Sample records for butt welds

  1. The National Shipbuilding Research Program. Square Butt Pipe Welding

    National Research Council Canada - National Science Library

    Langhelm, J; Scheltens, James


    .... X-ray quality full penetration square butt weld joints were expected. Significant cost savings can be achieved through the reduction in pipe fitting and welding man-hours by utilization of a saw cut square butt joint design...

  2. Welding residual stress distributions for dissimilar metal nozzle butt welds in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Soo; Kim, Ju Hee; Bae, Hong Yeol; OH, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyungsoo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)


    In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

  3. Investigation and control of factors influencing resistance upset butt welding.

    NARCIS (Netherlands)

    Kerstens, N.F.H.


    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in


    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    In this paper the maximum allowable gap width in laser butt-welding is intensively studied. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.5-2.0 m/min, the laser po...

  5. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben


    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...

  6. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben


    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...

  7. Control of GMA Butt Joint Welding Based on Neural Networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben


    in the challenging field of butt joint welding with full penetration under stochastically changing boundary conditions, e.g. major gap width variations. GMAW experiments performed on mild-steel plates (3 mm of thickness), show that high quality welds with uniform back-bead geometry are achievable for gap width...

  8. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove


    In a number of systematic laboratory experiments the critical gap distance that results in sound beads in laser butt welding is sought identified. By grinding the edges of the sheets, a number of "reference" welds are made and compared to the sheets with shear cut edges. In the tests the gap...

  9. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan (United States)


    ... 564 (Third Review)] Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY... antidumping duty orders on stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan. SUMMARY: The... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead to...

  10. ANSYS Simulation of Residual Strains in Butt-welded Joints

    Directory of Open Access Journals (Sweden)

    A. Atroshenko


    Full Text Available The effect of thermal-strain cycle on residual strains in thin-walled circular seams of cylindrical shells using TIG butt welds was studied. Estimates were calculated using numerical modelling. The structure was made of corrosion-resistant austenitic steels.

  11. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    When butt-welding metal sheets with high power lasers the gap distance between the sheets determine the final quality of the seam. In a number of systematic laboratory experiments the critical gap distance that results in sound beads is identified. By grinding the edges of the sheets, a number...

  12. Upsetting Butt Edge Increases Weld-Joint Strength (United States)

    Vesco, D.


    Mechanical upsetting /a mode of cold forging/ of butt edges to be welded is accomplished by the use of hydraulic rams and pressure rollers. The mechanical upsetting increases the thickness of the material in the heat-affected zone and compensates for the lower specific strength per unit thickness common to this area.

  13. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben


    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...... squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...

  14. Equipment for Preparing Pipeline Position Butts for Welding

    Directory of Open Access Journals (Sweden)

    Lobanov L.M.


    Full Text Available The results of developments of the Ye.O.Paton Electric Welding Institute and its specialized departments on the designing national equipment models for preparation during the assembly the edges and butt ends of pipeline position butts with the diameter from 14 up to 159 mm, repair and modernization of power engineering objects, including the power units of nuclear and heat electric stations, in chemical and machine building, at enterprises of oil-gas complex and other branches of industry are presented.

  15. TIG-dressing of high strength butt welded connection - Part 2: physical testing and modelling

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.


    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging

  16. TIG-dressing of High Strength Butt Welded Connection. Part 2 : Physical Testing and Modelling

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.


    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging

  17. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1 : Weld Toe Geometry and Local Hardness

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.


    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  18. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.


    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  19. 75 FR 60814 - Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand (United States)


    ... COMMISSION Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand AGENCY... antidumping duty orders on carbon steel butt-weld pipe fittings from Brazil, China, Japan, Taiwan, and... antidumping duty orders on carbon steel butt-weld pipe fittings from Brazil, China, Japan, Taiwan, and...

  20. 76 FR 79651 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Preliminary Results of Antidumping Duty... (United States)


    ... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy: Preliminary Results of... antidumping duty order on stainless steel butt-weld pipe fittings (SSBW pipe fittings) from Italy. The review... results of the review to no later than December 15, 2011. See Stainless Steel Butt-Weld Pipe Fittings From...

  1. 77 FR 24459 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of Antidumping Duty... (United States)


    ... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of... stainless steel butt-weld pipe fittings (SSBW pipe fittings) from Italy.\\1\\ This review covers two... results remain unchanged from the preliminary results of review. \\1\\ See Stainless Steel Butt-Weld Pipe...

  2. 76 FR 4633 - Carbon Steel Butt-Weld Pipe Fittings From the People's Republic of China: Notice of Court... (United States)


    ... rate on carbon steel butt-weld pipe fittings used only in structural applications will be zero percent... International Trade Administration Carbon Steel Butt-Weld Pipe Fittings From the People's Republic of China... scope of the Order \\1\\ as excluding carbon steel butt-weld pipe fittings from the People's Republic of...

  3. Fatigue Properties of Welded Butt Joint and Base Metal of MB8 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ying-xia YU


    Full Text Available The fatigue properties of welded butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM200K2-070-1A fatigue testing machine for both welded butt joint and base metal specimens with the same size and shape. The fatigue fractures were observed and analyzed by a scanning electron microscope of 6360 LA type. The experimental results show that the fatigue performance of the welded butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (1×107 of base metal and welded butt joint is about 69.41 and 32.76 MPa, respectively. The conditional fatigue limit (1×107 of the welded butt joint is 47.2 % of that of base metal. The main reasons are that the welding can lead to stress concentration in the weld toe area, tensile welding residual stress in the welded joint, as well as grain coarsening in the welding seam. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, indicating the fracture type of the welded butt joint belongs to a brittle fracture.DOI:

  4. Experimental and Numerical Studies on Residual Stress in Wide Butt Welds

    Directory of Open Access Journals (Sweden)

    Yang Ding


    Full Text Available The presence of residual stress in steel members can significantly compromise the stiffness and fatigue life of steel structural components. This influence becomes more serious for the wide butt welds in the construction of large-sized steel members due to the different residual stress distribution from the normal size butt welds. This paper experimentally studied the residual stress in the wide butt welds through an 8-experiment test program. High residual stress was produced during the wide butt welding and this stress was observed to be even higher than the yield strength of the steel. Moreover, this residual stress in the steel plate was firstly compressive and then transferred into tensile stress with the increase in the distance away from the butt weld line. The magnitude of the residual stress increased with the increase in the width of the welding seams. This paper also developed a finite element model by SYSWELD to simulate the residual stress produced by the wide butt welding. The accuracy of the FE simulation was checked by the reported test results. In order to reduce the residual stress, the ultrasonic peening method was adopted. The analysis results indicated that ultrasonic peening method effectively reduced the residual stress caused by the wide butt welding during the construction.

  5. Gas metal arc welding of butt joint with varying gap width based on neural networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben


    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...

  6. Perbandingan Deformasi dan Tegangan Sisa pada Socket-Weld dan Butt-Weld Menggunakan Metode Elemen Hingga

    Directory of Open Access Journals (Sweden)

    Dimas Prasetyo Nugroho


    Full Text Available Penelitian ini bertujuan untuk mengetahui deformasi dan tegangan sisa pada sambungan pipa-flange dengan variasi sambungan socket-weld, butt-weld dan urutan pengelasan untuk material stainless steel. Penelitian dilakukan dengan pendekatan numerik. Validasi hasil dilakukan dengan dengan hasil percobaan yang dilakukan oleh Xiangyang Lu untuk validasi struktur dan percobaan S. Murugan untuk validasi termal. Hasil variasi sambungan dan urutan pengelasan yang telah dilakukan diperoleh kesimpulan bahwa pada sambungan socket-weld (urutan pengelasan loncat memiliki nilai tegangan sisa lebih besar dibandingkan sambungan butt-weld (urutan pengelasan loncat, sedangkan deformasi yang terjadi sambungan pada socket-weld (urutan pengelasan loncat memiliki nilai yang lebih kecil dibandingkan sambungan butt-weld (urutan pengelasan loncat.

  7. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong


    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  8. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan (United States)


    ... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead to... can be obtained by contacting the Commission's TDD terminal on 202-205-1810. Persons with mobility...

  9. The Effect of Welding-Pass Grouping on the Prediction Accuracy of Residual Stress in Multipass Butt Welding

    Directory of Open Access Journals (Sweden)

    Jeongung Park


    Full Text Available The residual stress analysis of a thick welded structure requires a lot of time and computer memory, which are different from those in thin welded structure analysis. This study investigated the effect of residual stress due to welding-pass grouping as a way to reduce the analysis time in multipass thick butt welding joint. For this purpose, the parametric analysis which changes the number of grouping passes was conducted in the multipass butt weld of a structure with a thickness of 25 mm and 70 mm. In addition, the residual stress by thermal elastoplastic FE analysis is compared with the results by the neutron diffraction method for verifying the reliability of the FE analysis. The welding sequence is considered in order to predict the residual stress more accurately when using welding-pass grouping method. The results of the welding-pass grouping model and half model occurred between the results of the left/right of the full model. If the total number of welding-pass grouping is less than half of that of welding pass, a large difference with real residual stress is found. Therefore, the total number of the welding-pass grouping should not be reduced to more than half.

  10. Gap Width Study and Fixture Design in Laser Butt-Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    This paper discusses some practical consideration for design of a mechanical fixture, which enables to accurately measure the width of a gap between two stainless steel workpieces and to steadfastly clamp the workpieces for butt-welding with a high power CO2 laser.With such a fixture, a series...... of butt-welding experiment is successfully carried out in order to find the maximum allowable gap width in laser butt-welding. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.......5-2.0 m/min, the laser power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely...

  11. 76 FR 5205 - Carbon Steel Butt-Weld Pipe Fittings from Brazil, China, Japan, Taiwan, and Thailand (United States)


    ... COMMISSION Carbon Steel Butt-Weld Pipe Fittings from Brazil, China, Japan, Taiwan, and Thailand AGENCY... concerning the antidumping duty orders on carbon steel butt-weld pipe fittings from Brazil, China, Japan..., China, Japan, Taiwan, and Thailand would be likely to lead to continuation or recurrence of material...

  12. 77 FR 10773 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Scheduling of... (United States)


    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Scheduling of... antidumping duty orders on stainless steel butt-weld pipe fittings from Italy, Malaysia, and the Philippines...

  13. Requirements to gap widths and clamping for CO2 laser butt welding

    DEFF Research Database (Denmark)

    Gong, Hui; Juhl, Thomas Winther


    In the experimental study of fixturing and gap width requirements a clamping device for laser butt welding of steel sheets has been developed and tested. It has fulfilled the work and made the gap width experiments possible.It has shown that the maximum allowable gap width to some extent is inver......In the experimental study of fixturing and gap width requirements a clamping device for laser butt welding of steel sheets has been developed and tested. It has fulfilled the work and made the gap width experiments possible.It has shown that the maximum allowable gap width to some extent....../min 2.6 kWThe quality level is measured according to ISO 13919-1. Qualities of the butt welds with the maximum gap width listed in the table are mainly grouped in level B (stringent). The maximum gap width should be chosen with respect to the application requirements....

  14. Microstructure and Failure Analysis of Flash Butt Welded HSLA 590CL Steel Joints in Wheel Rims (United States)

    Lu, Ping; Xu, Zhixin; Shu, Yang; Ma, Feng


    The aim of the present investigation was to evaluate the microstructures, mechanical properties and failure behavior of flash butt welded high strength low alloy 590CL steel joints. Acicular ferrite, Widmanstatten ferrite and granular bainite were observed in the weld. The micro-hardness values of the welded joints varied between 250 HV and 310 HV. The tensile strength of the welded joints met the strength standard of the wheel steel. The Charpy V-notch impact absorbing energy of the welded joints was higher than the base metal, and the impact fracture of the welded joints was composed of shearing and equiaxed dimples. The fracture mode of the wheel rim in the flaring and expanding process was brittle fracture and ductile fracture, respectively. A limited deviation was found in the terminal of the crack for the wheel in the flaring process. A transition from the weld to the Heat Affected Zone was observed for the wheel in the expanding process.

  15. 77 FR 39735 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines (United States)


    ...)] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines Determination On the basis..., Malaysia, and the Philippines would be likely to lead to continuation or recurrence of material injury to... Pipe Fittings from Italy, Malaysia, and the Philippines: Inv. Nos. 731-TA-865-867 (Second Review...

  16. 77 FR 14002 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Final Results... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the... AGENCY: Import Administration, International Trade Administration, Department of Commerce. SUMMARY: On...

  17. 77 FR 18266 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Revised... (United States)


    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Revised Schedule for the Subject Reviews AGENCY: United States International Trade Commission. ACTION: Notice...

  18. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding (United States)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio


    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  19. Joining of the AMC Composites Reinforced with Ti3Al Intermetallic Particles by Resistance Butt Welding

    Directory of Open Access Journals (Sweden)

    Adamiak M.


    Full Text Available The introduction of new reinforcing materials continues to be investigated to improve the final behaviour of AMCs as well as to avoid some drawbacks of using ceramics as reinforcement. The present work investigates the structure, properties and ability of joining aluminium EN-AW 6061 matrix composite materials reinforced with Ti3Al particles by resistance butt welding as well as composite materials produced by mechanical milling, powder metallurgy and hot extrusion techniques. Mechanically milled and extruded composites show finer and better distribution of reinforcement particles, which leads to better mechanical properties of the obtained products. Finer microstructure improves mechanical properties of obtained composites. The hardness increases twice in the case of mechanically milled composites also, a higher reinforcement content results in higher particle dispersion hardening, for 15 wt.% of intermetallics reinforcement concentration composites reach about 400 MPa UTS. Investigation results of joints show that best hardness and tensile properties of joints can be achieved by altering soft conditions of butt welding process e.g. current flow time 1.2 s and current 1400 A. To improve mechanical properties of butt welding joints age hardening techniques can also be used.

  20. Simulation and experimental study on distortion of butt and T-joints using WELD PLANNER

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Mohd Shahar; Manurung, Yupiter HP; Rahim, Mohammad Ridzwan Abdul Mohd; Redza, Ridhwan; Lidam, Robert Ngendang Ak.; Abas, Sunhaji Kiyai; Tham, Ghalib [Universiti Teknologi MARA, Kuala Lumpur (Malaysia); Haruman, Esa [Bakrie University, Jakarta (Indonesia); Chau, Chan Yin [ESI Group, Kuala Lumpur (Malaysia)


    This paper investigates the capability of linear thermal elastic numerical analysis to predict the welding distortion that occurs due to GMAW process. Distortion is considered as the major stumbling block that can adversely affect the dimensional accuracy and thus lead to expensive corrective work. Hence, forecast of distortion is crucially needed and ought to be determined in advance in order to minimize the negative effects, improve the quality of welded parts and finally to reduce the production costs. In this study, the welding deformation was simulated by using relatively new FEM software WELD PLANNER developed by ESI Group. This novel Welding Simulation Solution was employed to predict welding distortion induced in butt and T-joints with thickness of 4 mm. Low carbon steel material was used for the simulation and experimental study. A series of experiments using fully automated welding process were conducted for verification purpose to measure the distortion. By comparing between the simulation and experimental results, it was found out that this program code offered fast solution analysis time in estimating weld induced distortion within acceptable accuracy.

  1. Influence of Material Model on Prediction Accuracy of Welding Residual Stress in an Austenitic Stainless Steel Multi-pass Butt-Welded Joint (United States)

    Deng, Dean; Zhang, Chaohua; Pu, Xiaowei; Liang, Wei


    Both experimental method and numerical simulation technology were employed to investigate welding residual stress distribution in a SUS304 steel multi-pass butt-welded joint in the current study. The main objective is to clarify the influence of strain hardening model and the yield strength of weld metal on prediction accuracy of welding residual stress. In the experiment, a SUS304 steel butt-welded joint with 17 passes was fabricated, and the welding residual stresses on both the upper and bottom surfaces of the middle cross section were measured. Meanwhile, based on ABAQUS Code, an advanced computational approach considering different plastic models as well as annealing effect was developed to simulate welding residual stress. In the simulations, the perfect plastic model, the isotropic strain hardening model, the kinematic strain hardening model and the mixed isotropic-kinematic strain hardening model were employed to calculate the welding residual stress distributions in the multi-pass butt-welded joint. In all plastic models with the consideration of strain hardening, the annealing effect was also taken into account. In addition, the influence of the yield strength of weld metal on the simulation result of residual stress was also investigated numerically. The conclusions drawn by this work will be helpful in predicting welding residual stresses of austenitic stainless steel welded structures used in nuclear power plants.

  2. A Study on the Optimal Welding Condition for Root-Pass in Horizontal Butt-Joint TIG Welding

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Hun; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of)


    In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a 2nd regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.

  3. Modeling Stress-Strain State in Butt-Welded Joints after TIG Welding

    Directory of Open Access Journals (Sweden)

    V. Atroshenko


    Full Text Available In this paper mathematical model was developed for definition of thermal-welding cycle influence on welding deformations distribution in flat samples of austenitic steels after TIG welding and developed recommendations to reduce the welding deformation on o the machinery for welding with a copper backing.

  4. Tight butt joint weld detection based on optical flow and particle filtering of magneto-optical imaging (United States)

    Gao, Xiangdong; Mo, Ling; You, Deyong; Li, Zhuman


    It is a challenge to detect the weld position during tight butt joint laser welding in that the tight butt joint is non-grooved and invisible. This paper proposes a novel method for tight butt joint weld detection based on magneto optical imaging. Two pieces of weldment were magnetized by an electromagnet so that they could show magnetic N and S polarity respectively. When a polarized light was projected on a magneto-optical film, it would deflect due to magneto-optical effect. In accordance with magneto field distribution, an image formed on the visual sensor. A transition zone of magnetic field distribution which corresponded to the butt joint could be shown in a magneto optical image of weldment. Variation features of magnetic field distribution were obtained by using image sequence optical flow method, and a particle filter was integrated to make an accurate prediction on weld position. Weld position was obtained by calculating the maximum value of optical flow intensity in the vertical direction, and a particle filter was used to realize the accurate prediction on weld position. Experimental results showed that the proposed method was effective in detection of weld and realizing weld seam tracking.

  5. Butt Welding of 2205/X65 Bimetallic Sheet and Study on the Inhomogeneity of the Properties of the Welded Joint (United States)

    Gou, Ning-Nian; Zhang, Jian-Xun; Wang, Jian-Long; Bi, Zong-Yue


    The explosively welded 2205 duplex stainless steel/X65 pipe steel bimetallic sheets were butt jointed by multilayer and multi-pass welding (gas tungsten arc welding for the flyer and gas metal arc welding for the transition and parent layers of the bimetallic sheets). The microstructure and mechanical properties of the welded joint were investigated. The results showed that in the thickness direction, microstructure and mechanical properties of the welded joint exhibited obvious inhomogeneity. The microstructures of parent filler layers consisted of acicular ferrite, widmanstatten ferrite, and a small amount of blocky ferrite. The microstructure of the transition layer and flyer layer consisted of both austenite and ferrite structures; however, the transition layer of weld had a higher volume fraction of austenite. The results of the microhardness test showed that in both weld metal (WM) and heat-affected zone (HAZ) of the parent filler layers, the average hardness decreased with the increasing (from parent filler layer 1 to parent filler layer 3) welding heat input. The results of hardness test also indicated that the hardness of the WM and the HAZ for the flyer and transition layers was equivalent. The tensile test combined with Digital Specklegram Processing Technology demonstrated that the fracturing of the welded joint started at the HAZ of the flyer, and then the fracture grew toward the base metal of the parent flyer near the parent HAZ. The stratified impact test at -5 °C showed that the WM and HAZ of the flyer exhibited lower impact toughness, and the fracture mode was ductile and brittle mixed fracture.

  6. 3-D Characteristics of the Residual Stress in the Plate Butt Weld Between SA508 and F316L SS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Soo; Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Park, Jai Hak [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Man Won [GNEC, Daejeon (Korea, Republic of); Cho, Seon Yeong [KLES, Daejeon (Korea, Republic of)


    This study is performed to check the three dimensional characteristics of residual stress in the dissimilar metal weld. Although two dimensional analysis has been widely used for the assessment of weld residual stress, it has limitations to understand the stress distribution of the third direction. 3-D analysis was done to understand residual stress distribution of the welded plate. A simple butt-welded plate was considered to show the stress variation on all direction. A mock-up plate weldment was fabricated with SA-508 and F316L, which are widely used in nuclear power plants. The analysis results were validated with the measured values in the mock-up.

  7. Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyun; Ahn, Kyung Hyun [Seoul National University, Seoul (Korea, Republic of); Choi, Sunwoong; Oh, Ju Seok [Hannam University, Daejeon (Korea, Republic of)


    Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.

  8. 76 FR 19788 - Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand (United States)


    ... COMMISSION Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand... fittings from Brazil, China, Japan, Taiwan, and Thailand would be likely to lead to continuation or... Pipe Fittings from Brazil, China, Japan, Taiwan, and Thailand: Investigation Nos. 731-TA-308-310 and...

  9. 77 FR 42697 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Continuation... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the... Administration, Department of Commerce. SUMMARY: As a result of the determinations by the Department of Commerce...

  10. 76 FR 67473 - Stainless Steel Butt-Weld Pipe Fittings from Italy, Malaysia, and The Philippines; Institution of... (United States)


    ... Commerce. (2) The Subject Countries in these reviews are Italy, Malaysia, and the Philippines. (3) The... COMMISSION Stainless Steel Butt-Weld Pipe Fittings from Italy, Malaysia, and The Philippines; Institution of... From Italy, Malaysia, and the Philippines AGENCY: United States International Trade Commission. ACTION...

  11. A Study on the compensation margin on butt welding joint of Large Steel plates during Shipbuilding construction. (United States)

    Kim, J.; Jeong, H.; Ji, M.; Jeong, K.; Yun, C.; Lee, J.; Chung, H.


    This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ∼ 2 mm in 11t ∼ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000 mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.

  12. Influence of the phase morphology on the weldability of PLA/PBAT-blends by using butt-welding (United States)

    Goebel, L.; Bonten, C.


    The material development in the field of bioplastics is steadily increasing. It is important to examine the processability but the Investigation of further process steps is also very important. In this paper the weldability of bioplastics is discussed. Compounds of Polylactide (PLA) and Polybutyleneadipate-terephthalate (PBAT) are produced by a twin screw extruder with different mixing ratios. Tensile specimens are produced by injection moulding and the tensile tests are carried out. In order to verify the weldability, some tensile specimens are cut in halfes and butt welded. Afterwards a tensile test is performed with the welded samples and the results are compared with the values of the unwelded samples. For understanding the results, the morphology of the welds were examined and correlated. It has been found that blends with a mixing ratio of 50:50 have the lowest welding factor, because of the immiscibility of PLA and PBAT. Weld images show segregated areas that reduce the force transmission.

  13. Effect of Friction Stir Welding Parameters on the Mechanical and Microstructure Properties of the Al-Cu Butt Joint

    Directory of Open Access Journals (Sweden)

    Sare Celik


    Full Text Available Friction Stir Welding (FSW is a solid-state welding process used for welding similar and dissimilar materials. FSW is especially suitable to join sheet Al alloys, and this technique allows different material couples to be welded continuously. In this study, 1050 Al alloys and commercially pure Cu were produced at three different tool rotation speeds (630, 1330, 2440 rpm and three different tool traverse speeds (20, 30, 50 mm/min with four different tool position (0, 1, 1.5, 2 mm by friction stir welding. The influence of the welding parameters on the microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine the mechanical properties. The microstructures of the weld zone were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in an energy dispersed spectrometer (EDS. Intermetallic phases were detected based on the X-ray diffraction (XRD analysis results that evaluated the formation of phases in the weld zone. When the welding performance of the friction stir welded butt joints was evaluated, the maximum value obtained was 89.55% with a 1330 rpm tool rotational speed, 20 mm/min traverse speed and a 1 mm tool position configuration. The higher tensile strength is attributed to the dispersion strengthening of the fine Cu particles distributed over the Al material in the stir zone region.

  14. New Method for Mitigating the Tensile Residual Stresses induced on the Inside Wall of Butt Welded Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Kim, Kang Soo; Kim, Ki Baik; Kim, Kwang Mo; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Because dissimilar metal welding between ferritic steel and austenitic stainless steel needs not post weld heat treatment (PWHT), the effect of residual stresses induce during the welding should be investigated to assess the reliability of the weld process. It is known that the A82/182 weld metals, which are used for filler metals of the butt welding between the ferritic steel pipe and the stainless steel pipe, are susceptible to PWSCC (Primary Water Stress Corrosion Cracking) in PWR plant. The tensile residual stresses on the inside wall of the pipe, which are induced during the production welding, tend to be the dominant driving force for the PWSCC initiation and crack growth. In order to prevent the PWSCC the tensile residual stresses should be mitigated or removed. Two methods, weld overlay and mechanical stress improvement process (MSIP) have been considered proper tools to reduce the tensile residual stresses and to mitigate the PWSCC susceptibility of the dissimilar metal welded nozzles and pipes. In this research, new method for mitigating the tensile residual stresses induced on the inside wall of pipe during the production welding between the ferritic steel pipe and the stainless steel pipe was suggested. This new method may be able to apply to the SA508 /A182/SS316 nozzles of the pressure vessels in PWR to prevent PWSCC susceptibility as another substitute method.

  15. Effects of Pulsed Nd:YAG Laser Welding Parameters on Penetration and Microstructure Characterization of a DP1000 Steel Butt Joint

    National Research Council Canada - National Science Library

    Xin Xue; António B Pereira; Jose Amorim; Juan Liao


    Of particular importance and interest are the effects of pulsed Nd:YAG laser beam welding parameters on penetration and microstructure characterization of DP1000 butt joint, which is widely used in the automotive industry nowadays...

  16. Experimental characterization of fatigue strength in butt welded joint considering the geometry and the effect of cooling rate of the weld (United States)

    Arzola, Nelson; Hernández, Edgar


    In this work the experimental characterization of fatigue strength in butt welded joints considering the geometry and the post-weld cooling cycle was performed. ASTM A-36 structural steel was used as the base metal for the shielded metal arc welding process, with welding electrode E6013. Two experimental factors were established: weld bead geometry and the post-weld cooling rate. Two levels for each factor, the welding reinforcement (1 and 3 mm), and the rate of cooling, slow (quiet air) and fast (immersion in water) are evaluated respectively. For the uniaxial fatigue tests, 8 samples were selected for each treatment for a total of 32 specimens. The mechanical and fractomechanical properties of fusion zone, heat affected zone and base metal in relation to the analysis of failure mechanisms were analysed. The fatigue crack growth rates were estimated based on the counting of microstrations. Furthermore, experimental tests, such as uniaxial tension, microindentation hardness, Charpy impact and metallographic analysis, were made to know the influence of the experimental factors in the fatigue strength. On this research, about the 78.13% of the samples obtained a resistance higher than the recommended one by class FAT 100. The results showed that the geometry of the joint is the factor of greatest influence on fatigue strength for butt welded joints; the greater the weld reinforcement the lower the fatigue strength of the joint. Although it is also important to consider other geometric factors of less impact as it is the weld toe radius and the welding chord width.

  17. Fiber laser welding of austenitic steel and commercially pure copper butt joint (United States)

    Kuryntsev, S. V.; Morushkin, A. E.; Gilmutdinov, A. Kh.


    The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper-stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper-stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41-53 μm, microhardness was 128-170 HV0.01.

  18. Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry

    Directory of Open Access Journals (Sweden)

    Kyeongsuk Kim


    Full Text Available Most manufacturing processes, including welding, create residual stresses. Residual stresses can reduce material strength and cause fractures. For estimating the reliability and aging of a welded structure, residual stresses should be evaluated as precisely as possible. Optical techniques such as holographic interferometry, electronic speckle pattern interferometry (ESPI, Moire interferometry, and shearography are noncontact means of measuring residual stresses. Among optical techniques, ESPI is typically used as a nondestructive measurement technique of in-plane displacement, such as stress and strain, and out-of-plane displacement, such as vibration and bending. In this study, ESPI was used to measure the residual stress on the welded part of butt-welded American Society for Testing and Materials (ASTM A36 specimens with CO2 welding. Four types of specimens, base metal specimen (BSP, tensile specimen including welded part (TSP, compression specimen including welded part (CSP, and annealed tensile specimen including welded part (ATSP, were tested. BSP was used to obtain the elastic modulus of a base metal. TSP and CSP were used to compare residual stresses under tensile and compressive loading conditions. ATSP was used to confirm the effect of heat treatment. Residual stresses on the welded parts of specimens were obtained from the phase map images obtained by ESPI. The results confirmed that residual stresses of welded parts can be measured by ESPI.

  19. Study on influence of three kinds of stress on crack propagation in butt welds of spiral coil waterwall for ultra supercritical boiler (United States)

    Yan, Zhenrong; Si, Jun


    The spiral coil waterwall is the main pressure parts and the core functional components of Ultra Supercritical Boiler. In the process of operation, the spiral coil waterwall is under the combined action of welding residual stress, installation defects stress and working fluid stress, Cracks and crack propagation are easy to occur in butt welds with defects. In view of the early cracks in the butt welds of more T23 water cooled walls, in this paper, the influence of various stresses on the crack propagation in the butt welds of spiral coil waterwall was studied by numerical simulation. Firstly, the welding process of T23 water cooled wall tube was simulated, and the welding residual stress field was obtained. Then,on the basis, put the working medium load on the spiral coil waterwall, the supercoated stress distribution of the welding residual stress and the stress of the working medium is obtained. Considering the bending moment formed by stagger joint which is the most common installation defects, the stress field distribution of butt welds in T23 water-cooled wall tubes was obtained by applying bending moment on the basis of the stress field of the welding residual stress and the working medium stress. The results show that, the welding residual stress is small, the effect of T23 heat treatment after welding to improve the weld quality is not obvious; The working medium load plays a great role in the hoop stress of the water cooled wall tube, and promotes the cracks in the butt welds; The axial stress on the water cooled wall tube produced by the installation defect stress is obvious, the stagger joint, and other installation defects are the main reason of crack propagation of spiral coil waterwall. It is recommended that the control the bending moment resulting from the stagger joint not exceed 756.5 NM.

  20. Microstructures and Mechanical Properties of Dissimilar Al/Steel Butt Joints Produced by Autogenous Laser Keyhole Welding

    Directory of Open Access Journals (Sweden)

    Li Cui


    Full Text Available Dissimilar Al/steel butt joints of 6.0 mm thick plates have been achieved using fiber laser keyhole welding autogenously. The cross sections, interface microstructures, hardness and tensile properties of Al/steel butt joints obtained under different travel speeds and laser beam offsets were investigated. The phase morphology and thickness of the intermetallic compound (IMC layers at the interface were analyzed by scanning electronic microscopes (SEM using the energy-dispersive spectrometry (EDS and electron back-scattered diffraction (EBSD techniques. The results show that travel speeds and laser beam offsets are of considerable importance for the weld shape, morphology and thickness of IMC layers, and ultimate tensile strength (UTS of Al/steel butt joints. This proves that the IMC layers consist of Fe2Al5 phases and Fe4Al13 phases by EBSD phase mapping. Increasing laser beam offsets from 0.3 mm to 0.7 mm significantly decreases the quantity of Fe4Al13 phases and the thickness of Fe2Al5 layers at the interface. During tensile processing, the Fe2Al5 layer with the weakest bonding strength is the most brittle region at the interface. However, an intergranular fracture that occurred at Fe2Al5 layers leads to a relatively high UTS of Al/steel butt joints.

  1. Aluminum 6060-T6 friction stir welded butt joints: fatigue resistance with different tools and feed rates

    Energy Technology Data Exchange (ETDEWEB)

    Baragetti, S.; D' Urso, G. [University of Bergamo, Viale Marconi (Italy)


    The fatigue behavior of AA6060-T6 friction stir welded butt joints was investigated. The joints were produced by using both a standard and a threaded tri-flute cylindrical-tool with flat shoulder. The friction stir welding process was carried out using different feed rates. Preliminary tensile tests, micrograph analyses and hardness profile measurements across the welds were carried out. Welded and unwelded fatigue samples were tested under axial loading (R = 0.1) with upper limits of 10{sup 4} and 10{sup 5} cycles, using threaded and unthreaded (standard) tools at different feed rates. The best tensile and fatigue performance was obtained using the standard tool at low feed rate.

  2. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates (United States)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.


    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  3. Fatigue properties of 6061-T6 aluminum alloy butt joints processed by vacuum brazing and tungsten inert gas welding

    Directory of Open Access Journals (Sweden)

    Huei Lin


    Full Text Available Tungsten inert gas welding and vacuum brazing butt joints of Al–Mg–Si alloy 6061 in the artificially aged condition T6 were studied. Constant amplitude and variable amplitude fatigue loading tests were performed. The experimental S-N curves were compared with the fatigue design curves recommended by the International Institute of Welding, British Standard, and Eurocode 9. Two mean stress correction methods, Goodman and Gerber, were evaluated. In terms of the size effect on the fatigue life, this article proposed an innovational thickness correction method based on the ratio of the ultimate tensile strengths of specimens with different thickness. For vacuum brazing components, the tensile strength–based thickness correction method was better than the thickness correction methods recommended by the International Institute of Welding and Eurocode 9.

  4. Definition of the Mathematical Model Coefficients on the Weld Size of Butt Joint Without Edge Preparation (United States)

    Sidorov, Vladimir P.; Melzitdinova, Anna V.


    This paper represents the definition methods for thermal constants according to the data of the weld width under the normal-circular heat source. The method is based on isoline contouring of “effective power – temperature conductivity coefficient”. The definition of coefficients provides setting requirements to the precision of welding parameters support with the enough accuracy for an engineering practice.

  5. Neuro-Fuzzy Model for the Prediction and Classification of the Fused Zone Levels of Imperfections in Ti6Al4V Alloy Butt Weld

    Directory of Open Access Journals (Sweden)

    Giuseppe Casalino


    Full Text Available Weld imperfections are tolerable defects as stated from the international standard. Nevertheless they can produce a set of drawbacks like difficulty to assembly, reworking, limited fatigue life, and surface imperfections. In this paper Ti6Al4V titanium butt welds were produced by CO2 laser welding. The following tolerable defects were analysed: weld undercut, excess weld metal, excessive penetration, incomplete filled groove, root concavity, and lack of penetration. A neuro-fuzzy model for the prediction and classification of the defects in the fused zone was built up using the experimental data. Weld imperfections were connected to the welding parameters by feed forward neural networks. Then the imperfections were clustered using the C-means fuzzy clustering algorithm. The clusters were named after the ISO standard classification of the levels of imperfection for electron and laser beam welding of aluminium alloys and steels. Finally, a single-value metric was proposed for the assessment of the overall bead geometry quality. It combined an index for each defect and functioned according to the criterion “the-smallest-the-best.”

  6. Influence of Friction Stir Welding on Mechanical Properties of Butt Joints of AZ61 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Seung-Ju Sun


    Full Text Available In this study, the effect of heat input on the mechanical properties and fracture behaviors of AZ61 magnesium alloy joints has been studied. Magnesium alloy AZ61 plates with thickness of 5 mm were welded at different ratios of tool rotational speed to welding speed (ω/ν. The average ultimate tensile strength of all weld conditions satisfying a ω/ν ratio of 3 reached 100% of the strength of the base material. Fractures occurred at the interface between the thermomechanical affected zone at advancing side and the stir zone in all welded specimens. From the scanning electron microscope and electron backscatter diffraction analysis, it was determined that the interface between the thermomechanical affected zone and the stir zone, which is the region where the grain orientation changes, was the weakest part; the advancing side region was relatively weaker than the retreating side region because the grain orientation change occurred more dramatically in the advancing side region.

  7. The fatigue strength of base material and butt welds made of S690 and S1100

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.; Romeijn, A.; Bijlaard, F.S.K.


    Modern steel manufacturing techniques make it possible to produce steel with nominal strengths up to 1100 MPa (very high strength steels, VHSS). For the design of cyclic loaded slender VHSS structures, the fatigue strength of both base material and welded components should be known. In a VHSS

  8. Numerical study of electron beam welded butt joints with the GTN model (United States)

    Tu, Haoyun; Schmauder, Siegfried; Weber, Ulrich


    The fracture behavior of S355NL electron beam welded steel joints is investigated experimentally and numerically. The simulation of crack propagation in an electron beam welded steel joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. A parameter study of the GTN model was adopted which reveals the influence of parameters on the material behavior of notched round and compact tension specimens. Based on the combined method of metallographic investigations and numerical calibration, the GTN parameters were fixed. The same parameters were used to predict the ductile fracture of compact tension specimens with the initial crack located at different locations. Good match can be found between the numerical and experimental results in the form of force versus Crack Opening Displacement as well as fracture resistance curves.

  9. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel (United States)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.


    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  10. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail:


    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  11. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network. (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico


    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  12. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Luigi Alberto Ciro De Filippis


    Full Text Available A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable and the mechanical properties (output responses of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls. The simulation model was based on the adoption of the Artificial Neural Networks (ANNs characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  13. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico


    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration. PMID:28774035

  14. The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes (United States)

    Daavari, Morteza; Vanini, Seyed Ali Sadough


    Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.

  15. Application of new GMAW welding methods used in prefabrication of P92 (X10CrWMoVNb9-2) pipe butt welds

    Energy Technology Data Exchange (ETDEWEB)

    Urzynicok, Michal [Boiler Elements Factory ' ZELKOT' , Koszecin (Poland); Kwiecinski, Krzysztof; Slania, Jacek [Instytut Spawalnictwa, Gliwice (Poland); Szubryt, Marian [TUEV Nord, Katowice (Poland)


    Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using TIG process combined with MMA processes. Progress in MAG process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding technology. The investigation also involved microscopic and fractographic examinations. The results reveal that welding with new methods such as GMAW is by no means inferior to a currently applied MMA method yet the time of the process is shorter by 50%. The article present the world's first known positive results in welding of P92 grade steel using GMAW welding method. (orig.)

  16. Intermediate layer, microstructure and mechanical properties of aluminum alloy/stainless steel butt joint using laser-MIG hybrid welding-brazing method (United States)

    Zhu, Zongtao; Wan, Zhandong; Li, Yuanxing; Xue, Junyu; Hui, Chen


    Butt joining of AA6061 aluminum (Al) alloy and 304 stainless steel of 2-mm thickness was conducted using laser-MIG hybrid welding-brazing method with ER4043 filler metal. To promote the mechanical properties of the welding-brazing joints, two kinds of intermediate layers (Al-Si-Mg alloy and Ag-based alloy) are used to adjust the microstructures of the joints. The brazing interface and the tensile strength of the joints were characterized. The results showed that the brazing interface between Al alloy and stainless steel consisted of double layers of Fe2Al5 (near stainless steel) and Fe4Al13 intermetallic compounds (IMCs) with a total thickness of 3.7 μm, when using Al-Si-Mg alloy as the intermediate layer. The brazing interface of the joints using Ag-based alloy as intermediate layer also consists of double IMC layers, but the first layer near stainless steel was FeAl2 and the total thickness of these two IMC layers decreased to 3.1 μm. The tensile strength of the joints using Al-Si-Mg alloy as the intermediate layer was promoted to 149 MPa, which was 63 MPa higher than that of the joints using Al-Si-Mg alloy as the intermediate layer. The fractures occurred in the brazing interface between Al alloy and stainless steel.

  17. Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Edward J.; Anderson, Michael T.


    This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in §50.55a.

  18. Numerical Modelling Of Thermal And Structural Phenomena In Yb:YAG Laser Butt-Welded Steel Elements

    Directory of Open Access Journals (Sweden)

    Kubiak M.


    Full Text Available The numerical model of thermal and structural phenomena is developed for the analysis of Yb:YAG laser welding process with the motion of the liquid material in the welding pool taken into account. Temperature field and melted material velocity field in the fusion zone are obtained from the numerical solution of continuum mechanics equations using Chorin projection method and finite volume method. Phase transformations in solid state are analyzed during heating and cooling using classical models of the kinetics of phase transformations as well as CTA and CCT diagrams for welded steel. The interpolated heat source model is developed in order to reliably reflect the real distribution of Yb:YAG laser power obtained by experimental research on the laser beam profile.

  19. Improved Gas Metal Arc Welding Multi-Physics Process Model and Its Application to MIL A46100 Armor-Grade Steel Butt-welds (United States)


    decomposition reactions (and the corresponding volume fractions of the transformation products). Critical HAZ FZ Subcritical HAZ Unaffected Zone Fine Grain...corresponding strengthening mechanisms assembled and parameterized; 202 MMMS 10,2 D ow nl oa de d by C le m so n U ni ve rs ity A t 0 5: 24 1 3 O...validated using in-house welding and testing facilities. GMAW experimental facilities are currently being developed/ assembled in order to support our

  20. Welding. (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  1. Bombs, welded spatter, rockfall and cross-cutting breccia enclosed in avalanche deposits 300 m deep in a debris-filled vent (diatreme), Hopi Buttes, Arizona (United States)

    White, James; Lefebvre, Nathalie; Kjarsgaard, Bruce


    Diatremes are debris-filled vents that are surprisingly large relative to the small maar volcanoes that are their surface expression. Field characteristics of well-exposed diatreme deposits in the Hopi Buttes volcanic field, in Arizona, USA, challenge existing diatreme models, but may provide insight into the broader behavior of magma plumbing systems feeding small basaltic volcanoes. Standing Rocks East is a volcanic "neck" rising 35 m above the adjacent land surface. It was previously identified as the deposit of a "root zone", i.e. the fragmental zone at the base of a diatreme structure, based on the depth of exposure, textural diversity of its deposits, irregular dikes that terminate within it, and its small footprint relative to a nearby diatreme remnant. Painstaking mapping in a new study reveals: (1) most of the diatreme structure at the level of the "neck" is filled by a coarse country-rock breccia, which contains blocks sourced both from as far as 200 m below exposure, and as much as 300 m above it at the paleosurface; (2) a zone of juvenile-rich heterolithic lapilli tuff, with domainal map-view variations in deposit granulometry and componentry were emplaced after the country-rock breccia but before the rocks of the neck; (3) the neck comprises an architecturally complex range of deposits in which metres-wide subvertical sheets dominated by coherent basaltic rock cut, locally with surface wrinkes and clast imprints, and locally grade outward into, subhorizontally layered domains, up to several metres in extent, of breccia and welded spatter including large isolated boulders of mixed pyroclastic and host mud/mudrock that deformed adjacent spattery deposits. From these relationships we draw these conclusions. (A) The neck is not a root zone, because it is entirely enclosed within earlier deposits in the diatreme structure - it is not at the bottom of this diatreme structure, and hence represents an intra-diatreme fragmentation zone. (B) This fragmentation

  2. Influence of Filler Wire Feed Rate in Laser-Arc Hybrid Welding of T-butt Joint in Shipbuilding Steel with Different Optical Setups (United States)

    Unt, Anna; Poutiainen, Ilkka; Salminen, Antti

    In this paper, a study of laser-arc hybrid welding featuring three different process fibres was conducted to build knowledge about process behaviour and discuss potential benefits for improving the weld properties. The welding parameters affect the weld geometry considerably, as an example the increase in welding speed usually decreases the penetration and a larger beam diameter usually widens the weld. The laser hybrid welding system equipped with process fibres with 200, 300 and 600 μm core diameter were used to produce fillet welds. Shipbuilding steel AH36 plates with 8 mm thickness were welded with Hybrid-Laser-Arc-Welding (HLAW) in inversed T configuration, the effects of the filler wire feed rate and the beam positioning distance from the joint plane were investigated. Based on the metallographic cross-sections, the effect of process parameters on the joint geometry was studied. Joints with optimized properties (full penetration, soundness, smooth transition from bead to base material) were produced with 200 μm and 600 μm process fibres, while fiber with 300 μm core diameter produced welds with unacceptable levels of porosity.

  3. Studies regarding the use of a neuro-fuzzy mathematical model in order to determine the technological parameters of the polyethylene pipes butt welding process

    Directory of Open Access Journals (Sweden)

    Gligor Alina


    Full Text Available The paper analyzes the possibility to use a neuro-fuzzy type mathematical model, with the final goal of establishing the welding parameters for new types and dimensions of pipes and fittings. Anticipating the developing dynamic of polyethylene-made elements, especially pipes and fittings, starting from the current situation when already a wide range of pipes and fittings with different wall thicknesses and nominal working pressures is produced and commercialized, and taking into account also new development, it was considered necessary to find out the welding parameters for any new pipe type and dimension. The usage of existing welding equipment for new pipe dimensions is impossible without a preliminary set of welding parameters: pressure, temperature, time. Based on experimentally validated data for discreet values of the characteristic welding parameters, there was generated, using mathematical laws and functions, a new model that can estimate the necessary values of the welding parameters for any value within their variation range. As a result, the mathematical model created using neuro-fuzzy techniques allows the obtaining of the correct value for certain parameters (e.g. required welding pressure for any values of the input variables pipe diameter and pipe thickness.

  4. Acoustic-Emission Weld-Penetration Monitor (United States)

    Maram, J.; Collins, J.


    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  5. Initial Testing for the Recommendation of Improved Gas Metal Arc Welding Procedures for HY-80 Steel Plate Butt Joints at Norfolk Naval Shipyard (United States)


    Defense or the U.S. Government. IRB Protocol number ____N/A____. 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; made: 90%Ar-10%CO2 versus 95%Ar-5%CO2 shielding gases and their effect upon weld penetration, Miller brand versus Lincoln Electric brand power...determined that 90%Ar-10%CO2 is a more ideal gas mixture for this application and that Lincoln Electric brand machines have preferred interface by

  6. Residual stresses, defects and fatigue cycling in friction stir butt welds in 5383-H321 and 5083-H321 aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    James, M.N.; Bradley, G.R. [Mechanical and Marine Engineering, Univ. of Plymouth, Plymouth (United Kingdom); Hattingh, D.G. [Mechanical Engineering, PE Technikon, Port Elizabeth (South Africa); Hughes, D.J.; Webster, P.J. [FaME38, ILL-ESRF, Grenoble (France)


    This paper presents results from a substantial investigation of residual stresses and defects associated with single pass and double pass friction stir welds in 5083-H321 and 5383-H321 aluminium alloys. The residual stress part of the paper summarises data on their as-welded magnitude and plate-to-plate variation, together with their modification during applied bending fatigue loading corresponding to cyclic lives of 10{sup 5} and 10{sup 7} cycles. Results indicate fairly low initial peak tensile stresses both parallel with, and perpendicular to, the weld run. Peak tensile stresses occur just outside the tool shoulder with values typically in the range 0-30 MPa. Peak compressive stresses have much higher magnitudes (typically in the range -50 MPa to -140 MPa) and occur at distances of up to 40 mm from the weld centreline. Significant plate-to-plate variability in residual stress magnitudes exists, and fatigue cycling can raise peak tensile stresses by as much as a factor of four (to around 80 MPa). This has significant potential influence on fatigue life prediction. The paper also presents data on the occurrence of partial-fusion defects (PFD's or so-called 'kissing bonds' or 'onion-skin' defects) as a function of tool travel speed (in the range 80-200 mm/min), and their influence on fatigue life. Results indicate that PFD's can sometimes be associated with crack initiation, but that their major effect is more likely to appear when levels of plastic deformation are high, i.e. during relatively fast fatigue crack growth or during fast fracture. (orig.)

  7. Butt Joint Tool Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N N


    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  8. Welding. (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  9. 46 CFR 154.660 - Pipe welding. (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  10. Coyote Buttes Report (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is the result of a study commencing July 3, 1970 and ending August 20 1970. The study area was the Coyote Buttes Field just east of refuge headquarters....



    Dhananjay Kumar*, Dharamvir mangal


    The effect of welding process on the distortion with 304L stainless steel 12thk weld joints made by TIG (tungsten inert gas) and SMAW (Shielded metal arc welding) welding process involving different type joint configuration have been studied. The joint configurations employed were double V-groove edge preparation for double side SMAW welding and square – butt preparation for double side TIG welding. All weld joints passed by radiographic. Distortion measurements were carried out using height ...


    African Journals Online (AJOL)

    Effect of post- weld heat treatment on the microstructure and mechanical properties of arc welded medium carbon steel was investigated. Medium carbon steel samples were butt- welded by using the shielded metal arc welding technique and, thereafter, heat treated by annealing, normalising and quench hardening in ...

  13. Interview with Gavin Butt

    DEFF Research Database (Denmark)

    Hasse Jørgensen, Stina; Alexandra Sofie, Jönsson


    We have interviewed Gavin Butt about his research interest in the cross-field between performance and performativity in the visual arts: queer theory, queer cultures and their histories, post-second world war U.S. art, contemporary art and critical theory.......We have interviewed Gavin Butt about his research interest in the cross-field between performance and performativity in the visual arts: queer theory, queer cultures and their histories, post-second world war U.S. art, contemporary art and critical theory....

  14. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  15. adil wahid butt

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. ADIL WAHID BUTT. Articles written in Pramana – Journal of Physics. Volume 88 Issue 3 March 2017 pp 52 Research Article. Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube · NOREEN SHER AKBAR ADIL WAHID BUTT ...

  16. Thermal Stresses in Welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær


    Studies of the transient temperature fields and the hereby induced deformations and stressses in a butt-welded mild steel plate modelledrespectively in 2D plane stress state (as well as plane strain state) and in full 3D have been done. The model has been implemented in the generalpurpose FE...

  17. A study of processes for welding pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Weston, J. (ed.)


    A review was made of exisiting and potential processes for welding pipelines: fusion welding (arc, electron beam, laser, thermit) and forge welding (friction, flash, magnetically impelled arc butt, upset butt, explosive, shielded active gas, gas pressure). Consideration of J-lay operations gave indications that were reflections of the status of the processes in terms of normal land and offshore S-lay operation: forge welding processes, although having promise require considerable development; fusion welding processes offer several possibilities (mechanized GMA welding likely to be used in 1991-2); laser welding requires development in all pipeline areas: a production machine for electron beam welding will involve high costs. Nondestructive testing techniques are also reviewed. Demand for faster quality assessment is being addressed by speeding radiographic film processing and through the development of real time radiography and automatic ultrasonic testing. Conclusions on most likely future process developments are: SMAW with cellulosic electrodes is best for tie-ins, short pip runs; SMAW continues to be important for small-diameter lines, although mechanized GMA could be used, along with mechanical joining, MIAB, radial fraction, and flash butt; mechanized GMA welding is likely to predominate for large diameter lines and probably will be used for the first J-lay line (other techniques could be used too); and welding of piping for station facilities involves both shop welding of sub-assemblies and on-site welding of pipe and sub-assemblies to each other (site welding uses both SMAW and GMAW). Figs, tabs.

  18. Thermal treatment of dissimilar steels' welded joints (United States)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.


    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  19. The Development of a Composite Consumable Insert for Submerged ARC Welding

    National Research Council Canada - National Science Library


    .... When the submerged arc process was utilized to weld the butt joint in large flat plate structures, the repositioning of the plate for welding of the reverse side was a costly time consuming procedure...

  20. Welding technology for rails. Rail no setsugo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M.; Karimine, K. (Nippon Steel Corp., Tokyo (Japan)); Uchino, K.; Sugino, K. (Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works); Ueyama, K. (JR Railway Technical Research Inst., Tokyo (Japan))


    The rail joining technology is indispensable for making long welded rails. Flush butt welding, gas welding, enclosed arc welding, and thermit welding are used properly as the welding methods. A method for improving the joint reliability by controlling the residual stress distribution of welded joint is investigated to prepare high carbon component weld metal similar to the rail. Problems with each of the welding methods and the newly developed technology to solve the problems are outlined. Composition of the coating is improved also, and a high C system welding rod is developed which has satisfactory weldability. High performance and high efficient new enclosed arc welding technology not available by now is developed which utilizes high carbon welding metal as a new EA welding work technology, and put to practical use. As a result of this study, useful guides are obtained for the establishment of satisfactory thermit welding technology. 17 refs., 16 figs., 1 tab.

  1. Welding of Aluminum Alloys to Steels: An Overview (United States)


    UNCLASSIFIED 7 UNCLASSIFIED 2.1. Fusion welding methods 2.1.1. Gas metal arc (MIG) welding and tungsten inert gas ( TIG ) welding techniques...UNCLASSIFIED 8 UNCLASSIFIED Fig.3. (a) Schematic of the butt TIG welding for joining the aluminum to steel and (b) formation of the cracks at the...dissimilar metals TIG welding -brazing of aluminum alloy to stainless steel, Materials Science and Engineering A 509 (2009) 31-40. [28] S.B. Lin, J.L. Song

  2. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Egland, Keith; Ludewig, Howard


    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  3. Experimental study on the effect of welding speed and tool pin ...

    African Journals Online (AJOL)


    The fixturing prevents the plates from spreading apart or lifting during welding. The welding tool, consisting of a shank, shoulder ... point, a lateral force is applied in the direction of welding (travel direction) and the tool is forcibly traversed along the butt line until it reaches the end of the weld. Alternately, the plates could be ...

  4. Vision of the Arc for Quality Documentation and for Closed Loop Control of the Welding Process

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Kristiansen, Ewa; Jensen, Casper Houmann


    For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt-joint with......For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt...

  5. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems (United States)

    Henon, B. K.


    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  6. Influencia de la cantidad de O2 adicionado al CO2 en el gas de protección sobre la microestructura del metal depositado en uniones soldadas de bordes rectos en aceros de bajo contenido de carbono con el proceso GMAW Influence of O2 content, added to CO2 in the shielding gas, on the microstructure of deposited metal in butt welded joint with straight edges, in low carbon steels using GMAW process

    Directory of Open Access Journals (Sweden)

    Eduardo Díaz-Cedré


    Full Text Available La presencia de ferrita acicular (FA en la microestructura del cordón de soldadura, dentro de determinado rango de valores, eleva considerablemente la tenacidad de las uniones soldadas. Es por ello, que el presente trabajo trata sobre un estudio que relaciona la cantidad de ferrita acicular en el cordón en función del contenido de oxígeno presente en la mezcla activa CO2+O2, durante la realización de uniones soldadas de bordes rectos en aceros de bajo carbono con el proceso con electrodo fusible y protección gaseosa (GMAW en condiciones invariables de parámetros de proceso (corriente de soldadura, voltaje de arco, velocidad de soldadura, longitud libre y flujo de gas protector. Como resultado del trabajo se estableció la relación gráfica existente entre la ferrita acicular y el contenido de oxígeno en la mezcla.The presence of acicular ferrite (AF in the microstructure of weld bead, in a specified range of values, increase considerably the toughness of welded joints. The present paper, for that reason, study the relationship between the acicular ferrite quantity in the deposited metal and the oxygen present in the active gas mixture of CO2+O2, during the execution of butt welded joints with straight edges, in low carbon steels with consumable electrode and gas protection (GMAW in invariable conditions of process parameters (welding current, arc voltage, welding speed, electrode extension, and gas flow. The graphic relation between the acicular ferrite and the oxygen content was established, as result of the research work.

  7. Microstructural Evolution in Friction Stir Welding of Ti-5111 (United States)


    3-72 Figure 78. Stir zone bottom wormhole defect within 12.7mm Ti-5111 FSW. The defect extends...given in Figure 8. Wormhole defects were found in welds with high travel speed and high spindle speed. Weld development led to optimized parameters of...Notes BJ-1 A Butt 190-210 3.5 10 Wormhole BJ-2 A Butt 180-200 3.5 14.5 Wormhole BJ-3 A Butt 170-150 3.5 12.5 Wormhole ; void free @150rpm BJ-4 A

  8. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding (United States)

    Astarita, A.; Squillace, A.; Nele, L.


    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  9. Laser welding of polypropylene using two different sources (United States)

    Mandolfino, Chiara; Brabazon, Dermot; McCarthy, Éanna; Lertora, Enrico; Gambaro, Carla; Ahad, Inam Ul


    In this paper, laser weldability of neutral polypropylene has been investigated using fibre and carbon dioxide lasers. A design of experiment (DoE) was conducted in order to establish the influence of the main working parameters on the welding strength of the two types of laser. The welded samples were characterized by carrying out visual and microscopic inspection for the welding morphology and cross-section, and by distinguishing the tensile strength. The resulting weld quality was investigated by means of optical microscopy at weld cross-sections. The tensile strength of butt-welded materials was measured and compared to that of a corresponding bulk material.

  10. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)


    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  11. Finite element analysis for three dimensional welding processes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Wan; Cho, Young Sam; Kim, Hyun Gyu; Choi, Kang Hyouk; Im, Se Young [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)


    We propose an implicit numerical implementation for the Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure. We apply generalized trapezoidal rule to integrate the equations and determine the consistent tangent moduli. The implementation may be used with updated Lagrangian formulation. We test a simple butt-welding process to compare with SYSWELD and discuss the accuracy.

  12. Electron beam welding of iridium heat source capsules (United States)

    Mustaleski, Thomas M.; Yearwood, J. Cecil; Burgan, Clyde E.; Green, L. A.


    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed.

  13. Microstructure and Mechanical Properties of the Butt Joint in High Density Polyethylene Pipe

    Directory of Open Access Journals (Sweden)

    Pashupati Pokharel


    Full Text Available The microstructure and mechanical properties of the butt joint in high density polyethylene (HDPE pipes were evaluated by preparing the joints with increasing the cooling time from 10 s to 70 s before pressure created for fusion of the pipes. Here, cold fusion flaws in HDPE butt joint were created with increasing the cooling time around 70 s caused by the close molecular contact followed by insufficient interdiffusion of chain segments back and forth across the wetted interface. The tensile failure mechanism of the welded pipes at different fusion time was projected based on the tensile test of dog-bone shaped, fully notched bar type as well as round U-notched specimens. The mechanical properties of the joints at different fusion time were correlated with the corresponding fracture surface morphology. The weld seam as well as tensile fracture surfaces were etched using strong oxidizing agents. The crystallinity of surface etched weld zone by potassium permanganate based etchant was found higher than unetched sample due to the higher susceptibility of amorphous phase of polyethylene with oxidizing agent. The U-notched tensile test of butt welded HDPE pipe and surface etching of the weldments provided clear delineation about the joint quality.

  14. Numerical Simulation of Duplex Steel Multipass Welding

    Directory of Open Access Journals (Sweden)

    Giętka T.


    Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.

  15. Fine tuning of dwelling time in friction stir welding for preventing material overheating, weld tensile strength increase and weld nugget size decrease

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.


    Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds

  16. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Feng, Zhili [ORNL


    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  17. Friction stir welding (FSW of aluminium foam sandwich panels

    Directory of Open Access Journals (Sweden)

    M. Bušić


    Full Text Available The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and flexural strength for three-point bending test have been determined for samples taken from the welded joints. Results have confirmed anticipated effects of independent variables.

  18. Characterization of 2.25Cr1Mo welded ferritic steel plate by using diffractometric and ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy); Albertini, G.; Ceretti, M.; Rustichelli, F. [Ancona Univ. (Italy). Ist. di Fisica Medica; Castelnuovo, A.; Depero, L. [Univ. degli studi, Brescia.Fac. di ingegneria, dip. di ingegneria meccanica (Italy); Giamboni, S.; Gori, M. [Centro Elettrotecnico Sperimentale Italiano (CESI), Milan (Italy)


    Four different techniques (X-ray and neutron diffraction, ultrasonic birefringence and incremental hole drilling method) were applied for evaluating residual stress in a butt-welded ferritic steel palte. Measurements were carried out both before and after welding. Effects of post-welding heat treatment is also considered. A comparison between results obtained by using four different techniques is done.

  19. On crack propagation in the welded polyolefin pipes with and without the presence of weld beads

    Czech Academy of Sciences Publication Activity Database

    Mikula, Jakub; Hutař, Pavel; Nezbedová, E.; Lach, R.; Arbeiter, F.; Ševčík, Martin; Pinter, G.; Grellmann, W.; Náhlík, Luboš


    Roč. 87, DEC (2015), s. 95-104 ISSN 0264-1275 R&D Projects: GA ČR(CZ) GAP108/12/1560; GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Slow crack growth * Butt weld * Lifetime estimation * Polyolefin pipes * Weld bead Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.997, year: 2015

  20. The influence of plate thickness on the welding residual stresses from submerged arc welding in offshore steel structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen


    to an improved design, which consequently may be included in future norms and standards. Submerged Arc Welding (SAW) was used to make a fully penetrated butt weld in 10 mm and 40 mm thick steel plates with the same welding parameters as used in the production procedures. The base material is thermomechanical hot......Welding-induced residual tensile stresses and distortion have become a major concern in relation to the structural integrity of welded structures within the offshore wind industry. The stresses have a negative impact on the integrity of the welded joint, as they promote distortion, reduce fatigue...... life, and attribute to the corrosion cracking and brittle fracture in the weld components. This study investigates the influence of plate thickness on the welding-induced residual stresses. The residual stresses are investigated through experiments and in accordance with existing production procedures...

  1. Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding (United States)

    Mrna, Libor; Hornik, Petr

    Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.

  2. Optimization of process parameters during vibratory welding technique using Taguchi's analysis


    Singh, Pravin Kumar; Patel, D.; Prasad,S.B.


    With an aim to improve the mechanical properties of a weld joint, a new concept of vibratory setup has been designed which is capable to stir the molten weld pool before it solidifies during shielded metal arc welding (SMAW) operation. Mechanical vibration having resonance frequency of 300 Hz and amplitude of 0.5 mm was transferred to the molten weld pool of 6 mm thick mild steel butt-welded joints during the welding operation. The experimental work was conducted at various ranges of frequenc...

  3. Tailoring defect free fusion welds based on phenomenological modeling (United States)

    Kumar, Amit

    In the last few decades, phenomenological models of fusion welding have provided important understanding and information about the welding processes and welded materials. For example, numerical calculations of heat transfer and fluid flow in welding have enabled accurate quantitative calculations of thermal cycles and fusion zone geometry in fusion welding. In many simple systems such as gas tungsten arc (GTA) butt welding, the computed thermal cycles have been used to quantitatively understand weld metal phase compositions, grain sizes and inclusion structure. However, fabrication of defect free welds with prescribed attributes based on scientific principles still remains to be achieved. In addition, higher fabrication speeds are often limited by the occurrence of humping defects which are characterized by periodic bead-like appearance. Furthermore, phenomenological models have not been applied to tailor welds with given attributes. The goal of the present work is to apply the principles of heat transfer and fluid flow to attain defects free welds with prescribed attributes. Since there are a large number of process variables in welding, the desired weld attributes such as the weld geometry and structure are commonly produced by empirically adjusting the welding variables. However, this approach does not always produce optimum welds and inappropriate choice of variables can lead to poor welds. The existing transport phenomena based models of welding can only predict weld characteristics for a given set of input welding variables. What is needed, and not currently available, is a capability to systematically determine multiple paths to tailor weld geometry and assess robustness of each individual solution to achieve safe, defect free welds. Therefore, these heat transfer and fluid flow based models are restructured to predict the welding conditions to achieve the defect free welds with desired attributes. Systematic tailoring of weld attributes based on scientific


    Energy Technology Data Exchange (ETDEWEB)

    R. Longwell; J. Keifer; S. Goodin


    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  5. R. Freeman Butts: Educational Foundations and Educational Diplomacy (United States)

    Allison, John


    R. Freeman Butts was an American historian and philosopher of education who died in March 2010. This paper will investigate Butts' various roles and writings and ask the question: why is Butts important to the contemporary generation of teacher educators and teachers? This paper will argue that the breadth of Butts' work builds connections and is…

  6. Nondestructive Inspection of Longitudinal Stiffener Butt Welds in Commercial Vessels. (United States)


    COMMITTEE Maritime Transportation Research Board National Academy of Sciences - National Research Council The Ship Research Committee has technical... Materiale , -. :ation, & Inspection Advisory Group prepared the project prospectus, evaluated the proposals for this project, provided the liaison


    Directory of Open Access Journals (Sweden)

    Sarjito Jokosisworo


    Full Text Available The influence of mechanic disposition, is one of the factor influence ship strength. This influence can be test by mechanical test in welding butt joint. The result test database analysis can be conclude that very helpful to increase safety and quality butt joint. With steel specification C= 0,15%, Si= 0,24%, Mn= 0,88%,P= 0,018%, S= 0,034%. This material give a 90, 110, 125 ampere with SMAW AC electrode diameter 3,2 mm x 350 mm with V root and 600 angle In the fabrication of mild steel products, components or equipment, manufacturers employ welding as the principal joining method. Mild steel are weldable materials, and a welded joint can provide optimum corrosion resistance, strength, and fabrication economy. However, designers should recognize that any metal, including stainless steels, may undergo certain changes during welding. It is necessary, therefore, to exercise a reasonable degree of care during welding to minimize or prevent any deleterious effects that may occur, and to preserve the same degree of corrosion resistance and strength in weld zone that is an intheren part of the base metal

  8. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R


    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  9. Inline Repair of Blowouts During Laser Welding (United States)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, M.; Madsen, O.

    In a current laser welding production process of components of stainless steel, a butt joint configuration may lead to failures in the form of blowouts, causing an unacceptable welding quality. A study to improve the laser welding process was performed with the aim of solving the problem by designing a suitable pattern of multiple small laser spots rather than a single spot in the process zone. The blowouts in the process are provoked by introducing small amounts of zinc powder in the butt joint. When the laser heats up the zinc, this rapidly evaporates and expands, leaving the melt pool to be blown away locally. Multiple spot pattern designs are tested. Spot patterns are produced by applying diffractive optics to a beam from a single mode fiber laser. Results from welding while applying spot patterns both with and without trailing spots are presented. Data showing the power ratio between a trailing spot and two main spots as a function of spot distance is also presented. The results of the study show that applying multiple spots in the welding process may improve the process stability when welding materials with small impurities in the form of zinc particles.

  10. Electric pulse treatment of welded joint of aluminum alloy


    A.A. Mitiaev; I. P. Volchok; Yu. L. Nadezhdin; V.A. Sokirko; I. A. Vakulenko


    Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of arc welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc weldi...

  11. Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe (United States)

    Obeid, Obeid; Alfano, Giulio; Bahai, Hamid


    The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.

  12. Integrated FEM-DBEM simulation of crack propagation in AA2024-T3 FSW butt joints considering manufacturing effects

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Carlone, P.; Citarella, R.


    This paper deals with a numerical and experimental investigation on the influence of residual stresses on fatigue crack growth in AA2024-T3 friction stir welded butt joints. An integrated FEM-DBEM procedure for the simulation of crack propagation is proposed and discussed. A numerical FEM model...... of the welding process of precipitation hardenable AA2024-T3 aluminum alloy is employed to infer the process induced residual stress field. The reliability of the FEM simulations with respect to the induced residual stresses is assessed comparing numerical outcomes with experimental data obtained by means...

  13. An analysis of the joints’ properties of thick-grained steel welded by the SAW and ESW methods

    Directory of Open Access Journals (Sweden)

    Krawczyk R.


    Full Text Available The article presents an analysis of properties of welded joints of thick-grained steel of P460NH type used more and more often in the modern constructions. A process of examining a technology of welding has been carried out on the thick-walled butt joints of sheet metal by two methods of welding namely submerged arc welding (SAW - 121 and electroslag (ESW - 722. The article deals with a topic of optimizing a process of welding thick-walled welded joints of fine-grained steel due to their mechanical properties and efficiency.

  14. Application of Taguchi approach to optimize friction stir welding parameters of polyethylene

    Directory of Open Access Journals (Sweden)

    Bejaoui S.


    Full Text Available This paper presents experimental and numerical results of butt friction stir welding of high density polyethylene. The FSW designed tool insulates the welded samples and preserves the heat gained from friction thus avoiding the appearance of blisters and splits after welding. The experimental tests, conducted according to combinations of process factors such as rotation speed, welding speed, pin diameter and hold time at beginning welding, were carried out according the Taguchi orthogonal table L27 in randomized way. Temperatures in the joint during the welding operation and flow stresses from the tensile tests of welded samples were measured and variances were analyzed. Identified models were used to simulate, by finite elements, the tensile tests performed on specimens having a weld cordon in their active area. The results show coherence between the numerical predictions and experimental observations in different cases of weld cordon mechanical behaviour.

  15. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar


    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  16. Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy (United States)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola


    In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.

  17. The Analysis of Welding Conditions Under the Flux of Double-Sides Joints Without Edge Preparation (United States)

    Sidorov, Vladimir P.


    This paper represents the results of analysis for automatic welding conditions under the flux of double-sides butt joint without edge preparation. As the process characteristics, a specific energy of welding, joint formation rate, average weld width, fusion rate of base metal and other parameters were used. It is determined an optimal joint rate of about 1 cm2/s, that can be used to calculate welding conditions. The paper founds the use of linear dependence between specific energy of welding and cross-section area of base metal’s fusion.

  18. Welding Curriculum. (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  19. Automatic weld torch guidance control system (United States)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.


    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  20. Practical method for diffusion welding of steel plate in air. (United States)

    Moore, T. J.; Holko, K. H.


    Description of a simple and easily applied method of diffusion welding steel plate in air which does not require a vacuum furnace or hot press. The novel feature of the proposed welding method is that diffusion welds are made in air with deadweight loading. In addition, the use of an autogenous (self-generated) surface-cleaning principle (termed 'auto-vac cleaning') to reduce the effects of surface oxides that normally hinder diffusion welding is examined. A series of nine butt joints were diffusion welded in thick sections of AISI 1020 steel plate. Diffusion welds were attempted at three welding temperatures (1200, 1090, and 980 C) using a deadweight pressure of 34,500 N/sq m (5 psi) and a two-hour hold time at temperature. Auto-vac cleaning operations prior to welding were also studied for the same three temperatures. Results indicate that sound welds were produced at the two higher temperatures when the joints were previously fusion seal welded completely around the periphery. Also, auto-vac cleaning at 1200 C for 2-1/2 hours prior to diffusion welding was highly beneficial, particularly when subsequent welding was accomplished at 1090 C.

  1. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)


    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.



    Marcos Theodoro Muller; Rafael Rodolfo de Melo; Diego Martins Stangerlin


    The term "wood welding" designates what can be defined as "welding of wood surfaces". This new process, that it provides the joint of wood pieces without the use of adhesives or any other additional material, provokes growing interest in the academic environment, although it is still in laboratorial state. Linear friction welding induced bymechanical vibration yields welded joints of flat wood surfaces. The phenomenon of the welding occurs in less time than 10 seconds, with the temperature in...

  3. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy. (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo


    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  4. Advanced Welding Concepts (United States)

    Ding, Robert J.


    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  5. 77 FR 12106 - Kapka Butte Sno-Park Construction (United States)


    ... Federal Highway Administration Kapka Butte Sno-Park Construction AGENCY: Western Federal Lands Highway... designation as Joint-Lead Agency for the Kapka Butte Sno-Park Construction project. SUMMARY: The FHWA is... pursuant to 23 U.S.C. 139(c)(1) for the Kapka Butte Sno-Park Construction project which is being studied in...

  6. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.


    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  7. Welding Technician (United States)

    Smith, Ken


    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  8. Welding of a corrosion-resistant composite material based on VT14 titanium alloy obtained using an electron beam emitted into the atmosphere (United States)

    Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.


    The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.

  9. An Analysis of the Joints’ Properties of Fine-Grained Steel Welded by the MAG and SAW Methods

    Directory of Open Access Journals (Sweden)

    Krawczyk R.


    Full Text Available The article presents an analysis of properties of welded joints of fine-grained steel of P460NH type used more and more often in the modern constructions. A process of examining a technology of welding has been carried out on the thick-walled butt joints of sheet metal by two methods of welding namely MAG – 135 and SAW – 121. The article deals with a topic of optimizing a process of welding thick-walled welded joints of fine-grained steel due to their mechanicalproperties and efficiency.

  10. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L. [Argonne National Laboratory, IL (United States)


    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO{sub 2} laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m{sup 3}/s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to {approx}180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000{degrees}C for 1 h in vacuum reduced the DBTT to <{minus}25{degrees}C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study.

  11. Comparison of CO2 and Nd:YAG laser welding of grade 250 maraging steel, IIW doc. II-A-173-06

    CSIR Research Space (South Africa)

    Van Rooyen, C


    Full Text Available Laser welding trials were performed on thin walled cylindrical Grade 250 maraging steel tubes to determine its suitability as a joining process for rocket motor casings. Bead-on-plate (BOP) and butt welded samples were produced utilising a 5 k...

  12. Survey of welding processes. (United States)


    The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....

  13. Resistance welding of aluminium diecasting; Widerstandspressschweissen von Aluminiumdruckguss

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.; Grobelin, K. [Hess Engineering AG, Frauenfeld (Switzerland)


    Components consist of die cast with aluminium are used in many machines and vehicles. From economical point of view die casting is a very interesting method to produce moulded components. Aluminium belongs to the most important materials utilized for lightweight construction. It is possible to produce components having high strengths as well as high elongation at rupture by applying new die cast alloys. Since about ten years ago, one is able to weld aluminium die cast successfully. This has become possible because of the improvement of the die cast process after extensive research work. Now components contain only less than the prior common quantities of gas. Resistance suits very well for assembling components consisting of aluminium die cast. High strength is in existence. The porosity has less influence on quality of weld while applying the method of butt welding than applying that one of fusion welding because of occurrences of pressure during butt welding. From the economical view of point, the methods are very suitable for series manufacturing because of the short execution time. Moreover it is an advantage that knowledge gathered for resistance welding of aluminium wrought materials can be mostly applied to aluminium die cast. (orig.)

  14. Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques (United States)

    Chatterjee, Anjan; Kumar, Santosh; Tewari, Raghvendra; Dey, Gautam Kumar


    In the current study, welding of TZM (molybdenum-based alloy) plates in square-butt configuration was carried out using electron beam and laser-GTAW hybrid power sources. Microstructures of weld joint containing three zones—parent metal, heat-affected zone, and fusion zone—were clearly identified when examined through optical and scanning electron microscopy. The weld joints were found to be sound with very wide fusion and heat-affected zones. The microstructure of the fusion zone was coarse-grained. as-solidified microstructure, while the microstructure of heat-affected zone was the recrystallized microstructure with reduction in grain size as distance from the fusion line increased. Microhardness profile using Vickers hardness tester was obtained across the weld region, and the tensile properties of the weld joints were evaluated by performing room temperature tensile test and fracture was examined using scanning electron microscope. Joint coefficient of the weld joints were ~40 to 45 pct of that of the parent metals with nonmeasurable tensile ductility with predominantly transgranular mode of fracture indicating weakness along the grain boundary. Detailed orientation imaging and transmission electron microscopy were carried out to understand the most dominating factor in introducing weld joint brittleness.

  15. Soldadura (Welding). Spanish Translations for Welding. (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  16. WELDING TORCH (United States)

    Correy, T.B.


    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  17. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de [Instituto Politecnico do Rio e Janeiro (IPRJ), Nova Friburgo, RJ (Brazil); Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C., E-mail: [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)


    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  18. Optimization of process parameters during vibratory welding technique using Taguchi's analysis

    Directory of Open Access Journals (Sweden)

    Pravin Kumar Singh


    Full Text Available With an aim to improve the mechanical properties of a weld joint, a new concept of vibratory setup has been designed which is capable to stir the molten weld pool before it solidifies during shielded metal arc welding (SMAW operation. Mechanical vibration having resonance frequency of 300 Hz and amplitude of 0.5 mm was transferred to the molten weld pool of 6 mm thick mild steel butt-welded joints during the welding operation. The experimental work was conducted at various ranges of frequencies, welding current and welding speed. Taguchi's analysis technique has been applied to optimize the process parameters; the response values for analysis are yield strength and micro-hardness. The test results showed that with the application of the vibratory treatment the values of hardness and tensile properties increased. The auxiliary vibrations induced into the weld pool resulted in increased micro-hardness of the weld metal which indicates the orientation of the crystal and refinement of grains took place. This study shows that vibration applied into the weld pool can be successfully improved the mechanical properties of welded joints. Thus this research attempt provided an alternative welding technique for grain refinement of weldments.

  19. The algorithm of verification of welding process for plastic pipes (United States)

    Rzasinski, R.


    The study analyzes the process of butt welding of PE pipes in terms of proper selection of connector parameters. The process was oriented to the elements performed as a series of types of pipes. Polymeric materials commonly referred to as polymers or plastics, synthetic materials are produced from oil products in the polyreaction compounds of low molecular weight, called monomers. During the polyreactions monomers combine to build a macromolecule material monomer named with the prefix poly polypropylene, polyethylene or polyurethane, creating particles in solid state on the order of 0,2 to 0,4 mm. Finished products from polymers of virtually any shape and size are obtained by compression molding, injection molding, extrusion, laminating, centrifugal casting, etc. Weld can only be a thermoplastic that softens at an elevated temperature, and thus can be connected via a clamp. Depending on the source and method of supplying heat include the following welding processes: welding contact, radiant welding, friction welding, dielectric welding, ultrasonic welding. The analysis will be welding contact. In connection with the development of new generation of polyethylene, and the production of pipes with increasing dimensions (diameter, wall thickness) is important to select the correct process.

  20. Plasma arc welding weld imaging (United States)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)


    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  1. 75 FR 14243 - Pipeline Safety: Girth Weld Quality Issues Due to Improper Transitioning, Misalignment, and... (United States)


    ... Engineers (ASME) B31.8, Gas Transmission and Distribution Piping Systems or ASME B31.4 Pipeline... appurtenance. ASME B31.4, Figure 434.8.6(a)-(2), Acceptable Butt Welded Joint Design for Unequal Wall Thickness and ASME B31.8, Figure I5, Acceptable Design for Unequal Wall Thickness, give guidance for wall...

  2. WELDING METHOD (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.


    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  3. Micro friction stir welding of copper electrical contacts

    Directory of Open Access Journals (Sweden)

    D. Klobčar


    Full Text Available The paper presents an analysis of micro friction stir welding (μFSW of electrolytic tough pitch copper (CuETP in a lap and butt joint. Experimental plan was done in order to investigate the influence of tool design and welding parameters on the formation of defect free joints. The experiments were done using universal milling machine where the tool rotation speed varied between 600 and 1 900 rpm, welding speed between 14 and 93 mm/min and tilt angle between 3° and 5°. From the welds samples for analysis of microstructure and samples for tensile tests were prepared. The grain size in the nugget zone was greatly reduced compared to the base metal and the joint tensile strength exceeded the strength of the base metal.

  4. Surface Hardness of Friction Stir Welded AA6063 Pipe

    Directory of Open Access Journals (Sweden)

    Ismail Azman


    Full Text Available The external surface hardness of friction stir welded aluminum alloy 6063 pipe joint was investigated in this paper. The 89mm of outside diameter pipe with 5mm of wall thickness was used as test pipe piece for this experiment on closed butt joint configuration by utilising Bridgeport 2216 CNC milling machine and orbital clamping unit specially designed to cater for this task and function. Several welded samples were produced on varying process parameters which were successfully joined by using a non-consumable tool with a flat shoulder and a cylindrical pin.

  5. Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology


    Dhanapal, A.; S. RAJENDRA BOOPATHY; Balasubramanian, V.; Chidambaram, K.; A. R. Thoheer Zaman


    Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW) processes. The specimens were exposed to salt spray conditions and immersion conditions to characterize their corrosion rates on the effect of pH value, chloride ion concentration, and corrosion time. In addition, an attempt was made to develop an empirical relationship to predict the corrosion rate of FSW welds in salt spray corrosion test and galvanic corrosi...

  6. Butt-log grade distributions for five Appalachian hardwood species (United States)

    John R. Myers; Gary W. Miller; Harry V., Jr. Wiant; Joseph E. Barnard; Joseph E. Barnard


    Tree quality is an important factor in determining the market value of hardwood timber stands, but many forest inventories do not include estimates of tree quality. Butt-log grade distributions were developed for northern red oak, black oak, white oak, chestnut oak, and yellow-poplar using USDA Forest Service log grades on more than 4,700 trees in West Virginia. Butt-...

  7. Investigation on narrow-gap welding residual stresses in ultra-thick ring-type mockups (United States)

    Liu, Chuan; Yang, Jiawei; Shi, Yifeng; Zhao, Yong


    The stress distributions within two ring-type mockups manufactured by multi-pass narrow-gap submerged welding were investigated by numerical simulations and experiments. The large mockup consisted of a 300 mm thick ring welded to a large cylinder, and the small one was a butt-welded joint consisted of two 300 mm thick curved plates. The effect of structure form on the stress in the heavy-section component was also investigated. Results show that the stress distribution in the small mockup is similar to that in the large one. The location where the minimum hoop and radial stresses appear at the weld centerline is decided by the weld metal height of the second welding step of the welding procedure used in the present study. In addition, a sudden stress change occurs near the top surface of the weld metal after the first welding step due to the strong stiffness of the mockups. For the 300 mm thick welded mockups investigated, the structure form has no evident effect on the shape of the through-thickness stress distribution at the weld centerline, which is determined by the welding procedure; however, the structure form can affect the value of the minimum stress.

  8. Prediction of Welding Deformation and Residual Stress of Stiffened Plates Based on Experiments (United States)

    Bai, R. X.; Guo, Z. F.; Lei, Z. K.


    Thermo-elastic-plastic (TEP) method is a method that can accurately predict welding deformation and residual stresses, but the premise is to select the appropriate heat source parameters. Aiming at the two welded joints in the stiffened plate studied in this paper, the welding experiments of simple components were carried out respectively, and the corresponding welding deformation and residual stresses were measured. Based on the welding experiment, the corresponding TEP model was established, and the corresponding heat source parameters were obtained according to the experimental data. The comparison between the experimental results and the numerical results shows that the obtained heat source parameters can well predict the welding deformation and residual stress of the welded structure. And then, the obtained heat source parameters were applied to the TEP model of the stiffened plate. The prediction results show that the T-type fillet welds of the stiffened plate can reduce the angular deformation caused by the butt welds to a certain extent. In addition, we can also find that the heat of the subsequent welds can reduce the residual stresses at the completed welds. This method not only can save a lot of experimental costs and time, but also can accurately predict the welding deformation and residual stresses.

  9. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.


    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  10. Life time assessment and repair of dissimilar metal welds. Part 1; Livslaengdsbedoemning och reparation av blandsvetsskarvar. Etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Borggreen, Kjeld


    Research on the performance of dissimilar metal welds in high temperature plant has been performed for many years. Nevertheless damages are frequent in such welds. In order to decrease the damage problems and make it possible to estimate residual lifetimes of dissimilar metal welds in our Nordic countries it is first essential to i) collect the knowledge in the literature and ii) map current dissimilar metal welds and their condition in Swedish and Danish plants. The present report describes this first part of the work. There is a comprehensive literature of she subject. Most work has been performed on ferritic/austenitic dissimilar welds. In Swedish and Danish plants the dominating type is ferritic/martensitic dissimilar welds. The damage mechanisms are about the same in the two types, creep is the dominating mechanism, but plant experience indicates that the ferritic/austenitic combination is more prone to damage than the ferritic/martensitic one. An important difference between the two types is that Ni-base weld metal generally prolongs the lifetime for ferritic/austenitic dissimilar welds whereas it shows an opposite effect in ferritic/martensitic ones. In the latter case use of a 5 % Cr weld metal seems to be the best choice but the experiences of such welds are limited. The mapping of dissimilar welds indicates that there are predominantly special kinds of welds which fail whereas ordinary butt welds and branch welds are relatively free from damage.

  11. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)


    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  12. A Study of Microstructure and Mechanical Properties of Grade 91 Steel A-TIG Weld Joint (United States)

    Arivazhagan, B.; Vasudevan, M.


    In the present study, A-TIG welding was carried out on grade 91 steel plates of size 220 × 110 × 10 mm using the in-house developed activated flux to produce butt-joints. The room-temperature impact toughness of the A-TIG as-welded joint was low due to the presence of untempered martensite matrix despite the low microinclusion density caused by activated flux and also low δ-ferrite (TIG-processed grade 91 steel weld joint was found to meet the toughness requirements after PWHT at 760 °C-3 h. Observations of fracture surfaces using SEM revealed that the as-welded joint failed by brittle fracture, whereas post-weld heat-treated weld joints failed by decohesive rupture mode.

  13. An evaluation of welding processes to reduce hexavalent chromium exposures and reduce costs by using better welding techniques. (United States)

    Keane, Michael J


    A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chromium (Cr(6+)) were measured. GMAW processes used were short-circuit (SC) and pulsed-spray modes. Flux-cored welding used gas shielding. Costs were estimated per meter of a 6.3-mm thick horizontal butt weld. Emission rates of Cr(6+) were lowest for GMAW processes and highest for SMAW; several GMAW processes had less than 2% of the SMAW generation rate. Labor and consumable costs for the processes studied were again highest for SMAW, with those of several GMAW types about half that cost. The results show that use of any of the GMAW processes (and flux-cored welding) could substantially reduce fume and Cr(6+) emissions, and greatly reduce costs relative to SMAW.

  14. Syllabus in Trade Welding. (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  15. Heavy-section welding with very high power laser beams: the challenge (United States)

    Goussain, Jean-Claude; Becker, Ahim; Chehaibou, A.; Leca, P.


    The 45 kW CO2 laser system of Institut de Soudure was used to evaluate and explore the possibilities offered by the high power laser beams for welding different materials in various thickness and in different welding positions. Stainless steels, low carbon steels, aluminum and titanium alloys were studied. Butt joints in 10 to 35 mm thick plates were achieved and evaluated by radiographic, metallurgical and mechanical tests. Gaps and alignment tolerances were determined with and without filler wire in order to obtain acceptable welds concerning the weld geometry, the aspect on front and end root sides. The main problem raised by heavy section welding concerns weld porosity in the weld which increases drastically with the thickness of the weld. Indications are given on their origin and the way to proceed in order to better control them. Lastly some large parts, recently welded on the system, are presented and discussed before drawing some conclusions on the prospects of very high power laser welding.

  16. Comparative study on transverse shrinkage, mechanical and metallurgical properties of AA2219 aluminium weld joints prepared by gas tungsten arc and gas metal arc welding processes

    Directory of Open Access Journals (Sweden)

    S. Arunkumar


    Full Text Available Aluminium alloy AA2219 is a high strength alloy belonging to 2000 series. It has been widely used for aerospace applications, especially for construction of cryogenic fuel tank. However, arc welding of AA2219 material is very critical. The major problems that arise in arc welding of AA2219 are the adverse development of residual stresses and the re-distribution as well as dissolution of copper rich phase in the weld joint. These effects increase with increase in heat input. Thus, special attention was taken to especially thick section welding of AA2219-T87 aluminium alloy. Hence, the present work describes the 25 mm-thick AA2219-T87 aluminium alloy plate butt welded by GTAW and GMAW processes using multi-pass welding procedure in double V groove design. The transverse shrinkage, conventional mechanical and metallurgical properties of both the locations on weld joints were studied. It is observed that the fair copper rich cellular (CRC network is on Side-A of both the weldments. Further, it is noticed that, the severity of weld thermal cycle near to the fusion line of HAZ is reduced due to low heat input in GTAW process which results in non dissolution of copper rich phase. Based on the mechanical and metallurgical properties it is inferred that GTAW process is used to improve the aforementioned characteristics of weld joints in comparison to GMAW process.

  17. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel (United States)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang


    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.


    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.; Seffens, Rob J.; Efsing, Pal G.


    , defect characteristics and weld residual strains were examined by optical metallography, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Industry-supplied mock-up welds were characterized including alloy 52 and 152 weldments, alloy 52M overlay and inlay welds, and an alloy 52 overlay. II. WELDMENTS II.A. Alloy 52 and 152 Weld Mockups The alloy 52 and 152 weld mockups were fabricated by MHI for the Kewaunee reactor and were obtained from the EPRI NDE Center. The mockups were U-groove welds joining two plates of 304SS as shown in Figure 1. Alloy 152 butter (heat 307380) was placed on the U-groove surface for both mockups by shielded metal arc welding (SMAW). For the alloy 152 weld mockup, the alloy 152 fill (heat 307380) was also applied using SMAW while for the alloy 52 weld mockup, the alloy 52 fill (heat NX2686JK) was applied using gas tungsten arc welding (GTAW). Welding parameters for the fill materials were substantially different with the alloy 152 SMAW having a deposition speed of 4-25 cm/min with a current of 95-145 A and the alloy 52 GTAW having a deposition speed of 4-10 cm/min with a current of 150-300 A. One prominent feature in these mockup welds is the presence of a crack starting at the 304SS butt joint at the bottom of the U-groove and extending up into the weld. It appears that the 304SS plate on either side of the butt joint acted as an anchor for the weld resulting in a stress rise across the slit that drove crack formation and extension up into the fill weld. As will be shown in the next section, the extent of the cracking around this stress riser was much greater in the MHI 52 weld mockup.

  19. Special grain boundaries in the nugget zone of friction stir welded AA6061-T6 under various welding parameters

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Wang [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yong, Zou, E-mail: [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Xuemei, Liu [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Matsuda, Kenji [Department of Materials Science and Technology, Faculty of Engineering, University of Toyama, Toyama 930-8555 (Japan)


    The age hardenable AA6061-T6 plate was butt welded by friction stir welding. The total heat input, generated by friction between the tool and work piece and plastic deformation, results in a consumption of meta-stable phases in the nugget zone. Precipitation phenomena were closely related to the diffusion of the solute atoms. The existence of special grain boundaries like Σ1a and Σ3 will increase the difficulty in diffusion, which will improve the hardness in the nugget zone. Furthermore, the formation of Σ3 grain boundaries can result from an impingement of re-crystallized grains coming from texture components in twin relationship already. An appropriate strain level may benefit the development of the twin components with a similar intensity. The welding parameters have an effect on heat source mode and the strain level. Then, the type of dynamic re-crystallization and distribution of the special grain boundaries was altered by changing the parameters.

  20. Lightweight design potential of cyclically loaded laser hybrid welds of HSLA steel S1100QL; Leichtbaupotenzial zyklisch belasteter Laserstrahl-Hybridschweissverbindungen aus S1100QL

    Energy Technology Data Exchange (ETDEWEB)

    Winderlich, Bernd; Jahn, Axel; Brenner, Berndt [Fraunhofer-Institut fuer Werkstoff- und Strahltechnik (IWS), Dresden (Germany)


    Laser hybrid welded joints of HSLA steel S1100QL are well suited for industrial use in cyclically highly loaded structures. In comparison to conventional MAG welding, laser hybrid welding enables shorter process time, lower heat input and reduced weldment distorsion. Hybrid butt welds ground flush to plate reach the same fatigue strength level as the blast cleaned base material. Pores in the weld metal are the fatigue limiting factor. Application of these welded joints is useful at high mean stress and low number of cycles. In this case it gives an advantage of grinding over generation of residual compressive stresses at the weld toe by the UIT method. Design and manufacturing issues and testing requirements are discussed. (orig.)

  1. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets (United States)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.


    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  2. Adaptive Robotic Welding Using A Rapid Image Pre-Processor (United States)

    Dufour, M.; Begin, G.


    The rapid pre-processor initially developed by NRCC and Leigh Instruments Inc. as part of the visual aid system of the space shuttle arm 1 has been adapted to perform real time seam tracking of multipass butt weld and other adaptive welding functions. The weld preparation profile is first enhanced by a projected laser target formed by a line and dots. A standard TV camera is used to observe the target image at an angle. Displacement and distorsion of the target image on a monitor are simple functions of the preparation surface distance and shape respectively. Using the video signal, the pre-processor computes in real time the area and first moments of the white level figure contained within four independent rectangular windows in the field of view of the camera. The shape, size, and position of each window can be changed dynamically for each successive image at the standard 30 images/sec rate, in order to track some target image singularities. Visual sensing and welding are done simultaneously. As an example, it is shown that thin sheet metal welding can be automated using a single window for seam tracking, gap width measurement and torch height estimation. Using a second window, measurement of sheet misalignment and their orientation in space were also achieved. The system can be used at welding speed of up to 1 m/min. Simplicity, speed and effectiveness are the main advantages of this system.

  3. Improvement of Fatigue Life of Welded Structural Components of a Large Two-Stroke Diesel Engine by Grinding

    DEFF Research Database (Denmark)

    Agerskov, Henning; Hansen, Anders V.; Bjørnbak-Hansen, Jørgen


    The crankshaft housings of large two-stroke diesel engines are welded structures subjected to constant amplitude loading and designed for infinite life at full design load. A new design of the so-called frame box has been introduced in the engine using butt weld joints of thick plates, welded from...... performed showed a significant increase in fatigue life due to the grinding, ranging from a factor of approx. 2.8 to infinity, depending on the load level. Although the number of tests was limited, the results indicate a favourable change of slope of the S-N curve, from m=3 for the test series without...

  4. Distortion Control during Welding


    Akbari Pazooki, A.M.


    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ methods to control welding distortion. In these methods local heating and/or cooling strategies are applied during welding. Additional heating and/or cooling sources can be implemented either stationa...

  5. Effect of welding speed on microstructural evolution and mechanical properties of laser welded-brazed Al/brass dissimilar joints (United States)

    Zhou, L.; Luo, L. Y.; Tan, C. W.; Li, Z. Y.; Song, X. G.; Zhao, H. Y.; Huang, Y. X.; Feng, J. C.


    Laser welding-brazing process was developed for joining 5052 aluminum alloy and H62 brass in butt configuration with Zn-15%Al filler. Effect of welding speed on microstructural characteristics and mechanical properties of joints were investigated. Acceptable joints without obvious defect were obtained with the welding speed of 0.5-0.6 m/min, while lower and higher welding speed caused excessive back reinforcement and cracking, respectively. Three reaction layers were observed at welding speed of 0.3 m/min, which were Al4.2Cu3.2Zn0.7 (τ‧)/Al4Cu9/CuZn from weld seam side to brass side; while at welding speed of 0.4-0.6 m/min, two layers Al4.2Cu3.2Zn0.7 and CuZn formed. The thickness of interfacial reaction layers increased with the decrease of welding speed, but varied little at different interfacial positions from top to bottom in one joint. Tensile test results indicated that the maximum joint tensile strength of 128 MPa was obtained at 0.5 m/min, which was 55.7% of that of Al base metal. All the joints fractured along the weld seam/brass interface. Some differences were found regarding fracture locations with three and two reaction layers. The joint fractured between Al4Cu9 and τ‧ IMC layer when the interface had three layers, while the crack occurred between CuZn and τ‧ phase in the case of two layers.

  6. Process stability during fiber laser-arc hybrid welding of thick steel plates (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.


    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  7. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties (United States)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.


    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  8. WELDING PROCESS (United States)

    Zambrow, J.; Hausner, H.


    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  9. Geology of Gable Mountain-Gable Butte Area

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K.R.


    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending major fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems.

  10. Welding processes handbook

    CERN Document Server

    Weman, Klas


    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  11. Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

    Directory of Open Access Journals (Sweden)

    Jeong-ung Park


    Full Text Available The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80–118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66–89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal

  12. Friction Stir Welding (United States)

    Nunes, Arthur C., Jr.


    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  13. Boundary for the Deadman coal zone in the Black Butte area (bbbndg.shp) (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of the Deadman coal zone in the Black Butte area of the Point of Rocks-Black Butte coalfield, Wyoming. This...

  14. 78 FR 9945 - Crow Butte Resources, Inc.; Establishment of Atomic Safety and Licensing Board (United States)


    ... COMMISSION Crow Butte Resources, Inc.; Establishment of Atomic Safety and Licensing Board Pursuant to... Licensing Board (Board) is being established to preside over the following proceeding: Crow Butte Resources, Inc. (Marsland Expansion Area) This proceeding involves a request from Crow Butte Resources, Inc. to...

  15. Introduction to Welding. (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  16. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.


    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  17. Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

    Directory of Open Access Journals (Sweden)

    Tae-Jun Kim


    Full Text Available In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

  18. Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effects

    DEFF Research Database (Denmark)

    Carlone, Pierpaolo; Citarella, Roberto; Sonne, Mads Rostgaard


    boundary element method (FEM-DBEM) procedure, coupling the welding process simulation to the subsequent crack growth assessment, is proposed and applied to simulate multiple crack propagation, with allowance for manufacturing effects. The friction stir butt welding process of the precipitation hardened AA......A great deal of attention is currently paid by several industries toward the friction stir welding process to realize lightweight structures. Within this aim, the realistic prediction of fatigue behavior of welded assemblies is a key factor. In this work an integrated finite element method - dual......2024-T3 alloy was simulated using a thermo-mechanical FEM model to predict the process induced residual stress field and material softening. The computed stress field was transferred to a DBEM environment and superimposed to the stress field produced by a remote fatigue traction load applied...

  19. Prediction of residual stresses in electron beam welded Ti-6Al-4V plates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lianyong; Ge, Keke; Jing, Hongyang; Zhao, Lei; Lv, Xiaoqing [Tianjin Univ. (China); Han, Yongdian [Tianjin Univ. (China). Key Lab. of Advanced Joining Technology


    A thermo-metallurgical procedure based on the SYSWELD code was developed to predict welding temperature field, microstructure and residual stress in butt-welded Ti-6Al-4V plate taking into account phase transformation. The formation of martensite was confirmed by the CCT diagram and microstructure in the weld joint, which significantly affects the magnitude of residual stress. The hole drilling procedure was utilized to measure the values of residual stress at the top surface of the specimen, which are in well agreement with the numerical results. Both simulated and test results show that the magnitude and distribution of residual stress on the surface of the plate present a large gradient feature from the weld joint to the base metal. Moreover, the distribution law of residual stresses in the plate thickness was further analyzed for better understanding of its generation and evolution.

  20. Simulation of inverse heat conduction problems in fusion welding with extended analytical heat source models (United States)

    Karkhin, V. A.; Pittner, A.; Schwenk, C.; Rethmeier, M.


    The paper presents bounded volume heat sources and the corresponding functional-analytical expressions for the temperature field. The power density distributions considered here are normal, exponential and parabolic. The sources model real heat sources like the welding arc, laser beam, electron beam, etc., the convection in the weld pool as well as the latent heat due to fusion and solidification. The parameters of the heat source models are unknown a priori and have to be evaluated by solving an inverse heat conduction problem. The functional-analytical technique for calculating 3D temperature fields in butt welding is developed. The proposed technique makes it possible to reduce considerably the total time for data input and solution. It is demonstrated with an example of laser beam welding of steel plates.

  1. Finite element modeling of the effect of welding parameters on solidification cracking of Austenitic Stainless Steel 310

    Directory of Open Access Journals (Sweden)

    Eslam Ranjbarnodeh


    Full Text Available A transient thermo-mechanical model is employed to study the effects of welding parameters on the occurrence of solidification cracking. A finite element program, ANSYS, is employed to solve the thermal and mechanical equations while the different variables such as welding current, speed and sequence are considered in the simulation. The studied geometry was butt joint of two stainless steel plates with the thickness of 2 mm. Then, the samples were welded by TIG method without filler. To verify the numerical results, the model outputs were checked with the experimental observations and good agreement was observed. It was found that the increasing of welding current from 70 A to 100 A resulted in the increase in transverse tensile strain from 1.2 to 2.1 which can facilitate the occurrence of solidification cracking. Furthermore, the application of symmetric welding layout is an effective method to prevent solidification cracking.

  2. Design of Laser Welding Parameters for Joining Ti Grade 2 and AW 5754 Aluminium Alloys Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Mária Behúlová


    Full Text Available Joining of dissimilar Al-Ti alloys is very interesting from the point of view of weight reduction of components and structures in automotive or aerospace industries. In the dependence on cooling rate and chemical composition, rapid solidification of Al-Ti alloys during laser welding can lead to the formation of metastable phases and brittle intermetallic compounds that generally reduce the quality of produced weld joints. The paper deals with design and testing of welding parameters for preparation of weld joints of two sheets with different thicknesses from titanium Grade 2 and AW 5754 aluminium alloy. Temperature fields developed during the formation of Al-Ti butt joints were investigated by numerical simulation in ANSYS software. The influence of laser welding parameters including the laser power and laser beam offset on the temperature distribution and weld joint formation was studied. The results of numerical simulation were verified by experimental temperature measurement during laser beam welding applying the TruDisk 4002 disk laser. The microstructure of produced weld joints was assessed by light microscopy and scanning electron microscopy. EDX analysis was applied to determine the change in chemical composition across weld joints. Mechanical properties of weld joints were evaluated using tensile tests and Vickers microhardness measurements.

  3. The Use of CDM Analysis Techniques in High Temperature Creep Failure of Welded Structures (United States)

    Hayhurst, David R.; Wong, Man Tak; Vakili-Tahami, Farid

    Techniques are reviewed for the calibration of constitutive relationships for the different phases of the weld. It is shown how the calibration is carried out using property ratios, and a knowledge of the constitutive equations of the parent material. The results of CDM analyses, obtained using the two-dimensional solver Damage XX, are reviewed for: a butt-welded pipe at 565°C and, a welded cylinder-sphere pipe intersection at 590°C. Results are then presented of a three-dimensional CDM solution for a three-degree slice of the welded cylinder-sphere pipe intersection, and shown to be in close agreement with the two-dimensional, Damage XX, solution. Then the paper examines damage growth at a constant temperature of 590°C in a ferritic steel butt-welded pipe subjected to a combined constant internal pressure of 4MPa and a constant global bending moment of 49kNm. The CDM results for a three-dimensional analysis are compared with qualitative experimental results, and good correlation is indicated.

  4. Advanced Welding Applications (United States)

    Ding, Robert J.


    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  5. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz; Soldadura T.I.G. de acero inoxidable. Modelo numerico para el calculo de temperaturas en la ZAT

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.


    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  6. Relative toxicity of cigarette butts leachate and usefulness of ...

    African Journals Online (AJOL)

    Relative acute toxicity of cigarette butts leachate, antioxidant biomarkers; superoxide dismutase (SOD), catalase (CAT), gluthathione (GSH)activity and lipid peroxidation (LPO), an index of malondialdehyde (MDA) were evaluated in Nile Tilapia (Oreochromis niloticus) exposed to two selected commonly consumed brand of ...

  7. Development of science imperative for progress: Pervez Butt

    CERN Multimedia


    Mr. Parvez Butt, chairman of the Pakistan Atomic Energy Commission, has said that development of science and technology is imperative for progress and prosperity of any country. He was addressing a meeting on "CERN Data Grid and its Application" an opportunity for learning for scientists of developing countries (1/2 page).

  8. Willamette Valley - Baskett Butte Oak Savannah Restoration-Phase 2 (United States)

    US Fish and Wildlife Service, Department of the Interior — This project is a follow-up to the 2010 project that removed three invasive tree species across 85 acres on Baskett Butte at Baskett Slough NWR. Lack of fire in the...

  9. Impact of cigarette butt leachate on tidepool snails. (United States)

    Booth, David J; Gribben, Paul; Parkinson, Kerryn


    In urban areas, cigarette butts are the most common discarded refuse articles. In marine intertidal zones, they often fall into tidepools. We tested how common intertidal molluscs were affected by butt leachate in a laboratory experiment, where snails were exposed to various leachate concentrations. Mortality was very high, with all species showing 100% mortality at the full leachate concentration (5 butts per litre and 2h soak time) after 8days. However, Austrocochlea porcata showed higher mortality than the other 2 species at lower concentrations (10%, 25%) which may affect the relative abundance of the 3 snails under different concentrations of leachate pollution. Also, sublethal effects of leachate on snail activity were observed, with greater activity of Nerita atramentosa than the other 2 species at higher concentrations, suggesting it is more resilient than the other 2 species. While human health concerns predominate with respect to smoking, we show strong lethal and sublethal (via behavioural modifications) impacts of discarded butts on intertidal organisms, with even closely-related taxa responding differently. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of Temperature on Microstructure and Fracture Mechanisms in Friction Stir Welded Al6061 Joints (United States)

    Dorbane, A.; Ayoub, G.; Mansoor, B.; Hamade, R. F.; Imad, A.


    Aluminum and its alloys are widely used in different industries due to such attractive properties as adequate strength, ductility, and low density. It is desirable to characterize welds of aluminum alloys obtained using "friction stir welding" at high temperatures. Al-to-Al (both 6061-T6) butt joints are produced by friction stir welding at tool rotation speed of 1600 rpm and four levels of tool advancing speeds: 250, 500, 750, and 1000 mm/min. Microstructural properties of the different welds are investigated. Observed are noticeable differences in microstructure characteristics between the various weld zones. Mechanical properties of these welded joints are characterized under tensile tests at temperatures of 25, 100, 200, and 300 °C, at a constant strain rate of 10-3/s. The optimum microstructural and mechanical properties were obtained for the samples FS welded with 1600 rpm tool rotation speed at 1000 mm/min tool advancing speed. The studied welds exhibited yield strength, ultimate tensile strength, and strain to failure with values inferior of those of the base material. Observations of postmortem samples revealed that in the temperature range of 25-200 °C the locus of failure originates at the region between the thermo-mechanically affected zone and the heat-affected zones. However, at higher temperatures (300 °C), the failure occurs in the stir zone. A change in the crack initiation mechanism with temperature is suggested to explain this observation.

  11. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)


    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  12. Regulating the disposal of cigarette butts as toxic hazardous waste. (United States)

    Barnes, Richard L


    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  13. Smoke-free college campuses: no ifs, ands or toxic butts. (United States)

    Sawdey, Michael; Lindsay, Ryan P; Novotny, Thomas E


    To better estimate the burden of toxic cigarette butt waste and create awareness of the hazardous nature of cigarette butts on two large university campuses in San Diego by organizing and conducting student cigarette butt clean-up activities. Two separate campus-wide clean-ups were conducted by student volunteers at San Diego State University (SDSU) and at University of California San Diego (UCSD) between April and July 2010. In 1 h, 63 volunteers at SDSU collected 23,885 butts; 6525 cigarette butts were collected in 1 h by 17 volunteers at UCSD. The average number of cigarette butts picked up per individual was 379.1 at SDSU and 383.8 at UCSD (range 25-1030 per volunteer). The amount of cigarette waste on college campuses nationally may be quite substantial given the many thousands of cigarette butts gathered at each of the San Diego institutions. In just 10 s on average a volunteer could locate, walk to, pick up and put a cigarette butt in the collection bag and then begin looking for another discarded butt, indicating the saturation of cigarette butts on campus. Smoke-free policies on campus could have far-reaching effects not only in reducing smoking behaviour on campus and ground clean-up costs, but also on the environment. Campus cigarette waste clean-ups can be utilized to call attention to the issue of cigarette butt waste in the environment.

  14. The Effect of Tool Profiles on Mechanical Properties of Friction Stir Welded Al5052 T-Joints. (United States)

    Kim, Byeong-Jin; Bang, Hee-Seon; Bang, Han-Sur


    Al5052 T butt joints with two skins (5 mm) and one stringer (3 mm) has been successfully welded by friction stir welding (FSW). Notably, this paper has been investigated the effect of tool shape on welded formation mechanism and mechanical properties. The used shapes of tool pin are two types which are cylinder (type 1) and frustum (type 2). Dimension on two types of tool pin shape is respectively pin length of 4.7 mm and pin diameter of frustum type of top (5 mm) and bottom (3 mm). The results of experiment show that inner defects in FSWed T-joints increase significantly in accordance with traverse speed. The maximum tensile strength of welded joint fabricated using type 1 is equivalent to 85% that of the base metal, which is approximately 10% higher than that of type 2. Because welded joint of type 1 has more smoothly plastic flow in comparison with type 2. Consequently, the results show that type 1 is better appropriate for friction stir welded Al5052 T butt joints than type 2.

  15. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish


    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  16. Reprocessing weld and method

    Energy Technology Data Exchange (ETDEWEB)

    Killian, M.L.; Lewis, H.E.


    A process is described for improving the fatigue resistance of a small primary structural weld at a joint between structural members of a weldment, the weld having been made with the welding energy input of E[sub 1], the process comprising: applying a reprocessing weld on at least a portion of either one or both toes of the primary structural weld, thereby covering said toe portion, the reprocessing weld containing a filler metal and having a cross-sectional area which is less than the corresponding cross-sectional area of the primary structural weld, the reprocessing weld extending onto the face of the primary structural weld at one side of the toe portion covered and onto the structural member at the other side of the toe portion covered, and the total welding energy input, E[sub 2], used in said reprocessing the primary structural weld being less than the welding energy input E[sub 1] of the primary structural weld.

  17. Fatigue experiments on very high strength steel base material and transverse butt welds

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.; Romeijn, A.; Bijlaard, F.S.K.


    Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years. However, the use of these steels in the civil engineering industry is still uncommon, due to lack of design and fabrication knowledge and therefore limited inclusion in codes.

  18. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding (United States)


    transverse residual stres - ses is highly asymmetric. Specifically, on the retreating side, the transverse residual stresses mainly go to zero, while on the...relaxation times. On the other hand, no direct dependence of the residual stres - ses on the tool rotational speed is generally found; and (e) The stirring...increases as the amount of cold work is increased, q should be a decreasing function of the equivalent plastic strain epl. Based on these arguments, the

  19. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...


    Ohlin, Henry N.; Spear, R.J.


    A mineral investigation in the nearly contiguous Black Butte and Elk Creek Roadless Areas of northern California, indicates that small parts of both roadless areas have a probable mineral-resource potential for small manganese-copper- or chromite-type deposits. There is little promise for the occurrence of energy resources in the areas. Investigation of geothermal resource potential and of the potential for other hydrothermal base- and precious-metal mineralization should be initiated.

  1. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    Energy Technology Data Exchange (ETDEWEB)



    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  2. Multiple pass and multiple layer friction stir welding and material enhancement processes (United States)

    Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN


    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  3. A non-conventional technique for evaluating welded joints based on the electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.G.; Sorger, G., E-mail:, E-mail: [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Vilaca, P., E-mail: [Aalto Univ., Dept. of Engineering Design and Production, School of Engineering, Aalto (Finland); Miranda, R., E-mail: [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)


    Recent studies showed that electrical conductivity is a valuable technique to identify the different zones of solid-state welded joints with a good correlation with the microstructure and hardness. This is a relevant result since this technique is fast and, in some cases, non destructive, The concept was applied to other welding processes such as the ones involving fusion to a wide range of materials, For this, a comprehensive study was performed using friction stir welding, tungsten inert gas (TlG) and gas metal arc (MAG) welding processes in either bead on plate or butt joints in: carbon steel, magnesium and titanium, Eddy current nondestructive testing (NDT) was used to measure the electrical conductivity at different depths in transverse sections of the processed materials. The profiles were compared to the hardness profiles in the same sections. As a result, a correlation was observed in most materials welded by solid state and by fusion processes. The variation of the electrical conductivity closely follows that measured in the hardness. Another interesting conclusion is that, even for fusion welding of carbon steels, the technique has potential to complement the hardness measurements and microstructural observations, allowing the identification of the distinct zones of welds in materials commonly used in industry. (author)

  4. Microstructure and Mechanical Properties of Hybrid Welded Joints with Laser and CO2-Shielded Arc (United States)

    Wahba, M.; Mizutani, M.; Katayama, S.


    With the objective of reducing the operating costs, argon-rich shielding gas was replaced by 100% CO2 gas in hybrid laser-arc welding of shipbuilding steel. The welding parameters were optimized to obtain buried-arc transfer in order to mitigate spatter formation. Sound butt joints could be successfully produced for plates of 14 and 17 mm thickness in one welding pass. Subsequently, the welded joints were subjected to different tests to evaluate the influence of CO2 shielding gas on the mechanical properties of the welded joints. All tensile-tested specimens failed in the base material, indicating the higher strength of the welded joints. The impact toughness of the welded joints, measured at -20 °C, reached approximately 76% of that of the base material, which was well above the limit set by the relevant standard. The microstructure of the fusion zone consisted of grain boundary ferrite and acicular ferrite uniformly over the plate thickness except for the joint root where the microstructure was chiefly ferrite with an aligned second phase. This resulted in higher hardness in the root region compared with the top and middle parts of the fusion zone.

  5. Welding Course Curriculum. (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  6. Instructional Guidelines. Welding. (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  7. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    Energy Technology Data Exchange (ETDEWEB)

    Lévesque, D.; Rousseau, G.; Monchalin, J.-P. [National Research Council Canada, Boucherville, QC (Canada); Wanjara, P.; Cao, X. [National Research Council Canada, Montreal, QC (Canada)


    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated that the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.

  8. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel (United States)

    Lévesque, D.; Rousseau, G.; Wanjara, P.; Cao, X.; Monchalin, J.-P.


    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated that the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.

  9. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints (United States)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan


    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  10. 3D Modelling of Flash Formation in Linear Friction Welded 30CrNiMo8 Steel Chain

    Directory of Open Access Journals (Sweden)

    Pedro Effertz


    Full Text Available Linear friction welding (LFW is a solid-state welding process that has been thoroughly investigated for chain welding in recent years in order to replace the currently in use Flash Butt Welding (FBW process. Modelling has proven to be an indispensable tool in LFW, thus providing necessary insight to the process, regardless of its final application. This article describes a 3D model developed in the commercial software DEFORM to study the LFW process of 30CrNiMo8 high strength steel in the Hero chain. Hence, a weakly coupled thermal and mechanical model were used, by means of the process experimental input such as displacement histories. The flash morphology and intervening mechanisms were analyzed. A thermal evaluation of different regions in the studied geometry was considered, and a correlation of the modeled and experimental width of the extrusion zone was established.

  11. Consumable Guide Electroslag Welding of 4 to 24 Inch Thick Carbon Steel Castings (The National Shipbuilding Research Program) (United States)


    graphite inoculation, refractory shoes and combinations of these. Macrographs and micrographs are presented to show the effect on weld metal and HAZ...PER CENT CAD, 13-14 PER CENT AL203, 7-8 PER CENT MGO, 7-65 PER CENT CAF2, AND 7-25 PER CENT MN02. A REFRACTORY FIBRE IS USED TO SEAL THE COOLING SHOE...JOINTS, BUTT WELDS WITH VARIOUS JOINT SHAPES, INCLUDING LAMELLER TEARING AND LACK OF FUS1ON. THE EXAMINATION OF HOT METAL AND TEEMING LADLES , MADE OF

  12. Optimization of GMAW process of AA 6063-T5 aluminum alloy butt joints based on the response surface methodology and on the bead geometry; Optimizacion del proceso de soldadura GMAW de uniones a tope de la aleacion AA 6063-T5 basada en la metodologia de superficie de respuesta y en la geometria del cordon de soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, V.; Martinez-Conesa, E. J.; Segura, F.; Manjabacas, M. C.; Abellan, E.


    The geometry of the weld beads is characterized by the overhead, the width and the penetration. These values are indices of the behavior of the welded joint and therefore, they can be considered as factors that control the process. This work is performed to optimize the GMAW process of the aluminum alloy AA 6063-T5 by means of the response surface methodology (RSM). The variables herein considered are the arc voltage, the welding speed, the wire feed speed and the separation between surfaces in butt joints. The response functions that are herein studied are the overhead, the width, the penetration and the angle of the bead. The obtained results by RSM show high grade of agreement with the experimental values. The procedure is experimentally validated by welding for the theoretically obtained optimized technological conditions and a wide agreement between theoretical and experimental values is found. (Author) 16 refs.

  13. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI


    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  14. Physics of arc welding (United States)

    Eagar, T. W.


    A discussion of the factors controlling the size and shape of the weld fusion zone is presented along with a description of current theories of heat and fluid flow phenomena in the plasma and the molten metal weld pool. Although experimental results confirm that surface tension, plasma jets, and weld pool convection all strongly influence the fusion zone shape; no comprehensive model is available from which to predict welding behavior. It is proposed that the lack of such an understanding is a major impediment to development of automated welding processes. In addition, sensors for weld torch positioning are reviewed in terms of the mechnical and electromagnetic energy spectra which have been used. New developments in this area are also needed in order to advance the technology of automated welding.

  15. The influence of distance between heat sources in hybrid welded plate on fusion zone geometry

    Directory of Open Access Journals (Sweden)

    W. Piekarska


    Full Text Available Results of numerical analysis into temperature field in hybrid laser-arc welding process with motion of liquid material taken intoaccount are presented in this study. On the basis of obtained results the influence of the distance between the arc foot point and the laserbeam focal point on the shape and size of fusion zone in hybrid butt welded plate. Temperature field was calculated on the basis ofsolution of transient heat transfer equation. The solution of Navier-Stokes equation allowed for simulation of fluid flow in the fusion zone.Fuzzy solidification front was assumed in calculations with linear approximation of solid fraction in solid-liquid region where liquidmaterial flow through porous medium is taken into consideration. Numerical solution algorithms were developed for three-dimensionalproblem. Established numerical model of hybrid welding process takes into account different electric arc and laser beam heat sourcespower distributions.

  16. Laser ultrasonics for defect detection and residual stress measurement of friction stir welds (United States)

    Lévesque, Daniel; Dubourg, Laurent; Blouin, Alain


    The laser-ultrasonic technique is investigated for defect detection and sizing as well as for residual stress measurement in welds obtained by friction stir welding (FSW). When combined with the Fourier domain synthetic aperture focusing technique, very good performances are achieved for detecting lack of penetration in butt joints, the detection limit coinciding with the conditions of reduced mechanical properties. Also, the detection of kissing bonds seems to be possible in lap joints when probing with ultrasonic frequencies up to 200 MHz. Residual stresses induced by the FSW process can also be probed by laser ultrasonics. The method is based on monitoring the velocity change of the laser-generated surface skimming longitudinal wave, propagating just below the surface and being found much more sensitive to stress. The residual stress profile measured across the weld line is in good agreement with results from a finite element model and from strain gauge measurements.

  17. Dual wire weld feed proportioner (United States)

    Nugent, R. E.


    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  18. Finite element thermal analysis of the fusion welding of a P92 steel pipe

    Directory of Open Access Journals (Sweden)

    A. H. Yaghi


    Full Text Available Fusion welding is common in steel pipeline construction in fossil-fuel power generation plants. Steel pipes in service carry steam at high temperature and pressure, undergoing creep during years of service; their integrity is critical for the safe operation of a plant. The high-grade martensitic P92 steel is suitable for plant pipes for its enhanced creep strength. P92 steel pipes are usually joined together with a similar weld metal. Martensitic pipes are sometimes joined to austenitic steel pipes using nickel based weld consumables. Welding involves severe thermal cycles, inducing residual stresses in the welded structure, which, without post weld heat treatment (PWHT, can be detrimental to the integrity of the pipes. Welding residual stresses can be numerically simulated by applying the finite element (FE method in Abaqus. The simulation consists of a thermal analysis, determining the temperature history of the FE model, followed by a sequentially-coupled structural analysis, predicting residual stresses from the temperature history.

    In this paper, the FE thermal analysis of the arc welding of a typical P92 pipe is presented. The two parts of the P92 steel pipe are joined together using a dissimilar material, made of Inconel weld consumables, producing a multi-pass butt weld from 36 circumferential weld beads. Following the generation of the FE model, the FE mesh is controlled using Model Change in Abaqus to activate the weld elements for each bead at a time corresponding to weld deposition. The thermal analysis is simulated by applying a distributed heat flux to the model, the accuracy of which is judged by considering the fusion zones in both the parent pipe as well as the deposited weld metal. For realistic fusion zones, the heat flux must be prescribed in the deposited weld pass and also the adjacent pipe elements. The FE thermal results are validated by comparing experimental temperatures measured by five thermocouples on the

  19. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rajendrana C.


    Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  20. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study (United States)

    Shanavas, S.; Raja Dhas, J. Edwin


    Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.

  1. Study of gas tungsten arc welding procedures for tantalum alloy T-111 (Ta-8 W-2Hf) plate (United States)

    Gold, R. E.; Kesterson, R. L.


    Methods of eliminating or reducing underbread cracking in multipass GTA welds in thick T-111 plate were studied. Single V butt welds prepared using experimental filler metal compositions and standard weld procedures resulted in only moderate success in reducing underbread cracking. Subsequent procedural changes incorporating manual welding, slower weld speeds, and three or fewer fill passes resulted in crack-free single V welds only when the filler metal was free of hafnium. The double V joint design with successive fill passes on opposite sides of the joint produced excellent welds. The quality of each weld was determined metallographically since the cracking, when present, was very slight and undetectable using standard NDT techniques. Tensile and bend tests were performed on selected weldments. The inherent filler metal strength and the joint geometry determined the strength of the weldment. Hardness and electron beam microprobe traverses were made on selected specimens with the result that significant filler metal-base metal dilution as well as hafnium segregation was detected. A tentative explanation of T-111 plate underbread cracking is presented based on the intrinsic effects of hafnium in the weldment.

  2. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet (United States)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.


    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  3. Welding arc plasma physics (United States)

    Cain, Bruce L.


    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  4. Littered cigarette butts as a source of nicotine in urban waters (United States)

    Roder Green, Amy L.; Putschew, Anke; Nehls, Thomas


    The effect of nicotine from littered cigarette butts on the quality of urban water resources has yet to be investigated. This two-part study addresses the spatial variation, seasonal dynamics and average residence time of littered cigarette butts in public space, as well as the release of nicotine from cigarette butts to run-off in urban areas during its residence time. Thereby, we tested two typical situations: release to standing water in a puddle and release during alternating rainfall and drying. The study took place in Berlin, Germany, a city which completely relies on its own water resources to meet its drinking water demand. Nine typical sites located in a central district, each divided into 20 plots were studied during five sampling periods between May 2012 and February 2013. The nicotine release from standardized cigarette butts prepared with a smoking machine was examined in batch and rainfall experiments. Littered cigarette butts are unevenly distributed among both sites and plots. The average butt concentration was 2.7 m-2 (SD = 0.6 m-2, N = 862); the maximum plot concentration was 48.8 butts m-2. This heterogeneity is caused by preferential littering (gastronomy, entrances, bus stops), redistribution processes such as litter removal (gastronomy, shop owners), and the increased accumulation in plots protected from mechanized street sweeping (tree pits, bicycle stands). No significant seasonal variation of cigarette butt accumulation was observed. On average, cigarette butt accumulation is characterized by a 6 days cadence due to the rhythm and effectiveness of street sweeping (mean weekly butt accumulation rate = 0.18 m-2 d-1; SD = 0.15 m-1). Once the butt is exposed to standing water, elution of nicotine occurs rapidly. Standardized butts released 7.3 mg g-1 nicotine in a batch experiment (equivalent to 2.5 mg L-1), 50% of which occurred within the first 27 min. In the rainfall experiment, the cumulative nicotine release from fifteen consecutive

  5. A comparison of electronic and traditional cigarette butt leachate on the development of Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Tatiana Tatum Parker

    Full Text Available Potential developmental toxicities of three different cigarette butt leachates were evaluated using the frog embryo teratogenesis assay–Xenopus (FETAX. Xenopus laevis embryos were exposed to regular cigarette butt (RCB, menthol (MCB and electronic (ECB in concentrations ranging from 0 to 4 butts/l for RCB and MCB and 0–10 butts/l for ECB. The embryos were from stage 8 to 11 and were exposed for a 96-h period in static renewal test conditions. Median lethal concentration (LC50, malformation (EC50, non-observed adverse effect concentration (NOAEC, and lowest observed adverse effect concentration (LOAEC were calculated. Results from these studies suggest that each tested leachate is teratogenic for X. laevis embryos. The lowest LC50 was determined for ECB exposure at 17.9 cigarette butts/L. The LC50 value was the highest with RCB and MCB having LC50 s of approximately 1 cigarette butt/L. There were notable EC50 differences with RCB having the highest and ECB the lowest. The NOAEC and LOAEC levels for RCB and MCB were below 1 cigarette butt/L for both mortality and malformations; over 8 butts/L for ECB mortality and over 4 butts/L for malformations. From these results, we conclude that RCB leachate is the most toxic compound, while MCB leachate has the higher teratogenicity. ECB leachate has the lowest toxic and teratogenic effects on embryos but there were still noticeable effects. The results confirmed that the FETAX assay can be useful in an integrated biological hazard assessment for the preliminary screening for ecological risks of cigarette butts, and electronic cigarettes, in aquatic environment. Keywords: Cigarette butt leachate, Xenopus laevis, Development

  6. Observations of elk movement patterns on Fossil Butte National Monument (United States)

    Olexa, Edward M.; Soileau, Suzanna Carrithers.; Allen, Leslie A.


    The elk herd that frequents Fossil Butte National Monument, a subset of the West Green River elk population, provides visitors with seasonal opportunities to view an iconic species of the western United States. Throughout the year, these elk range across a variety of private, State, and Federal lands within close proximity to the Monument. These lands are managed differently for various uses which can create challenging wildlife-management issues and influence the herd’s seasonal movements and distribution. Research lead by the USGS investigates some of the factors associated with these seasonal changes.

  7. Welding skate with computerized controls (United States)

    Wall, W. A., Jr.


    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  8. Computerized adaptive control weld skate with CCTV weld guidance project (United States)

    Wall, W. A.


    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  9. Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates (United States)

    Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.


    Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.

  10. Friction stir welding of F82H steel for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: [Fusion Structural Materials Division, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Ando, Masami; Tanigawa, Hiroyasu [Fusion Structural Materials Division, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan)


    In the present study, friction stir welding was employed to join F82H steels and develop a potential joining technique for a reduced activation ferritic/martensitic steel. The microstructures and mechanical properties on the joint region were investigated to evaluate the applicability of friction stir welding. F82H steel sheets were successfully butt-joined with various welding parameters. In welding conditions, 100 rpm and 100 mm/min, the stirred zone represented a comparable hardness distribution with a base metal. Stirred zone induced by 100 rpm reserved uniformly distributed precipitates and very fine ferritic grains, whereas the base metal showed a typical tempered martensite with precipitates on the prior austenite grain boundary and lath boundary. Although the tensile strength was decreased at 550 °C, the stirred zone treated at 100 rpm showed comparable tensile behavior with base metal up to 500 °C. Therefore, friction stir welding is considered a potential welding method to preserve the precipitates of F82H steel.

  11. Disk Laser Weld Brazing of AW5083 Aluminum Alloy with Titanium Grade 2 (United States)

    Sahul, Miroslav; Sahul, Martin; Vyskoč, Maroš; Čaplovič, Ľubomír; Pašák, Matej


    Disk laser weld brazing of dissimilar metals was carried out. Aluminum alloy 5083 and commercially pure titanium Grade 2 with the thickness of 2.0 mm were used as experimental materials. Butt weld brazed joints were produced under different welding parameters. The 5087 aluminum alloy filler wire with a diameter of 1.2 mm was used for joining dissimilar metals. The elimination of weld metal cracking was attained by offsetting the laser beam. When the offset was 0 mm, the intermixing of both metals was too high, thus producing higher amount of intermetallic compounds (IMCs). Higher amount of IMCs resulted in poorer mechanical properties of produced joints. Grain refinement in the fusion zone occurred especially due to the high cooling rates during laser beam joining. Reactions at the interface varied in the dependence of its location. Continuous thin IMC layer was observed directly at the titanium-weld metal interface. Microhardness of an IMC island in the weld metal reached up to 452.2 HV0.1. The XRD analysis confirmed the presence of tetragonal Al3Ti intermetallic compound. The highest tensile strength was recorded in the case when the laser beam offset of 300 μm from the joint centerline toward aluminum alloy was utilized.

  12. Examination of mechanical properties of magnesium plates joined by friction stir welding

    Directory of Open Access Journals (Sweden)

    Aydın Şık


    Full Text Available The use of magnesium, which is the latest metal of our age, is increasing in parallel with the advances in industry and technology. Due to its lightness, durability and long life, its usage is increasing in the automotive and space-craft industries. As a result of the advances in magnesium use, there are innovations in welding methods as well. The desired mechanical properties can't be obtained after welding. While there are some difficulties in fusion welding of magnesium material and its alloys, some of them can't be joined by fusion welding at all. Weldability of a material is the property that plays an important role in enabling its wider use and determines the method of producing products out of this material. Magnesium plates were joined successfully by friction stir welding method. Welded joints are exposed to various mechanic stresses and especially to dynamic loads. Cracks are observed to occur due to dynamic loads. Plates were joined in butt position and the mechanical properties of the occurring joint are examined.

  13. Modern Methods of Rail Welding (United States)

    Kozyrev, Nikolay A.; Kozyreva, Olga A.; Usoltsev, Aleksander A.; Kryukov, Roman E.; Shevchenko, Roman A.


    Existing methods of rail welding, which are enable to get continuous welded rail track, are observed in this article. Analysis of existing welding methods allows considering an issue of continuous rail track in detail. Metallurgical and welding technologies of rail welding and also process technologies reducing aftereffects of temperature exposure are important factors determining the quality and reliability of the continuous rail track. Analysis of the existing methods of rail welding enable to find the research line for solving this problem.

  14. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  15. Ultrasonic Stir Welding (United States)

    Nabors, Sammy


    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  16. Beavis and Butt-head: Two More White Males for the Canon. (United States)

    Skretta, John


    Discusses a high school unit involving the cartoon characters "Beavis" and "Butt-head." Examines how social values and social conflicts affect and mirror language use. Describes Beavis and Butt-head projects, and objections to the unit. Argues that schools must embrace nonprint texts to help students become skilled, literate,…

  17. On the mechanical behaviour of a butt jointed thermoplastic composite under bending

    NARCIS (Netherlands)

    Baran, Ismet; Warnet, Laurent; Akkerman, Remko; Thomsen, O.T


    In the present work, the mechanical behavior of a recently developed novel butt jointed thermoplastic composite was investigated under bending conditions. The laminated skin and the web were made of carbon fiber (AS4) and polyetherketoneketone (PEKK). The butt joint (filler) was injection molded

  18. Dual wire welding torch and method (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.


    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  19. Studies of welded joints

    Directory of Open Access Journals (Sweden)

    J. M. Krupa


    Full Text Available Studies of a welded joint were described. The joint was made as a result of the reconstruction of a truss and one of the possible means to make a repair. The studies were of a simulation character and were targeted at the detection of welding defects and imperfections thatshould be eliminated in a real structure. A model was designed and on this model the tests and examinations were carried out. The modelwas made under the same conditions as the conditions adopted for repair. It corresponded to the real object in shape and dimensions, and in the proposed technique of welding and welding parameters. The model was composed of five plates joined together with twelve beads.The destructive and non-destructive tests were carried out; the whole structure and the respective welds were also examined visually. Thedefects and imperfections in welds were detected by surface methods of inspection, penetration tests and magnetic particle flaw detection.The model of the welded joint was prepared by destructive methods, a technique that would never be permitted in the case of a realstructure. For the investigations it was necessary to cut out the specimens from the welded joint in direction transverse to the weld run. The specimens were subjected to metallographic examinations and hardness measurements. Additionally, the joint cross-section was examined by destructive testing methods to enable precise determination of the internal defects and imperfections. The surface methods were applied again, this time to determine the severity of welding defects. The analysis has proved that, fabricated under proper conditions and with parameters of the welding process duly observed, the welded joint has good properties and repairs of this type are possible in practice.

  20. Robot welding process control (United States)

    Romine, Peter L.


    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  1. Explosive Welding of Pipes (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga


    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  2. A comparison of electronic and traditional cigarette butt leachate on the development of Xenopus laevis embryos. (United States)

    Parker, Tatiana Tatum; Rayburn, James


    Potential developmental toxicities of three different cigarette butt leachates were evaluated using the frog embryo teratogenesis assay-Xenopus (FETAX). Xenopus laevis embryos were exposed to regular cigarette butt (RCB), menthol (MCB) and electronic (ECB) in concentrations ranging from 0 to 4 butts/l for RCB and MCB and 0-10 butts/l for ECB. The embryos were from stage 8 to 11 and were exposed for a 96-h period in static renewal test conditions. Median lethal concentration (LC50), malformation (EC50), non-observed adverse effect concentration (NOAEC), and lowest observed adverse effect concentration (LOAEC) were calculated. Results from these studies suggest that each tested leachate is teratogenic for X. laevis embryos. The lowest LC50 was determined for ECB exposure at 17.9 cigarette butts/L. The LC50 value was the highest with RCB and MCB having LC50 s of approximately 1 cigarette butt/L. There were notable EC50 differences with RCB having the highest and ECB the lowest. The NOAEC and LOAEC levels for RCB and MCB were below 1 cigarette butt/L for both mortality and malformations; over 8 butts/L for ECB mortality and over 4 butts/L for malformations. From these results, we conclude that RCB leachate is the most toxic compound, while MCB leachate has the higher teratogenicity. ECB leachate has the lowest toxic and teratogenic effects on embryos but there were still noticeable effects. The results confirmed that the FETAX assay can be useful in an integrated biological hazard assessment for the preliminary screening for ecological risks of cigarette butts, and electronic cigarettes, in aquatic environment.

  3. 75 FR 60804 - Notice of Availability of the Final Environmental Impact Statement for the West Butte Wind Power... (United States)


    ... Butte Wind Power Right-of-Way, Crook and Deschutes Counties, OR AGENCY: Bureau of Land Management... prepared a Final Environmental Impact Statement (EIS) for the West Butte Wind Power Right-of-Way and by... Federal Register notice. FOR FURTHER INFORMATION CONTACT: Steve Storo, BLM West Butte Wind Power Right of...

  4. Fiber laser welding of dual-phase galvanized sheet steel (DP590): traditional analysis and new quality assessment techniques (United States)

    Miller, Stephanie; Pfeif, Erik; Kazakov, Andrei; Baumann, Esther; Dowell, Marla


    Laser welding has many advantages over traditional joining methods, yet remains underutilized. NIST has undertaken an ambitious initiative to improve predictions of weldability, reliability, and performance of laser welds. This study investigates butt welding of galvanized and ungalvanized dual-phase automotive sheet steels (DP 590) using a 10 kW commercial fiber laser system. Parameter development work, hardness profiles, microstructural characterization, and optical profilometry results are presented. Sound welding was accomplished in a laser power range of 2.0 kW to 4.5 kW and travel speed of 2000 mm/min to 5000 mm/min. Vickers hardness ranged from approximately 2 GPa to 4 GPa across the welds, with limited evidence of heat affected zone softening. Decreased hardness across the heat affected zone directly correlated to the appearance of ferrite. A technique was developed to non-destructively evaluate weld quality based on geometrical criteria. Weld face profilometry data were compared between light optical, metallographic sample, and frequency-modulated continuous-wave laser detection and ranging (FMCW LADAR) methods.

  5. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))


    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  6. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: [HKS-Prozesstechnik GmbH, Halle (Germany)


    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  7. Fine welding with lasers. (United States)

    MacLellan, D


    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  8. Laser Welding in Space (United States)

    Workman, Gary L.; Kaukler, William F.


    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  9. DC arc weld starter (United States)

    Campiotti, Richard H.; Hopwood, James E.


    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.


    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich


    Full Text Available When welding bridge structures automatic welding under a gumboil layer with metal chemical additive (MCA is widely applied in the modern bridge building. MCA consists of a chopped welding wire (granulated material, which is powdered by modifying chemical additive of titanium dioxide (TiO₂ in the cylindrical mixer «drunk cask». Chemical composition of all welding materials including welding wire, gumboil, electrodes, are strictly normalized and controlled. However, the existing technology of producing MCA doesn’t allow precise controlling of its structure under working conditions and that causes an impact on the stability of welded connections properties. Therefore the aim of this work is to develop a technology to produce stable MCA structure. The paper compares the existing and proposed manufacturing techniques of the metal chemical additive (MCA which is applied in automatic welding of butt connections for bridge structures. It is shown that production of MCA in a high-energy planetary mill provides more stable structure of the additive introduced into a welded joint. The granulometric analysis of the powder TiO₂ showed that when processing MCA in a planetary mill TiO₂ particles are crashed to nanodimensional order. This process is accompanied by crushing of granulated material too. The proposed method for production of MCA in a planetary mill provides stronger cohesion of dioxide with the granulate surface and, as a consequence, more stable MCA chemical structure. Application of MCA which has been mechanical intensified in a planetary mill, increases stability of mechanical properties, if compare with applied technology, in single-order by breaking point and almost twice by impact viscosity.

  11. Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy (United States)

    Regev, Michael; Rashkovsky, Tal; Cabibbo, Marcello; Spigarelli, Stefano


    The poor weldability of the AA2024 aluminum alloy limits its use in industrial applications. Because friction stir welding (FSW) is a non-fusion welding process, it seems to be a promising solution for welding this alloy. In the current study, FSW was applied to butt weld AA2024-T3 aluminum alloy plates. Creep tests were conducted at 250 and at 315 °C on both the parent material and the friction stir welded specimens. The microstructures of the welded and non-welded AA2024-T3 specimens before and after the creep tests were studied and compared. A comprehensive transmission electron microscopy study together with a high-resolution scanning electron microscopy study and energy-dispersive x-ray spectroscopy analysis was conducted to investigate the microstructure stability. The parent material seems to contain two kinds of Cu-rich precipitates—coarse precipitates of a few microns each and uniformly dispersed fine nanosized precipitates. Unlike the parent material, the crept specimens were found to contain the two kinds of precipitates mentioned above together with platelet-like precipitates. In addition, extensive decoration of the grain boundaries with precipitates was clearly observed in the crept specimens. Controlled aging experiments for up to 280 h at the relevant temperatures were conducted on both the parent material and the welded specimens in order to isolate the contribution of exposure to high temperatures to the microstructure changes. TEM study showed the development of dislocation networks into a cellular dislocation structure in the case of the parent metal. Changes in the dislocation structure as a function of the creep strain and the FSW process were recorded. A detailed creep data analysis was conducted, taking into account the instability of the microstructure.

  12. Microstructure observations on butt joint composed of Nb3Sn CIC conductors (United States)

    Obana, Tetsuhiro; Tokitani, Masayuki; Takahata, Kazuya; Kizu, Kaname; Murakami, Haruyuki


    To precisely evaluate a butt joint technology for the JT-60SA CS coils, microstructure observations on the butt joint composed of Nb3Sn CIC conductors were conducted using a FE-SEM. As a sample for the observations, the butt joint sample utilized in the joint resistance measurement was used. During the sample fabrication, the butt joint sample was heated up to about 920 K from room temperature for diffusion bonding after heat treatment for Nb3Sn production. Then, the sample was subjected to the cycles of electromagnetic force in the joint measurement. The observation results indicated that Nb3Sn strands and a copper sheet were butted properly at the interface of the butt joint. In addition, there were hairline cracks in the Nb3Sn layers of the strands near the interface. To investigate a cause of the crack initiation, the stresses generated in the butt joint under same conditions were analyzed using a simple model. As a result, the cracks would occur with an axial compressive stress generated by the butt joint fabrication.

  13. The Geology of East Butte, a Rhyolitic Volcanic Dome on the Eastern Snake River Plain, Idaho (United States)

    Bretches, J. E.; King, J. S.


    East Butte is a prominent volcanic dome located on the eastern Snake River Plain. It is situated 51 km west of Idaho Fallls in the southeast corner of the Idaho National Engineering facility. East Butte rises 350 meters above the Quaternary basalt flows which encircle its 2.4 kilometer diameter base. Its maximum elevation is 2003 meters above sea level. East Butte is composed dominantly of rhyolite. Armstrong and others (1975) determined a K-Ar age of 0.6 +/- m.y. for a rhyolite sample from East Butte. Detailed geologic mapping revealed East Butte to be a single, large cumulo-dome composed dominantly of rhyolite. Major element geochemical analyses indicate that the rhyolite of East Butte is mildly peralkaline (molecular excess of Na2O and K2O over Al2O3 and compositionally homogeneous. Color variations in the East Butte rhyolite result from varying amounts of chemical and physical weathering and to the degree of devitrification that the glass in the groundmass of the rhyolite underwent.

  14. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    Energy Technology Data Exchange (ETDEWEB)


    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  15. Modelling and Analysis of Phase Transformations and Stresses in Laser Welding Process / Modelowanie I Analiza Przemian Fazowych I Naprężeń W Procesie Spawania Laserowego

    Directory of Open Access Journals (Sweden)

    Piekarska W.


    Full Text Available The work concerns the numerical modelling of structural composition and stress state in steel elements welded by a laser beam. The temperature field in butt welded joint is obtained from the solution of heat transfer equation with convective term. The heat source model is developed. Latent heat of solid-liquid and liquid-gas transformations as well as latent heats of phase transformations in solid state are taken into account in the algorithm of thermal phenomena. The kinetics of phase transformations in the solid state and volume fractions of formed structures are determined using classical formulas as well as Continuous-Heating-Transformation (CHT diagram and Continuous-Cooling-Transformation (CCT diagram during welding. Models of phase transformations take into account the influence of thermal cycle parameters on the kinetics of phase transformations during welding. Temporary and residual stress is obtained on the basis of the solution of mechanical equilibrium equations in a rate form. Plastic strain is determined using non-isothermal plastic flow with isotropic reinforcement, obeying Huber-Misses plasticity condition. In addition to thermal and plastic strains, the model takes into account structural strain and transformation plasticity. Changing with temperature and structural composition thermophysical parameters are included into constitutive relations. Results of the prediction of structural composition and stress state in laser butt weld joint are presented.

  16. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.


    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  17. Thermoplastic welding apparatus and method (United States)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James


    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  18. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman


    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  19. Smoke-free college campuses: no ifs, ands or toxic butts


    Sawdey, Michael; Lindsay, Ryan P; Novotny, Thomas E


    Objective To better estimate the burden of toxic cigarette butt waste and create awareness of the hazardous nature of cigarette butts on two large university campuses in San Diego by organizing and conducting student cigarette butt clean-up activities. Methods Two separate campus-wide clean-ups were conducted by student volunteers at San Diego State University (SDSU) and at University of California San Diego (UCSD) between April and July 2010. Results In 1 h, 63 volunteers at SDSU collected 2...

  20. Estimation of the resistance to the initiation of fatigue cracks in the welded joints of steel constructions (United States)

    Odesskii, P. D.; Shuvalov, A. N.; Emel'yanov, O. V.


    The problem of choosing an effective approach to determining the fatigue strength of welded butt joints at the stage of crack nucleation is solved. The results of the calculations performed according to the existing building code from the specified strength characteristics and the calculations that take into account local elastoplastic deformation in stress concentration zones are compared. Full-scale specimens of the welded joints of pair angles are tested in the low-cycle fatigue region at a constant load. The kinetics of the state of stress in the zones of terminating flange welded joints is studied by a tensometric method. It is shown that the stage of fatigue crack nucleation is best described using the deformation criterion of fracture: a comparison of the results of calculating the number of cycles to the nucleation of a fatigue crack with experimental data demonstrates good agreement.

  1. Investigation of electron-beam welding in wrought Inconel 706--experimental and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Paolo [Department of Management and Engineering, University of Padova, Stradella S. Nicola, 3 I-36100 Vicenza (Italy)]. E-mail:; Zambon, Andrea [DIMEG, University of Padova, Via Marzolo, 9 I-35131 Padova (Italy); Bonollo, Franco [Department of Management and Engineering, University of Padova, Stradella S. Nicola, 3 I-36100 Vicenza (Italy)


    Electron-beam welding (EBW) is commonly employed in the aeroengine industry for the welding of high integrity components, fabricated from high-strength superalloys. For such applications, it is important to predict distortions and residual stresses induced by the process. Melt run trials have been carried out on nickel-base superalloy Inconel 706 plates using the EBW technique in order to analyse the effects of welding parameters on geometrical characteristics and microstructure of the bead. Butt-welded plates have been then investigated by means of tensile tests, microstructural analysis, and X-ray diffraction measurements. A finite element model of the process has been set up using an uncoupled thermal-mechanical analysis. The heat source was modelled using a superimposition of a spherical and a conical shape heat source with Gaussian power density distribution in order to reproduce the nail shape of the fusion zone (FZ). The parameters of the source were chosen so that the model would match with experimentally determined weld pool shape and temperatures, measured with thermocouples. Subsequently, the thermal analysis was used to drive the non-linear mechanical analysis. The predicted residual stresses were then compared with X-ray diffraction measurements. It was found that the correct thermal and residual stresses prediction is influenced by the shape of the fusion zone, the highest thermal tensile stress arising under the nailhead of the fusion zone where microfissuring can be observed.

  2. Titanium Alloys Thin Sheet Welding with the Use of Concentrated Solar Energy (United States)

    Pantelis, D. I.; Kazasidis, M.; Karakizis, P. N.


    The present study deals with the welding of titanium alloys thin sheets 1.3 mm thick, with the use of concentrated solar energy. The experimental part of the work took place at a medium size solar furnace at the installation of the Centre National de la Recherche Scientifique, at Odeillo, in Southern France, where similar and dissimilar defect-free welds of titanium Grades 4 and 6 were achieved, in the butt joint configuration. After the determination of the appropriate welding conditions, the optimum welded structures were examined and characterized microstructurally, by means of light optical microscopy, scanning electron microscopy, and microhardness testing. In addition, test pieces extracted from the weldments were tested under uniaxial tensile loading aiming to the estimation of the strength and the ductility of the joint. The analysis of the experimental results and the recorded data led to the basic concluding remarks which demonstrate increased hardness distribution inside the fusion area and severe loss of ductility, but adequate yield and tensile strength of the welds.

  3. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao


    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  4. Study of the temperature distribution on welded thin plates of duplex steel to be used for the external clad of a cask for transportation of radiopharmaceuticals products

    Energy Technology Data Exchange (ETDEWEB)

    Betini, Evandro G.; Ceoni, Francisco C.; Mucsi, Cristiano S.; Politano, Rodolfo; Rossi, Jesualdo L., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Orlando, Marcos T.D., E-mail: [Universidade Federal do Espirito Santo (CCE/DFIS/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Departamento de Fisica


    The clad material for a proprietary transport device for radiopharmaceutical products is the main focus of the present work. The production of {sup 99}Mo-{sup 99m}Tc transport cask requires a receptacle or cask where the UNS S32304 duplex steel sheet has shown that it meets high demands as the required mechanical strength and the spread of impact or shock waves mitigation. This work reports the experimental efforts in recording the thermal distribution on autogenous thin plates of UNS S32304 steel during welding. The UNS S32304 duplex steel is the most probable candidate for the external clad of the containment package for the transport of radioactive substances so it is highly relevant the understanding of all its physical parameters and its behavior under the thermal cycle imposed by a welding process. For the welding of the UNS S32304 autogenous plates the GTAW (gas tungsten arc welding) process was used with a pure argon arc protection atmosphere in order to simulate a butt joint weld on a thin duplex steel plate without filler metal. The thermal cycles were recorded by means of K-type thermocouples embedded by electrical spot welding near the weld region and connected to a multi-channel data acquisition system. The obtained results validate the reliability of the experimental apparatus for the future complete analysis of the welding experiment and further comparison to numerical analysis. (author)

  5. Welding processes handbook

    CERN Document Server

    Weman, Klas


    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  6. Electric pulse treatment of welded joint of aluminum alloy

    Directory of Open Access Journals (Sweden)

    A.A. Mitiaev


    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  7. Thermal stir welding process (United States)

    Ding, R. Jeffrey (Inventor)


    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  8. Thermal stir welding apparatus (United States)

    Ding, R. Jeffrey (Inventor)


    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  9. Solar array welding developement (United States)

    Elms, R. V., Jr.


    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  10. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė


    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  11. True Color Orthophotography for Fossil Butte National Monument Vegetation Mapping Project (United States)

    National Park Service, Department of the Interior — This photo mosaic of Fossil Butte National Monument was created from scanned 9x9s flown in 2004 in conjunction with the Vegetation Mapping Program. The photography...

  12. Contraband tobacco on post-secondary campuses in Ontario, Canada: analysis of discarded cigarette butts

    National Research Council Canada - National Science Library

    Barkans, Meagan; Lawrance, Kelli-an


    .... This study examined the proportion of First Nations/Native cigarette butts discarded on post-secondary campuses in the province of Ontario, and potential differences between colleges and universities...

  13. Mr Parvez Butt, Chairman of the Atomic Energy Commission (PAEC), Pakistan

    CERN Multimedia

    Maximilien Brice


    Photo 01: Mr. Parvez Butt, Chairman Pakistan Atomic Energy Commission (standing 4th from left) with his delegation and ATLAS team standing in front of the Barrel Supports manufactured in HMC3 - Pakistan.

  14. Willamette Valley - Oregon White Oak Restoration: North Baskett Butte and Maple Knoll RNA (United States)

    US Fish and Wildlife Service, Department of the Interior — This project was the initial work needed to preserve the existing oak habitat on WVNWRC by eliminating the Douglas fir overstory. North Baskett Butte, on Baskett...

  15. Spatial Vegetation Data for Fossil Butte National Monument Vegetation Mapping Project (United States)

    National Park Service, Department of the Interior — This polygon feature class represents vegetation communities mapped at Fossil Butte National Monument. The polygons were generated using guidelines set by the...

  16. Comparison of the use of notched wedge joints vs. traditional butt joints in Connecticut (United States)


    Performance of Hot Mix Asphalt (HMA) longitudinal joints have been an item of increasing scrutiny in : Connecticut. The traditional butt joint has typically been the method used in Connecticut. These joints : have been reportedly opening up, creating...

  17. 78 FR 21582 - Revisions to the California State Implementation Plan, Butte County Air Quality Management... (United States)


    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Butte County Air Quality Management District and Sacramento Metropolitan Air Quality Management District AGENCY: Environmental... County Air Quality Management District (BCAQMD) and Sacramento Metropolitan Air Quality Management...

  18. Field Plot and Observation Points for Fossil Butte National Monument Vegetation Mapping Project (United States)

    National Park Service, Department of the Interior — This point file contains 255 point locations of field plot and observation data used by, and collected for, the vegetation mapping project for Fossil Butte National...

  19. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  20. Variation in, and causes of, toxicity of cigarette butts to a cladoceran and microtox. (United States)

    Micevska, T; Warne, M St J; Pablo, F; Patra, R


    Cigarette butts are the most numerically frequent form of litter in the world. In Australia alone, 24-32 billion cigarette butts are littered annually. Despite this littering, few studies have been undertaken to explore the toxicity of cigarette butts in aquatic ecosystems. The acute toxicity of 19 filtered cigarette types to Ceriodaphnia cf. dubia (48-hr EC50 (immobilization)) and Vibrio fischeri (30-min EC50 (bioluminescence)) was determined using leachates from artificially smoked cigarette butts. There was a 2.9- and 8-fold difference in toxicity between the least and most toxic cigarette butts to C. cf. dubia and V. fischeri, respectively. Overall, C. cf. dubia was more inherently sensitive than V. fischeri by a factor of approximately 15.4, and the interspecies relationship between C. cf. dubia and V. fischeri was poor (R(2) = 0.07). This poor relationship indicates that toxicity data for cigarette butts for one species could not predict or model the toxicity of cigarette butts to the other species. However, the order of the toxicity of leachates can be predicted. It was determined that organic compounds caused the majority of toxicity in the cigarette butt leachates. Of the 14 organic compounds identified, nicotine and ethylphenol were suspected to be the main causative toxicants. There was a strong relationship between toxicity and tar content and between toxicity and nicotine content for two of the three brands of cigarettes (R(2 )> 0.70) for C. cf. dubia and one brand for V. fischeri. However, when the cigarettes were pooled, the relationship was weak (R(2) < 0.40) for both test species. Brand affected the toxicity to both species but more so for V. fischeri.

  1. Friction stir welding tool (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID


    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  2. Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of AA2024-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    A. W. El-Morsy


    Full Text Available In this work, the effects of rotational and traverse speeds on the 1.5 mm butt joint performance of friction stir welded 2024-T4 aluminum alloy sheets have been investigated. Five rotational speeds ranging from 560 to 1800 rpm and five traverse speeds ranging from 11 to 45 mm/min have been employed. The characterization of microstructure and the mechanical properties (tensile, microhardness, and bending of the welded sheets have been studied. The results reveal that by varying the welding parameters, almost sound joints and high performance welded joints can be successfully produced at the rotational speeds of 900 rpm and 700 rpm and the traverse speed of 35 mm/min. The maximum welding performance of joints is found to be 86.3% with 900 rpm rotational speed and 35 mm/min traverse speed. The microhardness values along the cross-section of the joints show a dramatic drop in the stir zone where the lowest value reached is about 63% of the base metal due to the softening of the welded zone caused by the heat input during joining.

  3. Investigation and Optimization of Disk-Laser Welding of 1 mm Thick Ti-6Al-4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo


    Full Text Available Ti-6Al-4V joints are employed in nuclear engineering, civil industry, military, and space vehicles. Laser beam welding has been proven to be promising, thanks to increased penetration depth and reduction of possible defects of the welding bead; moreover, a smaller grain size in the fusion zone is better in comparison to either TIG or plasma arc welding, thus providing an increase in tensile strength of any welded structures. In this frame, the regression models for a number of crucial responses are discussed in this paper. The study has been conducted on 1 mm thick Ti-6Al-4V plates in square butt welding configuration; a disk-laser source has been used. A three-level Box-Behnken experimental design is considered. An optimum condition is then suggested via numerical optimization with the response surface method using desirability functions with proper weights and importance of constraints. Eventually, Vickers microhardness testing has been conducted to discuss structural changes in fusion and heat affected zone due to welding thermal cycles.

  4. Experimental and numerical evaluation of the fatigue behaviour in a welded joint (United States)

    Almaguer, P.; Estrada, R.


    Welded joints are an important part in structures. For this reason, it is always necessary to know the behaviour of them under cyclic loads. In this paper a S - N curve of a butt welded joint of the AISI 1015 steel and Cuban manufacturing E6013 electrode is showed. Fatigue tests were made in an universal testing machine MTS810. The stress ratio used in the test was 0,1. Flaws in the fatigue specimens were characterized by means of optical and scanning electron microscopy. SolidWorks 2013 software was used to modeling the specimens geometry, while to simulate the fatigue behaviour Simulation was used. The joint fatigue limit is 178 MPa, and a cut point at 2 039 093 cycles. Some points of the simulations are inside of the 95% confidence band.

  5. Re-analysis of fatigue data for welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard


    Experimental fatigue data for welded joints have been collected and subjected to re-analysis using the notch stress approach according to IIW recommendations. This leads to an overview regarding the reliability of the approach, based on a large number of results (767 specimens). Evidently......, there are some limitations in the approach regarding mild notch joints, such as butt joints, which can be assessed non-conservatively. In order to alleviate this problem, an increased minimum notch factor of Kw>2.0 is suggested instead of the current recommendation of Kw>1.6. The data for most fillet......-welded joints agree quite well with the FAT 225 curve; however a reduction to FAT 200 is suggested in order to achieve approximately the same safety as observed in the nominal stress approach....

  6. A FEM based methodology to simulate multiple crack propagation in friction stir welds

    DEFF Research Database (Denmark)

    Lepore, Marcello; Carlone, Pierpaolo; Berto, Filippo


    In this work a numerical procedure, based on a finite element approach, is proposed to simulate multiple three-dimensional crack propagation in a welded structure. Cracks are introduced in a friction stir welded AA2024-T3 butt joint, affected by a process-induced residual stress scenario....... The residual stress field was inferred by a thermo-mechanical FEM simulation of the process, considering temperature dependent elastic-plastic material properties, material softening and isotropic hardening. Afterwards, cracks introduced in the selected location of FEM computational domain allow stress...... insertion, as well as with respect to crack sizes measured in three different points for each propagation step. This FEM-based approach simulates the fatigue crack propagation by considering accurately the residual stress field generated by plastic deformations imposed on a structural component and has...

  7. Synthetic Aperture Focusing Technique for the Ultrasonic Evaluation of Friction Stir Welds (United States)

    Lévesque, D.; Dubourg, L.; Mandache, C.; Kruger, S. E.; Lord, M.; Merati, A.; Jahazi, M.; Monchalin, J.-P.


    An ultrasonic technique using numerical focusing and processing is presented in this paper for the detection of different types of flaws in friction stir welds (FSW). The data is acquired using immersion ultrasonic technique or laser ultrasonics, while the Synthetic Aperture Focusing Technique (SAFT) is used for numerical focusing. Measurements on the top and far sides of the weld for both lap and butt joints of thin aluminum sheets are investigated. Discontinuities such as wormholes, hooking, lack of penetration and voids are found to be easily detected. The limit of detectability and a comparison with mechanical properties are discussed. Also, the detection of joint line remnants or kissing bonds due to entrapped oxide layers seems possible in lap joint structures using high frequency laser-ultrasonics.

  8. Concurrent ultrasonic weld evaluation system (United States)

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.


    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  9. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Karpagaraj, A.; Siva shanmugam, N., E-mail:; Sankaranarayanasamy, K.


    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity.

  10. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  11. Weld formation control at electron beam welding with beam oscillations


    Trushnikov, Dmitriy; Koleva, Elena; Mladenov, Georgy; A. Shcherbakov


    Electron beam welding is used extensively to produce essential machine parts. The control of the basic beam parameters beam power or beam current at constant accelerating voltage, welding speed, current of focusing lens and distance between electron gun and welded sample surface is not enough to obtain at most of the regimes sound welds. Control of the focus position using analysis of the high frequency component of the current, collected by plasma, at periodic interactions on the beam (the o...

  12. Analisa Pengaruh Variasi Sudut Bevel Akibat Kombinasi Pengelasan Fcaw dan SMAW terhadap Kekuatan Impact Butt Joint pada Spesimen Pipa Api 5l Grade X42

    Directory of Open Access Journals (Sweden)

    Rizkiyah Ramadani


    Full Text Available Kekuatan sambungan las pada suatu konstruksi perlu diperhatikan dengan baik dan pengujian pun perlu dilakukan untuk mengetahui ketahanan bahan terhadap suatu beban. Dalam penelitian tugas akhir ini bertujuan untuk mengetahui pengaruh sudut bevel dan kondisi optimal akibat  kombinasi pengelasan FCAW dan SMAW terhadap kekuatan impact butt joint pada material pipa API 5L grade X42. Variasi sudut bevel yang digunakan adalah 60o, 40o, dan 0o. Pengujian impact merupakan suatu upaya untuk mensimulasikan kondisi operasi material yang sering ditemui dalam perlengkapan transportasi atau konstruksi dimana beban tidak selamanya terjadi secara perlahan-lahan melainkan datang secara tiba-tiba, khususnya dalam konstruksi bangunan lepas pantai dimana beban secara tiba – tiba sangat memungkinkan untuk terjadi. Dari hasil penelitian yang dilakukan didapatkan bahwa  nilai kekuatan impact pada sudut bevel 60o di bagian weld adalah sebesar 2.01 J/mm2 dan bagian HAZ sebesar 2.08  J/mm2. Sudut bevel 40o memiliki nilai pada bagian weld sebesar 2.10 J/mm2 dan bagian HAZ sebesar 2.13  J/mm2. Namun memiliki pengaruh yang jauh berbeda dengan sudut bevel 0o yaitu memiliki nilai impact sebesar 1.72 J/mm2 untuk bagian weld dan 1.13 J/mm2 untuk bagian HAZ . Kondisi optimal pengaruh sudut bevel terhadap kekutan impact adalah sudut 40o . Hal ini dikarenakan persentase ferrite metalografi struktur mikronya lebih banyak dibandingkan dengan sudut bevel 60o dan 0o dan juga memiliki nilai kekerasan yang rendah sehingga bersifat ulet menyebabkan nilai impact-nya lebih unggul. Selain itu efisensi dalam segi penghematan waktu kerja, perkerja maupun biaya produksi lebih baik.

  13. Alternate Welding Processes for In-Service Welding (United States)


    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  14. Certification of a weld produced by friction stir welding (United States)

    Obaditch, Chris; Grant, Glenn J


    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  15. Welding defects at friction stir welding

    Directory of Open Access Journals (Sweden)

    P. Podržaj


    Full Text Available The paper presents an overview of different types of defects at friction stir welding. In order to explain the reasons for their occurrence a short theoretical background of the process is given first. The main emphasis is on the parameters that influence the process. An energy supply based division of defects into three disjoint groups was used. The occurring defects are demonstrated on various materials.

  16. Workmanship standards for fusion welding (United States)

    Phillips, M. D.


    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  17. Fundamental Study of Material Flow in Friction Stir Welds (United States)

    Reynolds, Anthony P.


    The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied

  18. Welding and Brazing Silicon Carbide (United States)

    Moore, T. J.


    Hot isostatic pressing and conventional furnace brazing effective under right conditions. Study performed showed feasibility of welding SiC using several welding and brazing techniques. Use of SiC improves engine efficiency by allowing increase in operating temperature. SiC successfully hot-pressure-welded at 3,550 degrees F (1,950 degrees C) in argon. Refinements of solid-state welding and brazing procedures used sufficient for some specific industrial applications.

  19. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire (United States)

    Huang, Bo; Zhang, Junyu; Wu, Qingsheng


    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h.

  20. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications (United States)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert


    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  1. Welding. Performance Objectives. Basic Course. (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  2. Welding. Performance Objectives. Intermediate Course. (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  3. The effects of some variables on CO{sub 2} laser-MAG hybrid welding

    Energy Technology Data Exchange (ETDEWEB)

    Fellman, A.


    The CO{sub 2}-laser-MAG hybrid welding process has been shown to be a productive choice for the welding industry, being used in e.g. the shipbuilding, pipe and beam manufacturing, and automotive industries. It provides an opportunity to increase the productivity of welding of joints containing air gaps compared with autogenous laser beam welding, with associated reductions in distortion and marked increases in welding speeds and penetration in comparison with both arc and autogenous laser welding. The literature study indicated that the phenomena of laser hybrid welding are mostly being studied using bead-on-plate welding or zero air gap configurations. This study shows it very clearly that the CO{sub 2} laser-MAG hybrid welding process is completely different, when there is a groove with an air gap. As in case of industrial use it is excepted that welding is performed for non-zero grooves, this study is of great importance for industrial applications. The results of this study indicate that by using a 6 kW CO{sub 2} laser-MAG hybrid welding process, the welding speed may also be increased if an air gap is present in the joint. Experimental trials indicated that the welding speed may be increased by 30-82% when compared with bead-on-plate welding, or welding of a joint with no air gap i.e. a joint prepared as optimum for autogenous laser welding. This study demonstrates very clearly, that the separation of the different processes, as well as the relative configurations of the processes (arc leading or trailing) affect welding performance significantly. These matters influence the droplet size and therefore the metal transfer mode, which in turn determined the resulting weld quality and the ability to bridge air gaps. Welding in bead-onplate mode, or of an I butt joint containing no air gap joint is facilitated by using a leading torch. This is due to the preheating effect of the arc, which increases the absorptivity of the work piece to the laser beam, enabling

  4. Friction stir welding tool and process for welding dissimilar materials (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F


    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  5. Ultrasonic Evaluation of Weld Strength for Aluminum Ultrasonic Spot Welds (United States)

    Ghaffari, Bita; Hetrick, Elizabeth T.; Mozurkewich, George; Reatherford, Larry V.


    The goal of this work is to determine the feasibility of using an ultrasonic, non-destructive technique for post-process evaluation of aluminum ultrasonic spot welds. A focused immersion transducer was utilized to obtain a C-scan of the weld interface, from which a weighted ultrasonic contact area was estimated. Weldments were subsequently tested destructively to determine the weld strength. The square root of the weld contact area displayed a relatively good correlation with weld strength, r2=0.85.

  6. The Search for Hot Jupiters using Red Buttes Observatory (United States)

    Sorber, Rebecca L.; Kar, Aman; Hancock, Daniel A.; Leuquire, Jacob D.; Suhaimi, Afiq; Kasper, David; Jang-Condell, Hannah


    The goal of this research is to use the University of Wyoming’s Red Buttes Observatory (RBO) to perform manual, remote, or automated observations of transiting exoplanet candidates. The data contributes to discovery of star systems that include never before identified exoplanets. RBO houses a 0.6-meter telescope and is located approximately 10 miles south of the University of Wyoming’s campus. Our targets are catalogued by the KELT (Kilodegree Extremely Little Telescope) Survey, a photometric search for transiting exoplanets around bright main sequence stars. The KELT Follow-up Network (KELT-FUN), a collaboration of small-aperture telescope users located all over the world, confirms new exoplanet candidates. As part of KELT-FUN, students use the RBO to monitor candidates identified by the KELT team. RBO typically detects transits around stars that are 8-12 in V magnitude, with transit durations of ~1-4 hours and full depth relative changes in brightness above 2 mmags. Using AstroImageJ, we process the data and we look for any indication of a transit occurrence in the processed lightcurve which might confirm the presence of the potential exoplanet. Our team has contributed over 50 light curves to KELT-FUN to date. We are able to compare our data with simultaneous observations by other members of KELT-FUN to maximize the utility of our observations. This project gives undergraduates an authentic scientific research experience, learning how to operate an observatory, process data, and participate in a scientific collaboration.

  7. Improvement of Weldment Properties by Hot Forming Quenching of Friction Stir Welded TWB Sheet

    Directory of Open Access Journals (Sweden)

    Dae-Hoon Ko


    Full Text Available The purpose of this study is to improve the mechanical properties and formability of friction stir welded tailor-welded blanks (TWBs of Al6061 alloy with a new forming method called hot forming quenching (HFQ in which solid-solution heat-treated aluminum sheets are formed at elevated temperature. Forming and quenching during HFQ are simultaneously performed with the forming die for the solid-solution heat-treated sheet. In this study, specimens of aluminum TWBs were prepared by friction stir welding (FSW with a butt joint. The effectiveness of FSW joining was evaluated by observation of the macrostructure for different sheet thicknesses. In order to evaluate the formability of TWBs by HFQ, a hemisphere dome stretching test of the limit dome height achieved without specimen failure was performed with various tool temperatures. A Vickers test was also performed to measure weldment hardness as a function of position. The formability and mechanical properties of products formed by HFQ are compared with those formed by conventional forming methods, demonstrating the suitability of HFQ for sheet metal forming of friction stir welded TWBs.

  8. Influence of friction stir welding parameters on properties of 2024 T3 aluminium alloy joints

    Directory of Open Access Journals (Sweden)

    Eramah Abdsalam M.


    Full Text Available The aim of this work is to analyse the process of friction stir welding (FSW of 3mm thick aluminium plates made of high strength aluminium alloy - 2024 T3, as well as to assess the mechanical properties of the produced joints. FSW is a modern procedure which enables joining of similar and dissimilar materials in the solid state, by the combined action of heat and mechanical work. This paper presents an analysis of the experimental results obtained by testing the butt welded joints. Tensile strength of the produced joints is assessed, as well as the distribution of hardness, micro-and macrostructure through the joints (in the base material, nugget, heat affected zone and thermo-mechanically affected zone. Different combinations of the tool rotation speed and the welding speed are used, and the dependence of the properties of the joints on these parameters of welding technology is determined. [Projekat Ministarstva nauke Republike Srbije, br. TR 34018 i br. TR 35006

  9. Dissimilar welding of nickel-based Alloy 690 to SUS 304L with Ti addition (United States)

    Lee, H. T.; Jeng, S. L.; Yen, C. H.; Kuo, T. Y.


    This study investigates the effects of Ti addition on the weldability, microstructure and mechanical properties of a dissimilar weldment of Alloy 690 and SUS 304L. Shielding metal arc welding (SMAW) is employed to butt-weld two plates with three welding layers, where each layer is deposited in a single pass. To investigate the effects of Ti addition, the flux coatings of the electrodes used in the welding process are modified by varying additions of either a Ti-Fe compound or a Ti powder. The results indicate that the microstructure of the fusion zone (FZ) is primarily dendritic. With increasing Ti content, it is noted that the microstructure changes from a columnar dendritic to an equiaxed dendritic, in which the primary dendrite arm spacing (PDAS) becomes shorter. Furthermore, it is observed that the amount of Al-Ti oxide phase increases in the inter-dendritic region, while the amount of Nb-rich phase decreases. Moreover, the average hardness of the FZ increases slightly. The results indicate that Ti addition prompts a significant increase in the elongation of the weldment (i.e. 36.5%, Ti: 0.41 wt%), although the tensile strength remains relatively unchanged. However, at an increased Ti content of 0.91 wt%, an obvious reduction in the tensile strength is noted, which can be attributed to a general reduction in the weldability of the joint.

  10. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)


    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  11. Fatigue behavior of vertical axis wind turbine airfoils with two weld configurations (United States)

    Mitchell, M. R.; Murphy, A. R.


    A series of narrowband, pseudo-random cyclic fatigue tests on sections of 6063-T651 aluminum, Darrius-type, vertical axis wind turbine (VAWT) airfoils were performed. A load member was designed and constructed that was mounted within the frame of a rigid 200-kip servohydraulic, closed-loop test system to hold the VAWT section and permit cantilever bending along the shear centerline of the beam. A computer program was developed to synthesize a narrow band, pseudo-random load history with fixed root mean square (RMS) stress levels at a given bandwidth and central frequency. Six specimens each of two different weld configurations at the flange mounting plate were tested at several RMS stress levels with failure defined as visual observation of a 3 inch long crack in the VAWT. In order to test at as great a frequency as possible, a 20-kip hydraulic ram with a 10 GPM servovalve was employed with a 20 GPM pump. Tests were performed from 2 to 1.3 ksi RMS on the two-weld configurations. The conclusions are obvious that the fillet weld design is far superior to the butt weld design in the range of variables used in this program.

  12. Weld bead profile of laser welding dissimilar joints stainless steel (United States)

    Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.


    During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.

  13. Weld Nugget Temperature Control in Thermal Stir Welding (United States)

    Ding, R. Jeffrey (Inventor)


    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  14. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  15. Extravehicular activity welding experiment (United States)

    Watson, J. Kevin


    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  16. Pulsed welding plasma source (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.


    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  17. Ternary gas plasma welding torch (United States)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor); Waldron, Douglas J. (Inventor)


    A plasma arc welding torch is discussed. A first plasma gas is directed through the body of the welding torch and out of the body across the tip of a welding electrode disposed at the forward end of the body. A second plasma gas is disposed for flow through a longitudinal bore in the electrode. The second plasma gas enters one end of the electrode and exits the electrode at the tip thereof for co-acting with the electric welding arc to produce the desired weld. A shield gas is directed through the torch body and circulates around the head of the torch adjacent to the electrode tip.

  18. Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    A. Dhanapal


    Full Text Available Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW processes. The specimens were exposed to salt spray conditions and immersion conditions to characterize their corrosion rates on the effect of pH value, chloride ion concentration, and corrosion time. In addition, an attempt was made to develop an empirical relationship to predict the corrosion rate of FSW welds in salt spray corrosion test and galvanic corrosion test using design of experiments. The corrosion morphology and the pit morphology were analyzed by optical microscopy, and the corrosion products were examined using scanning electron microscope and X-ray diffraction analysis. From this research work, it is found that, in both corrosion tests, the corrosion rate decreases with the increase in pH value, the decrease in chloride ion concentration, and a higher corrosion time. The results show the usage of the magnesium alloy for best environments and suitable applications from the aforementioned conditions. Also, it is found that AZ61A magnesium alloy welds possess low-corrosion rate and higher-corrosion resistance in the galvanic corrosion test than in the salt spray corrosion test.

  19. Effect of Manganese on the Mechanical Properties of Welded As-Cast Aluminium Joint

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE


    Full Text Available The effects of manganese on the mechanical properties of welded and un-weld as-cast 6063 aluminium alloy has been studied. Alloys of varying percentage of manganese from 0.019 to 0.24 were sand cast. A wooden pattern of dimensions 200×100×100mm was used, the aluminium (500g was charged into an induction furnace and heated to 750°C for 15 minutes, this was followed by the addition of weighed powdered manganese, stirred and heated at the same temperature for another 5 minutes and thereafter poured into the already prepared sand mould at a temperature of 690°C. The as-cast aluminium samples, were sectioned into two equal parts of 45mm each using power hack saw; a weld groove was created between the sides of the samples using an electric hand grinding machine, the groove served as the path along which the filler metal was deposited on the aluminium, a single v butt joint was produced from each sample and Metal Inert Gas Welding process was carried out to produce the required joint design. The different cast samples were machined to the different test pieces after which they were assessed to determine their mechanical properties (impact, hardness (welded joint and heat affected zone and tensile tests. The microstructures of the welded samples were also studied. From the results, it was observed that Sample F, which has 0.172% Mn, has the best hardness and impact strength while sample C with 0.160% Mn has the highest ultimate tensile strength.

  20. Thickness and multi-axial stress creep rupture criteria of the Type IV component of a ferritic steel weld


    Hayhurst, R James; Vakili-Tahami, Farid; Mustata, Radu; Hayhurst, David


    The paper summarises previously derived constitutive parameters for the temperatures 575, 590, 600, 620 and 640oC. Values of the multi-axial stress rupture parameter are reviewed and recorded. This constitutive parameter set is used to determine the thickness of the Type IV material zone to be 0.7mm. Next, values of Type IV multi-axial stress rupture parameter are determined for a wide range of butt-welded pipe and crosswelded uni-axial specimens, and an interpolation equation has been derive...

  1. The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

    Energy Technology Data Exchange (ETDEWEB)

    Drellack, Jr., Sigmund L.; Prothro, Lance B.; Gonzales, Jose L.; Mercadante, Jennifer M.


    , 2006). • No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. • Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). • Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

  2. Study of the Microstructure Evolution and Properties Response of a Friction-Stir-Welded Copper-Chromium-Zirconium Alloy

    Directory of Open Access Journals (Sweden)

    Ruilin Lai


    Full Text Available In this article, the copper-chromium-zirconium (CuCrZr alloys plates with 21 mm in thickness were butt joined together by means of FSW (friction stir welding. The properties of the FSW joints are studied. The microstructure variations during the process of FSW were investigated by optical microscopy (OM, electron back-scattered diffraction (EBSD, and transmission electron microscopy (TEM. The results show that the grains size in the nugget zone (NZ are significantly refined, which can be attributed to the dynamic recrystallization (DRX. The microstructure distribution in the NZ is inhomogeneous and the size of equiaxed grains are decreased gradually along the thickness direction from the top to bottom area of the welds. Meanwhile, it is found that the micro-hardness and tensile strength of the welds are slightly increased along the thickness direction from the top to the bottom area of the welds. All the nano-strengthening precipitates in the BM are dissolved into the Cu matrix in the NZ. Therefore, the decreases in hardness, tensile strength, and electrical conductivity can be attributed to the comprehensive effect of dissolution of nano-strengthening precipitates into the supersaturation matrix and severe DRX in the welded NZ.

  3. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.


    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  4. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.


    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  5. Pueblo Folklore, Landscape Phenomenology and the Visual Poetics of Fajada Butte (United States)

    Carey, C.


    In the interest of reexamining the site of Fajada Butte in Chaco Canyon, this paper seeks to recontextualize discussions of its controversial spiral petroglyphs and astronomical phenomena (Sun Daggers) with reference to landscape phenomenology, visual and literary poetics, and the astronomical orientation of contemporary Pueblo ceremonial practices. The dearth of recent scholarship on Fajada Butte may have arisen from the many controversial arguments about its function from a variety of disciplinary locations including archaeology, anthropology, geology, and archeoastronomy. Via an emphasis on the physical landscape, storytelling, contemporary ceremonial practices and ancestral ties to Chaco Canyon, the Zuni and Hopi pueblos provide a context for re-examining the astronomical phenomena of Fajada Butte as a natural shrine of the of Chacoan culture and repository of an array of symbolic content.

  6. Dormaier and Chester Butte 2007 Follow-up Habitat Evaluation Procedures Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.


    Follow-up habitat evaluation procedures (HEP) analyses were conducted on the Dormaier and Chester Butte wildlife mitigation sites in April 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance, and maintain the project sites as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The Dormaier follow-up HEP survey generated 482.92 habitat units (HU) or 1.51 HUs per acre for an increase of 34.92 HUs over baseline credits. Likewise, 2,949.06 HUs (1.45 HUs/acre) were generated from the Chester Butte follow-up HEP analysis for an increase of 1,511.29 habitat units above baseline survey results. Combined, BPA will be credited with an additional 1,546.21 follow-up habitat units from the Dormaier and Chester Butte parcels.

  7. Weld procedure development with OSLW - optimization software for laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Fuerschbach, P.W.; Eisler, G.R. [Sandia National Labs., Albuquerque, NM (United States); Steele, R.J. [Naval Air Warfare Center, China Lake, CA (United States)


    Weld procedure development can require extensive experimentation, in-depth process knowledge, and is further complicated by the fact that there are often multiple sets of parameters that will meet the weld requirements. Choosing among these multiple weld procedures can be hastened with computer models that find parameters to meet selected weld dimensional requirements while simultaneously optimizing important figures of merit. Software is described that performs this task for CO{sub 2} laser beam welding. The models are based on dimensionless parameter correlations that are derived from solutions to the moving heat source equations. The use of both handbook and empirically verified thermophysical property values allows OSLW to be extended to many different materials. Graphics displays show the resulting solution on contour plots that can be used to further probe the model. The important figures of merit for laser beam welding are energy transfer efficiency and melting efficiency. The application enables the user to input desired weld shape dimensions, select the material to be welded, and to constrain the search problem to meet the application requirements. Successful testing of the software at a laser welding fabricator has validated this tool for weld procedure development.

  8. Welding. Student Learning Guide. (United States)

    Palm Beach County Board of Public Instruction, West Palm Beach, FL.

    This student learning guide contains 30 modules for completing a course in welding. It is designed especially for use in secondary schools in Palm Beach County, Florida. Each module covers one task, and consists of a purpose, performance objective, enabling objectives, learning activities keyed to resources, information sheets, student self-check…

  9. Elementary TIG Welding Skills. (United States)

    Pierson, John E., III

    The text was prepared to help deaf students develop the skills needed by an employed welder. It uses simplified language and illustrations to present concepts which should be reinforced by practical experience with welding skills. Each of the 12 lessons contains: (1) an information section with many illustrations which presents a concept or…

  10. 76 FR 9320 - Foreign-Trade Zone 274-Butte-Silver Bow, MT; Application for Manufacturing Authority REC Silicon... (United States)


    ... Authority REC Silicon (Polysilicon and Silane Gas) Butte, MT An application has been submitted to the..., requesting manufacturing authority on behalf of REC Silicon, located in Butte, Montana. The application was... regulations of the Board (15 CFR part 400). It was formally filed on February 11, 2011. The REC Silicon...

  11. 77 FR 71454 - Crow Butte Resources, Inc. License SUA-1534, License Amendment To Construct and Operate Marsland... (United States)


    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Crow Butte Resources, Inc. License SUA-1534, License Amendment To Construct and Operate Marsland... 16, 2012 and June 8, 2012, Crow Butte Resources, Inc. (CBR) submitted a request to amend Source...

  12. 75 FR 68350 - Burley Butte Wind Park, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Burley Butte Wind Park, LLC; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding of Burley Butte Wind Park, LLC's application for market...

  13. effect of post-weld heat treatment on the microstructure

    African Journals Online (AJOL)


    among others are shielded metal arc welding, submerge arc welding, gas metal arc welding, plasma arc welding, gas ... welding (SMAW) technique is preferable to the other techniques ..... studies''International Journal of Innovative Research.

  14. SHADOW: a new welding technique (United States)

    Kramer, Thorsten; Olowinsky, Alexander M.; Durand, Friedrich


    The new welding technique 'SHADOW ' is introduced. SHADOW means the use of a single pulse to generate a quasi continuous weld of several millimeters in length. HET processing time is defined by the pulse duration of the pulsed laser. At present, a state-of-the-art laser is capable of a maximum pulse duration of 20 ms. The variation of the laser power depend on time is a vital capability of the pulsed laser to adapt the energy deposition into the workpiece. Laser beam welds of several watch components were successfully performed. Similar metals like crowns and axes made out of stainless steel have been welded using pulsed laser radiation. Applying a series of about 130 single pulses for the crown-axis combination the total energy accumulates to 19.5 J. The use of the SHADOW welding technique reduces the energy to 2.5 J. While welding dissimilar metals like stainless steel and bras, the SHADOW welding reduces drastically the contamination as well as the distortion. Laser beam welding of copper has a low process reliability due to the high reflection and the high thermal conductivity. SHADOW welds of 3.6 mm length were performed on 250 micrometers thick copper plates with very high reproducibility. As a result, a pilot plant for laser beam welding of copper plates has been set up. The work to be presented has partly been funded by the European Commission in a project under the contract BRPR-CT-0634.

  15. Investigation of Friction Stir Welding and Laser Engineered Net Shaping of Metal Matrix Composite Materials (United States)

    Diwan, Ravinder M.


    The improvement in weld quality by the friction stir welding (FSW) process invented by TWI of Cambridge, England, patented in 1991, has prompted investigation of this process for advanced structural materials including Al metal matrix composite (Al-MMC) materials. Such materials can have high specific stiffness and other potential beneficial properties for the extreme environments in space. Developments of discontinuous reinforced Al-MMCs have found potential space applications and the future for such applications is quite promising. The space industry has recognized advantages of the FSW process over conventional welding processes such as the absence of a melt zone, reduced distortion, elimination of the need for shielding gases, and ease of automation. The process has been well proven for aluminum alloys, and work is being carried out for ferrous materials, magnesium alloys and copper alloys. Development work in the FSW welding process for joining of Al-MMCs is relatively recent and some of this and related work can be found in referenced research publications. NASA engineers have undertaken to spear head this research development work for FSW process investigation of Al-MMCs. Some of the reported related work has pointed out the difficulty in fusion welding of particulate reinforced MMCs where liquid Al will react with SiC to precipitate aluminum carbide (Al4C3). Advantages of no such reaction and no need for joint preparation for the FSW process is anticipated in the welding of Al-MMCs. The FSW process has been best described as a combination of extrusion and forging of metals. This is carried out as the pin tool rotates and is slowly plunged into the bond line of the joint as the pin tool's shoulder is in intimate contact with the work piece. The material is friction-stirred into a quality weld. Al-MMCs, 4 in. x 12 in. plates of 0.25 in. (6.35mm) thickness, procured from MMCC, Inc. were butt welded using FSW process at Marshall Space Flight Center (MSFC) using

  16. 77 FR 48965 - Certain Carbon Steel Butt-Weld Pipe Fittings From the People's Republic of China: Notice of Court... (United States)


    ... China: Notice of Court Decision Not in Harmony With Amended Final Scope Ruling and Notice of Amended... fittings from the People's Republic of China (``PRC'') used in structural applications. In King Supply III... determined that the scope of the Order did not give rise to an end use restriction, (2) the Department's...

  17. Development of Fatigue Life Improvement Technology of Butt Joints Using Friction Stir Processing

    Directory of Open Access Journals (Sweden)

    Jeong-Ung Park


    Full Text Available Burr grinding, tungsten inert gas (TIG dressing, ultrasonic impact treatment, and peening are used to improve fatigue life in steel structures. These methods improve the fatigue life of weld joints by hardening the weld toe, improving the bead shape, or causing compressive residual stress. This study proposes a new postweld treatment method improving the weld bead shape and metal structure at the welding zone using friction stir processing (FSP to enhance fatigue life. For that, a pin-shaped tool and processing condition employing FSP has been established through experiment. Experimental results revealed that fatigue life improves by around 42% compared to as-welded fatigue specimens by reducing the stress concentration at the weld toe and generating a metal structure finer than that of flux-cored arc welding (FCAW. Hot-spot stress, structural stress, and simplified calculation methods cannot predict the accurate stress at the weld toe in case the weld toe has a smooth curvature as in the case of the FSP specimen. On the contrary, a finite element calculation could reasonably predict the stress concentration factor for the FSP specimen because it considers not only the bead profile but also the weld toe profile.

  18. In-field Welding and Coating Protocols (United States)


    Gas Technology Institute (GTI) and Edison Welding Institute (EWI) created both laboratory and infield girth weld samples to evaluate the effects of weld geometry and hydrogen off-gassing on the performance of protective coatings. Laboratory made plat...

  19. Closed circuit TV system monitors welding operations (United States)

    Gilman, M.


    TV camera system that has a special vidicon tube with a gradient density filter is used in remote monitoring of TIG welding of stainless steel. The welding operations involve complex assembly welding tools and skates in areas of limited accessibility.

  20. 76 FR 43341 - Notice of Availability of the Record of Decision for the West Butte Wind Power Right-of-Way... (United States)


    ... Bureau of Land Management Notice of Availability of the Record of Decision for the West Butte Wind Power... INFORMATION CONTACT: Steve Storo, BLM West Butte Wind Power Right-of-Way Project Lead: telephone (541) 416... INFORMATION: The applicant, West Butte Wind Power, LLC, filed right-of-way (ROW) application OR-065784 to...

  1. Hot cracking of welded joints of the 7CrMoVTiB 10-10 (T/P24) steel (United States)

    Adamiec, J.


    Bainitic steel 7CrMoVTiB10-10 is one the newest steels for waterwalls of modern industrial boilers [1]. In Europe, attempts have been made to make butt welded joints of pipes made of this steel of the diameter up to 51 mm and thickness up to 8 mm. Many cracks have been observed in the welded joint, both during welding and transport and storage [2-4]. The reasons of cracking and the prevention methods have not been investigated. No comprehensive research is carried out in Europe in order to automate the welding process of the industrial boiler elements made of modern bainitic steel, such as 7CrMoVTiB10-10. There is no information about its overall, operative and local weldability, influence of heat treatment, as well as about resistance of the joints to cracking during welding and use. The paper presents experience of Energoinstal SA from development of technology and production of waterwalls of boilers made of the 7CrMoVTiB 10-10 steel on a multi-head automatic welder for submerged arc welding.

  2. Methodological development and characterization of welded joints in Poly (vinylidene fluoride) (PVDF); Desenvolvimento metodologico e caracterizacao de juntas soldadas de PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Cedrola, S.M.L.; Costa, M.F. da; Pasqualino, I.P., E-mail: samanta@metalmat.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)


    Pipelines are of great concern in the transport sector of oil and gas industries, mainly due to the natural internal aging process caused by contact with the different transported fluids. Installation of polymeric pipes called liners is a good option for rehabilitation of long segments of deteriorated pipelines. Among the potential materials for such application is Poly (vinylidene fluoride) (PVDF). Meanwhile the installation process cannot be carried out in one single step and the polymeric pipe must be cut in sections that are welded during the installation process. In this research welding methodology was studied aiming to optimize welding conditions and the mechanical properties of the joined materials. The first step was processing the PVDF via compression molding on different conditions. Then, the sample was cut and butt-welded. Welding parameters such as, time control, temperature and contact pressure were studied. Afterwards, the stress-strain properties of the welded material was evaluated and physical characterization was carried by x-ray diffraction (DRX). (author)

  3. Factors affecting weld root morphology in laser keyhole welding (United States)

    Frostevarg, Jan


    Welding production efficiency is usually optimised if full penetration can be achieved in a single pass. Techniques such as electron and laser beam welding offer deep high speed keyhole welding, especially since multi-kilowatt lasers became available. However, there are limitations for these techniques when considering weld imperfections such as weld cap undercuts, interior porosity or humps at the root. The thickness of sheets during full penetration welding is practically limited by these root humps. The mechanisms behind root morphology formation are not yet satisfactory understood. In this paper root humping is studied by reviewing previous studies and findings and also by sample examination and process observation by high speed imaging. Different process regimes governing root quality are presented, categorized and explained. Even though this study mainly covers laser beam and laser arc hybrid welding, the presented findings can generally be applied full penetration welding in medium to thick sheets, especially the discussion of surface tension effects. As a final result of this analysis, a map of methods to optimise weld root topology is presented.

  4. Dynamics of space welding impact and corresponding safety welding study. (United States)

    Fragomeni, James M; Nunes, Arthur C


    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions. c2003 Elsevier Ltd. All rights reserved.

  5. Dynamics of space welding impact and corresponding safety welding study (United States)

    Fragomeni, James M.; Nunes, Arthur C.


    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions.

  6. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove


    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  7. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal (United States)

    Sampath, K.


    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  8. Pulsed ultrasonic stir welding system (United States)

    Ding, R. Jeffrey (Inventor)


    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  9. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen


    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  10. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal


    effect of the post-welding conditions when subjecting a friction stir weld to loading transverse to the weld line. The numerical model of the friction stir welded joint, employs a step-wise modeling approach to combine an in-situ weld simulation with a post-welding failure analysis. Using the commercial......The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence...... the weld performance. The objective of this paper is to discuss some of the main conflicts that arise when taking both the post-welding material conditions and stressestrain state into account in a subsequent structural analysis. The discussion is here based on a preliminary numerical study of the possible...

  11. Pulsed ultrasonic stir welding method (United States)

    Ding, R. Jeffrey (Inventor)


    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  12. Reconditioning medical prostheses by welding (United States)

    Rontescu, C.; Cicic, D. T.; Vasile, I. M.; Bogatu, A. M.; Amza, C. G.


    After the technological process of making, some of the medical prostheses may contain imperfections, which can lead to framing the product in the spoilage category. This paper treats the possibility of reconditioning by welding of the prosthesis made of titanium alloys. The paper presents the obtained results after the reconditioning by welding, using the GTAW process, of a intramedullary rod type prosthesis in which was found a crack after the non-destructive examination. The obtained result analysis, after the micrographic examination of the welded joint areas, highlighted that the process of reconditioning by welding can be applied successfully in such situations.

  13. Portable electron beam weld chamber (United States)

    Lewis, J. R.; Dimino, J. M.


    Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.

  14. 33 CFR 208.22 - Twin Buttes Dam and Reservoir, Middle and South Concho Rivers, Tex. (United States)


    ...) Whenever the Twin Buttes Reservoir level is between elevations 1,940.2 (top of conservation pool) and... Angelo, Tex. (river mile 60.9); or a 22.8-foot stage (25,000 c.f.s.) on the USGS gage near Paint Rock...

  15. Wildfire case study: Butte City Fire, southeastern Idaho, July 1, 1994 (United States)

    Bret W. Butler; Timothy D. Reynolds


    The Butte City Fire occurred on July 1, 1994, west of Idaho Falls, ID. Ignited from a burning flat tire, the blaze was driven by high winds that caused it to cover over 20,500 acres in just over 6.5 hours. Sagebrush (Artemisia tridentata ssp. wyomingensis) is the principal shrub species of this high desert rangeland...

  16. Quantifying Littered Cigarette Butts to Measure Effectiveness of Smoking Bans to Building Perimeters (United States)

    Seitz, Christopher M.; Strack, Robert W.; Orsini, Muhsin Michael; Rosario, Carrie; Haugh, Christie; Rice, Rebecca; Wyrick, David L.; Wagner, Lorelei


    Objective: The authors estimated the number of violations of a university policy that prohibited smoking within 25 ft of all campus buildings. Participants: The project was conducted by 13 student researchers from the university and a member of the local public health department. Methods: Students quantified cigarette butts that were littered in a…

  17. Assessing contraband tobacco in two jurisdictions: a direct collection of cigarette butts

    Directory of Open Access Journals (Sweden)

    Julie Stratton


    Full Text Available Abstract Background The sale of contraband tobacco allows for tobacco tax evasion, which can undermine the effectiveness of tobacco tax policies in reducing the number of smokers. Estimates of the proportion of contraband vary widely as do the methods used to measure the proportion of contraband being smoked. The purpose of this study is to determine the proportion of contraband use in two different jurisdictions. Methods A cross-sectional direct collection of cigarette butts was conducted in Peel and Brantford, Ontario, Canada in 2013 and 2014, respectively. Cigarette butts were collected from a variety of locations within both regions. Cigarette butts were assessed and classified into one of the following categories: contraband, legal Canadian, legal Native, International, unknown, and discards. Results The overall proportion of contraband cigarettes in Peel was 5.3 %, ranging from 2.8 to 8.6 % by location. In Brantford, the proportion of contraband was 33.0 %, with a range from 32.8 to 33.1 % by location. Conclusions The direct collection of cigarette butts was determined to be a feasible method for a local public health unit in determining the proportion of contraband cigarettes. This approach showed that Brantford has a higher proportion of contraband consumption compared to Peel, which may be due to geographic location and proximity to the United States (US-Canada border and Native Reserves. More research is needed to confirm this geographic association with other jurisdictions.

  18. Incidence of butt rot in a tree species experiment in northern Denmark

    DEFF Research Database (Denmark)

    Ronnberg, J; Vollbrecht, G.; Thomsen, Iben Margrete


    that had been infected by H. annosum. Douglas fir and noble fir showed the greatest mortality due to H. annosum during the first 5 years after planting. At first thinning the highest incidences of butt rot were recorded in noble fir, Japanese larch and Sitka spruce, with 44%, 43% and 36% of the thinned...

  19. Assessing contraband tobacco in two jurisdictions: a direct collection of cigarette butts. (United States)

    Stratton, Julie; Shiplo, Samantha; Ward, Megan; Babayan, Alexey; Stevens, Adam; Edwards, Sarah


    The sale of contraband tobacco allows for tobacco tax evasion, which can undermine the effectiveness of tobacco tax policies in reducing the number of smokers. Estimates of the proportion of contraband vary widely as do the methods used to measure the proportion of contraband being smoked. The purpose of this study is to determine the proportion of contraband use in two different jurisdictions. A cross-sectional direct collection of cigarette butts was conducted in Peel and Brantford, Ontario, Canada in 2013 and 2014, respectively. Cigarette butts were collected from a variety of locations within both regions. Cigarette butts were assessed and classified into one of the following categories: contraband, legal Canadian, legal Native, International, unknown, and discards. The overall proportion of contraband cigarettes in Peel was 5.3 %, ranging from 2.8 to 8.6 % by location. In Brantford, the proportion of contraband was 33.0 %, with a range from 32.8 to 33.1 % by location. The direct collection of cigarette butts was determined to be a feasible method for a local public health unit in determining the proportion of contraband cigarettes. This approach showed that Brantford has a higher proportion of contraband consumption compared to Peel, which may be due to geographic location and proximity to the United States (US)-Canada border and Native Reserves. More research is needed to confirm this geographic association with other jurisdictions.

  20. Characterizing butt-rot fungi on USA-affiliated islands in the western Pacific (United States)

    Phil Cannon; Ned B. Klopfenstein; Robert L. Schlub; Mee-Sook Kim; Yuko Ota; Norio Sahashi; Roland J. Quitugua; John W. Hanna; Amy L. Ross-Davis; J. D. Sweeney


    Ganoderma and Phellinus are genera that commonly cause tree butt-rot on USA-affiliated islands of the western Pacific. These fungal genera can be quite prevalent, especially in older mangrove stands. Although the majority of infections caused by these fungi lead to severe rotting of the heartwood, they typically do not directly kill the living tissues of the sapwood,...

  1. Cigarettes Butts and the Case for an Environmental Policy on Hazardous Cigarette Waste

    Directory of Open Access Journals (Sweden)

    Richard Barnes


    Full Text Available Discarded cigarette butts are a form of non-biodegradable litter. Carried as runoff from streets to drains, to rivers, and ultimately to the ocean and its beaches, cigarette filters are the single most collected item in international beach cleanups each year. They are an environmental blight on streets, sidewalks, and other open areas. Rather than being a protective health device, cigarette filters are primarily a marketing tool to help sell ‘safe’ cigarettes. They are perceived by much of the public (especially current smokers to reduce the health risks of smoking through technology. Filters have reduced the machine-measured yield of tar and nicotine from burning cigarettes, but there is controversy as to whether this has correspondingly reduced the disease burden of smoking to the population. Filters actually may serve to sustain smoking by making it seem less urgent for smokers to quit and easier for children to initiate smoking because of reduced irritation from early experimentation. Several options are available to reduce the environmental impact of cigarette butt waste, including developing biodegradable filters, increasing fines and penalties for littering butts, monetary deposits on filters, increasing availability of butt receptacles, and expanded public education. It may even be possible to ban the sale of filtered cigarettes altogether on the basis of their adverse environmental impact. This option may be attractive in coastal regions where beaches accumulate butt waste and where smoking indoors is increasingly prohibited. Additional research is needed on the various policy options, including behavioral research on the impact of banning the sale of filtered cigarettes altogether.

  2. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide. (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  3. [New welding processes and health effects of welding]. (United States)

    La Vecchia, G Marina; Maestrelli, Piero


    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  4. Monitoring of Varying Joint Gap Width During Laser Beam Welding by a Dual Vision and Spectroscopic Sensing System (United States)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    A vision and spectroscopic system for estimation of the joint gap width in autogenous laser beam butt welding is presented. Variations in joint gap width can introduce imperfections in the butt joint seam, which in turn influence fatigue life and structural integrity. The aim of the monitoring approach explored here is to acquire sufficiently robust process data to be used to guide post inspection activities and/or to enable feedback control for a decreased process variability. The dual-sensing approach includes a calibrated CMOS camera and a miniature spectrometer integrated with a laser beam tool. The camera system includes LED illumination and matching optical filters and captures images of the area in front of the melt pool in order to estimate the joint gap width from the information in the image. The intensity of different spectral lines acquired by the spectrometer has been investigated and the correlation between the intensity of representative lines and the joint gap width has been studied. Welding experiments have been conducted using a 6 kW fiber laser. Results from both systems are promising, the camera system is able to give good estimations of the joint gap width, and good correlations between the signal from the spectrometer and the joint gap width have been found. However, developments of the camera setup and vision algorithm can further improve the joint gap estimations and more experimental work is needed in order to evaluate the robustness of the systems.

  5. Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds (United States)

    Kar, Jyotirmaya; Roy, Sanat Kumar; Roy, Gour Gopal


    The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 °C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 °C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

  6. Simulation Study on Multipassed Welding Distortion of Combined Joint Types using Thermo-Elastic-Plastic FEM

    Directory of Open Access Journals (Sweden)

    RN Lidam


    Full Text Available This paper investigates the angular distortion induced by the gas metal arc welding (GMAW process on the combined butt and T-joint with a thickness of 9 mm. The material used in this study was low manganese carbon steel S355J2G3. A 2-D and 3-D thermo-elastic-plastic finite element (FE analysis has been developed to simulate the induced distortion of multipassed welding. In this research, SYSWELD 2010 with its computation management tool, known as multipassed welding advisor (MPA, was applied to analyze the distortion behavior of combined joint types. To model the heat source of GMAW, Goldak's double ellipsoid representation, which is available within this finite element analysis (FEA code was selected. Prior to the results discussion, this paper also shows the step-bystep procedures to simulate combined jointing which begins with metallurgical and customized heat source modeling, and is followed by creating geometrical mesh using Visual-Mesh 6.5 for analyzing and processing the results. Apart from 2-D and 3-D comparison analysis, the final objective of this research is also aimed to be a baseline study to provide preliminary information in preparing the tools and equipment for experimental investigation.

  7. Welding--Trade or Profession? (United States)

    Albright, C. E.; Smith, Kenneth


    This article discusses a collaborative program between schools with the purpose of training and providing advanced education in welding. Modern manufacturing is turning to automation to increase productivity, but it can be a great challenge to program robots and other computer-controlled welding and joining systems. Computer programming and…

  8. Metal Working and Welding Operations. (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  9. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.


    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. Th...

  10. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part I: Microstructure Characterization (United States)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Parry, Guillaume; Deschamps, Alexis


    This work presents a detailed, multiscale, spatially resolved study of the microstructure of an electron beam butt weld of the EN-AW 7020 (Al-Zn-Mg) alloy. Using a combination of optical, scanning and transmission electron microscopy, differential scanning calorimetry, and small-angle X-ray scattering, the distribution of phases in the different areas of the heat-affected zone and of the fusion zone is quantitatively characterized, for two different aging states: naturally aged after welding and artificially aged at 423 K (150 °C). The heat-affected zone consists of regions experiencing different levels of precipitate dissolution and coarsening during welding as well as new precipitation during post-welding heat treatment (PWHT). The microstructure of the fusion zone is typical from a fast solidification process, with a strong solute segregation in the interdendritic zones. The precipitate distribution after PWHT follows this solute distribution, and the resulting hardness is much lower than the relatively homogeneous value in the base metal and the heat-affected zone.

  11. 29 CFR 1910.255 - Resistance welding. (United States)


    ... 29 Labor 5 2010-07-01 2010-07-01 false Resistance welding. 1910.255 Section 1910.255 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.255 Resistance welding. (a.... Ignitron tubes used in resistance welding equipment shall be equipped with a thermal protection switch. (3...

  12. 49 CFR 179.300-9 - Welding. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.300-9 Section 179.300-9... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal... fusion welded on class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in...


    DEFF Research Database (Denmark)


    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  14. Magnetic Deflection Of Welding Electron Beam (United States)

    Malinzak, R. Michael; Booth, Gary N.


    Electron-beam welds inside small metal parts produced with aid of magnetic deflector. Beam redirected so it strikes workpiece at effective angle. Weld joint positioned to where heavy microfissure concentration removed when subsequent machining required, increasing likelihood of removing any weld defects located in face side of electron-beam weld.

  15. Clamp and Gas Nozzle for TIG Welding (United States)

    Gue, G. B.; Goller, H. L.


    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  16. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace. (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T


    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  17. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures


    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen; Guerrero-Mata, Martha Patricia


    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature fail...

  18. Research on stress corrosion behavior of CCSE40 welded by underwater wet welding with austenitic welding rod in seawater (United States)

    Zou, Y.; Bai, Q.; Dong, S.; Yang, Z. L.; Gao, Y.


    The stress corrosion behavior of CCSE40 welded by underwater wet welding with austenitic welding rod in seawater was studied. Microstructure, mechanical property and stress corrosion cracking susceptibility of the underwater wet welding joint were analyzed by metallographic observation, tensile and bending tests, slow strain rate test (SSRT) and SEM. The results indicated that the weld zone (WZ) and the heat affected zone (HAZ) were all sensitive to the stress corrosion, and the WZ was more sensitive than the HAZ.

  19. Research on the Effects of Technical Parameters on the Molding of the Weld by A-TIG Welding


    Shi, Kai; Pan, Wu


    The effects of welding parameters on the molding of weld by A-TIG welding of a 4mm thickness mild steel plate is studied in the present paper. The results obtained show that: as welding current increases A-TIG welding penetration gets deeper than TIG welding; size and shape of HAZ has remarkable change; A-TIG welding has the narrower weld pool width than TIG welding.

  20. New developments for the ultrasonic inspection of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Chassignole, Bertrand; Doudet, Loic; Dupond, Olivier; Fouquet, Thierry; Richard, Benoit [Electricite de France - EDF, 2, rue Louis-Murat, 75008 Paris (France)


    EDF R and D undertakes studies in non destructive testing (NDT) for better understanding the influence of various parameters (material, type of defect, geometry) on the 'controllability' of the critical components for nuclear safety. In the field of ultrasonic testing, one of the principal research orientations is devoted to the study of the austenitic stainless steel welds of the primary cooling system. Indeed, the structure of these welds present characteristics making difficult their examination, for example: - a strong anisotropy of the properties of elasticity which, coupled with the heterogeneity of the grain orientations, can involve phenomena of skewing, division and distortion of the beam; - a significant scattering of the waves by the grains involving an high attenuation and sometimes backscattered signals. For several years, actions have been launched to improve comprehension of these disturbing phenomena and to evaluate the controllability of those welds. This work is based on the one hand on experimental analyses on representative mock-ups and on the other hand on the developments of modelling codes taking into account the characteristics of the materials. We present in this document a synthesis of this work by developing the following points in particular: - a description of the phenomena of propagation; - the works undertaken to characterize the structure of the welds; - an example of study coupling experimental and modelling analyses for a butt weld achieved by manual arc welding with coated electrodes. The paper has the following contents: 1. Context; 2. Presentation of the problem; 3. Characterization of austenitic welds; 4. From comprehension to industrial application; 5. Conclusion and perspectives; 5. Conclusion and perspectives. This synthesis shows that each austenitic stainless steel weld is a particular case for the ultrasonic testing. This work allowed to better apprehend the disturbances of the ultrasonic propagation in the

  1. Automatic welding of stainless steel tubing (United States)

    Clautice, W. E.


    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  2. Automatic welding systems for large ship hulls (United States)

    Arregi, B.; Granados, S.; Hascoet, JY.; Hamilton, K.; Alonso, M.; Ares, E.


    Welding processes represents about 40% of the total production time in shipbuilding. Although most of the indoor welding work is automated, outdoor operations still require the involvement of numerous operators. To automate hull welding operations is a priority in large shipyards. The objective of the present work is to develop a comprehensive welding system capable of working with several welding layers in an automated way. There are several difficulties for the seam tracking automation of the welding process. The proposed solution is the development of a welding machine capable of moving autonomously along the welding seam, controlling both the position of the torch and the welding parameters to adjust the thickness of the weld bead to the actual gap between the hull plates.

  3. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    National Research Council Canada - National Science Library

    He Peng; Daolun Chen; Xianquan Jiang


    The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW...

  4. Effect of tool offsetting on microstructure and mechanical properties dissimilar friction stir welded Mg-Al alloys (United States)

    Baghdadi, Amir Hossein; Fazilah Mohamad Selamat, Nor; Sajuri, Zainuddin


    Automotive and aerospace industries are attempting to produce lightweight structure by using materials with low density such as aluminum and magnesium alloys to increase the fuel efficiency and consequently reduce the environmental pollution. It can be beneficial to join Mg to Al to acquire ideal performance in special applications. Friction stir welding (FSW) is solid state welding processes and relatively lower temperature of the process compared to fusion welding processes. This makes FSW a potential joining technique for joining of the dissimilar materials. In this study, Mg-Al butt joints were performed by FSW under different tool offset conditions, rotation rates (500-600 rpm) and traverse speeds (20 mm/min) with tool axis offset 1 mm shifted into AZ31B or Al6061 (T6), and without offset. During the welding process AZ31B was positioned at the advancing side (AS) and Al6061 (T6) was located at the retreating side (RS). Defect free AZ31B-Al6061 (T6) dissimilar metal FSW joints with good mechanical properties were obtained with the combination of intermediate rotation rate and low traverse speed pin is in the middle. When tool positioned in -1 mm or +1 mm offsetting, some defects were found in SZ of dissimilar FSWed joints such as cavity, tunnel, and crack. Furthermore, a thin layer of intermetallic compounds was observed in the stir zone at the interface between Mg-Al plates. The strength of the joint was influenced by FSW parameters. Good mechanical properties obtained with the combination of intermediate rotational speed of 600 rpm and low travelling speed of 20 mm/min by locating Mg on advancing side when pin is in the middle. Also, Joint efficiency of the welds prepared in the present study was between 29% and 68% for the different welding parameters.

  5. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds. (United States)

    Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen


    Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016

  6. Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy (United States)

    Baruah, M.; Bag, S.


    The pulse parameters of laser heat source have a definite effect on the weld joint structure. However, the complexity in parameter selection increases many folds with reduction in geometric dimensions of the specimen. Hence, an attempt has been made to investigate the laser microwelding of 500 μm thick Ti6Al4V alloy in butt joint configuration using pulse Nd:YAG laser. The influence of laser scanning speed and pulse energy is analyzed to produce a defect-free joint. High peak power is actually dampen by pulsation of laser cratered to use in microwelding process. The feasible range of process parameters like laser scanning speed of 3-7 mm/s and peak power of 1-5 kW produces high quality weld joint using other favorable conditions that mainly diminishes the formation of oxides in welding of titanium alloy. A sophisticated numerical model is always beneficial to capture the thermo-mechanical behavior under differential influence of process parameters. A 3D finite element based sequentially coupled thermo-mechanical model is developed by considering the pulse mode of heat flux. There is considerably variation in temperature profile using actual pulse mode of heat flux as compared to average laser power. Typical hourglass heat source for over penetrated weld is developed for the simulation of microwelding process. Large-displacement theory is considered to predict the weld-induced distortion for laser microwelding process. The computed results are well agreed with experimentally measured values and show the robustness of the present numerical model used for micro scale welding process.

  7. Versatile Friction Stir Welding/Friction Plug Welding System (United States)

    Carter, Robert


    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  8. Real time computer controlled weld skate (United States)

    Wall, W. A., Jr.


    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  9. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove


    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  10. Control of Welding Processes. (United States)


    Structures, Office of Deputy Under Secretary of Defense for R&E (ET), Department of Defense, Washington, D.C. CHARLES ZANIS, Assistant Director for Platform... CHARLES NULL, Head, Metals Branch, Naval Sea Systems Command, Washington, D.C. ROBERT A. WEBER, Welding Engineering and Metallurgy, U.S. Army Corps of...Needs. Pp. 487-90. in Papers Presented at the August 3-8, 1Q80, AIME Syi,.posium. Essers, W . ., and R. Walter. Heat transfer and penet ration

  11. What Crested Butte Mountain Resort Feels the Ski Industry Is, In General, Looking for in College Graduates. (United States)

    Jernigan, Rick

    This paper describes general employment requirements for employment candidates in the skiing industry, as seen by Crested Butte Mountain Resort personnel. General educational requirements are primarily business skills, including: communications, computers, math, finance, accounting, economics, personnel administration, and psychology. Other…

  12. Unioned layer for the Point of Rocks-Black Butte coal assessment area, Green River Basin, Wyoming (porbbfing.shp) (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of the spatial query layer for the Point of Rocks-Black Butte coalfield, Greater Green River Basin, Wyoming....

  13. Comparison of the use of a notched wedge joint vs. traditional butt joints in Connecticut : phase 1 report. (United States)


    Performance of Hot Mix Asphalt (HMA) longitudinal joints have been an : item of increasing scrutiny in Connecticut. The traditional butt joint : has typically been the method used in Connecticut. These joints have : been reportedly opening up creatin...

  14. 76 FR 30962 - Notice of Availability of Draft Environmental Impact Statement for the Sigurd to Red Butte No. 2... (United States)


    ... in Sevier County with the existing Red Butte Substation near the community of Central in Washington... Service; State of Utah; Millard, Sevier, Beaver, Iron, and Washington counties, Utah; and the cities of St...

  15. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks (United States)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias


    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  16. The effect of friction welding self-regulation process on weld structure and hardness

    Directory of Open Access Journals (Sweden)

    W. Ptak


    Full Text Available The self-regulation phenomenon that occurs during friction welding process was characterised, and the effect of the self-regulation of theenergy-related parameters on structure and hardness distribution in SW7Mo steel – 55 steel welded joint was determined experimentally.The structure and hardness of the weld zone were examined, the energy required for the stable run of a friction welding process wascalculated, and a relationship between the welding energy and weld hardness was derived.

  17. Loss of butt-end leg bands on male wild turkeys (United States)

    Diefenbach, Duane R.; Casalena, Mary Jo; Schiavone, Michael V.; Swanson, David A.; Reynolds, Michael; Boyd, Robert C.; Eriksen, Robert; Swift, Bryan L.


    We estimated loss of butt-end leg bands on male wild turkeys (Meleagris gallapavo) captured in New York, Ohio, and Pennsylvania (USA) during December–March, 2006–2008. We used aluminum rivet leg bands as permanent marks to estimate loss of regular aluminum, enameled aluminum, anodized aluminum, and stainless steel butt-end leg bands placed below the spur. We used band loss information from 887 turkeys recovered between 31 days and 570 days after release (x¯  =  202 days). Band loss was greater for turkeys banded as adults (>1 yr old) than juveniles and was greater for aluminum than stainless steel bands. We estimated band retention was 79–96%, depending on age at banding and type of band, for turkeys recovered 3 months after release. Band retention was studies.

  18. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso


    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  19. Laser welding of fused quartz (United States)

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine


    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  20. The technology and welding joint properties of hybrid laser-tig welding on thick plate (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu


    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  1. Structural architecture and glacitectonic evolution of the Mud Buttes cupola hill complex, southern Alberta, Canada (United States)

    Phillips, Emrys; Evans, David J. A.; Atkinson, Nigel; Kendall, Allison


    This paper presents the results of a detailed multidisciplinary study of the deformed bedrock and overlying Quaternary sediments exposed at the Mud Buttes in southern Alberta, Canada. This large, arcuate cupola hill is composed of intensely folded and thrust sandstones, siltstones and mudstones of the Cretaceous Belly River Group. Glacitectonism responsible for the development of this internally complex landform occurred at the margin of the newly defined Prospect Valley lobe of the Laurentide Ice Sheet. Analysis of the deformation structures reveals that construction of this landform occurred in response to at least two phases of south-directed ice sheet advance separated by a period of retreat. The first phase led to the formation of a forward propagating imbricate thrust stack leading to polyphase deformation of the Belly River Group. D1 thrusting led to the detachment of thrust-bound slices of bedrock which were accreted to the base of the developing imbricate stack. This process resulted in the structurally higher and older thrust-slices being progressively ;back-rotated; (tilted), accompanied by D2 thrusting and folding. Further thrusting during D3 was restricted to the core of the Mud Buttes as the deforming sequence accommodated further compression imposed by the advancing ice. Minor oscillations of the ice margin led to localised brittle-ductile shearing (D4) of the bedrock immediately adjacent to the ice contact part of the thrust stack. The second phase of ice advance led to the accretion of a relatively simple thrust and folded sequence seen the northern side of Mud Buttes. The resulting composite thrust moraine was subsequently overridden by ice advancing from the NNW to form a dome-like cupola-hill. This readvance of the Prospect Valley lobe led to the formation of a thin carapace of Quaternary sediments mantling the Mud Buttes which include glacitectonite, till and an organic-rich clay-silt (?palaeosol).

  2. Effect of Measured Welding Residual Stresses on Crack Growth (United States)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)


    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  3. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus


    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  4. Novel Process Revolutionizes Welding Industry (United States)


    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  5. Convection in arc weld pools

    Energy Technology Data Exchange (ETDEWEB)

    Oreper, G.M.; Eagar, T.W.; Szekely, J.


    A mathematical model was developed to account for convection and temperature distributions in stationary arc weld pools driven by buoyancy, electromagnetic and surface tension forces. It is shown that the electromagnetic and surface tension forces dominate the flow behavior. In some cases, these forces produce double circulation loops, which are indirectly confirmed by experimental measurements of segregation in the weld pool. It is also shown that the surface tension driven flows are very effective in dissipating the incident energy flux on the pool surface which, in turn, reduces the vaporization from the weld pool.

  6. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas


    This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...... a safe and statically admissible stress distribution is established. The plasticity solutions are compared with tests carried out at the Engineering Academy of Denmark, Lyngby, in the early nineties, and old fillet weld tests. The new failure conditions are in very good agreement with the yield load...

  7. Pengaruh Konformasi Butt Shape terhadap Karakteristik Karkas Sapi Brahman Cross pada Beberapa Klasifikasi Jenis Kelamin

    Directory of Open Access Journals (Sweden)

    Harapin Hafid H


    Full Text Available Domestic demand on beef is increasing today. However the beef supply can not fulfil the demand so that importation of beef and feeder cattle is still required. Beef cattle feedloting is now growing in Indonesia. This research was done to study the growth and development of carcass components of beef carcas from Brahman Cross cattle. The number of animals used was 165 heads with the body weight range 350 – 400 kg taken from feedlot fattening. The experiment was set in completely randomized factorial design withh two factors, namely butt shape conformation (butt shape score D, C, B and sex class (heifer, steer, cow. Parameter of carcass characteristic, i.e. carcass weight, carcass percentage, loin eye area, fat thickness of ribs 12th, fat percentage of kidney, pelvic and hearth, and fat thickness of rump P8.The result of this study showed that the increase of butt shape conformation score significantly increased loin eye area, especially in heifer and cow sex class.

  8. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Blackketter, Donald [Montana Tech of the Univ. of Montana, Butte, MT (United States)


    Executive Summary An innovative 50-ton ground-source heat pump (GSHP) system was installed to provide space heating and cooling for a 56,000 square foot (5,200 square meter) building in Butte Montana, in conjunction with its heating and chiller systems. Butte is a location with winter conditions much colder than the national average. The GSHP uses flooded mine waters at 78F (25C) as the heat source and heat sink. The heat transfer performance and efficiency of the system were analyzed using data from January through July 2014. This analysis indicated that for typical winter conditions in Butte, Montana, the GSHP could deliver about 88% of the building’s annual heating needs. Compared with a baseline natural-gas/electric system, the system demonstrated at least 69% site energy savings, 38% source energy savings, 39% carbon dioxide emissions reduction, and a savings of $17,000 per year (40%) in utility costs. Assuming a $10,000 per ton cost for installing a production system, the payback period at natural gas costs of $9.63/MMBtu and electricity costs of $0.08/kWh would be in the range of 40 to 50 years. At higher utility prices, or lower installation costs, the payback period would obviously be reduced.

  9. Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

    CERN Document Server

    International Organization for Standardization. Geneva


    Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

  10. Automated Variable-Polarity Plasma-Arc Welding (United States)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.


    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  11. Materials participation in welded joints manufacturing (United States)

    Ghenghea, L. D.


    Management of materials dilution to form a joint with higher features asked by complex metallic structures is a problem that took attention and efforts of welding processes researchers and this communication will give a little contribution presenting some scientific and experimental results of dilution processes studied by Welding Research Group from Iasi, Romania, TCM Department. Liquid state welding processes have a strong dependence related to dilution of base and filler materials, the most important are for automatic joining using welding. The paper presents a review of some scientific works already published and their contributions, results of dilution coefficient evaluation using weighing, graphics and software applied for shielded metal arc welding process. Paper results could be used for welders’ qualification, welding procedure specification and other welding processes researchers’ activities. The results of Welding Research Group from Iasi, Romania, TCM Department, show dilution coefficient values between 20-30 % of base material and 70-80 % of filler material for studied welding process.

  12. Filler wire for aluminum alloys and method of welding (United States)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)


    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  13. MFDC - technological improvement in resistance welding controls

    Energy Technology Data Exchange (ETDEWEB)

    Somani, A.K.; Naga Bhaskar, V.; Chandramouli, J.; Rameshwara Rao, A. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)


    Among the various Resistance Welding operations carried out in the production line of a fuel bundle end plug welding is the most critical operation. Welding controllers play a very vital role in obtaining consistent weld quality by regulating and controlling the weld current. Conventional mains synchronized welding controllers are at best capable of controlling the weld current at a maximum speed of the mains frequency. In view of the very short welding durations involved in the various stages of a fuel bundle fabrication, a need was felt for superior welding controllers. Medium Frequency Welding Controllers offer a solution to these limitations in addition to offering other advantages. Medium Frequency power sources offer precise welding current control as they regulate and correct the welding current faster, typically twenty times faster when operated at 1000Hz. An MFDC was employed on one of the welding machines and its performance was studied. This paper discusses about the various advantages of MFDCs with other controllers employed at NFC to end plug welding operation. (author)

  14. Gas Shielding Technology for Welding and Brazing (United States)

    Nunes, Arthur J.; Gradl, Paul R.


    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  15. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)


    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  16. Welding and Production Metallurgy Facility (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  17. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi


    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  18. Laser Welding of Ship Steel

    National Research Council Canada - National Science Library

    Brayton, W. C; Banas, C. M; Peters, G. T


    ... joint cleanliness and fitup conditions. In the current program, welds were formed between surfaces with nonperfect fitup, between plasma-cut surfaces, between surfaces deliberately mismatched to provide a varging joint gap and under out...

  19. Welding process modelling and control (United States)

    Romine, Peter L.; Adenwala, Jinen A.


    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  20. Combination Effects of Nocolok Flux with Ni Powder on Properties and Microstructures of Aluminum-Stainless Steel TIG Welding-Brazing Joint (United States)

    He, Huan; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Chen, Zhe


    A flux consisting of Nocolok and nickel powder was first applied for TIG welding-brazing of aluminum-stainless steel. Results of tensile and impact tests illustrated that a significant improvement in mechanical properties of the butt joint was obtained with the flux, tensile strength increased from 116 to 158 MPa, and impact energy increased from 3.2 to 6.7 J. Investigation results on microstructures of interfaces and seams suggested that Ni addition significantly decreased the thickness of intermetallic compound (IMC) layer on the interfaces, but did not change the phase structure of Al13Fe4. Furthermore, precipitate phase in the welded seams changed from Al6Fe to Al9FeNi, and the quantity of precipitate phases decreased from 12 to 9% approximately. Finally, effect of Ni powder's addition on the joint was analyzed and discussed. The reduction in the thickness of IMC and quantity of precipitate phases are beneficial to joint properties.

  1. Automatic Control Of Length Of Welding Arc (United States)

    Iceland, William F.


    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  2. Ship construction and welding

    CERN Document Server

    Mandal, Nisith R


    This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents in detail double bottom construction, wing tanks & duct keels, fore & aft end structures, etc., together with necessary illustrations. The midship sections of various ship types are introduced, together with structural continuity and alignment in ship structures. With regard to construction materials, the book discusses steel, aluminum alloys and fiber reinforced composites. Various methods of steel material preparation are discussed, and plate cutting and form...

  3. Welding of Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Wojciechowska M.


    Full Text Available This paper presents the techniques of joining metal denture elements, used in prosthetic dentistry: the traditional soldering technique with a gas burner and a new technique of welding with a laser beam; the aim of the study was to make a comparative assessment of the quality of the joints in view of the possibility of applying them in prosthetic structures. Fractographic examinations were conducted along with tensile strength and impact strength tests, and the quality of the joints was assessed compared to the solid metal. The experiments have shown that the metal elements used to make dentures, joined by the technique which employs a laser beam, have better strength properties than those achieved with a gas burner.

  4. Keefektifan Puntung Rokok Sebagai Pengendali Gloeosporium Fructigenum Pada Buah Apel ( Effectivity of Cigarette Butts as Control Agent of Gloeosporium Fructigenum on Apple)


    Suharti, Woro Sri; Wachjadi, Muljo; Feti, Ruth


    The objective of the research was to determine the effectivity of cigarette butts extract to control the growth of Gloeosporium fructigenum causing apple bitter rot in vitro and in vivo. Randomized block design was used with factorial pattern for both in vitro and in vivo treatments. The first factor for in vitro treatment was kinds of solvent, i.e., water and ethanol. The second one was type of cigarette consisted of filtered cigarette butts, non-filtered cigarette butts and slic...

  5. A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW) (United States)

    Nunes, A. C., Jr.


    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

  6. Upgraded HFIR Fuel Element Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Sease, John D [ORNL


    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  7. Weld procedure produces quality welds for thick sections of Hastelloy-X (United States)

    Flens, F. J.; Fletcher, C. W.; Glasier, L. F., Jr.


    Welding program produces premium quality, multipass welds in heavy tube sections of Hastelloy-X. It develops semiautomatic tungsten/inert gas procedures, weld wire procurement specifications material weld properties, welder-operator training, and nondestructive testing inspection techniques and procedures.

  8. Laser welding of aluminium-magnesium alloys sheets process optimization and welds characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, C. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Fouquet, F. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Robin, M. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France)


    The purpose of the present study was to obtain good quality welds using a CO2 laser with Al-Mg alloys sheet. Defects formation mechanisms were analyzed and a welding procedure was defined, using several characterization technics, in order to realize low defects welding seams. After laser welding optimization, comparative tensile tests and microstructural analysis were carried out. (orig.)

  9. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.


    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.


    Directory of Open Access Journals (Sweden)

    BURCA Mircea


    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  11. ULiAS 4 - Experimental validation of a software that models ultrasonic wave propagation through an anisotropic weld

    Energy Technology Data Exchange (ETDEWEB)

    Wirdelius, Haakan; Persson, Gert; Hamberg, Kenneth (SCeNDT, Chalmers Univ. Of Tech., SE-412 96 Goeteborg (SE)); Hoegberg, Kjell (SQC Kvalificeringscentrum AB, SE-183 25 Taeby (SE))


    New and stronger demands on reliability of used NDE/NDT procedures and methods have evolved in Europe during the last decade. In order to elaborate these procedures, efforts have to be taken towards the development of mathematical models of applied NDT methods. Modelling of ultrasonic non-destructive testing is useful for a number of reasons, e.g. physical understanding, parametric studies, and the qualification of procedures and personnel. An important issue regarding all models is the validation, i.e. securing that the results of the model and the corresponding computer programs are correct. This can be accomplished by comparisons with other models, but ultimately by comparisons with experiments. In this study a numerical model and experimental results are compared and the work has been performed in collaboration with SQC Kvalificeringscentrum AB. Four different welds have been investigated to give basic data to a mathematical model that describes the ultra sonic wave paths through the welds in these materials. The welds are made in austenitic stainless steel (type 18-8) and in Inconel 182. Two cuts outs are made in each weld, one longitudinal and one transversal cut across the welds, in order to determine the material orientation. In the numerical model the incident field, described by rays, is given by a P wave probe model. The ray tracing technique is based on geometrical optics and a 2D algorithm has been developed. The model of the weld is based on a relatively primitive assumption of the grain structure for a V-butt weld. The columnar structure of austenitic welds is here modelled as a weld where each sub region corresponds to a grain group. The response of the receiver is calculated according to Auld's reciprocity principle. UT data collection was performed by SQC according to guidelines given from Chalmers. The purpose to collect data from real inspection objects with known material structure is to compare experimental data with theoretically

  12. Effects of welding parameters on the mechanical properties of inert gas welded 6063 Aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Taner [MAKO Corporation (Turkey); Uguz, Agah [Uludag Univ. (Turkey). Mechnical Engineering Dept.; Ertan, Rukiye


    The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

  13. Automatic monitoring of vibration welding equipment (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W


    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  14. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.


    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...


    Directory of Open Access Journals (Sweden)

    D. S. Yarymbash


    Full Text Available The methods of the electrical parameter identification of the butt end bus connections of graphitization furnace current feeders with side bus packets basing on the conjugate three-dimensional mathematical models of electromagnetic and electro-thermal processes are presented. The finite element methods of solving partial derivatives vector equations systems in three-dimensional domain are used. The temperature dependences of the electro-physical properties and thermo-physical properties of the active materials and the external bus surface conditions of natural convection and radiation heat transfer are taken into account. The high accuracy and computational efficiency numerical calculations by using variations of the finite elements densities in the computational domain are produced. The finite elements densities in the domains of the magnetic field concentration are increased. The basic and new designs of butt end bus systems of AC graphitization furnace are considered. The calculations of geometric parameters of the bus conductors by using the equality criterion of active loss densities are presented. The currents, voltage drops, current density, electrical losses densities, active and inductive resistance of bus of side bus packages, butt end bus connections and graphite feeders are identified. The energy efficiency of butt end graphitization furnace electrical connections of different numbers of parallel buses is analyzed. The technical decisions to reduce weight, active and reactive power losses of bus butt end connections are substantiated.

  16. Closed circuit television welding alignment system

    Energy Technology Data Exchange (ETDEWEB)

    Darner, G.S.


    Closed circuit television (CCTV) weld targeting systems were developed to provide accurate and repeatable positioning of the electrode of an electronic arc welder with respect to the parts being joined. A sliding mirror electrode holder was developed for use with closed circuit television equipment on existing weld fixturing. A complete motorized CCTV weld alignment system was developed to provide weld targeting for even the most critical positioning requirements.

  17. Preventing Contamination In Electron-Beam Welds (United States)

    Goodin, Wesley D.; Gulbrandsen, Kevin A.; Oleksiak, Carl


    Simple expedient eliminates time-consuming, expensive manual hand grinding. Use of groove and backup tube greatly reduces postweld cleanup in some electron-beam welding operations. Tube-backup method developed for titanium parts, configurations of which prevents use of solid-block backup. In new welding configuration, tube inserted in groove to prevent contact between alumina beads and molten weld root. When welding complete and beads and tube removed, only minor spatter remains and is ground away easily.

  18. Performance of mesh seam welds in tailor welded blanks; Terado blank yo mash seam yosetsubu no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uchihara, M.; Takahashi, M.; Kurita, M.; Hirose, Y.; Fukui, K. [Sumitomo Metal Industries, Ltd., Osaka (Japan)


    Formability, fatigue properties and corrosion behavior of mash seam welded steel sheets were investigated and the results were compared with laser weld. The stretch formability of mash seam weld and laser weld were same level. Mash seam weld however, showed slightly smaller formability in hole expansion test. The fatigue strength of mash seam welds was lower than that of laser welds in case of differential thickness joints. Corrosion was apt to initiate at weld in both mash seam and laser weld with E-coat. The corrosion resistance of welds was improved by using zinc coated steel. 3 refs., 14 figs., 2 tabs.

  19. Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Yufeng Sun


    Full Text Available The ultrafine grained (UFGed 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after five cycles, were friction stir butt welded to 2 mm thick 6061-T6 Al alloy plates at a different revolutionary pitch that varied from 0.5 to 1.25 mm/rev. In the stir zone, the initial nano-sized lamellar structure of the UFGed 1050 Al alloy plate transformed into an equiaxial grain structure with a larger average grain size due to the dynamic recrystallization and subsequent grain growth. However, an equiaxial grain structure with a much smaller grain size was simultaneously formed in the 6061 Al alloy plates, together with coarsening of the precipitates. Tensile tests of the welds obtained at different welding speeds revealed that two kinds of fracture modes occurred for the specimens depending on their revolutionary pitches. The maximum tensile strength was about 110 MPa and the fractures were all located in the stir zone close to the 1050 Al side.

  20. 49 CFR 195.224 - Welding: Weather. (United States)


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  1. 49 CFR 179.100-9 - Welding. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.100-9 Section 179.100-9... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All..., appendix W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be...

  2. 49 CFR 179.220-10 - Welding. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.220-10 Section 179.220-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints... of this subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy...

  3. 49 CFR 179.400-11 - Welding. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.400-11 Section 179.400-11...-11 Welding. (a) Except for closure of openings and a maximum of two circumferential closing joints in... subchapter). (d) Each welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR 27708...

  4. 49 CFR 179.200-10 - Welding. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.200-10 Section 179.200-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints... W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be...

  5. 30 CFR 77.408 - Welding operations. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and the...

  6. 30 CFR 75.1729 - Welding operations. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations. Welding...

  7. Friction welding thermal and metallurgical characteristics

    CERN Document Server

    Yilbas, Bekir Sami


    This book provides insight into the thermal analysis of friction welding incorporating welding parameters such as external, duration, breaking load, and material properties. The morphological and metallurgical changes associated with the resulting weld sites are analysed using characterization methods such as electron scanning microscope, energy dispersive spectroscopy, X-ray Diffraction, and Nuclear reaction analysis.

  8. Welding Using Chilled-Inert-Gas Purging (United States)

    Mcgee, William F.; Rybicki, Daniel J.


    Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

  9. 49 CFR 179.11 - Welding certification. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Design Requirements § 179.11 Welding certification. (a) Welding procedures, welders and fabricators shall...

  10. 46 CFR 154.665 - Welding procedures. (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design temperature...

  11. Low Speed Control for Automatic Welding (United States)

    Iceland, W. E.


    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  12. 49 CFR 195.214 - Welding procedures. (United States)


    ... accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler and Pressure Vessel Code (incorporated by reference, see § 195.3) . The quality of the test welds used to... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 195.214 Section 195.214...

  13. Welding multiple plies with an electron beam (United States)

    Kiluk, F. J.


    Method for electron-beam welding of multi-ply metal sheets eliminates ply separation and minimizes porosity. Method was developed for assembling bellows made of four plies of iron/nickel alloy sheets. Method consists of making successive stitch welds with electron beam until weld seam is completely filled in and all plies have been penetrated.

  14. Viewing electron-beam welds in progress (United States)

    Armenoff, C. T.


    With aid of optical filter, operator of electron-beam welding machine can view TV image of joint that is being welded and can make corrections as necessary. Operator can see when weld bead gets out of alinement, for example, and compensate for deflection of electron beam caused by changes in magnetic field.

  15. [Dental welding titanium and its clinical usage]. (United States)

    Li, H; Xiao, M; Zhao, Y


    Due to its excellent biocompatibility, desirable chemical and mechanical properties, Titanium has been used for implant denture, RPD and FPD, where welding techniques were indispensable. This paper introduces 5 useful modern ways to weld Titanium and their clinical usage. They are: laser, plasma welding, TIG, infraned brazing and Hruska electrowelding.

  16. Technology of welding aluminum alloys-III (United States)

    Harrison, J. R.; Kor, L. J.; Oleksiak, C. E.


    Control of porosity in weld beads was major objective in development of aluminum welding program. Porosity, most difficult defect to control, is caused by hydrogen gas unable to escape during solidification. Hard tooling allows hotter bead than free-fall tooling so hydrogen bubbles can boil out instead of forming pores. Welding position, moisture, and cleanliness are other important factors in control of porosity.

  17. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man


    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  18. Study on visual image information detection of external angle weld based on arc welding robot (United States)

    Liu, Xiaorui; Liu, Nansheng; Sheng, Wei; Hu, Xian; Ai, Xiaopu; Wei, Yiqing


    Nowadays, the chief development trend in modern welding technology is welding automation and welding intelligence. External angle weld has a certain proportion in mechanical manufacture industries. In the real-time welding process, due to hot deformation and the fixture of workpieces used frequently, torch will detach welding orbit causes deviation, which will affect welding quality. Therefore, elimination weld deviation is the key to the weld automatic tracking system. In this paper, the authors use the self-developed structured light vision sensor system which has significant advantage compared with arc sensors to capture real-time weld images. In the project of VC++6.0 real-time weld image processing, after binaryzation with threshold value seventy, 3*1 median filter, thinning, obtain weld main stripe. Then, using the extraction algorithm this paper proposed to obtain weld feature points, and compute position of weld. Experiment result verified that the extraction algorithm can locate feature points rapidly and compute the weld deviation accurately.

  19. Contamination and solid state welds.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Bernice E.


    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  20. Laser welding of selected aerospace alloys (United States)

    Ebadan, Gracie E.

    The study was aimed at developing an understanding of the microstructural effects of the laser welding process on the alloys, and assessing the structural integrity of the resultant welds. The effect of laser processing parameters such as laser power, laser beam traverse speed, lens focal length, and the manipulation of these parameters on the welding efficiency and weld area integrity was also investigated. Other tasks within the project included a study on the possibility of using an anodic film to enhance the laser weld ability of Al 6061. Finally, attempts were made to identify phases observed in the weld area of the composite materials. Nimonics C263 and PE11 exhibited laser welds free of cracks and porosity. The difference in composition between the two alloys did not result in any significant dissimilarities in their response to the laser welding process. The welds in both alloys exhibited a fine columnar dendritic microstructure, and while carbides were observed in the interdendritic regions of the welds, electron optical analysis did not reveal any gamma' precipitates in this region. It was concluded that for the welding of thin gage materials above a threshold laser power the resultant welding efficiency shows a greater dependence on laser beam mode, and laser spot size, than on laser power, and beam traverse speed. Aluminum 6061 was not easily welded with a laser in its as received form, and the welds showed some degree of porosity. Anodizing was found to improve the welding efficiency in this material. While the presence of an anodic film on the metal surface increased the welding efficiency of the alloy, no relationship was found between the thickness of the anodic film and welding efficiency in the range of film thicknesses investigated. Weld regions were observed to be cellular dendritic in structure, with narrow heat affected zones. No precipitates or low melting point phases could be identified in the weld region. Melt zones were successfully

  1. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding (United States)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin


    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  2. Electron Beam Welding to Join Gamma Titanium Aluminide Articles (United States)

    Kelly, Thomas Joseph (Inventor)


    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  3. Materials and welding engineering in advanced coal utilization plants

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, D.; Schulze-Frielinghaus, W.; Puetz, J.; Eichhorn, F.; Gaever, E. van


    The authors present the findings of studies on welding methods for high-temperature alloys used in advanced coal gasification plants. They discuss weld preparation, automatic TIG welding, MIG welding (also with pulsed arc) and plasma arc welding. The mechanical properties of welded joints before and after age hardening are investigated, and the results of fatigue and corrosion tests are presented. The welding methods are compared with a view to their suitability for high-temperature materials.

  4. Advanced Welding Tool (United States)


    Accutron Tool & Instrument Co.'s welder was originally developed as a tool specifically for joining parts made of plastic or composite materials in any atmosphere to include the airless environment of space. Developers decided on induction or magnetic heating to avoid causing deformation and it also can be used with almost any type of thermoplastic material. Induction coil transfers magnetic flux through the plastic to a metal screen that is sandwiched between the sheets of plastic to be joined. When welder is energized, alternating current produces inductive heating on the screen causing the adjacent plastic surfaces to melt and flow into the mesh, creating a bond on the total surface area. Dave Brown, owner of Great Falls Canoe and Kayak Repair, Vienna, VA, uses a special repair technique based on operation of the Induction Toroid Welder to fix canoes. Whitewater canoeing poses the problem of frequent gashes that are difficult to repair. The main reason is that many canoes are made of plastics. The commercial Induction model is a self-contained, portable welding gun with a switch on the handle to regulate the temperature of the plastic melting screen. Welder has a broad range of applications in the automobile, appliance, aerospace and construction industries.

  5. Induction-assisted laser beam welding of a thermomechanically rolled HSLA S500MC steel: A microstructure and residual stress assessment

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, R.S. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Former at Max-Planck Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Corpas, M. [Former at Max-Planck Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Moreto, J.A. [Universidade de São Paulo, Escola de Engenharia de São Carlos, CEP 13566-590 São Carlos, SP (Brazil); Jahn, A.; Standfuß, J. [Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden (Germany); Kaysser-Pyzalla, A. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Former at Max-Planck Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Pinto, H., E-mail: [Former at Max-Planck Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Universidade de São Paulo, Escola de Engenharia de São Carlos, CEP 13566-590 São Carlos, SP (Brazil)


    The present work deals with the effect of different combinations of induction heating and autogenous CO{sub 2} laser welding on the gradients of microstructure, microhardness and residual stresses in butt-joints of thermomechanically processed S500MC steel grade. Five strategies were pursued by varying the inductor position with respect to the laser beam. This enabled in-line pre-, post-, and simultaneous pre- and post-heating as well as annealing of the fusion and heat-affected zones. The induction-assisted CO{sub 2} laser welding strategies were compared to individual CO{sub 2} and Nd:YAG fiber welding procedures. The results demonstrate that induction heating can be combined to laser welding in order to effectively increase the cooling times. Martensite formation could be suppressed within the fusion and heat-affected zones and smooth hardness distributions were obtained by pre-heating and combined pre- and post-heating. The tensile residual stresses are, however, still of significance because of the high transformation temperatures (>500 °C) observed for the S500MC steel. This allowed for extensive thermal contraction after exhaustion of the austenite to ferrite transformation.

  6. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail:; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying


    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  7. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL


    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  8. Metal vaporization from weld pools (United States)

    Block-Bolten, A.; Eagar, T. W.


    Experimental studies of alloy vaporization from aluminum and stainless steel weld pools have been made in order to test a vaporization model based on thermodynamic data and the kinetic theory of gases. It is shown that the model can correctly predict the dominant metal vapors that form but that the absolute rate of vaporization is not known due to insufficient knowledge of the surface temperature distribution and subsequent condensation of the vapor in the cooler regions of the metal. Values of the net evaporation rates for different alloys have been measured and are found to vary by two orders of magnitude. Estimated maximum weld pool temperatures based upon the model are in good agreement with previous experimental measurements of electron beam welds.

  9. Laser Beam Submerged Arc Hybrid Welding (United States)

    Reisgen, Uwe; Olschok, Simon; Jakobs, Stefan; Schleser, Markus; Mokrov, Oleg; Rossiter, Eduardo

    The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The high deposition rate of the SA process in combination with the laser beam process offers, providing the appropriate choice of weld preparation, the possibility of welding plates with a thickness larger than 20° mm in a single pass, and also of welding thicker plates with the double-sided single pass technique.

  10. Peculiarities and future development of space welding (United States)

    Shulym, V. F.; Lapchinskii, V. F.; Nikitskii, V. P.; Demidov, D. L.; Neznamova, L. O.

    The paper deals with the peculiar features of space as a medium in which welding operations are performed. Studies of different methods of welding carried out both in the plane-laboratory and in space are briefly described, and the comparative characteristics of the most promising methods of welding for space conditions are given. The selection of electron beam as a basic method for space is supported. The paper considers the main welding processes performed in space with the help of an electron beam, such as heating, brazing, welding, cutting and coating.

  11. Grain refinement control in TIG arc welding (United States)

    Iceland, W. F.; Whiffen, E. L. (Inventor)


    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  12. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK


    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  13. Experimental Study of the Redistribution of Welding Distortion According to the Partial Removal of Welded Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Wang, Chao; Kim, Jae Woong [Yeungnam University, Kyungsan (Korea, Republic of)


    During the welding process, welding distortion is caused by the non-uniformity of the temperature distribution in the weldment. Welding distortion is redistributed because the residual stress and rigidity change according to the removal of the welded structure. In shipbuilding in particular, this phenomenon may be observed during the cutting process of lugs that are attached to blocks for transfer. The redistribution of welding distortion also causes problems, such as damage to the cutting tool. The aim of this study is to experimentally analyze the redistribution of welding distortion because of the partial removal of the welded structure. In the experiments conducted in this study, fillet welding and cutting were performed, and longitudinal bending and angular distortion in the welded structures were then investigated and analyzed.


    Directory of Open Access Journals (Sweden)

    Nachimani Charde


    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  15. Experimental investigation on the weld pool formation process in plasma keyhole arc welding (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu


    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s‑1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  16. Residual stress characterization of welds and post-weld processes using x-ray diffraction techniques (United States)

    Brauss, Michael E.; Pineault, James A.; Eckersley, John S.


    This paper illustrates the importance of residual stress characterization in welds and post weld processes. The failure to characterize residual stresses created during welding and/or post weld processes can lead to unexpected occurrences of stress corrosion cracking, distortion, fatigue cracking as well as instances of over design or over processing. The development of automated residual stress mapping and the availability of portable and fast equipment have now made the characterization of residual stresses using x-ray diffraction practical for process control and optimization. The paper presents examples where x-ray diffraction residual stress characterization techniques were applied on various kinds of welds including arc welds, TIG welds, resistance welds, laser welds and electron beam welds. The nondestructive nature of the x-ray diffraction technique has made the residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. Some examples presented show the residual stresses before and after the application of post weld processes such as shot peening, grinding and heat treatment.

  17. Weld-brazing of titanium (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.


    A joining process, designated weld-brazing, which combines resistance spotwelding and brazing has been developed at the NASA Langley Research Center. Resistance spot-welding is employed to position and align the parts and to establish a suitable faying surface gap for brazing; it contributes to the integrity of the joint. Brazing enhances the properties of the joint and reduces the stress concentrations normally associated with spotwelds. Ti-6Al-4V titanium alloy joints have been fabricated using 3003 aluminum braze both in a vacuum furnace and in a retort containing an inert gas environment.

  18. Shimmed electron beam welding process (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas


    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  19. Laser welding of micro plastic parts (United States)

    Haberstroh, E.; Hoffmann, W.-M.


    Most welding processes for plastics do not meet the demands of micro technology and thus cannot be applied in this innovative industrial sector. One of the few techniques which are applicable in this sector is the laser transmission welding, which has distinctive advantages like low mechanical and thermal load of the joining parts. This makes the laser particularly suitable for the welding of micro plastics parts. Thereby, contour welding is a process variant of laser transmission welding enabling the welding of complex and even three-dimensional weld contours. But so far it has not yet been applied for welding plastics parts of micro scale in the industrial practice. Recent research at the Institute of Plastics Processing (IKV) at the RWTH Aachen University shows the feasibility of this process to weld small and complex micro parts. Good mechanical properties can be achieved. However, it is necessary to apply measures to reduce the formation of flash. Moreover, it can be shown that there is a strong influence of some material parameters on the laser welding process so that some plastics are more suitable than others for the contour welding in micro technology.

  20. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков


    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability