuman; Yang, Xiaobo; Zou, Yunfeng

    2016-01-15

    Levels of methyl tertiary-butyl ether (MTBE) in occupational air, ambient air, and drinking water in Nanning, South China, were investigated, and then their potential health risks to occupational workers and the general public were evaluated. Results show that the MTBE concentration in occupational air from 13 service stations was significantly higher than that in ambient air from residential areas (pwater samples from household taps yielded detectable MTBE in the range of 0.04-0.33 μg/L, which is below the US drinking water standard of 20-40 μg/L. The non-carcinogenic risk of MTBE from air inhalation may be negligible because the calculated hazard quotient was less than 1. The mean MTBE lifetime cancer risk was within the acceptable limit of 1 × 10(-6) to 1 × 10(-4), but the lifetime cancer risk of refueling workers in the urban service station at the 95th percentile slightly exceeded the maximum acceptable carcinogen risk (1 × 10(-4)), indicating the potential carcinogenic health effects on the population highly exposed to MTBE in this region. The hazard index and carcinogenic risk of MTBE in drinking water were significantly lower than the safe limit of US Environmental Protection Agency, suggesting that drinking water unlikely poses significant health risks to the residents in Nanning. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Surface-Initiated Atom Transfer Radical Polymerization of Magnetite Nanoparticles with Statistical Poly(tert-butyl acrylate-poly(poly(ethylene glycol methyl ether methacrylate Copolymers

    Directory of Open Access Journals (Sweden)

    Patcharin Kanhakeaw

    2015-01-01

    Full Text Available This work presented the surface modification of magnetite nanoparticle (MNP with poly[(t-butyl acrylate-stat-(poly(ethylene glycol methyl ether methacrylate] copolymers (P[(t-BA-stat-PEGMA] via a surface-initiated “grafting from” atom transfer radical polymerization (ATRP. Loading molar ratio of t-BA to PEGMA was systematically varied (100 : 0, 75 : 25, 50 : 50, and 25 : 75, resp. such that the degree of hydrophilicity of the copolymers, affecting the particle dispersibility in water, can be fine-tuned. The reaction progress in each step of the synthesis was monitored via Fourier transform infrared spectroscopy (FTIR. The studies in the reaction kinetics indicated that PEGMA had higher reactivity than that of t-BA in the copolymerizations. Gel permeation chromatography (GPC indicated that the molecular weights of the copolymers increased with the increase of the monomer conversion. Transmission electron microscopy (TEM revealed that the particles were spherical with averaged size of 8.1 nm in diameter. Dispersibility of the particles in water was apparently improved when the copolymers were coated as compared to P(t-BA homopolymer coating. The percentages of MNP and the copolymer in the composites were determined via thermogravimetric analysis (TGA and their magnetic properties were investigated via vibrating sample magnetometry (VSM.

  15. Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems▿ †

    Science.gov (United States)

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.

    2011-01-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686

  16. Butylated caffeic acid: An efficient novel antioxidant

    International Nuclear Information System (INIS)

    Shi, G.; Liao, X.; Olajide, T.M.; Liu, J.; Jiang, X.; Weng, X.

    2017-01-01

    A novel antioxidant, butylated caffeic acid (BCA) was rationally designed by adding a tert-butyl group to caffeic acid, which was synthesized at a high yield (36.2%) from 2-methoxy-4-methylphenol (1) by a four-step reaction including Friedel-Crafts alkylation, bromine oxidation, ether bond hydrolysis and Knoevenagel condensation. Its antioxidant capacity was much stronger than common commercial antioxidant tert-butyl hydroquinone (TBHQ) and its mother compound, caffeic acid, in both rancimat and deep frying tests. When investigated via the DPPH method, the antioxidant capacity of BCA was almost equal to TBHQ, but lower than caffeic acid. BCA could be a potentially strong antioxidant, especially for food processing at high temperatures such as deep frying and baking. [es

  17. Physiologically based pharmacokinetic rat model for methyl tertiary-butyl ether; comparison of selected dose metrics following various MTBE exposure scenarios used for toxicity and carcinogenicity evaluation

    International Nuclear Information System (INIS)

    Borghoff, Susan J.; Parkinson, Horace; Leavens, Teresa L.

    2010-01-01

    There are a number of cancer and toxicity studies that have been carried out to assess hazard from methyl tertiary-butyl ether (MTBE) exposure via inhalation and oral administration. MTBE has been detected in surface as well as ground water supplies which emphasized the need to assess the risk from exposure via drinking water contamination. This model can now be used to evaluate route-to-route extrapolation issues concerning MTBE exposures but also as a means of comparing potential dose metrics that may provide insight to differences in biological responses observed in rats following different routes of MTBE exposure. Recently an updated rat physiologically based pharmacokinetic (PBPK) model was published that relied on a description of MTBE and its metabolite tertiary-butyl alcohol (TBA) binding to α2u-globulin, a male rat-specific protein. This model was used to predict concentrations of MTBE and TBA in the kidney, a target tissue in the male rat. The objective of this study was to use this model to evaluate the dosimetry of MTBE and TBA in rats following different exposure scenarios, used to evaluate the toxicity and carcinogenicity of MTBE, and compare various dose metrics under these different conditions. Model simulations suggested that although inhalation and drinking water exposures show a similar pattern of MTBE and TBA exposure in the blood and kidney (i.e. concentration-time profiles), the total blood and kidney levels following exposure of MTBE to 7.5 mg/ml MTBE in the drinking water for 90 days is in the same range as administration of an oral dose of 1000 mg/kg MTBE. Evaluation of the dose metrics also supports that a high oral bolus dose (i.e. 1000 mg/kg MTBE) results in a greater percentage of the dose exhaled as MTBE with a lower percent metabolized to TBA as compared to dose of MTBE that is delivered over a longer period of time as in the case of drinking water.

  18. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, Petra, E-mail: petra.bombach@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany); Nägele, Norbert [Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23" a, E-09001 Burgos (Spain); Rosell, Mònica [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès s/n, 08028 Barcelona (Spain); Richnow, Hans H. [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Fischer, Anko [Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany)

    2015-04-09

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [{sup 13}C{sub 6}]-ETBE (BACTRAP{sup ®}s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant {sup 13}C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation.

  19. Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1▿ †

    Science.gov (United States)

    Kane, Staci R.; Chakicherla, Anu Y.; Chain, Patrick S. G.; Schmidt, Radomir; Shin, Maria W.; Legler, Tina C.; Scow, Kate M.; Larimer, Frank W.; Lucas, Susan M.; Richardson, Paul M.; Hristova, Krassimira R.

    2007-01-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C5 to C12) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an ∼4-Mb circular chromosome and an ∼600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (∼99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria. PMID:17158667

  20. Assessment of the reproductive toxicity of inhalation exposure to ethyl tertiary butyl ether in male mice with normal, low active and inactive ALDH2.

    Science.gov (United States)

    Weng, Zuquan; Ohtani, Katsumi; Suda, Megumi; Yanagiba, Yukie; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2014-04-01

    No data are available regarding aldehyde dehydrogenase 2 (ALDH2) polymorphisms related to the reproductive toxicity possibly caused by ethyl tertiary butyl ether (ETBE). In this study, two inhalation experiments were performed in Aldh2 knockout (KO), heterogeneous (HT) and wild type (WT) C57BL/6 male mice exposed to ETBE, and the data about general toxicity, testicular histopathology, sperm head numbers, sperm motility and sperm DNA damage were collected. The results showed that the 13-week exposure to 0, 500, 1,750 and 5,000 ppm ETBE significantly decreased sperm motility and increased levels of sperm DNA strand breaks and 8-hydroxy-deoxyguanosine in both WT and KO mice, the effects were found in 1,750 and 5,000 ppm groups of WT mice, and all of the three exposed groups of KO mice compared to the corresponding control; furthermore, ETBE also caused decrease in the relative weights of testes and epididymides, the slight atrophy of seminiferous tubules of testis and reduction in sperm numbers of KO mice exposed to ≥500 ppm. In the experiment of exposure to lower concentrations of ETBE (0, 50, 200 and 500 ppm) for 9 weeks, the remarkable effects of ETBE on sperm head numbers, sperm motility and sperm DNA damage were further observed in KO and HT mice exposed to 200 ppm ETBE, but not in WT mice. Our findings suggested that only exposure to high concentrations of ETBE might result in reproductive toxicity in mice with normal active ALDH2, while low active and inactive ALDH2 enzyme significantly enhanced the ETBE-induced reproductive toxicity in mice, even exposed to low concentrations of ETBE, mainly due to the accumulation of acetaldehyde as a primary metabolite of ETBE.

  1. Using groundwater age distributions to understand changes in methyl tert-butyl ether (MtBE) concentrations in ambient groundwater, northeastern United States

    Science.gov (United States)

    Lindsey, Bruce; Ayotte, Joseph; Jurgens, Bryant; DeSimone, Leslie

    2017-01-01

    Temporal changes in methyl tert-butyl ether (MtBE) concentrations in groundwater were evaluated in the northeastern United States, an area of the nation with widespread low-level detections of MtBE based on a national survey of wells selected to represent ambient conditions. MtBE use in the U.S. peaked in 1999 and was largely discontinued by 2007. Six well networks, each representing specific areas and well types (monitoring or supply wells), were each sampled at 10 year intervals between 1996 and 2012. Concentrations were decreasing or unchanged in most wells as of 2012, with the exception of a small number of wells where concentrations continue to increase. Statistically significant increasing concentrations were found in one network sampled for the second time shortly after the peak of MtBE use, and decreasing concentrations were found in two networks sampled for the second time about 10 years after the peak of MtBE use. Simulated concentrations from convolutions of estimates for concentrations of MtBE in recharge water with age distributions from environmental tracer data correctly predicted the direction of MtBE concentration changes in about 65 percent of individual wells. The best matches between simulated and observed concentrations were found when simulating recharge concentrations that followed the pattern of national MtBE use. Some observations were matched better when recharge was modeled as a plume moving past the well from a spill at one point in time. Modeling and sample results showed that wells with young median ages and narrow age distributions responded more quickly to changes in the contaminant source than wells with older median ages and broad age distributions. Well depth and aquifer type affect these responses. Regardless of the timing of decontamination, all of these aquifers show high susceptibility for contamination by a highly soluble, persistent constituent.

  2. Oxidation of heteroleptic diarylpalladium compounds with tert-butyl hydroperoxide. Substituent effects in aromatic oxidation reactions

    NARCIS (Netherlands)

    Koten, G. van; Valk, J.-M.; Boersma, J.

    1996-01-01

    A series of heteroleptic diarylpalladium compounds, containing both a naphthyl (1-C10H6CH2NMe2-2 or 1-C10H5CH2NMe2-2-Me-3) and a phenyl (1-C6H4CH2NMe2-2 or 1-C6H3CH2NMe2-2-Me-x, x = 3, 5, 6) monoanionic C,N-bidentate ligand, was reacted with tert-butyl hydroperoxide (TBHP) to give selective oxygen

  3. Preparation and characterization of Pd doped ceria–ZnO nanocomposite catalyst for methyl tert-butyl ether (MTBE) photodegradation

    International Nuclear Information System (INIS)

    Seddigi, Zaki S.; Bumajdad, Ali; Ansari, Shahid P.; Ahmed, Saleh A.; Danish, Ekram Y.; Yarkandi, Naeema H.; Ahmed, Shakeel

    2014-01-01

    Highlights: • Novel Pd supported ceria–ZnO photocatalysts were prepared with different amounts of palladium. • The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. • Near complete removal of MTBE was achieved using 1% Pd doped ceria–ZnO catalyst and UV irradiation. • Highest rate constant was obtained in case of 1% Pd doped ceria–ZnO catalyst. • Shape and size of pores are important factors for high photoactivity of catalyst. -- Abstract: A series of binary oxide catalysts (ceria–ZnO) were prepared and doped with different amounts of palladium in the range of 0.5%–1.5%. The prepared catalysts were characterized by SEM, TEM, XRD and XPS, as well as by N 2 sorptiometry study. The XPS results confirmed the structure of the Pd CeO 2−x -ZnO. The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. These photocatalyst efficiently degrade a 100 ppm aqueous solution of MTBE upon UV irradiation for 5 h in the presence of 100 mg of each of these photocatalysts. The removal of 99.6% of the MTBE was achieved with the ceria–ZnO catalyst doped with 1% Pd. In addition to the Pd loading, the N 2 sorptiometry study introduced other factors that might affect the catalytic efficiency is the catalyst average pore sizes. The photoreaction was determined to be a first order reaction

  4. Preparation and characterization of Pd doped ceria–ZnO nanocomposite catalyst for methyl tert-butyl ether (MTBE) photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Seddigi, Zaki S. [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Bumajdad, Ali [Chemistry Department, Faculty of Science, Kuwait University (Kuwait); Ansari, Shahid P. [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Ahmed, Saleh A., E-mail: saleh_63@hotmail.com [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Danish, Ekram Y. [Chemistry Department, King Abdulaziz University, Jeddah (Saudi Arabia); Yarkandi, Naeema H. [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Ahmed, Shakeel [Center for Refining and Petrochemicals, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2014-01-15

    Highlights: • Novel Pd supported ceria–ZnO photocatalysts were prepared with different amounts of palladium. • The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. • Near complete removal of MTBE was achieved using 1% Pd doped ceria–ZnO catalyst and UV irradiation. • Highest rate constant was obtained in case of 1% Pd doped ceria–ZnO catalyst. • Shape and size of pores are important factors for high photoactivity of catalyst. -- Abstract: A series of binary oxide catalysts (ceria–ZnO) were prepared and doped with different amounts of palladium in the range of 0.5%–1.5%. The prepared catalysts were characterized by SEM, TEM, XRD and XPS, as well as by N{sub 2} sorptiometry study. The XPS results confirmed the structure of the Pd CeO{sub 2−x}-ZnO. The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. These photocatalyst efficiently degrade a 100 ppm aqueous solution of MTBE upon UV irradiation for 5 h in the presence of 100 mg of each of these photocatalysts. The removal of 99.6% of the MTBE was achieved with the ceria–ZnO catalyst doped with 1% Pd. In addition to the Pd loading, the N{sub 2} sorptiometry study introduced other factors that might affect the catalytic efficiency is the catalyst average pore sizes. The photoreaction was determined to be a first order reaction.

  5. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Alia, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belen; Bravo, Laura; Goya, Luis

    2006-01-01

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 μM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 μM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 μM and for 20 h with 5 μM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult

  6. Volumetric behaviour of the ternary liquid system composed of methyl tert-butyl ether, toluene, and isooctane at temperatures from (298.15 to 328.15) K: Experimental data and correlation

    International Nuclear Information System (INIS)

    Moravkova, L.; Wagner, Z.; Sedlakova, Z.; Linek, J.

    2010-01-01

    The densities and speeds of sound of (methyl tert-butyl ether {MTBE} + toluene + isooctane) were measured at four temperatures over the range (298.15 to 328.15) K and the respective values of excess volumes V m E and adiabatic compressibility κ S were calculated. The V m E and κ S values for the ternary and corresponding binaries were fitted to the Redlich-Kister equation considering various numbers of ternary constants. The necessary number of ternary constants needed to describe the system is discussed.

  7. Relationship between Methyl Tertiary Butyl Ether Exposure and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Petrol Station Attendants in Southern China

    Directory of Open Access Journals (Sweden)

    Jianping Yang

    2016-09-01

    Full Text Available Methyl tertiary butyl ether (MTBE—A well known gasoline additive substituting for lead alkyls—causes lipid disorders and liver dysfunctions in animal models. However, whether MTBE exposure is a risk factor for non-alcoholic fatty liver disease (NAFLD remains uncertain. We evaluate the possible relationship between MTBE exposure and the prevalence of NAFLD among 71 petrol station attendants in southern China. The personal exposure concentrations of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS. NAFLD was diagnosed by using abdominal ultrasonography according to the guidelines for the diagnosis and treatment of NAFLD suggested by the Chinese Hepatology Association. Demographic and clinical characteristics potentially associated with NAFLD were investigated. Mutivariate logistic regression analysis was applied to measure odds ratios and 95% confidence intervals (CI. The result showed that the total prevalence of NAFLD was 15.49% (11/71 among the study subjects. The average exposure concentrations of MTBE were 292.98 ± 154.90 μg/m3 and 286.64 ± 122.28 μg/m3 in NAFLD and non-NAFLD groups, respectively, and there was no statistically significant difference between them (p > 0.05. After adjusting for age, gender, physical exercise, body mass index (BMI, systolic blood pressure (SBP, diastolic blood pressure (DBP, alanine aminotransferase (ALT, white blood cell (WBC, total cholesterol (TC, triglycerides (TG, low-density lipoprotein (LDL, and high-density lipoprotein (HDL, the odds ratios were 1.31 (95% CI: 0.85–1.54; p > 0.05, 1.14 (95% CI: 0.81–1.32; p > 0.05, 1.52 (95% CI: 0.93–1.61; p > 0.05 in the groups (including men and women with exposure concentrations of MTBE of 100–200 μg/m3, 200–300 μg/m3, and ≥300 μg/m3, respectively, as compared to the group (including men and women ≤100 μg/m3. Our investigation indicates that exposure to MTBE does not seem to be a significant risk factor for the prevalence of

  8. Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane

    International Nuclear Information System (INIS)

    Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou; Liu, Tao

    2013-01-01

    Highlights: • The critical properties of seven binary mixtures related to gasoline were measured. • The critical properties of the five systems containing MTBE were reported for the first time. • Binary interaction parameters were fitted by experimental data using PR EOS with Wong–Sandler mixing rule. • Redlich–Kister equation was used to correlate the experimental data. -- Abstract: A set of high-pressure view apparatus was designed for determining the critical properties of chemicals. In order to check the reliability of the apparatus, the critical temperatures (T c ) and critical pressures (P c ) of pure n-heptane, cyclohexane, methanol, ethanol, 1-propanol, methyl tert-butyl ether (MTBE), and binary mixture n-hexane + ethanol were measured. The experimental data were in good agreement with the literature data, which proves the reliability of the apparatus used in the work. The critical temperatures and critical pressures of five binary mixtures containing gasoline additive (MTBE + n-heptane, MTBE + cyclohexane, MTBE + methanol, MTBE + ethanol, MTBE + 1-propanol) were measured using the high-pressure view cell with visual observation. The critical temperatures and critical pressures for the five binary mixtures were all reported for the first time. In addition, the critical temperatures and critical pressures of the binary mixture n-heptane + cyclohexane (two of main components in gasoline) were also measured. All the critical lines for the mixtures studied are continuous which connect the critical points of the two pure components, indicating their phase diagrams belong to type I proposed by Scott and van Konynenburg. The critical points of these systems were calculated by the Peng–Robinson equation of state with the Wong–Sandler mixing rule. This model could calculate the critical properties of the mixtures well with the binary interaction parameter k ij obtained by fitting the experimental critical data. And the experimental data were all

  9. SOME REACTIONS OF OXYGEN ATOMS. VOLUME II: ETHYLENE OXIDE, DIMETHYL ETHER, N-C4H10, N-C7H16, AND ISOOCTANE.

    Science.gov (United States)

    REACTION KINETICS, OXYGEN), PRODUCTION, DECOMPOSITION, NITROGEN COMPOUNDS, OXIDES, PHOTOCHEMICAL REACTIONS, MERCURY, EXCITATION, PROPENES, FLUORINE COMPOUNDS, ETHYLENE OXIDE , ETHERS, BUTANES, ALKANES, INFRARED SPECTRA.

  10. Biodegradation of Methyl Tertiary Butyl Ether (MTBE by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays.

    Directory of Open Access Journals (Sweden)

    Guadalupe Alfonso-Gordillo

    Full Text Available This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.

  11. Oxidative DNA damage in male wistar rats exposed to di-n-butyl phthalate

    DEFF Research Database (Denmark)

    Wellejus, A.; Dalgaard, Majken; Loft, S.

    2002-01-01

    Dialkyl phthalate esters are used in the plastic industry and widely distributed in the environment, Previously, it has been shown that di-n-butyl phthalate (DBP) produces testicular atrophy and liver enlargement in rodents, and the mechanisms behind this could involve reactive oxygen species (ROS...

  12. Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers

    Science.gov (United States)

    Phillippi, Ben

    As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale

  13. Selected oxidative stress parameters after single and repeated administration of octabromodiphenyl ether to rats

    Directory of Open Access Journals (Sweden)

    Elżbieta Bruchajzer

    2014-10-01

    Full Text Available Objectives: Octabromodiphenyl ether (OctaBDE was used as a flame retardant applied mostly in the manufacture of plastics utilized in the electrical and electronic industries. Owing to its long half-life and being regarded as an environmental pollutant, OctaBDE, like other polybrominated diphenyl ethers, has been classified as a persistent organic pollutant (POP. This study was carried out to assess the effects of oxidative stress (redox homeostasis induced in rats by OctaBDE. Material and Methods: Female Wistar rats exposed intragastrically to OctaBDE at single (25, 200 or 2000 mg/kg b.w., or repeated (0.4, 2, 8, 40 or 200 mg/kg/day doses during 7–28 days were used in the experiment. Selected oxidative stress parameters were determined in the liver and blood serum. Results: Administration (single or repeated of OctaBDE to rats resulted in the impaired redox homeostasis, as evidenced by the increased levels of reduced (GSH and oxidized (GSSG glutathione in the liver, the reduced total antioxidant status (TAS in serum and the increased concentration of malondialdehyde (MDA in the liver. After multiple doses of OctaBDE, elevated activity of glutathione transferase (GST in the liver was also noted. Conclusions: After repeated administration of OctaBDE at the lowest dose (0.4 mg/kg/day, changes were observed in the parameters (MDA, TAS, GSSG indicative of oxidative stress.

  14. Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl ether) in the presence of hydrophobic tert-butyl alcohol

    Czech Academy of Sciences Publication Activity Database

    Velychkivska, Nadiia; Bogomolova, Anna; Filippov, Sergey K.; Starovoytova, Larisa; Labuta, J.

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1419-1428 ISSN 0303-402X R&D Projects: GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : phase separation * coil-globule transition * poly(vinyl methyl ether) Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.723, year: 2016

  15. Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications

    Science.gov (United States)

    Balasubramanian, K.

    2012-09-01

    Composite materials have been used for aerospace for some time now and have gained virtually 100% acceptance as the materials of choice. Speciality polymers like poly ether sulphones (PES), poly ether ether ketones(PEEK), poly ether imides (PEI) are highly preferred materials as plastic matrix due to their superior temperature performance, excellent wear & friction resistance, excellent dimensional accuracy, high tensile strength, high modulus, precise machinability and chemical resistance. In recent years nanoadditives like single and multiwall carbon nanotubes, graphenes and graphene oxides(GO) are finding huge market potential in aerospace and automobile industries. But manufacture related factors such as particle/ matrix interphases, surface activation, mixing process, particle agglomeration, particle size and shape may lead to different property effects. In this research GO/PES composites were prepared by high shear melt blending technique. GO monolayers were exfoliated from natural graphite flake and dispersed homogeneously in PES matrix for the GO content ranging between 0.5 to 2.0 volume percentage with a high shear twin screw batch mixer. These melt blended nanocomposites were injection moulded for mechanical property validation of tensile strength, flexural modulus and impact resistance. Addition of 0.5 volume percentage of GO enhanced the tensile strength and flexural modulus by 40% and 90% respectively. The results show that addition of GO to PES increase mechanical properties due to the formation of continuous network, good dispersion and strong interfacial interactions. The strong interfacial interactions were accounted for the increase in glass transition temperature. Also there was a significant improvement in the impact resistance of the PES/ GO nanocomposite. The injection moulded samples were tested for stealth performance by measuring the electromagnetic shielding property.

  16. Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications

    International Nuclear Information System (INIS)

    Balasubramanian, K

    2012-01-01

    Composite materials have been used for aerospace for some time now and have gained virtually 100% acceptance as the materials of choice. Speciality polymers like poly ether sulphones (PES), poly ether ether ketones(PEEK), poly ether imides (PEI) are highly preferred materials as plastic matrix due to their superior temperature performance, excellent wear and friction resistance, excellent dimensional accuracy, high tensile strength, high modulus, precise machinability and chemical resistance. In recent years nanoadditives like single and multiwall carbon nanotubes, graphenes and graphene oxides(GO) are finding huge market potential in aerospace and automobile industries. But manufacture related factors such as particle/ matrix interphases, surface activation, mixing process, particle agglomeration, particle size and shape may lead to different property effects. In this research GO/PES composites were prepared by high shear melt blending technique. GO monolayers were exfoliated from natural graphite flake and dispersed homogeneously in PES matrix for the GO content ranging between 0.5 to 2.0 volume percentage with a high shear twin screw batch mixer. These melt blended nanocomposites were injection moulded for mechanical property validation of tensile strength, flexural modulus and impact resistance. Addition of 0.5 volume percentage of GO enhanced the tensile strength and flexural modulus by 40% and 90% respectively. The results show that addition of GO to PES increase mechanical properties due to the formation of continuous network, good dispersion and strong interfacial interactions. The strong interfacial interactions were accounted for the increase in glass transition temperature. Also there was a significant improvement in the impact resistance of the PES/ GO nanocomposite. The injection moulded samples were tested for stealth performance by measuring the electromagnetic shielding property.

  17. 18-Crown[6]ether functionalized reduced graphene oxide for membrane-free ion selective sensing

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    The focus of this work is on the synthesis of a 1-Aza-18-crown[6]ether functionalized reduced graphene oxide (RGO-crown[6]) with specific K+ binding sites on the RGO surface. Glassy carbon electrodes (GCE) functionalized with RGO-crown[6] weretested for selective potentiometric sensing of K......+ , with a detection limit of 10-5 M without inference from other ions (Na+ , Li+ , NH4+ and Ca2+) in concentrations up to 2.5 × 10-2 M. Similar sensing was achieved with functionalized disposable SPE electrodes. The results demonstrate that RGO-crown[6] is a conductive material full of promise for application...

  18. Effects of metal and acidic sites on the reaction by-products of butyl acetate oxidation over palladium-based catalysts.

    Science.gov (United States)

    Yue, Lin; He, Chi; Hao, Zhengping; Wang, Shunbing; Wang, Hailin

    2014-03-01

    Catalytic oxidation is widely used in pollution control technology to remove volatile organic compounds. In this study, Pd/ZSM-5 catalysts with different Pd contents and acidic sites were prepared via the impregnation method. All the catalysts were characterized by means of N2 adsorption-desorption, X-ray fluorescence (XRF), H2 temperature programmed reduction (H2-TPR), and NH3 temperature programmed desorption (NH3-TPD). Their catalytic performance was investigated in the oxidation of butyl acetate experiments. The by-products of the reaction were collected in thermal desorption tubes and identified by gas chromatography/mass spectrometry. It was found that the increase of Pd content slightly changed the catalytic activity of butyl acetate oxidation according to the yield of CO2 achieved at 90%, but decreased the cracking by-products, whereas the enhancement of strong acidity over Pd-based catalysts enriched the by-product species. The butyl acetate oxidation process involves a series of reaction steps including protolysis, dehydrogenation, dehydration, cracking, and isomerization. Generally, butyl acetate was cracked to acetic acid and 2-methylpropene and the latter was an intermediate of the other by-products, and the oxidation routes of typical by-products were proposed. Trace amounts of 3-methylpentane, hexane, 2-methylpentane, pentane, and 2-methylbutane originated from isomerization and protolysis reactions. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. Comparison of the effects of tert-butyl hydroperoxide and peroxynitrite on the oxidative damage to isolated beef heart mitochondria.

    Science.gov (United States)

    Kohutiar, M; Ivica, J; Vytášek, R; Skoumalová, A; Illner, J; Šantorová, P; Wilhelm, J

    2016-11-08

    Isolated beef heart mitochondria have been exposed to tert-butyl hydroperoxide (tBHP) and peroxynitrite (PeN) in order to model the effects of reactive oxygen and nitrogen species on mitochondria in vivo. The formation of malondialdehyde (MDA), protein carbonyls, lipofuscin-like pigments (LFP), and nitrotyrosine was studied during incubations with various concentrations of oxidants for up to 24 h. The oxidants differed in their ability to oxidize particular substrates. Fatty acids were more sensitive to the low concentrations of tBHP, whereas higher concentrations of PeN consumed MDA. Oxidation of proteins producing carbonyls had different kinetics and also a probable mechanism with tBHP or PeN. Diverse proteins were affected by tBHP or PeN. In both cases, prolonged incubation led to the appearance of proteins with molecular weights lower than 29 kDa bearing carbonyl groups that might have been caused by protein fragmentation. PeN induced nitration of protein tyrosines that was more intensive in the soluble proteins than in the insoluble ones. LFP, the end products of lipid peroxidation, were formed more readily by PeN. On the other hand, fluorometric and chromatographic techniques have confirmed destruction of LFP by higher PeN concentrations. This is a unique feature that has not been described so far for any oxidant.

  20. Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments.

    Science.gov (United States)

    Wang, Linqiong; Li, Yi; Niu, Lihua; Zhang, Wenlong; Zhang, Huanjun; Wang, Longfei; Wang, Peifang

    2018-01-01

    Ammonia oxidation plays a fundamental role in river nitrogen cycling ecosystems, which is normally governed by both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB). Co-contamination of typical emerging pollutant Polybrominated diphenyl ethers (PBDEs) and heavy metal on AOA and AOB communities in river sediments remains unknown. In this study, multiple analytical tools, including high-throughput pyrosequencing and real-time quantitative PCR (qPCR), were used to reveal the ammonia monooxygenase (AMO) activity, subunit alpha (amoA) gene abundance, and community structures of AOA and AOB in river sediments. It was found that the inhibition of AMO activities was increased with the increase of decabromodiphenyl ether (BDE 209, 1-100 mg kg -1 ) and copper (Cu, 50-500 mg kg -1 ) concentrations. Moreover, the synergic effects of BDE 209 and Cu resulted in a higher AMO activity reduction than the individual pollutant BDE 209. The AOA amoA copy number declined by 75.9% and 83.2% and AOB amoA gene abundance declined 82.8% and 90.0% at 20 and 100 mg kg -1 BDE 209 with a 100 mg kg -1 Cu co-contamination, respectively. The pyrosequencing results showed that both AOB and AOA community structures were altered, with a higher change of AOB than that of AOA. The results demonstrated that the AOB microbial community may be better adapted to BDE 209 and Cu pollution, while AOA might possess a greater capacity for stress resistance. Our study provides a better understanding of the ecotoxicological effects of heavy metal and micropollutant combined exposure on AOA and AOB in river sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone) (SPEEK) Composites for Proton Exchange Membrane Materials.

    Science.gov (United States)

    Cao, Ning; Zhou, Chaofan; Wang, Yong; Ju, Hong; Tan, Dongyang; Li, Jin

    2018-03-28

    As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM) is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion) membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone) (SPEEK) was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG) was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  2. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  3. Volumetric and viscometric properties of binary mixtures of {l_brace}methyl tert-butyl ether (MTBE) + alcohol{r_brace} at several temperatures and p = 0.1 MPa: Experimental results and application of the ERAS model

    Energy Technology Data Exchange (ETDEWEB)

    Hoga, H.E. [Departamento de Engenharia Quimica, Centro Universitario da FEI, Avenida Humberto de Alencar, Castelo Branco 3972, 09850-901 Sao Bernardo do Campo, Sao Paulo (Brazil); Torres, R.B., E-mail: belchior@fei.edu.br [Departamento de Engenharia Quimica, Centro Universitario da FEI, Avenida Humberto de Alencar, Castelo Branco 3972, 09850-901 Sao Bernardo do Campo, Sao Paulo (Brazil)

    2011-08-15

    Highlights: > Binary mixtures of MTBE + alcohol have been studied. > Volumetric and viscometric properties have been determined at several temperatures. > Excess molar volumes have been used to test the applicability of the ERAS model. > The results are discussed in terms of chemical and structural effects. - Abstract: Densities and viscosities of binary mixtures of {l_brace}methyl tert-butyl ether (MTBE) + methanol, or +ethanol, or +1-propanol, or +2-propanol, or +1-butanol, or +1-pentanol, or +1-hexanol{r_brace} have been determined as a function of composition at several temperatures and atmospheric pressure. The temperatures studied were (293.15, 298.15, 303.15, and 308.15) K. The experimental results have been used to calculate the excess molar volume (V{sub m}{sup E}) and viscosity deviation ({Delta}{eta}). Both V{sub m}{sup E} and {Delta}{eta} values were negative over the entire range of mole fraction for all temperatures and systems studied. Moreover, the V{sub m}{sup E} values have been used to test the applicability of the Extended Real Associated Solution (ERAS) model.

  4. γ-aminobutyric acidA (GABAA) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    International Nuclear Information System (INIS)

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing; Chen Jingyuan

    2009-01-01

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA A receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA A receptor α1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA A receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  5. Effect of antioxidant tertiary butyl hydroquinone on the thermal and oxidative stability of sesame oil (sesamum indicum) by ultrasonic studies.

    Science.gov (United States)

    Prasad, N; Siddaramaiah, Basavarajaiah; Banu, Mujeeda

    2015-04-01

    The aim of the current investigation is to evaluate the efficiency of tertiary butyl hydroquinone (TBHQ) as an antioxidant in sesame oil (sesamum indicum) by density, viscosity and ultrasonic velocity. The effects of varying amounts of TBHQ on the oxidation stability of sesame oil have been investigated. The antioxidant incorporated sesame oil system and control edible oil were subjected to heating at 180 ± 5 °C continuously for a period of 4 h per day for consecutive 4 days. The parameters used to assess the thermal degradation and oxidation properties of the oils include ultrasonic velocity, viscosity, density and peroxide value. The fatty acid compositions of the oils were measured by gas chromatography. Adiabatic compressibility, intermolecular free length, relaxation time and acoustic impedance have been calculated from experimental data. Viscosity, density and ultrasonic velocity change in control oil is from 3.6553 × 10(-2) to 11.1729 × 10(-2) Nsm(-2), 912.59 to 940.31 kg/m(3) and 1,421 to 1,452 m/s respectively and in sesame oil with 200 ppm TBHQ is from 3.6793 × 10(-2) to 6.4842 × 10(-2) Nsm(-2), 913.78 to 922.45 kg/m(3) and 1,421 to 1,431 m/s respectively for 16 h of heat treated oil. The ultrasonic results obtained have shown reduction in thermal degradation and improvement in oxidation stability of antioxidant loaded oil in comparison to base oil. Hence, it can be recommended that sesame oil with 200 ppm TBHQ can be used for frying without adverse effect on physical properties. The ultrasonic velocity can be used for assessment of stability of frying oil.

  6. Effect of antioxidant butylated hydroxyl anisole on the thermal or oxidative stability of sunflower oil (Helianthus Annuus) by ultrasonic.

    Science.gov (United States)

    Murari, Satish Kumar; Shwetha, M V

    2016-01-01

    The aim of the current investigation was to evaluate the efficiency of butylated hydroxyl anisole (BHA) as an antioxidant in sunflower oil (Helianthus Annuus). The oxidation stability of sunflower oil have been investigated by the effects of varying amounts of BHA. The antioxidant incorporated sunflower oil system and control edible oil were subjected to heating at 180 ± 5 °C continuously for a period of 4 h per day for consecutive 4 days. The parameters used to assess the thermal degradation and oxidation properties of the oils include ultrasonic velocity, viscosity, density and peroxide value. The fatty acid compositions of the oils were measured by gas chromatography. Adiabatic compressibility, intermolecular free length, relaxation time and acoustic impedance have been calculated from experimental data. Viscosity, density and ultrasonic velocity change in control oil is from 3.72 × 10(-2) to 13.2 × 10(-2) Nsm - 2, 918 to 994 kg/m3 and 1412 to 1484 m/s respectively and in sunflower oil with 200 ppm BHA is from 3.88 × 10(-2) to 7.52 × 10(-2) Nsm - 2, 926 to 962 kg/m3 and 1418 to 1463 m/s respectively for 16 h of heat treated oil. The ultrasonic results obtained have shown reduction in thermal degradation and improvement in oxidation stability of antioxidant loaded oil in comparison to base oil. Hence, it can be recommended that sunflower oil with 200 ppm BHA can be used for frying without adverse effect on physical properties. The ultrasonic velocity can be used for assessment of stability of frying oil.

  7. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 ÀC. Samples included: two formulations developed at Kansas City Plant (KCP) (#6 and #10), one commercially available formulation (#21), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl #10 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl #10 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  8. Radiation chemistry of alternative fuel oxygenates - substituted ethers

    International Nuclear Information System (INIS)

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-01-01

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE)

  9. Inhibition of Palmityl Carnitine Oxidation in Rat Liver Mitochondria by Tert-Butyl Hydroperoxide

    Czech Academy of Sciences Publication Activity Database

    Červinková, Z.; Rauchová, Hana; Křiváková, P.; Drahota, Zdeněk

    2008-01-01

    Roč. 57, č. 1 (2008), s. 133-136 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GD303/03/H065; GA ČR(CZ) GA305/04/0500; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50110509 Keywords : liver mitochondria * palmityl carnitine oxidation * tert-butylhydroperoxide Subject RIV: ED - Physiology Impact factor: 1.653, year: 2008

  10. Ethers as gasoline additives : toxicokinetics and acute effects in humans

    OpenAIRE

    Nihlén, Annsofi

    1999-01-01

    Ethers or other oxygen-containing compounds are used as replacements for lead in gasoline and to ensure complete combustion. Methyl tertiary-butyl ether (MTBE) is already in use world-wide and ethyl tertiary-butyl ether (ETBE) may be used increasingly in the future. The aims of the present thesis were to study the uptake and disposition (toxicokinetics) of MTBE and ETBE in humans, to address the issue of biological monitoring and to measure acute effects (assessed by questio...

  11. Polycation-Sodium Lauryl Ether Sulfate-Type Surfactant Complexes : Influence of Ethylene Oxide Length

    NARCIS (Netherlands)

    Vleugels, Leo F. W.; Pollet, Jennifer; Tuinier, Remco

    2015-01-01

    Poiyelectrolyte-surfactant complexes (PESC) are a class of materials which form spontaneously by self-assembly driven by electrostatic and hydrophobic interactions. PESC containing sodium lauryl ether Sulfates (SLES) have found wide application in hair care products like shampoo. Typically, SLES

  12. Electrochemical and thermal properties of polymer electrolytes based on poly(epichlorohydrin-co-ethylene oxide-co-ally glycidyl ether)

    International Nuclear Information System (INIS)

    Rodrigues, L.C.; Barbosa, P.C.; Silva, M.M.; Smith, M.J.

    2007-01-01

    A series of novel electrolytes based on the terpolymer host, poly(epichlorohydrin-co-ethylene oxide-co-allyl glycidyl ether) with lithium perchlorate and lithium bis(trifluoromethanesulfonyl)imide have been prepared and characterized by conductivity measurements, cyclic voltammetry at a gold microelectrode and thermal analysis. Electrolyte compositions, represented as p(EEO-AGE)LiX(wt%), were produced with lithium salt compositions between 0.5 and 53 wt% (where wt% indicates amount of lithium salt present in the epichlorohydrin-co-ethylene oxide-co-allyl glycidyl host matrix). The guest salt and host polymer were dissolved in tetrahydrofuran and cast to produce thin, free-standing electrolyte films. The p(EEO-AGE)LiX(wt%) (X = ClO 4 and TFSI) electrolytes showed encouraging levels of ionic conductivity and acceptable thermal stability. Electrolytes based on this host polymer were obtained as completely amorphous films with good mechanical properties

  13. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    Science.gov (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  14. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    International Nuclear Information System (INIS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-01-01

    Highlights: • Cu and Au on γ-Al 2 O 3 catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k app was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al 2 O 3 supported copper and gold nanoparticles. Li 2 O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N 2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of

  15. Quantifying residues from postharvest fumigation of almonds and walnuts with propylene oxide

    Science.gov (United States)

    A novel analytical approach, involving solvent extraction with methyl tert-butyl ether (MTBE) followed by gas chromatography (GC), was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO,...

  16. 40 CFR 799.1560 - Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.

    Science.gov (United States)

    2010-07-01

    ... attention directed toward achieving optimal quality in the fixation and embedding; preparations of... Evans (1971) under § 798.6050(f)(6) of this chapter. (B)(1) Motor activity. A motor activity test shall...

  17. Isothermal Vapour-Liquid Equilibria in the Binary and Ternary Systems Composed of tert-Butyl Methyl Ether, 3,3-Dimethyl-2-butanone and 2,2-Dimethyl-1-propanol

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Pavlíček, Jan; Wichterle, Ivan

    2009-01-01

    Roč. 278, 1-2 (2009), s. 129-134 ISSN 0378-3812 R&D Projects: GA ČR GA104/07/0444 Institutional research plan: CEZ:AV0Z40720504 Keywords : alcohol * ether * ketone Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.857, year: 2009

  18. Interfacial interactions of poly(ether ketone ketone) polymer coatings onto oxide-free phosphate films on an aluminum surface

    International Nuclear Information System (INIS)

    Asunskis, A. L.; Sherwood, P. M. A.

    2007-01-01

    This article continues a series of papers that shows how thin (10 nm or less) oxide-free phosphate films can be formed on a number of metals. The films formed have potential as corrosion resistant films. Previous papers have shown that it is possible to extend the range of the surface coatings that can be formed by placing a thin polymer layer over the phosphate layer. In this work it is shown how the water insoluble polymer poly(ether ketone ketone) (PEKK) can be placed over a thin oxide-free phosphate film on aluminum metal. The surface and the interfaces involved were studied by valence band and core level x-ray photoelectron spectroscopy. Difference spectra in the valence band region were used to show that there is a chemical interaction between the PEKK and phosphate thin films on the aluminum metal. Three different phosphate film compositions were studied using different phosphorous containing acids, H 3 PO 4 , H 3 PO 3 , and H 3 PO 2 . This type of interaction illustrates the potential of phosphates to act as adhesion promoters. The valence band spectra are interpreted by calculations

  19. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels.

    Directory of Open Access Journals (Sweden)

    Tingting Ma

    Full Text Available Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs is of great concern recently. Effects of di-n-butyl phthalate (DnBP, an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD activity, peroxidase (POD, reactive oxygen species (ROS content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed.

  20. Sulfonated Holey Graphene Oxide (SHGO) Filled Sulfonated Poly(ether ether ketone) Membrane: The Role of Holes in the SHGO in Improving Its Performance as Proton Exchange Membrane for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin

    2017-06-14

    Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.

  1. IRIS Toxicological Review of Ethylene Glycol Mono Butyl ...

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. N/A

  2. Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Birte Mull

    2017-01-01

    Full Text Available Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2 is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO. TiO2 coated with different GO amounts (0.75%–14% were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples.

  3. Comparison of the effects of tert-butyl hydroperoxide and peroxynitrite on the oxidative damage to isolated beef heart mitochondria

    Czech Academy of Sciences Publication Activity Database

    Kohutiar, Matej; Ivica, Josko; Vytášek, R.; Skoumalová, A.; Illner, Jan; Šantorová, P.; Wilhelm, Jiří

    2016-01-01

    Roč. 65, č. 4 (2016), s. 617-626 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/11/0298 Institutional support: RVO:67985823 Keywords : oxidative stress * free radicals * lipid peroxidation * lipofuscinlike pigments * nitrotyrosine Subject RIV: ED - Physiology Impact factor: 1.461, year: 2016

  4. Phosphate-Doped Carbon Black as Pt Catalyst Support: Co-catalytic Functionality for Dimethyl Ether and Methanol Electro-oxidation

    DEFF Research Database (Denmark)

    Yin, Min; Huang, Yunjie; Li, Qingfeng

    2014-01-01

    Niobium-phosphate-doped (NbP-doped) carbon blacks were prepared as the composite catalyst support for Pt nanoparticles. Functionalities of the composite include intrinsic proton conductivity, surface acidity, and interfacial synergistic interactions with methanol and dimethyl ether (DME). The sup......Niobium-phosphate-doped (NbP-doped) carbon blacks were prepared as the composite catalyst support for Pt nanoparticles. Functionalities of the composite include intrinsic proton conductivity, surface acidity, and interfacial synergistic interactions with methanol and dimethyl ether (DME......). The supported Pt catalysts show significant improvement in catalytic activity towards the direct oxidation of methanol and DME, attributable to the enhanced adsorption and dehydrogenation of methanol and DME, as well as the presence of activated OH species in the catalysts. The latter is demonstrated...

  5. Increasing the proton conductivity of sulfonated polyether ether ketone by incorporating graphene oxide: Morphology effect on proton dynamics

    Science.gov (United States)

    Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki

    2018-03-01

    We synthesized graphene oxide-sulfonated polyether ether ketone (GO-SPEEK) composite membrane and compare its proton conductivity with that of Nafion® 117 and SPEEK membranes. From experimental measurements, we found that GO-SPEEK has better proton conductivity (σGO-SPEEK = 3.8 × 10-2 S cm-1) when compared to Nafion® 117 (σNafion = 2.4 × 10-2 S cm-1) and SPEEK (σSPEEK = 2.9 × 10-3 S cm-1). From density functional theory (DFT-) based total energy calculations, we found that GO-SPEEK has the shortest proton diffusion distance among the three membranes, yielding the highest tunneling probability. Hence, GO-SPEEK exhibits the highest conductivity. The short proton diffusion distance in GO-SPEEK, as compared to Nafion® 117 and SPEEK, can be attributed to the presence of oxygenated functional groups of GO in the polymer matrix. This also explains why GO-SPEEK requires the lowest hydration level to reach its maximum conductivity. Moreover, we have successfully shown that the proton conductivity σ is related to the tunneling probability T, i.e., σ = σ‧ exp(-1/T). We conclude that the proton diffusion distance and hydration level are the two most significant factors that determine the membrane’s good conductivity. The distance between ionic sites of the membrane should be small to obtain good conductivity. With this short distance, lower hydration level is required. Thus, a membrane with short separation between the ionic sites can have enhanced conductivity, even at low hydration conditions.

  6. Magnetoresponsive Poly(ether sulfone)-Based Iron Oxide cum Hydrogel Mixed Matrix Composite Membranes for Switchable Molecular Sieving.

    Science.gov (United States)

    Lin, Xi; Nguyen Quoc, Bao; Ulbricht, Mathias

    2016-10-26

    Stimuli-responsive membranes that can adjust mass transfer and interfacial properties "on demand" have drawn large interest over the last few decades. Here, we designed and prepared a novel magnetoresponsive separation membrane with remote switchable molecular sieving effect by simple one-step and scalable nonsolvent induced phase separation (NIPS) process. Specifically, poly(ether sulfone) (PES) as matrix for an anisotropic membrane, prefabricated poly(N-isopropylacrylamide) (PNIPAAm) nanogel (NG) particles as functional gates, and iron oxide magnetic nanoparticles (MNP) as localized heaters were combined in a synergistic way. Before membrane casting, the properties of the building blocks, including swelling property and size distribution for NG, and magnetic property and heating efficiency for MNP, were investigated. Further, to identify optimal film casting conditions for membrane preparation by NIPS, in-depth rheological study of the effects of composition and temperature on blend dope solutions was performed. At last, a composite membrane with 10% MNP and 10% NG blended in a porous PES matrix was obtained, which showed a large, reversible, and stable magneto-responsivity. It had 9 times higher water permeability at the "on" state of alternating magnetic field (AMF) than at the "off"-state. Moreover, the molecular weight cutoff of such membrane could be reversibly shifted from ∼70 to 1750 kDa by switching off or on the external AMF, as demonstrated in dextran ultrafiltration tests. Overall, it has been proved that the molecular sieving performance of the novel mixed matrix composite membrane can be controlled by the swollen/shrunken state of PNIPAAm NG embedded in the nanoporous barrier layer of a PES-based anisotropic porous matrix, via the heat generation of nearby MNP. And the structure of such membrane can be tailored by the NIPS process conditions. Such membrane has potential as enabling material for remote-controlled drug release systems or devices for

  7. High octane ethers from synthesis gas-derived alcohols. Final technical report, September 25, 1990--December 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.

    1994-05-01

    The objective of the research was to develop the methodology for the catalytic synthesis of ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been previously demonstrated by us to occur over superacid catalysts to yield MIBE and smaller amounts of MTBE at moderate pressures and a mixture of methanol and isobutene at low pressures. A wide range of organic resin catalysts and inorganic oxide and zeolite catalysts have been investigated for activity and selectivity in directly coupling alcohols, principally methanol and isobutanol, to form ethers and in the dehydration of isobutanol to isobutene in the presence of methanol. All of these catalysts are strong acids, and it was found that the organic and inorganic catalysts operate in different, but overlapping, temperature ranges, i.e. mainly 60--120{degrees}C for the organic resins and 90--175{degrees}C for the inorganic catalysts. For both types of catalysts, the presence of strong acid centers is required for catalytic activity, as was demonstrated by lack of activity of fully K{sup +} ion exchanged Nafion resin and zirconia prior to being sulfated by treatment with sulfuric acid.

  8. Contribution to the study by infrared spectroscopy of addition compounds of boron fluorides and ethers-oxides or organic sulphides

    International Nuclear Information System (INIS)

    Le Calve, Jacques

    1964-01-01

    This research thesis reports the study of complexes formed with boron fluoride and ethers or organic sulphides. In a first part, the author recalls vibration modes of free boron fluoride and of this compound in a complex. In the next parts, he reports the analysis of infrared spectra of groups present in addition compounds (between 400 and 1500 cm -1 ). He discusses spectrum modifications of electron donors by formation of a coordination bound. Experimental conditions are presented in appendix [fr

  9. Improvements of photocurrent by using modified SiO(2) in the poly(ether urethane)/poly(ethylene oxide) polymer electrolyte for all-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhou, Yanfang; Xiang, Wanchun; Chen, Shen; Fang, Shibi; Zhou, Xiaowen; Zhang, Jingbo; Lin, Yuan

    2009-07-14

    Nanocomposite polymer electrolytes containing poly(ether urethane) (PEUR)/poly(ethylene oxide) (PEO)/modified SiO(2) were prepared for all-solid-state dye-sensitized solar cells with a high efficiency of 4.86% and an active area of 0.25 cm(2) under AM1.5 conditions at 100 mW cm(-2) irradiation.

  10. Lithium transference number measurements and complex abilities in anion trapping triphenyloborane-poly(ethylene oxide) dimethyl ether-lithium trifluoromethanesulfonate composite electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ciosek, M. [Warsaw University of Technology, Faculty of Chemistry Technology, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Marcinek, M. [Warsaw University of Technology, Faculty of Chemistry Technology, ul. Noakowskiego 3, 00-664 Warsaw (Poland)], E-mail: marekm_prv@yahoo.com; Zukowska, G.; Wieczorek, W. [Warsaw University of Technology, Faculty of Chemistry Technology, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2009-07-30

    In this paper we report the combined, positive effect of triphenyloborane (BPh{sub 3}) additive on conductivity and lithium cation transference numbers in poly(ethylene oxide) dimethyl ether (PEODME)-lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}, LiTf) electrolytes. The transport mechanism is discussed on the basis of impedance measurements, restricted diffusion t{sup +} measurements, ionic association semi-empirical quantitative estimation and spectroscopic studies. A substantial increase in the lithium transference number values in triphenylborane enriched composite electrolytes was observed in comparison with the pure PEODME-LiCF{sub 3}SO{sub 3} electrolyte. This effect is assisted by ionic conductivity enhancement.

  11. Studies on the influence of tris(pentafluorophenyl)borane on the properties of ethylene carbonate, dimethyl carbonate and poly(ethylene oxide) dimethyl ether lithium trifluoromethanesulfonate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zukowska, Grazyna Z.; Marcinek, Marek; Drzewiecki, Stanislaw; Kryczka, Jolanta; Syzdek, Jaroslaw; Adamczyk-Wozniak, Agnieszka; Wieczorek, Wladyslaw; Sporzynski, Andrzej [Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2010-11-15

    In this paper we present our studies on the properties of battery electrolyte based on EC/DMC (ethylene carbonate/dimethyl carbonate, w/w ratio 2:5) and PEODME (poly(ethylene oxide) dimethyl ether) (M{sub w} = 500) doped with LiCF{sub 3}SO{sub 3}-lithium trifluoromethanesulfonate (LiTf) and modified with TPFPB (tris(pentafluorophenyl)borane) as a potential anion trapping agent. We were particularly interested how this compound behaves in different solvents, e.g. battery mixture EC/DMC and model polymeric matrix PEODME. We also verified stability of the proposed solutions by means of DSC and FTIR, determined influence on conductivity and lithium transference numbers by impedance spectroscopy, and finally attempted to define mechanism of influence of boron addition on different systems. (author)

  12. Influences of poly(ether urethane) introduction on poly(ethylene oxide) based polymer electrolyte for solvent-free dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yanfang; Xiang Wanchun [CAS Key Laboratory of Photochemistry, Institute of Chemistry, BNLMS, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Chen Shen; Fang Shibi; Zhou Xiaowen; Zhang Jingbo [CAS Key Laboratory of Photochemistry, Institute of Chemistry, BNLMS, Chinese Academy of Sciences, Beijing 100190 (China); Lin Yuan [CAS Key Laboratory of Photochemistry, Institute of Chemistry, BNLMS, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: linyuan@iccas.ac.cn

    2009-11-01

    A poly(ether urethane) (PEUR)/poly(ethylene oxide) (PEO)/SiO{sub 2} based nanocomposite polymer is prepared and employed in the construction of high efficiency all-solid-state dye-sensitized nanocrystalline solar cells. The introduction of low-molecular weight PEUR prepolymer into PEO electrolyte has greatly enhance the electrolyte performance by both improving the interfacial contact properties of electrode/electrolyte and decreasing the PEO crystallization, which were confirmed by XRD and SEM characteristics. The effects of polymer composition, nano SiO{sub 2} content on the ionic conductivity and I{sub 3}{sup -} ions diffusion of polymer-blend electrolyte are investigated. The optimized composition yields an energy conversion efficiency of 3.71% under irradiation by white light (100 mW cm{sup -2})

  13. In-situ chemical oxidation of MTBE

    International Nuclear Information System (INIS)

    Kelley, K.L.; Marley, M.C.; Sperry, K.L.

    2002-01-01

    In-situ chemical oxidation (ISCO) can be a cost-effective method for the destruction of source areas of methyl tertiary butyl ether (MTBE). Several ISCO processes have been tested successfully under laboratory conditions and a few have proven successful when field tested for the destruction of MTBE. This paper reviews the state of the art with respect to MTBE oxidation for several common oxidants and Advanced Oxidation Processes (AOPs). Four frequently used oxidants are reviewed in this paper: hydrogen peroxide (H 2 O 2 ), ozone (O 3 ), permanganate (MnO 4 - ), and persulfate (S 2 O 8 2- ). When choosing an oxidant for a specific remediation strategy, trade-offs exist between oxidant strength and stability in the subsurface. Aquifer and water quality parameters such as pH, alkalinity, and soil oxidant demand (SOD) may influence the initiation and effectiveness of the ISCO reaction and may significantly increase the amount of oxidant required to treat the target contaminant. Oxidation end products are an important consideration in the selection of an oxidant, as not all oxidants have proven successful in complete mineralization of MTBE. Tert-butyl formate (TBF) and tert-butyl alcohol (TBA) are the major intermediate products in the oxidative reactions of MTBE and may pose a greater health hazard than MTBE. Other factors, including regulatory restrictions, need to be considered when choosing an oxidant for a specific application. This paper will highlight the chemistry of the oxidant/MTBE reactions, successes or limitations observed under laboratory and field conditions, and practical design advice when employing the oxidant. (author)

  14. Degradation of methyl-tert-butyl ether (MTBE)

    Czech Academy of Sciences Publication Activity Database

    Cajthaml, Tomáš; Baldrian, Petr; Stoychev, I.; Nerud, František

    2004-01-01

    Roč. 53, - (2004), s. 208-209 ISSN 0964-8305. [International Bideterioration and Biodegradation Symposium /12./. Praha, 14.07.2002-18.07.2002] R&D Projects: GA MŠk LN00B030 Institutional research plan: CEZ:AV0Z5020903 Keywords : mtbe Subject RIV: EE - Microbiology, Virology Impact factor: 0.835, year: 2004

  15. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout, E-mail: rmeijboom@uj.ac.za

    2017-03-15

    Highlights: • Cu and Au on γ-Al{sub 2}O{sub 3} catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k{sub app} was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles. Li{sub 2}O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N{sub 2} absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol

  16. Exposure to polybrominated diphenyl ethers (PBDEs): Changes in thyroid, vitamin A, glutathione homeostasis, and oxidative stress in American kestrels (Falco sparverius)

    Science.gov (United States)

    Fernie, K.J.; Shutt, J.L.; Mayne, G.; Hoffman, D.; Letcher, R.J.; Drouillard, K.G.; Ritchie, I.J.

    2005-01-01

    Polybrominated diphenyl ethers (PBDEs), a class of additive flame retardants, are temporally increasing in wildlife tissues and capable of disrupting normal endocrine function. We determined whether in ovo and post-hatch exposure of captive American kestrels (Falco sparverius) to environmentally relevant PBDEs alter thyroid, retinol, and oxidative stress measures. Control eggs were injected with safflower oil and subsequent nestlings fed the same vehicle; dosed eggs received PBDE congeners (BDE-47, -99, -100, -153), which mainly comprise the Penta-BDE commercial mixture, dissolved in safflower oil at concentrations (1500 ng/g total [Sigma] PBDEs) approximating those in Great Lakes gull eggs. Nestlings hatching from dosed eggs were orally exposed for 29 days to variable Sigma PBDE concentrations that are similar to levels reported in tissues of Great Lakes trout (100 ng/g). Treatment kestrels had lower plasma thyroxine (T-4), plasma retinol, and hepatic retinol and retinyl palmitate concentrations, but unaltered triiodothyronine (T-3) concentrations and thyroid glandular structure. BDE-47, -100, and -99 were negatively associated with plasma T-4, plasma retinol (BDE-100, -99) and hepatic retinol (BDE-47). Despite an antioxidant-rich diet, PBDE exposure induced hepatic oxidative stress, particularly in females, with an increased hepatic GSSG:GSH ratio, a marginal increase in lipid peroxidation, and increased oxidized glutathione. Positive associations were found between concentrations of BDE-183 and thiols and, in males, between BDE-99 and reduced GSH, but a negative association occurred between BDE-99 and TBARS. Subsequently, concentrations of PBDE congeners in wild birds may alter thyroid hormone and vitamin A concentrations, glutathione metabolism and oxidative stress.

  17. Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2016-09-17

    This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015, 119, 7361–7374] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450–1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

  18. A directional entrapment modification on the polyethylene surface by the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether

    Science.gov (United States)

    Lu, Qiang; Chen, Yi; Huang, Juexin; Huang, Jian; Wang, Xiaolin; Yao, Jiaying

    2018-05-01

    A novel entrapment modification method involving directional implantation of the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether (AEO) into the high-density polyethylene (HDPE) surface is proposed. This modification technique allows the AEO modifier to be able to spontaneously attain and subsequently penetrate into the swollen HDPE surface with its hydrophobic stearyl segment, while its hydrophilic poly(ethylene oxide) (PEO) segment spontaneously points to water. The AEO modifier with a HLB number below 8.7 was proved appropriate for the directional entrapment, Nevertheless, AEOs with larger HLB numbers were also effective modifiers in the presence of salt additives. In addition, a larger and hydrophobic micelle, induced respectively by the AEO concentration above 1.3 × 10-2 mol/L and the entrapping temperature above the cloud point of AEO, could lead to a sharp contact angle decline of the modified surface. Finally, a hydrophilic HDPE surface with the modifier coverage of 38.9% was reached by the directional entrapment method, which is far larger than that of 19.2% by the traditional entrapment method.

  19. Effect of Three-spot Seahorse Petroleum Ether Extract on Lipopolysaccharide Induced Macrophage RAW264.7 Inflammatory Cytokine Nitric Oxide and Composition Analysis.

    Science.gov (United States)

    Chen, LiPing; Shen, XuanRi; Chen, GuoHua; Cao, XianYing; Yang, Jian

    2015-01-01

    Three-Spot seahorse is a traditional medicine in Asian countries. However, the alcohol extract is largely unknown for its anti-inflammatory activity. This study aimed at elucidating fraction of potent anti-inflammatory activity of seahorse. A systematic solvent extraction method of liquid-liquid fractionation of ethanol crude extract gave four fractions petroleum ether (PE), and ethyl acetate (EtOAc), water saturated butanol (n-BuOH), water (H2O). In this study, PE extract was selected for further study after preliminary screening test, and was connected to silica column chromatography and eluted with different polarity of mobile phases, and obtained four active fractions (Fr I, Fr II, Fr III, Fr IV). Effect of separated fractions on inflammation was investigated in lipopolysaccharide (LPS) stimulated murine RAW264.7 cells in vitro. The result shows that seahorse extract was capable of inhibiting the production of nitric oxide (NO) significantly in a dose dependent manner and exhibited no notable cytotoxicity on cell viability. IC50 of fraction IV was 36.31 μg/mL, indicating that separated fraction possessed potent NO inhibitory activity against LPS-induced inflammatory response, thus, demonstrated its in vitro anti-inflammatory potentiality, it may be at least partially explained by the presence of anti-inflammation active substances, phenolic compounds, phospholipids and polyunsaturated fatty acids, especially phospholipids and polyunsaturated fatty acids. It could be suggested that seahorse lipid-soluble components could be used in functional food and anti-inflammatory drug preparations.

  20. Skin absorption in vitro of glycol ethers.

    Science.gov (United States)

    Larese Filon, F; Fiorito, A; Adami, G; Barbieri, P; Coceani, N; Bussani, R; Reisenhofer, E

    1999-10-01

    The increased use of glycol ethers (GEs) for water-based paints and cleaning products, combined with a lack of information about many of these products, particularly with regard to the effects of percutaneous exposure, led us to evaluate the skin absorption rates of a group of glycol ethers in vitro. Skin permeation was calculated using the Franz cell method with human skin. A physiological solution was used as the receiving phase. The amount of solvent passing through the skin was analysed with a gas chromatographic technique employing flame ionization detection. A permeation profile was obtained and steady state, lag time and permeation constant flux was calculated for each of the following solvents: ethylene glycol monoethyl ether (EGMEE), propylene glycol mono-methyl ether (PGMME); propylene glycol mono-methyl ether acetate (PGMMEac); 2-propylene glycol 1-butyl ether (2PG1BE), ethylene glycol dimethyl ether (EGDME), ethylene glycol diethyl ether (EGDEE) and diethylene glycol dimethyl ether (DEGDME). All solvents were tested in their pure form and with 70% acetone. For all solvents tested the lag time was less than 2 h, and for the majority of them was about 60 min. Flux at steady state ranged between 0.017 +/- 0.005 and 3.435 +/- 1.897 mg/cm(2)/h and permeation rate was from 0.0192 to 1.02 x 10(-3) cm/h. The presence of acetone in the solution caused a reduction in lag time and an increase in permeation rate, higher for EGMEE, lower for EGDEE, indicating the enhancing effect of this mixture of solvents. Our results confirm the high percutaneous absorption of the GEs tested. The Franz method might be helpful for obtaining a grading of skin notation for hydrophilic substances: in the case of glycol ethers, it can give us precise information about permeation risk, particularly important in the evaluation of exposure. In the case of solvents with high dermal absorption, the air concentration is no longer a sufficient measure of the total exposure to workers, and

  1. Detection and Identification of the Keto-Hydroperoxide (HOOCH 2 OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2015-07-16

    In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF. © 2015 American Chemical Society.

  2. In situ fabrication of cobalt nanoflowers on sulfonated and fluorinated poly (arylene ether ketone-benzimidazole) template film for the electrocatalytic oxidation of glucose.

    Science.gov (United States)

    Wang, Tengfei; Xi, Lingling; Wang, Jianli

    2018-02-01

    Using sulfonated and fluorinated poly (arylene ether ketone) comprising functional strong coordination group benzimidazole (SPAEK-F-BI) as a template film, a novel fabrication method of cobalt nanoflowers (CoNFs) and non-enzymatic glucose electrochemical sensor was developed in this work. After the precursors Co 2+ ions were cooperatively bound by sulfonate and imidazole functionalities contained in SPAEK-F-BI film through ion exchange and strong coordination action, cobalt colloid nuclei were formed and grew to flower-like nanostructures by subsequent in-situ electrochemical reduction on SPAEK-F-BI film modified GCE. Characterization of SPAEK-F-BI film and CoNFs/SPAEK-F-BI film on GCE was performed in detail by FT-IR spectroscopy and scanning electron microscopy (SEM) attached with energy dispersive spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results of SEM showed that beautiful CoNFs constructed by Co colloid nanosheets with just a few nanometers thickness were well dispersed on uniform SPAEK-F-BI film modified GCE, and the density of CoNFs was mainly influenced by the concentration of the precursor solution CoSO 4 . The CoNFs/SPAEK-F-BI composite modified electrode exhibited good electrocatalytic activity toward glucose oxidation in 0.1M NaOH solution, and the kinetic parameters of glucose oxidation were determined using chronoamperometry. When it was applied for the determination of glucose by amperometry at a potential of 0.6V versus Ag/AgCl, the linear range from 5μM to 1.14mM and the detection limit of 800nM (S/N = 3) were obtained. Finally, it was successfully employed to detect the glucose in human serum real samples, and the results were agreed closely with those measured in hospital. Copyright © 2017. Published by Elsevier B.V.

  3. EPR detection of hydroxyl radical generation and oxidative perturbations in lead-exposed earthworms (Eisenia fetida) in the presence of decabromodiphenyl ether.

    Science.gov (United States)

    Liu, Kou; Chen, Lin; Zhang, Wei; Lin, Kuangfei; Zhao, Li

    2015-03-01

    Lead (Pb) and decabromodiphenyl ether (BDE209) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impacts on the oxidative perturbations and hydroxyl radical (·OH) generation in earthworms of exposure to the two chemicals remain almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the effects of Pb in earthworms Eisenia fetida in the presence of BDE209 through the use of several biomarkers in microcosms. The results have demonstrated that the addition of BDE209 (1 or 10 mg kg(-1)) decreased the enzymatic activities [superoxide dismutase, catalase (CAT), peroxidase] and total antioxidant capacity (T-AOC) compared with exposure to BDE209 alone (50, 250 or 500 mg kg(-1)). Electron paramagnetic resonance spectra indicated that ·OH radicals in earthworms were significantly induced by Pb in the presence of BDE209. The changing pattern of malondialdehyde (MDA) contents was accordant with that of ·OH intensity suggested that reactive oxygen species might lead to cellular lipid peroxidation. Furthermore, CAT exhibited more sensitive response to single Pb exposure than the other biomarkers, while T-AOC, ·OH and MDA might be three most sensitive biomarkers in earthworms after simultaneous exposure to Pb and BDE209. The results of these observations suggested that oxidative stress appeared in E. fetida, and it may play an important role in inducing the Pb and BDE209 toxicity to earthworms.

  4. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  5. Comparative study of the influence of hawthorn (Crataegus monogyna) berry ethanolic extract and butylated hydroxylanisole (BHA) on lipid peroxidation, myoglobin oxidation, consistency and firmness of minced pork during refrigeration.

    Science.gov (United States)

    Papuc, Camelia; Predescu, Corina Nicoleta; Tudoreanu, Liliana; Nicorescu, Valentin; Gâjâilă, Iuliana

    2018-03-01

    Following public concern on the use of synthetic food antioxidants, there is an increasing demand for the application of mixed or purified natural antioxidants to maintain quality of meat products quality during storage. The aim of this research was to investigate the effect of ethanolic extract of hawthorn berry, compared to butylated hydroxylanisole (BHA), on lipid peroxidation, myoglobin oxidation, protein electrophoresis pattern, consistency and firmness of minced pork during refrigeration at 4 °C, and to identify the relationship between chemical modifications and consistency variation. After 6 days of refrigeration it was found that the thiobarbituric acid reactive substances value of minced pork containing 200 mg GAE kg -1 total phenolics in minced meat (200 HP) was significantly lower (0.1543 ± 0.006 mg) compared to BHA-treated meat. The ratio of oxymyoglobin to metmyoglobin in treated minced pork was respectively 0.845 for 200 HP and 0.473 for BHA-treated minced meat. Concentrations of 100 HP or 300 HP will generate statistically higher firmness than BHA in minced pork. Hawthorn berry ethanolic extract was more effective than BHA in reducing lipid oxidation and protein degradation, for maintaining firmness and consistency of minced pork during 6 days of refrigeration at 4 °C. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.

  7. Effect of addition of butyl benzyl phthalate plasticizer and zinc oxide nanoparticles on mechanical properties of cellulose acetate butyrate/organoclay biocomposite

    Science.gov (United States)

    Putra, B. A. P.; Juwono, A. L.; Rochman, N. T.

    2017-07-01

    Plastics as packaging materials and coatings undergo increasing demands globally each year. This pose a serious problem to the environment due to its difficulty to degrade. One solution to addressing the problem of plastic wastes is the use of bioplastics. According to the European Organization Bioplastic, one of the biodegradable plastics is derivative of cellulose. To improve mechanical properties of bioplastic, biocomposites are made with the addition of certain additives and fillers. The aim of this study is to investigate the effect of butyl benzyl phthalate plasticizer (BBP) and ZnO nanoparticles addition on mechanical properties of cellulose acetate butyrate (CAB) / organoclay biocomposite. ZnO nanoparticles synthesized from commercial ZnO precursor by using sol-gel size reduction method. ZnO was dissolved in a solution of citric acid in the ratio 1:1 to 1:5 to form zinc citrate. Zinc citrate then decomposed by calcination at temperature of 600oC. ZnO nanoparticles with an average size of 44.4 nm is obtained at a ratio of 1: 2. The addition of ZnO nanoparticles and BBP plasticizer was varied to determine the effect on the mechanical properties of biocomposite. The addition of 10 - 15 %wt ZnO nanoparticles and 30 - 40 %wt BBP plasticizer was studied to determine the effect on the tensile strength, elongation, and modulus elasticity of the biocomposites. Biocomposite films were made by using solution casting method with acetone as solvent. The addition of plasticizer BBP and ZnO nanoparticles by 30% and 10% made biocomposite has a tensile strength of 2.223 MPa.

  8. Butylated caffeic acid: An efficient novel antioxidant; Ácido cafeico butilado: un nuevo y eficaz antioxidante.

    Energy Technology Data Exchange (ETDEWEB)

    Shi, G.; Liao, X.; Olajide, T.M.; Liu, J.; Jiang, X.; Weng, X.

    2017-07-01

    A novel antioxidant, butylated caffeic acid (BCA) was rationally designed by adding a tert-butyl group to caffeic acid, which was synthesized at a high yield (36.2%) from 2-methoxy-4-methylphenol (1) by a four-step reaction including Friedel-Crafts alkylation, bromine oxidation, ether bond hydrolysis and Knoevenagel condensation. Its antioxidant capacity was much stronger than common commercial antioxidant tert-butyl hydroquinone (TBHQ) and its mother compound, caffeic acid, in both rancimat and deep frying tests. When investigated via the DPPH method, the antioxidant capacity of BCA was almost equal to TBHQ, but lower than caffeic acid. BCA could be a potentially strong antioxidant, especially for food processing at high temperatures such as deep frying and baking. [Spanish] Se diseñó razonadamente un nuevo antioxidante, el ácido cafeico butilado (BCA) mediante la adición de un grupo terc-butilo al ácido cafeico, que se sintetizó con un alto rendimiento (36,2%) a partir de 2-metoxi-4-metilfenol, reacción de Friedel-Crafts, oxidación de bromo, hidrólisis del enlace éter y condensación de Knoevenagel. Su capacidad antioxidante fué mucho más fuerte que la del antioxidante comercial mas común el terc-butil hidroquinona (TBHQ) y la de su compuesto madre el ácido cafeico, tanto en rancimat como en pruebas de fritura. Cuando se investigó mediante el método DPPH, la capacidad antioxidante de BCA fue casi igual a TBHQ, pero menor que la del ácido cafeico. BCA podría ser un fuerte antioxidante potencial, especialmente para el procesamiento de alimentos a alta temperatura, tales como freír y hornear.

  9. Dimethyl Sulfide-Dimethyl Ether and Ethylene Oxide-Ethylene Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    Science.gov (United States)

    Kawashima, Yoshiyuki; Tatamitani, Yoshio; Mase, Takayuki; Hirota, Eizi

    2015-06-01

    The ground-state rotational spectra of the dimethyl sulfide-dimethyl ether (DMS-DME) and the ethylene oxide and ethylene sulfide (EO-ES) complexes were observed by Fourier transform microwave spectroscopy, and a-type and c-type transitions were assigned for the normal, 34S, and three 13C species of the DMS-DME and a-type and b-type rotational transitions for the normal, 34S, and two 13C species of the EO-ES. The observed transitions were analyzed by using an S-reduced asymmetric-top rotational Hamiltonian. The rotational parameters thus derived for the DMS-DME were found consistent with a structure of Cs symmetry with the DMS bound to the DME by two C-H(DMS)---O and one S---H-C(DME) hydrogen bonds. The barrier height V3 to internal rotation of the "free" methyl group in the DME was determined to be 915.4 (23) wn, which is smaller than that of the DME monomer, 951.72 (70) wn, and larger than that of the DME dimer, 785.4 (52) wn. For the EO-ES complex the observed data were interpreted in the terms of an antiparallel Cs geometry with the EO bound to the ES by two C-H(ES)---O and two S---H-C(EO) hydrogen bonds. We have applied a natural bond orbital (NBO) analysis to the DMS-DME and EO-ES to calculate the stabilization energy CT (= ΔEσσ*), which were closely correlated with the binding energy EB, as found for other related complexes. Y. Niide and M. Hayashi, J. Mol. Spectrosc. 220, 65-79 (2003). Y. Tatamitani, B. Liu, J. Shimada, T. Ogata, P. Ottaviani, A. Maris, W. Caminati, and J. L. Alonso, J. Am. Chem. Soc. 124, 2739-2743 (2002).

  10. Chemical interaction of dual-fuel mixtures in low-temperature oxidation, comparing n -pentane/dimethyl ether and n -pentane/ethanol

    KAUST Repository

    Jin, Hanfeng

    2018-03-22

    With the aim to study potential cooperative effects in the low-temperature oxidation of dual-fuel combinations, we have investigated prototypical hydrocarbon (CH) / oxygenated (CHO) fuel mixtures by doping n-pentane with either dimethyl ether (DME) or ethanol (EtOH). Species measurements were performed in a flow reactor at an equivalence ratio of ϕ = 0.7, at a pressure of p = 970 mbar, and in the temperature range of 450–930 K using electron ionization molecular-beam mass spectrometry (EI-MBMS). Series of different blending ratios were studied including the three pure fuels and mixtures of n-pentane containing 25% and 50% of CHO. Mole fractions and signals of a significant number of species with elemental composition CHO (n = 1–5, x = 0–(n + 2), y = 0–3) were analyzed to characterize the behavior of the mixtures in comparison to that of the individual components. Not unexpectedly, the overall reactivity of n-pentane is decreased when doping with ethanol, while it is promoted by the addition of DME. Interestingly, the present experiments reveal synergistic interactions between n-pentane and DME, showing a stronger effect on the negative temperature coefficient (NTC) for the mixture than for each of the individual components. Reasons for this behavior were investigated and show several oxygenated intermediates to be involved in enhanced OH radical production. Conversely, ethanol is activated by the addition of n-pentane, again involving key OH radical reactions. Although the main focus here is on the experimental results, we have attempted, in a first approximation, to complement the experimental observations by simulations with recent kinetic models. Interesting differences were observed in this comparison for both, fuel consumption and intermediate species production. The inhibition effect of ethanol is not predicted fully, and the synergistic effect of DME is not captured satisfactorily. The exploratory analysis of the experimental results with current

  11. Electrochemical oxidation of hydrolyzed poly oxymethylene-dimethyl ether by PtRu catalysts on Nb-doped SnO(2-δ) supports for direct oxidation fuel cells.

    Science.gov (United States)

    Kakinuma, Katsuyoshi; Kim, In-Tae; Senoo, Yuichi; Yano, Hiroshi; Watanabe, Masahiro; Uchida, Makoto

    2014-12-24

    We synthesized Pt and PtRu catalysts supported on Nb-doped SnO(2-δ) (Pt/Sn0.99Nb0.01O(2-δ), PtRu/Sn0.99Nb0.01O(2-δ)) for direct oxidation fuel cells (DOFCs) using poly oxymethylene-dimethyl ether (POMMn, n = 2, 3) as a fuel. The onset potential for the oxidation of simulated fuels of POMMn (methanol-formaldehyde mixtures; n = 2, 3) for Pt/Sn0.99Nb0.01O(2-δ) and PtRu/Sn0.99Nb0.01O(2-δ) was less than 0.3 V vs RHE, which was much lower than those of two commercial catalysts (PtRu black and Pt2Ru3/carbon black). In particular, the onset potential of the oxidation reaction of simulated fuels of POMMn (n = 2, 3) for PtRu/Sn0.99Nb0.01O(2-δ) sintered at 800 °C in nitrogen atmosphere was less than 0.1 V vs RHE and is thus considered to be a promising anode catalyst for DOFCs. The mass activity (MA) of PtRu/Sn0.99Nb0.01O(2-δ) sintered at 800 °C was more than five times larger than those of the commercial catalysts in the measurement temperature range from 25 to 80 °C. Even though the MA for the methanol oxidation reaction was of the same order as those of the commercial catalysts, the MA for the formaldehyde oxidation reaction was more than five times larger than those of the commercial catalysts. Sn from the Sn0.99Nb0.01O(2-δ) support was found to have diffused into the Pt catalyst during the sintering process. The Sn on the top surface of the Pt catalyst accelerated the oxidation of carbon monoxide by a bifunctional mechanism, similar to that for Pt-Ru catalysts.

  12. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2009-01-01

    to investigate the anaerobic biodegradability of MTBE and other gasoline ethers. Inoculums collected from various environments were used, along with different electron acceptors. Only one set of the batch experiments showed a 30-60% conversion of MTBE to tert-butyl alcohol under Fe(III)-reducing conditions...

  13. Synthesis and Antiplasmodial Activity of EG-Artemisinin Ethers and ...

    African Journals Online (AJOL)

    The aim of this study was to synthesize a series of ethylene glycol (EG) ethers and quinoline hybrids of the antimalarial drug artemisinin and to evaluate their antimalarial activity in vitro against Plasmodium falciparum strains. The ethers were synthesized in a ... falciparum, ethylene glycol) (EG), ethylene oxide (EO), hybrid ...

  14. Preparation of poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with β-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls.

    Science.gov (United States)

    Zheng, Haijiao; Liu, Qingwen; Jia, Qiong

    2014-05-23

    A poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) (poly(BMA-EDMA)) monolithic column was prepared with in situ polymerization method and modified with allylamine-β-cyclodextrin (ALA-β-CD) and nano-cuprous oxide (Cu2O). A polymer monolith microextraction method was developed with the modified monolithic column for the preconcentration of polychlorinated biphenyls combined with gas chromatography-electron capture detector. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. Because of the hydrophobic properties of β-CD and the porous nano structure of Cu2O, the enrichment capacity of the poly(BMA-EDMA) monolithic column was significantly improved. The extraction efficiency followed the order: poly(BMA-EDMA-ALA-β-CD-Cu2O)>poly(BMA-EDMA-ALA-β-CD)>poly(BMA-EDMA)>direct GC analysis. When applied to the determination of polychlorinated biphenyls in wine samples, low limits of detection (0.09ngmL(-1)) were obtained under the preoptimized conditions (sample volume 1.0mL, sample flow rate 0.1mLmin(-1), eluent volume 0.1mL, and eluent flow rate 0.05mLmin(-1)). In addition, the present method was employed to determine polychlorinated biphenyls in red wine samples and the accuracy was assessed through recovery experiments. The obtained recovery values were in the range of 78.8-104.1% with relative standard deviations less than 9.0%. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Carbonyl{3,3′-di-tert-butyl-5,5′-dimethoxy-2,2′-bis[(4,4,5,5-tetramethyl-1,3,2-dioxaphospholan-2-yloxy]biphenyl-κ2P,P′}hydrido(triphenylphosphane-κPrhodium(I diethyl ether trisolvate

    Directory of Open Access Journals (Sweden)

    Detlef Selent

    2013-01-01

    Full Text Available In the title compound, [RhH(C74H68O8P2(C18H15P(CO]·3C4H10O, the CHP3 coordination set at the RhI ion is arranged in a distorted trigonal–bipyramidal geometry with the P atoms adopting equatorial coordination sites and the C atom of the carbonyl ligand as well as the H atom adopting the axial sites. The asymmetric unit contains two very similar molecules of the rhodium complex, two half-occupied diethyl ether molecules and further diethyl ether solvent molecules which could not be modelled successfully. Therefore contributions of the latter were removed from the diffraction data using the SQUEEZE procedure in PLATON [Spek (2009. Acta Cryst. D65, 148–155].

  16. Williamson alkylation approach to the synthesis of poly(alkyl vinyl ether) copolymers

    International Nuclear Information System (INIS)

    Markova, D.; Christova, D.; Velichkova, R.

    2008-01-01

    A method for synthesis of poly(alkyl vinyl ether-co-vinyl alcohol) copolymers was developed based on the Williamson's alkylation of poly(vinyl acetate) (PVAc) with alkyl iodides. The influence of the alkylating agent and the reaction conditions on the efficiency of the modification reaction was investigated. The copolymers obtained were characterized by means of 1 H NMR and GPC. It was proved that by applying the proposed method copolymers of different composition and properties containing methyl vinyl ether, ethyl vinyl ether as well as n-butyl vinyl ether units could be prepared. Poly(methyl vinyl ether-co-vinyl alcohol)s of high degree of methylation exhibit sharp temperature response at 38-39 deg C in aqueous solution typical of the so-called smart polymers. (authors)

  17. Solubility of hyperbranched polymer, Boltorn W-3000, in alcohols, ethers and hydrocarbons

    International Nuclear Information System (INIS)

    Domanska, Urszula; Zolek-Tryznowska, Zuzanna

    2010-01-01

    (Solid/liquid + liquid) phase diagrams at ambient pressure have been determined for the hyperbranched polymer, Boltorn W3000 with alcohols (methanol, ethanol, 1-propanol, 1-hexanol, 1-decanol), or with ethers (tert-butyl methyl ether, tert-butyl ethyl ether), or with hydrocarbons (n-hexane, n-heptane, benzene, toluene) by a dynamic method from T = 240 K to the boiling temperature of the solvent. (Solid + liquid) phase equilibria with immiscibility in the liquid phase were detected for B-W3000 with the alcohols and aliphatic hydrocarbons. The upper critical solution temperatures, UCSTs, were measured for (B-W3000 + 1-hexanol and 1-decanol) systems. The experimental results of (solid + liquid) phase equilibria have been correlated using NRTL equation.

  18. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    Proton-conducting membranes of organic–inorganic (sulfonated poly (ether ether ketone)/phosphated zirconia nanoparticles) composite were prepared by incorporating various ratios of phosphated zirconia nanoparticles (ZP) in sulfonated poly (ether ether ketone) (SPEEK). SPEEK/ZP showed an improvement of ...

  19. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  20. Voltammetric Determination of Dinonyl Diphenylamine and Butylated Hydroxytoluene in Mineral and Synthetic Oil.

    Science.gov (United States)

    Xiang, Yaling; Qian, Xuzheng; Hua, Meng; Cheng, Bingxue; Chen, Wu; Li, Jian

    2016-07-02

    A method is reported for the determination of diphenylamine and butylated hydroxytoluene in mineral and synthetic oil. The procedure used differential pulse voltammetry with a glassy carbon electrode. This method was then used for determining these antioxidants in supporting electrolyte consisting of dilute sulfuric acid and sodium dodecyl sulfonate in ethanol. Anodic peaks were obtained for both analytes. Oxidation peaks at 250 mV were observed from a mixture of butylated hydroxytoluene and dinonyl diphenylamine, allowing their simultaneous determination. This approach was successfully used for the determination of dinonyl diphenylamine and butylated hydroxytoluene in fortified mineral and synthetic oils with good accuracy and precision.

  1. Troxerutin protects against 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD{sup +}-depletion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Feng [School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Fan, Shao-Hua [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province (China); Zhuang, Juan [School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-Lin, E-mail: ylzheng@jsnu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province (China); Lu, Jun; Wu, Dong-Mei; Shan, Qun; Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province (China)

    2015-02-11

    Highlights: • BDE-47 promotes liver inflammation by triggering oxidative stress-induced NAD{sup +} depletion. • Troxerutin inhibits BDE-47-induced liver inflammation via its antioxidant properties. • Troxerutin restores NAD{sup +} level and consequently abates SirT1 loss. • Troxerutin represses acetylation of NF-κB p65 (K310) and H3K9. • Troxerutin is a candidate for prevention and therapy of BDE-47-induced hepatotoxicity. - Abstract: Emerging evidence indicates that 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) induces liver injury through enhanced ROS production and lymphocytic infiltration, which may promote a liver inflammatory response. Antioxidants have been reported to attenuate the cellular toxicity associated with polybrominated diphenyl ethers (PBDEs). In this study, we investigated the effect of troxerutin, a trihydroxyethylated derivative of the natural bioflavonoid rutin, on BDE-47-induced liver inflammation and explored the potential mechanisms underlying this effect. Our results showed that NAD{sup +}-depletion was involved in the oxidative stress-mediated liver injury in a BDE-47 treated mouse model, which was confirmed by Vitamin E treatment. Furthermore, our data revealed that troxerutin effectively alleviated liver inflammation by mitigating oxidative stress-mediated NAD{sup +}-depletion in BDE-47 treated mice. Consequently, troxerutin remarkably restored SirT1 protein expression and activity in the livers of BDE-47-treated mice. Mechanistically, troxerutin dramatically repressed the nuclear translocation of NF-κB p65 and the acetylation of NF-κB p65 (Lys 310) and Histone H3 (Lys9) to abate the transcription of inflammatory genes in BDE-47-treated mouse livers. These inhibitory effects of troxerutin were markedly blunted by EX527 (SirT1 inhibitor) treatment. This study provides novel mechanistic insights into the toxicity of BDE-47 and indicates that troxerutin might be used in the prevention and therapy of BDE-47-induced

  2. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  3. Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly(arylene ether)/graphene oxide grafted with flexible alkylsulfonated side chains nanocomposite membranes

    Science.gov (United States)

    Liu, Dong; Peng, Jinhua; Li, Zhuoyao; Liu, Bin; Wang, Lei

    2018-02-01

    Sulfonated polymer/graphene oxide (GO) nanocomposites exhibit excellent properties as proton exchange membranes. However, few investigations on highly branched sulfonated poly(arylene ether)s (HBSPE)/GO nanocomposites as proton exchange membranes are reported. In order to obtain HBSPE-based nanocomposite membranes with better dispersibility and properties, a novel GO containing flexible alkylsulfonated side chains (SGO) is designed and prepared for the first time in this work. The HBSPE/SGO nanocomposite membranes with excellent dispersibility are successfully prepared. The properties of these membranes, including the mechanical properties, ion-exchange capacity, water uptake, proton conductivity, and methanol resistance, are characterized. The nanocomposite membranes exhibit higher tensile strength (32.67 MPa), higher proton conductivity (0.39 S cm-1 at 80 °C) and lower methanol permeability (4.89 × 10-7 cm2 s-1) than the pristine membrane. The nanocomposite membranes also achieve a higher maximum power density (82.36 mW cm-2) than the pristine membrane (67.85 mW cm-2) in single-cell direct methanol fuel cell (DMFC) tests, demonstrating their considerable potential for applications in DMFCs.

  4. Gamma-radiation effect on thermal ageing of butyl rubber compounds

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Cardoso, Elizabeth C.L.; Lugao, Ademar B., E-mail: srscagliusi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Butyl rubber has a comprehensive use in sealing systems, especially in tires inner tubes, due to their low permeability to gases. So, it is required that butyl rubber compounds show a better performance, more and more. Butyl rubber is provided with excellent mechanical properties and oxidation resistance. Besides showing these properties, radiation exposures impart modifications in physical-chemical and morphological properties on butyl rubber materials. When exposed to gamma-radiation, rubbers suffer changes in their mechanical and physical properties, caused by material degradation. The major radiation effect in butyl rubbers is chain scission; besides, ageing promotes too the same effect with further build-up of free radicals. This work aims to the study of gamma-radiation in physical-chemical properties of butyl rubber subjected to thermal ageing. Doses used herein were: 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 KGy. Samples were evaluated before and after ageing according to traditional essays, such as: hardness, tensile strength and elongation at break. From accomplished assessments it is possible to affirm that at doses higher than 50 kGy it was observed a sharp decreasing in butyl rubber physical-chemical properties, before and after exposure to ageing. (author)

  5. Gamma-radiation effect on thermal ageing of butyl rubber compounds

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elizabeth C.L.; Lugao, Ademar B.

    2015-01-01

    Butyl rubber has a comprehensive use in sealing systems, especially in tires inner tubes, due to their low permeability to gases. So, it is required that butyl rubber compounds show a better performance, more and more. Butyl rubber is provided with excellent mechanical properties and oxidation resistance. Besides showing these properties, radiation exposures impart modifications in physical-chemical and morphological properties on butyl rubber materials. When exposed to gamma-radiation, rubbers suffer changes in their mechanical and physical properties, caused by material degradation. The major radiation effect in butyl rubbers is chain scission; besides, ageing promotes too the same effect with further build-up of free radicals. This work aims to the study of gamma-radiation in physical-chemical properties of butyl rubber subjected to thermal ageing. Doses used herein were: 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 KGy. Samples were evaluated before and after ageing according to traditional essays, such as: hardness, tensile strength and elongation at break. From accomplished assessments it is possible to affirm that at doses higher than 50 kGy it was observed a sharp decreasing in butyl rubber physical-chemical properties, before and after exposure to ageing. (author)

  6. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    Science.gov (United States)

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  7. Usage of the word 'ether'

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Confusion has been caused by scientists using the one word 'ether' to classify models differing from each other in important respects. Major roles assigned to the word are examined, and the nature of modern ether theories surveyed. The part played by the several meanings attached to the word, in the ether concept, is outlined. (author)

  8. Reactions of phenols and alcohols over thoria: mechanism of ether formation

    International Nuclear Information System (INIS)

    Karuppannasamy, S.; Narayanan, K.; Pillai, C.N.

    1980-01-01

    The dehydration of phenols and alkylation of phenols by alcohols over thoria were studied at 400 to 500 0 C and atmospheric pressure. Phenol and cresols, when dehydrated gave diaryl ethers as main products. With para-substituted phenols such as p-methoxy, p-t-butyl, p-chloro, and p-nitrophenol no ether formation was noticed. All the reactions were accompanied by considerable amount of coke formation. Alkylation of phenols by alcohols gave a mixture of O- and C-alkylated products under the same reaction conditions. O-alkylation and C-alkylation are parallel reactions. The mechanistic aspects of the reactions are discussed. 3 figures, 3 tables

  9. Cation permeable membranes from blends of sulfonated poly(ether ether ketone) and poly (ether sulfone)

    NARCIS (Netherlands)

    Wilhelm, F.G.; Punt, Ineke G.M.; van der Vegt, N.F.A.; Strathmann, H.; Wessling, Matthias

    2002-01-01

    Sulfonated poly(aryl ether ether ketone), S-PEEK, is blended with non-sulfonated poly(ether sulfone) (PES) to adjust the properties of ion permeable and ion selective membranes. In this study, membranes are prepared from blends with (i) a S-PEEK content between 10 and 100 wt.% using one S-PEEK batch

  10. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers

    Science.gov (United States)

    Wang, Haidong; Lu, Xiaofei; Lu, Xinglin; Wang, Zhenghui; Ma, Jun; Wang, Panpan

    2017-12-01

    In this study, the GO-g-P(PEGMA) nanoplates were first synthesized by grafting hydrophilic poly (poly (ethylene glycol) methyl ether methacrylate) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. A novel polysulfone (PSF) nanocomposite membrane using GO-g-P(PEGMA) nanoplates as nanofillers was fabricated. FTIR, TGA, 1H NMR, GPC and TEM were applied to verify the successful synthesis of the prepared nanoplates, while SEM, AFM, XPS, contact angle goniometry and filtration experiments were used to characterize the fabricated nanocomposite membranes. It was found that the new prepared nanofillers were well dispersed in organic PSF matrix, and the PSF/GO-g-P(PEGMA) nanocomposite membrane showed significant improvements in water flux and flux recovery rate. Based on the results of resistance-in-series model, the nanocomposite membrane exhibited superior resistance to the irreversible fouling. The excellent filtration and antifouling performance are attributed to the segregation of GO-g-P(PEMGA) nanofillers toward the membrane surface and the pore walls. Notably, the blended nanofillers appeared a stable retention in/on nanocomposite membrane after 30 days of washing time. The demonstrated method of synthesis GO-g-P(PEGMA) in this study can also be extended to preparation of other nanocomposite membrane in future.

  11. PENYALUTAN KACANG RENDAH LEMAK MENGGUNAKAN SELULOSA ETER DENGAN PENCELUPAN UNTUK MENGURANGI PENYERAPAN MINYAK SELAMA PENGGORENGAN DAN MENINGKATKAN STABILITAS OKSIDATIF SELAMA PENYIMPANAN [Ether Cellulose Coatings by Dipping on Partially Defatted Peanuts to Reduce Oil Uptake During Frying and to Increase Oxidative Stability During Storage

    Directory of Open Access Journals (Sweden)

    Made Darawati1

    2010-12-01

    Full Text Available This research aimed to reduce oil uptake during frying and to improve the oxidative stability of a partially defatted peanuts (PDP product by coating with ether cellulose-based substances, namely carboxymethyl cellulose (CMC, hydroxyprophyl methyl cellulose (HPMC, methyl cellulose (MC and hydroxyprophyl cellulose by dipping method. The research was conducted through following steps: preparation of ether cellulose-based edible film and evaluation of the properties, coating application on PDP before frying, and measurement of the oil content, water content, hardness, and then determination of the best dipping method, evaluation of edible coating on PDP with selected dipping method and measurement of colour, peroxide value, and TBA value of fried coated products, and study on oxidative stability of fried coated-PDP during 14 days of storage. Results showed that ether cellulose based-edible film had 0.042-0.052 mm thickness, tensile strength of 7.93-23.04 MPa, elongation of 6.81-29.10%, water vapor transmission rate of 13.18-16.65g/m2.h. and oxygen permeability of 4.57-6.24x10-9 g/m.d.Pa. Ether cellulose-based coatings had significant effect on oil content and water content of PDP (p<0.05. CMC-based edible coatings before frying reduced oil content as much as 21.27% on PDP. Ether cellulose-based edible coatings improved oxidative stability on PDP during 14 days of storage. Edible coatings with CMC before frying had the lowest increase in peroxide value and TBA value.

  12. Kinematic Viscosities for Ether + Alkane Mixtures: Experimental Results and UNIFAC-VISCO Parameters

    Science.gov (United States)

    Bandrés, I.; Lahuerta, C.; Villares, A.; Martín, S.; Lafuente, Carlos

    2008-04-01

    Kinematic viscosities for the binary mixtures of diisopropylether, dibutylether or methyl ter-butyl ether with 3-methylpentane, hexane or heptane have been measured at 283.15 K, 298.15 K, and 313.15 K. The experimental values have been correlated by the McAllister equation. Using these results, new UNIFAC-VISCO parameters, Oether-CH2 and Oether-CH3, have been calculated.

  13. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    Science.gov (United States)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  14. Dose-dependent short-term study of di-n-butyl phthalate on the testicular antioxidant system of Wistar rats.

    Science.gov (United States)

    Nair, Neena

    2015-02-01

    Di-n-butyl phthalate (DBP), a xenobiotic, is widely used in industries as a softener for polyvinyl chloride resins. The aim of the present study was to evaluate whether DBP induces oxidative stress in testes of Wistar rats. DBP at doses of 500, 1,000 and 1,500 mg/kg b.wt. (doses below LD50) was given orally for 7 days. After 24 hrs from the last dose, the animals were killed under ether anesthesia. Nonsignificant increase in testicular weight was observed. Histological studies indicated a dose-related degeneration of germinal, Leydig and Sertoli cells along with loss of spermatozoa in the lumen. The concentrations of malondialdehyde (TBARS), lipid hydroperoxides, water-soluble antioxidant capacity, glutathione-S-transferase, catalase and trace elements-zinc and copper increased while concentrations of total protein, lipid soluble antioxidant capacity, ascorbic acid, glutathione, total superoxide dismutase (SOD), Cu-ZnSOD, MnSOD, glutathione peroxidase, glutathione reductase and metallothionein decreased at all the dose levels. The data suggests that the cellular functions were adversely affected due to impairment of spermatogenesis indicative of oxidative stress as evident by altered antioxidative defense system which appears to mediate through hypothalamo-pituitary-gonadal axis. The spectrum of changes in testes reflects its susceptibility to phthalate even at low dose with the potential to interfere with critical reproductive function.

  15. Characterization of Microsolvated Crown Ethers from Broadband Rotational Spectroscopy

    Science.gov (United States)

    Perez, Cristobal; Schnell, Melanie; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    Since they were first synthetized, crown ethers have been extensively used in organometallic chemistry due to their unparalleled binding selectivity with alkali metal cations. From a structural point of view, crown ethers are heterocycles containing oxygen and/or other heteroatoms, although the most common ones are formed from ethylene oxide unit. Crown ethers are conventionally seen as being hydrophilic inside and hydrophobic outside when the structures found for the metal cation complexes are considered. However, crown ethers are extremely flexible and in isolation may present a variety of stable conformations so that their structure may be easily adapted in presence of a strong ligand as an alkali metal cation minimize the energy of the resulting complex. Water can be considered a soft ligand which interacts with crown ethers through moderate hydrogen bonds. It is thus interesting to investigate which conformers are selected by water to form complexes, the preferred interaction sites and the possible conformational changes due to the presence of one or more water molecules. Previous studies identified microsolvated crown ethers but in all cases with a chromophore group attached to the structure. Here we present a broadband rotational spectroscopy study of microsolvated crown ethers produced in a pulsed molecular jet expansion. Several 1:1 and 1:2 crown ether:water aggregates are presented for 12-crown-4, 15-crown-5 and 18-crown-6. Unambiguous identification of the structures has been achieved using isotopic substitution within the water unit. The subtle changes induced in the structures of the crown ether monomer upon complexation and the hydrogen-bonding network that hold them together will be also discussed. F. Gámez, B. Martínez-Haya, S. Blanco,J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2014, 14 12912-12918 V. A. Shubert, C.W. Müller and T. Zwier, J. Phys. Chem. A 2009, 113 8067-8079

  16. Ether space-time & cosmology

    CERN Document Server

    Levy, Joseph

    2008-01-01

    The aim of this first volume of papers is to examine the different paths by which the modern ether concept has been developed and to highlight the part it plays in major departments of 21st century physics. The evidence for its existence is reviewed, and it is hoped, widespread misconceptions concerning ether are corrected. It is anticipated that the emerging modern concept of ether will play a fundamental part in the development of 21st century physical science.

  17. Analysis of electron-irradiated poly-ether ether ketone by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Oyabu, Matashige; Kobayashi, Yoshinori; Seguchi, Tadao; Sasuga, Tsuneo; Kudoh, Hisaaki.

    1995-01-01

    Organic polymers used in atomic power plants or space are damaged by ionizing irradiation. Radicals produced by irradiation cause oxidation, chain scission and crosslinking, all of which lead to degradation of the material. In this paper, the surface of electron-irradiated poly-ether ether ketone (PEEK) was studied by X-ray photoelectron spectroscopy (XPS). The irradiation in air was found to oxidize the PEEK surface producing carboxyl groups, the content of which dependant on the dose. Carboxyl groups were not produced in helium gas. Quantitative spectral analysis indicated that the aromatic structure might be decomposed. Some comparison was made between the semicrystalline and amorphous samples. The oxygen content resulting from irradiation, of semicrystalline PEEK increased more than that of amorphous PEEK. (author)

  18. Determination of ethers and alcohols in gasolines by gas chromatography/Fourier transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, J.W.; Finkbeiner, J.W.; DiSanzo, F.P. (Mobil Research and Development Corp., Paulsboro, NJ (United States))

    1992-12-15

    In response to clean fuel legislation, research is underway in the petroleum industry to develop fuels which reduce vehicle exhaust emissions. Part of this effort is the addition of certain ethers and alcohols such as methyl tert-butyl ether (MTBE) and ethanol to gasolines. The capability of accurately measuring these compounds is important in maintaining minimum levels prescribed by law as well as optimum levels for engine performance. GC/Fourier transform infrared (FTIR) spectroscopy has already been demonstrated as a good quantitative tool for organic acids and various pollutants. GC/FTIR is definitely a precise and accurate technique for measuring C1-C4 alcohols and C5 and C6 ethers in gasolines. The use of the correct absorbance reconstruction frequencies gives good selectivity over hydrocarbons as well as very linear and stable calibration curves. 8 refs., 5 figs.

  19. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high...... amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine...... in ether lipid metabolism and intracellular ether lipid trafficking....

  20. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  1. Forensic analysis of tertiary-butyl alcohol (TBA) detections in a hydrocarbon-rich groundwater basin.

    Science.gov (United States)

    Quast, Konrad W; Levine, Audrey D; Kester, Janet E; Fordham, Carolyn L

    2016-04-01

    Tertiary-butyl alcohol (TBA), a high-production volume (HPV) chemical, was sporadically detected in groundwater and coalbed methane (CBM) wells in southeastern Colorado's hydrocarbon-rich Raton Basin. TBA concentrations in shallow water wells averaged 75.1 μg/L, while detections in deeper CBM wells averaged 14.4 μg/L. The detection of TBA prompted a forensic investigation to try to identify potential sources. Historic and recent data were reviewed to determine if there was a discernable pattern of TBA occurrence. Supplemental samples from domestic water wells, monitor wells, CBM wells, surface waters, and hydraulic fracturing (HF) fluids were analyzed for TBA in conjunction with methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE), proxies for evidence of contamination from reformulated gasoline or associated oxygenates. Exploratory microbiological sampling was conducted to determine if methanotrophic organisms co-occurred with TBA in individual wells. Meaningful comparisons of historic TBA data were limited due to widely varying reporting limits. Mapping of TBA occurrence did not reveal any spatial patterns or physical associations with CBM operations or contamination plumes. Additionally, TBA was not detected in HF fluids or surface water samples. Given the widespread use of TBA in industrial and consumer products, including water well completion materials, it is likely that multiple diffuse sources exist. Exploratory data on stable isotopes, dissolved gases, and microbial profiling provide preliminary evidence that methanotrophic activity may be producing TBA from naturally occurring isobutane. Reported TBA concentrations were significantly below a conservative risk-based drinking water screening level of 8000 μg/L derived from animal toxicity data.

  2. Demand boom boosts ethyl, butyl acetate

    International Nuclear Information System (INIS)

    Coeyman, M.

    1993-01-01

    US ethyl and butyl acetate markets are being described as 'extremely tight.' One major domestic producer is 'in a sold-out position' and has 'gone on sales control' with respect to these two products. Producers say that sales of both ethyl and butyl acetate have increased during the past year, and industry observers say they expect to see an April 1 price initiative of 2 cts to 3 cts/lb, and possibly a second increase in October. While one producer suggests that this market strength could be 'a sign that the coatings industry is turning around,' most agree that reformulation is the principal driver of growth. Ethyl acetate is said to be replacing methyl ethyl ketone in many formulations, while butyl acetate and butyl acetate blends are substituting for methyl isobutyl ketone. In addition, both ethyl and butyl acetate work as substitutes for xylene and toluene in certain applications. In an effort to conform to the requirements of the Clean Air Act of 1990 and to cooperate with the Environmental Protection Agency's 33/50 voluntary emissions reduction program, coatings manufacturers are moving as quickly as possible to eliminate solvents from their products. And although solvents as a whole will eventually see a dramatic decline in consumption, the temporary beneficiaries of reformulation will be certain of the oxygenated solvents, says Jeff Back, business manager at Kline ampersand Co

  3. High energy radiation effects on mechanical properties of butyl rubber compounds

    International Nuclear Information System (INIS)

    Pozenato, Cristina A.; Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Lugao, Ademar B.

    2013-01-01

    The high energy radiation on butyl rubber compounds causes a number of chemical reactions that occur after initial ionization and excitation events. These reactions lead to changes in molecular mass of the polymer through scission and crosslinking of the molecules, being able to affect the physical and mechanical properties. Butyl rubber has excellent mechanical properties and oxidation resistance as well as low gas and water vapor permeability. Due to all these properties butyl rubber is widely used industrially and particularly in tires manufacturing. In accordance with various authors, the major effect of high energy, such as gamma rays in butyl rubber, is the yielding of free-radicals along with changes in mechanical properties. There were evaluated effects imparted from high energy radiation on mechanical properties of butyl rubber compounds, non-irradiated and irradiated with 25 kGy, 50 kGy, 150 kGy and 200 kGy. It was also observed a sharp reducing in stress rupture and elongation at break for doses higher than 50 kGy, pointing toward changes in polymeric chain along build-up of free radicals and consequent degradation. (author)

  4. Poly(ethylene oxide monomethyl ether)-block-poly(propylene succinate) nanoparticles. Synthesis and characterization, enzymatic and cellular degradation, micellar solubilization of paclitaxel and in vitro and in vivo evaluation.

    Science.gov (United States)

    Jager, Alessandro; Jäger, Eliézer; Syrová, Zdenka; Mazel, Tomaš; Kováčik, Lubomír; Raška, Ivan; Höcherl, Anita; Kučka, Jan; Konefal, Rafal; Humajova, Jana; Pouckova, Pavla; Stepanek, Petr; Hruby, Martin

    2018-03-30

    Polyester-based nanostructures are widely studied as drug delivery systems due to their biocompatibility and biodegradability. They have already reached the clinical use. In this work we describe a new and simple biodegradable and biocompatible system as alternative to the FDA-approved polyesters (PLGA, PCL and PLA) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS) was prepared from a non-toxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Further their amphiphilic block copolyester poly(ethylene oxide monomethyl ether)-block-poly(propylene succinate) (mPEO-b-PPS) was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. In vitro cellular behavior of the prepared NPs (enzymatic degradation, uptake, localization and FRET-pair degradation studies) were performed by fluorescence studies from new synthesized Rhodamine B isothiocyanate-poly(propylene succinate) (Rhoda-PPS) and Reactive Blue- poly(propylene succinate) (Blue-PPS) copolymer conjugates. Paclitaxel was loaded to the NPs of variable sizes (30, 70 and 150 nm) and their in vitro release was evaluated in different cell models (Raw 264.7, HeLa, MCF-7 and 4T1 tumor cells) being compared with commercial paclitaxel formulations. The selected 30 nm NPs were chosen for more detailed cytotoxicity in vitro and in vivo tumor efficacy studies. Similarly to the aforementioned copolyesters, the mPEO-b-PPS copolymer present Tg< body temperature

  5. Metabolism of the fungicide Denmert (S-n-butyl S'-p-tert-butyl-benzyl N-3-pyridyldithiocarbonimidate, S-1358) and Denmert sulfoxides in liver enzyme systems

    International Nuclear Information System (INIS)

    Ohkawa, Hideo; Okihara, Yukiko; Miyamoto, Junshi

    1976-01-01

    On incubation with rat liver microsomes plus MADPH, Denmert (S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbonimidate) underwent at least two different types of oxidation; hydroxylation and sulfoxidation. Hydroxylation of Denmert at the tert-butyl group was one of the major metabolic attacks in mammalian metabolism. Sulfoxidation of Denmert gave two isomers of Denmert sulfoxides which were intermediates in the metabolism and readily transformed into 2-(3'-pyridylimino)-4-carboxylthiazolidine (HM) in the presence of L-cysteine without enzymatic mediation. This type of conjugation with cysteine appears to be a new class of metabolic reactions in mammals. Denmert S-oxide showed increased fungicidal activity when assayed in liquid cultures, but not on plant leaves. (auth.)

  6. Preparation and characterization of poly(ether ether ketone) derivatives

    International Nuclear Information System (INIS)

    Conceicao, Thiago F.; Bertolino, Jose R.; Mireski, Sandro L.; Joussef, Antonio C.; Pires, Alfredo T.N.; Barra, Guilherme M.O.

    2008-01-01

    In this study, three derivatives of poly(ether ether ketone) [PEEK] were prepared in suspension by nitration (NO 2 -PEEK), reduction to the amino group (NH 2 -PEEK) and carbonyl reduction (PEEK-OH). These modified polymers were characterized by NMR, IR spectroscopy and thermogravimetric analysis. They showed interesting characteristics, such as, basicity and higher solubility in organic solvents, like DMF, for use as membranes and composites in different applications. (author)

  7. A sulfonated poly (aryl ether ether ketone ketone) isomer: synthesis and DMFC performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Liu, Baijun [JILIN UNIV.; Hu, Wei [JILIN UNIV.; Jiang, Zhenhua [JILIN UNIV.; Robertson, Gilles [CANADA NRC; Guiver, Michael [CANADA NRC

    2009-01-01

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily-prepared PEEKK post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported analogues and eveluated Nafion membranes.

  8. Ether the nothing that connects everything

    CERN Document Server

    Milutis, Joe

    2006-01-01

    In Ether, the histories of the unseen merge with discussions of the technology of electromagnetism. Navigating more than three hundred years of the ether''s cultural and artistic history, Joe Milutis reveals its continuous reinvention and tangible impact without ever losing sight of its ephemeral, elusive nature. The true meaning of ether, Milutis suggests, may be that it can never be fully grasped.

  9. Solvent effects on the magnetic shielding of tertiary butyl alcohol

    African Journals Online (AJOL)

    )4 and tetramethyl ammonium cation N(CH3)4(+) have also been presented. KEY WORDS: Solvent effects, Magnetic shielding, Tertiary butyl alcohol, Tertiary butyl amine, Continuum solvation calculations, Chemical shift estimation methods

  10. 21 CFR 172.270 - Sulfated butyl oleate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.270 Sulfated butyl oleate. Sulfate butyl oleate may be safely...

  11. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli

    2017-11-20

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl-3-methylimidalzolium thiocyanate ([EMIM]SCN), 1-butyl-3-methylimidalzolium thiocyanate ([BMIM]SCN), and 1-ethyl-3-methylimidalzolium acetate ([EMIM]OAc). The following polymer solution parameters were evaluated to optimize the manufacture: Gibbs free energy of mixing (G), intrinsic viscosity ([]) and hydrodynamic diameter. Membranes with sponge-like structure and narrow pore size distribution were obtained from solutions in [EMIM]SCN. They were tested for separation of proteins and deoxyribonucleic acids (DNA). Due to the polymer stability, we foresee that applications in more demanding chemical separations would be possible. [EMIM]SCN was 96 % purified and recovered after the membrane fabrication, contributing to the sustainability of the whole manufacturing process.

  12. Compound list: butylated hydroxyanisole [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available butylated hydroxyanisole BHA 00156 ftp://ftp.biosciencedbc.jp/archive/open-tggates/...LATEST/Human/in_vitro/butylated_hydroxyanisole.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/o...pen-tggates/LATEST/Rat/in_vivo/Liver/Single/butylated_hydroxyanisole.Rat.in_vivo.Liver.Single.zip ftp://ftp....biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/butylated_hydroxyanisole.Rat.in_vivo.Liver.Repeat.zip ...

  13. Synthesis of 1-/sup 11/C-labelled ethyl, propyl, butyl and isobutyl iodides and examples of alkylation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Laangstroem, B.; Antoni, G.; Gullberg, P.; Halldin, C.; Naagren, K.; Rimland, A.; Svaerd, H.

    1986-01-01

    New /sup 11/C-labelled precursors (1-/sup 11/C)ethyl,(1-/sup 11/C)propyl, (1-/sup 11/C)butyl, and (1-/sup 11/C)isobutyl iodides have been prepared by a 3-step reaction route using a one-pot system. The labelled iodides were obtained in 20-55% radiochemical yields and 65-95% radiochemical purities, with a total time for synthesis of the order of 10-14 min. The labelled iodides have been used in alkylation reactions with nitrogen, oxygen and carbon nucleophiles. The nitrogen alkylation reactions are exemplified by the synthesis of the analgetics N-(1-/sup 11/C-ethyl)iodocaine and N-(1-/sup 11/C-butyl) bupivacaine. The synthesis of 3-nitrophenyl(1-/sup 11/C)propyl ether is also presented in this paper as an example of an oxygen alkylation.

  14. 76 FR 38026 - Diethylene Glycol Mono Butyl Ether; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-06-29

    ...-OPP-2008-0474, by one of the following methods: Federal eRulemaking Portal: http://www.regulations.gov...; decreased total protein, cholesterol, and aspartate aminotransferase, very slight hepatocyte hypertrophy and... exposure model. 3. From non-dietary exposure. The term ``residential exposure'' is used in this document to...

  15. REMOVAL OF METHYL TERTIARY BUTYL ETHER (MTBE) FROM GROUNDWATER USING PHOTOCATALYSIS

    Science.gov (United States)

    The potential of photocatalysis was determined for treating MTBE-contaminated drinking water supplies. Two liquid-phase systems, a falling film reactor, and a solar degradation system, are being evaluated. We are also conducting a gas-phase treatment method to simulate an integra...

  16. TRANSPORT OF METHYL TERT-BUTYL ETHER THROUGH ALFALFA PLANTS. (R825549C062)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Effect of Methyl tert-Butyl Ether in Standard Tests for Mutagenicity and Environmental Toxicity

    Czech Academy of Sciences Publication Activity Database

    Vosáhlíková, M.; Cajthaml, Tomáš; Demnerová, K.; Pazlarová, Jarmila

    2006-01-01

    Roč. 21, č. 6 (2006), s. 599-605 ISSN 1520-4081 Institutional research plan: CEZ:AV0Z50200510 Keywords : toxicity * mtbe * ames test Subject RIV: EE - Microbiology, Virology Impact factor: 1.582, year: 2006

  18. 40 CFR 180.232 - Butylate; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Butylate; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.232 Butylate; tolerances for residues. (a) General. Tolerances are established for the herbicide butylate in or...

  19. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk : results from analyses in the Netherlands : cohort study

    NARCIS (Netherlands)

    Botterweck, A.A.M.; Verhagen, H.; Goldbohm, R.A.; Kleinjans, J.; Brandt, P.A. van den

    2000-01-01

    Both carcinogenic and anticarcinogenic properties have been reported for the synthetic antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). The association between dietary intake of BHA and BHT and stomach cancer risk was investigated in the Netherlands Cohort Study (NLCS)

  20. 21 CFR 582.3169 - Butylated hydroxyanisole.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Butylated hydroxyanisole. 582.3169 Section 582.3169 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives...

  1. 21 CFR 182.3173 - Butylated hydroxytoluene.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Butylated hydroxytoluene. 182.3173 Section 182.3173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182...

  2. 21 CFR 582.3173 - Butylated hydroxytoluene.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Butylated hydroxytoluene. 582.3173 Section 582.3173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives...

  3. 21 CFR 182.3169 - Butylated hydroxyanisole.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Butylated hydroxyanisole. 182.3169 Section 182.3169 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182...

  4. Recovering/recycling of butyl and halogenated butyl rubber via ionizing radiation

    International Nuclear Information System (INIS)

    Martin, Sandra Regina Scagliusi

    2013-01-01

    Polymeric materials (plastics and rubbers) attain a continuous and raising proportion of urban and industrial scraps discarded in landfills; their impact on environment are more and more concerning. The implementation of new technologies in order to reduce impacts of plastic waste on the environment, at an effective cost, proved to be a great problem, due to inherent complexity for polymers re-using. Ionizing radiation is capable to modify structure and properties of polymeric material. Butyl and halobutyl rubbers have been used within a comprehensive scale, applications such as tires spare parts and diverse artifacts. The major high energy photon effect, as gamma-rays in butyl and halo butyl rubbers consists in free-radicals generation along changes in mechanical properties.This work aims to the development of controlled degradation processes (devulcanization) of butyl and halo butyl (chlorine and bromine) rubbers, in order to characterize their availability for transformation and modification of properties. Experimental results obtained showed that butyl and halobutyl rubbers,irradiated at 25 kGy and further sheared, are able to be used as an initial point for mixtures with pristine. (author)

  5. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  6. Novel sulfonated poly(ether ether ketone)s containing nitrile groups and their composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Meimei; Liu, Baijun; Guan, Shaowei; Li, Long; Liu, Chang; Zhang, Yunhe; Jiang, Zhenhua [Alan G. MacDiarmid Institute, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2010-08-01

    A series of novel sulfonated poly(ether ether ketone)s containing a cyanophenyl group (SPEEKCNxx) are prepared based on (4-cyano)phenylhydroquinone via nucleophilic substitution polycondensation reactions. To further improve their properties, novel composite membranes composed of sulfonated poly(ether ether ketone)s containing cyanophenyl group as an acidic component and aminated poly(aryl ether ketone) as a basic component are successfully prepared. Most of the membranes exhibit excellent thermal, oxidative and dimensional stability, low-swelling ratio, high proton conductivity, low methanol permeability and high selectivity. The proton conductivities of the membranes are close to Nafion 117 at room temperature. And especially, the values of SPEEKCN40 and its composite membranes are higher than Nafion 117 at 80 C (0.17 S cm{sup -1} of Nafion, 0.26 S cm{sup -1} of SPEEKCN40, 0.20 S cm{sup -1} of SPEEKCN40-1, and 0.18 S cm{sup -1} of SPEEKCN40-2). Moreover, the methanol permeability is one order magnitude lower than that of Nafion 117. All the data prove that both copolymers and their composite membranes may be potential proton exchange membrane for fuel cells applications. (author)

  7. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu-Chieh; Otten, Edwin; Couzijn, Erik P. A.; Lutz, Martin; Minnaard, Adriaan J.

    2013-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio-and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides.

  8. A novel octanuclear vanadium(V) oxide cluster complex having an unprecedented neutral V8O20 core functionalized with 4,4'-di-tert-butyl-2,2'-bipyridine.

    Science.gov (United States)

    Kodama, Shintaro; Taya, Nobuto; Ishii, Youichi

    2014-03-17

    A novel octanuclear vanadium(V) oxide cluster complex, [V8O20(4,4'-(t)Bubpy)4] (1), was synthesized and characterized by single-crystal X-ray structure analysis to reveal that 1 has an unprecedented neutral V8O20 core. An unexpected interconversion between 1 and the methoxo(oxo)vanadium(V) cluster complex, [V4O8(OMe)4(4,4'-(t)Bubpy)2] (2), was observed upon changes in the solvent systems.

  9. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    Directory of Open Access Journals (Sweden)

    Elena Vlad

    2012-01-01

    Full Text Available Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  10. Luminescent Lariat Aza-Crown Ether

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2010-03-01

    Full Text Available Lariat ethers are interesting recognition motifs in supramolecular chemistry. The synthesis of a luminescent lariat ether with triglycol chain by azide–alkyne (Huisgen cycloaddition is presented.

  11. Cytochrome P-450-catalyzed rearrangement of a peroxyquinol derived from butylated hydroxytoluene. Involvement of radical and cationic intermediates.

    Science.gov (United States)

    Wand, M D; Thompson, J A

    1986-10-25

    The p-peroxyquinol derived from butylated hydroxytoluene, 2,6-di-t-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone, was degraded by the ferric form of rat liver cytochrome P-450, and the resulting products and their mechanisms of formation were investigated. Quinoxy radical BO. from homolysis of the O-O bond reacted by competing pathways; beta-scission yielded 2,6-di-t-butyl-p-benzoquinone, and rearrangement with ring-expansion produced an oxacycloheptadienone free radical (X(.)). This rearranged radical was stabilized by the captodative effect that facilitated competitive interactions with the P-450 iron-oxo complexes formed during O-O bond scission. Approximately 15% of X(.) was captured by oxygen rebound with a hydroxyl radical from the P-450 complex (FeOH)3+ to form a hemiketal, that led to the ring-contracted product 2,5-di-t-butyl-5-(2'-oxopropyl)-4-oxa-2-cyclopentenone by spontaneous rearrangement. The major fraction of X(.), however, underwent electron transfer oxidation to form the corresponding cation. Hydration of this cation produced the ring-contracted product, and proton elimination (or, alternatively, direct H(.) removal from X(.) led to the product 2,7-di-t-butyl-4-methylene-5-oxacyclohepta-2,6-dienone. The findings indicate that cytochrome P-450 intermediate complexes are mainly responsible for oxidation of X(.). The results complement our previous study with 2,6-di-t-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone (Thompson, J. A., and Wand, M. D. (1985) J. Biol. Chem. 260, 10637-10644), demonstrating competitive heterolytic and homolytic mechanisms of O-O bond cleavage, and competitive rebound and oxidation processes when a substrate-derived radical interacts with P-450 complexes.

  12. Final report of the addendum to the safety assessment of n-butyl alcohol as used in cosmetics.

    Science.gov (United States)

    McLain, Valerie C

    2008-01-01

    n-Butyl Alcohol is a primary aliphatic alcohol historically used as a solvent in nail care cosmetic products, but new concentration of use data indicate that it also is being used at low concentrations in eye makeup, personal hygiene, and shaving cosmetic products. n-Butyl Alcohol has been generally recognized as safe for use as a flavoring substance in food and appears on the 1982 Food and Drug Administration (FDA) list of inactive ingredients for approved prescription drug products. n-Butyl Alcohol can be absorbed through the skin, lungs, and gastrointestinal tract. n-Butyl Alcohol may be formed by hydrolysis of butyl acetate in the blood, but is rapidly oxidized. The single oral dose LD(50) of n-Butyl Alcohol for rats was 0.79 to 4.36 g/kg. The dermal LD(50) for rabbits was 4.2 g/kg. Inhalation toxicity studies in humans demonstrate sensory irritation of the upper respiratory tract, but only at levels above 3000 mg/m(3). Animal studies demonstrate intoxication, restlessness, ataxia, prostration, and narcosis. Exposures of rats to levels up to 4000 ppm failed to produce hearing defects. High concentrations of n-Butyl Alcohol vapors can be fatal. Ocular irritation was observed for n-Butyl alcohol at 0.005 ml of a 40% solution. The behavioral no-effect dose for n-Butyl Alcohol injected subcutaneously (s.c.) was 120 mg/kg. Fetotoxicity has been demonstrated, but only at maternally toxic levels (1000 mg/kg). No significant behavioral or neurochemical effects were seen in offspring following either maternal or paternal exposure to 3000 or 6000 ppm. n-Butyl Alcohol was not mutagenic in Ames tests, did not induce sister-chromatid exchange or chromosome breakage in chick embryos or Chinese hamster ovary cells, did not induce micronuclei formation in V79 Chinese hamster cells, did not have any chromosome-damaging effects in a mouse micronucleus test, and did not impair chromosome distribution in the course of mitosis. Clinical testing of n-Butyl Alcohol for

  13. Novel sulfonated poly(ether ether ketone) with pendant benzimidazole groups as a proton exchange membrane for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Shao, Ke; Zhao, Chengji; Zhang, Gang; Li, Hongtao; Fu, Tiezhu; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2009-10-20

    A series of sulfonated poly(ether ether ketone)s bearing pendant carboxylic acid groups (C-SPEEKs) have been prepared and subsequently react with 1,2-diaminobenzene to obtain sulfonated poly(ether ether ketone)s with pendant benzimidazole groups (BI-SPEEKs). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The resulting copolymers all show good thermal and mechanical properties. It should be noted that the introduction of benzimidazole groups into the copolymer improves its thermal and oxidative stability obviously. Meanwhile, compared to C-SPEEK, BI-SPEEK membranes show much lower water uptake and methanol permeability with the same sulfonation degree (DS). In order to study morphological changes of C-SPEEK and BI-SPEEK membranes, hydrophilic domains sizes from an atomic force microscopy (AFM) are investigated. (author)

  14. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  15. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  16. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  17. Sulfonated polyphenyl ether by electropolymerization

    International Nuclear Information System (INIS)

    Hou Hongying; Vacandio, Florence; Di Vona, Maria Luisa; Knauth, Philippe

    2012-01-01

    Highlights: ► Sulfonated polyphenyl ether was for the first time electropolymerized. ► This technique allows the economical preparation of ionomeric membranes for electrochemical energy technologies. ► The mechanism of electropolymerization was discussed in detail. - Abstract: Electropolymerization of sulfonated phenol was for the first time achieved and studied by cyclic voltammetry (CV) and chronoamperometry on stainless steel substrates. The obtained sulfonated polyphenyl ether was characterized in terms of impedance spectroscopy, nuclear magnetic resonance (NMR), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and Fourier-Transform Infrared (FTIR) spectroscopy. Dense films of micrometer thickness can be obtained; the proton conductivity is about 3 mS/cm at room temperature.

  18. Maxwell's ether

    Energy Technology Data Exchange (ETDEWEB)

    Theocharis, T.

    1983-03-12

    A new interpretation of Maxwell's electromagnetic theory of light is proposed, namely that the ambient Coulomb field is the medium (Maxwell's ether) of the electromagnetic radiation fields (Maxwellian waves). This investigation implies an incompleteness of the experimental foundations of the principle of special relativity, and suggests how this principle could be tested more fully. The beginning of an attempt to shape this re-interpretation in the form of an alternative theory is outlined.

  19. Small-angle neutron scattering studies of sodium butyl benzene ...

    Indian Academy of Sciences (India)

    shape and size of the aggregates of sodium n-butyl benzene sulfonate in aqueous solutions. To the best of our knowledge this is the first SANS report on the aggre- gation behaviour of a hydrotrope in aqueous solutions. 2. Materials and methods n-Butyl benzene, procured from Herdilia Chemicals, Mumbai, was sulfonated ...

  20. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methyl n-butyl ketone. 721.4925 Section 721.4925 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4925 Methyl n-butyl ketone. (a)...

  1. Formulating liquid ethers for microtubular SOFCs

    Science.gov (United States)

    Kendall, Kevin; Slinn, Matthew; Preece, John

    One of the key problems of applying solid oxide fuel cells (SOFCs) in transportation is that conventional fuels like kerosene and diesel do not operate directly in SOFCs without prereforming to hydrogen and carbon monoxide which can be handled by the nickel cermet anode. SOFCs can internally reform certain hydrocarbon molecules such as methanol and methane. However, other liquid fuels usable in petrol or diesel internal combustion engines (ICEs) have not easily been reformable directly on the anode. This paper describes a search for liquid fuels which can be mixed with petrol or diesel and also injected directly into an SOFC without destroying the nickel anode. When fuel molecules such as octane are injected onto the conventional nickel/yttria stabilised zirconia (Ni/YSZ) SOFC fuel electrode, the anode rapidly becomes blocked by carbon deposition and the cell power drops to near zero in minutes. This degeneration of the anode can be inhibited by injection of air or water into the anode or by some upstream reforming just before entry to the SOFC. Some smaller molecules such as methane, methanol and methanoic acid produce a slight tendency to carbon deposition but not sufficient to prevent long term operation. In this project we have investigated a large number of molecules and now found that some liquid ethers do not significantly damage the anode when directly injected. These molecules and formulations with other components have been evaluated in this study. The theory put forward in this paper is that carbon-carbon bonds in the fuel are the main reason for anode damage. By testing a number of fuels without such bonds, particularly liquid ethers such as methyl formate and dimethoxy methane, it has been shown that SOFCs can run without substantial carbon formation. The proposal is that conventional fuels can be doped with these molecules to allow hybrid operation of an ICE/SOFC device.

  2. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  3. [Ethylene glycol and propylene glycol ethers - Reproductive and developmental toxicity].

    Science.gov (United States)

    Starek-Świechowicz, Beata; Starek, Andrzej

    2015-01-01

    Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively) are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  4. Structural and functional roles of ether lipids

    Directory of Open Access Journals (Sweden)

    John M. Dean

    2017-05-01

    Full Text Available ABSTRACT Ether lipids, such as plasmalogens, are peroxisome-derived glycerophospholipids in which the hydrocarbon chain at the sn-1 position of the glycerol backbone is attached by an ether bond, as opposed to an ester bond in the more common diacyl phospholipids. This seemingly simple biochemical change has profound structural and functional implications. Notably, the tendency of ether lipids to form non-lamellar inverted hexagonal structures in model membranes suggests that they have a role in facilitating membrane fusion processes. Ether lipids are also important for the organization and stability of lipid raft microdomains, cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants, and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Here, we review the biology of ether lipids and their potential significance in human disorders, including neurological diseases, cancer, and metabolic disorders.

  5. Quantification of hypoglycin A as butyl ester.

    Science.gov (United States)

    Sander, Johannes; Terhardt, Michael; Sander, Stefanie; Janzen, Nils

    2016-09-01

    L-α-amino-methylenecyclopropyl propionic acid (Hypoglycin A, HGA) has been found to be the toxic compound in fruits of the Sapindaceae family causing acute intoxication when ingested as food or feed. Clinical symptoms are consistent with acquired multiple acyl-CoA dehydrogenase deficiency (MADD). Ultra performance liquid chromatography-tandem mass spectrometry was used to measure HGA after butylation. Sample volumes were 10μL for serum and 20μL for urine. Internal standard for HGA was d3-leucine, samples were plotted on a 7-point linear calibration curve. Coefficients of variation were myopathy in horses and for forensic purposes in cases of suspected HGA poisoning. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon

    2014-04-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of \\'MTBE soot\\' started began at a lower temperature and had higher reaction rate than \\'diesel soot\\' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  7. Organocatalytic synthesis and sterol 14alpha-demethylase binding interactions of enantioriched 3-(1H-1,2,4-triazol-1-yl)butyl benzoates.

    Science.gov (United States)

    Ming, Zhi-Hui; Xu, Sheng-Zhen; Zhou, Lei; Ding, Ming-Wu; Yang, Jiao-Yan; Yang, Shao; Xiao, Wen-Jing

    2009-07-15

    1H-1,2,4-Triazole reacted with 2-butenal in the presence of diaryl prolinol silyl ether 3 and benzonic acid to give 3-(1H-1,2,4-triazol-1-yl)butanal 4, which was subsequently reduced and then treated with various acyl chloride to generate enantioriched 3-(1H-1,2,4-triazol-1-yl)butyl benzoates 6. Some of triazoles 6 exhibited strong binding interactions with the cytochrome P450-dependent sterol 14alpha-demethylase (CYP51). For example, compound (R)-6f showed the best binding activity with K(d) 0.3381 microM.

  8. Flow-Induced Crystallization of Poly(ether ether ketone)

    Science.gov (United States)

    Nazari, Behzad; Rhoades, Alicyn; Colby, Ralph

    The effects of an interval of shear above the melting temperature Tm on subsequent isothermal crystallization below Tm is reported for the premier engineering thermoplastic, poly(ether ether ketone) (PEEK). The effect of shear on the crystallization rate of PEEK is investigated by means of rheological techniques and differential scanning calorimetry (DSC) under a protocol of imposing shear in a rotational cone and plate rheometer and monitoring crystallization after quenching. The rate of crystallization at 320 °C was not affected by shear for shear rates <7 s-1 at 350 °C, whereas intervals of adequate shear at higher shear rates prior to the quench to 320 °C accelerated crystallization significantly. As the duration of the interval of shear above 7 s-1 is increased, the crystallization time decreases but at each shear rate eventually saturates once the applied specific work exceeds ~120 MPa. The annealing of the flow-induced precursors was also investigated. The nuclei were fairly persistent at temperatures close to 350 °C, however very unstable at temperatures above 375 °C. This suggests that the nanostructures formed under shear might be akin to crystalline lamellae of greater thickness, compared to quiescently crystallized lamellae.

  9. Solubilization of meso-carbon microbeads by potassium- or dibutylzinc-promoted butylation and structural analysis of the butylated products; Mesocarbon microbeads no butyl ka ni yoru kayoka to erareta butyl kabutsu no kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Murata, S.; Zhang, Y.; Kidena, K.; Nomura, M. [Osaka University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Tetrahydrofuran (THF) solubility and structure of the butylated products of meso-carbon microbeads (MCMB) were studied experimentally. In experiment, MCMB-A and MCMB-B obtained from two kinds of coal-tar pitch were used as specimens. MCMBs were butylated by BZ method using dibutylzinc-butyl iodide and KT method using K-butyl iodide-THF, and the butylated products were successfully obtained. The butylated products were investigated through THF solubility test, {sup 13}C-NMR measurement and gel permeation chromatography (GPC) measurement. As the experimental result, a BZ method produced the butylated products at a yield of nearly 170%, while a KT method produced them at a yield of nearly 130%. The THF solubility was estimated to be 89-97%. As the study result of molecular weight distributions by GPC measurement of solvent solubles, the molecular weight of raw material MCMB was estimated to be 590-770 in terms of polystyrene. 6 refs., 2 figs., 1 tab.

  10. Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s

    Science.gov (United States)

    Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.

    2017-11-01

    Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.

  11. RNAi silencing of a cytochrome P450 monooxygenase disrupts the ability of a filamentous fungus, Graphium sp. to grow on short-chain gaseous alkanes and ethers

    Science.gov (United States)

    Graphium sp. (ATCC 58400), a filamentous fungus, is one of the few eukaryotes that grows on short-chain alkanes and ethers. In this study, we investigated the genetic underpinnings that enable this fungus to catalyze the first step in the alkane and ether oxidation pathway. A gene, CYP52L1, was iden...

  12. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketones and Linear Poly(ether ketones

    Directory of Open Access Journals (Sweden)

    Atsushi Morikawa

    2016-02-01

    Full Text Available Poly(ether ether ketone dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyldiphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyldiphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy-3,5-bis(4-fluorobenzoylbenzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketones having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  13. Atmospheric lifetimes of selected fluorinated ether compounds

    DEFF Research Database (Denmark)

    Heathfield, A.E.; Anastasi, C.; Pagsberg, Palle Bjørn

    1998-01-01

    Atmospheric lifetimes have been estimated for a selection of ethers, the latter representing a class of compounds being considered as replacements for chlorofluorocarbons. The estimates are based on laboratory measurements of rate constants for the reaction of the OH radical with the ethers, and ...

  14. One-electron redox reaction of di-tert-butyl nitroxide at platinum electrode in acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kishioka, Shin-ya; Yamada, Akifumi [Nagaoka University of Technology, Nagaoka, Niigata (Japan). Department of Chemistry, Faculty of Engineering

    2005-10-20

    The electrochemical oxidation of di-tert-butyl nitroxide (DTBN) at a platinum electrode in acetonitrile was examined. The cyclic voltammogram indicated an irreversible response during a normal time scale measurement, whereas chemically reversible voltammograms were obtained during a shorter time using a micro disk electrode with relatively fast sweep rates. The apparent formal redox potential and heterogeneous electron transfer rate constant were estimated to be 0.218 V (versus Fc{sup +}Fc) and 0.035 {+-} 0.015 cms{sup -1} from the digital simulation analysis. (author)

  15. 27 CFR 21.118 - Methyl n-butyl ketone.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.118 Methyl n-butyl ketone. (a) Acidity ...

  16. Structures of butyl ions formed by electron impact ionization of isomeric butyl halides and alkanes

    International Nuclear Information System (INIS)

    Shold, D.M.; Ausloos, P.

    1978-01-01

    Using a pulsed ion cyclotron resonance (ICR) spectrometer, it is demonstrated that at pressures of about 10 -6 Torr and at observation times ranging from 10 -3 to 0.5 s, isobutane, neopentane, 2,2-dimethylbutane, isobutyl halides, and tert-butyl halides form C 4 H 9 + ions having the tertiary structure. In n-alkanes, 2-methylbutane, 3-methylpentane, n-butyl halides, and sec-butyl halides, both sec-C 4 H 9 + and t-C 4 H 9 + ions are observed, the sec-C 4 H 9 + ions surviving without rearrangement for at least 0.1 s. However, in the case of the halides, a collision-induced isomerization of the sec-C 4 H 9 + to the t-C 4 H 9 + ions occurs. The efficiency of this process increases with the basicity of the alkyl halide. Radiolysis experiments carried out at atmospheric pressures indicate, in agreement with ICR and solution experiments, that at times as short as 10 -10 s the majority of the i-C 4 H 9 + ions from isobutyl bromide rearrange to the t-C 4 H 9 + structure. On the other hand, in the radiolysis of both n-hexane and 3-methylpentane, the abundance of t-C 4 H 9 + relative to sec-C 4 H 9 + is substantially smaller than that observed in the ICR experiments, and decreases with decreasing collision interval. It is suggested that about 90% of the i-C 4 H 9 + can rearrange to t-C 4 H 9 + by simple 1,2-hydride shift without involving secondary or protonated methylcyclopropane structures as intermediates. 4 figures, 2 tables

  17. Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl 2/Bis(2-chloroethyl) ether soluble complex in hexanes

    KAUST Repository

    Kumar, Rajeev Ananda

    2014-03-25

    The polymerization of isobutylene (IB) to yield highly reactive polyisobutylene (HR PIB) with high exo-olefin content using GaCl3 or FeCl3·diisopropyl ether complexes has been previously reported.1 In an effort to further improve polymerization rates and exo-olefin content, we have studied ethylaluminum dichloride (EADC) complexes with diisopropyl ether, 2-chloroethyl ethyl ether (CEEE), and bis(2-chloroethyl) ether (CEE) as catalysts in conjunction with tert-butyl chloride as initiator in hexanes at different temperatures. All three complexes were readily soluble in hexanes. Polymerization, however, was only observed with CEE. At 0 °C polymerization was complete in 5 min at [t-BuCl] = [EADC·CEE] = 10 mM and resulted in PIB with ∼70% exo-olefin content. Studies on complexation using ATR FTIR and 1H NMR spectroscopy revealed that at 1:1 stoichiometry a small amount of EADC remains uncomplexed. By employing an excess of CEE, exo-olefin contents increased up to 90%, while polymerization rates decreased only slightly. With decreasing temperature, polymerization rates decreased while molecular weights as well as exo-olefin contents increased, suggesting that isomerization has a higher activation energy than β-proton abstraction. Density functional theory (DFT) studies on the Lewis acid·ether binding energies indicated a trend consistent with the polymerization results. The polymerization mechanism proposed previously for Lewis acid·ether complexes1 adequately explains all the findings. © 2014 American Chemical Society.

  18. Enzymatic network for production of ether amines from alcohols

    DEFF Research Database (Denmark)

    Palacio, Cyntia M.; Crismaru, Ciprian G.; Bartsch, Sebastian

    2016-01-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production...... for reactions containing 10mM alcohol and up to 280mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up....

  19. Evaluation of hepatic biotransformation of polybrominated diphenyl ethers in the polar bear (Ursus maritimus).

    Science.gov (United States)

    Krieger, Lisa K; Szeitz, András; Bandiera, Stelvio M

    2016-03-01

    Polar bears are at the top of the Arctic marine food chain and are subject to exposure and bioaccumulation of environmental chemicals of concern such as polybrominated diphenyl ethers (PBDEs), which were widely used as flame retardants. The aim of the present study was to evaluate the in vitro oxidative metabolism of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and 2,2',4,4',5-pentabrominated diphenyl ether (BDE-99) by polar bear liver microsomes. The identification and quantification of the hydroxy-brominated diphenyl ethers formed were assessed using an ultra-high performance liquid chromatography-tandem mass spectrometry-based method. Incubation of BDE-47 with archived individual liver microsomes, prepared from fifteen polar bears from northern Canada, produced a total of eleven hydroxylated metabolites, eight of which were identified using authentic standards. The major metabolites were 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether and 5'-hydroxy-2,2',4,4'-tetrabromodiphenyl ether. Incubation of BDE-99 with polar bear liver microsomes produced a total of eleven hydroxylated metabolites, seven of which were identified using authentic standards. The major metabolites were 2,4,5-tribromophenol and 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether. Among the CYP specific antibodies tested, anti-rat CYP2B was found to be the most active in inhibiting the formation of hydroxylated metabolites of both BDE-47 and BDE-99, indicating that CYP2B was the major CYP enzyme involved in the oxidative biotransformation of these two congeners. Our study shows that polar bears are capable of forming multiple hydroxylated metabolites of BDE-47 and BDE-99 in vitro and demonstrates the role of CYP2B in the biotransformation and possibly in the toxicity of BDE-47 and BDE-99 in polar bears. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comparative toxicity of tetra ethyl lead and lead oxide to earthworms, Eisenia fetida (Savigny)

    International Nuclear Information System (INIS)

    Venkateswara Rao, J.; Kavitha, P.; Padmanabha Rao, A.

    2003-01-01

    Leaded gasoline contains tetra ethyl lead (TEL) as an antiknocking agent, which produces major amounts of lead oxide in automobile exhaust along with traces of TEL. To minimize the lead contamination, methyl tertiary butyl ether (MTBE) is used as a substitute for producing unleaded gasoline. It has become increasingly apparent that young children are highly susceptible to the harmful effects of lead. Hence, a study was carried out to monitor lead toxicity in soil, using adult earthworms (Eisenia fetida, Savigny). Leaded gasoline (TEL) and lead oxide are 383- and 211-fold more toxic than unleaded gasoline (MTBE) in 7 days of exposure and 627- and 290-fold more toxic in 14 days, respectively. Results indicate that the presence of TEL in leaded gasoline and lead oxide has a significant effect on behavior, morphology, and histopathology of earthworms. Absorption of TEL into the tissues is comparatively less than that of lead oxide but toxic effects were severe. Rupture of the cuticle, extrusion of coelomic fluid and inflexible metameric segmentation were observed, causing desensitization of the posterior region leading to fragmentation in earthworms

  1. Evaluation of Efficient and Practical Methods for the Preparation of Functionalized Aliphatic Trifluoromethyl Ethers

    Directory of Open Access Journals (Sweden)

    Taras M. Sokolenko

    2017-05-01

    Full Text Available The “chlorination/fluorination” technique for aliphatic trifluoromethyl ether synthesis was investigated and a range of products with various functional groups was prepared. The results were compared with oxidative desulfurization-fluorination of xanthates with the same structure.

  2. Field Treatment of MTBE-Contaiminated Groundwater Using Ozone/UV Oxidation

    Science.gov (United States)

    Methyl-tertiary butyl ether (MTBE) is often found in groundwater as a result of gasoline spills and leaking underground storage tanks. An extrapolation of occurrence data in 2008 estimated at least one detection of MTBE in approximately 165 small and large public water systems se...

  3. Redox Regulation of the Tumor Suppressor PTEN by Hydrogen Peroxide and Tert-Butyl Hydroperoxide

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2017-05-01

    Full Text Available Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx system. Here, the role of tert-butyl hydroperoxide (t-BHP in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t-BHP led to oxidation of recombinant PTEN. In contrast to H2O2, PTEN oxidation by t-BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t-BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t-BHP in the promotion of tumorigenesis.

  4. Redox Regulation of the Tumor Suppressor PTEN by Hydrogen Peroxide and Tert-Butyl Hydroperoxide.

    Science.gov (United States)

    Zhang, Ying; Han, Seong-Jeong; Park, Iha; Kim, Inyoung; Chay, Kee-Oh; Kim, Seok Mo; Jang, Dong Il; Lee, Tae-Hoon; Lee, Seung-Rock

    2017-05-10

    Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx) system. Here, the role of tert -butyl hydroperoxide ( t -BHP) in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t -BHP led to oxidation of recombinant PTEN. In contrast to H₂O₂, PTEN oxidation by t -BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t -BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t -BHP in the promotion of tumorigenesis.

  5. 17O NMR parameters of some substituted benzyl ethers components: Ab initio study

    Directory of Open Access Journals (Sweden)

    Mahdi Rezaei Sameti

    2016-09-01

    Full Text Available The 17O NMR chemical shielding tensors and chemical shift for a set of substituted benzyl ethers derivatives containing (methyl, ethyl, isopropyl, t-butyl, brome and lithium have been calculated. The molecular structures were fully optimized using B3LYP/6-31G(d,p. The calculation of the 17O shielding tensors employed the GAUSSIAN 98 implementation of the gauge-including atomic orbital (GIAO and continuous set of gauge transformations (CSGT by using 6-31G (d,p, 6-31++G(d,p and 6-311++G(d,p basis set methods at density functional levels of theories (DFT. The values determined using the GIAO and CSGT were found to give a good agreement with the experimental chemical shielding.

  6. Thermoresponsive cellulose ether and its flocculation behavior for organic dye removal.

    Science.gov (United States)

    Tian, Ye; Ju, Benzhi; Zhang, Shufen; Hou, Linan

    2016-01-20

    A thermoresponsive polymer, 2-hydroxy-3-butoxypropyl hydroxyethyl cellulose (HBPEC), was prepared by grafting butyl glycidyl ether (BGE) onto hydroxyethyl cellulose (HEC). The lower critical solution temperature (LCST) and critical flocculation temperature (CFT) of HBPEC were varied by changing the molar substitution (MS) and salt concentrations. Transmission electron microscopy (TEM) images and fluorescence spectroscopy showed that HBPEC can assemble into micelles. Additionally, using Nile Red as a model dye, the performance of HBPEC for the removing Nile Red from aqueous solutions via cloud point extraction procedures was investigated in detail. The encapsulation behavior of dye in the aqueous solution of HBPEC was studied by fluorescence spectroscopy and fluorescence microscope. The experimental results indicated that 99.4% of dye was removed from the aqueous solutions, and the HBPEC was recycled and reused easily, Furthermore, the recycle efficiency (RE) and maximum loading capacity portrayed little loss with the number of cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Clinical comparison of ethyl acetate and diethyl ether in the formalin-ether sedimentation technique.

    OpenAIRE

    Erdman, D D

    1981-01-01

    A substitute for the volatile solvent diethyl ether has been actively sought for the Formalin-ether sedimentation technique. Ethyl acetate has recently been shown to be a comparable substitute. In an effort to verify these findings and evaluate ethyl acetate under clinical conditions, comparison studies with 62 fresh human stool specimens were performed. Parallel concentrates with diethyl ether and ethyl acetate were prepared for each specimen, and the quantity and appearance of recovered par...

  8. Activity relationships for aromatic crown ethers

    CERN Document Server

    Wilson, M J

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities...

  9. INFLUENCE OF THE ISOBUTENE METHANOL RATIO AND OF THE METHYL TERT-BUTYL ETHER CONTENT ON THE REACTION-RATE OF THE SYNTHESIS OF METHYL TERT-BUTYL ETHER

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The forward reaction rate constant of the MtBE synthesis was determined for different reaction mixture compositions. The forward rate constant decreases continuously with increasing isobutene/methanol ratio, while an increase in reaction rate constant is observed with an increasing amount of MtBE in

  10. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  11. Para-ter-butyl of calix(4)arene with acetamide-ether as inorganic-organic receiver

    International Nuclear Information System (INIS)

    Ramirez, F.M. de; Scopelliti, R.; Muller, G.; Buenzli J, C.G.; Charbonniere, L.

    2001-01-01

    A new functionalized calix(4)arene was designed and constructed with predetrmined properties to form lanthanides complexes and to sensibilize its luminescent properties. This, in addition to sensibilize that photophysical property and once formed the complex resulted a good receiver of organic molecules as it is demonstrated the crystal structure of the lutetium complex. (Author)

  12. Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media

    NARCIS (Netherlands)

    Dalwani, M.R.; Bargeman, Gerrald; Hosseiny, Seyed Schwan; Schwan Hosseiny, Seyed; Boerrigter, M.E.; Wessling, Matthias; Benes, Nieck Edwin

    2011-01-01

    Several thin film composite nanofiltration membranes have been prepared by spin coating a sulfonated poly(ether ether ketone) solution on a polyethersulfone support, followed by thermal treatment. The most optimal developed nanofiltration membrane shows a clean water permeance of ∼4.5 L m−2 h−1

  13. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  14. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  15. Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator

    Science.gov (United States)

    Li, Zhen; Wang, Wenqiang; Han, Yu; Zhang, Lei; Li, Shuangshou; Tang, Bin; Xu, Shengming; Xu, Zhenghe

    2018-02-01

    In this study, poly(ether ether ketone) is first chloromethylated to improve the solubility and is later used for nonwoven membrane fabrication by electrospinning. Finally, the chloromethyl group was converted to the ethyl ether group and dibenzyl ether group in a hot alkaline solution. The abundant polar groups endow the membrane with excellent wettability, reducing the contact angle to 0°. The polymer matrix is crosslinked by dibenzyl ether group, endowing the membrane with excellent stability (insolubility in many solvents, and ultra-low swelling in the electrolyte at 80 °C) and good anti-shrinkage property (0% at 180 °C). The electrospinning-fabricated membrane remains stable until 4.812 V (vs. Li+/Li), meeting the requirement for use in lithium ion batteries. The interwoven structure of the nonwoven membrane effectively gives rise to the high electrolyte uptake of 215.8%. The ionic conductivity of the electrolyte-swelled electrospinning-fabricated membrane is 51% higher than that of the electrolyte-swelled Celgard membrane. As a result, the lithium ion battery with this nonwoven membrane exhibits an enhanced rate performance (up to 42.5% higher than the lithium ion battery with a PP separator) and satisfactory cycling performance.

  16. Landfills as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air

    Science.gov (United States)

    Weinberg, Ingo; Dreyer, Annekatrin; Ebinghaus, Ralf

    2011-02-01

    In order to investigate landfills as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two landfills (one active and one closed) and two reference sites using high volume air samplers. Contaminants were accumulated on glass fiber filters (particle phase) and PUF/XAD-2/PUF cartridges (gas phase), extracted by methyl-tert butyl ether/acetone (neutral PFCs), methanol (ionic PFCs) or hexane/acetone (PBDEs, musk fragrances), and detected by GC-MS (neutral PFCs, PBDEs, musk fragrances) or HPLC-MS/MS (ionic PFCs). Total concentrations ranged from 84 to 706 pg m -3 (volatile PFCs, gas phase), from MQL to 42 pg m -3 (ionic PFCs, particle phase), from 204 to 1963 pg m -3 (synthetic musk fragrances, gas + particle phase) and from 1 to 11 pg m -3 (PBDEs, gas + particle phase). Observed sum concentrations of PFCs and synthetic musk fragrances and partly PBDE concentrations were elevated at landfill sites compared to corresponding reference sites. Concentrations determined at the active landfill were higher than those of the inactive landfill. Overall, landfills can be regarded as a source of synthetic musk fragrances, several PFCs and potentially of PBDEs to ambient air.

  17. Improving oxidative stability of soya and sunflower oil using ...

    African Journals Online (AJOL)

    Rosmarinus officinallis) and tert- butyl-hydroquinone (TBHQ) as possible antioxidants in sunflower and soya oil. Upon addition of 200 ppm of dried leaf extract, acetone extract yielded protection of the samples against oxidation more efficiently as ...

  18. Atmospheric degradation of 2-chloroethyl vinyl ether, allyl ether and allyl ethyl ether: Kinetics with OH radicals and UV photochemistry.

    Science.gov (United States)

    Antiñolo, M; Ocaña, A J; Aranguren, J P; Lane, S I; Albaladejo, J; Jiménez, E

    2017-08-01

    Unsaturated ethers are oxygenated volatile organic compounds (OVOCs) emitted by anthropogenic sources. Potential removal processes in the troposphere are initiated by hydroxyl (OH) radicals and photochemistry. In this work, we report for the first time the rate coefficients of the gas-phase reaction with OH radicals (k OH ) of 2-chloroethyl vinyl ether (2ClEVE), allyl ether (AE), and allyl ethyl ether (AEE) as a function of temperature in the 263-358 K range, measured by the pulsed laser photolysis-laser induced fluorescence technique. No pressure dependence of k OH was observed in the 50-500 Torr range in He as bath gas, while a slightly negative T-dependence was observed. The temperature dependent expressions for the rate coefficients determined in this work are: The estimated atmospheric lifetimes (τ OH ) assuming k OH at 288 K were 3, 2, and 4 h for 2ClEVE, AE and AEE, respectively. The kinetic results are discussed in terms of the chemical structure of the unsaturated ethers by comparison with similar compounds. We also report ultraviolet (UV) and infrared (IR) absorption cross sections (σ λ and σ(ν˜), respectively). We estimate the photolysis rate coefficients in the solar UV actinic region to be less than 10 -7 s -1 , implying that these compounds are not removed from the atmosphere by this process. In addition, from σ(ν˜) and τ OH , the global warming potential of each unsaturated ether was calculated to be almost zero. A discussion on the atmospheric implications of the titled compounds is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Proton nuclear magnetic resonance study of water + t-butyl alcohol ...

    African Journals Online (AJOL)

    Hydroxyl-proton chemical shifts for water and t-butyl alcohol in water + t-butyl alcohol mixtures with 8 mol% t-butyl alcohol, and the average hydroxyl and amino proton chemical shift for water + t-butylamine mixtures, have been determined at 200 MHz for four temperatures (263, 278, 298 and 313 K) as a function of ...

  20. and triorganotin(IV) complexes of 2-tert-butyl-4-methyl phenol

    Indian Academy of Sciences (India)

    TECS

    -2-Me-4) have been synthesized by the reactions of di-n-butyl and dimethyltin dichlorides and tri-n-butyltin(IV) chloride with 2-tert-butyl-4-methylphenol and triethylamine in tetrahydrofuran. The reaction of triphenyltin chloride with trimethylsilyl-2-t-butyl-4- methylphenoxide in the same solvent however, gives a complex of ...

  1. An alternative approach to synthesis of 2--butyl-5-nitrobenzofuran ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 5. An alternative approach to synthesis of 2--butyl-5-nitrobenzofuran derivative: A key starting material for dronedarone hydrochloride. P Raja Gopal E R R Chandrashekar M Saravanan B Vijaya Bhaskar P Veera Somaiah. Volume 124 Issue 5 September ...

  2. Solvent free lipase catalyzed synthesis of butyl caprylate

    Indian Academy of Sciences (India)

    MEERA T SOSE

    2017-11-10

    Nov 10, 2017 ... Special Issue on Recent Trends in the Design and Development of Catalysts and their Applications. Solvent free lipase catalyzed synthesis of butyl caprylate. MEERA T SOSE, SNEHA R .... and keeping others constant. It is also very important to prevent excess water formation as it results to give back the ...

  3. 27 CFR 21.100 - n-Butyl alcohol.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false n-Butyl alcohol. 21.100 Section 21.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21...

  4. 27 CFR 21.101 - tert-Butyl alcohol.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false tert-Butyl alcohol. 21.101 Section 21.101 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21...

  5. Syntheses of Diazadithiacrown Ethers Containing Two 8-Hydroxyquinoline Side Arms

    National Research Council Canada - National Science Library

    Song, H

    2001-01-01

    Ten new diazadithiacrown ethers containing two 8-hydroxyquinoline (HQ) sidearms attached through the HQ 7-positions and four new diazadithiacrown ethers containing two HQ sidearms attached through the HQ 2-positions have been prepared...

  6. Luminescent Lariat Aza-Crown Ether Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2010-03-01

    Full Text Available Lariat ethers are interesting recognition motifs in supramolecular chemistry. The synthesis of a luminescent lariat aza-crown ether with a carboxyl group appended by azide-alkyne (Huisgen cycloaddition is presented.

  7. Preparation of mesoporous alumina films by anodization: Effect of pretreatments on the aluminum surface and MTBE catalytic oxidation

    International Nuclear Information System (INIS)

    Vazquez, A.L.; Carrera, R.; Arce, E.; Castillo, N.; Castillo, S.; Moran-Pineda, M.

    2009-01-01

    Mesoporous materials are both scientifically and technologically important because of the presence of voids of controllable dimensions at atomic, molecular, and nanometric scales. Over the last decade, there has been both an increasing interest and research effort in the synthesis and characterization of these types of materials. The purposes of this work are to study the physical and chemical changes in the properties of mesoporous alumina films produced by anodization in sulphuric acid by different pretreatments on the aluminium surface such as mechanical polishing [MP] and electropolishing [EP]; and to compare their properties such as morphology, structure and catalytic activity with those present in commercial alumina. The morphologic and physical characterizations of the alumina film samples were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical evaluations were performed by the oxidation of methyl-tert-butyl-ether (MTBE) at 400 deg. C under O 2 /He oxidizing conditions (Praxair, 2.0% O 2 /He balance). According to the results, the samples that presented higher activities than those in Al 2 O 3 /Al [MP] and commercial alumina in the MTBE oxidation (69%), were those prepared by Al 2 O 3 /Al [EP]. The average mesoporous diameter was 17 nm, and the morphological shape was equiaxial; thus, that pore distribution was the smallest of all with a homogeneous distribution.

  8. Preparation of mesoporous alumina films by anodization: Effect of pretreatments on the aluminum surface and MTBE catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, A.L., E-mail: avazquezd@ipn.m [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Carrera, R. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Arce, E. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Castillo, N. [CINVESTAV, Departamento de Fisica. Av. IPN 2508, 07360, Mexico, D.F (Mexico); Castillo, S. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Moran-Pineda, M. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico)

    2009-08-26

    Mesoporous materials are both scientifically and technologically important because of the presence of voids of controllable dimensions at atomic, molecular, and nanometric scales. Over the last decade, there has been both an increasing interest and research effort in the synthesis and characterization of these types of materials. The purposes of this work are to study the physical and chemical changes in the properties of mesoporous alumina films produced by anodization in sulphuric acid by different pretreatments on the aluminium surface such as mechanical polishing [MP] and electropolishing [EP]; and to compare their properties such as morphology, structure and catalytic activity with those present in commercial alumina. The morphologic and physical characterizations of the alumina film samples were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical evaluations were performed by the oxidation of methyl-tert-butyl-ether (MTBE) at 400 deg. C under O{sub 2}/He oxidizing conditions (Praxair, 2.0% O{sub 2}/He balance). According to the results, the samples that presented higher activities than those in Al{sub 2}O{sub 3}/Al [MP] and commercial alumina in the MTBE oxidation (69%), were those prepared by Al{sub 2}O{sub 3}/Al [EP]. The average mesoporous diameter was 17 nm, and the morphological shape was equiaxial; thus, that pore distribution was the smallest of all with a homogeneous distribution.

  9. On-line liquid chromatography-gas chromatography: A novel approach for the analysis of phytosterol oxidation products in enriched foods.

    Science.gov (United States)

    Scholz, Birgit; Wocheslander, Stefan; Lander, Vera; Engel, Karl-Heinz

    2015-05-29

    A novel methodology for the automated qualitative and quantitative determination of phytosterol oxidation products in enriched foods via on-line liquid chromatography-gas chromatography (LC-GC) was established. The approach is based on the LC pre-separation of acetylated phytosterols and their corresponding oxides using silica as stationary phase and a mixture of n-hexane/methyl tert-butyl ether/isopropanol as eluent. Two LC-fractions containing (i) 5,6-epoxy- and 7-hydroxyphytosterols, and (ii) 7-ketophytosterols are transferred on-line to the GC for the analysis of their individual compositions on a medium polar trifluoropropylmethyl polysiloxane capillary column. Thus, conventionally employed laborious off-line purification and enrichment steps can be avoided. Validation data, including recovery, repeatability, and reproducibility of the method, were elaborated using an enriched margarine as example. The margarine was subjected to a heating procedure in order to exemplarily monitor the formation of phytosterol oxidation products. Quantification was performed using on-line LC-GC-FID, identification of the analytes was based on on-line LC-GC-MS. The developed approach offers a new possibility for the reliable and fast analysis of phytosterol oxidation products in enriched foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Developmental toxicity of four glycol ethers applied cutaneously to rats.

    OpenAIRE

    Hardin, B D; Goad, P T; Burg, J R

    1984-01-01

    Previous NIOSH studies demonstrated the embryo- and fetotoxicity and teratogenicity of ethylene glycol monoethyl ether (EGEE) applied to the shaved skin of pregnant rats. In the present study ethylene glycol monoethyl ether acetate (EGEEA), ethylene glycol monobutyl ether (EGBE), and diethylene glycol monoethyl ether (diEGEE) were tested in the same experimental model, using distilled water as the negative control and EGEE as a positive control. Water or undiluted glycols were applied four ti...

  11. Degradation of β-Aryl Ether Bonds in Transgenic Plants

    DEFF Research Database (Denmark)

    Mnich, Ewelina

    of the cell wall. The aim of the study was to alter lignin structure by expression in plants of the enzymes from S. paucimobilis involved in ether bond degradation (LigDFG). Arabidopsis thaliana and Brachypodium distachyon transgenic lines were generated and characterized with respect to lignin structure...... and cell wall polysaccharide extractability. Structural changes in lignin detected by 2D HSQC NMR analysis of transgenic Arabidopsis stems correlated with a slight increase in the saccharification yield. An increase in oxidized guaiacyl and syringyl units resulting from the action of LigDFG was observed...... be degraded by LigDFG, which can presumably cause loosening of the lignin-ferulate-polysaccharide matrix. In a xylanase hydrolysis of Brachypodium transgenic stems, the release of arabinose and xylose was increased compared to wild type. The data presented demonstrate that introduction of lignin degrading...

  12. On new physical reality (on ψ-ether)

    International Nuclear Information System (INIS)

    Isaev, P.S.

    2002-01-01

    It is shown that there exists a new physical reality - the ψ-ether. All the achievements of quantum mechanics and quantum field theory are due to the fact that both the theories include the influence of ψ-ether on the physical processes occurring in the Universe. Physics of the XX century was first of all the physics of ψ-ether

  13. Metabolism and elimination of methyl, iso- and n-butyl paraben in human urine after single oral dosage.

    Science.gov (United States)

    Moos, Rebecca K; Angerer, Jürgen; Dierkes, Georg; Brüning, Thomas; Koch, Holger M

    2016-11-01

    Parabens are used as preservatives in personal care and consumer products, food and pharmaceuticals. Their use is controversial because of possible endocrine disrupting properties. In this study, we investigated metabolism and urinary excretion of methyl paraben (MeP), iso-butyl paraben (iso-BuP) and n-butyl paraben (n-BuP) after oral dosage of deuterium-labeled analogs (10 mg). Each volunteer received one dosage per investigated paraben separately and at least 2 weeks apart. Consecutive urine samples were collected over 48 h. In addition to the parent parabens (free and conjugated) which are already used as biomarkers of internal exposure and the known but non-specific metabolites, p-hydroxybenzoic acid (PHBA) and p-hydroxyhippuric acid (PHHA), we identified new, oxidized metabolites with hydroxy groups on the alkyl side chain (3OH-n-BuP and 2OH-iso-BuP) and species with oxidative modifications on the aromatic ring. MeP represented 17.4 % of the dose excreted in urine, while iso-BuP represented only 6.8 % and n-BuP 5.6 %. Additionally, for iso-BuP, about 16 % was excreted as 2OH-iso-BuP and for n-BuP about 6 % as 3OH-n-BuP. Less than 1 % was excreted as ring-hydroxylated metabolites. In all cases, PHHA was identified as the major but non-specific metabolite (57.2-63.8 %). PHBA represented 3.0-7.2 %. For all parabens, the majority of the oral dose captured by the above metabolites was excreted in the first 24 h (80.5-85.3 %). Complementary to the parent parabens excreted in urine, alkyl-chain-oxidized metabolites of the butyl parabens are introduced as valuable and contamination-free biomarkers of exposure.

  14. An investigation of 2,5-di-tertbutyl-1,4-bis(methoxyethoxy)benzene in ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Liang; Ferrandon, Magali; Barton, John L.; de la Rosa, Noel Upia; Vaughey, John T.; Brushett, Fikile R.

    2017-08-01

    The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemical and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.

  15. Biosynthesis of archaeal membrane ether lipids

    NARCIS (Netherlands)

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether

  16. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu Chieh; Otten, Edwin; Couzijn, Erik P A; Lutz, Martin|info:eu-repo/dai/nl/304828971; Minnaard, Adriaan J.

    2014-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio- and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides. © 2014 The Royal Society

  17. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  18. Retardationof gasoline vaporization by oxypropyl ethers of polyols of oligomeric nature

    International Nuclear Information System (INIS)

    Asadov, Z.H.; Rahimov, R.A.; Agazade, A.D.

    2009-01-01

    Surfactants of nonionic type have been obtained as a result of glycerine and ethylene glycol condensation with propylene oxide. An influence of length of oxypropylene chain on solubility of oligoethers has been clarified. Capability of these oligoethers to regard gasoline vaporization at the expense of microfilm formation has been revealed. An effect of both length of ether chain and other indices on retardation effect has been established

  19. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  20. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  1. Degradation of the fungicide denmert (S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbonimidate, S-1358) by plants, soils and light

    International Nuclear Information System (INIS)

    Ohkawa, Hideo; Shibaike, Reiko; Okihara, Yukiko; Morikawa, Michihide; Miyamoto, Junshi

    1976-01-01

    14 C-Denmert(S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbonimidate, S-1358) labeled at the methylene of the benzyl group was gradually decomposed to yield a number of products, when exposed to sunlight on thin-layer plates or in water solution, applied to plant foliage or nutrient solution, and added to soils under upland conditions. The identified products were almost common to plants, soils and light. The primary reactions occurred: (1), oxidation of the sulfur atoms; (2), cleavage of the dithiocarbonimidate linkage, and (3), oxidation of the methylene of the benzyl group. Also, hydroxylation at the tert-butyl group attached to the benzyl moiety slightly took place in soils. Although radioactivity was absorbed by the plant through leaves or roots, translocation into other parts of the plant occurred to a very small extent. Denmert and its degradation products were hardly leached through the acidic soils tested. (auth.)

  2. Ion-Selective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, Sinem; Zoetebier, Bram; Sardan Sukas, Ö.; Bayraktar, Muharrem; Hempenius, Mark A.; Vancso, Gyula J.; Nijmeijer, Dorothea C.

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  3. Preparation and characterization of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.H.; Krupenko, O.; Krupenko, O.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Wessling, Matthias

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly

  4. Effects of poly-ether B on proteome and phosphoproteome expression in biofouling Balanus amphitrite cyprids

    KAUST Repository

    Dash, Swagatika

    2012-04-01

    Biofouling is ubiquitous in marine environments, and the barnacle Balanus amphitrite is one of the most recalcitrant and aggressive biofoulers in tropical waters. Several natural antifoulants that were claimed to be non-toxic have been isolated in recent years, although the mechanism by which they inhibit fouling is yet to be investigated. Poly-ether B has shown promise in the non-toxic inhibition of larval barnacle attachment. Hence, in this study, multiplex two-dimensional electrophoresis (2-DE) was applied in conjunction with mass spectrometry to investigate the effects of poly-ether B on barnacle larvae at the molecular level. The cyprid proteome response to poly-ether B treatment was analyzed at the total proteome and phosphoproteome levels, with 65 protein and 19 phosphoprotein spots found to be up- or down-regulated. The proteins were found to be related to energy-metabolism, oxidative stress, and molecular chaperones, thus indicating that poly-ether B may interfere with the redox-regulatory mechanisms governing the settlement of barnacle larvae. The results of this study demonstrate the usefulness of the proteomic technique in revealing the working mechanisms of antifouling compounds. © 2012 Copyright Taylor and Francis Group, LLC.

  5. Regioselective synthesis of nitrosoimidazoheterocycles using tert-butyl nitrite.

    Science.gov (United States)

    Monir, Kamarul; Ghosh, Monoranjan; Jana, Sourav; Mondal, Pallab; Majee, Adinath; Hajra, Alakananda

    2015-08-28

    A simple and practical method has been developed for the regioselective nitrosylation of imidazopyridines via C(sp(2))-H bond functionalization using tert-butyl nitrite under mild reaction conditions in a short time. A library of 3-nitrosoimidazopyridines with broad functionalities was synthesized in near quantitative yields. The present protocol is also applicable to imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole.

  6. 2-Benzhydryl-6-tert-butyl-4-methylphenol

    Directory of Open Access Journals (Sweden)

    Sungwoo Yoon

    2013-02-01

    Full Text Available The title compound, C24H26O, was prepared by the reaction between 2-tert-butyl-4-methylphenol and diphenylmethanol in the presence of sulfuric acid. Three benzene rings are attached directly to the central C—H group in a twisted propeller conformation with the local pseudo-C3 rotational axis coinciding with the C—H bond. There are three short C—H...O contacts in the molecule.

  7. Evaluation of crystallization kinetics of poly (ether-ketone-ketone) and poly (ether-ether-ketone) by DSC

    OpenAIRE

    Gibran da Cunha Vasconcelos; Rogerio Lago Mazur; Edson Cocchieri Botelho; Mirabel Cerqueira Rezende; Michelle Leali Costa

    2010-01-01

    Abstract: The poly (aryl ether ketones) are used as matrices in advanced composites with high performance due to its high thermal stability, excellent environmental performance and superior mechanical properties. Most of the physical, mechanical and thermodynamic properties of semi-crystalline polymers depend on the degree of crystallinity and morphology of the crystalline regions. Thus, a study on the crystallization process promotes a good prediction of how the manufacturing parameters affe...

  8. The Effect of Tertiary Butyl Hydroquinone on the Biodegradability of Palm Olein

    Directory of Open Access Journals (Sweden)

    Emmanuel ALUYOR

    2009-07-01

    Full Text Available Poor oxidative stability is demonstrated by most vegetable oils especially in industrial situations. Antioxidants are widely used for overcoming poor oxidative stability in vegetable oils. The adverse effect of additives on the overall biodegradability of vegetable oil based industrial fluids could however be a concern. Biodegradability provides an indication of the persistence of any particular substance in the environment. The superior biodegradation of vegetable oils in comparison with mineral based oils has been demonstrated severally, leaving scientists with the lone challenge of finding economic and safe means to improve their working efficiency in terms of their poor oxidative stability. This study investigated the extent to which the use of the antioxidant Tertiary butyl hydroquinone (TBHQ in palm olein impaired biodegradability, and described the relationship between antioxidant loading and biodegradability. Increased antioxidant loading resulted in a matching decrease in biodegradability. Using the total cumulative oxygen depletion value of pure refined palm olein at the end of the 28 day period as a standard of comparison, a 0.02% concentration of TBHQ in palm olein resulted in a 25% loss in biodegradability; a 2% concentration of TBHQ resulted in a 56.5% loss in biodegradability. At 6% TBHQ concentration, no biodegradation was observed in the palm olein sample studied.

  9. Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide

    International Nuclear Information System (INIS)

    Lee Youngchul; Lee, E.H.; Mansur, L.K.

    1992-01-01

    The effects of boron beam irradiation on the hardness, friction, and wear of polymer surfaces were investigated. Typical high-performance thermoplastics, poly(ether-ether-ketone) (PEEK) and a poly-ether-imide (Ultem) were studied after 200 keV boron ion beam treatment at ambient temperature to doses of 2.3x10 14 , 6.8x10 14 , and 2.2x10 15 ions cm -2 . The hardnesses of pristine and boron-implanted materials were characterized by a conventional Knoop method and a load-depth sensing nanoindentation technique. Both measurements showed a significant increase in hardness with increasing dose. The increase in hardness was also found to depend on the penetration depth of the diamond indenter. Wear and friction properties were characterized by a reciprocating sliding friction tester with an SAE 52100 high-carbon, chrome steel ball at 0.5 and 1 N normal loads. Wear and frictional properties varied in a complex fashion with polymer type and dose, but not much with normal load. A substantial reduction in friction coefficient was observed for PEEK at the highest dose but no reduction was observed for Ultem. The wear damage was substantially reduced at the highest dose for both Ultem and PEEK. For the system studied, the highest dose, 2.2x10 15 ions cm -2 , appears to be optimum in improving wear resistance for both PEEK and Ultem. (orig.)

  10. Cultivation of Aquincola tertiaricarbonis L108 on the fuel oxygenate intermediate tert-butyl alcohol induces aerobic anoxygenic photosynthesis at extremely low feeding rates.

    Science.gov (United States)

    Rohwerder, Thore; Müller, Roland H; Weichler, M Teresa; Schuster, Judith; Hübschmann, Thomas; Müller, Susann; Harms, Hauke

    2013-10-01

    Aerobic anoxygenic photosynthesis (AAP) is found in an increasing number of proteobacterial strains thriving in ecosystems ranging from extremely oligotrophic to eutrophic. Here, we have investigated whether the fuel oxygenate-degrading betaproteobacterium Aquincola tertiaricarbonis L108 can use AAP to compensate kinetic limitations at low heterotrophic substrate fluxes. In a fermenter experiment with complete biomass retention and also during chemostat cultivation, strain L108 was challenged with extremely low substrate feeding rates of tert-butyl alcohol (TBA), an intermediate of methyl tert-butyl ether (MTBE). Interestingly, formation of photosynthetic pigments, identified as bacteriochlorophyll a and spirilloxanthin, was only induced in growing cells at TBA feeding rates less than or equal to maintenance requirements observed under energy excess conditions. Growth continued at rates between 0.001 and 0.002 h(-1) even when the TBA feed was decreased to values close to 30 % of this maintenance rate. Partial sequencing of genomic DNA of strain L108 revealed a bacteriochlorophyll synthesis gene cluster (bchFNBHL) and photosynthesis regulator genes (ppsR and ppaA) typically found in AAP and other photosynthetic proteobacteria. The usage of light as auxiliary energy source enabling evolution of efficient degradation pathways for kinetically limited heterotrophic substrates and for lowering the threshold substrate concentration Smin at which growth becomes zero is discussed.

  11. Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation

    Science.gov (United States)

    2014-12-01

    Poly(aryl-ether-ether- ketone ) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio...the originator. Army Research Laboratory Adelphi, MD 20783-1138 ARL-TR-7160 December 2014 Poly(aryl-ether-ether- ketone ) as a...REPORT DATE (DD-MM-YYYY) December 2014 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Poly(aryl-ether-ether- ketone ) as

  12. Model for Photodegradation of Polybrominated Diphenyl Ethers

    Czech Academy of Sciences Publication Activity Database

    Veselý, M.; Vajglová, Zuzana; Kotas, Petr; Křišťál, Jiří; Ponec, Robert; Jiřičný, Vladimír

    2015-01-01

    Roč. 22, č. 7 (2015), s. 4949-4963 ISSN 0944-1344 R&D Projects: GA ČR GA104/09/0880; GA ČR(CZ) GAP105/12/0664 Institutional support: RVO:67985858 ; RVO:67179843 Keywords : polybrominated diphenyl ethers * photodegradation model * quantum chemical calculation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.760, year: 2015

  13. Nikola Tesla, the Ether and his Telautomaton

    Science.gov (United States)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  14. Impaired neurotransmission in ether lipid-deficient nerve terminals.

    Science.gov (United States)

    Brodde, Alexander; Teigler, Andre; Brugger, Britta; Lehmann, Wolf D; Wieland, Felix; Berger, Johannes; Just, Wilhelm W

    2012-06-15

    Isolated defects of ether lipid (EL) biosynthesis in humans cause rhizomelic chondrodysplasia punctata type 2 and type 3, serious peroxisomal disorders. Using a previously described mouse model [Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., and Just, W.W. (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet., 12, 1881-1895], we investigated the effect of EL deficiency in isolated murine nerve terminals (synaptosomes) on the pre-synaptic release of the neurotransmitters (NTs) glutamate and acetylcholine. Both Ca(2+)-dependent exocytosis and Ca(2+)-independent efflux of the transmitters were affected. EL-deficient synaptosomes respire at a reduced rate and exhibit a lowered adenosin-5'-triphosphate/adenosine diphosphate (ATP/ADP) ratio. Consequently, ATP-driven processes, such as synaptic vesicle cycling and maintenance of Na(+), K(+) and Ca(2+) homeostasis, might be disturbed. Analyzing reactive oxygen species in EL-deficient neural and non-neural tissues revealed that plasmalogens (PLs), the most abundant EL species in mammalian central nervous system, considerably contribute to the generation of the lipid peroxidation product malondialdehyde. Although EL-deficient tissue contains less lipid peroxidation products, fibroblasts lacking ELs are more susceptible to induced oxidative stress. In summary, these results suggest that due to the reduced energy state of EL-deficient tissue, the Ca(2+)-independent efflux of NTs increases while the Ca(2+)-dependent release declines. Furthermore, lack of PLs is mainly compensated for by an increase in the concentration of phosphatidylethanolamine and results in a significantly lowered level of lipid peroxidation products in the brain cortex and cerebellum.

  15. Synthesis of o-carboranylmethyl ethers of steroids as potential target substrates for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Schneiderova, L.; Gruener, B.; Strouf, O.; Kimlova, I.

    1992-01-01

    o-carboranylmethyl ethers of steroids were synthesized by insertion of steroidal 2-propynyloxy derivatives into 6,9-bis(acetonitrile)decarborane. This reaction provided compounds with an estrane and androstane skeleton, potentially useful in boron neutron capture therapy of hormone-sensitive forms of cancer: 17β-o-carboranylmethyl ether of estradiol IXb (yield 14%) and 3β- and 17β-carboranylmethyl ethers of androstenediol Vb and VIIb (yield 12% and 13%, respectively). Jones oxidation gave the carboranyl derivative of androsten-17-one VIb in 75% yield. As shown by a study of insertion of 3β-(2-propynyloxy)cholest-5-ene (IVa), the low yields of the insertion reaction cannot be increased by change in the reaction conditions. The relative binding affinity of compound IXb to the estrogen receptor from rat uterine and human breast tumor cytosol was 3.0 and 0.29%, respectively, of that of estradiol. (author) 2 figs., 2 tabs., 20 refs

  16. From ether theory to ether theology: Oliver Lodge and the physics of immortality.

    Science.gov (United States)

    Raia, Courtenay Grean

    2007-01-01

    This article follows the development of physicist Oliver Lodge's religio-scientific worldview, beginning with his reticent attraction to metaphysics in the early 1880s to the full formulation of his "ether theology" in the late 1890s. Lodge undertook the study of psychical phenomena such as telepathy, telekinesis, and "ectoplasm" to further his scientific investigations of the ether, speculating that electrical and psychical manifestations were linked phenomena that described the deeper underlying structures of the universe, beneath and beyond matter. For Lodge, to fully understand the ether was to force from the universe an ultimate Revelation, and psychical research, as the most modern and probatory science, was poised to replace religion as the means of that disclosure. (c) 2007 Wiley Periodicals, Inc.

  17. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketone)s and Linear Poly(ether ketone)s.

    Science.gov (United States)

    Morikawa, Atsushi

    2016-02-16

    Poly(ether ether ketone) dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4'-(4-fluorobenzoyl)diphenyl ether and 3,5-dihydroxy-4'-(4-fluorobenzoyl)diphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy)-3,5-bis(4-fluorobenzoyl)benzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketone)s having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  19. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  20. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baijun, E-mail: liubj@jlu.edu.c [College of Chemistry, Jilin University, Changchun 130012 (China); Hu Wei [College of Chemistry, Jilin University, Changchun 130012 (China); Kim, Yu Seung [Los Alamos National Laboratory, Electronic and Electrochemical Materials and Devices, Los Alamos, NM 87545 (United States); Zou Haifeng [College of Chemistry, Jilin University, Changchun 130012 (China); Robertson, Gilles P. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Jiang Zhenhua [College of Chemistry, Jilin University, Changchun 130012 (China); Guiver, Michael D. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2010-04-15

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion membranes.

  1. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2018-02-01

    Full Text Available Poly-ether-ether-ketone (PEEK fabricated by fused deposition modeling for medical applications was evaluated in terms of mechanical strength and in vitro cytotoxicity in this study. Orthogonal experiments were firstly designed to investigate the significant factors on tensile strength. Nozzle temperature, platform temperature, and the filament diameter were tightly controlled for improved mechanical strength performance. These sensitive parameters affected the interlayer bonding and solid condition in the samples. Fourier transform infrared (FTIR spectrometry analysis was secondly conducted to compare the functional groups in PEEK granules, filaments, and printed parts. In vitro cytotoxicity test was carried out at last, and no toxic substances were introduced during the printing process.

  2. Proton conductivity enhancement by nanostructural control of sulphonated poly (ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuwei; Ge, Junjie; Cui, Zhiming; Liu, Changpeng; Xing, Wei [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin (China); Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council of Canada. 4250 Wesbrook Mall, Vancouver, BC (Canada); Lin, Haidan; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2010-08-15

    A series of sulphonated poly (ether ether ketone) (sPEEK) membranes for direct methanol fuel cells are successfully prepared under different humidity degree conditions. These membranes exhibit enhanced proton conductivity at high humidity degree. It is proved that the different proton conductivity is ascribed to the orientation arrangement of sulphonic acid groups, which is caused by environmental water in the preparing process of membranes. A model is established by analyzing the dynamics of membrane formation and proved by Field emission scanning electron microscopy (ESEM) and X-ray photoelectron spectroscopy (XPS). (author)

  3. EFFICACY OF HYOSCINE BUTYL BROMIDE SUPPOSITORY FOR POSTOPERATIVE PAIN RELIEF

    Directory of Open Access Journals (Sweden)

    Soniya C. Alphonse

    2017-07-01

    Full Text Available BACKGROUND Caesarean Section is on the rise all over the world. Women undergoing Caesarean section often wish to be awake post operatively and to avoid excessive medications affecting interactions with the new born infant. Multimodal pain therapy has been advocated for postoperative pain management after caesarean section. MATERIALS AND METHODS The study is a prospective randomized controlled study conducted at a tertiary care hospital to study the effect of Hyoscine Butyl Bromide Suppositories for postoperative analgesia following elective repeat caesarean section. The study included sixty patients divided into two groups- Group1 (study group were given Hyoscine Butyl Bromide Suppository (10 mg along with Injection. Tramadol 50 mg IM and Group II (control group were given Injection Tramadol IM only at the end of surgery. Pain score of the patient assessed at 1 hr, 2 hrs, 6hrs and 24 hrs post operatively. The total no of doses of injection tramadol needed in 24 hrs and the interval between 1st and 2nd dose of tramadol was also noted. The adverse effects of the drug and additional advantages of the drug if any were also assessed. RESULTS There was no statistically significant difference in pain score during the assessment intervals between the two groups. There was no difference in the number of doses of tramadol needed in the first 24 hrs. The mean interval between the 1st and 2nd dose of tramadol was found to be 7.6538 hours for group 1 patients and 6.9130 for group patients which was found to be statistically significant. There was no statistically significant side effects/ additional advantages for the drugs. CONCLUSION Concurrent administration of Hyoscine Butyl Bromide Suppository (10 mg and injection Tramadol 50 mg IM offers a longer postoperative analgesia without any increased adverse effects.

  4. Wet oxidation catalyzed by ruthenium supported on cerium (IV) oxides

    International Nuclear Information System (INIS)

    Imamura, S.; Fukuda, I.; Ishida, S.

    1988-01-01

    The activity of precious meta catalysts in the wet oxidation of organic compounds was investigated. Ruthenium was the most active catalyst among the precious metals examined, and cerium (IV) oxide was the most effective support. The Ru/Ce catalyst rivaled homogeneous copper catalyst, which is used in the practical wastewater treatment, for the oxidation of n-propyl alcohol, n-butyl alcohol, phenol, acetamide, poly (propylene glycol), and acetic acid. In addition, it was especially effective for the oxidation of some compounds with high oxygen content such as poly (ethylene glycol), ethylene glycol, formaldehyde, and formic acid

  5. Protective mechanisms of anthocyanins from purple sweet potato against tert-butyl hydroperoxide-induced hepatotoxicity.

    Science.gov (United States)

    Hwang, Yong Pil; Choi, Jae Ho; Choi, Jun Min; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Anthocyanins have been shown to exert anti-proliferative, anti-inflammatory effects and anti-carcinogenic activity. In the present work, we investigated the protective effects of anthocyanin fraction (AF) from purple sweet potato on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in HepG2 cell line and in rat liver. The result showed that the oral pretreatment of AF before t-BHP treatment significantly lowered the serum levels of the hepatic enzyme markers (ALT and AST) and reduced oxidative stress of the liver by evaluation of malondialdehyde and glutathione. Histopathological evaluation of the livers also revealed that AF reduced the incidence of liver lesions. The in vitro result showed that AF significantly reduced t-BHP-induced oxidative injury, as determined by cell cytotoxicity, intracellular glutathione content, lipid peroxidation, reactive oxygen species (ROS) levels, and caspases activation. Also, AF up-regulated antioxidant enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinone reductase, and glutathione S-transferase. Moreover, AF induced Nrf2 nuclear translocation and Akt and ERK1/2 activation, pathways that are involved in inducing Nrf2 nuclear translocation. Taken together, these results suggest that the protective effects of AF against t-BHP-induced hepatotoxicity may, at least in part, be due to its ability to scavenge ROS and to regulate the antioxidant enzyme HO-1 via the Akt and ERK1/2/Nrf2 signaling pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Antioxidant effect of mango seed extract and butylated hydroxytoluene in bologna-type mortadella during storage

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Fernandes Pereira

    2011-03-01

    Full Text Available The effects of mango seed extract (MSE and butylated hydroxytoluene (BHT on pH, lipid oxidation, and color of Bologna-type mortadella during refrigerated storage for 21 days were studied. Bologna-type mortadella samples were formulated to contain 0.1% MSE, 0.2% MSE, or 0.01% BHT. After 14 days of storage, the products containing MSE 0.1 or 0.2% had higher pH values than those containing BHT 0.01%. Lipid oxidation values increased with storage time but were not affected by the type of antioxidant. The highest values for color parameter L* were observed for mortadella containing BHT 0.01% after 7, 14, and 21 days of storage. Values for the color parameters a* and b* tended to decrease during mortadella storage. Products containing 0.1 or 0.2% MSE showed higher values for color parameter a* and lower values for color parameter b* compared to those containing 0.01% BHT. It can be concluded that MSE can be used in 0.1 or 0.2% levels in Bologna-type mortadella with similar or better antioxidant effects than those of BHT 0.01%.

  7. Radiation-chemical synthesis of thermosensitive copolymers based on the vinylbutyl ether and their complexing and emulgating abilities

    Science.gov (United States)

    Zhunuspayev, D. E.; Mun, G. A.; Dubolazov, A. V.; Nurkeeva, Z. S.; Güven, O.

    2007-12-01

    Novel water-soluble thermosensitive copolymers of vinyl butyl ether (VBE) with vinyl ether of ethyleneglycol (VEEG) and N-vinylpyrrolidone (NVP) and ternary copolymers based on VBE, 2-hydroxyethylacrylate (HEA) and acrylic acid (AA) were synthesized by γ-induced radiation copolymerization. The composition of copolymers and average molecular weight of copolymers were determined using NMR 13C-spectroscopy and gel-permeation chromatography. It was shown that aqueous solutions of VBE-VEEG, VBE-NVP, VBE-HEA-AA have lower critical solution temperature (LCST) depending on copolymer composition. The complexation of copolymers with polyacrylic acid (PAA) was studied by turbidimetry method. Critical pH value of complexation (pH crit.) was used as the criterion of complexing ability. The effect of composition and concentration of copolymers, as well as pH of medium on the formation of IPC was investigated. The effect of VBE-VEEG copolymers of different compositions on the stability of model hexane-water emulsions was studied. It was determined that the regulation of hydrophilic-hydrophobic balance of macrochains and copolymer concentration allows effectively influence on the stability of hexane-water emulsions.

  8. Radiation-chemical synthesis of thermosensitive copolymers based on the vinylbutyl ether and their complexing and emulgating abilities

    Energy Technology Data Exchange (ETDEWEB)

    Zhunuspayev, D.E. [Kazakh National University, Department of Chemical Physics and Macromolecular Chemistry, 95a Karasai Batyr Street, Almaty (Kazakhstan); Mun, G.A. [Kazakh National University, Department of Chemical Physics and Macromolecular Chemistry, 95a Karasai Batyr Street, Almaty (Kazakhstan)], E-mail: gamun@nursat.kz; Dubolazov, A.V.; Nurkeeva, Z.S. [Kazakh National University, Department of Chemical Physics and Macromolecular Chemistry, 95a Karasai Batyr Street, Almaty (Kazakhstan); Gueven, O. [Hacettepe University, Department of Chemistry, 06532 Beytepe, Ankara (Turkey)

    2007-12-15

    Novel water-soluble thermosensitive copolymers of vinyl butyl ether (VBE) with vinyl ether of ethyleneglycol (VEEG) and N-vinylpyrrolidone (NVP) and ternary copolymers based on VBE, 2-hydroxyethylacrylate (HEA) and acrylic acid (AA) were synthesized by {gamma}-induced radiation copolymerization. The composition of copolymers and average molecular weight of copolymers were determined using NMR {sup 13}C-spectroscopy and gel-permeation chromatography. It was shown that aqueous solutions of VBE-VEEG, VBE-NVP, VBE-HEA-AA have lower critical solution temperature (LCST) depending on copolymer composition. The complexation of copolymers with polyacrylic acid (PAA) was studied by turbidimetry method. Critical pH value of complexation (pH{sub crit.}) was used as the criterion of complexing ability. The effect of composition and concentration of copolymers, as well as pH of medium on the formation of IPC was investigated. The effect of VBE-VEEG copolymers of different compositions on the stability of model hexane-water emulsions was studied. It was determined that the regulation of hydrophilic-hydrophobic balance of macrochains and copolymer concentration allows effectively influence on the stability of hexane-water emulsions.

  9. Removal of technetium from alkaline nuclear-waste media by a solvent-extraction process using crown ethers

    International Nuclear Information System (INIS)

    Bonnesen, P.V.; Presley, D.J.; Haverlock, T.J.; Moyer, B.A.

    1995-01-01

    Crown ethers dissolved in suitably modified aliphatic kerosene diluents can be employed to extract technetium as pertechnetate anion (TcO 4 - ) with good extraction ratios from realistic simulants of radioactive alkaline nitrate waste. The modifiers utilized are non-halogenated and non-volatile, and the technetium can be removed from the solvent by stripping using water. The crown ethers bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6 (di-t-BuCH18C6) and dicyclohexano-18-crown-6 (DCH18C6) provide stronger TcO 4 - extraction than dicyclohexano-21-crown-7 and 4-tert-butylcyclohexano 15-crown-5. Whereas DCH18C6 provides somewhat higher TcO 4 - extraction ratios than the more lipophilic di-t-BuCH18C6 derivative, the latter was selected for further study owing to its lower distribution to the aqueous phase. Particularly good extraction and stripping results were obtained with di-t-BuCH 18C6 at 0.02 M in a 2:1 vol/vol blend of tributyl phosphate and Isopar reg-sign M. Using this solvent, 98.9% of the technetium contained (at 6 x 10 -5 M) in a Double-Shell Slurry Feed (DSSF) Hanford tank waste simulant was removed following two cross-current extraction contacts. Two cross-current stripping contacts with deionized water afforded removal of 99.1% of the technetium from the organic solvent

  10. Divinyl ether synthase gene and protein, and uses thereof

    Science.gov (United States)

    Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  11. Hydrogenolytic cleavage of naphthylmethyl ethers in the presence of sulfides.

    Science.gov (United States)

    Adero, Philip O; Jarois, Dean R; Crich, David

    2017-09-08

    With the aid of a series of model thioether or thioglycoside containing polyols protected with combinations of benzyl ethers and 2-naphthylmethyl ethers it is demonstrated that the latter are readily cleaved selectively under hydrogenolytic conditions in the presence of the frequently catalyst-poisoning sulfides. These results suggest the possibility of employing 2-naphthylmethyl ethers in place of benzyl ethers in synthetic schemes when hydrogenolytic deprotection is anticipated in the presence of thioether type functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antisickling activity of butyl stearate isolated from Ocimum basilicum (Lamiaceae).

    Science.gov (United States)

    Tshilanda, Dorothée Dinangayi; Mpiana, Pius Tshimankinda; Onyamboko, Damase Nguwo Vele; Mbala, Blaise Mavinga; Ngbolua, Koto-Te-Nyiwa; Tshibangu, Damien Sha Tshibey; Bokolo, Matthieu Kokengo; Taba, Kalulu Muzele; Kasonga, Teddy Kabeya

    2014-05-01

    To perform phytochemical analyses on the leaves of Ocimum basilicum L. (O. basilicum), to elucidate the structure of isolate and then perform the antisickling activity on the crude extract and on the isolate. The Emmel test performed on the acidified methanolic extract of this plant was used to evaluate the antisickling activity. The structure characterization of the active compound was performed using chromatographic techniques for the separation and the spectroscopic ones for structure elucidation (1H-NMR, 13C-NMR, COSY, HMBC). The chemical screening on the crude extract revealed the presence of polyphenols (flavonoids, anthocyanins, leucoanthocyanins, tannins, quinones) alkaloids, saponins, triterpenoids and steroids. The obtained extract after evaporation yielded 34.50 g (11.5%) out of 300 g of powdered leaves of O. basilicum. The acidified methanolic extract and butyl stearate showed an interesting antisickling activity. The acidified methanolic extract and butyl stearate from O. basilicum displayed a good antisickling activity. To the best of our knowledge, this is the first time to report the antisickling activity of this compound in this plant. The synthesized compound presented the same spectroscopic characteristics than the natural one and the antisickling activities of its derivatives are understudying.

  13. Thermophysical properties of 1-butyl-4-methylpyridinium tetrafluoroborate

    International Nuclear Information System (INIS)

    Safarov, Javid; Kul, Ismail; El-Awady, Waleed A.; Nocke, Jürgen; Shahverdiyev, Astan; Hassel, Egon

    2012-01-01

    Highlights: ► (p, ρ, T) data of 1-butyl-4-methylpyridinium tetrafluoroborate are estimated. ► The measurements were carried out with a vibration-tube densimeter. ► The thermomechanical coefficients were calculated. - Abstract: Thermophysical properties, {(p, ρ, T) at T = (283.15 to 393.15) K, pressures up to p = 100 MPa, and viscosity at T = (283.15 to 373.15) K and p = 0.101 MPa}, of 1-butyl-4-methylpyridinium tetrafluoroborate [b4mpy][BF 4 ] are reported. The measurements were carried out with a recently constructed Anton-Paar DMA HPM vibration-tube densimeter and a fully automated SVM 3000 Anton-Paar rotational Stabinger viscometer. The vibration-tube densimeter was calibrated using double-distilled water, methanol, toluene, and aqueous NaCl solutions. An empirical equation of state for fitting of the (p, ρ, T) data of [b4mpy][BF 4 ] has been developed as a function of pressure and temperature to calculate the thermal properties of the ionic liquid (IL), such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient, and internal pressure. Internal pressure and the temperature coefficient of internal pressure data were used to make conclusions on the molecular characteristics of the IL.

  14. Antisickling activity of butyl stearate isolated from Ocimum basilicum (Lamiaceae)

    Science.gov (United States)

    Tshilanda, Dorothée Dinangayi; Mpiana, Pius Tshimankinda; Onyamboko, Damase Nguwo Vele; Mbala, Blaise Mavinga; Ngbolua, Koto-te-Nyiwa; Tshibangu, Damien Sha Tshibey; Bokolo, Matthieu Kokengo; Taba, Kalulu Muzele; Kasonga, Teddy Kabeya

    2014-01-01

    Objective To perform phytochemical analyses on the leaves of Ocimum basilicum L. (O. basilicum), to elucidate the structure of isolate and then perform the antisickling activity on the crude extract and on the isolate. Methods The Emmel test performed on the acidified methanolic extract of this plant was used to evaluate the antisickling activity. The structure characterization of the active compound was performed using chromatographic techniques for the separation and the spectroscopic ones for structure elucidation (1H-NMR, 13C-NMR, COSY, HMBC). Results The chemical screening on the crude extract revealed the presence of polyphenols (flavonoids, anthocyanins, leucoanthocyanins, tannins, quinones) alkaloids, saponins, triterpenoids and steroids. The obtained extract after evaporation yielded 34.50 g (11.5%) out of 300 g of powdered leaves of O. basilicum. The acidified methanolic extract and butyl stearate showed an interesting antisickling activity. Conclusions The acidified methanolic extract and butyl stearate from O. basilicum displayed a good antisickling activity. To the best of our knowledge, this is the first time to report the antisickling activity of this compound in this plant. The synthesized compound presented the same spectroscopic characteristics than the natural one and the antisickling activities of its derivatives are understudying. PMID:25182725

  15. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  16. Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazoles for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Zilu Yao

    2017-11-01

    Full Text Available γ-(2,3-epoxypropoxy propyltrimethoxysilane (KH-560 was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole (SPEKEBI as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs. Systematical measurements including Fourier transform infrared (FT-IR, scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane.

  17. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, P.; Kushwaha, R.K.; Shashidhara, K.; Hande, V.R.; Thakur, A.P. [Polymer Department, Naval Materials Research Laboratory (DRDO), Shil-Badlapur Road, Anand Nagar PO, Thane Dist., Ambernath, Maharashtra 421 506 (India); Samui, A.B., E-mail: absamui@rediffmail.co [Polymer Department, Naval Materials Research Laboratory (DRDO), Shil-Badlapur Road, Anand Nagar PO, Thane Dist., Ambernath, Maharashtra 421 506 (India); Khandpekar, M.M. [Materials Research Laboratory, Birla College, Kalyan, Thane Dist, Maharashtra 421 304 (India)

    2010-02-28

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g{sup -1} of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t{sub 0}), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  18. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  19. Triblock and pentablock terpolymers by sequential base-assisted living cationic copolymerization of functionalized vinyl ethers

    KAUST Repository

    Bouchekif, Hassen

    2015-01-01

    A series of novel, well-defined triblock (PnBVE-b-PCEVE-b-PSiDEGVE) and pentablock (PSiDEGVE-b-PCEVE-b-PnBVE-b-PCEVE-b-PSiDEGVE) terpolymers of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiEGVE) were synthesized by sequential base-assisted living cationic polymerization. The living character of the homopolymerization of the three VE monomers and the crossover reaction resulting in the formation of well-defined block copolymers were investigated in various solvents (toluene, dichloromethane and n-hexane) using either a monofunctional [nBVE-acetic acid adduct (nBEA), CEVE-acetic acid adduct (CEEA) and SiDEGVE-acetic acid adduct (SiDEGEA)] or a difunctional [1,4-cyclohexane-1,4-diyl bis(2-methoxyethyl acetate) (cHDMEA)] initiator. All initiators are structurally equivalent to the dormant species of the corresponding monomers in order to achieve fast initiation. The optimal conditions of polymerization were achieved in n-hexane at -20 °C, in the presence of 1 M AcOEt (base). Good control over the number average molecular weight (Mn) and the polydispersity index (PDI) was obtained only at [Et3Al2Cl3]0 = [Chain-end]0 ≤ 10 mM. 2,6-Di-tert-butylpyridine (DtBP) was used as a non-nucleophilic proton trap to suppress any protonic initiation from moisture (i.e., Et3Al2Cl3·H2O). Well-defined PnBVEn-b-PCEVEp-b-PSiDEGVEq and PSiDEGVEq-b-PCEVEp-b-PnBVEn-b-PCEVEp-b-PSiDEGVEq terpolymers with a high crossover efficiency, no PCEVE-induced physical gelation, and predictable Mn and PDI < 1.15 were synthesized successfully provided that the targeted DPCEVE/DPnBVE ratio (i.e., p/n) did not exceed 2 and 0.2, respectively. The quantitative desilylation of the PSiEGVE by n-Bu4N+F- in THF at 0 °C led to triblock and pentablock terpolymers in which the PCEVE is the central block and the polyalcohol is the outer block. The thermal properties of the synthesized materials were examined by differential scanning

  20. Customer exposure to MTBE, TAME, C6 alkyl methyl ethers, and benzene during gasoline refueling.

    Science.gov (United States)

    Vainiotalo, S; Peltonen, Y; Ruonakangas, A; Pfäffli, P

    1999-02-01

    We studied customer exposure during refueling by collecting air samples from customers' breathing zone. The measurements were carried out during 4 days in summer 1996 at two Finnish self-service gasoline stations with "stage I" vapor recovery systems. The 95-RON (research octane number) gasoline contained approximately 2.7% methyl tert-butyl ether (MTBE), approximately 8.5% tert-amyl methyl ether (TAME), approximately 3.2% C6 alkyl methyl ethers (C6 AMEs), and 0.75% benzene. The individual exposure concentrations showed a wide log-normal distribution, with low exposures being the most frequent. In over 90% of the samples, the concentration of MTBE was higher (range values were well below the short-term (15 min) threshold limits set for occupational exposure (250-360 mg/m3). At station A, the geometric mean concentrations in individual samples were 3.9 mg/m3 MTBE and 2. 2 mg/m3 TAME. The corresponding values at station B were 2.4 and 1.7 mg/m3, respectively. The average refueling (sampling) time was 63 sec at station A and 74 sec at station B. No statistically significant difference was observed in customer exposures between the two service stations. The overall geometric means (n = 167) for an adjusted 1-min refueling time were 3.3 mg/m3 MTBE and 1.9 mg/m3 TAME. Each day an integrated breathing zone sample was also collected, corresponding to an arithmetic mean of 20-21 refuelings. The overall arithmetic mean concentrations in the integrated samples (n = 8) were 0.90 mg/m3 for benzene and 0.56 mg/m3 for C6 AMEs calculated as a group. Mean MTBE concentrations in ambient air (a stationary point in the middle of the pump island) were 0.16 mg/m3 for station A and 0.07 mg/m3 for station B. The mean ambient concentrations of TAME, C6 AMEs, and benzene were 0.031 mg/m3, approximately 0.005 mg/m3, and approximately 0.01 mg/m3, respectively, at both stations. The mean wind speed was 1.4 m/sec and mean air temperature was 21 degreesC. Of the gasoline refueled during the

  1. Catalytic Oxidative Dehydration of Butanol Isomers: 1-Butanol, 2-Butanol, and Isobutanol

    Science.gov (United States)

    2011-09-01

    methyl tert-butyl ether (MTBE), and isooctane. In addition, synthetic petroleum kerosene (SPK) can be synthesized by oligomerization of 4-carbon...GC gas chromatograph HP-INNOWAX Brand name of a separation column for gas chromatography HPLC High Performance Liquid Chromatography MTBE methyl ...MAIL & RECORDS MGMT ATTN RDRL CIO LL TECHL LIB ATTN RDRL CIO MT TECHL PUB ATTN RDRL SED P A GAMSON ATTN RDRL SED P I LEE ATTN

  2. Synthesis, stereochemistry, and photochemical and thermal behaviour of bis-tert-butyl substituted overcrowded alkenes

    NARCIS (Netherlands)

    K. J. Ter Wiel, M.; G. Kwit, M.; Meetsma, A.; Feringa, B.L.

    2007-01-01

    In order to study the structural limits in the design of molecular motors, a tert-butyl substituted analogue was prepared. The unexpected photochemical and thermal isomerisation processes and the stereochemistry of new overcrowded alkene 5 are described. The bis tert-butyl substituted alkenes were

  3. Vapour phase alkylation of ethylbenzene with t-butyl alcohol over ...

    Indian Academy of Sciences (India)

    Unknown

    a Nicolet 800 FTIR spectrophotometer by the KBr pellet technique. .... The absence of styrene at all temperatures might be due to its high reactivity with t- butyl cation ... styrene was 13⋅5%. Hence styrene might also be formed in the original reaction within the channel which rapidly reacts with t-butyl cation to yield p-t-BVB.

  4. Sources of propylene glycol and glycol ethers in air at home.

    Science.gov (United States)

    Choi, Hyunok; Schmidbauer, Norbert; Spengler, John; Bornehag, Carl-Gustaf

    2010-12-01

    Propylene glycol and glycol ether (PGE) in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building's structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs) and semi-VOCs (SVOCs), including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP), and di(2-ethylhexyl)phthalate (DEHP). Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child's birth, and "newest" surface material in the child's bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m³) additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.

  5. Simultaneous determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food samples using a carbon composite electrode modified with Cu(3)(PO(4))(2) immobilized in polyester resin.

    Science.gov (United States)

    Freitas, Kellen Heloizy Garcia; Fatibello-Filho, Orlando

    2010-05-15

    A simple electrochemical method was developed for the single and simultaneous determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food samples using square-wave voltammetry (SWV). A carbon composite electrode modified (MCCE) with copper (II) phosphate immobilized in a polyester resin was proposed. The modified electrode allowed the detection of BHA and BHT at potentials lower than those observed at unmodified electrodes. A separation of about 430mV between the peak oxidation potentials of BHA and BHT in binary mixtures was obtained. The calibration curves for the simultaneous determination of BHA and BHT demonstrated an excellent linear response in the range from 3.4x10(-7) to 4.1x10(-5)molL(-1) for both compounds. The detection limits for the simultaneous determination of BHA and BHT were 7.2x10(-8) and 9.3x10(-8)molL(-1), respectively. In addition, the stability and repeatability of the electrode were determined. The proposed method was successfully applied in the simultaneous determination of BHA and BHT in several food samples, and the results obtained were found to be similar to those obtained using the high performance liquid chromatography method with agreement at 95% confidence level.

  6. Synthesis and Characterization of Hydrophilic-Hydrophobic Poly(Arylene Ether Sulfone) Random and Segmented Copolymers for Membrane Applications

    Science.gov (United States)

    Nebipasagil, Ali

    Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly

  7. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    International Nuclear Information System (INIS)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang

    2016-01-01

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC m E n VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C 16 E 1 VE), ethylene glycol octadecyl ether vinyl ether (C 18 E 1 VE), diethylene glycol hexadecyl ether vinyl ether (C 16 E 2 VE) and diethylene glycol octadecyl ether vinyl ether (C 18 E 2 VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are in a hexagonal lattice, and the onset temperatures for melting of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC 16 E 1 VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 300 °C; on the contrary, it’s 283 °C for PC 16 E 1 VE. Using a weak polarity, flexible alkyl ether chain (-OCH 2 CH 2 O-) as a spacer to link the main chain and side chain is conducive to the crystallization of the alkyl side chain. These new phase change materials can be applied in heat storage, energy conservation, and environmental protection.

  8. Synthesis of Highly Porous Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) Asymmetric Membranes

    KAUST Repository

    Xie, Yihui

    2016-03-24

    For the first time, self-assembly and non-solvent induced phase separation was applied to polysulfone-based linear block copolymers, reaching mechanical stability much higher than other block copolymers membranes used in this method, which were mainly based on polystyrene blocks. Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) (PtBA30k-b-PSU14k-b-PtBA30k) with a low polydispersity of 1.4 was synthesized by combining step-growth condensation and RAFT polymerization. Various advanced electron microscopies revealed that PtBA30k-b-PSU14k-b-PtBA30k assembles into worm-like cylindrical micelles in DMAc and adopts a “flower-like” arrangement with the PSU central block forming the shell. Computational modeling described the mechanism of micelle formation and morphological transition. Asymmetric nanostructured membranes were obtained with a highly porous interconnected skin layer and a sublayer with finger-like macrovoids. Ultrafiltration tests confirmed a water permeance of 555 L m-2 h-1 bar-1 with molecular weight cut-off of 28 kg/mol. PtBA segments on the membrane surface were then hydrolyzed and complexed with metals, leading to cross-linking and enhancement of antibacterial capability.

  9. Experimental studies on toxicity of ethylene glycol alkyl ethers in Japan.

    OpenAIRE

    Nagano, K; Nakayama, E; Oobayashi, H; Nishizawa, T; Okuda, H; Yamazaki, K

    1984-01-01

    Past studies on the toxicological effects of ethylene glycol alkyl ethers as well as the recent data on these chemicals in Japan are reviewed. Only a few researchers have participated in the study of ethylene glycol alkyl ethers in Japan. The effects of ethylene glycol alkyl ethers on testis and embryotoxic effects of ethylene glycol monomethyl ether (EGM) have been studied, as has the teratogenicity of ethylene glycol dimethyl ether (EGdM). Studies on ethylene glycol alkyl ethers and related...

  10. Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction.

    Science.gov (United States)

    Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo

    2018-06-01

    Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Synthesis and Antiplasmodial Activity of EG-Artemisinin Ethers and ...

    African Journals Online (AJOL)

    NICO

    The aim of this study was to synthesize a series of ethylene glycol (EG) ethers and quinoline hybrids of the antimalarial drug artemisinin and to ... The IC50 values revealed that all the ethers were active against both strains but less potent than ...... Compound 19 was racemate (mixture 3''R and 3''S isomers) isolated as fluffy ...

  12. Chemical Composition and Cytotoxic Activities of Petroleum Ether ...

    African Journals Online (AJOL)

    Chemical Composition and Cytotoxic Activities of Petroleum Ether Fruit Extract of Fruits of Brucea javanica (Simarubaceae) ... Tropical Journal of Pharmaceutical Research ... Purpose: To investigate the chemical composition and antitumor activity of the petroleum ether extract of the dried ripe fruits of Brucea javanica.

  13. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  14. 40 CFR 721.3486 - Polyglycerin mono(4-nonylphenyl) ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyglycerin mono(4-nonylphenyl) ether... Substances § 721.3486 Polyglycerin mono(4-nonylphenyl) ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyglycerin mono(4...

  15. Synthesis and bioactivity of rotenone oxime O -ether derivatives ...

    African Journals Online (AJOL)

    A series of rotenone oxime O-ether derivatives were synthesized and characterized. All compounds were tested for their insecticidal, miticidal and fungicidal activities against the selected pests and compared with those of rotenone. The results of biological tests show that the rotenone oxime O-ether derivatives have ...

  16. Impact of di-n-butyl phthalate on reproductive system development in European pikeperch (Sander lucioperca

    Directory of Open Access Journals (Sweden)

    Sylwia Jarmołowicz

    2013-01-01

    Full Text Available Phthalic acid, di-n-butyl ester known as di-n-butyl phthalate, is an organic chemical compound that belongs to the group of endocrine disruptor compounds that have a documented negative impact on mammalian endocrine systems. Di-n-butyl phthalate is used widely as a plasticizer in the manufacture of artificial materials, which is why it is found in all types of environmental samples including those from water basins. The aim of the study was to describe the impact of di-n-butyl phthalate on the development of the reproductive system of European pikeperch (Sander lucioperca during the sex differentiation period (age 61–96 days post hatch. A total of 240 fish were divided into 6 groups (40 fish per tank. Treatments consisted of a control group (0 g di-n-butyl phthalate·kg-1 feed and five trial groups with 0.125, 0.25, 0.5, 1, and 2 g di-n-butyl phthalate·kg-1 feed, respectively. Histological changes of the fish gonads, sex ratio, survival and growth of fish were evaluated. Di-n-butyl phthalate seriously disturbed sex differentiation process of pikeperch. Histopathological analyses revealed that the administration of 2 g di-n-butyl phthalate·kg-1 significantly affected the sex ratio. The feminization process (intersex gonads at concentrations of 1 g and 2 g di-n-butyl phthalate·kg-1 were observed. All analyzed concentrations delayed testicular development. Phthalate did not have a significant impact on the survival or growth rates of the pikeperch. This is the first report of disruption sex differentiation processes in fish by di-n-butyl phthalate.

  17. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ryung, E-mail: heaven@umich.edu; Loch-Caruso, Rita

    2014-11-15

    Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20 μM BDE-47 for 24 h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20 μM BDE-47 for 24 h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation. - Highlights: • BDE-47 stimulated ARE reporter activity and GSH production. • BDE-47 resulted in differential

  18. Isobaric (vapor + liquid) equilibrium data for the binary system methanol + 2-butyl alcohol and the quaternary system methyl acetate + methanol + 2-butyl alcohol + 2-butyl acetate at P = 101.33 kPa

    International Nuclear Information System (INIS)

    Wang, Hong-xing; Bu, Xiang-wei; Yang, Jin-bei; Jiang, Yi-ping; Li, Ling

    2014-01-01

    Highlights: • VLE data for methanol + 2-butyl alcohol were determined. • VLE data for methyl acetate + methanol + 2-butyl alcohol + SBAC were determined. • The binary interaction parameters were obtained based on the binary VLE data. • The data of quaternary system have been predicted. • Both Wilson and NRTL models are suitable to describe the VLE of quaternary system. - Abstract: In this paper, isobaric (vapor + liquid) equilibrium (VLE) data for the binary system methanol + 2-butyl alcohol and the quaternary system methyl acetate + methanol + 2-butyl alcohol + 2-butyl acetate were determined at P = 101.33 kPa in a modified Rose still. The binary VLE data were found to be thermodynamic consistency by the Herrington method. The VLE data for the binary system were correlated by the Wilson and NRTL equations respectively, which were used to predict the VLE data of the quaternary system. The results showed that the Wilson and NRTL models matched well with the (vapor + liquid) phase equilibrium data. The deviations for the vapor-phase compositions and the equilibrium temperatures are reasonably small and the models are both suitable for these systems

  19. Polymerization of ethylene oxide using yttrium isopropoxide

    NARCIS (Netherlands)

    Choi, Young K.; Stevels, W.M.; Ankone, Martinus J.K.; Dijkstra, Pieter J.; Kim, Sung W.; Feijen, Jan

    1996-01-01

    Well defined poly(ethylene oxide)s were prepared using yttrium isopropoxide as an initiator. End group analysis using 1H- and 13C NMR spectroscopy revealed that only polymers with isopropyl ether and hydroxyl end groups were produced. The molecular weight is controlled by the initial amount of

  20. A study of butyl acetate synthesis. 4-reaction kinetics

    Directory of Open Access Journals (Sweden)

    Álvaro Orjuela Londoño

    2006-05-01

    Full Text Available This work was aimed at studying liquid-phase acetic acid and butyl alcohol esterification reaction (P atm =0.76 Bar,using an ion exchange resin (Lewatit K-2431 as catalyst. The effect of the absence of internal and external mass transport on catalyst particles was established in the research conditions used here. A set of assays to determine the effect of catalyst load (0.5%, 1%, 2% w/w temperature (73°C, 80°C, 87°C and molar ratio (1:2, 1:1, 2:1 acid/alcohol on reaction rate was carried out and both LHHW and pseudo-homogeneous kinetic expressions were obtained, these being in good agreement with the experimental data.

  1. tert-Butyl 2-methyl-2-(4-methylbenzoylpropanoate

    Directory of Open Access Journals (Sweden)

    Graham B. Gould

    2010-02-01

    Full Text Available The title compound, C16H22O3, is bent with a dihedral angle of 75.3 (1° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C. In the crystal, the molecules are linked into infinite chains held together by weak C—H...O hydrogen-bonded interactions between an H atom on the benzene ring of one molecule and an O atom on the ketone functionality of an adjacent molecule. The chains are arranged with neighbouring tert-butyl and dimethyl groups on adjacent chains exhibiting hydrophobic stacking, with short C—H...H—C contacts (2.37 Å between adjacent chains

  2. Study on combustion characteristics of dimethyl ether under the moderate or intense low-oxygen dilution condition

    International Nuclear Information System (INIS)

    Kang, Yinhu; Lu, Tianfeng; Lu, Xiaofeng; Wang, Quanhai; Huang, Xiaomei; Peng, Shini; Yang, Dong; Ji, Xuanyu; Song, Yangfan

    2016-01-01

    Highlights: • Oxygen content in the flame base increased due to the prolonged ignition delay time. • Flow field in the furnace affected thermal/chemical structure of the flame partially. • Preheating and dilution facilitated moderate or intense low-oxygen dilution regime. • Dominant pollutant formation ways of dimethyl ether in hot dilution were clarified. • Preheating and dilution reduced nitrogen oxide emission of dimethyl ether. - Abstract: Experiments and numerical simulations were conducted in this paper to study the combustion behavior of dimethyl ether in the moderate or intense low-oxygen dilution regime, in terms of thermal/chemical structure and chemical kinetics associated with nitrogen oxide and carbon monoxide emissions. Several co-flow temperatures and oxygen concentrations were involved in the experiments to investigate their impacts on the flame behavior systematically. The results show that in the moderate or intense low-oxygen dilution regime, oxygen concentrations in the flame base slightly increased because of the prolonged ignition delay time of the reactant mixture due to oxidizer dilution, which changed the local combustion process and composition considerably. The oxidation rates of hydrocarbons were significantly depressed in the moderate or intense low-oxygen dilution regime, such that a fraction of unburned hydrocarbons at the furnace outlet were recirculated into the outer annulus of the furnace, which changed the local radial profiles of carbon monoxide, methane, and hydrogen partially. Moreover, with the increment in co-flow temperature or oxygen mole fraction, flame temperature, and hydroxyl radical, carbon monoxide, and hydrogen mole fractions across the reaction zone increased gradually. For the dimethyl ether-moderate or intense low-oxygen dilution flame, temperature homogeneity was improved at higher co-flow temperature or lower oxygen mole fraction. The carbon monoxide emission depended on the levels of temperature and

  3. Ruthenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen.

    Science.gov (United States)

    Thenert, Katharina; Beydoun, Kassem; Wiesenthal, Jan; Leitner, Walter; Klankermayer, Jürgen

    2016-09-26

    The synthesis of dimethoxymethane (DMM) by a multistep reaction of methanol with carbon dioxide and molecular hydrogen is reported. Using the molecular catalyst [Ru(triphos)(tmm)] in combination with the Lewis acid Al(OTf)3 resulted in a versatile catalytic system for the synthesis of various dialkoxymethane ethers. This new catalytic reaction provides the first synthetic example for the selective conversion of carbon dioxide and hydrogen into a formaldehyde oxidation level, thus opening access to new molecular structures using this important C1 source. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers

    Science.gov (United States)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.

  5. Solid-phase synthesis of isoxazoles using vinyl ethers as chameleon catches.

    Science.gov (United States)

    Barrett, A G; Procopiou, P A; Voigtmann, U

    2001-10-04

    [reaction: see text] Regioselective 1,3-dipolar cycloadditions of supported vinyl ethers R(1)C(=CH(2))O-CH(2)-polymer, prepared by the Tebbe olefination of R(1)CO(2)-CH(2)-polymer, with ethyl cyanoformate N-oxide gave supported isoxazoline derivatives. Release from the support under mild acidic conditions gave the isoxazoles ethyl 5-R(1)-isoxazole-3-carboxylates. Alternatively, further on-resin functionalization of the R(1) substituent using Suzuki coupling reactions and release from the support under acidic conditions gave more structurally diverse isoxazoles.

  6. [Recent development of research on the biotribology of carbon fiber reinforced poly ether ether ketone composites].

    Science.gov (United States)

    Chen, Yan; Pan, Yusong

    2014-12-01

    Carbon fiber reinforced poly ether ether ketone (CF/PEEK) composite possesses excellent biocompatible, biomechanical and bioribological properties. It is one of the most promising implant materials for artificial joint. Many factors influence the bioribological properties of CF/PEEK composites. In this paper, the authors reviewed on the biotribology research progress of CF/PEEK composites. The influences of various factors such as lubricant, reinforcement surface modification, functional particles, friction counterpart and friction motion modes on the bio-tribological properties of CF/PEEK composites are discussed. Based on the recent research, the authors suggest that the further research should be focused on the synergistic effect of multiple factors on the wear and lubrication mechanism of CF/PEEK.

  7. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation.

    Science.gov (United States)

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong

    2016-06-01

    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modification of Poly(ether ether ketone Polymer for Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Devesh Shukla

    2013-01-01

    Full Text Available Polyelectrolyte membrane (PEM is an important part of PEM fuel cell. Nafion is a commercially known membrane which gives the satisfactory result in PEM fuel cell operating at low temperature. Present research paper includes functionalization of Poly(ether ether ketone (PEEK polymer with phosphonic acid group. The functionalization was done with the help of nickel-based catalyst. Further, the polymer was characterized by the FTIR, EDAX, DSC, TGA, and 1H NMR, and it was found that PEEK polymer was functionalized with phosphonic acid group with good thermal stability in comparison to virgin PEEK. Finally, the thin films of functionalized polymer were prepared by solution casting method, and proton conductivity of film samples was measured by impedance spectra whose value was found satisfactory with good thermal stability in comparison to commercially available Nafion membrane.

  9. Dielectric properties of poly (1,4-phenylene ether-ether-sulfone)

    CERN Document Server

    Spasevska, H

    2002-01-01

    Dielectric properties of Poly (1,4-phenylene ether-ether-sulfone) are obtained from dielectric spectroscopy of the polymer pellet. The values of relative dielectric constant epsilon', dielectric losses epsilon sup , dielectric dissipation factor tan delta and complex impedance are obtained at temperature of 75 sup o C. The temperature dependence of these parameters is investigated for three frequencies (8x10 sup 4 Hz; 8x10 sup 5 Hz; 8x10 sup 6 Hz) of applied electric field. The specific conductivity sigma, which depends on temperature, is related to the ohmic resistance R, at temperature in the interval from 66 to 83 sup o C. Fitting the experimental data, the value of the activation energy U is obtained. (Original)

  10. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  11. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    International Nuclear Information System (INIS)

    Tewatia, Arya; Hendrix, Justin; Dong, Zhizhong; Taghon, Meredith; Tse, Stephen; Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas; Lynch, Jennifer

    2017-01-01

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  12. Structuring of poly ether ether ketone by ArF excimer laser radiation in different atmospheres

    International Nuclear Information System (INIS)

    Feng, Y.; Gottmann, J.; Kreutz, E.W.

    2003-01-01

    Structuring of poly ether ether ketone (PEEK) by 193 nm ArF excimer laser radiation has been investigated. Experiments were carried out in different atmospheres (air, vacuum, Ar, O 2 ) in order to study its influence on the quality of the structures and the formation of the debris. Repetition rate makes little effect on the ablation rate and roughness of the structure in presence of any kind of atmosphere, indicating for the structuring of PEEK by ArF laser radiation a large window of processing. The roughness at the bottom of the structures and the morphology of the side walls are strongly affected by the properties of the atmosphere. The smallest roughness is achieved at 0.6 J/cm 2 for all kinds of processing gases. Debris around the structures can be diminished by structuring in vacuum. Plasma expansion speed has been measured by using high speed photography

  13. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang, E-mail: wolfgang.bacsa@cemes.fr [CEMES-CNRS and University of Toulouse, 29 Jeanne Marvig, 31055 Toulouse (France); Boyer, François; Olivier, Philippe [Université de Toulouse, Institut Clément Ader, I.U.T. Université Paul Sabatier - 133C Avenue de Rangueil - B.P. 67701, 31077 Toulouse CEDEX 4 (France); Sapelkin, Andrei [School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); King, Stephen; Heenan, Richard [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri [AIRBUS FRANCE (B.E. M and P Toulouse), 316 Route de Bayonne, 31060 Toulouse (France)

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  14. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  15. Molecular structure and transport dynamics in Nafion and sulfonated poly(ether ether ketone ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.Y.; Chiu, C.P.; Hong, C.W. [Department of Power Mechanical Engineering, National Tsing Hua University, 101, Sec. 2, Kwang Fu Road, Hsinchu 30013 (China)

    2009-12-01

    An atomistic simulation technique is performed to investigate the molecular structure and transport dynamics inside a hydrated Nafion membrane and a hydrated sulfonated poly(ether ether ketone ketone) (SPEEKK) membrane. The simulation system consists of the representative fragments of the polymer electrolytes, hydronium ions and solvent molecules, such as water plus methanol molecules. Simulation results show that the hydrated SPEEKK has less phase separation among hydrophobic and hydrophilic regions in comparison with the Nafion. Those water channels formed in the SPEEKK are much narrower compared to those in the Nafion. These characteristics lead to a lower mobility of hydronium ions and water molecules and hence relatively lower diffusion coefficient of methanol in the SPEEKK. It results in the reduction of the methanol permeation problem in direct methanol fuel cells. (author)

  16. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  17. Polybrominated diphenyl ethers and novel flame retardants

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Vorkamp, Katrin; Nielsen, Jesper Bo

    Besides diet, house dust has been recognized as an important exposure media for polybrominated diphenyl ethers (PBDEs) [1]. Our previous work showed significant associations between levels in dust and in human plasma, for the congeners BDE-28, BDE-47 and BDE-100 as well as for ΣPBDEtri hexa [2......, the objectives were to study whether i) the associations observed for plasma also existed for human milk, ii) the PBDE profiles in dust and milk could provide insights into the bioavailability and bioaccumulation of individual congeners, iii) NFRs were measurable in human milk, and iv) infants were exposed...... of BDE-99 in milk compared with plasma (100% vs. 37%). Hexabromocyclododecane and the NFRs bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy)-ethane (BTBPE), decabromodiphenyl ethane (DBDPE), 2,3-dibromopropyl-2...

  18. Crown ether derivatives of EDTA: Pt. 6

    International Nuclear Information System (INIS)

    Liu Zhongqun; Qin Shengying; Chen Shaojin; Tan Lin

    1988-01-01

    EDTA-diaminodibenzo-18-crown-6 (cis- and trans-) condensation polymer is a new compound of crown ether derivatives of EDTA. In this paper the adsorption behaviors of U(IV) and U(VI) on this polymer from chloride solutions and effects of hydrochloric acid concentrations, salting-out agents and organic solvents on distribution coefficient (K d ) of uranium are investigated. Adsorption mechanism of uranyl ion (UO 2 2+ ) on this polymer was studied with IR spectra and by means of the adsorption behaviors of compounds of similar structure. Experimental results show that both polyether section and carboxyl groups in EDTA-diaminodibenzo-18-crown-6 take part in complexation with uranyl ion and synergistic effect appeared

  19. Cationic Poly(benzyl ether)s as Self-Immolative Antimicrobial Polymers.

    Science.gov (United States)

    Ergene, Cansu; Palermo, Edmund F

    2017-10-09

    Self-immolative polymers (SIMPs) are macromolecules that spontaneously undergo depolymerization into small molecules when triggered by specific external stimuli. We report here the first examples of antimicrobial SIMPs with potent, rapid, and broad-spectrum bactericidal activity. Their antibacterial and hemolytic activities were examined as a function of cationic functionality. Polymers bearing primary ammonium cationic groups showed more potent bactericidal activity against Escherichia coli, relative to tertiary and quaternary ammonium counterparts, whereas the quaternary ammonium polymers showed the lowest hemolytic toxicity. These antibacterial polycations undergo end-to-end depolymerization when triggered by an externally applied stimulus. Specifically, poly(benzyl ether)s end-capped with a silyl ether group and bearing pendant allyl side chains were converted to polycations by photoinitiated thiol-ene radical addition using cysteamine HCl. The intact polycations are stable in solution, but they spontaneously unzip into their component monomers upon exposure to fluoride ions, with excellent sensitivity and selectivity. Upon triggered depolymerization, the antibacterial potency was largely retained but the hemolytic toxicity was substantially reduced. Thus, we reveal the first example of a self-immolative antibacterial polymer platform that will enable antibacterial materials to spontaneously unzip into biologically active small molecules upon the introduction of a specifically designed stimulus.

  20. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  1. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  2. Novel Oxidation of Cyclosporin A: Preparation of Cyclosporin Methyl Vinyl Ketone (Cs-MVK)

    Science.gov (United States)

    Cyclosporin A (CsA) was converted into cyclosporin methyl vinyl ketone (Cs-MVK) by either a biocatalytic method utilizing 1-hydroxybenzotriazole-mediated laccase oxidation or by a chemical oxidation using t-butyl hydroperoxide and potassium ­periodate as co-oxidants. Cs-MVK is a novel, versatile sy...

  3. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR......) and k(HOC(CH3)2CH2O2. + NO2) were determined to be (4.9 +/- 0.9) X 10(-12) and (6.7 +/- 0.9) x 10(-12) cm3 molecule-1 s-1, respectively. In the FTIR experiments products were studied using chlorine-initiated oxidation in TBA/N2/Cl2 and TBA/N2/O2/Cl2 mixtures....

  4. Synthesis of zinc sulfide by chemical vapor deposition using an organometallic precursor: Di-tertiary-butyl-disulfide

    International Nuclear Information System (INIS)

    Vasekar, Parag; Dhakal, Tara; Ganta, Lakshmikanth; Vanhart, Daniel; Desu, Seshu

    2012-01-01

    Zinc sulfide has gained popularity in the last few years as a cadmium-free heterojunction partner for thin film solar cells and is seen as a good replacement for cadmium sulfide due to better blue photon response and non-toxicity. In this work, zinc sulfide films are prepared using an organic sulfur source. We report a simple and repeatable process for development of zinc sulfide using a cost-effective and less hazardous organic sulfur source. The development of zinc sulfide has been studied on zinc oxide-coated glass where the zinc oxide is converted into zinc sulfide. Zinc oxide grown by atomic layer deposition as well as commercially available zinc oxide-coated glass was used. The zinc sulfide synthesis has been studied and the films are characterized using scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a UV–VIS spectrophotometer. XRD, XPS and optical characterization confirm the zinc sulfide phase formation. - Highlights: ► Synthesis of ZnS using a less-hazardous precursor, di-tertiary-butyl-disulfide. ► ZnS process optimized for two types of ZnO films. ► Preliminary results for a solar cell show an efficiency of 1.09%.

  5. Experimental studies on toxicity of ethylene glycol alkyl ethers in Japan.

    Science.gov (United States)

    Nagano, K; Nakayama, E; Oobayashi, H; Nishizawa, T; Okuda, H; Yamazaki, K

    1984-08-01

    Past studies on the toxicological effects of ethylene glycol alkyl ethers as well as the recent data on these chemicals in Japan are reviewed. Only a few researchers have participated in the study of ethylene glycol alkyl ethers in Japan. The effects of ethylene glycol alkyl ethers on testis and embryotoxic effects of ethylene glycol monomethyl ether (EGM) have been studied, as has the teratogenicity of ethylene glycol dimethyl ether (EGdM). Studies on ethylene glycol alkyl ethers and related compounds administered to mice by oral gavage revealed the occurrence of testicular atrophy and decreased white blood cell count by EGM, EGdM, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether and ethylene glycol monoethyl ether acetate, and the toxicity was related to their chemical structure. On the other hand, ethylene glycol, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, ethylene glycol monoacetate or ethylene glycol diacetate showed no such an effect. Studies on EGM using hamsters or guinea pigs revealed the occurrence of testicular atrophy similar to that observed in mice. In regard to the methyl ethers of other glycols, there is no convincing evidence that propylene glycol monomethyl ether, diethylene glycol monomethyl ether or diethylene glycol dimethyl ether causes testicular atrophy in mice. Teratological studies of EGM and EGdM revealed embryotoxic effects in mice.

  6. In vitro antioxidant activity of pet ether extract of black pepper

    Science.gov (United States)

    Singh, Ramnik; Singh, Narinder; Saini, B.S.; Rao, Harwinder Singh

    2008-01-01

    Objective: To investigate the in vitro antioxidant activity of different fractions (R1, R2 and R3) obtained from pet ether extract of black pepper fruits (Piper nigrum Linn.) Materials and Methods: The fractions R1, R2 and R3 were eluted from pet ether and ethyl acetate in the ratio of 6:4, 5:5 and 4:6, respectively. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. Results: The free radical scavenging activity of the different fractions of pet ether extract of P. nigrum (PEPN) increased in a concentration dependent manner. The R3 and R2 fraction of PEPN in 500 µg/ml inhibited the peroxidation of a linoleic acid emulsion by 60.48±3.33% and 58.89±2.51%, respectively. In DPPH free radical scavenging assay, the activity of R3 and R2 were found to be almost similar. The R3 (100µg/ml) fraction of PEPN inhibited 55.68±4.48% nitric oxide radicals generated from sodium nitroprusside, whereas curcumin in the same concentration inhibited 84.27±4.12%. Moreover, PEPN scavenged the superoxide radical generated by the Xanthine/Xanthine oxidase system. The fraction R2 and R3 in the doses of 1000µg/ml inhibited 61.04±5.11% and 63.56±4.17%, respectively. The hydroxyl radical was generated by Fenton's reaction. The amounts of total phenolic compounds were determined and 56.98 µg pyrocatechol phenol equivalents were detected in one mg of R3. Conclusions: P. nigrum could be considered as a potential source of natural antioxidant. PMID:20040947

  7. Thermodynamics and activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tetracyanoborate

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula, E-mail: ula@ch.pw.edu.pl [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Thermodynamic Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4001 (South Africa); Krolikowski, Marek [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Acree, William E. [Department of Chemistry, 1155 Union Circle Drive 305070, University of North Texas, Denton, TX 76203-5017 (United States)

    2011-12-15

    Highlights: > Measurements of activity coefficients at infinite dilution using GLC. > Forty-five solvents in the IL 1-butyl-1-methylpyrrolidinium tetracyanoborate, [BMPYR][TCB]. > Possible entrainer for different separation processes. > The gas-liquid partition coefficients, K{sub L} were calculated. > The Abraham solvation parameter model was discussed. - Abstract: The activity coefficients at infinite dilution, {gamma}{sub 13}{sup {infinity}}, for 45 solutes, including alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, ethers, acetone, and water, in the ionic liquid 1-butyl-1-methylpyrrolidinium tetracyanoborate, [BMPYR][TCB], were determined by gas-liquid chromatography at temperatures from 318.15 K to 368.15 K. The values of the partial molar excess Gibbs free energy {Delta}G{sub 1}{sup E,{infinity}}, enthalpy {Delta}H{sub 1}{sup E,{infinity}}, and entropy {Delta}S{sub 1}{sup E,{infinity}} at infinite dilution were calculated from the experimental {gamma}{sub 13}{sup {infinity}} values obtained over the temperature range. The gas-liquid partition coefficients, K{sub L} were calculated for all solutes and the Abraham solvation parameter model was discussed. The values of the selectivity for different separation problems were calculated from {gamma}{sub 13}{sup {infinity}} and compared to literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIM][TCB], 1-decyl-3-methylimidazolium tetracyanoborate, [DMIM][TCB], and similar ionic liquids. The densities of [BMPYR][TCB] in temperatures range from 318.15 K to 368.15 K, the temperature of fusion and the enthalpy of fusion were measured.

  8. Evaluation of crystallization kinetics of poly (ether-ketone-ketone and poly (ether-ether-ketone by DSC

    Directory of Open Access Journals (Sweden)

    Gibran da Cunha Vasconcelos

    2010-08-01

    Full Text Available The poly (aryl ether ketones are used as matrices in advanced composites with high performance due to its high thermal stability, excellent environmental performance and superior mechanical properties. Most of the physical, mechanical and thermodynamic properties of semi-crystalline polymers depend on the degree of crystallinity and morphology of the crystalline regions. Thus, a study on the crystallization process promotes a good prediction of how the manufacturing parameters affect the developed structure, and the properties of the final product. The objective of this work was to evaluate the thermoplastics polymers PEKK e PEEK by DSC, aiming to obtain the relationship between kinetics, content, nucleation and geometry of the crystalline phases, according to the parameters of the Avrami and Kissinger models. The analysis of the Avrami exponents obtained for the studied polymers indicates that both showed the formation of crystalline phases with heterogeneous nucleation and growth geometry of the type sticks or discs, depending on the cooling conditions. It was also found that the PEEK has a higher crystallinity than PEKK.

  9. Calculated ionisation potentials to determine the oxidation of vanillin precursors by lignin peroxidase.

    NARCIS (Netherlands)

    Have, ten R.; Rietjens, I.M.C.M.; Hartmans, S.; Swarts, H.J.; Field, J.A.

    1998-01-01

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was

  10. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch

    CSIR Research Space (South Africa)

    Wokadala, OC

    2014-06-01

    Full Text Available In this study, waxy and high amylose starches were modified through butyl-etherification to facilitatecompatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magneticresonance spectroscopy and wettability tests...

  11. Preparation and characterization of emulsifier-free polyphenylsilsesquioxane-poly (styrene–butyl acrylate) hybrid particles

    International Nuclear Information System (INIS)

    Bai, Ruiqin; Qiu, Teng; Han, Feng; He, Lifan; Li, Xiaoyu

    2013-01-01

    The core–shell polyphenylsilsesquioxane-poly (styrene–butyl acrylate) hybrid latex paticles with polyphenylsilsesquioxane as core and poly (styrene–butyl acrylate) as shell were successfully synthesized by seeded emulsion polymerization using polyphenylsisesquioxane (PPSQ) latex particles as seeds. X-ray diffraction (XRD) indicated that the polyphenylsilsesquioxane (PPSQ) had ladder structure, and PPSQ had incorporated into the hybrid latex particles. Transmission electron microscopy (TEM) confirmed that the resultant hybrid latex particles had the core–shell structure. TEM and dynamic light scattering (DLS) analysis indicated that the polyphenylsisesquioxane latex particles and obtained core–shell hybrid latex particles were uniform and possessed narrow size distributions. X-ray photoelectron spectroscopy (XPS) analysis also indicated that the PPSQ core particles were enwrapped by the polymer shell. In addition, compared with pure poly (styrene–butyl acrylate) latex film, the polyphenylsilsesquioxane-poly (styrene–butyl acrylate) hybrid latex film exhibited lower water uptake, higher pencil hardness and better thermal stability.

  12. Chirality Sensing of α-Hydroxyphosphonates by N-tert-Butyl Sulfinyl Squaramide.

    Science.gov (United States)

    Li, Yao; Yang, Guo-Hui; He, Cyndi Qixin; Li, Xin; Houk, K N; Cheng, Jin-Pei

    2017-08-18

    N-tert-Butyl sulfinyl squaramides were used for chiral discrimination of α-hydroxyphosphonates using 31 P NMR. A free energy relationship study indicates that both steric and the electronic effects influence the chiral recognition of the donors.

  13. Sulphonated tetramethyl poly(ether ether ketone)/Epoxy/Sulphonated phenol novolac Semi-IPN membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, T.Z.; Ni, J.; Zhang, G.; Yu, H.B.; Zhao, C.J. [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China); Liu, J. [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023 (China); Cui, Z.M. [Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Y.H. [Department of Chemistry, Jilin University, Changchun 130012 (China); Na, H.; Xing, W.

    2009-10-15

    The sulphonated phenol novolac (PNBS) which was used as a curing agent of epoxy was synthesised from phenol novolac (PN) and 1, 4-butane sultone and confirmed by FTIR and {sup 1}H NMR. The degree of sulphonation (DS) in PNBS was calculated by {sup 1}H NMR. The semi-IPN membranes composed of sulphonated tetramethyl poly(ether ether ketone) (STMPEEK) (the value of ion exchange capacity is 2.01 meq g{sup -1}), epoxy (TMBP) and PNBS were successfully prepared. The semi-IPN membranes showed high thermal properties which were measured by differential scanning calorimeter (DSC) and thermogravimetric analyses (TGA). With the introduction of the cross-linked TMBP/PNBS, the mechanical properties, dimensional stability, methanol resistance and oxidative stability of the membranes were improved in comparison to the pristine STMPEEK membrane. Although the proton conductivities of the semi-IPN membranes were lower than those of the pristine STMPEEK membrane, the higher selectivity defined as the ratio of the proton conductivity to methanol permeability was obtained from the STMPEEK/TMBP/PNBS-14 semi-IPN membrane. The results indicated that the semi-IPN membranes could be promising candidates for usage as proton exchange membranes in direct methanol fuel cells (DMFCs). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Recycling of Gamma Irradiated Inner Tubes in Butyl Based Rubber Compound

    International Nuclear Information System (INIS)

    Karaagac, B.

    2006-01-01

    Crosslinked elastomeric materials, such as tyres are of great challenge concerning the environmental and ecological reasons. Ionizing radiation seems to offer unique opportunities to tackle the problem of recycling of polymers and rubbers on account of its ability to cause chain scission and/or cross-linking of polymeric materials. There is only limited amount of work reported on the irradiation-induced degradation of rubbers. Unlike the majority of the elastomers with high levels of unsaturation, butyl rubber exhibits significant degradation by ionizing radiation action. In this study, recycling of gamma irradiated inner tubes made of butyl rubber in butyl based rubber compounds was studied. Used inner tubes were irradiated with gamma rays in air at 100 and 120 kGy absorbed doses. The compatibility of irradiated inner tubes with virgin butyl rubber was first investigated. Gamma irradiated inner tube wastes were replaced with butyl rubber up to 15 phr in the compound recipe. Similar recipes were also prepared by using the same quantity of commercial butyl rubber crumbs devulcanized by conventional methods. The rheological and mechanical properties and carbon black dispersion degree for both types of compounds prepared by using inner tubes scraps and commercial butyl crumbs were measured and were compared to the values of virgin butyl rubber compound. It is well known that mechanical properties are deteriorated when rubber crumb is added to the virgin compound. It was observed that the decrease in the mechanical properties was much lower for the compounds prepared from the tubes irradiated at 120 kGy than irradiated at 100 kGy. The better mechanical properties were obtained for the compounds prepared by recycling of irradiated inner tubes at 120 kGy than the compounds prepared by using commercial butyl crumbs. Almost similar carbon black distributions were observed for the all compounds studied. It has been concluded that gamma irradiated inner tubes are compatible

  15. The reclaiming of butyl rubber and in-situ compatibilization of thermoplastic elastomer by power ultrasound

    Science.gov (United States)

    Feng, Wenlai

    This is a study of the continuous ultrasound aided extrusion process for the in-situ compatibilization of isotactic polypropylene (iPP)/ethylene-propylene diene rubber (EPDM) thermoplastic elastomer (TPE) using a newly developed ultrasonic treatment reactor. The rheological, mechanical properties and morphology of the TPE with and without ultrasonic treatment were studied. In-situ compatibilization in the ultrasonically treated blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM TPE. The ultrasonic treatments of butyl rubber gum and ultrasonic devulcanization of butyl rubber, tire-curing bladder during extrusion using a grooved barrel ultrasonic reactor were carried out. The ultrasonic treatment of gum caused degradation of the polymer main chain leading to lower molecular weight, broader molecular weight distribution, less unsaturation and changes in physical properties. The devulcanization of butyl rubber was successfully accomplished only at severe conditions of ultrasonic treatment. The mechanical properties of vulcanizates prepared from devulcanized butyl rubber are comparable to that of the virgin vulcanizate. The molecular characterization of sol fraction of devulcanized butyl rubber showed the devulcanization and degradation of butyl rubber occurred simultaneously. 1H NMR transverse relaxation was also used to study butyl rubber gum before and after ultrasonic treatment, and ultrasonically devulcanized unfilled butyl rubber. The T2 relaxation decays were successfully described using a two-component model. The recyclability of tire-curing bladder was also investigated. Gel fraction, crosslink

  16. The zeolite mediated isomerization of allyl phenyl ether

    Science.gov (United States)

    Pebriana, R.; Mujahidin, D.; Syah, Y. M.

    2017-04-01

    Allyl phenyl ether is an important starting material in organic synthesis that has several applications in agrochemical industry. The green transformation of allyl phenyl ether assisted by heterogeneous catalyst is an attractive topic for an industrial process. In this report, we investigated the isomerization of allyl phenyl ether by heating it in zeolite H-ZSM-5 and Na-ZSM-5. The conversion of allyl phenyl ether (neat) in H-ZSM-5 was 67% which produced 40% of 2-allylphenol, 17% of 2-methyldihydrobenzofuran, and other product (4:1.7:1), while in Na-ZSM-5 produced exclusively 2-allylphenol with 52% conversion. These results showed that zeolite properties can be tuned to give a selective transformation by substitution of metal ion into the zeolite interior.

  17. Nickel-catalyzed direct synthesis of dialkoxymethane ethers

    Indian Academy of Sciences (India)

    oxymethylene ethers) from alcohols and paraformaldehyde in the presence of commercially available nickel(II) salt is described. The reaction proceeds readily under neutral, solvent-free conditions using paraformaldehyde as a C1 source.

  18. Nickel-catalyzed direct synthesis of dialkoxymethane ethers

    Indian Academy of Sciences (India)

    MURUGAN SUBARAMANIAN

    free condition. 1. Introduction. Ethers constitute the most diverse family of organic compounds and are ubiquitous in many natural prod- ucts and pharmaceuticals.1 The extent to which they can be utilized as an organic intermediate in contempo-.

  19. SYNTHESIS AND BIOACTIVITY OF ROTENONE OXIME O-ETHER ...

    African Journals Online (AJOL)

    Admin

    mail: g.cao@mail.scut.edu.cn. SYNTHESIS AND BIOACTIVITY OF ROTENONE OXIME O-ETHER DERIVATIVES. Gao Cao*, Zhen Zhou and Ying Wang. School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University,.

  20. Spatial trends of polybrominated diphenyl ether (PBDE) congeners

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spatial trends of polybrominated diphenyl ether (PBDE) congeners were analyzed in young of the year bluefish collected along the U.S. Atlantic coastline from...

  1. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    Science.gov (United States)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  2. Unprecedented antioxidative cyclic ether from the red seaweed Kappaphycus alvarezii with anti-cyclooxygenase and lipoxidase activities.

    Science.gov (United States)

    Makkar, Fasina; Chakraborty, Kajal

    2017-05-01

    An unprecedented non-isoprenoid oxocine carboxylate cyclic ether characterised as (3S, 4R, 5S, 6Z)-3-((R)-hexan-2'-yl)-3,4,5,8-tetrahydro-4-methyl-2H-oxocin-5-yl acetate was isolated from the ethyl acetate-methanol extract of the red seaweed Kappaphycus alvarezii. The structure, as well as its relative stereochemistry, was proposed on the basis of extensive spectral data. The antioxidative activity of the isolated metabolite was found to have significantly greater as determined by 1, 1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiozoline-6-sulfonic acid radical scavenging activities (IC 50  ~ 0.3 mg/mL) compared to α-tocopherol (IC 50  > 0.6 mg/mL) and was comparable to the synthetic antioxidants butylated hydroxytoluene and butylated hydroxyanisole (IC 50  ~ 0.35-0.34 mg/mL). The compound exhibited greater activity against COX-2 (cyclooxygenase-2) than COX-1 (cyclooxygenase-1) isoform, and therefore, the selectivity index remained significantly lesser (anti-COX-1 IC50 : anti-COX-2 IC50 0.87) than synthetic anti-inflammatory drugs (0.02-0.44). No significant difference of in vivo 5-lipoxidase activity (IC 50 0.95 mg/mL) than ibuprofen (IC 50 0.93 mg/mL) indicated the potential anti-inflammatory properties of the title compound.

  3. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  4. Synthesis and Characterisation of Macrocyclic Diamino Chiral Crown Ethers

    Directory of Open Access Journals (Sweden)

    Janet L. Scott

    2004-05-01

    Full Text Available A benign and efficient synthesis of chiral macrocyclic ‘aza-crown’ ethers of varying ring size is reported. The synthesis involves a Schiff base condensation of ether linked dialdehydes of varying chain length and (1R,2R-(–-1,2-diaminocyclohexane under mild conditions to yield the macrocycles, which are subsequently reduced to yield the diamino analogues.

  5. Marine Sponge Dysidea herbacea revisited: Another Brominated Diphenyl Ether

    Directory of Open Access Journals (Sweden)

    Bruce F. Bowden

    2005-03-01

    Full Text Available Abstract: A pentabrominated phenolic diphenyl ether (1 that has not previously been reported from marine sources has been isolated from Dysidea herbacea collected at Pelorus Island, Great Barrier Reef, Australia. The structure was determined by comparison of NMR data with those of known structurally-related metabolites. NMR spectral assignments for (1 are discussed in context with those of three previously reported isomeric pentabrominated phenolic diphenyl ethers.

  6. Embolotherapy using N-butyl cyanoacrylate for abdominal wall bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Ho; Koh, Young Hwan; Han, Dae Hee; Kim, Ji Hoon; Cha, Joo Hee; Lee, Eun Hye; Song, Chi Sung [Seoul National University Boramae Hospital, Seoul (Korea, Republic of)

    2008-05-15

    We describe our experience with the use of N-butyl cyanoacrylate (NBCA) embolization of abdominal wall bleeding and we evaluate the clinical effectiveness of the procedure. Embolization was performed in nine patients with abdominal wall bleeding. The sites of embolization were the left first lumbar (n = 1), left second lumbar (n = 1), right inferior epigastric (n 2), left inferior epigastric (n = 3), right circumflex iliac (n = 1), and left circumflex iliac artery (n = 1). A coil was used with NBCA in one patient due to difficulty in selecting only a bleeding focus and anticipated reflux. NBCA was mixed with Lipiodol at the ratio of 1:1 to 1:4. Blood pressure and heart rate were measured before and after the embolization procedure, and the serial hemoglobin and hematocrit levels and transfusion requirements were reviewed to evaluate hemostasis and rebleeding. Hemostasis was obtained in six out of the nine patients and technical success was achieved in all patients. There were no procedure-related complications. Four out of the nine patients died due to rebleeding of a subarachnoid hemorrhage (n = 1), multiorgan failure (n = 1), and hepatic failure (n =2) that occurred two to nine days after the embolization procedure. One patient had rebleeding. The five surviving patients had no rebleeding, and the patients continue to visit the clinical on an outpatient basis. NBCA embolization is a clinically safe procedure and is effective for abdominal wall bleeding.

  7. Radiostability of butylated hydroxytoluene (BHT): An ESR study

    Energy Technology Data Exchange (ETDEWEB)

    Tuner, H. [Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800 (Turkey)]. E-mail: htuner@hacettepe.edu.tr; Korkmaz, M. [Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800 (Turkey)

    2007-05-15

    In the present work, the effects of gamma radiation on solid butylated hydroxytoluene (BHT), which is used as an antioxidant, were investigated by ESR spectroscopy. While unirradiated BHT presented no ESR signal, irradiated BHT exhibited an ESR spectrum with many resonance maxima and minima spread over a magnetic field range of 12 mT and centered at about g = 2.0026. Weak satellite and central intense resonance lines, likely, originated from radical species of different stabilities and ratios were observed to be responsible from experimental ESR spectrum of gamma irradiated BHT. Studies based on the variations of the observed line intensities and spectrum area under different experimental conditions were carried out and characteristic features of the radical species responsible from experimental ESR spectrum were determined. Mesomeric radical species of different stabilities providing to BHT a G value of 0.25 were believed to be induced in gamma irradiated BHT. While species responsible from weak satellite lines were unstable, the species causing central intense lines were found to be relatively stable. BHT belongs to a class of compounds with low radiosensitivity (G = 0.25). This feature of BHT enables the feasibility of radiosterilizations of the products containing BHT as antioxidant without very much loss from its antioxidant benefit. BHT has been shown to provide an opportunity in the estimation of applied radiation dose with a reasonable accuracy if an appropriate mathematical function is used to describe experimental dose-response data.

  8. Radiostability of butylated hydroxytoluene (BHT): An ESR study

    International Nuclear Information System (INIS)

    Tuner, H.; Korkmaz, M.

    2007-01-01

    In the present work, the effects of gamma radiation on solid butylated hydroxytoluene (BHT), which is used as an antioxidant, were investigated by ESR spectroscopy. While unirradiated BHT presented no ESR signal, irradiated BHT exhibited an ESR spectrum with many resonance maxima and minima spread over a magnetic field range of 12 mT and centered at about g = 2.0026. Weak satellite and central intense resonance lines, likely, originated from radical species of different stabilities and ratios were observed to be responsible from experimental ESR spectrum of gamma irradiated BHT. Studies based on the variations of the observed line intensities and spectrum area under different experimental conditions were carried out and characteristic features of the radical species responsible from experimental ESR spectrum were determined. Mesomeric radical species of different stabilities providing to BHT a G value of 0.25 were believed to be induced in gamma irradiated BHT. While species responsible from weak satellite lines were unstable, the species causing central intense lines were found to be relatively stable. BHT belongs to a class of compounds with low radiosensitivity (G = 0.25). This feature of BHT enables the feasibility of radiosterilizations of the products containing BHT as antioxidant without very much loss from its antioxidant benefit. BHT has been shown to provide an opportunity in the estimation of applied radiation dose with a reasonable accuracy if an appropriate mathematical function is used to describe experimental dose-response data

  9. Gamma irradiation induced effects of butyl rubber based damping material

    Science.gov (United States)

    Chen, Hong-Bing; Wang, Pu-Cheng; Liu, Bo; Zhang, Feng-Shun; Ao, Yin-Yong

    2018-04-01

    The effects of gamma irradiation on the butyl rubber based damping material (BRP) at various doses in nitrogen were investigated in this study. The results show that irradiation leads to radiolysis of BRP, with extractives increasing from 14.9 ± 0.8% of control to 37.2 ± 1.2% of sample irradiated at 350 kGy, while the swelling ratio increasing from 294 ± 3% to 766 ± 4%. The further investigation of the extractives with FTIR shows that the newly generated extractives are organic compounds containing C-H and C˭C bonds, with molecular weight ranging from 26,500 to 46,300. SEM characterization shows smoother surface with holes disappearing with increasing absorbed doses, consistent with "softer" material because of radiolysis. Dynamic mechanical study of BRP show that tan δ first slightly then obviously increases with increasing absorbed dose, while storage modulus slightly decreases. The tensile testing shows that the tensile strength decreases while the elongation at break increases with increasing dose. The positron annihilation lifetime spectroscopy show no obvious relations between free volume parameters and the damping properties, indicating the complicated influencing factors of damping properties.

  10. Embolotherapy using N-butyl cyanoacrylate for abdominal wall bleeding

    International Nuclear Information System (INIS)

    Choi, Young Ho; Koh, Young Hwan; Han, Dae Hee; Kim, Ji Hoon; Cha, Joo Hee; Lee, Eun Hye; Song, Chi Sung

    2008-01-01

    We describe our experience with the use of N-butyl cyanoacrylate (NBCA) embolization of abdominal wall bleeding and we evaluate the clinical effectiveness of the procedure. Embolization was performed in nine patients with abdominal wall bleeding. The sites of embolization were the left first lumbar (n = 1), left second lumbar (n = 1), right inferior epigastric (n 2), left inferior epigastric (n = 3), right circumflex iliac (n = 1), and left circumflex iliac artery (n = 1). A coil was used with NBCA in one patient due to difficulty in selecting only a bleeding focus and anticipated reflux. NBCA was mixed with Lipiodol at the ratio of 1:1 to 1:4. Blood pressure and heart rate were measured before and after the embolization procedure, and the serial hemoglobin and hematocrit levels and transfusion requirements were reviewed to evaluate hemostasis and rebleeding. Hemostasis was obtained in six out of the nine patients and technical success was achieved in all patients. There were no procedure-related complications. Four out of the nine patients died due to rebleeding of a subarachnoid hemorrhage (n = 1), multiorgan failure (n = 1), and hepatic failure (n =2) that occurred two to nine days after the embolization procedure. One patient had rebleeding. The five surviving patients had no rebleeding, and the patients continue to visit the clinical on an outpatient basis. NBCA embolization is a clinically safe procedure and is effective for abdominal wall bleeding

  11. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.

    Science.gov (United States)

    Xin, Fengxue; Basu, Anindya; Yang, Kun-Lin; He, Jianzhong

    2016-02-01

    In this study, a fermentation process for production of butanol and butyl-butyrate by using Clostridium sp. strain BOH3 is developed. This strain is able to produce butyric acid and butanol when it ferments 60 g/L xylose. Meanwhile, it also excreted indigenous lipases (induced by olive oil) which naturally convert butyric acid and butanol into 1.2 g/L of butyl-butyrate. When Bio-OSR was used as both an inducer for lipase and extractant for butyl-butyrate, the butyl-butyrate concentration can reach 6.3 g/L. To further increase the yield, additional lipases and butyric acid are added to the fermentation system. Moreover, kerosene was used as an extractant to remove butyl-butyrate in situ. When all strategies are combined, 22.4 g/L butyl-butyrate can be produced in a fed-batch reactor spiked with 70 g/L xylose and 7.9 g/L butyric acid, which is 4.5-fold of that in a similar system (5 g/L) with hexadecane as the extractant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In vivo and in vitro metabolism of cannabidiol monomethyl ether and cannabidiol dimethyl ether in the guinea pig: on the formation mechanism of cannabielsoin-type metabolite from cannabidiol.

    Science.gov (United States)

    Gohda, H; Narimatsu, S; Yamamoto, I; Yoshimura, H

    1990-06-01

    Oxidative metabolism of cannabidiol monomethyl ether (CBDM), one of the components of marihuana, was studied in the guinea pig. Cannabielsoin monomethyl ether (CBEM) was found to be formed with hepatic microsomes by gas chromatography-mass spectrometry (GC-MS). Experiments using various modifiers of enzymatic reaction suggested that, as in the case of cannabielsoin (CBE) formation from canabidiol (CBD), CBEM was formed from CBDM by the monooxygenase system including cytochrome P450. When cannabidiol dimethyl ether (CBDD), in which phenolic hydroxyl groups of CBD are masked with methyl groups, was incubated with liver microsomes and an reduced nicotinamide adenine dinucleotide phosphate-generating system, 1S,2R-epoxy-CBDD was identified by GC-MS. The epoxy metabolite was also found in the liver of a guinea pig pretreated with CBDD (100 mg/kg, intraperitoneally) 1 h before sacrifice. Rate of 1S,2R-epoxide metabolism was slower than that of 1R,2S-epoxy-CBDD under the conditions, as in the microsomal oxidation of CBDD described above. These results indicate that 1S,2R-epoxides are formed from CBD, CBDM and CBDD and that the epoxides are quickly converted to elsoin-type metabolites in the cases of CBD and CBDM.

  13. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform

    OpenAIRE

    Lundberg, Pontus; Lee, Bongjae F.; van den Berg, Sebastiaan A.; Pressly, Eric D.; Lee, Annabelle; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxi...

  14. Novel electrochemical route to cleaner fuel dimethyl ether.

    Science.gov (United States)

    Cassone, Giuseppe; Pietrucci, Fabio; Saija, Franz; Guyot, François; Sponer, Jiri; Sponer, Judit E; Saitta, A Marco

    2017-07-31

    Methanol, the simplest alcohol, and dimethyl ether, the simplest ether, are central compounds in the search for alternative "green" combustion fuels. In fact, they are generally considered as the cornerstones of the envisaged "Methanol Economy" scenario, as they are able to efficiently produce energy in an environmentally friendly manner. However, despite a massive amount of research in this field, the synthesis of dimethyl ether from liquid methanol has never so far been reported. Here we present a computational study, based on ab initio Molecular Dynamics, which suggests a novel synthesis route to methanol dehydration - leading thus to the dimethyl ether synthesis - through the application of strong electric fields. Besides proving the impressive catalytic effects afforded by the field, our calculations indicate that the obtained dimethyl ether is stable and that it can be progressively accumulated thanks to the peculiar chemical pathways characterising the methanol reaction network under electric field. These results suggest that the experimental synthesis of dimethyl ether from liquid methanol could be achieved, possibly in the proximity of field emitter tips.

  15. Effects of the ether phospholipid AMG-PC on mast cells are similar to that of the ether lipid AMG but different from that of the analogue hexadecylphosphocholine

    DEFF Research Database (Denmark)

    Grosman, Nina

    1991-01-01

    Farmakologi, ether phospholipid, hexacylphosphocholine, miltefosine, protein kinase C, AMG-PC(alkyl-methyl-glycero-phosphocholine), Histamine release, mast cell......Farmakologi, ether phospholipid, hexacylphosphocholine, miltefosine, protein kinase C, AMG-PC(alkyl-methyl-glycero-phosphocholine), Histamine release, mast cell...

  16. Review on Modification of Sulfonated Poly (-ether-ether-ketone Membranes Used as Proton Exchange Membranes

    Directory of Open Access Journals (Sweden)

    Xiaomin GAO

    2015-11-01

    Full Text Available The proton exchange membrane fuel cell (PEMFC is a type of modern power, but the traditional proton exchange membranes (PEM of PEMFC are limited by high methanol permeability and water uptake. Poly-ether-ether-ketone (PEEK is a widely used thermoplastic with good cost-effective property. Sulfonated poly (-ether-ether-ketone (SPEEK has high electric conductivity and low methanol permeability, as well as comprehensive property, which is expected to be used as PEMs. However, the proton exchange ability, methanol resistance, mechanical property and thermal stability of SPEEK are closely related to the degree of sulfonation (DS of SPEEK membranes. Additionally, the proton conductivity, methanol permeability, and stability of SPEEK membranes applied in various conditions need to be further improved. In this paper, the research into modification of SPEEK membranes made by SPEEK and other polymers, inorganic materials are introduced. The properties and modification situation of the SPEEK and the composite membranes, as well as the advantages and disadvantages of membranes prepared by different materials are summarized. From the results we know that, the methanol permeability of SPEEK/PES-C membranes is within the order of magnitude, 10-7cm2/s. The proton conductivity of the SPPESK/SPEEK blend membrane reaches 0.212 S cm-1 at 80 °C. The cross-linked SPEEK membranes have raised thermal and dimensional stability. The non-solvent caused aggregation of the SPEEK ionomers. The proton conductivity of SPEEK/50%BMIMPF6/4.6PA membrane maintains stable as 2.0 x 10-2S cm-1 after 600 h at 160 °C. Incorporation of aligned CNT into SPEEK increases the proton conductivity and reduces the methanol permeability of the composite membranes. The PANI improves the hydrothermal stability. More proton transfer sites lead to a more compact structure in the composite membranes. According to the results, the proton exchange capacity, water uptake, and conductivity of

  17. Radiation induced crosslinking of cellulose ethers

    International Nuclear Information System (INIS)

    Wach, A.R.; Mitomo, H.; Yoshii, F.; Kume, T.

    2002-01-01

    The effects of high-energy radiation on four ethers of cellulose: carboxymethyl (CMC); hydroxypropyl (HPC), hydroxyethyl (HEC) and methylcellulose (MC) were investigated. Polymers are irradiated in solid state and in aqueous solutions at various concentrations. Degree of substitution (DS) of the derivatives, the concentration of their aqueous solutions and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid state and in diluted aqueous solutions resulted in their degradation. However, it was found that for concentrated solutions gel formation occurred. Paste-like form of the initial material, when water plasticizes the bulk of polymer as well as the high dose rate, what prevents oxygen penetration of the polymer during irradiation, have been found favourable for hydrogel formation. Up to 95% of gel fraction was obtained from solutions of CMC with concentration over 50% irradiated by γ-rays or electron beam. It was pointed out that the ability to the formation of the three-dimensional network is related to the DS of anhydroglucose units and a type of chemical group introduced to main chain of cellulose. Produced hydrogels swelled markedly in water. Despite of the crosslinked structure they underwent degradation by the action of cellulase enzyme or microorganisms from compost, and can be included into the group of biodegradable materials. (author)

  18. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  19. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    Energy Technology Data Exchange (ETDEWEB)

    Pei Xianqiang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China); Li Yan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China); Graduate school of the Chinese Academy of Sciences, Beijing 100039 (China); Wang Qihua [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China)], E-mail: Wangqh@lzb.ac.cn; Sun Xiaojun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China)

    2009-03-15

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation.

  20. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    Science.gov (United States)

    Pei, Xianqiang; Li, Yan; Wang, Qihua; Sun, Xiaojun

    2009-03-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to "carpet-like" structure after irradiation.

  1. Electrochemical and Spin-Trapping Properties of para-substituted α-Phenyl-N-tert-butyl Nitrones

    International Nuclear Information System (INIS)

    Rosselin, Marie; Tuccio, Béatrice; Pério, Pierre; Villamena, Frederick A.; Fabre, Paul-Louis; Durand, Grégory

    2016-01-01

    Nitrones are known both as therapeutic antioxidants and efficient spin-traps. In this work, the redox behavior of various para-substituted α-phenyl-N-tert-butyl nitrones (PBN) was studied by cyclic voltammetry. The polar effect of the substituents was found to correlate with the electrochemical properties of the nitronyl function. Compounds bearing an electron-withdrawing group were more easily reduced than those having an electron-donating group and an opposite trend was observed for the oxidation. Ease of oxidation was also computationally rationalized using DFT approach showing increased ease of oxidation with electron donating functionalities. Since electrochemical properties of nitrones are known to correlate with biological properties, this work provides insights in the design of potent nitrone antioxidants. Using cyclic voltammetry the relative rate of superoxide trapping by nitrones was investigated and compared to the classical antioxidant BHT. The determination of the relative rate of phenyl radical trapping was also carried out but showed no clear correlation with the nature of the substituents. This indicates the absence of a polar effect in agreement with previous data and further supports the intermediate nature, that is, non- or weakly nucleophile, of phenyl radical. On the contrary kinetics of hydroxymethyl radical trapping was found to correlate with the nature of the substituents, demonstrating the nucleophilic nature of its addition onto nitrones.

  2. Aromatic polymers obtained by precipitation polycondensation, 2a) Synthesis of poly(ether ketone ether ketone ketone) (PEKEKK)

    OpenAIRE

    Zolotukhin, Mikhail K.; Rueda, Daniel R.; Baltá Calleja, Francisco José; Bruix, M.; Cagiao, M. E.; Bulai, Anna; Gileva, Natalia G.

    1997-01-01

    A high molecular weight, linear aromatic poly(ether ketone ether ketone ketone) (PEKEKK) has been synthesized by electrophilic Friedel-Crafts acylation condensation of 1,4-diphenoxybenzophenone with terephthaloyl chloride. The syntheses were performed as precipitation polycondensations, and the polyketones were obtained in particle form. The viscosity (molecular weight), shape and size of these particles were found to be strongly dependent on the reaction conditions. For low monomer concen...

  3. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    Science.gov (United States)

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development and characterization of poli composites (ether ether ketone)(PEEK)(Hydroxyapatite(HA)

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Santos, F.S.F.; Sa, M.D. de; Fook, M.V.L.

    2016-01-01

    The objective of this work was to develop PEEK / HA composites, combining the biological activity of the ceramic phase with the properties of the polymer phase, the materials used in this research were Poly (ether-ether-ketone) (PEEK) and Hydroxyapatite (HA) (50, 60, 70 and 80% m / v HA), this material was subjected to a load of two tons followed by a thermal treatment at 390 ° for a period of 30 minutes. Then they were characterized by FTIR, DRX and MO. In the physical-chemical characterization of FTIR and XRD, it was not possible to identify significant alterations. In the FTIR spectra of the composites, there is no formation of new identifiable chemical bonds. In the composites XRD diffractograms a profile similar to the ceramic phase was observed, with peaks increasing in intensity and narrowing proportional to the increase of the hydroxyapatite concentration in the composites. In optical microscopy it is possible to observe surfaces with heterogeneous morphology, with signs of roughness and in the cross section we observe a heterogeneous aspect, rich in regions with large agglomerates and lighter particles. Considering the processing aspects, the technique proved to be effective for the development of PEEK /HA composites. (author)

  5. Rheological, mechanical and tribological properties of carbon-nanofibre reinforced poly (ether ether ketone composites

    Directory of Open Access Journals (Sweden)

    Volker Altstaedt

    2003-12-01

    Full Text Available Poly(ether ether ketone nanocomposites containing vapour-grown carbon nanofibres (CNF were produced using standard polymer processing techniques. At high shear rates no significant increase in resin viscosity was observed. Nevertheless, the addition of the CNFs results in a higher melt strength at 360°C. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres in the polymer matrix. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% whilst matrix ductility was maintained up to 10 wt%. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry was used to investigate crystallization kinetics and degree of crystallinity. The CNFs were found not to act as nucleating sites. Furthermore, unidirectional sliding tests against two different counterpart materials (100Cr6 martensitic bearing steel, X5CrNi18-10 austenitic stainless steel were performed. The carbon nanofibres were found to reduce the wear rate of PEEK significantly.

  6. Evaluation of workers exposed to ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate.

    Science.gov (United States)

    Park, Jiyoung; Yoon, Chungsik; Byun, Hyaejeong; Kim, Yangho; Park, Donguk; Ha, Kwonchul; Lee, Sang man; Park, Sungki; Chung, Eunkyo

    2012-01-01

    Ethylene glycol monomethyl ether (EGME) and ethylene glycol monomethyl ether acetate (EGMEA) are widely used in industries as solvents for coatings, paint and ink, but exposure data are limited because they are minor components out of mixed solvents, as well as because of inconsistency in desorption solvent use. The objective of this study was to investigate the worker exposure profile of EGME and EGMEA. Our study investigated 27 workplaces from June to September 2008 and detected EGME and EGMEA in 20 and 13, respectively. Both personal and area sampling were conducted using a charcoal tube to collect EGME and EGMEA. Gas chromatography with a flame ionization detector was used to analyze these compounds after desorption using a mixture of methylene chloride and methanol. The arithmetic mean concentrations of EGME and EGMEA during periods of full work shifts were 2.59 ppm and 0.33 ppm, respectively. The exposure levels were lower than the Korean Ministry of Labor (MOL) OEL (5 ppm) but higher than the ACGIH TLV (0.1 ppm). In general, the working environments were poor and required much improvement, including the use of personal protective equipment. Only 50% of the workplaces had local exhaust ventilation systems in operation. The average capture velocity of the operating local exhaust ventilation systems was 0.27 m/s, which did not meet the legal requirement of 0.5 m/s. Educating workers to clearly understand the handling and use of hazardous chemicals and improving working conditions are strongly suggested.

  7. Copoly(arlene ether)s containing pendant sulfonic acid groups as proton exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Kim, Dae Sik [CANADA NRC; Robertson, Gilles [CANADA NRC; Guiver, Michael [CANADA NRC

    2008-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The P AE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sP AE and sP AEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC{sub v}(wet) (volume-based, wet state)) of 1.77 and 2.55 meq./cm{sup 3}, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5-51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the area of outstanding properties in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based). Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  8. The Effects of Sulfonated Poly(ether ether ketone) Ion Exchange Preparation Conditions on Membrane Properties

    Science.gov (United States)

    Yee, Rebecca S. L.; Zhang, Kaisong; Ladewig, Bradley P.

    2013-01-01

    A low cost cation exchange membrane to be used in a specific bioelectrochemical system has been developed using poly(ether ether ketone) (PEEK). This material is presented as an alternative to current commercial ion exchange membranes that have been primarily designed for fuel cell applications. To increase the hydrophilicity and ion transport of the PEEK material, charged groups are introduced through sulfonation. The effect of sulfonation and casting conditions on membrane performance has been systematically determined by producing a series of membranes synthesized over an array of reaction and casting conditions. Optimal reaction and casting conditions for producing SPEEK ion exchange membranes with appropriate performance characteristics have been established by this uniquely systematic experimental series. Membrane materials were characterized by ion exchange capacity, water uptake, swelling, potential difference and NMR analysis. Testing this extensive membranes series established that the most appropriate sulfonation conditions were 60 °C for 6 h. For mechanical stability and ease of handling, SPEEK membranes cast from solvent casting concentrations of 15%–25% with a resulting thickness of 30–50 µm were also found to be most suitable from the series of tested casting conditions. Drying conditions did not have any apparent impact on the measured parameters in this study. The conductivity of SPEEK membranes was found to be in the range of 10−3 S cm−1, which is suitable for use as a low cost membrane in the intended bioelectrochemical systems. PMID:24956945

  9. Nafion {sup registered} /nitrated sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Jie-Cheng; Kuo, Jen-Feng; Chen, Chuh-Yung [Department of Chemical Engineering, National Cheng-Kung University, Tainan, 70148 (China)

    2009-10-20

    Sulfonated poly(ether ether ketone)s (SPEEKs) are substituted on the main chain of the polymer by nitro groups and blended with Nafion {sup registered} to attain composite membranes. The sulfonation, nitration and blending are achieved with a simple, inexpensive process, and the blended membranes containing the nitrated SPEEKs reveal a liquid-liquid phase separation. The blended membranes have a lower water uptake compared to recast Nafion {sup registered}, and the methanol permeability is reduced significantly to 4.29 x 10{sup -7}-5.34 x 10{sup -7} cm{sup 2} s{sup -1} for various contents of nitrated SPEEK for S63N17, and 4.72 x 10{sup -7}-7.11 x 10{sup -7} cm{sup 2} s{sup -1} for S63N38, with a maximum proton conductivity of {proportional_to}0.085 S cm{sup -1}. This study examines the single-cell performance at 80 C of Nafion {sup registered} /nitrated SPEEK membranes with various contents of nitrated SPEEK and a degree of nitration of 23-25 mW cm{sup -2} for S63N17 and 24-29 mW cm{sup -2} for S63N38. Both the power density and open circuit voltage are higher than those of Nafion {sup registered} 115 and recast Nafion {sup registered}. (author)

  10. The Effects of Sulfonated Poly(ether ether ketone Ion Exchange Preparation Conditions on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Rebecca S. L. Yee

    2013-08-01

    Full Text Available A low cost cation exchange membrane to be used in a specific bioelectrochemical system has been developed using poly(ether ether ketone (PEEK. This material is presented as an alternative to current commercial ion exchange membranes that have been primarily designed for fuel cell applications. To increase the hydrophilicity and ion transport of the PEEK material, charged groups are introduced through sulfonation. The effect of sulfonation and casting conditions on membrane performance has been systematically determined by producing a series of membranes synthesized over an array of reaction and casting conditions. Optimal reaction and casting conditions for producing SPEEK ion exchange membranes with appropriate performance characteristics have been established by this uniquely systematic experimental series. Membrane materials were characterized by ion exchange capacity, water uptake, swelling, potential difference and NMR analysis. Testing this extensive membranes series established that the most appropriate sulfonation conditions were 60 °C for 6 h. For mechanical stability and ease of handling, SPEEK membranes cast from solvent casting concentrations of 15%–25% with a resulting thickness of 30–50 µm were also found to be most suitable from the series of tested casting conditions. Drying conditions did not have any apparent impact on the measured parameters in this study. The conductivity of SPEEK membranes was found to be in the range of 10−3 S cm−1, which is suitable for use as a low cost membrane in the intended bioelectrochemical systems.

  11. Sulfonated poly(ether ether ketone) based membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Kimball S.

    2010-07-01

    The decreasing availability of fossil fuels and the increasing impact of greenhouse gases on the environment lead to an extensive development of more efficient or renewable energy sources. The direct alcohol fuel cell (DAFC) as a portable energy source is a promising and fast growing technology which meets these demands. Up to now, methanol is mostly studied as a fuel for these devices, however, applying ethanol has some evident advantages over methanol. The major challenges in direct ethanol fuel cell (DEFC) research on component level are the catalyst development and the electrolyte membrane development. The focus of this thesis lies on the development and characterization of proton conductive membranes for application in direct ethanol fuel cells (DEFC). Sulfonated poly(ether ether ketone) (sPEEK) based organic-inorganic mixed-matrix membranes are developed and, in addition, the inorganic phase is modified with functional silanes carrying basic groups. The membranes are characterized with respect to fuel crossover, proton conductivity, membrane stability and direct ethanol fuel cell tests. (orig.)

  12. Interface and properties of inorganic fullerene tungsten sulphide nanoparticle reinforced poly (ether ether ketone) nanocomposites

    Science.gov (United States)

    Wang, Nannan; Yang, Zhuxian; Wang, Yuan; Thummavichai, Kunyapat; Xia, Yongde; Ghita, Oana; Zhu, Yanqiu

    We report a simple and effective method to fabricate PEEK (poly ether ether ketone)/IF-WS2 (Inorganic Fullerene Tungsten Sulphide) nanocomposites with IF-WS2 content up to 8 wt%. We have used electron microscopies to characterise the morphology and structural features of the nancomposites, and FTIR and XPS to show that some chemical interface bondings were formed between the PEEK and IF-WS2. We demonstrate that the resulting PEEK/IF-WS2 nanocomposites showed an extraordinary 190% increase in thermal conductivity, 50 °C higher in degradation temperature, and mild improvements in strength and hardness. The increased degradation activation energy from 64 to 76 kJ/mol for neat PEEK and PEEK/IF-WS2 nanocomposites, respectively, is attributed to the synergistic interface between the PEEK matrix and IF-WS2 nanoparticles. The enhancements in both the mechanical and thermal properties will significantly expand the capacities of PEEK-based nanocomposites towards applications where thermal conductivity and stability are important.

  13. Sources of Propylene Glycol and Glycol Ethers in Air at Home

    Directory of Open Access Journals (Sweden)

    Hyunok Choi

    2010-12-01

    Full Text Available Propylene glycol and glycol ether (PGE in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs and semi-VOCs (SVOCs, including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP, and di(2-ethylhexylphthalate (DEHP. Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child’s birth, and “newest” surface material in the child’s bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m3 additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.

  14. Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants

    Energy Technology Data Exchange (ETDEWEB)

    Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.; Armstrong, V.S.; Haverlock, T.J.; Counce, R.M.; Sachleben, R.A.

    1996-06-01

    The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as {sup 99}Tc`s long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of {sup 90}Sr; and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates.

  15. Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants

    International Nuclear Information System (INIS)

    Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.; Armstrong, V.S.; Haverlock, T.J.; Counce, R.M.; Sachleben, R.A.

    1996-06-01

    The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as 99 Tc's long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of 90 Sr; and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar reg-sign M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates

  16. Biomarker responses in earthworms (Eisenia fetida) to soils contaminated with di-n-butyl phthalates.

    Science.gov (United States)

    Du, Li; Li, Guangde; Liu, Mingming; Li, Yanqiang; Yin, Suzhen; Zhao, Jie

    2015-03-01

    Di-n-butyl phthalates (DBP) are recognized as ubiquitous contaminants in soil and adversely impact the health of organisms. Changes in the activity of antioxidant enzymes and levels of glutathione-S-transferase (GST), glutathione (GSH), and malondialdehyde (MDA) were used as biomarkers to evaluate the impact of DBP on earthworms (Eisenia fetida) after exposure to DBP for 28 days. DBP was added to artificial soil in the amounts of 0, 5, 10, 50, and 100 mg kg(-1) of soil. Earthworm tissues exposed to each treatment were collected on the 7th, 14th, 21st, and 28th day of the treatment. We found that superoxide dismutase (SOD) and catalase (CAT) levels were significantly inhibited in the 100 mg kg(-1) treatment group on day 28. After 21 days of treatment, GST activity in 10-50 mg kg(-1) treatment groups was markedly stimulated compared to the control group. MDA content in treatment groups was higher than in the control group throughout the exposure time, suggesting that DBP may lead to lipid peroxidation (LPO) in cells. GSH content increased in the treatment group that received 50 mg kg(-1) DBP from 7 days of exposure to 28 days. These results suggest that DBP induces serious oxidative damage on earthworms and induce the formation of reactive oxygen species (ROS) in earthworms. However, DBP concentration in current agricultural soil in China will not constitute any threat to the earthworm or other animals in the soil.

  17. Transcatheter Embolotherapy with N-Butyl Cyanoacrylate for Ectopic Varices

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Kim, Hyo-Cheol, E-mail: angiointervention@gmail.com; Jae, Hwan Jun, E-mail: jaemdphd@gmail.com; Jung, Hyun-Seok; Hur, Saebeom; Lee, Myungsu; Chung, Jin Wook [Seoul National University Hospital, Department of Radiology, Seoul National University College of Medicine (Korea, Republic of)

    2015-04-15

    PurposeTo address technical feasibility and clinical outcome of transcatheter embolotherapy with N-butyl cyanoacrylate (NBCA) for bleeding ectopic varices.MethodsThe institutional review board approved this retrospective study and waived informed consent. From January 2004 to June 2013, a total of 12 consecutive patients received transcatheter embolotherapy using NBCA for bleeding ectopic varices in our institute. Clinical and radiologic features of the endovascular procedures were comprehensively reviewed.ResultsPreprocedural computed tomography images revealed ectopic varices in the jejunum (n = 7), stoma (n = 2), rectum (n = 2), and duodenum (n = 1). The 12 procedures consisted of solitary embolotherapy (n = 8) and embolotherapy with portal decompression (main portal vein stenting in 3, transjugular intrahepatic portosystemic shunt in 1). With regard to vascular access, percutaneous transhepatic access (n = 7), transsplenic access (n = 4), and transjugular intrahepatic portosystemic shunt tract (n = 1) were used. There was no failure in either the embolotherapy or the vascular accesses (technical success rate, 100 %). Two patients died within 1 month from the procedure from preexisting fatal medical conditions. Only one patient, with a large varix that had been partially embolized by using coils and NBCA, underwent rebleeding 5.5 months after the procedure. The patient was retreated with NBCA and did not undergo any bleeding afterward for a follow-up period of 2.5 months. The remaining nine patients did not experience rebleeding during the follow-up periods (range 1.5–33.2 months).ConclusionTranscatheter embolotherapy using NBCA can be a useful option for bleeding ectopic varices.

  18. N-butyl cyanoacrylate embolotherapy for acute gastroduodenal ulcer bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Ho; Kim, Ji Hoon; Koh, Young Hwan; Han, Dae Hee; Cha, Joo Hee; Seong, Chang Kyu; Song, Chi Sung [Seoul National University Boramae Hospital, Seoul (Korea, Republic of)

    2007-01-15

    Various embolic agents have been used for embolization of acute gastrointestinal (GI) arterial bleeding. N-butyl cyanoacrylate (NBCA) is not easy to handle, but it is a useful embolic agent. In this retrospective study, we describe our experience with NBCA embolization of acute gastroduodenal ulcer bleeding. NBCA embolization was performed in seven patients with acute upper GI arterial bleeding; they had five gastric ulcers and two duodenal ulcers. NBCA embolization was done in the left gastric artery (n = 3), right gastric artery (n = 2), gastroduodenal artery (n = 1) and pancreaticoduodenal artery (n = 1). Coil was used along with NBCA in a gastric bleeding patient because of difficulty in selecting a feeding artery. NBCA was mixed with Lipiodol at the ratio of 1:1 to 1:2. The blood pressure and heart rate around the time of embolization, the serial hemoglobin and hematocrit levels and the transfusion requirements were reviewed to evaluate hemostasis and rebleeding. Technical success was achieved in all the cases. Two procedure-related complications happened; embolism of the NBCA mixture to the common hepatic artery occurred in a case with embolization of the left gastric artery, and reflux of the NBCA mixture occurred into the adjacent gastric tissue, but these did not cause any clinical problems. Four of seven patients did not present with rebleeding, but two had rebleeding 10 and 16 days, respectively, after embolization and they died of cardiac arrest at 2 months and 37 days, respectively. One other patient died of sepsis and respiratory failure within 24 hours without rebleeding. NBCA embolization with or without other embolic agents could be safe and effective for treating acute gastroduodenal ulcer bleeding.

  19. Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate

    Science.gov (United States)

    Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi

    2017-09-01

    Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.

  20. Mutagenicity testing of diethylene glycol monobutyl ether.

    Science.gov (United States)

    Thompson, E D; Coppinger, W J; Valencia, R; Iavicoli, J

    1984-01-01

    The mutagenic potential of diethylene glycol monobutyl ether (diEGBE) was examined with a Tier I battery of in vitro assays followed by a Tier II in vivo Drosophila sex-linked recessive lethal assay. The in vitro battery consisted of: the Salmonella mutagenicity test, the L5178Y mouse lymphoma test, a cytogenetics assay using Chinese hamster ovary cells and the unscheduled DNA synthesis (UDS) assay in rat hepatocytes. Results of the Salmonella mutagenicity test, the cytogenetics test, and the rat hepatocyte assay were negative at concentrations up to 20 microL/plate, 7.92 microL/mL, and 4.4 microL/mL, respectively. Toxicity was clearly demonstrated at all high doses. A weak, but dose-related increase in the mutation frequency (4-fold increase over the solvent control at 5.6 microL/mL with 12% survival) was obtained in the L5178Y lymphoma test in the absence of metabolic activation. Results of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay results were assessed by performing the Tier II sex-linked recessive lethal assay in Drosophila in which the target tissue is maturing germinal cells. Both feeding (11,000 ppm for 3 days) and injection (0.3 microL of approximately 14,000 ppm solution) routes of administration were employed in the Drosophila assay. Approximately 11,000 individual crosses with an equal number of negative controls were performed for each route of administration. diEGBE produced no increase in recessive lethals under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6389113

  1. The radiation chemistry of some poly(arylene phosphene oxide)s

    International Nuclear Information System (INIS)

    The poly(arylene phosphene oxide)s are a class of thermoplastics with high glass transition temperature, high modulus and inherent flame retardancy. These properties make them good candidates for use in high energy radiation environments, such as occur in space and in the nuclear industry. In this paper the high energy radiation chemistry of a series of these polymers will be discussed, including studies of the radicals formed, the molecular weight changes and the changes in chemical structure evident through NMR spectroscopy. The radiation sensitivity of the polymers will be compared with that of the related poly(arylene sulfone)s and poly(arylene ether ether ketone)s

  2. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    Science.gov (United States)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  3. On the ether-like Lorentz-breaking actions

    International Nuclear Information System (INIS)

    Petrov, A.Yu; Nascimento, J.R.; Gomes, M.; Silva, A. J. da

    2011-01-01

    We demonstrate the generation of the CPT-even, ether-like Lorentz-breaking actions for the scalar and electro-magnetic fields via their appropriate Lorentz-breaking coupling to spinor fields in three, four and five space-time dimensions. Besides, we show that the ether-like terms for the spinor field also can be generated as a consequence of the same couplings. The key result which will be presented here is the finiteness of the ether-like term for the electromagnetic field not only in three and five space-time dimensions where it is natural due to known effects of the dimensional regularization but also in four space-time dimensions. Moreover, we present the calculation of the last result within different calculational schemes and conclude that the result for the four-dimensional ether-like term for the electromagnetic field essentially depending on the calculation scheme, similarly to the result for the Carroll-Field-Jackiw (CFJ) term which probably signalizes a possibility for arising of a new anomaly. Also we discuss the dispersion relations in the theories with ether-like Lorentz-breaking terms which allows to discuss the consistency of the Lorentz-breaking modified theories for different (space-like or time-like) Lorentz-breaking vectors and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field. (author)

  4. Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit [Department of Applied Sciences, Amritsar College of Engineering and Technology, Manawala, Amritsar-143001, Punjab (India); Singh, N.P. [Punjab Technical University, Jalandhar (India); Sarin, Rakesh; Malhotra, R.K. [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad-121007 (India)

    2010-12-15

    According to the proposed National Mission on Biodiesel in India, we have undertaken studies on the oxidative stability of biodiesel synthesized from tree borne non-edible oil seeds jatropha. Neat jatropha biodiesel exhibited oxidation stability of 3.95 h and research was conducted to investigate the influence of natural and synthetic antioxidants on the oxidation stability of jatropha methyl ester. Antioxidants namely {alpha}-tocopherol, tert-butylated hydroxytoluene, tert-butylated phenol derivative, octylated butylated diphenyl amine, and tert-butylhydroxquinone were doped to improve the oxidation stability. It was found that both types of antioxidants showed beneficial effects in increasing the oxidation stability of jatropha methyl ester, but comparatively, the synthetic antioxidants were found to be more effective. (author)

  5. Simulation of methyl tert-butyl ether (MTBE) transport to ground water from immobile sources of gasoline in the vadose zone

    Science.gov (United States)

    Lahvis, M.A.; Rehmann, L.C.

    1999-01-01

    The mathematical model, R-UNSAT, developed to simulate the transport of benzene and MTBE in representative sand and clay hydrogeologic systems was evaluated. The effects on groundwater were simulated for small, chronic-, and single-volume releases of gasoline trapped in unsaturated soil. Hydrocarbon biodegradation was simulated by using a dual Monod-type kinetics model that includes oxygen and the reactive constituents. MTBE was assumed to be non-reactive. For MTBE, infiltration had the greatest effect on transport to groundwater. Infiltration also affected mass losses of MTBE to the atmosphere, particularly, in fine-grained soils. Depth to groundwater and soil type primarily affected travel times of MTBE to groundwater, but could affect mass-loading rates to groundwater if infiltration is insignificant. For benzene, transport to groundwater was significant only if the depth to the water table was groundwater were generally smaller for benzene than for MTBE by more than two orders of magnitude. Thus, water that recharges an aquifer beneath a spill can be enriched in MTBE relative to benzene when compared to the composition of water in equilibrium with gasoline.

  6. Methyl tert-butyl ether (MTBE) detected in abnormally high concentrations in postmortem blood and urine from two persons found dead inside a car containing a gasoline spill.

    Science.gov (United States)

    Karinen, Ritva; Vindenes, Vigdis; Morild, Inge; Johnsen, Lene; Le Nygaard, Ilah; Christophersen, Asbjørg S

    2013-09-01

    Two deep frozen persons, a female and a male, were found dead in a car. There had been an explosive fire inside the car which had extinguished itself. On the floor inside the car were large pools of liquid which smelled of gasoline. The autopsy findings and routine toxicological analyses could not explain the cause of death. Carboxyhemoglobin levels in the blood samples were gasoline as a fuel oxygenate. Gasoline poisoning is likely to be the cause of the death in these two cases, and MTBE can be a suitable marker of gasoline exposure, when other volatile components have vaporized. © 2013 American Academy of Forensic Sciences.

  7. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  8. Volumetric behaviour of binary liquid systems composed of toluene, isooctane, and methyl tert-butyl ether at temperatures from (298.15 to 328.15) K

    International Nuclear Information System (INIS)

    Moravkova, L.; Wagner, Z.; Linek, J.

    2009-01-01

    The densities and speeds of sound of (toluene + isooctane), (MTBE + toluene), and (MTBE + isooctane) were measured at four temperatures from (298.15 to 328.15) K, and the respective values of excess volumes V m E and adiabatic compressibility κ S were calculated. The V m E and κ S values were fitted to the fourth-order Redlich-Kister equation. The V m E values for (MTBE + toluene) are negative and decreasing with increasing temperature. The other systems show positive V m E with comparatively small temperature dependence

  9. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling

    Directory of Open Access Journals (Sweden)

    Xiaohu Deng

    2018-01-01

    Full Text Available Compared to the common selective laser sintering (SLS manufacturing method, fused deposition modeling (FDM seems to be an economical and efficient three-dimensional (3D printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  10. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants

    Directory of Open Access Journals (Sweden)

    Huatao Li

    2016-09-01

    Full Text Available This study explored the effects of butylated hydroxytoluene (BHT and ethoxyquin (EQ and ethyl ether extracts, ethyl acetate extracts (EAE, acetone extracts, ethanol extracts and aqueous extracts of Ginkgo biloba leaves (EGbs on lipid oxidation in a linoleic acid emulsion, fish flesh and fish feed and in hydroxyl radical (·OH-treated carp erythrocytes. The linoleic acid, fish flesh and fish feed were incubated with BHT, EQ and EGbs at 45°C for 8 d, respectively, except for the control group. The lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed was then measured by the ferric thiocyanate method or thiobarbituric acid method. The carp erythrocytes were treated with BHT, EQ or EGbs in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37°C for 6 h, except for the control group. Oxidative stress and apoptosis parameters in carp erythrocytes were then evaluated by the commercial kit. The results showed that BHT, EQ and EGbs inhibited lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed and ·OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis in carp erythrocytes. Furthermore, BHT, EQ and EGbs decreased the generation of reactive oxygen species (ROS, inhibited the oxidation of cellular components and restored the activities of enzymatic antioxidants in ·OH-treated carp erythrocytes. Of all examined EGbs, EAE showed the strongest effects. The effects of EAE on lipid oxidation in the linoleic acid emulsion and on superoxide anion and malonaldehyde levels, catalase activity and apoptosis in ·OH-treated carp erythrocytes were equivalent to or stronger than those of BHT. Moreover, these results indicated that the inhibition order of EGbs on the generation of ROS and oxidation of cellular components in fish erythrocytes approximately agreed with that for the food and feed materials tested above. And, the antioxidative and anti-apoptotic effects of EGbs were

  11. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    International Nuclear Information System (INIS)

    Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  12. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dae Sik, Kim [Los Alamos National Laboratory; Yu Seung, Kim [Los Alamos National Laboratory; Gilles, Robertson [CANADA-NRC; Guiver, Michael D [CANADA-NRC

    2009-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and P AEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (OS) of 1.0 had high ion exchange capacities (IEC{sub v})(wet) (volume-based, wet state) of 1.77 and 2.55 meq./cm3, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5 -51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the upper left-hand corner in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  13. Polydopamine-functionalized poly(ether ether ketone) tube for capillary electrophoresis-mass spectrometry.

    Science.gov (United States)

    Zhou, Wei; Zhang, Wenpeng; Liu, Yikun; Yu, Xinhong; Chen, Zilin

    2017-09-22

    Capillary electrophoresis-mass spectrometry (CE-MS) is a hyphenated technique that combines the advantages like low sample consumption, high separation efficiency, short analytical time in CE and high sensitivity, powerful molecular structure elucidation in MS. Polyimide-coated fused silica capillary has become the most dominant capillary for CE, but it suffers from swelling and aminolysis of polyimide coating when treated with organic solvents and alkaline buffer in the CE-MS interface in which the polyimide coating at the end of the capillary is exposed to the solution, and this phenomenon can result in current instability, irregular electrospray and clogging at outlet after prolonged use. In this work, poly(ether ether ketone) (PEEK) capillary was explored as separation capillary for CE-MS. The problems like swelling and aminolysis of polyimide coating were solved due to the high thermal and chemical stability of PEEK material. After modification with polydopamine, PEEK capillary (PD-PEEK) can generate adjustable electroosmotic flow and provide good separation selectivity. The zwitterion polymer of polydopamine can provide cathodic electroosmotic flow (EOF) at high pH value (pH ≥ 5) and anodic EOF at low pH value (pH ≤ 4), and the EOF mobility can also be adjusted by controlling the modification time of polydopamine. Good separation performance was obtained in the analysis for several classes of compounds including amino acids, phenols and plant hormones at rational EOF direction. Repeatability of the PD-PEEK capillary was studied, with relative standard deviations for intra-day, inter-day runs and between tubes less than 4.94%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Protective effect of kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes.

    Science.gov (United States)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-07-01

    Kombucha (KT), a fermented black tea (BT), is known to have many beneficial properties. In the present study, antioxidant property of KT has been investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity using murine hepatocytes. TBHP, a reactive oxygen species inducer, causes oxidative stress resulting in organ pathophysiology. Exposure to TBHP caused a reduction in cell viability, increased membrane leakage and disturbed the intra-cellular antioxidant machineries in hepatocytes. TBHP exposure disrupted mitochondrial membrane potential and induced apoptosis as evidenced by flow cytometric analyses. KT treatment, however, counteracted the changes in mitochondrial membrane potential and prevented apoptotic cell death of the hepatocytes. BT treatment also reverted TBHP induced hepatotoxicity, however KT was found to be more efficient. This may be due to the formation of antioxidant molecules like D-saccharic acid-1,4-lactone (DSL) during fermentation process and are absent in BT. Moreover, the radical scavenging activities of KT were found to be higher than BT. Results of the study showed that KT has the potential to ameliorate TBHP induced oxidative insult and cell death in murine hepatocytes more effectively than BT.

  15. γ-Glutamyl semialdehyde and 2-amino-adipic semialdehyde: biomarkers of oxidative damage to proteins

    DEFF Research Database (Denmark)

    Daneshvar, B.; Frandsen, H.; Autrup, Herman

    1997-01-01

    or Pro, while AAS is an oxidation product of Lys. When oxidative stress was induced in rats by treatments with t-butyl hydroperoxide or acrolein, rat plasma protein levels of GGS and AAS were found to be significantly higher compared with control rats. The AAS-content in serum albumin or in total plasma...

  16. Base-oxidant promoted metal-free N-demethylation of arylamines

    Indian Academy of Sciences (India)

    A metal-free oxidative N-demethylation of arylamines with triethylamine as a base and tert-butyl hydroperoxide (TBHP) as oxidant is reported in this paper. The reaction is general, practical, inexpensive, non-toxic, and the method followed is environmentally benign, with moderate to good yields.

  17. Epoxidation and oxidation reactions using 1, 4-butanediol ...

    Indian Academy of Sciences (India)

    1,4-Butanediol dimethacrylate (1,4-BDDMA) crosslinked polystyrene-supported -butyl hydroperoxide was employed in the epoxidation of olefins and oxidation of alcohols to carbonyl compounds. The reagent proved to be successful as a recyclable solid phase organic reagent with as much or more efficiency when ...

  18. Endoscopic application of n-butyl-2-cyanoacrylate on esophagojejunal anastomotic leak: a case report

    Directory of Open Access Journals (Sweden)

    Angelopoulos Stamatis

    2011-03-01

    Full Text Available Abstract Introduction This case report describes an esophagojejunal anastomotic leak following total gastrectomy for gastric cancer. The leak was treated successfully with endoscopic application of n-butyl-2-cyanoacrylate. This is the first case report on the endoscopic application of cyanoacrylate alone for the treatment of an anastomotic leak. Case presentation This report describes a case of a 68-year-old Caucasian man who underwent surgery for gastric cancer. He underwent total gastrectomy and esophagojejunal anastomosis with Roux-en-Y anastomosis plus transverse colectomy. An anastomotic leak was treated conservatively at first for a total of three weeks. However, the leak persisted; therefore, the decision was made to apply topical endoscopic n-butyl-2-cyanoacrylate. Conclusion The endoscopic application of n-butyl-2-cyanoacrylate alone can be used successfully to treat esophagojejunal anastomotic leakage.

  19. Synthesis and Biophysical Characterization of Chlorambucil Anticancer Ether Lipid Prodrugs

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Christensen, Mikkel Stochkendahl; Ruysschaert, Tristan

    2009-01-01

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability...... to form unilamellar liposomes (86-125 nm) and are hydrolyzed by phospholipase A2, resulting in chlorambucil release. Liposomal formulations of prodrug lipids displayed cytotoxicity toward HT-29, MT-3, and ES-2 cancer cell lines in the presence of phospholipase A2, with IC50 values in the 8-36 μM range....

  20. Proton-Ionizable Crown Ethers. A Short Review

    Science.gov (United States)

    1989-05-30

    Triazole’Subcyclic Unit 14. Proton-Ionizable Crown Ethers Containing Sulfonamide Groups 15. Miscellaneous Proton-Ionizable Crown Ethers 1. INTRODUCTION. ""Since...the diaza dinitrile crown. Subsequent hydrolysis produced the diacid 33 (Procedure E). 27 Monoaza-crowns 35-38 (Figure V, Table 5) were obtained by the...followed by hydrolysis of the cetidi to f the acid.3o Complextion by th~eam crownsJ hasJ boon extensively castudieon and transportat es of thos ecaions have

  1. Environmental analysis of higher brominated diphenyl ethers and decabromodiphenyl ethane.

    Science.gov (United States)

    Kierkegaard, Amelie; Sellström, Ulla; McLachlan, Michael S

    2009-01-16

    Methods for environmental analysis of higher brominated diphenyl ethers (PBDEs), in particular decabromodiphenyl ether (BDE209), and the recently discovered environmental contaminant decabromodiphenyl ethane (deBDethane) are reviewed. The extensive literature on analysis of BDE209 has identified several critical issues, including contamination of the sample, degradation of the analyte during sample preparation and GC analysis, and the selection of appropriate detection methods and surrogate standards. The limited experience with the analysis of deBDethane suggests that there are many commonalities with BDE209. The experience garnered from the analysis of BDE209 over the last 15 years will greatly facilitate progress in the analysis of deBDethane.

  2. Sulphonated biphenylated poly(aryl ether ketone)s for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, W.; Jiang, Z. [Alan G. MacDiarmid Institute, Jilin University, Changchun 130012 (China); Robertson, G.P.; Guiver, M.D. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Kim, Y.S. [Electronic and Electrochemical Materials and Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, B.

    2010-02-15

    New series of fully aromatic poly(ether ketone)s with a biphenyl pendant groups were synthesised. A direct comparison of sulphonation reaction among monophenylated poly(ether ether ketone) (Ph-PEEK), biphenylated poly(ether ether ketone) (BiPh-PEEK) and PEEK (Victrex) was thoroughly investigated. Several advantages of the pendant-phenyl poly(ether ketone)s compared with commercial PEEK were identified, including ready control over the site of sulphonation and degree of sulphonation (DS), and mild and rapid sulphonation. The basic membrane physical properties comprising of thermal and mechanical properties, dimensional stability and proton conductivity were studied. One new membrane, sulphonated biphenylated poly(ether ether ketone) (BiPh-SPEEKDK) having a good combination of membrane properties was fabricated into a membrane electrode assembly (MEA), and it showed excellent direct methanol fuel cell (DMFC) performance. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Percutaneous N-Butyl cyanoacrylate embolization of a pancreatic pseudoaneurysm after failed attempts of transcatheter embolization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ri Hyeon; Yoo, Roh Eul; Kim, Hyo Cheol [Seoul National University Medical Research Center, and Clinical Research Institute, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    One common complication after major pancreatic surgery is bleeding. Herein we describe a case of pancreatic pseudoaneurysm which developed after pylorous preserving pancreaticoduodenectomy for common bile duct cancer. Three attempts of transcatheter embolization failed since feeders to the pseudoaneurysm had unfavorable anatomy. Direct percutaneous N-butyl cyanoacrylate injection was performed under fluoroscopy-guidance and the pseudoaneurysm was successfully treated. Percutaneous fluoroscopy-guided direct N-butyl cyanoacrylate injection may be a useful alternative when selective transcatheter embolization fails or is technically challenging.

  4. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production.

    Science.gov (United States)

    Seo, Seung-Oh; Wang, Yi; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2017-01-01

    Spo0A is a master regulator that governs the metabolic shift of solventogenic Clostridium species such as Clostridium beijerinckii. Its disruption can thus potentially cause a significant alteration of cellular physiology as well as metabolic patterns. To investigate the specific effect of spo0A disruption in C. beijerinckii, a spo0A mutant of C. beijerinckii was characterized in this study. In a batch fermentation with pH control at 6.5, the spo0A mutant accumulated butyrate and butanol up to 8.96 g/L and 3.32 g/L, respectively from 60 g/L glucose. Noticing the unique phenotype of the spo0A mutant accumulating both butyrate and butanol at significant concentrations, we decided to use the spo0A mutant for the production of butyl butyrate that can be formed by the condensation of butyrate and butanol during the ABE fermentation in the presence of the enzyme lipase. Butyl butyrate is a value-added chemical that has numerous uses in the food and fragrance industry. Moreover, butyl butyrate as a biofuel is compatible with Jet A-1 aviation kerosene and used for biodiesel enrichment. In an initial trial of small-scale extractive batch fermentation using hexadecane as the extractant with supplementation of lipase CalB, the spo0A mutant was subjected to acid crash due to the butyrate accumulation, and thus produced only 98 mg/L butyl butyrate. To alleviate the butyrate toxicity, the biphasic medium was supplemented with 10 g/L CaCO 3 and 5 g/L butanol. The butyl butyrate production was then increased up to 2.73 g/L in the hexadecane layer. When continuous agitation was performed to enhance the esterification and extraction of butyl butyrate, 3.32 g/L butyl butyrate was obtained in the hexadecane layer. In this study, we successfully demonstrated the use of the C. beijerinckii spo0A mutant for the butyl butyrate production through the simultaneous ABE fermentation, condensation, and extraction. Biotechnol. Bioeng. 2017;114: 106-112. © 2016 Wiley Periodicals

  5. Interfacial oxidation of alpha-tocopherol and the surface properties of its oxidation products.

    Science.gov (United States)

    Patil, G S; Cornwell, D G

    1978-05-01

    dl-alpha-Tocopherol spread on an acidic subphase as a gaseous monolayer was oxidized slowly to a derivative that was identified by thin-layer chromatography as alpha-tocopherylquinone. The derivative generated the same II-A isotherm as alpha-tocopherylquinone. When the subphase contained gold chloride, alpha-tocopherol was oxidized rapidly and quantitatively to alpha-tocopherylquinone. dl-alpha-Tocopherol spread on a basic subphase as a gaseous monolayer was oxidized slowly to a mixture that contained alpha-tocopherol, a quinone, and a nonpolar derivative. The mixture generated a II-A isotherm with an inflection point below the equilibrium spreading pressure of either alpha-tocopherol or alpha-tocopherylquinone. When potassium ferricyanide was added to the alkaline subphase, alpha-tocopherol was oxidized rapidly to a mixture that contained both the nonpolar derivative (major product) and the quinone (minor product). The nonpolar derivative was isolated by thin-layer chromatography and identified as the spirodienone ether by ultraviolet, infrared, and chemical ionization mass spectra. The spirodienone ether had a low equilibrium spreading pressure that explained the inflection point in the II-A isotherm generated by alpha-tocopherol on an alkaline subphase. Surface area data showed that dl-alpha-tocopherol formed immiscible films with stearyl alcohol and miscible films with oleyl alcohol. II-A isotherms showed that alpha-tocopherol in both immiscible and miscible mixtures was oxidized rapidly on an alkaline potassium ferricyanide subphase to the spirodienone ether. Collapse pressure data showed that the spirodienone ether formed an immiscible film with stearyl alcohol and a miscible film with oleyl alcohol. Interfacial oxidation experiments showed that alpha-tocopherol is oxidized either to tocopherylquinone (acidic subphase) or to the spirodienone ether (alkaline subphase). The natural occurrence of both tocopherylquinone and the spirodienone ether suggests that

  6. Higher levels of ethyl paraben and butyl paraben in rat amniotic fluid than in maternal plasma after subcutaneous administration

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Taxvig, Camilla; Hass, Ulla

    2008-01-01

    were analyzed by liquid chromatography-tandem mass spectrometry. Markedly higher levels of ethyl paraben compared to butyl paraben were found in all fluids and tissues. Both ethyl paraben and butyl paraben in maternal plasma, livers, and whole-body tissues from fetus seemed to be saturated after dosing...

  7. Degradation of lignin β-aryl ether units in Arabidopsis thaliana expressing LigD, LigF and LigG from Sphingomonas paucimobilis SYK-6

    DEFF Research Database (Denmark)

    Mnich, Ewelina; Vanholme, Ruben; Oyarce, Paula

    2017-01-01

    Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility....... The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin inter-unit linkage, the β-aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce post......-lignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolic metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized β-aryl-ether units, showing lignin bond...

  8. Hydrocortisone release from tablets based on bioresorbable poly(ether-ester-urethanes

    Directory of Open Access Journals (Sweden)

    Luis Manuel Orozco-Castellanos

    2017-04-01

    Full Text Available Abstract Bioresorbable linear poly(ether-ester-urethanes with different hydrophilic characteristics were synthesized from triblock copolymers of poly(ε-caprolactone-poly(ethylene oxide-poly(ε-caprolactone (PCL-PEO as macrodiols, and L-lysine diisocyanate (LDI or hexamethylenediisocyanate (HDI were used as the required diisocyanates. Macrodiols were obtained by ring-opening polymerization (ROP of ε-caprolactone (CL. Polyurethanes were synthesized by the reaction of the triblock copolymers with LDI or HDI in solution using stannous 2-ethylhexanoate as catalyst. Polyurethane tablets were fabricated and investigated as prospective drug delivery systems. The effect of the PEO content on the polymers' performance as drug carriers was evaluated. It was found that water provoked more swelling and erosion of polymers with higher contents of PEO. The hydrocortisone release profiles were analyzed using the Ritger-Peppas approximation. An anomalous release behaviour (values of n higher than 0.5 was found for most of the analyzed samples.

  9. Chitin nanowhisker-supported sulfonated poly(ether sulfone) proton exchange for fuel cell applications.

    Science.gov (United States)

    Zhang, Chan; Zhuang, Xupin; Li, Xiaojie; Wang, Wei; Cheng, Bowen; Kang, Weimin; Cai, Zhanjun; Li, Mengqin

    2016-04-20

    To balance the relationship among proton conductivity and mechanic strength of sulfonated poly(ether sulfone) (SPES) membrane, chitin nanowhisker-supported nanocomposite membranes were prepared by incorporating whiskers into SPES. The as-prepared chitin whiskers were prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) mediated oxidation of α-chitin from crab shells. The structure and properties of the composite membranes were examined as proton exchange membrane (PEM). Results showed that chitin nanowhiskers were dispersed incompactly in the SPES matrix. Thermal stability, mechanical properties, water uptake and proton conductivity of the nanocomposite films were improved from those of the pure SPES film with increasing whisker content, which ascribed to strong interactions between whiskers and between SPES molecules and chitin whiskers via hydrogen bonding. These indicated that composition of filler and matrix got good properties and whisker-supported membranes are promising materials for PEM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Third phase formation in the extraction of Th(NO{sub 3}){sub 4} by Tri-sec-butyl phosphate. A comparison with Tri-n-butyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, Aditi; Suresh, A.; Sivaraman, N. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2017-06-01

    Earlier studies carried out in our laboratory indicated that Tri-sec-butyl phosphate (TsBP) is a potential extractant for U/Th separation. Also, the third phase formation tendency of TsBP is lower compared to its isomers, Tri-n-butyl-phosphate (TBP) and Tri-iso-butyl phosphate (TiBP). In this context, the extraction and third phase formation behaviour of 1.1 M solutions of TiBP and TsBP in n-dodecane in the extraction of Th(IV) from 1 M HNO{sub 3} at 303 K over a wide range of Th concentrations were investigated in the present study and the results are compared with the literature data on TBP system. Concentrations of Th(IV) and HNO{sub 3} loaded in the organic phase before third phase formation (biphasic region) as well as in third phase and diluent-rich phase after third phase formation (triphasic region) were measured as a function of equilibrium aqueous phase Th(IV) concentration. The density of loaded organic phase was also measured at various Th(IV) concentrations. The extraction profiles in the biphasic region indicated that extraction of Th(IV) by TBP is higher than that of TiBP which in turn is higher than that of TsBP. Extractant concentration in the diluent-rich phase and third phase was measured for the triphasic region.

  11. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  12. Global sensitivity analysis for model-based prediction of oxidative micropollutant transformation during drinking water treatment.

    Science.gov (United States)

    Neumann, Marc B; Gujer, Willi; von Gunten, Urs

    2009-03-01

    This study quantifies the uncertainty involved in predicting micropollutant oxidation during drinking water ozonation in a pilot plant reactor. The analysis is conducted for geosmin, methyl tert-butyl ether (MTBE), isopropylmethoxypyrazine (IPMP), bezafibrate, beta-cyclocitral and ciprofloxazin. These compounds are representative for a wide range of substances with second order rate constants between 0.1 and 1.9x10(4)M(-1)s(-1) for the reaction with ozone and between 2x10(9) and 8x10(9)M(-1)s(-1) for the reaction with OH-radicals. Uncertainty ranges are derived for second order rate constants, hydraulic parameters, flow- and ozone concentration data, and water characteristic parameters. The uncertain model factors are propagated via Monte Carlo simulation and the resulting probability distributions of the relative residual micropollutant concentrations are assessed. The importance of factors in determining model output variance is quantified using Extended Fourier Amplitude Sensitivity Testing (Extended-FAST). For substances that react slowly with ozone (MTBE, IPMP, geosmin) the water characteristic R(ct)-value (ratio of ozone- to OH-radical concentration) is the most influential factor explaining 80% of the output variance. In the case of bezafibrate the R(ct)-value and the second order rate constant for the reaction with ozone each contribute about 30% to the output variance. For beta-cyclocitral and ciprofloxazin (fast reacting with ozone) the second order rate constant for the reaction with ozone and the hydraulic model structure become the dominating sources of uncertainty.

  13. Quantifying Residues from Postharvest Propylene Oxide Fumigation of Almonds and Walnuts.

    Science.gov (United States)

    Jimenez, Leonel R; Hall, Wiley A; Rodriquez, Matthew S; Cooper, William J; Muhareb, Jeanette; Jones, Tom; Walse, Spencer S

    2015-01-01

    A novel analytical approach involving solvent extraction with methyl tert-butyl ether (MTBE) followed by GC was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO, propylene chlorohydrin (PCH) [1-chloropropan-2-ol (PCH-1) and 2-chloropropan-1-ol (PCH-2)], and propylene bromohydrin (PBH) [1-bromopropan-2-ol (PBH-1) and 2-bromopropan-1-ol (PBH-2)] was accomplished with a combination of electron impact ionization MS (EIMS), negative ion chemical ionization MS (NCIMS), and electron capture detection (ECD). Respective GC/EIMS LOQs for PPO, PCH-1, PCH-2, PBH-1, and PBH-2 in MTBE extracts were [ppm (μg/g nut)] 0.9, 2.1, 2.5, 30.3, and 50.0 for almonds and 0.8, 2.2, 2.02, 41.6, and 45.7 for walnuts. Relative to GC/EIMS, GC-ECD analyses resulted in no detection of PPO, similar detector responses for PCH isomers, and >100-fold more sensitive detection of PBH isomers. NCIMS did not enhance detection of PBH isomers relative to EIMS and was, respectively, approximately 20-, 5-, and 10-fold less sensitive to PPO, PCH-1, and PCH-2. MTBE extraction efficiencies were >90% for all analytes. The 10-fold concentration of MTBE extracts yielded recoveries of 85-105% for the PBH isomers and a concomitant decrease in LODs and LOQs across detector types. The recoveries of PCH isomers and PPO in the MTBE concentrate were relatively low (approximately 50 to 75%), which confound improvements in LODs and LOQs regardless of detector type.

  14. Tailor-made Molecular Cobalt Catalyst System for the Selective Transformation of Carbon Dioxide to Dialkoxymethane Ethers.

    Science.gov (United States)

    Schieweck, Benjamin G; Klankermayer, Jürgen

    2017-08-28

    Herein a non-precious transition-metal catalyst system for the selective synthesis of dialkoxymethane ethers from carbon dioxide and molecular hydrogen is presented. The development of a tailored catalyst system based on cobalt salts in combination with selected Triphos ligands and acidic co-catalysts enabled a synthetic pathway, avoiding the oxidation of methanol to attain the formaldehyde level of the central CH 2 unit. This unprecedented productivity based on the molecular cobalt catalyst is the first example of a non-precious transition-metal system for this transformation utilizing renewable carbon dioxide sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fluorescence Sensing Properties of Thiazolobenzo-crown Ether Incorporating Coumarin

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Helal, Aasif; Kim, Hong Seok

    2010-01-01

    A new coumarin-thiazolobenzo-crown ether based fluorogenic chemosensor BTC (1) was reported. The ion-selective binding properties of 1 with different alkali, alkaline earth metals and transitional metals were investigated in an ethanol- DMSO system. BTC (1) showed the highest binding constant toward Hg 2+ over Ag + , Pb 2+ and Cu 2+

  16. High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether

    Science.gov (United States)

    Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)

  17. Evaluation of polybrominated diphenyl ethers in sediment of Lagos ...

    African Journals Online (AJOL)

    These highly hazardous organic pollutants of concern are persistent, can bioaccumulate and biomagnify in aquatic organism especially fish, and there appears to be no clear strategy for managing them. In this study, levels of polybrominated diphenyl ethers were determined in sediments collected from Lagos lagoon with ...

  18. Chemical Composition and Cytotoxic Activities of Petroleum Ether ...

    African Journals Online (AJOL)

    Chemical Composition and Cytotoxic Activities of. Petroleum Ether Fruit Extract of Fruits of Brucea javanica. (Simarubaceae). Zhiwei Su1,2, Huijuan Huang3, Jinlian Li1,4, Yuehui Zhu1, Riming Huang1 and. Samuel X Qiu1*. 1Program for Natural Product Medicinal Chemistry and Drug Discovery, Key Laboratory of Plant ...

  19. Why do crown ethers activate enzymes in organic solvents?

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2002-01-01

    One of the major drawbacks of enzymes in nonaqueous solvents is that their activity is often dramatically low compared to that in water. This limitation can be largely overcome by crown ether treatment of enzymes. In this paper, we describe a number of carefully designed new experiments that have

  20. Evaluation of polybrominated diphenyl ethers in sediment of Lagos ...

    African Journals Online (AJOL)

    user

    environmental concerns. New organic pollutants especially polybrominated diphenyl ether (PBDEs) employed in electronic equipment and in some household items as flame retardants are now finding their way into the aquatic environment as components of waste discharge into the water body. These highly hazardous ...

  1. Bio-inspired ion selective crown-ether polymer membranes

    NARCIS (Netherlands)

    Tas, Sinem

    2016-01-01

    Development of unctional membranes that are capable of selectively recognizing and transporting ions have key importance for the recovery and separation of specific icons (e.d. K+, Li+, Na+) from multicomponent mixtures. In this thesis, new membrane materials based on crown ether-metal ion

  2. Dimethyl ether in diesel engines - progress and perspectives

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    2001-01-01

    A review of recent developments related to the use of dimethyl ether (DME) in engines is presented Research work discussed is in the areas of engine performance and emissions, fuel injection systems, spray and ignition delay, and detailed chemical kinetic modeling. DME's properties and safety...

  3. Binary mixtures of carbon dioxide and dimethyl ether as alternative ...

    African Journals Online (AJOL)

    Vapor-liquid equilibrium (VLE) data were predicted for the binary mixture of carbon dioxide (CO2) and dimethyl ether (DME) at ten temperatures ranging from 273.15 to 386.56 K and pressure upto 7.9 MPa to observe this mixture's potential of COP enhancement and capacity modulation as a working fluid in a refrigeration ...

  4. Diethyl Ether Production as a Substitute for Gasoline

    Directory of Open Access Journals (Sweden)

    Alviany Riza

    2018-01-01

    Full Text Available Diethyl ether is one of alternative fuel that could be used as a significant component of a blend or as a complete replacement for transportation fuel. The aim of this research is to produce diethyl ether through dehydration reaction of ethanol with fixed bed reactor using nanocrystalline γ-Al2O3 catalyst. Nanocrystalline γ-Al2O3 catalyst was synthesized by precipitation method using Al(NO33.9H2O as precursors and NH4OH as the precipitating agent. Dehydration reaction was performed at temperature range of 125 to 225°C. The result shows that synthesized γ-Al2O3 catalyst gave higher ethanol conversion and diethyl ether yield than that of commercial Al2O3 catalyst. The use of synthesized γ-Al2O3 catalyst could reach ethanol conversion as high as 94.71% and diethyl ether yield as high as 11,29%.

  5. Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters

    OpenAIRE

    Espartero Sánchez, José Luis; Madrona, Andrés; Pereira Cano, Gema; Mateos, Raquel; Rodríguez, Guillermo; Trujillo, Mariana; Fernández Bolaños, Juan

    2009-01-01

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  6. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Directory of Open Access Journals (Sweden)

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  7. Developmental toxicity of four glycol ethers applied cutaneously to rats

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, B.D.; Goad, P.T.; Burg, J.R.

    1984-08-01

    Previous NIOSH studies demonstrated the embryo- and fetotoxicity and teratogenicity of ethylene glycol monoethyl ether (EGEE) applied to the shaved skin of pregnant rats. In the present study ethylene glycol monoethyl ether acetate (EGEEA), ethylene glycol monobutyl ether (EGBE), and diethylene glycol monoethyl ether (diEGEE) were tested in the same experimental model, using distilled water as the negative control and EGEE as a positive control. Water or undiluted glycols were applied four times daily on days 7 to 16 of gestation to the shaved interscapular skin with an automatic pipetter. Volumes of EGEE (0.25 mL), EGEEA (0.35 mL), and diEGEE (0.35 mL) were approximately equimolar (2.6 mmole per treatment). EGBE at 0.35 mL four times daily (approximately 2.7 mmole per treatment) killed 10 of 11 treated rats, and was subsequently tested at 0.12 mL (0.9 mmole) per treatment. EGEE- and EGEEA-treated rats showed a reduction in body weight relative to water controls that was associated with completely resorbed litters and significantly fewer live fetuses per litter. Fetal body weights were also significantly reduced in those groups. Visceral malformations and skeletal variations were significantly increased in EGEE and EGEEA groups over the negative control group. No embryotoxic, genotoxic, or teratogenic effects were detected in the EGBE- or diEGEE-treated litters. 16 references, 4 tables.

  8. Developmental toxicity of four glycol ethers applied cutaneously to rats.

    Science.gov (United States)

    Hardin, B D; Goad, P T; Burg, J R

    1984-08-01

    Previous NIOSH studies demonstrated the embryo- and fetotoxicity and teratogenicity of ethylene glycol monoethyl ether (EGEE) applied to the shaved skin of pregnant rats. In the present study ethylene glycol monoethyl ether acetate (EGEEA), ethylene glycol monobutyl ether (EGBE), and diethylene glycol monoethyl ether (diEGEE) were tested in the same experimental model, using distilled water as the negative control and EGEE as a positive control. Water or undiluted glycols were applied four times daily on days 7 to 16 of gestation to the shaved interscapular skin with an automatic pipetter. Volumes of EGEE (0.25 mL), EGEEA (0.35 mL), and diEGEE (0.35 mL) were approximately equimolar (2.6 mmole per treatment). EGBE at 0.35 mL four times daily (approximately 2.7 mmole per treatment) killed 10 of 11 treated rats, and was subsequently tested at 0.12 mL (0.9 mmole) per treatment. EGEE- and EGEEA-treated rats showed a reduction in body weight relative to water controls that was associated with completely resorbed litters and significantly fewer live fetuses per litter. Fetal body weights were also significantly reduced in those groups. Visceral malformations and skeletal variations were significantly increased in EGEE and EGEEA groups over the negative control group. No embryotoxic, fetotoxic, or teratogenic effects were detected in the EGBE- or diEGEE-treated litters.

  9. Calix salophen crown ethers as receptors for neutral molecules

    NARCIS (Netherlands)

    Reichwein, A.M.; Reichwein, Arjen M.; Verboom, Willem; Harkema, Sybolt; Spek, Anthony L.; Reinhoudt, David

    1994-01-01

    The calix[4]arene based salophen crown ethers 7 and 8 were synthesized as lipophilic carriers for neutral molecules. The X-ray structures of the H2O, CH3OH and (CH3)2SO complexes of 8a have been determined.

  10. Synthesis and reduction of 2-nitroalkyl polysaccharide ethers

    NARCIS (Netherlands)

    Heeres, A.; Spoelma, F.F.; Doren, H.A. van; Gotlieb, K.F.; Bleeker, I.P.; Kellogg, R.M.

    2000-01-01

    Several 2-nitroalkyl polysaccharide ethers (from pullulan (1), guar (2), agarose (3), inulin (4), cellulose (5), Na-α-polyglucuronate (6) and hydroxyethyl cellulose (7)) were synthesized by reaction with 2-nitro-1-alkenes (2-nitro-1-propene and 2-nitro-1-butene) formed in situ from 2-nitroalkyl

  11. Synthesis and reduction of 2-nitroalkyl polysaccharide ethers

    NARCIS (Netherlands)

    Heeres, A; Spoelma, FF; van Doren, HA; Gotlieb, KF; Bleeker, IP; Kellogg, RM

    Several 2-nitroalkyl polysaccharide ethers (from pullulan (1), guar (2), agarose (3), inulin (4), cellulose (5), Na-alpha-polyglucuronate (6) and hydroxyethyl cellulose (7)) were synthesized by reaction with 2-nitro-1-alkenes (2-nitro-1-propene and 2-nitro-1-butene) formed in situ from 2-nitroalkyl

  12. Formation and Structural Analysis of Novel Dibornyl Ethers | Kaye ...

    African Journals Online (AJOL)

    One- and two-dimensional NMR spectroscopy has been used to establish the regio- and stereochemistry of novel dibornyl ethers, obtained by acid-catalysed condensation of camphor-derived a-hydroxybornanones. South African Journal of Chemistry Vol.55 2002: 111-118 ...

  13. Ether and interpretation of some physical phenomena and concepts

    International Nuclear Information System (INIS)

    Rzayev, S.G.

    2008-01-01

    On the basis of the concept of existence of an ether representation about time, space, matters and physical field are profound and also the essence of such phenomena, as corpuscular - wave dualism, change of time, scale and mass at movement body's is opened. The opportunity of transition from probability-statistical interpretation of the quantum phenomena to Laplace's determinism is shown

  14. A novel chlorinated diphenyl ether from Byrsonima microphylla (Malpighiaceae).

    Science.gov (United States)

    Rocha, João H C; Cardoso, Manuela P; David, Juceni P; David, Jorge M

    2006-11-01

    The isolation is described of an unusual chlorinated diphenyl ether named methyl 3,5-dichloro-6-(6-hydroxy-4-methoxy-3-methoxycarbonyl-2-methylphenoxy)-2-hydroxy-4-methylbenzoate that was obtained from the trunk of Byrsonima microphylla (Malpighiaceae). The structure was elucidated by a spectroscopic data analysis, and the presence of this compound in heartwood was confirmed by HPLC and HPTLC analyses.

  15. Comparative evaluation of direct stool smear and Formol-ether ...

    African Journals Online (AJOL)

    Cryptosporidium is a common cause of diarrhoea in patients with Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS). Unfortunately this pathogen is not often checked for in Microbiology laboratories because the formol-ether stool concentration method for identification of Cryptosporidium is ...

  16. Determination of bisphenol a diglycidyl ether content in foods from ...

    African Journals Online (AJOL)

    In order to avoid migration issues of chemical compounds from tin cans to foods, covering internal surface of the tin cans with epoxyphenolic and organosol resins is widespread. However, monomers like Bisphenol A Diglycidyl Ether (BADGE), number among the constituents of these resins capable of migrating to foods.

  17. Ether lipids of planktonic archae in the marine water column

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hoefs, M.J.L.; Schouten, S.; King, L.L.; Wakeham, S.G.; Leeuw, J.W. de

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize

  18. Nitrous oxide-induced slow and delta oscillations.

    Science.gov (United States)

    Pavone, Kara J; Akeju, Oluwaseun; Sampson, Aaron L; Ling, Kelly; Purdon, Patrick L; Brown, Emery N

    2016-01-01

    Switching from maintenance of general anesthesia with an ether anesthetic to maintenance with high-dose (concentration >50% and total gas flow rate >4 liters per minute) nitrous oxide is a common practice used to facilitate emergence from general anesthesia. The transition from the ether anesthetic to nitrous oxide is associated with a switch in the putative mechanisms and sites of anesthetic action. We investigated whether there is an electroencephalogram (EEG) marker of this transition. We retrospectively studied the ether anesthetic to nitrous oxide transition in 19 patients with EEG monitoring receiving general anesthesia using the ether anesthetic sevoflurane combined with oxygen and air. Following the transition to nitrous oxide, the alpha (8-12 Hz) oscillations associated with sevoflurane dissipated within 3-12 min (median 6 min) and were replaced by highly coherent large-amplitude slow-delta (0.1-4 Hz) oscillations that persisted for 2-12 min (median 3 min). Administration of high-dose nitrous oxide is associated with transient, large amplitude slow-delta oscillations. We postulate that these slow-delta oscillations may result from nitrous oxide-induced blockade of major excitatory inputs (NMDA glutamate projections) from the brainstem (parabrachial nucleus and medial pontine reticular formation) to the thalamus and cortex. This EEG signature of high-dose nitrous oxide may offer new insights into brain states during general anesthesia. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Analysis and development of methods for the recovery of degraded tri-n-butyl phosphate (TBP)-30%V/V-dodecane

    International Nuclear Information System (INIS)

    Dalston, C.O.

    1984-01-01

    Tri-n-butyl phosphate associated with an inert hydrocarbon, is the principal solvent used in reprocessing of nuclear irradiated fuel arising of pressurized water reactors, nowdays. The combined action of radiation and nitric acid cause severe damage to solvent, in reprocessing steps. Then, the recovery of solvent gets some importance, since it decreases the amount of the waste and improves the economy of the process. A comparative analysis of several methods of the recovery of this solvent was done, such as: alkaline washing, adsortion with resins, adsorption with aluminium oxide, adsorption by active carbon and adsorption by vermiculite. Some modifications of the analytical test of 95 Zr and a mathematical definition of two new parameters were done: the degradation grade and the eficiency of recovering. Through this modified test of 95 Zr, the residence time and the rate of degraded solvent: recuperator, were determined. After the laboratory tests had been performed, vermiculite, associated with active carbon, were employed in the treatment of 50 liters of tri-n-butyl phosphate (30%V/V)-dodecane, degraded by hydrolysis. Succeding analyses were made to check up the potentialities of these solids in the recovering of this solvent. (Author) [pt

  20. Unexpected complexes from meta-phenylene bis(tert-butyl nitroxides) and gadolinium(III) 1,1,1,5,5,5-hexafluoropentane-2,4-dionate

    Science.gov (United States)

    Sekine, Hiroyasu; Ishida, Takayuki

    2018-01-01

    Coordination reaction of the stable ground triplet biradical biphenyl-3,5-diyl bis(tert-butyl nitroxide) and [Gd(hfac)3(H2O)2] unexpectedly gave complexes containing a dimerized diamagnetic ligand via a [3+3] cycloaddition of the benzene rings (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate). To avoid such dimerization, we introduced a bulkier substituent into the ligand; namely, a new ground triplet biradical 5-mesityl-1,3-phenylene bis(tert-butyl nitroxide) was applied to this complexation scheme. However, an unexpected complex was again obtained in a different way, and the magnetic study revealed that the novel ligand involved was diamagnetic. The crystallographic analysis of the product clarified isomerization from the paramagnetic ligand to a diamagnetic N-tert-butylaminoquinone imine N-oxide ligand as a result of disproportionation from two open-shell nitroxide groups to closed-shell groups, an amine and a nitrone. The present paper reports the first structural evidence for a diamagnetic isomer of m-phenylene-bridged bisnitroxde compounds.

  1. Evaluation of DNA damage and antioxidant system induced by di-n-butyl phthalates exposure in earthworms (Eisenia fetida).

    Science.gov (United States)

    Du, Li; Li, Guangde; Liu, Mingming; Li, Yanqiang; Yin, Suzhen; Zhao, Jie; Zhang, Xinyi

    2015-05-01

    Di-n-butyl phthalates (DBP) are recognized as ubiquitous contaminants in soil and adversely impact the health of organisms. The effect of DBP on the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT), malondialdehyde (MDA) content and DNA damage were used as biomarkers to analyze the relationship between DNA damage and oxidative stress and to evaluate the genotoxic effect of DBP on earthworms (Eisenia fetida). DBP was added to artificial soil in the amounts of 0, 5, 10, 50 and 100mg per kg of soil. Earthworm tissues exposed to each treatment were collected on the 7th, 14th, 21st, and 28th day of the treatment. The results showed that SOD and CAT levels were significantly inhibited in the 100mgkg(-1) treatment group on day 28. MDA content in treatment groups was higher than in the control group throughout the exposure time, suggesting that DBP may lead to oxidative stress in cells. A dose-response relationship existed between DNA damage and total soil DBP levels. The comet assay showed that increasing concentrations of DBP resulted in a gradual increase in the OTM, Comet Tail Length and Tail DNA %. The degree of DNA damage was increased with increasing concentration of DBP. These results suggested that DBP induced serious oxidative damage on earthworms and induced the formation of reactive oxygen species (ROS) in earthworms. The excessive generation of ROS caused damage to vital macromolecules including lipids and DNA. DBP in the soils were responsible for the exerting genotoxic effects on earthworms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Ion-conductive polymer membranes containing 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Sikora, Antonín; Plíšková, M.; Mališ, J.; Mazúr, P.; Paidar, M.; Bouzek, K.

    2011-01-01

    Roč. 367, 1/2 (2011), s. 332-339 ISSN 0376-7388 R&D Projects: GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : 1-butyl-3-methylimidazolium trifluoromethanesulfonate * 1-ethylmethylimidazolium trifluoromethanesulfonate * polymer electrolyte membrane Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.850, year: 2011

  3. A Case of Successful Ablation of a Gastrophrenic Fistula with n-Butyl-2-Cyanoacrylate

    Directory of Open Access Journals (Sweden)

    Ashish Mahajan

    2008-01-01

    Full Text Available A 79-year-old woman with a fistula between a subphrenic abscess and the fundus of the stomach was successfully treated with n-Butyl-2-Cyanoacrylate. Conservative management had failed. Clinical presentation, treatment progress and imaging findings by computed tomography scan, ultrasound, gastroscopy and fluoroscopy are presented, along with a brief review of the relevant literature.

  4. Bilateral transrenal ureteral occlusion by means of n-butyl cyanoacrylate and AMPLATZER vascular plug

    Directory of Open Access Journals (Sweden)

    Rosario F Grasso

    2014-01-01

    Full Text Available AMPLATZER vascular plug is a widely used embolic agent. In the present paper, we present a case of an 86-year-old female patient who underwent bilateral ureteral occlusion by means of AMPLATZER vascular plug II coupled to n-butyl cyanoacrylate (NBCA because of recurring pyelonephritis following cystectomy with subsequent bilateral ureterosigmoidostomy (sec. Mainz type II.

  5. Voltammetric determination of butylated hydroxyanisol in biodiesel, mineral and synthetic oils using gold electrode

    Czech Academy of Sciences Publication Activity Database

    Tomášková, M.; Chýlková, J.; Jehlička, V.; Navrátil, Tomáš; Šelešovská, R.

    2013-01-01

    Roč. 19, č. 2013 (2013), s. 155-172 ISSN 1211-5541 R&D Projects: GA ČR(CZ) GAP208/12/1645 Grant - others:GA ČR(CZ) GP13-21409P Program:GP Institutional support: RVO:61388955 Keywords : voltammetry * butylated hydroxyanisol * gold electrode Subject RIV: CF - Physical ; Theoretical Chemistry

  6. (R-N-{2-tert-Butyl-2-[(R-tert-butylsulfonamido]ethylidene}-tert-butanesulfonamide

    Directory of Open Access Journals (Sweden)

    Cong-Bin Fan

    2008-10-01

    Full Text Available The title compound, C14H30N2O2S2, is the product of the monoaddition reaction of tert-butyl magnesium chloride with bis-[(R-N-tert-butanesulfinyl]ethanediimine. There are two almost identical molecules in the asymmetric unit, the molecular conformation of which is stabilized by an intramolecular N—H...N hydrogen bond.

  7. Vapour phase alkylation of ethylbenzene with t-butyl alcohol over ...

    Indian Academy of Sciences (India)

    --BVB, an unexpected product in this investigation, was produced by dehydrogenation of --BEB over alumina particles present in the channels of the molecular sieves. Adsorption of ethylbenzene on Brønsted acid sites and its subsequent reaction with very closely adsorbed -butyl cations proved to be necessary to ...

  8. Morphology and film formation of poly(butyl methacrylate)-polypyrrole core-shell latex particles

    NARCIS (Netherlands)

    Huijs, F; Lang, J

    Core-shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were

  9. Energetic Materials Center Report--Small-Scale Safety and Thermal Testing Evaluation of Butyl Nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center

    2013-04-26

    Butyl Nitrate (BN) was examined by Small-Scale Safety and Thermal (SSST) Testing techniques to determine its sensitivity to impact, friction, spark and thermal exposure simulating handling and storage conditions. Under the conditions tested, the BN exhibits thermal sensitivity above 150 °C, and does not exhibit sensitive to impact, friction or spark.

  10. Studies on ethylene-propylene-diene rubber modification by N-chlorothio-N-butyl-benzenesulfonamide

    NARCIS (Netherlands)

    Zhang, Hongmei; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.

    2009-01-01

    N-Chlorothiosulfonamides have been used to modify ethylene-propylene-diene rubber (EPDM) to enhance the compatibility of EPDM in, e.g., natural rubber (NR)/butadiene rubber (BR)/EPDM blends for ozone resistance. N-Chlorothio-N-butyl-benzenesulfonamide (CTBBS) was selected as a representative for

  11. and triorganotin(IV) complexes of 2-tert-butyl-4-methyl phenol

    Indian Academy of Sciences (India)

    TECS

    IV) phenoxides are known to ..... proton resonances may be ascribed to the deshield- ing of these protons due to drainage of electron den- ..... The effects of newly synthesized organotin(IV) 2- tert-butyl-4-methylphenoxides on the thermal deg-.

  12. A thermal lensing study of a photolysis of di- t-butyl peroxide

    Science.gov (United States)

    Fuke, K.; Hasegawa, A.; Ueda, M.; Itoh, M.

    1981-11-01

    A photolysis of di- t-butyl peroxide (BOOB) was studied by using a thermal lensing technique. This technique is found to be applicable to the determination Of the rate Constants of the decay of t-butoxy radical (BO ) and the hydrogen abstraction reaction.

  13. Di-tert-butyl 1-[2-hydroxy-3-(methylsulfanylpropyl]hydrazine-1,2-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Xiao-Guang Bai

    2014-08-01

    Full Text Available The title compound, C14H28N2O5S, was synthesized by the reaction of 2-[(methylsulfanylmethyl]oxirane with di-tert-butyl oxalate in hydrazine hydrate. In the crystal, molecules are linked by N—H...O and O—H...O hydrogen bonds into supramolecular chains propagating along the b-axis direction.

  14. 2-tert-Butyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indole

    Directory of Open Access Journals (Sweden)

    Janina Wobbe

    2011-09-01

    Full Text Available 2-tert-Butyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indole was synthesized by reaction of cycloheptanone and (4-tert-butylphenylhydrazine hydrochloride in the presence of sodium acetate and sulfuric acid in glacial acetic acid via Fischer indole synthesis.

  15. Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator

    NARCIS (Netherlands)

    Ilmi, Miftahul; Abduh, Muhammad Yusuf; Hommes, Arne; Winkelman, Jozef; Hidayat, C.; Heeres, Hero

    2018-01-01

    Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)– water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous

  16. A new efficient synthesis of isothiocyanates from amines using di-tert-butyl dicarbonate

    DEFF Research Database (Denmark)

    Munch, Henrik; Hansen, Jon S.; Pittelkow, Michael

    2008-01-01

    Alkyl and aryl amines are converted smoothly to the corresponding isothiocyanates via the dithiocarbamates in good to excellent yields using di-tert-butyl dicarbonate (Boc(2)O) and 1-3 mol% of DMAP or DABCO as catalyst. As most of the byproducts are volatile, the work-up involves simple evaporation...

  17. Iodine catalyzed and tertiary butyl ammonium bromide promoted p reparation of b enzoxazaphosphininyl phenylboronates

    Directory of Open Access Journals (Sweden)

    K. R. Kishore K. Reddy,

    2009-05-01

    Full Text Available Benzoxazaphosphininyl Phenylboronates were prepared by O-Phosphorylation of potassium salt ofphenylboronic acid with cyclic phosphoromonochloridates in the presence of stoichiometric amount of Iodineand catalytic amount of tertiary butyl ammonium bromide at 50-60 °C in dry toluene.

  18. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    International Nuclear Information System (INIS)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha

    2014-01-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion ® . • SPEEK exhibited one order lesser oxygen permeability than Nafion ® . • Nafion ® shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion ® . The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion ® , resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria

  19. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  20. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.