WorldWideScience

Sample records for butt joint welding

  1. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least......This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...

  2. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...... squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...

  3. Control of GMA Butt Joint Welding Based on Neural Networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2004-01-01

    This paper presents results from an experimentally based research on Gas Metal Arc Welding (GMAW), controlled by the artificial neural network (ANN) technology. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a high degree of quality in...... the challenging field of butt joint welding with full penetration under stochastically changing boundary conditions, e.g. major gap width variations. GMAW experiments performed on mild-steel plates (3 mm of thickness), show that high quality welds with uniform back-bead geometry are achievable for gap...... width variations from 0.5 mm to 2.3 mm - scanned 10 mm in front of the electrode location. In this research, the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a static multi-layer feed-forward network. The Levenberg-Marquardt algorithm, for...

  4. Diffusion welding in air. [solid state welding of butt joint by fusion welding, surface cleaning, and heating

    Science.gov (United States)

    Moore, T. J.; Holko, K. H. (Inventor)

    1974-01-01

    Solid state welding a butt joint by fusion welding the peripheral surfaces to form a seal is described along with, autogenetically cleaning the faying or mating surfaces of the joint by heating the abutting surfaces to 1,200 C and heating to the diffusion welding temperature in air.

  5. Experimental investigation on tensile strength of butt welded joint post high temperatures

    Institute of Scientific and Technical Information of China (English)

    Cao Pingzhou; Chen Jianfeng; Zhao Wentao

    2009-01-01

    In order to investigate the laws of variation on tensile strength of butt welded joint post high temperatures, the wide plate tension tests for butt welded joint were conducted after cooling down from different high temperatures. The tests indicate that specimens appear ductile fracture at the steel plate during the tension tests after cooling down. The maximum temperatures undergone and the cooling pattern are major factors influencing tensile strength of butt welded joint post high temperatures. The tensile strength mostly reduces by 8% within 900℃. Based on the experimental results, the paper proposes the calculation formulas of tensile strength of butt welded joint post high temperatures. The conclusions of the paper supply references for evaluation damage and feinforcement of steel structure post fire.

  6. Laser welding of butt joints of austenitic stainless steel AISI 321

    OpenAIRE

    A. Klimpel; A. Lisiecki

    2007-01-01

    Purpose: of this paper: A study of an automated laser autogenous welding process of butt joints of austenitic stainless steel AISI 321 sheets 0.5 [mm] and 1.0 [mm] thick using a high power diode laser HPDL has been carried out.Design/methodology/approach: Influence of basic parameters of laser welding on shape and quality of the butt joints and the range of optimal parameters of welding were determined.Findings: It was showed that there is a wide range of laser autogenous welding parameters w...

  7. Laser welding of butt joints of austenitic stainless steel AISI 321

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2007-11-01

    Full Text Available Purpose: of this paper: A study of an automated laser autogenous welding process of butt joints of austenitic stainless steel AISI 321 sheets 0.5 [mm] and 1.0 [mm] thick using a high power diode laser HPDL has been carried out.Design/methodology/approach: Influence of basic parameters of laser welding on shape and quality of the butt joints and the range of optimal parameters of welding were determined.Findings: It was showed that there is a wide range of laser autogenous welding parameters which ensures high quality joints of mechanical strength not lower than the strength of the base material (BM. The butt joints of austenitic steel AISI 321 sheets welded by the HPDL diode laser at optimal parameters are very high quality, without any internal imperfections and the structure and grain size of weld metal and HAZ is very small and also the HAZ is very narrow and the fusion zone is very regular.Research limitations/implications: Studies of the weldability of stainless steels indicate that the basic influence on the quality of welded joints and reduction of thermal distortions has the heat input of welding, moreover the highest quality of welded joints of austenitic stainless steel sheets are ensured only by laser welding.Practical implications: The technology of laser welding can be directly applied for welding of butt joints of austenitic steel AISI 321 sheets 0.5 and 1.0 [mm] thick.Originality/value: Application of high power diode laser for welding of austenitic stainless steel AISI 321.

  8. Evaluation of residual stress distribution in austenitic stainless steel pipe butt-welded joint

    International Nuclear Information System (INIS)

    This paper reports measured and estimated results of residual stress distributions of butt-welded austenitic stainless steel pipe in order to improve estimation accuracy of welding residual stress. Neutron diffraction and strain gauge method were employed for the measurement of the welding residual stress and its detailed distributions on inner and outer surface of the pipe as well as the distributions within the pipe wall were obtained. Finite element method was employed for the estimation. Transient and residual stresses in 3D butt-welded joint model were computed by employing Iterative Substructure Method and also commercial FEM code ABAQUS for a reference. The measured and estimated distributions presented typical characteristic of straight butt-welded pipe which had decreasing trend along the axial direction and bending type distributions through wall of the pipe. Both results were compared and the accuracy of measurement and estimation was discussed. (author)

  9. Microstructure and microhardness of fiber laser butt welded joint of stainless steel plates

    International Nuclear Information System (INIS)

    Highlights: ► Narrow and fully penetrated welded joint without marco-defects is obtained by fiber laser. ► Weld microstructures in fusion zone are mainly columnar dendrites and equiaxed dendrites. ► There are no obvious composition changes and segregation in the fusion zone. ► The welded joint shows higher microhardness than the stainless steel substrate. - Abstract: The butt welding of 304 stainless steel plates with thickness of 3 mm and 6 mm were achieved by YLR-6000 fiber laser under Ar protective gas. The weld appearance, microstructure, composition distribution and microhardness of welded joint were emphatically investigated. The results showed that the narrow and fully penetrated welded joint without marco-defects can be obtained with tightly focused 2 kW fiber laser power and 20 mm/s welding speed. The weld bead was smooth, and various microstructures typically formed at different zones of the welded joint. The fine columnar and equiaxed crystals existed in the edge and center of weld bead, respectively. Both were different with the microstructure of the stainless steel substrate. However, the composition distribution of the welded joint had no obvious changes. Furthermore, the superior microhardness of welded joint over the stainless steel substrate was mainly attributed to its finer microstructure

  10. Gas metal arc welding of butt joint with varying gap width based on neural networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2005-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters, has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...... squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...

  11. Microstructure and fatigue performance of butt-welded joints in advanced high-strength steels

    International Nuclear Information System (INIS)

    This study presents a comparative analysis of the high-cycle fatigue behaviors of butt weld joints in advanced high-strength steels with different strength levels and weld bead geometry. Welded joints were made using a gas metal arc welding (GMAW) process on dual-phase steels (DP440 and DP590) and martensitic steel (MS) with tensile strengths of 440, 590, and 1500 MPa, respectively. The microstructures with the lowest hardness were found at the base metal, the sub-critical heat-affected zone (HAZ), and the fusion zone for DP440, DP590, and MS weldments, respectively. Fatigue failure of specimens without weld beads occurred at the points of lowest hardness, and fatigue life exhibited the order MS>DP590>DP440, similar to the order of lowest hardness values in each weldment. However, the introduction of high weld beads resulted in very short, similar fatigue lives for all welded joints and fracture occurred at weld toe due to the overwhelming stress concentration effect. A transition from geometry-governed fracture toward microstructure-governed fracture was investigated by varying weld bead heights

  12. The microstructure of aluminum A5083 butt joint by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Jasri, M. A. H. M.; Afendi, M. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh, 02600, Arau, Perlis (Malaysia); Ismail, A. [UniKL MIMET, JalanPantaiRemis, 32200, Lumut, Perak (Malaysia); Ishak, M. [Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 02600, Pekan, Pahang (Malaysia)

    2015-05-15

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  13. Mechanical and metallurgical properties of DP 1000 steel square butt welded joints with GMAW

    Directory of Open Access Journals (Sweden)

    Ianto Rocha

    2014-12-01

    Full Text Available In this work, Gas Metal Arc Welding (GMAW was used to study the influence of heat input (i.e. cooling rate on mechanical/metallurgical properties of square butt welded joints of DP 1000 sheets. The influence of filler metals of different strengths on the mechanical properties of joints was also tested. A significant decrease in hardness was observed in the Heat Affected Zone (HAZ due to martensite tempering, in regions where peak temperature was close to isotherm AC1 (calculated in 735 oC for these steel; coincidently, fracture in every tensile test occurred in regions where martensite was tempered, even when a wire of less strength was used. It was noticed that the decrease in ultimate tensile and yield strength of base metal was inherent to welding. When minimum heat input was used, deterioration in mechanical properties was less pronounced, once degree of HAZ softening was smaller. Elongation of joints increased with increasing heat input.

  14. Hybrid laser/arc welding of advanced high strength steel in different butt joint configurations

    International Nuclear Information System (INIS)

    Highlights: • Feasibility of joining thick steel by HLAW process was studied. • Design of butt joint configurations satisfied ballistic test requirement. • Heat input and microstructure were changed by groove geometry. - Abstract: An experimental procedure was developed to join thick advanced high strength steel plates by using the hybrid laser/arc welding (HLAW) process, for different butt joint configurations. The geometry of the weld groove was optimized according to the requirements of ballistic test, where the length of the softened heat affected zone should be less than 15.9 mm from the weld centerline. The cross-section of the welds was examined by microhardness test. The microstructure of welds was investigated by scanning electron microscopy and an optical microscope for further analysis of the microstructure of fusion zone and heat affected zone. It was demonstrated that by changing the geometry of groove, and increasing the stand-off distance between the laser beam and the tip of wire in gas metal arc welding (GMAW) it is possible to reduce the width of the heat affected zone and softened area while the microhardness stays within the acceptable range. It was shown that double Y-groove shape can provide the optimum condition for the stability of arc and laser. The dimensional changes of the groove geometry provided substantial impact on the amount of heat input, causing the fluctuations in the hardness of the weld as a result of phase transformation and grain size. The on-line monitoring of HLAW of the advanced high strength steel indicated the arc and laser were stable during the welding process. It was shown that less plasma plume was formed in the case where the laser was leading the arc in the HLAW, causing higher stability of the molten pool in comparison to the case where the arc was leading

  15. Simulation and experimental study on distortion of butt and T-joints using WELD PLANNER

    International Nuclear Information System (INIS)

    This paper investigates the capability of linear thermal elastic numerical analysis to predict the welding distortion that occurs due to GMAW process. Distortion is considered as the major stumbling block that can adversely affect the dimensional accuracy and thus lead to expensive corrective work. Hence, forecast of distortion is crucially needed and ought to be determined in advance in order to minimize the negative effects, improve the quality of welded parts and finally to reduce the production costs. In this study, the welding deformation was simulated by using relatively new FEM software WELD PLANNER developed by ESI Group. This novel Welding Simulation Solution was employed to predict welding distortion induced in butt and T-joints with thickness of 4 mm. Low carbon steel material was used for the simulation and experimental study. A series of experiments using fully automated welding process were conducted for verification purpose to measure the distortion. By comparing between the simulation and experimental results, it was found out that this program code offered fast solution analysis time in estimating weld induced distortion within acceptable accuracy

  16. Analysis on the joint tensile strength and fractography of TiNi shape memory alloy precise pulse resistance butt welding

    Institute of Scientific and Technical Information of China (English)

    赵熹华; 韩立军; 赵蕾

    2002-01-01

    This paper studies mechanical property and fractography of the welded joints obtained in different welding parameters such as welding heat and welding press with/without gas shield in TiNi shape memory alloy precise pulse resistance butt welding using tensile strength test, XRD, SEM and TEM measures. The optimum welding parameters obtaining high tensile strength welded joint are got. On the condition of welding press magneting current 2 A and welding heat 75%, the joint strength is the highest. This is important for to study other properties of TiNi shape memory alloy further. The experimental results state that argon gas shield have different effects on different welding parameters, less on welding press, but great on welding heat. But excessive welding press and welding heat have great effects on joint tensile strength. Too high welding heat can produce the new intermetallic compound, this intermetallic compound lead to dislocation density to increase and form the potential crack initiation, which can easily make the joint fracture under stress effect and decrease the shape memory ratio of joint for high density dislocation groups existing in the twinned martensite.

  17. High power laser welding of thick steel plates in a horizontal butt joint configuration

    Science.gov (United States)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  18. Butt Joint Tool Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N N

    2007-12-06

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  19. Selection of welding process to fabricate butt joints of high strength aluminium alloys using analytic hierarchic process

    International Nuclear Information System (INIS)

    Selection of welding process is an unstructured decision problem involving multiple attributes (factors). To provide decision support for the welding or design engineer, an all encompassing analysis of multiple attributes is necessary. The present paper reports a new procedure using an analytic hierarchic process (AHP) for the selection of a welding process to fabricate butt joints of high strength aluminium alloy of AA 7075 grade, based on the qualitative factors of welding processes, when the quantitative factors appear to be equal. The following three welding processes from arc welding family are generally used to fabricate high strength aluminium alloys: (i) gas metal arc welding (GMAW) (ii) gas tungsten arc welding (GTAW), and (iii) plasma arc welding (PAW). Of the three available processes, the best process has been selected by doing qualitative analysis with the help of AHP and in the present case, for welding high strength aluminium alloy, the best process is GTAW

  20. A Study on the compensation margin on butt welding joint of Large Steel plates during Shipbuilding construction.

    Science.gov (United States)

    Kim, J.; Jeong, H.; Ji, M.; Jeong, K.; Yun, C.; Lee, J.; Chung, H.

    2015-09-01

    This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ∼ 2 mm in 11t ∼ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000 mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.

  1. Yb–YAG laser offset welding of AA5754 and T40 butt joint

    OpenAIRE

    Casalino, Giuseppe; MORTELLO, Michelangelo; PEYRE, Patrice

    2015-01-01

    In this work, a 5754 Al alloy and T40 were joined in butt configuration by focusing a fiber laser onto the titanium side, close to the weld centerline (offset). The keyhole was made entirely of titanium, and the fusion of the aluminum was achieved by heat conduction. Neither filler metal nor chamfering was necessary to produce a sound, dissimilar weld. The assembly was free from porosity and spatter defects. The mechanical properties were satisfactory. The energy input, the laser offset, and ...

  2. Effect of Included Angle in V-Groove Butt Joints on Shrinkages in Submerged Arc Welding Process

    Directory of Open Access Journals (Sweden)

    N. LAKSHMANA SWAMY

    2012-04-01

    Full Text Available The problems of distortion, residual stresses and reduced strength of structure in and around a welded joint are of major concern in the shipbuilding industry and in other similar manufacturing industries. The predictions of the degree of shrinkages in ship panels due to welding are of great importance from the point of view of dimensional control and it is important to analyze transverse and longitudinal shrinkage. This paper deals with the experimental analysis of transverse and longitudinal shrinkage in single and double V-groove butt joints in submerged arc welding by varying included angle and keeping process parameters constant. It is found that, the maximum shrinkage was at the centre of the plate and minimum at the ends. It is also found that, the transverse and longitudinal shrinkage increase with increase in the included angle. There is a significant increase in the transverse shrinkage and small variation in longitudinal shrinkage.

  3. Study of Simulated Temperature of Butt Joint during Friction Stir Welding Of Aluminium Alloy by Using Hyperworks

    Directory of Open Access Journals (Sweden)

    Mohd Anees Siddiqui

    2015-01-01

    Full Text Available Friction stir welding (FSW is one of the latest welding technology that utilizes a special tool for generation of frictional heat in the work piece by its rotation due to which joining occurs without melting of metal. For this reason friction stir welding lies under the category of solid state joining. A part from experimental work, there is large space to work on simulation of FSW by using simulation tools. In the present paper, simulation of friction stir welding of aluminium alloy AA-6061 is done by using HyperWeld module of Altair HyperWorks. The virtual experiment of friction stir welding is conducted for variable tool rotational speeds with constant travelling speed and study of simulation results of variation in temperature distribution along the weld line of butt joint is done. The results of simulation shows that the temperature is symmetrically distributed along the weld line. It is observed that the maximum temperature along the weld line increases with the increase in rotational speed. It is also observed that the temperature at advancing side is greater that retreating side.

  4. Creep-fatigue evaluation on butt welded joints of type 304 SS

    International Nuclear Information System (INIS)

    In high temperature plant systems such as thermal power generation and petro-chemical complexes, various weldments are used for pressure vessels and piping. Usually in structural design methods for weldment of conventional pressure vessels and piping systems, load controlled stresses are dominant, and to protect early failure in weldments tensile and creep strengths of each welded joint have not to be lower than the standard values of base metal. While under cyclic deformation controlled stress such as thermal loading in LMFBR, creep-fatigue phenomenon caused by reversal loading and residual stress relaxation is dominant. Therefore, a creep-fatigue evaluation method of Type 304 ss butt welded joints has to be investigated under cyclic thermal loading. For a study of this effect, the strain concentration factor Kε; Kε = Max[1+(qwq-1)(1-2 γyσy/E εn), Kε0], which is derived from the generalized elastic follow-up concept as the plastic strain redistribution, was applied, and in the Kε factor the metallurgical discontinuity effects; qw and γy were considered. The elastic follow-up increment factor for weldment; qw is equal to 2 under uni-axial mechanical loading. And under bi-axial thermal loading in shell-type structures, it is clarified that 1.5 as the qw value can be applied. As the yield ration γy, the value of 0.8 is the best for Type 304 ss weldment. As for the creep damage estimation, the simplified procedure based on the time fraction rule is discussed, and it is investigated how the creep damage of weldment can be evaluated by using mechanical properties of base metal (design standard values). The initial value of stress relaxation is determined by the cyclic stress-strain relation of base metal and the above Kε value. Stress relaxation during strain hold can be analyzed by using creep strain behaviour of base metal. Finally the allowable creep-fatigue life can be estimated by using the design curves. (author). 8 refs, 14 figs

  5. Residual stress measurement of large-bore stainless steel pipe with butt-welded joint by inherent strain method

    International Nuclear Information System (INIS)

    This study describes residual stress distribution of large-bore and heavy-walled stainless steel pipe with butt-welded joint as measured by inherent strain method with distribution function in which the inherent strain distribution is represented as function. The deviation of the most probable residual stress value obtained by the method was enough small to indicate accurate measurement. The detail feature and 3D-distribution of the residual stress generated within the heavy-walled pipe with welded joint were discussed on two variously-sized pipe joints. It was found that the residual stress distribution had more complicated shape as the bore and thickness of the pipe was larger. (author)

  6. Research on the welding properties of typical butt joints with laser-welding%激光焊典型对接接头焊接性能研究

    Institute of Scientific and Technical Information of China (English)

    高瑞全; 韩晓辉; 何智勇; 赵延强

    2013-01-01

    通过研究奥氏体不锈钢材料2-SUS301 L-ST对接接头的外观形貌、力学性能、显微硬度、金相组织等,考察激光焊接典型对接接头焊接性能.试验研究表明:激光焊接间隙小于等于0.2 mm时,激光焊接过程稳定,焊缝成形均匀美观,未发现外观缺陷和内部缺欠;激光焊接接头具有较好的塑韧性,其平均拉伸强度为786 MPa,激光焊对接接头显微硬度约250 HV;激光焊缝的微观组织均为柱状晶奥氏体组织,热影响区显微组织致密、晶粒细小.%The welding properties of typical butt joints with laser welding were investigated,by researching on coating appearance, mechanical properties, micro-hardness, metallographic structure of butt joints with austenitic stainless steel (2-SUS301L-ST).The experiment results showed that,the laser welding process steadied,appearances of weld were uniformity and artistic and any external or internal defects were not found,when the welding clearance was not more than 0.2 mm;the plasticity and the toughness of welding joints were good, their average tensile strength was 786 MPa,and the micro-hardness of the welding joints was 250 HV;the micro-structures of laser welding lines were columnar austenitic texture, and the micro-structures of heat affected zone were compact and the crystalline grains were tiny.

  7. Evaluations of stress concentration at girth butt weld joint between straight pipe and elbow

    International Nuclear Information System (INIS)

    The design of class 1 piping for nuclear plants is performed in accordance with the ASME B and PV Code Sec. Ill by rising stress index which have been defined at the center portion of elbow, since it has been generally believed that the highest stress will occur at this point. Consequently the stress evaluations at girth weld joint is riot recognized contrary to tire high stress concentration due to the weld irregularities. However, for LMFBR piping, especially under high temperature conditions the stress evaluations based on the index at the center portion of the elbow will not always provide conservative results from the piping design point of view, especially for fatigue, because it requires to evaluate the stress or strain range by multiplying the square of the stress or strain concentration factor. For thin wall and large diameter LMFBR piping the following four items provide significant effects on the stress and strain at the girth weld joint between straight pipe and elbow: stresses in weld joint due to ovalization of elbow, represented by 'carry over factor'; stress concentration due to weld Irregularities between straight pipe and elbow; gross structural discontinuity due to radial deflection caused by weld shrinkage at joint; increase of nominal stress due to decrease of nominal pipe wall thickness caused by counter bore machining. This report presents proposed design factors of above four items with the aim to use them in Monju FBR PHTS main piping and verify the structural integrity

  8. Research on Coiled Tubing (CT) Butt Welding Process and Properties of Welded Joint%连续管焊接工艺及接头性能研究

    Institute of Scientific and Technical Information of China (English)

    李霄; 石凯; 刘彦明; 王洪铎

    2012-01-01

    根据连续管结构特点开发了专用工装及优化的焊接工艺,并对焊接接头的强度、塑性、硬度、耐腐蚀性能进行了研究.结果表明,连续管对接接头的热影响区中总存在不同程度的软化,该软化区的存在使得接头断裂于焊缝附近,同时接头的强度降低.采用专门开发的水冷焊接工艺可以明显改善软化程度,接头强度下降幅度降低.接头的弯曲、压扁试验结果表明焊接接头具有良好的变形能力.在28%HCl模拟溶液中焊接接头的腐蚀速度很快,由于材质的不同及结构特点的影响,焊缝的腐蚀速度明显高于母材及热影响区.%According to structure characteristics of CT, the special welding fixture and optimized welding process were developed, and the properties of welded joint, such as strength, plasticity, hardness and corrosion resistance were researched. The results indicated that different degree softening always exist in HAZ of CT butt welded joints, the softening area make welded joint fracture appear nearby weld, and strength drop down. Adopting specially developed water cooling welding process can improve softening degree obviously, and decreasing range of welded joint strength is reduced. Welded joint bend and the flattening test results showed that welded joint is with perfect deformability. The corrosion rate of welded joint is very quick in 28%HC1 simulated solution. The corrosion rate of weld is higher than that of base metal and HAZ according to different material and characteristics.

  9. Effect of cyclic loading on the relaxation of residual stress in the butt-weld joints of nuclear reactor piping

    International Nuclear Information System (INIS)

    Highlights: • The accuracy of welding simulation is confirmed by comparing with experiments. • Relaxation of residual stress for piping weld due to cyclic load is investigated. • High tensile stress that occurs in front of crack tip is reduced by cyclic loading. • Mechanism of relaxation of residual stress due to cyclic loading is discussed. • Cyclic loading on the piping welds affects the suppression of crack growth. - Abstract: Weld residual stress is among the most important factors in stress corrosion cracking (SCC) of the austenitic stainless steels used for pressure boundary piping in nuclear power plants. To assess the integrity of piping, particularly over long-term operation, it is necessary to understand the effects of cyclic loading, such as that caused by an earthquake, on residual stress. In this study, finite element analyses were performed using an axisymmetric model of a 250A pipe butt weld composed of low-carbon Type 316L stainless steel. The moving heat source was simulated by a double ellipsoid model. The accuracy of the method was verified by comparing the calculated results with experimental measurements. Subsequent to the welding simulation and residual stress analysis, the effects of cyclic loading were studied by applying several axial cyclic loading patterns to the model, varying the maximum load. Higher loading caused greater relaxation of the weld residual stress near the piping welds. It was concluded that cyclic loading on piping butt welds suppresses the SCC growth by reducing the tensile residual stress at the inner surface

  10. Mechanical properties of high manganese non-magnetic steel and carbon steel welded butt joints. 1. Investigation for applying dissimilar materials to steel structures

    International Nuclear Information System (INIS)

    Mechanical properties of the dissimilar materials welded butt joints between high manganese non-magnetic steels and carbon steels (referred to as DMW joints) were investigated for applying to steel structures. The SS400 is used as the carbon steel. The DMW joints, in which weld defects such as an incomplete penetration, blowhole and crack were not found, were shown to be of good quality. The tensile strength in the DMW joints was 10 (%) higher than that of the carbon steel. In the bend tests, the DMW joints showed good ductility, without cracks. The Charpy absorbed energy at 0 (degC) of the DMW joints was over 120 (J) at the bond where it seems to be the lowest. Significant hardening or softening was not detected in the heat affected zone. (author)

  11. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar

    Science.gov (United States)

    Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan

    2016-08-01

    Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.

  12. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Butt weld joint of small diameter cylinder (4B Sch40)

    International Nuclear Information System (INIS)

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2, Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  13. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    International Nuclear Information System (INIS)

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al3Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn2 hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided

  14. A Combined Experimental/Computational Analysis of the Butt-Friction-Stir-Welded AA2139-T8 Joints

    Science.gov (United States)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.; Yen, C.-F.

    2016-07-01

    Combined experimental and computational investigations are carried out of the mechanical properties of materials residing in different weld zones of friction stir-welded (FSW) joints of thick plates of AA2139-T8. The experimental portion of the work comprised (a) identification of the weld zones within the FSW joints, through the use of optical-microscopy characterization of a transverse section; (b) validation of the weld zones identified in (a) via the generation of a micro-hardness field over the same transverse section; (c) extracting and subsequently testing miniature tensile specimens from different weld zones; and (d) extracting and testing a larger-size tensile specimen spanning transversely the FSW weld. The computational portion of the work comprised (i) validation of the mechanical properties, as determined experimentally using the miniature tensile specimens, of the material residing within different zones of the FSW joint; and (ii) clarification of the benefits yielded by the knowledge of the local material properties within the FSW joint. These benefits arise from the fact that (a) joint mechanical properties are generally inferior to those of the base metal; (b) the width of the weld in thick metallic-armor is often comparable to the armor thickness, and therefore may represent a significant portion of the armor exposed-surface area; and (c) modeling of the weld-material structural response under loading requires the availability of high-fidelity/validated material constitutive models, and the development of such models requires knowledge of the local weld-material mechanical properties.

  15. Residual stress distribution in austenitic stainless steel pipe butt-welded joint measured by neutron diffraction technique

    International Nuclear Information System (INIS)

    Residual stress is inevitable consequence of welding or manufacturing process, which might greatly affect propagation of high-cycle fatigue or SCC crack. In order to evaluate damages due to the crack, it is required to estimate residual stress and to reflect them to the evaluation process as well. The magnitude and distribution of residual stress greatly depend on the individual process of welding or manufacturing, while the accuracy of prediction or measurement is still insufficient. This paper reports the result of residual stress measurement of butt-welded pipe made of austenitic stainless steel. It also intended to improve prediction and measurement techniques concerning to residual stress. The measurement was conducted by neutron diffraction technique employing the diffractometer for residual stress analysis developed by Japan Atomic Energy Agency. The measured results showed typical characteristics of butt-welded pipe both in decline of stress along axial direction and in radial distribution of bending due to axial stress. The measured result agreed qualitatively with the result predicted by the finite element analysis. A quantitative comparison between measured result and analysis showed a shift of the measured stress toward higher tensile. The measured result was also compared with the results by X-ray diffraction and strain-gauge methods to grasp the distinctive results of the methods. (author)

  16. Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm

    International Nuclear Information System (INIS)

    Highlights: ► Defect-free friction stir welds have been produced for AA5083-O/AA7075-O. ► Back-propagation was sufficient for predicting hardness and tensile strength. ► A hybrid multi-objective algorithm is proposed to deal with this MOP. ► Multi-objective particle swarm optimization was used to find the Pareto solutions. ► TOPSIS is used to rank the given alternatives of the Pareto solutions. -- Abstract: Friction Stir Welding (FSW) has been successfully used to weld similar and dissimilar cast and wrought aluminium alloys, especially for aircraft aluminium alloys, that generally present with low weldability by the traditional fusion welding process. This paper focuses on the microstructural and mechanical properties of the Friction Stir Welding (FSW) of AA7075-O to AA5083-O aluminium alloys. Weld microstructures, hardness and tensile properties were evaluated in as-welded condition. Tensile tests indicated that mechanical properties of the joint were better than in the base metals. An Artificial Neural Network (ANN) model was developed to simulate the correlation between the Friction Stir Welding parameters and mechanical properties. Performance of the ANN model was excellent and the model was employed to predict the ultimate tensile strength and hardness of butt joint of AA7075–AA5083 as functions of weld and rotational speeds. The multi-objective particle swarm optimization was used to obtain the Pareto-optimal set. Finally, the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) was applied to determine the best compromised solution.

  17. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    International Nuclear Information System (INIS)

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position

  18. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  19. Effect of Included Angle in V-Groove Butt Joints on Shrinkages in Submerged Arc Welding Process

    OpenAIRE

    N. Lakshmana Swamy; G. MAHENDRAMANI

    2012-01-01

    The problems of distortion, residual stresses and reduced strength of structure in and around a welded joint are of major concern in the shipbuilding industry and in other similar manufacturing industries. The predictions of the degree of shrinkages in ship panels due to welding are of great importance from the point of view of dimensional control and it is important to analyze transverse and longitudinal shrinkage. This paper deals with the experimental analysis of transverse and longitudina...

  20. F52法兰/X52接管环焊接头开裂原因浅析%Cracking Reason Analysis on Circumferential Welding Joints of F52 Flange and X52 Welded Pipe Butt Welding

    Institute of Scientific and Technical Information of China (English)

    牛靖; 刘迎来; 王鹏; 齐丽华; 冯耀荣; 吉玲康; 张建勋

    2011-01-01

    通过化学成分、微观组织、断口形貌分析等方法对某管线场站建设中F52法兰/X52接管环焊接头裂纹产生的原因进行了研究.结果表明,裂纹出现于打底焊缝F52法兰侧的近缝区,呈现出沿晶+穿晶的开裂形貌,属于焊接冷裂纹.打底焊法兰侧近缝区的粗大马氏体是裂纹产生的主要原因,焊接工艺不当是裂纹产生的直接诱因,控制F52法兰的化学成分和适当的打底焊前预热是防止该裂纹产生的主要途径.%The circumferential welding joints cracking reason of F52 flange and XS2 welded pipe butt welding in some pipeline station was analyzed by chemical composition analysis, microstructure observation and fracture appearance analysis. The results showed that the crack which appeared near weld zone of F52 flange side belongs to welding cold cracking during backing welding, because its fracture appearance presents intergranular and transgranular fracture. The coarse martensite near weld zone of flange side is main reason which leads to crack; the improper welding process is direct inducement for crack. Controlling chemical composition of F52 flange and preheating before backing welding are the principal methods to prevent cracks.

  1. Microcomputer Checks Butt-Weld Accuracy

    Science.gov (United States)

    Clisham, W.; Garner, W.; Cohen, C.; Beal, J.; Polen, R.; Lloyd, J.

    1982-01-01

    Electrical gage and microcomputer eliminate time-consuming manual measurements. Alinement and angle of plates on either side of butt weld are measured and recorded automatically by hand-held gage and desk-top microcomputer. Gage/micro-computer quickly determine whether weld is within dimensional tolerances or whether reworking is needed. Microcomputer prints out measurements while operator moves gage from point to point along weld. Out-of-tolerance measurements are marked by an asterisk on printout.

  2. Optimization of laser butt welding parameters with multiple performance characteristics

    Science.gov (United States)

    Sathiya, P.; Abdul Jaleel, M. Y.; Katherasan, D.; Shanmugarajan, B.

    2011-04-01

    This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.

  3. Thermal treatment of dissimilar steels' welded joints

    Science.gov (United States)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  4. Butt-welding Residual Stress of Heat Treatable Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    C.M. Cheng

    2007-01-01

    This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.

  5. Creep failure analysis of butt welded tubes

    International Nuclear Information System (INIS)

    As part of a major research programme to investigate the influence of butt welds on the life expectancy of tubular components, a series of internal-pressure, stress-rupture tests have been carried out. Thick walled 1/2Cr 1/2Mo 1/4V tube specimens were welded with mild steel, 1Cr 1/2Mo steel, 2 1/4Cr 1Mo steel or nominally matching 1/2Cr 1/2Mo 1/4V steel to give a wide range of weld metal creep strengths relative to the parent tube. The weldments were tested at 5650C at two values of internal pressure, and gave failure lives of up to 44,000 hrs. Finite element techniques have been used to determine the stationary state stress distribution in the weldment which was represented by a three material model. Significant stress redistribution was indicated and these results enabled the position and orientation of cracking and the rupture life to be predicted. The theoretical and experimental results have been used to highlight the limitations of current design methods which are based on the application of the mean diameter hoop stress to the parent material stress rupture data. (author)

  6. Investigation and control of factors influencing resistance upset butt welding.

    NARCIS (Netherlands)

    Kerstens, N.F.H.

    2010-01-01

    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in producti

  7. Investigation and control of factors influencing resistance upset butt welding.

    OpenAIRE

    Kerstens, N.F.H.

    2010-01-01

    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in production. In principle the welding process is rather simple, the materials to be joined are clamped between two electrodes and pressed together. Because there is an interface present with a higher resist...

  8. Butt-welding technology for double walled Polyethylene pipe

    International Nuclear Information System (INIS)

    Highlights: ► We developed a butt welding apparatus for doubled walled Polyethylene pipe. ► We design the welding process by analyzing thermal behaviors of the material. ► We performed the welding and tested the welded structural performances. ► We also applied the same technology to PVC pipes. ► We verified the butt welding was successful and effective for the pipes with irregular sections. -- Abstract: In this study, mechanical analyses of a butt welding technology for joining Polyethylene pipe are presented. The pipe had unique structure with double wall, and its section topology was not flat. For an effective repair of leakage and replacements of the pipe, the butt welding technology was developed and tested. For the material characterizations, thermodynamic analyses such as thermal gravimetric analysis and differential scanning calorimetry were performed. Based on the test results, the process temperature and time were determined to ensure safe joining of the pipes using a hot plate apparatus. The welding process was carefully monitored by measuring the temperature. Then, the joined pipes were tested by various methods to evaluate the quality. The analyses results showed the detail process mechanism during the joining process, and the test results demonstrated the successful application of the technology to the sewage pipe repairs.

  9. Thermal Analysis on Butt Welded Aluminium Alloy AA7075 Plate Using FEM

    Directory of Open Access Journals (Sweden)

    M. Pal Pandi

    2014-03-01

    Full Text Available Thermo-mechanical finite element analysis has been performed to assess the residual stress in the butt weld joints of aluminium Alloy AA7075 plates by utilizing the commercial software package ABAQUS. This paper presents an efficient FE technique using equivalent load to precisely predict welding deformations and residual stresses in butt joints. The radial heat flux distribution is considered on the top surface of the weldment. Convective and radiative heat losses are taken into account through boundary conditions for the outward heat flux. Linear FE transient thermal analysis is performed using surface heat source model with Gaussian distribution to compute highest temperature in AA7075 plates. The objective of this project is to simulate the welding process by using the finite element method. After the model is built and verified, the main objective of this project is to study the effects of varying the welding process parameters on the thermo-mechanical responses. In addition to that, the aim of this research is also to find a relationship between welding parameters and the responses of single pass butt welding are evaluated through the finite element analysis. The study of this paper covers the effects of varying heat input, welding speed on the thermo-mechanical responses of the weldment after cooling down to room temperature.

  10. Acoustic Microscope Inspection of Cylindrical Butt Laser Welds

    Science.gov (United States)

    Maev, R. Gr.; Severin, F.

    Presented work was made in order to develop the ultrasound technique for quality control of critical butt laser welds in automotive production. The set of powertrain assemblies was tested by high resolution acoustic microscopy method. The pulse-echo Tessonics AM 1102 scanning acoustic microscope was modified to accommodate cylindrical configuration of the parts. The spherically focused transducers with frequencies 15, 25 and 50 MHz were used; ultrasonic beam was focused on the joint area. Three-dimensional acoustic images were obtained and analyzed. The clear distinction between weld seam and remaining gap was demonstrated on the B- and C-scans representation. Seam depth varying from 0 up to 3.2 mm was measured along the weld. Different types of defects (porosity, cracks, lack of fusion) were detected and classified. The optimized analytical procedures for signal processing and advanced seam visualization were determined. The results were used as a basis for development of specialized instrumentation for inspection of this kind of parts in industrial environment. The technical requirements were established and the general design of new cylindrical acoustical scanner was made.

  11. Numerical Simulation of Mechanical Behaviors of the TiNi Shape Memory Alloy Welded Joints in the Precise Pulse Resistance Butt-Welding

    Institute of Scientific and Technical Information of China (English)

    Lijun HAN; Junjie ZHU; Lihong HAN

    2003-01-01

    The hysteresis unit system was introduced to mechanical structure behavior of the TiNi SMA joint based on the structure characteristics of the martensite variants in the joints, and some functions reflecting its inner structure characteristics and micro-behavior such as density function, phase transformation function were set up from micropoints. Finally, the structure behavior relationship and corresponding mathematic model reflecting the relationship among hysteresis strain, stress and phase transformation strain were provided, which could predict the stress-strain behavior of the TiNi SMA joint to large extent.

  12. GAP WIDTH STUDY IN LASER BUTT-WELDING

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    In this paper the maximum allowable gap width in laser butt-welding is intensively studied. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.5-2.0 m/min, the laser...... power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely related to the...... welding speed, (2) the larger laser power leads to the bigger maximum allowable gap width and (3) the focal point position has very little influence on the maximum gap width....

  13. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-09-01

    ... imports of stainless steel butt-weld pipe fittings from Japan (53 FR 9787). On February 23, 1993, Commerce issued an antidumping duty order on imports of stainless steel butt-weld pipe fittings from Korea (58 FR... on imports of stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan (65 FR...

  14. Joint Performance for Laser Cutting-welding of Zinc-coated Tailored Blanks

    Institute of Scientific and Technical Information of China (English)

    WANG Chunming; HU Lunji; LIU Jianhua; HU Xiyuan; DU Hanbin

    2005-01-01

    The process of laser butt welding of zinc-coated steel ( SGCD3 and WLZn ) blanks was presented, whose edges were prepared by laser cutting. The properties of the butt joints, such as tensile strength, bending, stamping, weld shape, and corrosion- resistant were tested. The experiments of laser cutting and welding were carried out on a custom-made system designed, which is a set of equipment for wide sheet butt welding based on a laser cutting-welding combination process. The experiments proved the technological feasibility of laser butt welding for thin zinc coated steel sheets whose edges were prepared by laser cutting on the same equipment.

  15. Development of Full Automatic Flash Butt Welding with Digital Control

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; SUN Hexu; WANG Hongwen

    2006-01-01

    The hardware and software design of two digital control systems based on 80C196KB MCU for flash butt welder is introduced in this paper. The welding power supply is made of six-phase half-wave rectifier. The welding outer characteristic of welding machine is realized by digital PI algorithm with the voltage close-loop feedback. The flashing curve is finished by electric-hydraulic servo valve .The process control system transfers datum with power supply system by a serial communication interface. The parameters of the control systems are collected by photoelectrical seclusion to avoid the disturbing of the electromagnetism in welding process.

  16. Embrittlement of welded joints

    International Nuclear Information System (INIS)

    The structure of a weld is considered and the role of the main parts of a welded joint in the appearance of defects during welding is determined. Factors greatly affecting hot crack formation (heat removal, impurity redistribution, volume of welding bath, welding rate) are shown. Reasons for the appearance of cracks not related to crystallization process (subsequent heat treatment, plastic working, etc.) are analyzed. The process of cold cracking of welds due to hydrogen absorption and relaxation of high welding stresses, is investigated. Methods to avoid cold cracking are described. Mechanisms of weld embrittlement are considered using as examples steels and high nickel alloys. 248 refs.; 28 figs.; 2 tabs

  17. Evaluación del comportamiento a fatiga de una unión soldada a tope de acero AISI 1015//Evaluation of the fatigue behaviour of a butt welded joint of AISI 1015 steel

    Directory of Open Access Journals (Sweden)

    Pavel Michel Almaguer‐Zaldivar

    2015-01-01

    Full Text Available Las uniones soldadas son un componente importante de una estructura, por lo que siempre es necesario conocer la respuesta de las mismas sometidas a cargas cíclicas. El objetivo de este trabajo es obtener la curva S-N de una unión soldada a tope de acero AISI 1015 y electrodo E6013 como material de aporte. Los ensayos a fatiga se realizaron de acuerdo a la norma ASTM en una máquina universal MTS810. Se utilizaron probetas de sección rectangular. El ciclo de carga fueasimétrico a tracción, con un coeficiente de asimetría de 0,1. Se obtuvo que la unión estudiada tiene un límite de resistencia a la fatiga de 178 MPa, a un punto de corte de 2 039 093 ciclos.Palabras claves: unión soldada, fatiga, curva S-N, AISI 1015, electrodo E6013._______________________________________________________________________________AbstractWelded joints are an important component in structures, by this reason is necessary to know the behaviour of these elements under cyclic loads. The objective of this work is to obtain the S-N curve of the butt welded joint of AISI 1015 steel and electrode E6013 as the contribution material. Fatiguetest was realized within the ASTM standard in the MTS810 testing machine. Rectangular cross section specimens was used. Cyclic loads was asymmetric tensile and the asymmetry ratio used was 0,1. In this study was obtained the fatigue limit equal to 178 MPa, at the cut point of 2 039 093 cycles.Key words: welded joint, fatigue, S-N curve, AISI 1015 steel, electrode E6013.

  18. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    OpenAIRE

    J. Łabanowski

    2007-01-01

    Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW) method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations an...

  19. Evaluation of tandem gas metal arc welding for low distortion butt-welds in naval shipbuilding

    International Nuclear Information System (INIS)

    Tandem gas metal arc welding (T-GMAW) had been indentified as a welding process that is potentially capable of increasing productivity and minimizing distortion in the butt-welding of steel panels for the shipbuilding industry. In this study, the T-GMAW process has been used to butt-weld DH36 steel plate in order to determine its suitability as a replacement for submerged arc welding (SAW) or standard gas-metal-arc welding (GMAW) in naval shipbuilding applications. Experiments conducted show that the T-GMAW process is feasible and provides a significant improvement ove the SAW process in several respects, including higher travel speed, reduction in filler material, significantly lower post-weld distortion and residual stress, and a smaller heat affected zone (HAZ) with finer weld metal and HAZ microstructures. Furthermore, similar mechanical properties to those of SAW were obtained in the weld metal and HAZ.

  20. CT80连续油管TIG焊对接接头热循环过程研究%Welding Thermal Cycle of CT 80 Coiled Tube Butt Joint by TIG Welding

    Institute of Scientific and Technical Information of China (English)

    李霄; 石凯; 王洪铎; 李洁

    2011-01-01

    采用热电偶多点同步测量的方法研究r CT80连续油管对接接头的焊接热循环过程结果表明,由于CT80连续油管管径小,焊接热累积效应明显,热影响区中总是存在不问程度的软化区,为获得良好的焊接接头性能,在制定焊接工艺时,应避免热量的过分集中,从而减小软化的幅度及范围.%The thermal cycle during butt welding was studied by thermocouple and multi-point synchronized measuring technique. The results show that CT80 is very sensitive to welding heat, and the heat accumulation is obvious for mini-dimension coiled tubing, different degree of softening always exist in HAZ. In order to get good properties, the strength matching should be pay more attention during welding process setting, to avoid welding heat assembly for reducing the softening scale and degree.

  1. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    In a number of systematic laboratory experiments the critical gap distance that results in sound beads in laser butt welding is sought identified. By grinding the edges of the sheets, a number of "reference" welds are made and compared to the sheets with shear cut edges. In the tests the gap was...... set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with a thickness of 0.75 and 1.25 mm with and without zinc coating were analysed. A total of 120 welds were made at different welding speeds.As quality norm DIN 8563 was used to divide the welds into quality classes. A number of welds...... were also x-ray photographed.Of the weld combinations analysed 80 % were of high quality and 17 % of a non-acceptable quality. 90 % of the bad welds had a gap distance larger than 0.05 mm. The results showed that 85 % of the bad welds were shear cut and only 15 % grinded. Two third of the bad welds...

  2. Properties of weld deposit for butt weldings of reactor components

    International Nuclear Information System (INIS)

    Mechanical properties of weld deposit type MnNiMo from submerged arc- and manual shielded arc weldings for reactor components, influence of chemical composition and heat treatment condition, proposal for the testing of mechanical properties for weld deposit. (orig.)

  3. Simplified inelastic analysis procedure to evaluate a butt-welded elbow end

    International Nuclear Information System (INIS)

    In a thin-walled piping network, the end of an elbow welded to a straignt pipe constitutes one of the highly stressed cross-sections that require structural evaluation. Explicit rules are not provided in the ASME Code for structural evaluation of the elbow ovalization and fabrication effects at the welded end. This paper presents a conservative semi-analytical procedure that can be used with simplified inelastic analysis to evaluate the elbow cross section welded to the straight pipe. The concept of carry-over factors is used to obtain ovalization stresses or strains at the elbow end. The stresses introduced by material and geometric nonuniformities in the fabrication process are then added to the ovalization stresses to complete structural evluation of the girth butt-welded elbow joint

  4. Detection of micro-weld joint by magneto-optical imaging

    Science.gov (United States)

    Gao, Xiangdong; Liu, Yonghua; You, Deyong

    2014-10-01

    It is required that the laser beam focus should be controlled to accurately follow the weld joint center during laser butt joint welding; therefore, the weld joint position must be detected automatically in real-time. An approach for detecting the micro-weld joint (weld gap less than 0.1 mm) based on magneto-optical (MO) imaging is investigated during laser butt-joint welding of low carbon steel. Magneto-optical sensor was used to capture the dynamic images of weld joint. Weld MO image gray distribution features were analyzed to extract the transition zone of weld joint. The influences of a different magnetic field intensity and the welding speed on detecting the weld joint position were mainly studied. Under different welding conditions where welding path, weld gap or welding speed varies, it has been found that using magneto-optic imaging technology could effectively detect the position of the micro-weld joint. Different weld joint positions in MO images have been detected with various magnetic field intensities. Experimental results show that the welding speed has little influence on the detection of weld joint position.

  5. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    International Nuclear Information System (INIS)

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

  6. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    When butt-welding metal sheets with high power lasers the gap distance between the sheets determine the final quality of the seam. In a number of systematic laboratory experiments the critical gap distance that results in sound beads is identified. By grinding the edges of the sheets, a number of...... "reference" welds are made and compared to sheets with the edges shear cut. The gap distance is precisely controlled by inserting spacers between the sheets. In the tests the gap is set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with thickness? of 0.75 and 1.25 mm with and without zinc...... coating were analysed. A total of 120 welds are made at different welding speeds.As quality norm DIN 8563 is used to divide the welds into quality classes. Since this norm only deals with surface defects a number of welds are also x-ray photographed.According to DIN 8563 the welds have classes of either B...

  7. A new welding technique for stainless steel pipe butt welds

    International Nuclear Information System (INIS)

    A modified TIG welding process which uses an accurately machined consumable weld socket ring for aligning pipes and providing filler material has been developed by British Nuclear Fuels and used successfully at Windscale Site Construction. The technique and its practical application at Windscale for automatic orbital TIG welding of stainless steel pipe is described. (author)

  8. Creep behavior evaluation of welded joint

    International Nuclear Information System (INIS)

    In the creep design of high temperature structural elements, it is necessary to grasp the creep performance of joints as a whole, paying attention to the essential lack of uniformity between the material qualities of parent metals and welds. In this study, the factors controlling the creep performance of butt welded joints were investigated theoretically, when they were subjected to lateral tension and longitudinal tension. It was clarified that the rupture time in the case of laterally pulled joints was determined by the ratio of the creep rupture times of weld metals and parent metals, and the rupture time in the case of longitudinally pulled joints was determined by the ratio of the creep rupture times and the ratio of the creep strain rates of weld metals and parent metals. Moreover, when the joints of the former ratio less than 1 and the latter ratio larger than 1 were investigated experimentally, the rupture time in the case of laterally pulled joints was affected by the relative thickness, and when the relative thickness was large, the theoretical and the experimental values coincided, but the relative thickness was small, the theoretical values gave the evaluation on safe side as compared with the experimental values due to the effect of restricting deformation. In the case of longitudinally pulled joints, the theoretical and the experimental values coincided relatively well. The diagram of classifying the creep performance of welded joints was proposed. (Kako, I.)

  9. Numerical analysis of welded joint treated by explosion shock waves

    Institute of Scientific and Technical Information of China (English)

    GUAN Jianjun; CHEN Huaining

    2007-01-01

    This paper focuses on the simulation of welding residual stresses and the action of explosion shock waves on welding residual stresses. Firstly, the distributions of welding temperature field and residual stress on a butt joint were numerically simulated with the sequentially coupled method. Secondly, the effect of explosion shock waves, produced by plastic strip-like explosive, on welding residual stress distri-bution was predicted with coupled Lagrange-ALE algorithm.It was implicated that explosion treatment could effectively reduce welding residual stresses. The simulation work lays a foundation for the further research on the rule of explosion treatment's effect on welding residual stresses and the factors that may influence it.

  10. Inspection of thick welded joints using laser-ultrasonic SAFT.

    Science.gov (United States)

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing. PMID:27062646

  11. Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel

    International Nuclear Information System (INIS)

    Highlights: • The laser direct butt welding of titanium alloy to stainless steel is realized. • The interfacial microstructures of the joints are confirmed. • The weldability is better when laser beam is offset toward titanium than steel. • The highest tensile strength of the joint reaches to 150 MPa. - Abstract: Laser butt welding of titanium alloy to stainless steel was performed. The effect of laser-beam offsetting on microstructural characteristics and fracture behavior of the joint was investigated. It was found that when the laser beam is offset toward the stainless steel side, it results in a more durable joint. The intermetallic compounds have a uniform thickness along the interface and can be divided into two layers. One consists of FeTi + α-Ti, and other consists of FeTi + Fe2Ti + Ti5Fe17Cr5. When laser beam is offset by 0 mm and 0.3 mm toward the titanium alloy side, the joints fracture spontaneously after welding. Durable joining is achieved only when the laser beam is offset by 0.6 mm toward the titanium alloy. From the top to the bottom of the joint, the thickness of intermetallic compounds continuously decreases and the following interfacial structures are found: FeAl + α-Ti/Fe2Ti + Ti5Fe17Cr5, FeAl + α-Ti/FeTi + Fe2Ti + Ti5Fe17Cr5 and FeAl + α-Ti, in that order. The tensile strength of the joint is higher when the laser beam is offset toward the stainless steel than toward the titanium alloy, the highest observed value being 150 MPa. The fracture of the joint occurs along the interface between two adjacent intermetallic layers

  12. Microstructure of AA 2024 fixed joints formed by friction stir welding

    Science.gov (United States)

    Eliseev, A. A.; Kalashnikova, T. A.; Tarasov, S. Yu.; Rubtsov, V. E.; Fortuna, S. V.; Kolubaev, E. A.

    2015-10-01

    Friction stir welded butt joints on 2024T3 alloy have been obtained using different process parameters. The microstructures of all the weld joint zones have been examined and such structural parameters as grain size, particle size and volume content of particles have been determined in order to find correlations with the microhardness of the corresponding zones of the weld.

  13. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-12-07

    ... COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY: United States... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead to... party responded to the sunset review notice of initiation by the applicable deadline * * *'' (75...

  14. 77 FR 24459 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-04-24

    ... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of... stainless steel butt-weld pipe fittings (SSBW pipe fittings) from Italy.\\1\\ This review covers two... results remain unchanged from the preliminary results of review. \\1\\ See Stainless Steel Butt-Weld...

  15. 77 FR 14002 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Final Results...

    Science.gov (United States)

    2012-03-08

    ... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the... duty orders on stainless steel butt-weld pipe fittings (butt-weld pipe fittings) from Italy, Malaysia...'' section of this notice. \\1\\ See Initiation of Five-Year (``Sunset'') Review, 76 FR 67412 (November 1,...

  16. 77 FR 42697 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Continuation...

    Science.gov (United States)

    2012-07-20

    ... Orders: Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines, 66 FR 11257... Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines, 77 FR 39735 (July 5, 2012), and... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and...

  17. Special metallurgy - the electrical butt-welding by flashing of sintered magnesium-magnesium oxide composites (1963)

    International Nuclear Information System (INIS)

    Electrical resistance welding has become quite important since World War II because of the need of a high yield in aeronautical production. Progress has been due in particular to the improvements made in electronically controlled apparatus making possible the automatic control of welding. For the butt-welding of sections requiring either a high production rate or a high quality weld, the flash butt-welding system has been very much developed these last few years. The use of this welding method is of great importance in the field of the bonding of oxidisable metals such as magnesium or aluminium and its alloys, because the welded joint is free from oxides. This study consists of general considerations on the flash-welding process with regard to temperature distribution in the parts during welding, and to electrical phenomena connected with flashing. Besides this general or theoretical section, we have applied the welding process to the bonding of sintered magnesium, a magnesium-magnesium oxide composite, whose use as a structural element in nuclear reactors is considered. (author)

  18. Numerical simulation of side heating for controlling angular distortion in multipass MMAW butt welded plates

    Indian Academy of Sciences (India)

    Adinath V Damale; Keshav N Nandurkar

    2015-04-01

    Distortion is a severe problem in weld products.It depends on various process parameters like plate thickness, current, voltage, type of weld joint and restraints put on. If distortion is not properly dealt during welding then the product may become useless from geometric accuracy point of view. In the present study, a 3-D coupled transient thermal analysis model with auxiliary side heating (parallel heating) is developed to control angular distortion. During analysis, parallel heating flames are placed at several locations from weld line in cross direction. A user defined subroutine is used to apply transient heat source and side heating flames. Element birth and death technique is used to simulate the filler material deposition. One side multipass 'V' butt weld configuration is used for this study. A series of observational tests are done with a special experimental fixture using Manual Metal Arc Welding (MMAW) to validate the proposed FEA model. It is found that the angular distortion has decreased from 2 mm to 0.4 mm with change in side heating distance from 50 to 90 mm from the weld line.

  19. Ultrasonic defects measurements of fuel welded joints

    International Nuclear Information System (INIS)

    Fuel elements welding joints of atomic power station should provide hermetic state of sheath in the course of exploitation period. The quality of welded joints is determined by non-destructive methods of control. Weld width and defects' evidence are determined by ultrasonic means in butt resistance welding joints of fuel elements. The boundary of a weld line is not structurally heterogeneous, so the reflection of waves with the frequency up to 50 MHz is not observed, that allows to obtain high sensitivity to small defects with opening of ∼ 0.4 x 10-3 mm. The best results could be achieved by means of supervision of two-dimensional images of defects. The program of data processing makes it possible to measure the width of the weld with the accuracy of ± 0.1 mm and sizes of defects. Fast generation (∼ 25 sec.) of weld images at C and B - scanning could be obtained as well. High sensitivity to small defects occurs through utilization of diffraction of spherical ultrasonic wave's effect. The proposed method of defects' measurements could be applied to different technical problems of atomic industry and mechanical engineering. (author)

  20. The study on defects in aluminum 2219-T6 thick butt friction stir welds with the application of multiple non-destructive testing methods

    International Nuclear Information System (INIS)

    Research highlights: → Friction stir weld-defect forming mechanisms of thick butt-joints. → Relationship between weld-defects and friction stir welding process parameters. → Multiple non-destructive testing methods applied to friction stir welds. → Empirical criterion basing on mass-conservation for inner material-loss defects. → Nonlinear correlation between weld strengths and root-flaw lengths. -- Abstract: The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al2Cu phase coarsening particles were found around a 'kissing-bond' defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17-20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack

  1. 75 FR 60814 - Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand

    Science.gov (United States)

    2010-10-01

    ... Investigation No. F.R. cite 12/17/86 Carbon steel butt- 731-TA-308 51 FR 45152. weld pipe fittings/ Brazil. 12/17/86 Carbon steel butt- 731-TA-310 51 FR 45152. weld pipe fittings/ Taiwan. 2/10/87 Carbon steel butt- 731-TA-309 52 FR 4167. weld pipe fittings/ Japan. 7/6/92 Carbon steel butt- 731-TA-520 57...

  2. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    Science.gov (United States)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-05-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 µm spot diameter. It was revealed that a 45 µm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 µm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam.

  3. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji [Joining and Welding Research Institute (JWRI), Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2007-05-07

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 {mu}m spot diameter. It was revealed that a 45 {mu}m narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 {mu}m gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam.

  4. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    International Nuclear Information System (INIS)

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 μm spot diameter. It was revealed that a 45 μm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 μm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam

  5. Characterization of magnetically impelled arc butt welded T11 tubes for high pressure applications

    OpenAIRE

    R. Sivasankari; V. Balusamy; P.R. Venkateswaran; G. Buvanashekaran; K Ganesh Kumar

    2015-01-01

    Magnetically impelled arc butt (MIAB) welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel (T11) tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone (TMAZ). To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations...

  6. Probabilistic structural integrity assessment based on uncertainty of weld residual stress at the piping butt-welds of nuclear reactor components

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC), which affects the structural integrity of reactor component, has been observed at some piping joints made by austenitic stainless steel in BWR plants. It is well known that the SCC behavior is significantly scattered depending upon the various conditions such as materials, piping geometry, crack growth rate, weld residual stress, and so on. Since probabilistic fracture mechanics (PFM) analysis method treats such scatter and uncertainties in the structural integrity evaluation, it is, therefore, useful to apply the PFM analysis to the evaluation of the piping integrity. In JAEA, the PFM analysis code of PASCAL-SP for aged piping has been developed based on Monte Carlo method as described in our previous paper. Among the conditions related to SCC behavior, weld residual stress near the welded joint is one of the most important factors to assess the structural integrity of piping because the tensile residual stress becomes a driving force of a SCC. Welding conditions such as heat input, welding speed and piping geometry affect weld residual stress distribution at the welded joint of piping. Effect of the welding conditions on the weld residual stress distribution has not yet been evaluated quantitatively. Hence, in this study, an effect of uncertainty of welding conditions, such as scatters of heat input and welding speed during welding, on weld residual stress at the piping butt-welds was evaluated using the simulation method by varying the welding conditions. Probabilistic fracture mechanics analysis using PASCAL-SP was also performed to evaluate the effect of uncertainty of weld residual stress on the break probability of piping. It was clarified that the break probability increased with increasing the uncertainties of residual stress. (author)

  7. Perbandingan Deformasi dan Tegangan Sisa pada Socket-Weld dan Butt-Weld Menggunakan Metode Elemen Hingga

    Directory of Open Access Journals (Sweden)

    Dimas Prasetyo Nugroho

    2012-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui deformasi dan tegangan sisa pada sambungan pipa-flange dengan variasi sambungan socket-weld, butt-weld dan urutan pengelasan untuk material stainless steel. Penelitian dilakukan dengan pendekatan numerik. Validasi hasil dilakukan dengan dengan hasil percobaan yang dilakukan oleh Xiangyang Lu untuk validasi struktur dan percobaan S. Murugan untuk validasi termal. Hasil variasi sambungan dan urutan pengelasan yang telah dilakukan diperoleh kesimpulan bahwa pada sambungan socket-weld (urutan pengelasan loncat memiliki nilai tegangan sisa lebih besar dibandingkan sambungan butt-weld (urutan pengelasan loncat, sedangkan deformasi yang terjadi sambungan pada socket-weld (urutan pengelasan loncat memiliki nilai yang lebih kecil dibandingkan sambungan butt-weld (urutan pengelasan loncat.

  8. Remote panoramic radiography of small diameter tubular butt welds

    International Nuclear Information System (INIS)

    The application of low energy isotopes has been considered for the radiographic inspection of tubular butt welds in small diameter thin walled heat exchanger tubing. Four isotopes were selected from an initial list, after consideration of gamma ray energy spectrum, half life, specific activity, availability and cost. The experimental work undertaken to assess image contrast, inherent unsharpness and weld image sensitivity is briefly discussed and the relative insensitivity of conventional British Standard wire type image quality indicators to changes in radiographic definition is demonstrated. A design study undertaken to identify a suitable remote delivery/positioning system for panoramic radiography is also reported. This system is based upon conventional projection equipment with a flexible guide tube and inflatable source positioning device, which can incorporate a suitable image quality indicator. The equipment should prove capable of greatly extending the application of panoramic radiography during heat exchanger manufacture, particularly in situations where geometric restrictions limit the application of ultrasonic techniques, or where clarification of ultrasonic defect indication is required. Thus the system will provide a useful addition to the NDE techniques currently available for the implementation of the stringent quality assurance requirements of the nuclear industry. (author)

  9. Electron beam welding technology for butt weld in stainless steel tubes

    International Nuclear Information System (INIS)

    This paper presents an EBW (Electron Beam Welding) technology for butt weld in stainless steel (00Cr17Ni14Mo2) tubes used in an electro-thermal component, which size is Φ22mm x 2.5mm. By carrying out the EBW technology with a low current and a near-focusing manner, the inner convex of the weld is accurately controlled, the problem of external collapse is solved, and the One Side Welding Both Sides Formation technology is implemented. The specimen has passed all the tests required in Code RCC-M, including visual examination, liquid penetrate examination, X-ray inspection, tensile test, bending test, metallography detection, ferrite determination, and inter-granular corrosion test. Each quality above has reached the technological index grade I. (authors)

  10. A parametric study of residual stresses in multipass butt-welded stainless steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brickstad, B. [SAQ Inspection Ltd., Stockholm (Sweden); Josefson, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Solid Mechanics

    1996-06-01

    Multipass circumferential butt-welding of stainless steel pipes is simulated numerically in a non-linear thermo-mechanical FE-analysis. In particular, the through-thickness variation at the weld and heat affected zone, of the axial and hoop stresses and their sensitivity to variation in weld parameters are studied. Recommendations are given for the through thickness variation of the axial and hoop stresses to be used when assessing the growth of surface flaws at circumferential butt welds in nuclear piping system. 31 refs, 12 tabs, 54 figs.

  11. A parametric study of residual stresses in multipass butt-welded stainless steel pipes

    International Nuclear Information System (INIS)

    Multipass circumferential butt-welding of stainless steel pipes is simulated numerically in a non-linear thermo-mechanical FE-analysis. In particular, the through-thickness variation at the weld and heat affected zone, of the axial and hoop stresses and their sensitivity to variation in weld parameters are studied. Recommendations are given for the through thickness variation of the axial and hoop stresses to be used when assessing the growth of surface flaws at circumferential butt welds in nuclear piping system. 31 refs, 12 tabs, 54 figs

  12. Stress indices for girth welded joints, including radial weld shrinkage, mismatch and tapered-wall transitions

    International Nuclear Information System (INIS)

    A review is presented of B, C and K stress indices used in the ASME Nuclear Power Plant Code for girth butt welds and girth fillet welds. Theoretical stresses are presented to aid in evaluating C-indices. Fatigue test data are presented to aid in evaluating K-indices and CK-products. A limit load theory is presented to aid in evaluating B-indices. As a result of this review, recommendations are made for changes in the ASME Code. A major part of this consists of presenting definitions for girth welded joints and transitions and appropriate stress indices for those joints

  13. PENGARUH BESAR ARUS LISTRIK DENGAN MENGGUNAKAN ELEKTRODA SMAW TERHADAP KEKUATAN SAMBUNGAN LAS BUTT JOINT PADA PLAT MILD STEEL

    Directory of Open Access Journals (Sweden)

    Sarjito Jokosisworo

    2012-03-01

    Full Text Available The influence of mechanic disposition, is one of the factor influence ship strength. This influence can be test by mechanical test in welding butt joint. The result test database analysis can be conclude that very helpful to increase safety and quality butt joint. With steel specification C= 0,15%, Si= 0,24%, Mn= 0,88%,P= 0,018%, S= 0,034%. This material give a 90, 110, 125 ampere with SMAW AC electrode diameter 3,2 mm x 350 mm with V root and 600 angle In the fabrication of mild steel products, components or equipment, manufacturers employ welding as the principal joining method. Mild steel are weldable materials, and a welded joint can provide optimum corrosion resistance, strength, and fabrication economy. However, designers should recognize that any metal, including stainless steels, may undergo certain changes during welding. It is necessary, therefore, to exercise a reasonable degree of care during welding to minimize or prevent any deleterious effects that may occur, and to preserve the same degree of corrosion resistance and strength in weld zone that is an intheren part of the base metal

  14. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    Directory of Open Access Journals (Sweden)

    J. Łabanowski

    2007-01-01

    Full Text Available Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations and corrosiontests were carried out. Slow strain rate tests (SSRT were performed in inert (glycerin and aggressive (boiling35% MgCl2 solution environments.Findings: It was shown that place of the lowest resistance to stress corrosion cracking is heat affected zone atduplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of that zoneconsisted of great amount of coarse ferrite grains and acicular austenite precipitates. High welding inputs do notdeteriorate stress corrosion cracking resistance of welds.Research limitations/implications: High welding heat inputs should enhance the precipitation process ofintermetallic phases in the HAZ. It is necessary to continue the research to determine the relationship betweenwelding parameters, obtained structures, and corrosion resistance of dissimilar stainless steels welded joints.Practical implications: Application of more productive joining process for dissimilar welds like submerged arcwelding instead of currently employed gas metal arc welding (GMAW method will be profitable in terms ofreduction the welding costs.Originality/value: The stress corrosion cracking resistance of dissimilar stainless steel welded joints wasdetermined. The zone of the weaker resistance to stress corrosion cracking was pointed out.

  15. Effect of gradient thermal distribution on butt joining of magnesium alloy to steel with Cu–Zn alloy interlayer by hybrid laser–tungsten inert gas welding

    International Nuclear Information System (INIS)

    Highlights: ► The gradient thermal distribution is put forward to affect butt joining. ► Butt joining of Mg alloy to steel is realized by hybrid welding with interlayer. ► The joint fracture happens in the Mg weld seam instead of the Mg/Fe interface. ► Metallurgical bonding is achieved. ► The tensile strength attains 203 MPa. -- Abstract: Experimental investigations on butt welding of magnesium alloy to steel by hybrid laser–tungsten inert gas (TIG) welding with Cu–Zn alloy interlayer are carried out. The results show that the gradient thermal distribution of hybrid laser–TIG welding, controlled by offset adjustment, has a noticeable effect on mechanical properties and microstructure of the joints. Particularly, at the offset of 0.2 mm, defect-free joints are obtained, and the tensile strength could attain a maximum value of 203 MPa. Moreover, the fracture of the joint with the 0.2 mm offset happens in the weld seam of Mg alloy instead of the Mg/Fe interface. Owning to the addition of the Cu–Zn alloy interlayer, a metallurgical bonding between Mg alloy and steel is achieved based on the formation of intermetallic compounds of CuMgZn and solid solutions of Cu and Al in Fe. Meanwhile, the same element distribution tendency of Fe and Al indicates the intimate interaction between Fe and Al in current experimental conditions.

  16. Irradiation stability of welded joints

    International Nuclear Information System (INIS)

    Results are presented of investigations into the neutron irradiation stability of welded joints in two types of steel used for reactor pressure vessels. Details are given of the materials used, method of welding and tests applied. The effect of irradiation on the notch toughness transition curve is shown. The results of the studies into irradiation embrittlement of all the welded joints and parent materials of the steels for the pressure vessels are summarized. (U.K.)

  17. Microstructure feature of friction stir butt-welded ferritic ductile iron

    International Nuclear Information System (INIS)

    Highlights: • Defect-free ferritic ductile iron joints is fabricated by FSW. • The welding nugget is composed of graphite, martensite, and recrystallized ferrite. • The graphite displays a striped pattern in the surface and advancing side. • The ferritic matrix transforms into martensite structure during welding. • High degree of plastic deformation is found on the advancing side. - Abstract: This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation

  18. Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding

    International Nuclear Information System (INIS)

    During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process

  19. Fabrication of single V-butt welded test specimens with artificial defects for Non Destructive Testing training and research purposes

    International Nuclear Information System (INIS)

    Non Destructive Testing (NDT) test specimens are very important in training of NDT personnel and are useful in evaluation of defects in actual NDT inspections. These test specimens must contain defects, which have known dimensions simulating the real defects that can occur in fabricated or in - service industrial components. Non-Destructive Testing personnel involved in the inspection of weldments must have a basic understanding of standard welding processes and the types of flaws common to such welding processes. Proper knowledge on types of flaws and welding precesses enables the manufacture of test specimens with artificial defects. Wrong manipulation of the electrode, incorrect welding current/speed, welding on dirty surfaces, welding with damp elecrodes, rapid colling of the weld metal, high strength quenching are some sources of defect formation. Conventional methods in use to create artificial defects in weldments are, restraining the weld from contract to create cracks, leaving arc air gauging in places where lack of penetration is required, welding to form blow holes at a crater etc. These may cause the manufacturer fatigue and may be time consuming and costly. In this work the authors have introduced relatively a simple and less expensive way to prepare single V-butt welded steel plates and pipes with artificial defects using shielded metal arc welding process. The flaws prepared in the weldments were incomplete penetration, slag, porosity, lack of fusion and crack. From the observations it is concluded that Low-welding current (64-68 Amp) can be efectively used to create incomplete penetration, porosity and lack of fusion in the weldments. Cracks can be originated at rigid joints, high strength quenching and if the parent metal cannot contract freely during welding. Using low electrode angle (48-52 degrees) non-metallic inclusions can be created. The results of the findings were confirmed using conventional NDT techniques such as Radiographic Testing and

  20. Gap Width Study and Fixture Design in Laser Butt-Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    This paper discusses some practical consideration for design of a mechanical fixture, which enables to accurately measure the width of a gap between two stainless steel workpieces and to steadfastly clamp the workpieces for butt-welding with a high power CO2 laser.With such a fixture, a series of...... butt-welding experiment is successfully carried out in order to find the maximum allowable gap width in laser butt-welding. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.......5-2.0 m/min, the laser power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely...

  1. 76 FR 7151 - Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People...

    Science.gov (United States)

    2011-02-09

    ... Order; Certain Carbon Steel Butt-Weld Pipe Fittings from Brazil, 51 FR 45152 (December 17, 1986... Fair Value; Certain Carbon Steel Butt-Weld Pipe Fittings From the People's Republic of China, 57 FR... of 1930, as amended (the Act). See Initiation of Five-Year (``Sunset'') Review, 75 FR 60731...

  2. 76 FR 19788 - Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand

    Science.gov (United States)

    2011-04-08

    ... determined on January 4, 2011 that it would conduct expedited reviews (76 FR 5205). The Commission... COMMISSION Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand... U.S.C. 1675(c)), that revocation of the antidumping duty orders on carbon steel butt-weld...

  3. 77 FR 10773 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Scheduling of...

    Science.gov (United States)

    2012-02-23

    ... COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Scheduling of... antidumping duty orders on stainless steel butt-weld pipe fittings from Italy, Malaysia, and the Philippines... to its notice of institution (76 FR 67473, November 1, 2011) of the subject five-year reviews...

  4. A new method to butt weld pipes with laser at different angles

    International Nuclear Information System (INIS)

    Laser butt welding of pipes at different angles may be cumbersome and may require very expensive tooling. The pipe size may not allow using the laser for large volume throughputs. We propose a rotary optical head composed by an adjustable focus lens system and two reflecting mirrors. The laser beam is bent at 90 deg. C. so that weld can be performed inwards outwards. The optic head design compensates the rotary backlash and vibrations, like a penta prism thus ensuring a perfect follow up of the weld track. The optic head can be inclined at 45 deg. C. to laser butt weld pipe each other at 90 deg. C. In this case the laser beam focus position is computer controlled in order to keep the focus point always on the elliptical weld profile. The paper covers theoretical and practical aspects of the proposed device. (author)

  5. On the mechanical behaviour of a butt jointed thermoplastic composite under bending

    NARCIS (Netherlands)

    Baran, I.; Warnet, L.; Akkerman, R.; Thomsen, O.T

    2015-01-01

    In the present work, the mechanical behavior of a recently developed novel butt jointed thermoplastic composite was investigated under bending conditions. The laminated skin and the web were made of carbon fiber (AS4) and polyetherketoneketone (PEKK). The butt joint (filler) was injection molded fro

  6. Tensile Strength of Bonded Lap-mitered Butt-Joints between Layered CFRP Bands : -In collaboration with RUAG Space AB

    OpenAIRE

    Zeeshan, Muhammad

    2014-01-01

    Joints in structures always cause strength reduction. The percentage of strength reduction depends upon the selection of several factors such as: type of joint (i.e. adhesive or mechanical), technique of joint (i.e. lap joint, butt joint etc.), geometry of joint, mode of load application etc. Here in this research, the strength of adhesively bonded butt joints with several geometries, later referred as joint angles, is investigated under uniaxial tension loading. Adhesively bonded simple butt...

  7. Feasibility evaluations for the integration of laser butt welding of tubes in industrial pipe coil production lines

    Science.gov (United States)

    Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro

    1994-09-01

    Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is

  8. Measurement of micro weld joint position based on magneto-optical imaging

    Science.gov (United States)

    Gao, Xiang-Dong; Chen, Zi-Qin

    2015-01-01

    In a laser butt joint welding process, it is required that the laser beam focus should be controlled to follow the weld joint path accurately. Small focus wandering off the weld joint may result in insufficient penetration or unacceptable welds. Recognition of joint position offset, which describes the deviation between the laser beam focus and the weld joint, is important for adjusting the laser beam focus and obtaining high quality welds. A new method based on the magneto-optical (MO) imaging is applied to measure the micro weld joint whose gap is less than 0.2 mm. The weldments are excited by an external magnetic field, and an MO sensor based on principle of Faraday magneto effect is used to capture the weld joint images. A sequence of MO images which are tested under different magnetic field intensities and different weld joint widths are acquired. By analyzing the MO image characteristics and extracting the weld joint features, the influence of magnetic field intensity and weld joint width on the MO images and detection of weld joint position is observed and summarized. Project supported by the National Natural Science Foundation of China (Grant No. 51175095), the Natural Science Foundation of Guangdong Province, China (Grant No. 10251009001000001), the Guangdong Provincial Project of Science and Technology Innovation of Discipline Construction, China (Grant No. 2013KJCX0063), and the Science and Technology Plan Project of Guangzhou City, China (Grant No. 1563000554).

  9. Measurement of micro weld joint position based on magneto-optical imaging

    International Nuclear Information System (INIS)

    In a laser butt joint welding process, it is required that the laser beam focus should be controlled to follow the weld joint path accurately. Small focus wandering off the weld joint may result in insufficient penetration or unacceptable welds. Recognition of joint position offset, which describes the deviation between the laser beam focus and the weld joint, is important for adjusting the laser beam focus and obtaining high quality welds. A new method based on the magneto-optical (MO) imaging is applied to measure the micro weld joint whose gap is less than 0.2 mm. The weldments are excited by an external magnetic field, and an MO sensor based on principle of Faraday magneto effect is used to capture the weld joint images. A sequence of MO images which are tested under different magnetic field intensities and different weld joint widths are acquired. By analyzing the MO image characteristics and extracting the weld joint features, the influence of magnetic field intensity and weld joint width on the MO images and detection of weld joint position is observed and summarized. (paper)

  10. Thermographic Analysis of Stress Distribution in Welded Joints

    Directory of Open Access Journals (Sweden)

    Domazet Ž.

    2010-06-01

    Full Text Available The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  11. The ultrasonic examination of thin austenitic stainless steel butt-welds

    International Nuclear Information System (INIS)

    The ultrasonic examination of butt welds in thin (2-10 mm) austenitic plates is associated with certain difficulties. In order to clarify these problems, welds containing deliberately implanted defects were examined with different ultrasonic probes. The most significant probe parameters like frequency, beam angle, wave mode, pulse length etc., were varied to find their optimum values. The results of the ultrasonic examination are compared to radiographs and to visual observations. Some typical defects were also examined with destructive metallographic methods. (author)

  12. 77 FR 39735 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines

    Science.gov (United States)

    2012-07-05

    ... COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines Determination On... fittings From Italy, Malaysia, and the Philippines would be likely to lead to continuation or recurrence of... The Commission instituted these reviews on November 1, 2011 (76 FR 67473) and determined on February...

  13. Crack growth analysis due to PWSCC in dissimilar metal butt weld for reactor piping considering hydrostatic and normal operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwee Sueng; Huh, Nam Su [Seoul Nat' l Univ., Seoul (Korea, Republic of); Lee, Seung Gun; Park, Heung Bae [KEPCO Engineering and Construction Company, Gyeonggi (Korea, Republic of); Lee, Sung Ho [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2013-01-15

    This study investigates the crack growth behavior due to primary water stress corrosion cracking (PWSCC) in the dissimilar metal butt weld of a reactor piping using Alloy 82/182. First, detailed finite element stress analyses were performed to predict the stress distribution of the dissimilar metal butt weld in which the hydrostatic and the normal operating loads as well as the weld residual stresses were considered to evaluate the stress redistribution due to mechanical loadings. Based on the stress distributions along the wall thickness of the dissimilar metal butt weld, the crack growth behavior of the postulated axial and circumferential cracks were predicted, from which the crack growth diagram due to PWSCC was proposed. The present results can be applied to predict the crack growth rate in the dissimilar metal butt weld of reactor piping due to PWSCC.

  14. Effects of Gap Width and Groove on the Mechanical Properties of Butt Joint Between Aluminum Alloy and Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Honggang DONG; Chuanqing LIAO

    2013-01-01

    Butt joining of 5A02 aluminum alloy to 304 stainless steel sheets was conducted using gas tungsten arc welding process with Al-12%Si (wt.%,the same below) and Zn-15%Al flux-cored filler wires.The effects of gap width and groove in steel side on the microstructure and tensile strength of the resultant joints were investigated.For the joint made with 0 mm-wide gap and without groove in steel side,severe incomplete brazing zone occurred along the steel side and bottom surfaces,and consequently seriously deteriorated the joint strength.However,presetting 1.5 mm-wide gap or with groove in steel side could promote the wetting of molten filler metal on the faying surfaces,and then significantly enhance the resultant joint strength.Moreover,post-weld heat treatment could further improve the tensile strength of the joints.During tensile testing,the specimens from the joints made with Al-12%Si flux-cored filler wire fractured through the weld or interfacial layer,but those from the heat-treated joints made with Zn-15%Al flux-cored filler wire fractured in the aluminum base metal.

  15. Integrated FEM-DBEM simulation of crack propagation in AA2024-T3 FSW butt joints considering manufacturing effects

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Carlone, P.; Citarella, R.;

    2015-01-01

    This paper deals with a numerical and experimental investigation on the influence of residual stresses on fatigue crack growth in AA2024-T3 friction stir welded butt joints. An integrated FEM-DBEM procedure for the simulation of crack propagation is proposed and discussed. A numerical FEM model of...... the welding process of precipitation hardenable AA2024-T3 aluminum alloy is employed to infer the process induced residual stress field. The reliability of the FEM simulations with respect to the induced residual stresses is assessed comparing numerical outcomes with experimental data obtained by...... means of the contour method. The computed stress field is transferred to a DBEM environment and superimposed to the stress field produced by a remote fatigue traction load applied on a friction stir welded cracked specimen. Numerical results are compared with experimental data showing good agreement and...

  16. Strength of Butt and Sharp-Cornered Joints

    Energy Technology Data Exchange (ETDEWEB)

    REEDY JR.,EARL DAVID

    2000-08-21

    There has been considerable progress in recent years towards developing a stress intensity factor-based method for predicting crack initiation at a sharp, bimaterial comer. There is now a comprehensive understanding of the nature of multi-material, two-dimensional, linear-elastic, wedge-tip stress fields. In general, the asymptotic stress state at the apex of dissimilar bonded elastic wedges (i.e. at an interface comer) can have one or more power-law singularities of differing strength and with exponents that can be real or complex. There are, however; many configurations of practical importance, (e.g. adhesively bonded butt joints, hi-material beams, etc.) where interface-comer stresses are described by one, real-valued power-law singularity. In such cases, one can reasonably hypothesize that failure occurs at a critical value of the stress intensity factor: when K{sub a}=K{sub ac}.This approach is completely analogous to LEFM except that the critical stress intensity factor is associated with a discontinuity other than a crack. To apply the K{sub ac} criterion, one must be able to accurately calculate K{sub a} for arbitrary geometries. There are several well-established methods for calculating K{sub a}. These include matching asymptotic and detailed finite element results, evaluation of a path-independent contour integral, and general finite element methods for calculating K. for complex geometries. A rapidly expanding catalog of K{sub a} calibrations is now available for a number of geometries of practical interest. These calibrations provide convenient formulas that can be used in a failure analysis without recourse to a detailed numerical analysis. The K{sub ac} criterion has been applied with some notable successes. For example, the variation in strength of adhesively bonded butt joints with bond thickness and the dependence of this relationship on adhered stiffness is readily explained. No other one-parameter fracture criterion is able to make this sort of

  17. A repair process for an heterogenous welded joint between a nuclear reactor component tube and a pipe

    International Nuclear Information System (INIS)

    The repairing process involves cutting a tubular section of the tube (made of low alloy steel) and the pipe (made of austenitic stainless steel), which includes the welded joint, and preparing an heterogenous tubular section for substitution (a first section, made of ferritic steel, is butt welded to a second section, made of austenitic stainless steel); the tubular section is then narrow-joint welded with the low-alloy steel tube, and finally welded to the austenitic stainless steel pipe. Application to repairing a welded joint between a pressurizer tube and an expansion pipe connected to the primary circuit. (author). 5 refs., 4 figs

  18. Influence of heat input on corrosion resistance of SAW welded duplex joints

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2006-04-01

    Full Text Available Purpose: Purpose of this paper is description of influence of the heat input of submerged arc welding (SAW of duplex steel UNS S31803 on welded butt joints corrosion resistance.Design/methodology/approach: Butt joints on plates of 9 – 30 mm thickness were executed where the applied heat input of welding exceeded the 2.5 kJ/mm value. Maximum heat input level was HI ≤ 3.0; HI ≤ 3.5; HI ≤ 4.0; HI ≤ 4.5; HI ≤ 5.0. Analysis of welding heat input influence on mechanical properties, value of ferrite share, and corrosion of test joints has been done. Non-destructive and destructive testing, e. g. visual examinations, microstructure examination, corrosion resistance tests according to ASTM G48 Method A, HV5 hardness tests, impact and tensile test were carried out. For analysis of welding heat input influence on creation of welding imperfections, there were executed welding of sheet of thickness 9, 14, 28 mm.Findings: It was shown that submerged arc welding of duplex steel with the heat input from 2.5 kJ/mm up to 5.0 kJ/mm has no negative influence on properties of the joints. Based on the performed tests the conclusion is that according to DNV Rules the welding heat input exceeding the recommended values has no negative impact on strength properties and corrosion resistance of the executed welded joints.Research limitations/implications: Research implications the welding heat input exceeding the recommended values should influenced the precipitation processes in the HAZ, what need further experiments.Practical implications: Application of high value of the welding heat input will be profitable in terms of the welding costs.Originality/value: An original value of the paper is to prove that a usage of high value welding heat input provides the best joints quality.

  19. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  20. Weldability of dissimilar joint between PNC-FMS and Type 316 steel under electron beam welding

    International Nuclear Information System (INIS)

    The dissimilar butt welding joint of 11Cr-ferritic/martensitic steel (PNC-FMS) and Type 316 austenitic stainless steel (SUS316) produced by electron beam (EB) welding was studied. This study was carried out to investigate optimization of EB welding and postweld heat treatment (PWHT) for the wrapper tube materials. Optimum EB welding conditions were a focus position of 30–40 mm and a welding speed of 1750–2000 mm/min, and optimum PWHT was performed after welding at 690°C for 60 min. As a result, no formation of δ-ferrite was observed adjacent to the fusion zone, and the mechanical properties of the welds were similar to those of the base material. In this regard, EB welding is a proper fusion welding process for dissimilar PNC-FMS and SUS316. (author)

  1. Characterization of magnetically impelled arc butt welded T11 tubes for high pressure applications

    Directory of Open Access Journals (Sweden)

    R. Sivasankari

    2015-09-01

    Full Text Available Magnetically impelled arc butt (MIAB welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel (T11 tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone (TMAZ. To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost. The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.

  2. Three-dimensional finite element analysis to predict the effects of SAW process parameters on temperature distribution and angular distortions in single-pass butt joints with top and bottom reinforcements

    International Nuclear Information System (INIS)

    Achieving adequate top and bottom reinforcement is important to minimize angular distortions in single-pass submerged arc welded (SAW) butt joints. This is achieved in the present work by using a reusable flux-filled backing strip and proper SAW process parameters without resorting to costly distortion mitigation techniques. The butt joints were made without edge (square butts) preparation. The process was also modeled by using three-dimensional finite element analysis by incorporating the top and bottom reinforcements into the modeling. Filler material deposition was also simulated. Temperature distributions and angular distortions obtained from the modeling closely matched with the experimental values. Thus, the cost effective experimental methodology established in the present work can be utilized for minimizing angular distortions in SAW square butts. The modeling methodology adopted can be used for predicting the angular distortions in SAW square butts with top and bottom reinforcements

  3. Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion with Validation from Mechanical Testing

    International Nuclear Information System (INIS)

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-in. IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer-diameter weld beads were removed for the microwave inspection. In two of the four pipes, both the outer and inner weld beads were removed and the pipe joints re-evaluated. The pipes were sectioned and the joints destructively evaluated with the side-bend test by cutting portions of the fusion joint into slices that were planed and bent. The last step in this limited study will be to correlate the fusion parameters, nondestructive, and destructive evaluation results to validate the effectiveness of what each NDE technology detects and what each does not detect. The results of the correlation will be used in identifying any future work that is needed.

  4. The long-term behaviour of butt fusion welds in polyethylene pipeline systems

    OpenAIRE

    Parmar, Ravindra

    1986-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The objective of the study was to examine factors that influence the strength of butt welds and gain an understanding of the process of failure. The study was divided into several sectors. The first and primary part of the programme was to determine the extent to which the pipe system's long-term strength under both internal fluctuating and constant pressure is reduced by the presence o...

  5. Microstructures and properties of tungsten inert gas welding joint of super-eutectic ZA alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructure of butt-welding joint of supper-eutectic ZA alloy in TIG welding was analyzed through optical microscope and transmission electronic microscope. The results show that the weld seam microstructure is fine and mainly composed of columnar crystals and minor equiaxed crystals, the microstructure in the zone near the weld seam is coarse columnar crystals, and the grain in heat-affected zone does not grow markedly. The joint microstructure at room temperature is consisted of β phase (rich Al), η-Zn, ε phase (CuZn compound), Al4Cu9 and other compounds. The hardness of the weld bond area and the tensile strength of the joint are a little higher than that of base materials. The specific elongation of the weld and bond area is a little lower than those of base materials.

  6. Optimization of GMAW process of AA 6063-T5 aluminum alloy butt joints based on the response surface methodology and on the bead geometry

    International Nuclear Information System (INIS)

    The geometry of the weld beads is characterized by the overhead, the width and the penetration. These values are indices of the behavior of the welded joint and therefore, they can be considered as factors that control the process. This work is performed to optimize the GMAW process of the aluminum alloy AA 6063-T5 by means of the response surface methodology (RSM). The variables herein considered are the arc voltage, the welding speed, the wire feed speed and the separation between surfaces in butt joints. The response functions that are herein studied are the overhead, the width, the penetration and the angle of the bead. The obtained results by RSM show high grade of agreement with the experimental values. The procedure is experimentally validated by welding for the theoretically obtained optimized technological conditions and a wide agreement between theoretical and experimental values is found. (Author) 16 refs.

  7. 76 FR 67473 - Stainless Steel Butt-Weld Pipe Fittings from Italy, Malaysia, and The Philippines; Institution of...

    Science.gov (United States)

    2011-11-01

    ...-weld pipe fittings from Italy, Malaysia, and the Philippines (71 FR 71530). The Commission is now... COMMISSION Stainless Steel Butt-Weld Pipe Fittings from Italy, Malaysia, and The Philippines; Institution of... From Italy, Malaysia, and the Philippines AGENCY: United States International Trade Commission....

  8. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  9. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  10. Effect of Autogenous Arc Welding Processes on Tensile and Impact Properties of Ferritic Stainless Steel Joints

    Institute of Scientific and Technical Information of China (English)

    A K Lakshminarayanan; K Shanmugam; V Balasubramanian

    2009-01-01

    The effect of autogeneous arc welding processes on tensile and impact properties of ferritic stainless steel conformed to AISI 409M grade is studied.Rolled plates of 4 mm thickness have been used as the base material for preparing single pass butt welded jointa.Tensile and impact properties,microhardness,microstructure,and fracture surface morphology of continuous current gas tungsten arc welding (CCGTAW),pulsed current gas tungsten arc welding (PCGTAW),and plasma arc welding (PAW) joints are evaluated and the results are compared.It is found that the PAW joints of ferritic stainless steel show superior tensile and impact properties when compared with CCGTAW and PCGTAW joints,and this is mainly due to lower heat input,finer fusion zone grain diameter,and higher fusion zone hardness.

  11. Requirements to gap widths and clamping for CO2 laser butt welding

    DEFF Research Database (Denmark)

    Gong, Hui; Juhl, Thomas Winther

    1999-01-01

    In the experimental study of fixturing and gap width requirements a clamping device for laser butt welding of steel sheets has been developed and tested. It has fulfilled the work and made the gap width experiments possible.It has shown that the maximum allowable gap width to some extent is...... inversely related to the welding speed. Also larger laser power leads to bigger allowable gap widths. The focal point position, though, has little influence on the maximum allowable gap width.During analysis X-ray photos show no interior porosity in the weld seam. Other methods have been applied to measure...... responses from variations in welding parameters.The table below lists the results of the study, showing the maximum allowable gap widths and some corresponding welding parameters.Maximum allowable Gap Width; Welding Speed; Laser Power:0.10 mm2 m/min2, 2.6 kW0.15 mm1 m/min2 kW0.20 mm1 m/min2.6 kW0.30 mm0.5 m...

  12. Influencia de la cantidad de O2 adicionado al CO2 en el gas de protección sobre la microestructura del metal depositado en uniones soldadas de bordes rectos en aceros de bajo contenido de carbono con el proceso GMAW Influence of O2 content, added to CO2 in the shielding gas, on the microstructure of deposited metal in butt welded joint with straight edges, in low carbon steels using GMAW process

    Directory of Open Access Journals (Sweden)

    Eduardo Díaz-Cedré

    2010-12-01

    Full Text Available La presencia de ferrita acicular (FA en la microestructura del cordón de soldadura, dentro de determinado rango de valores, eleva considerablemente la tenacidad de las uniones soldadas. Es por ello, que el presente trabajo trata sobre un estudio que relaciona la cantidad de ferrita acicular en el cordón en función del contenido de oxígeno presente en la mezcla activa CO2+O2, durante la realización de uniones soldadas de bordes rectos en aceros de bajo carbono con el proceso con electrodo fusible y protección gaseosa (GMAW en condiciones invariables de parámetros de proceso (corriente de soldadura, voltaje de arco, velocidad de soldadura, longitud libre y flujo de gas protector. Como resultado del trabajo se estableció la relación gráfica existente entre la ferrita acicular y el contenido de oxígeno en la mezcla.The presence of acicular ferrite (AF in the microstructure of weld bead, in a specified range of values, increase considerably the toughness of welded joints. The present paper, for that reason, study the relationship between the acicular ferrite quantity in the deposited metal and the oxygen present in the active gas mixture of CO2+O2, during the execution of butt welded joints with straight edges, in low carbon steels with consumable electrode and gas protection (GMAW in invariable conditions of process parameters (welding current, arc voltage, welding speed, electrode extension, and gas flow. The graphic relation between the acicular ferrite and the oxygen content was established, as result of the research work.

  13. Multiple crack propagation by DBEM in a riveted butt-joint: a simplified bidimensional approach

    Directory of Open Access Journals (Sweden)

    R. Citarella

    2016-03-01

    Full Text Available A Multi-Site Damage (MSD crack growth simulation is presented, carried out by means of Dual Boundary Element Method (DBEM, in a two-dimensional analysis of a cracked butt-joint made of aluminium 2024 T3. An equivalent crack length is proposed for an approximated 2D analysis of a 3D problem where the crack front assumes a part elliptical shape due to secondary bending effects. The assumptions made to perform such simplified bidimensional analyses are validated by comparing numerical results with experimental data, the latter obtained from a fatigue tested riveted butt-joint.

  14. Development of radiographic technique for examining k-type butt weld

    International Nuclear Information System (INIS)

    An attempt is made to develop a radiographic technique for examining K-type full penetration butt joints in heavy duty crane girders. The existing standard techniques of radiographic examination is found to be unsuitable to assess the internal defects properly. The examination technique reported here is successful in detecting not only the nature of the internal defects but also their degree of severities - from which clues for avoiding the most probable defects can be found out. The results of radiographic examination applied on the K-type butt joints of heavy duty crane girders have been discussed and it is specified that the acceptable limit of the defects must lie between 'blue' and 'green' according to the IIW colour code. Much work is yet to be done before standard specifications regarding the acceptibility of the defects in the actual job can be formulated. (author)

  15. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  16. A description of local material properties close to a butt weld

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Ševčík, Martin; Lach, R.; Knésl, Zdeněk; Náhlík, Luboš; Grellmann, W.

    Zurich : Trans Tech Publications, 2014 - (Pešek, L.; Zubko, P.), s. 146-149 ISBN 978-3-03785-876-9. ISSN 1013-9826. - (Key Engineering Materials. 586). [LMP 2012 International Conference on Local Mechanical Properties /9./. Levoča (SK), 07.11.2012-09.11.2012] R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GAP108/12/1560 Institutional support: RVO:68081723 Keywords : polymer butt weld * microindentation * numerical modelling * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Thermal and mechanical properties of e-beam irradiated butt-fusion joint in high-density polyethylene pipes

    Science.gov (United States)

    Vijayan, Vipin; Pokharel, Pashupati; Kang, Min Kwan; Choi, Sunwoong

    2016-05-01

    The effects of electron beam irradiation on the thermal and mechanical properties of a butt-fusion joint in high density polyethylene (HDPE) pipes were investigated. Differential scanning calorimetry, X-ray diffraction, and Fourier transform infra-red spectroscopy of welded samples revealed the changes of crystallinity due to the cross linking effect of electron beam irradiation. The suppression of the degree of crystallinity with increasing the irradiation dose from 0 kGy to 500 kGy indicated that the e-beam radiation induced cross-links among the polymer chains at the weld zone. The cross-link junction at the joint of HDPE pipe prevented chain folding and reorganization leading to the formation of imperfect crystallites with smaller size and also less in content. Tensile test of the welded samples with different dose of e-beam irradiation showed the increased values of the yield stress and Young's modulus as a function of irradiation dose. On the other hand, the elongation at break diminished clearly with increasing the irradiation doses.

  18. Residual stresses at girth-butt welds in pipes and pressure vessels. Final report, April 1, 1976--June 30, 1977

    International Nuclear Information System (INIS)

    A research program directed at developing a model or models to predict residual stress distributions due to girth-butt welds in pressure vessels and pipes is described. The program consisted of three tasks. In task 1, a critical review of the literature was conducted to obtain relevant information for developing and verifying the residual stress models. Task 2 was to provide specific experimental data for the purpose of checking the model capabilities and identifying characteristics of residual stress distributions in girth-butt welds. In task 3, residual stress models were developed

  19. Development of Fatigue Life Improvement Technology of Butt Joints Using Friction Stir Processing

    OpenAIRE

    Jeong-Ung Park; GyuBaek An; Heung-ju Kim; Jae-hyouk Choi

    2014-01-01

    Burr grinding, tungsten inert gas (TIG) dressing, ultrasonic impact treatment, and peening are used to improve fatigue life in steel structures. These methods improve the fatigue life of weld joints by hardening the weld toe, improving the bead shape, or causing compressive residual stress. This study proposes a new postweld treatment method improving the weld bead shape and metal structure at the welding zone using friction stir processing (FSP) to enhance fatigue life. For that, a pin-shape...

  20. On detection and automatic tracking of butt weld line in thin wall pipe welding by a mobile robot with visual sensor

    International Nuclear Information System (INIS)

    An automatic pipe welding mobile robot system with visual sensor was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to make an automatic welding, the welding torch can track the butt weld line of the pipes at a constant speed by rotating the robot head. Main results obtained are summarized as follows: 1) Using a proper lighting fixed in front of the CCD camera, the butt weld line of thin wall pipes can be recongnized stably. In this case, the root gap should be approximately 0.5 mm. 2) In order to detect the weld line stably during moving along the pipe, a brightness distribution measured by the CCD camera should be subjected to smoothing and differentiating and then the weld line is judged by the maximum and minimum values of the differentials. 3) By means of the basic robot system with a visual sensor controlled by a personal computer, the detection and in-process automatic tracking of a weld line are possible. The average tracking error was approximately 0.2 mm and maximum error 0.5 mm and the welding speed was held at a constant value with error of about 0.1 cm/min. (author)

  1. Microstructure and Mechanical Properties of Hybrid Welded Joints with Laser and CO2-Shielded Arc

    Science.gov (United States)

    Wahba, M.; Mizutani, M.; Katayama, S.

    2016-06-01

    With the objective of reducing the operating costs, argon-rich shielding gas was replaced by 100% CO2 gas in hybrid laser-arc welding of shipbuilding steel. The welding parameters were optimized to obtain buried-arc transfer in order to mitigate spatter formation. Sound butt joints could be successfully produced for plates of 14 and 17 mm thickness in one welding pass. Subsequently, the welded joints were subjected to different tests to evaluate the influence of CO2 shielding gas on the mechanical properties of the welded joints. All tensile-tested specimens failed in the base material, indicating the higher strength of the welded joints. The impact toughness of the welded joints, measured at -20 °C, reached approximately 76% of that of the base material, which was well above the limit set by the relevant standard. The microstructure of the fusion zone consisted of grain boundary ferrite and acicular ferrite uniformly over the plate thickness except for the joint root where the microstructure was chiefly ferrite with an aligned second phase. This resulted in higher hardness in the root region compared with the top and middle parts of the fusion zone.

  2. Microstructure and Mechanical Properties of Hybrid Welded Joints with Laser and CO2-Shielded Arc

    Science.gov (United States)

    Wahba, M.; Mizutani, M.; Katayama, S.

    2016-07-01

    With the objective of reducing the operating costs, argon-rich shielding gas was replaced by 100% CO2 gas in hybrid laser-arc welding of shipbuilding steel. The welding parameters were optimized to obtain buried-arc transfer in order to mitigate spatter formation. Sound butt joints could be successfully produced for plates of 14 and 17 mm thickness in one welding pass. Subsequently, the welded joints were subjected to different tests to evaluate the influence of CO2 shielding gas on the mechanical properties of the welded joints. All tensile-tested specimens failed in the base material, indicating the higher strength of the welded joints. The impact toughness of the welded joints, measured at -20 °C, reached approximately 76% of that of the base material, which was well above the limit set by the relevant standard. The microstructure of the fusion zone consisted of grain boundary ferrite and acicular ferrite uniformly over the plate thickness except for the joint root where the microstructure was chiefly ferrite with an aligned second phase. This resulted in higher hardness in the root region compared with the top and middle parts of the fusion zone.

  3. 76 FR 8345 - Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People...

    Science.gov (United States)

    2011-02-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People's Republic of China: Final Results of the Expedited Sunset Reviews of...

  4. 75 FR 68324 - Certain Stainless Steel Butt-Weld Pipe Fittings From Japan, South Korea and Taiwan; Final Results...

    Science.gov (United States)

    2010-11-05

    ... Fittings from Japan, South Korea, and Taiwan; Continuation of Antidumping Duty Orders, 70 FR 61119 (October... Fittings From Japan, South Korea, and Taiwan, 65 FR 5604 (February 4, 2000). On September 1, 2010, the... International Trade Administration Certain Stainless Steel Butt-Weld Pipe Fittings From Japan, South Korea...

  5. 77 FR 18266 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Revised...

    Science.gov (United States)

    2012-03-27

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Revised... the conduct of the expedited subject five- year reviews (77 FR 10773, February 23, 2012)....

  6. The effect of thermal properties and weld efficiency on residual stresses in welding

    OpenAIRE

    E. Armentani; Esposito, R.; R. Sepe

    2007-01-01

    Purpose: A parametric model is adopted and the technique of element “birth and death” is used to estimate theeffect of thermal properties and weld efficiency on residual stresses in butt weld joints.Design/methodology/approach: Residual stresses and distortions on butt welded joints are numericallyevaluated by means of finite element method. The FE analysis allows to highlight and evaluate the stress fieldand its gradient around the fusion zone of welded joints, higher than any other located ...

  7. Microstructures of 2219 twin wire welded joints

    Institute of Scientific and Technical Information of China (English)

    Xu Wenli; Li Qingfen; Meng Qingguo; Gao Na; Fang Hongyuan

    2005-01-01

    With thick plates of 2219 high-strength alloy, the microstructures of welded joints with twin wire MIG welding were analyzed. Experimental results show that no hot crack was found in the weld due to discontinuous distribution of cocrystallization with low melting temperature, but porosity is serious in the first weld seam that is mainly composed of equiaxial grains with uneven sizes. As the poor position of the whole welded joint, fusion zone has big and coarse grains,uneven microstructures ; In quenching zone, there exist a lot of soaked microstructures that cocrystallization with low melting temperature solute into matrix, thus strengthening the metal in this zone; In excessive aging zone, much more phases that distribute evenly will be separated from the matrix; Outside this zone, properties and microstructures of the metal are basically similar to matrix due to the relatively low temperature or unaffected heat in the zone during welding.

  8. Corrosion resistance and electrochemical properties of welded joints of chromium-nickel steel in hydrochloric acid

    International Nuclear Information System (INIS)

    Effect of alloying elements coming into electrode materials on corrosion resistance of surfaced metal and electrochemical characteristics of welded joints of the 08Kh18N10T steel have been studied (0.08% C, 1.4% Mn; 0.6% Si; 17.5O% Cr; 10.0% Ni; 0.25% Cu; 0.64% Ti; 0.016% S; 0.028% P) in 5% solution of hydrochloric acid. Plates of 200x80x10 mm dimensions have been butt welded with different electrodes. It is shown that welded joints of 08Kh18N10T steel can be subjected to selective corrosion in solutions of hydrochloric acid. Alloying of surfaced metal with niobium (up to 1%) and vanadium (up to 2%) increases corrosion resistance, preserving selective character of joint welds failure. Alloying of surfaced metal with molybdenum (2.3%), molybdenum and vanadium (2.5% Mo and 0.52% V), molybdenum and niobium (2.4 % Mo and 0.8 % Nb) increases corrosion resistance of joint weld. Heat treatment - hardening of welded joints from 1050 deg C practically levels off values of electrode potentials of basic metal and welds, close in chemical composition, as well as additionally alloyed with niobium (0.98% Nb) and niobium and molybdenum (2.4% Mo+0.8% Nb)

  9. Additional Interface Corner Toughness Data for an Adhesively-Bonded Butt Joint

    Energy Technology Data Exchange (ETDEWEB)

    Guess, T.R.; Reedy, E.D.

    1999-04-14

    Over a period of 15 months, five sets of adhesively-bonded butt joints were fabricated and tested. This previously unreported data is used to assess the variability of measured interface corner toughness values, K{sub ac}, as well as the dependence of K{sub ac} on surface preparation. A correlation between K{sub ac} and the size of the adhesive failure zone is also noted.

  10. Friction stir welding of dissimilar joint between semi-solid metal 356 and AA 6061-T651 by computerized numerical control machine

    OpenAIRE

    Muhamad Tehyo; Prapas Muangjunburee; Somchai Chuchom

    2011-01-01

    The objective of this research is to investigate the effect of welding parameters on the microstructure and mechanicalproperties of friction stir welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM) 356 and AA6061-T651 by a Computerized Numerical Control (CNC) machine. The base materials of SSM 356 and AA 6061-T651 werelocated on the advancing side (AS) and on the retreating side (RS), respectively. Friction Stir Welding (FSW) parameterssuch as tool pin profil...

  11. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  12. A Study of Microstructure and Mechanical Properties of Grade 91 Steel A-TIG Weld Joint

    Science.gov (United States)

    Arivazhagan, B.; Vasudevan, M.

    2013-12-01

    In the present study, A-TIG welding was carried out on grade 91 steel plates of size 220 × 110 × 10 mm using the in-house developed activated flux to produce butt-joints. The room-temperature impact toughness of the A-TIG as-welded joint was low due to the presence of untempered martensite matrix despite the low microinclusion density caused by activated flux and also low δ-ferrite (Toughness after postweld heat treatment (PWHT) at 760 °C-2 h was 20 J as against the required value of 47 J as per the specification EN: 1557:1997. However, there was a significant improvement in impact toughness after PWHT at 760 °C for 3 h. The improvement in toughness was attributed to softening of martensite matrix caused by precipitation of carbides due to tempering reactions. The precipitates are of type M23C6, and they are observed at grain boundary as well as within the grains. The A-TIG-processed grade 91 steel weld joint was found to meet the toughness requirements after PWHT at 760 °C-3 h. Observations of fracture surfaces using SEM revealed that the as-welded joint failed by brittle fracture, whereas post-weld heat-treated weld joints failed by decohesive rupture mode.

  13. Corrosion resistance of SAW duplex joints welded with high heat input

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2007-08-01

    Full Text Available Purpose: test if the welding heat input exceeding the recommended values has negative impact on strength properties and corrosion resistance of the executed welded joints as well as description of influence of the heat input of submerged arc welding (SAW of duplex steel UNS S31803 (0.032%C, 23.17%Cr, 9.29%Ni, 3.48%Mo, 0.95%Mn, 0.7%Si, 0.16%N, 0.017P, 0.006%S, 0.11%Cu on welded joints microstructure, particularly average values of ferrite volume fraction, mechanical properties, and corrosion resistance.Design/methodology/approach: analysis of welding heat input influence on mechanical properties, value of ferrite share, and corrosion of test joints has been done. Non-destructive and destructive testing, e. g. visual examinations, microstructure examination, corrosion resistance tests according to ASTM G48 Method A, HV5 hardness tests, impact and tensile test were carried out. For analysis of welding heat input influence on creation of welding imperfections, there were executed welding of sheet of thickness 9, 14, 28 mm. Butt joints on plates of different thickness were made where the applied heat input of welding exceeded the 2.5 kJ/mm value. Maximum heat input level was HI ≤ 3.0; HI ≤ 3.5; HI ≤ 4.0; HI ≤ 4.5; HI ≤ 5.0.Findings: based on the performed tests the conclusion is that according to DNV Rules the welding heat input exceeding the recommended values has no negative impact on strength properties and corrosion resistance of the executed welded joints. It was shown that submerged arc welding of duplex steel with the heat input from 2.5 kJ/mm up to 5.0 kJ/mm has no negative influence on properties of the joints.Research limitations/implications: the welding heat input exceeding the recommended values may influenced the precipitation processes in the HAZ, what need further experiments.Practical implications: application of high value of the welding heat input will be profitable in terms of the welding costs.Originality/value: an

  14. HAZ microstructure in joints made of X13CrMoCoVNbNB9-2-1 (PB2 steel welded with and without post-weld heat treatment

    Directory of Open Access Journals (Sweden)

    M. Łomozik

    2016-07-01

    Full Text Available The article presents the results of research butt welded joints made of X13CrMoCoVNbNB9-2-1 steel. The joints were welded with post-weld heat treatment PWHT and without PWHT, using the temper bead technique TBT. After welding the joint welded with PWHT underwent stress-relief annealing at 770 °C for 3 hours. The scope of structural tests included the microstructural examination of the coarse-grained heat affected zone (HAZ areas of the joints, the comparison of the morphology of these areas and the determination of carbide precipitate types of the coarse grain heat affected zone (CGHAZ of the joints welded with and without PWHT.

  15. Method and equipment for measurement of residual stresses in erection welded butts of pipelines made of clad steel

    International Nuclear Information System (INIS)

    Investigations into determination of residual stresses on welded joints of pipelines of 34 mm thick 22 K pearlitic steel cladded with a 4 mm thick layer of chromium-nickel steel are conducted under mounting at the Kursk NPP. Mounting welded joints of the pipelines of clad steel are under the effect of residual stresses, particularly, joints of tube-knee type, where the level of residual stresses reaches 450-550 MPa. Repair of mounting welded joints of pipeles of clad steel is stated to result in increase of residual stresses on the surface of the joints

  16. 76 FR 21331 - Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People...

    Science.gov (United States)

    2011-04-15

    ...On October 1, 2010, the Department of Commerce (the Department) initiated the third sunset reviews of the antidumping duty orders on carbon steel butt-weld pipe fittings from Brazil, Japan, Taiwan, Thailand, and the People's Republic of China (PRC), pursuant to section 751(c) of the Tariff Act of 1930, as amended (the Act). See Initiation of Five-Year (``Sunset'') Review, 75 FR 60731 (October......

  17. Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding

    International Nuclear Information System (INIS)

    Highlights: → Friction stir lap welding technology with cutting pin was successfully employed to form lap joint of magnesium and steel. → The cutting pin made the lower steel participate in deformation and the interface was no longer flat. → A saw-toothed structure formed due to a mechanical mixing of the magnesium and steel was found at the interface. → A high-strength joint was produced which fractured in the magnesium side. -- Abstract: Friction stir lap welding was conducted on soft/hard metals. A welding tool was designed with a cutting pin of rotary burr made of tungsten carbide, which makes the stirring pin possible to penetrate and cut the surface layer of the hard metal. Magnesium alloy AZ31 and stainless steel SUS302 were chosen as soft/hard base metals. The structures of the joining interface were analyzed by scanning electron microscopy (SEM). The joining strength was evaluated by tensile shear test. The results showed that flower-like interfacial morphologies were presented with steel flashes and scraps, which formed bonding mechanisms of nail effect by long steel flashes, zipper effect by saw-tooth structure and metallurgical bonding. The shear strength of the lap joint falls around the shear strength of butt joint of friction stir welded magnesium alloy.

  18. Improving the Fatigue Performance of the Welded Joints of Ultra-Fine Grain Steel by Ultrasonic Peening

    Institute of Scientific and Technical Information of China (English)

    王东坡; 王婷; 霍立兴; 张玉凤

    2004-01-01

    Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material.The material is a new generation of fine grain and high purity SS400 steel that has the same ingredients as the traditional low carbon steel. The specimens are in two different states:welded and ultrasonic peening conditions.The corresponding fatigue testing data were analyzed according to the regulation of the statistical method for fatigue life of the welded joints established by International Institute of Welding(IIW). Welding residual stress was considered in two different ways: the constant stress ratio R = 0. 5 and the Ohta method. The nominal stress-number (σ-N)curves were corrected because of the different plate thickness compared to the standard and because there was no mismatch or angular deformation. The results indicated that: 1 ) Compared with the welded specimens, when the stress range was 200 MPa, the fatigue life of the SS400 steel specimens treated by ultrasonic peening is prolonged by over 58 times, and the fatigue strength FAT corresponding to 106 cycles is increased by about 66%; 2) As for the SS400 butt joint ( single side welding double sides molding), after being treated by UPT, the nominal S-N curve (m = 10) of FAT 100 MPa(R =0.5) should be used for fatigue design. The standard S-N curves of FAT 100 MPa ( R = 0. 5, m = 10) could be used for fatigue design of the SS400 steel butt joints treated by ultrasonic peening.

  19. Quality Analysis of Welded and Soldered Joints of Cu-Nb Microcomposite Wires

    Directory of Open Access Journals (Sweden)

    Nikolaj VIŠNIAKOV

    2011-03-01

    Full Text Available Quality analysis of welded and soldered joints of Cu-Nb microcomposite wires has been performed. Quality and mechanical characteristics of joints as ultimate tensile stress limit and elongation at break were measured with an universal testing machine and controlled visually using an optical microscope. Two wires joints were soldered with silver and copper solders and put into steel and copper sleeve respectively. Another two wires joints were soldered with silver solder and welded without any reinforcement. Joints soldered with the silver solder and steel sleeve have demonstrated the best mechanical characteristics: ultimate tensile stress limit of 650 MPa and elongation at break of 0.85 %. Joints soldered with the copper sleeve have no advantages comparing with the soldered butt joint. Ultimate tensile stress limit and elongation at break were in 300 MPa - 350 MPa and in 0.35 % - 0.45 % ranges respectively. Two welded joints had ultimate tensile stress limit of 470 MPa and elongation at break of 0.71 %. In all joints the microstructure of Nb filaments was destroyed and mechanical properties have been specified by mechanical strength of copper and sleeve materials only.http://dx.doi.org/10.5755/j01.ms.17.1.242

  20. The effect of controlled shot peening on fusion welded joints

    International Nuclear Information System (INIS)

    This work examines the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel welded joint. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity, inclusions, lack of penetration, and undercut found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 50% on MMA-welded, 63% on MIG-welded, and 60% on TIG-welded samples.

  1. Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint

    International Nuclear Information System (INIS)

    This paper presents a three dimensional sequentially coupled non-linear transient thermo-mechanical analysis to investigate the effect of tack weld positions and root gap on welding distortions and residual stresses in a pipe-flange joint. Single-pass MIG welding for a single 'V' butt-weld joint geometry of a 100 mm diameter pipe with compatible weld-neck ANSI flange class no. 300 of low carbon steel is simulated. Two tack welds at circumferentially opposite locations, with the crucial effect of the tack weld's orientation from the weld start position is the focus in this study. Four different angular positions of tack welds (0 and 180 deg., 45 and 225 deg., 90 and 270 deg., 135 and 315 deg.) are analyzed. In addition, four cases for root gaps (0.8, 1.2, 1.6, 2.0 mm) are considered and computational results are compared. A basic FE model is also validated with experimental data for temperature distribution and deformations. From the results, the axial displacement and tilt of the flange face are found to be strongly dependent on the tack weld orientation and weakly dependent on the root gap

  2. Electric pulse treatment of welded joint of aluminum alloy

    Directory of Open Access Journals (Sweden)

    A.A. Mitiaev

    2013-08-01

    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  3. Creep properties of welded joints in OFHC copper for nuclear waste containment

    International Nuclear Information System (INIS)

    In Sweden it has been suggested that copper canisters are used for containment of spent nuclear fuel. These canisters will be subjected to temperatures up to 100 degrees C and external pressures up to 15 MPa. Since the material is pure (OFHC) copper, creep properties must be considered when the canisters are dimensioned. The canisters are sealed by electron beam welding which will affect the creep properties. Literature data for copper - especially welded joints - at the temperatures of interest is very scare. Therefore uniaxial creep tests of parent metal, weld metal, and simulated HAZ structures have been performed at 110 degrees C. These tests revealed considerable differences in creep deformation and rupture strength. The weld metal showed creep rates and rupture times ten times higher and ten times shorter, respectively, than those of the parent metal. The simulated HAZ was equally strongen than the parent metal. These differences were to some extent verified by results from creep tests of cross-welded specimens which, however, showed even shorter rupture times. Constitutive equations were derived from the uniaxial test results. To check the applicability of these equations to multiaxial conditions, a few internal pressure creep tests of butt-welded tubes were performed. Attemps were made to simulate their creep behaviour by constitutive equations were used. These calculations failed due to too great differences in creep deformation behaviour across the welded joint. (authors)

  4. A non-conventional technique for evaluating welded joints based on the electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.G.; Sorger, G., E-mail: telmo.santos@fct.unl.pt, E-mail: lgs18243@campus.fct.unl.pt [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Vilaca, P., E-mail: pedro.vilaca@aalto.fi [Aalto Univ., Dept. of Engineering Design and Production, School of Engineering, Aalto (Finland); Miranda, R., E-mail: rmiranda@fct.unl.pt [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)

    2015-01-15

    Recent studies showed that electrical conductivity is a valuable technique to identify the different zones of solid-state welded joints with a good correlation with the microstructure and hardness. This is a relevant result since this technique is fast and, in some cases, non destructive, The concept was applied to other welding processes such as the ones involving fusion to a wide range of materials, For this, a comprehensive study was performed using friction stir welding, tungsten inert gas (TlG) and gas metal arc (MAG) welding processes in either bead on plate or butt joints in: carbon steel, magnesium and titanium, Eddy current nondestructive testing (NDT) was used to measure the electrical conductivity at different depths in transverse sections of the processed materials. The profiles were compared to the hardness profiles in the same sections. As a result, a correlation was observed in most materials welded by solid state and by fusion processes. The variation of the electrical conductivity closely follows that measured in the hardness. Another interesting conclusion is that, even for fusion welding of carbon steels, the technique has potential to complement the hardness measurements and microstructural observations, allowing the identification of the distinct zones of welds in materials commonly used in industry. (author)

  5. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    Science.gov (United States)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  6. X80长输油气管道闪光对接焊技术研究%Research on Flash Butt Welding Process of X80 Long-distance Oil and Gas Pipeline

    Institute of Scientific and Technical Information of China (English)

    高建文; 胡建春; 宋晞明; 李洁; 傅建楠

    2015-01-01

    According to the welding quality requirements of long-distance oil and gas pipeline construction, the flash butt welding process of X80 pipeline steel was studied. Through analyzing the chemical composition and mechanical properties, combined with the selected welding process and welding method, the welding was carried out for X80 pipeline steel, and the mechanical properties of its welded joints were tested. The results showed that the flash butt welding performance of X80 steel is very good, and the strength, hardness and low temperature toughness can meet the safety requirement of X80 grade pipeline steel. The welding method and the technological parameters can be used for site welding.%针对长输油气管道建设对焊接质量的要求,对X80管线钢的闪光对接焊工艺进行了研究。通过对长输管道用X80管线钢化学成分及力学性能进行分析,结合选定的焊接方法和焊接工艺,对该管线钢进行了焊接,并对其焊接接头的力学性能进行了测试。结果表明,闪光对接焊得到的焊接接头性能良好,接头的强度、硬度、韧性等性能均满足X80管线钢管的安全要求。所选用的焊接方法和工艺参数可用于该管材的现场焊接。

  7. Assessment Of Joints Using Friction Stir Welding And Refill Friction Stir Spot Welding Methods

    OpenAIRE

    Lacki P.; Więckowski W.; Wieczorek P.

    2015-01-01

    FSW (Friction Stir Welding) and RFSSW (Refill Friction Stir Spot Welding) joints have been increasingly used in industrial practice. They successfully replace fusion-welded, riveted or resistance-welded joints. In the last two decades, dynamic development of this method has stimulated investigations of the fast methods for joint diagnostics. These methods should be non-destructive and easy to be used in technological processes. The methods of assessment of joint quality are expected to detect...

  8. 海洋隔水管对接环焊缝接头高周疲劳性能研究%Research on High Cycle Fatigue Property for Butt Circumferential Weld of Marine Riser

    Institute of Scientific and Technical Information of China (English)

    余钊辉; 党恩; 朱安达; 杨龙; 张建勋

    2013-01-01

    The four-point bend fatigue test method was used to measure the high cycle fatigue property of marine riser X80/X80J butt circumferential weld. The influence on crack initiation location of stress concentration,microstructure and hardness was analyzed comprehensively. The results showed that the fatigue crack of welded joint with weld reinforcement initiates from toes, and then extends to the heat affected zone from the weld reinforcement,while the crack initiates from weld and propagates along the weld without reinforcement. The stress concentration caused by the weld reinforcement is the main factor to reduce the welded joint fatigue performance. The fatigue limit of welded joint is 216 MPa for with reinforcement and 400 MPa for without the weld reinforcement.%采用四点弯曲疲劳试验法,测试了海洋隔水管道X80/X80J对接环焊缝高周疲劳性能。综合分析了应力集中、显微组织和硬度对裂纹萌生位置的影响。结果表明,有余高焊接接头疲劳裂纹在焊趾处萌生并向热影响区扩展,去除余高的焊接接头疲劳裂纹从焊缝处萌生并沿焊缝扩展;焊缝余高引起的应力集中是降低焊接接头疲劳性能的主要因素,有余高焊接接头的疲劳极限为216 MPa,去除余高的焊接接头疲劳极限为400 MPa。

  9. Microstructure- and Strain Rate-Dependent Tensile Behavior of Fiber Laser-Welded DP980 Steel Joint

    Science.gov (United States)

    Jia, Qiang; Guo, Wei; Peng, Peng; Li, Minggao; Zhu, Ying; Zou, Guisheng

    2016-02-01

    DP980 steels were butt-welded by fiber laser welding. The microstructures, microhardness distribution, and tensile behavior of the joint were investigated. The results showed that the fusion zone (FZ) consisted of fully martensite with higher hardness compared to the base metal (BM). A softened zone (20 HV0.2 drop) was produced in heat-affected zone due to martensite tempering during the laser welding. The ultimate tensile strength (UTS) and yield strength (YS) of the laser-welded joint were not degraded compared to BM with the existence of softened zone. The UTS and YS of the welded joint increased with the increase of tensile strain rate. The work hardening exponents of the BM and welded joint showed weak positive strain rate dependence. The deformation of softened zone was restrained by the hardened FZ during loading, resulting in a higher work hardening rate of softened zone than that of BM. The failure of welded joint occurred in the BM instead of softened zone. The fracture surfaces of the joint exhibited typical ductile fracture over strain rate from 0.0001 to 0.1 s-1.

  10. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Dissimilar metal weld joint in safe end (large diameter both-side groove joint)

    International Nuclear Information System (INIS)

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  11. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Weld joint in shroud support (H8, H9, H10 and H11 welds)

    International Nuclear Information System (INIS)

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  12. Thermo-mechanical FE-analysis of butt-welding of a Cu-Fe canister for spent nuclear fuel

    International Nuclear Information System (INIS)

    In the Swedish nuclear waste program it has been proposed that spent nuclear fuel shall be placed in composite copper-steel canisters. These canisters will be placed in holes in tunnels located some 500 m underground in a rock storage. The canisters consists of two cylinders of 4850 mm length, one inner cylinder made of steel and one outer cylinder made of copper. The outer diameter of the canister is 880 mm and the wall thickness for each cylinder is 50 mm. At the storage, the steel cylinder, which contains the spent nuclear fuel, is placed inside the copper cylinder. Thereafter, a copper end is butt welded to the copper cylinder using electron beam welding. To obtain penetration through the thickness with this weld method a backing ring is placed at the inside of the copper cylinder. In the present paper, the temperature, strain and stress fields present during welding and after cooling after welding are calculated numerically using the FE-code NIKE-2D. The aim is to use the results of the present calculations to estimate the risk for creep fracture during the subsequent design life. A large strain formulation is employed for the calculation of transient and residual stresses in the canister based on the calculated history of the temperature field present in the canister during the welding process. The contact algorithm available in NIKE-2D is used to detect possible contact between the steel and copper cylinders during the welding. To simplify the numerical calculations and reduce the computational time, rotational symmetry is assumed. For large gap distances between the steel and copper cylinders the residual stress field is calculated to have a shape similar to that observed in butt welded pipes with maximum axial stress values at the yield stress level. For small gap distances the backing ring will come in contact with the steel cylinder which leads to large residual stresses in the backing ring. The maximum accumulated plastic strain in the weld metal and

  13. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  14. Fatigue Strength of Friction Stir Welded Joints in Aluminium

    OpenAIRE

    Ericsson, Mats

    2005-01-01

    Solid state Friction stir welding (FSW) is of major interest in the welding of aluminium since it improves the joint properties. Many applications where Al-alloys are used are subject to varying load conditions, making fatigue failure a critical issue. In the scope of this thesis, the fatigue performance of friction stir welded AlMgSi-alloy 6082 has been investigated. Static and dynamic properties of different joint configurations and welds produced with varying process parameters have been d...

  15. Stresses at weld toes in tubular joints in offshore structures

    OpenAIRE

    Elliott, Kim S.

    1987-01-01

    The accurate prediction of stress concentration factors (SCF) at weld toes is recognised as one of the most important factors in the design, against fatigue failure, of welded tubular joints in offshore structures. The objectives of this work are i) to study the influence of some important tubular joint and weld profile geometric parameters on the elastic SCFs at weld toes, ii) compare these values with strains which could be measured by strain gauges, and iii) to determine plastic-elastic st...

  16. Micro-mechanical properties of 2219 welded joints with twin wire welding

    Institute of Scientific and Technical Information of China (English)

    Xu Wenli; Li Qingfen; Meng Qingguo; Fang Hongyuan; Gao Na

    2006-01-01

    Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure.Experimental results show that in weld zone, micro-mechanical properties are seriously uneven.Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus.The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone.As far as the whole welded joint is concerned,metal in weld possesses the lowest hardness.For welded specimens without reinforcement, fracture position is the weld when tensioning.While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%.So, it is necessary to strengthen the poor positions-weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.

  17. Basic numerical study on gap influence of residual stress and distortion during high-brightness laser butt welding

    International Nuclear Information System (INIS)

    High-brightness laser such as fiber laser or disk laser is expected to minimize the total heat input energy in welding due to its high beam quality, and the welding residual stress and distortion also seem to be reduced as a result. However, the diameter of high-brightness laser beam is less than 0.6 mm and it is difficult to set the beam position to contact face between two parts because in general there would be a gap due to quality of parts. In this study, in order to reveal the effect of gap on the residual stress and the welding distortion during fiber laser welding, the butt welding of two plates were examined through the thermal elastic-plastic analysis with a new gap element. From the result of thermal analyses, it was found that the homogeneous ellipsoid body could be applicable to model the shape of heat source for the fiber laser and the gap width would not influence the penetration shape when the gap width was changed from 0.1 to 0.25 mm. In addition, the elastic-plastic analyses indicated that the transverse shrinkage slightly increased with increasing the gap width, while this shrinkage without gap was much smaller than that with gap. Also, it was revealed that the welding speed largely affects both the welding residual stress and distortion. Moreover, it was found that the residual stress was almost independent of the jig position, while the position of fixtures slightly affected the transverse shrinkage. (author)

  18. Busted Butte report on laboratory radionuclide migration experiments in non-welded tuff under unsaturated conditions

    International Nuclear Information System (INIS)

    Three blocks of non-welded tuff, one nominally one cubic foot (trial block) and the other two, nominally one cubic metre (1 m3), were excavated from the Busted Butte Test Facility on the Nevada Test Site and transported to the Atomic Energy of Canada Limited Whiteshell Laboratories in Pinawa, Manitoba. The trial block and one of the 1-m3 blocks were used for unsaturated flow experiments. The remaining 1-m3 block is being used for saturated flow experiments and will be reported on separately. After a vertical flow of synthetic transport solution was set up under unsaturated conditions, a suite of conservative and chemically reactive radionuclide tracers was injected at volumetric flow rates of 20 mL/hr in the trial block, and 10 mL/hr in the 1-m3 block. The duration of the migration experiment in the trial block was 87 days, while the migration experiment in the 1-m3 block was continuing after 600 days. Results obtained from the migration experiment in the trial block showed that transport of 95m+99Tc, injected as the pertechnetate (an)ion, was slightly faster than that of the transport solution, using tritiated water (3H2O) as a flow indicator. Retardation of 237Np was consistent with that predicted from results obtained in supporting static batch sorption studies. Post-migration analysis of the flow field in the trial block showed that the front of the 22Na had migrated about half the distance through the block, and that 60Co and 137Cs had been retained near the inlet. This observation agrees qualitatively with that predicted from the results from static batch sorption studies. In the larger scale experiment, the transport behavior of Tc is very similar to that of the transport solution at this point in time. None of the other radionuclide tracers have been detected in water collected from this block. This observation is consistent with the observations for the smaller block. (author)

  19. Busted Butte report on laboratory radionuclide migration experiments in non-welded tuff under unsaturated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T.T.; Drew, D.J.; Ticknor, K.V

    2002-11-01

    Three blocks of non-welded tuff, one nominally one cubic foot (trial block) and the other two, nominally one cubic metre (1 m{sup 3}), were excavated from the Busted Butte Test Facility on the Nevada Test Site and transported to the Atomic Energy of Canada Limited Whiteshell Laboratories in Pinawa, Manitoba. The trial block and one of the 1-m{sup 3} blocks were used for unsaturated flow experiments. The remaining 1-m{sup 3} block is being used for saturated flow experiments and will be reported on separately. After a vertical flow of synthetic transport solution was set up under unsaturated conditions, a suite of conservative and chemically reactive radionuclide tracers was injected at volumetric flow rates of 20 mL/hr in the trial block, and 10 mL/hr in the 1-m{sup 3} block. The duration of the migration experiment in the trial block was 87 days, while the migration experiment in the 1-m{sup 3} block was continuing after 600 days. Results obtained from the migration experiment in the trial block showed that transport of {sup 95m+99}Tc, injected as the pertechnetate (an)ion, was slightly faster than that of the transport solution, using tritiated water ({sup 3}H{sub 2}O) as a flow indicator. Retardation of {sup 237}Np was consistent with that predicted from results obtained in supporting static batch sorption studies. Post-migration analysis of the flow field in the trial block showed that the front of the {sup 22}Na had migrated about half the distance through the block, and that {sup 60}Co and {sup 137}Cs had been retained near the inlet. This observation agrees qualitatively with that predicted from the results from static batch sorption studies. In the larger scale experiment, the transport behavior of Tc is very similar to that of the transport solution at this point in time. None of the other radionuclide tracers have been detected in water collected from this block. This observation is consistent with the observations for the smaller block. (author)

  20. EVALUATION OF MICROSTRUCTURAL STABILITY OF DISSIMILAR WELD JOINTS

    OpenAIRE

    Pavel Šohaj

    2012-01-01

    The microstructural changes occurring in the weld joint P92/316Ti during his long-term exposure at high temperature were studied. In parallel to experiments were carried out calculations of phase equilibria for the base materials and the weld joint using the ThermoCalc software. Based on the experimental results and computational modeling results were evaluated a microstructural stability and the application of the base materials and the weld joint.

  1. EVALUATION OF MICROSTRUCTURAL STABILITY OF DISSIMILAR WELD JOINTS

    Directory of Open Access Journals (Sweden)

    Pavel Šohaj

    2011-09-01

    Full Text Available The microstructural changes occurring in the weld joint P92/316Ti during his long-term exposure at high temperature were studied. In parallel to experiments were carried out calculations of phase equilibria for the base materials and the weld joint using the ThermoCalc software. Based on the experimental results and computational modeling results were evaluated a microstructural stability and the application of the base materials and the weld joint.

  2. Radiographic testing of welded joints. Parameters of testing

    International Nuclear Information System (INIS)

    The parameters of radiographic examination of welded joints are presented in accordance with standing standards: 1) sensitivity of the control; 2) minimum distance between a radiation source focal spot and the welded joint exposed to radiation; 3) maximum welded joint length examined in an exposure period; 4) minimum permissible photographic density; 5) radiation screens. A comparative analysis of EN 1435 and GOST 7512 standards is accomplished. Recommendations on GOST 7512 correction are given

  3. Measurement of inhomogeneous strength in weld joint by 3D image correlation technique

    International Nuclear Information System (INIS)

    It is possible for stress corrosion cracking to occur in weld joints and their neighborhood of nuclear power plants. Crack growth prediction and fracture assessment based on fitness-for-service is applied to initiated cracks. Yield point and tensile strength of material is used for fracture assessment. However, the material strength distribution of a welded part is usually not uniform. Therefore, to assess structural integrity correctly, it is important to understand the inhomogeneous strength distribution. In this study, identification of an inhomogeneous material strength distribution of a welded part was tried using a digital image correlation technique (DIC). A specimen was taken from a butt welded joint and the displacement of the specimen surface during a tensile test was measured using the DIC. It was shown that the nominal stress-local strain curves on a specimen surface and 0.2% proof strength distribution around the weld part could be corrected by the DIC. Furthermore, change in the cross-section during the tensile test was estimated by the DIC, and the local stress (true stress) at an arbitrary cross-section of the specimen could be identified. (author)

  4. Friction stir welding of 6061 aluminium alloy

    International Nuclear Information System (INIS)

    6061 AA (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio and good corrosion resistance such as marine frames, pipelines, storage tanks, and aircraft components [1]. It is also used for the manufacturing of fuel elements in the nuclear research reactors. Compared to many of the fusion welding processes that are routinely used for joining structural alloys, friction stir welding (FSW) is a solid state joining process in which the material that is being welded is not melted and recast [2]. The welding parameters such as tool rotational speed, welding traverse speed, and tool profile play a major role in deciding the weld quality. Several FSW tools (differ from each other in pin angle, shoulder diameter, and shoulder concavity) have been used to fabricate a number of joints in order to obtain a tool with which a sound weld can be produced. It was found that the FSW tool with tapered cone pin, concave shoulder, and shoulder diameter equal to four times the welded plate thickness is suitable to produce a sound weld. The effect of the traverse speed on the global and local tensile properties of friction stir welded joints has been investigated in the 6061-T6 AA. The global tensile properties of the FSW joints were improved with increasing the traverse speed at constant rotation rate. It is found that the global tensile strength of the FSW joint is limited by the local tensile strength of the nearest region to the weld center at which the cross section is composed mainly of the HAZ. The effect of the initial butt surface on the formation of the zigzag line on the tensile properties of the welds was examined by using three types of welding samples differ in the preparation of the initial butt surface. The first type of samples welded without removing the oxide layer from the initial butt surface (uncleaned butt surfaces joint). In the second type of samples the oxide layer was removed from

  5. Predicting effects of diffusion welding parameters on welded joint properties by artificial neural network

    Institute of Scientific and Technical Information of China (English)

    刘黎明; 祝美丽; 牛济泰; 张忠典

    2001-01-01

    The static model for metal matrix composites in diffusion welding was established by means of artificial neural network method. The model presents the relationship between weld joint properties and welding parameters such as welding temperature, welding pressure and welding time. Through simulating the diffusion welding process of SiCw/6061Al composite, the effects of welding parameters on the strength of welded joint was studied and optimal technical parameters was obtained. It is proved that this method has good fault-tolerant ability and versatility and can overcome the shortage of the general experiment. The established static model is in good agreement with the actual welding process, so it becomes a new path for studying the weldability of new material.

  6. The Study for Application of Residual Stress Improvement on 6 inch Pipe Butt Weld By MeSIA1

    International Nuclear Information System (INIS)

    The welding procedure generates residual tensile stress at the inner region of pipe which is one of the factors contributing to some cracks such as Intergranular Stress Corrosion Cracking and Primary Water Corrosion Cracking in nuclear industry. There are some accidents in nuclear power plants due to those kinds of cracks. Nuclear power plants in Korea have also experience of PWSCC making big issue to have nuclear integrity. There are some technologies to mitigate or repair dissimilar metal weld related to Alloy 600. MeSIA is one of the mitigation technologies changing residual tensile stress to residual compressive stress in the weldment and heat-affected zone at the inner region of the pipe butt welds. The concept of this technology is to eliminate tensile stress by plastic deformation generated by mechanical pressure. To have optimum compressive stress, some major parameter combinations, distance, pressure width and loads, were found in which were mentioned at spring paper this year. This paper addresses the study for application of residual stress improvement. Two kinds of pipe, carbon seamless pipe and welded seamless pipe with carbon steel and stainless steel, were used to see the possibility. And finite element analysis was also performed. This study will be complete in 2012 when 29 inch mock-up test is completed. Therefore, the information shown in this paper is subject to adding data

  7. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  8. Development of phased array ultrasonic testing in lieu of radiography for testing complete joint penetration (CJP) welds

    Science.gov (United States)

    Haldipur, P.; Boone, Shane D.

    2014-04-01

    The past decade has seen new, emerging innovation of Ultrasonic Testing (UT). Specifically, multiple manufacturers have produced Phased Array Ultrasonic Testing (PAUT) systems. The PAUT systems embed a matrix of multiple (some up to 128) single transducers into one probe used for scanning elastic materials. Simultaneously exciting multiple transducers offers distinct advantages; depending on the sequencing of transducer excitation, the ultrasonic beam could be steered within the material and multiple beams help develop extra dimensional data to assist with visualization of possible flaws including the discontinuity size, shape and location. Unfortunately, there has not been broad acceptance of PAUT in the bridge fabrication industry because it is currently not a recognized inspection technology in AWS D1.5. One situation in which the technology would excel would be inspection of Complete Joint Penetration (CJP) butt welds. Currently, AWS D1.5 required CJP welds subjected to tensile or reversal stresses only be inspected by Radiographic Testing (RT). However, discontinuities normally seen by RT can also be seen with PAUT. Until specification language is adopted into D1.5, there will continue to be hesitancy to use PAUT for the inspection of CJP butt welds. Developmental work must first be performed to develop the acceptance criteria and the specification language. The developmental work from the inspections carried out on butt-weld specimens and transition butt-weld specimens are presented in this paper. Specific scan plans were developed using the ES-Beam simulation software for each of the test specimens. In depth analysis of PAUT data obtained to determine exact location and sizing information of the defects was performed. The results also present the comparison of results from PAUT to those obtained using conventional UT and radiography.

  9. Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Shirai, Yuma; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-10-15

    Highlights: • The microstructure of F82H/SUS316L dissimilar joint can be divided into four regions. • In the case without beam position shift, hardness of WM cannot be reduced by PWHT. • The fiber laser welding would be applicable for constructing the dissimilar joint. -- Abstract: As one of the high beam quality heat sources, 4 kW fiber laser was applied for joining between reduced activation ferritic/martensitic steel, F82H and SUS316L austenitic stainless steel, and the microstructural analyses and Vickers hardness measurements were carried out before and after post-weld heat treatment (PWHT). The microstructure of joint can be divided into four regions which are base metal of F82H, heat affected zone (HAZ) in F82H, weld metal (WM) and base metal of SUS316L. Also, it is revealed that the high-power fiber laser can be employed for constructing butt joint between F82H and SUS316L by applying PWHT and shifting the laser beam position to SUS316L, where the distance between the contact face and beam should be set as a range from radius to diameter of laser beam.

  10. Seam-Tracking for Friction Stir Welded Lap Joints

    Science.gov (United States)

    Fleming, Paul A.; Hendricks, Christopher E.; Cook, George E.; Wilkes, D. M.; Strauss, Alvin M.; Lammlein, David H.

    2010-11-01

    This article presents a method for automatic seam-tracking in friction stir welding (FSW) of lap joints. In this method, tracking is accomplished by weaving the FSW tool back-and-forth perpendicular to the direction of travel during welding and monitoring force and torque signals. Research demonstrates the ability of this method to automatically track weld seam positions. Additionally, tensile and S-bend test result comparisons demonstrate that weaving most likely does not reduce weld quality. Finally, benefits of this weave-based method to FSW of lap joints are discussed and methods for incorporating it into existing friction stir welding control algorithms (such as axial load control) are examined.

  11. Fatigue behaviour of coated sheets but joints welded by laser process

    International Nuclear Information System (INIS)

    The fatigue strength and the fracture mechanism studies of butt laser welded joints in A155-Zn coated steel sheets, 0,62 and 1.16 mm thick, have been continued. The 2 x 10''6 cycles fatigue strength for both thicknesses has been finally established in 130 and 175 MPa, respectively, and the big ferritic grain -300μm-produced by symmetrical solidification from the fusion zone centre has been confirmed. Initiation and extension fracture zones are analysed by SEM and so are the involved microstructures. The first ones are concerned with high stress concentration zones, mainly undercut or lack of penetration, from which the fatigue cracks extend in semiellipses, longitudinally and through thickness, along the fusion line or the HAZ. The final fracture is produced by tearing of the residual fatigue crack bound and crack deviation towards the central gross grain line of the welds. (Author) 13 refs

  12. Fatigue resistance of titanium laser and hybrid welded joints

    International Nuclear Information System (INIS)

    This paper presents a detailed study on fatigue strength of welded joints made of two titanium alloys, grade 2 and grade 5, and welded by laser or hybrid process. Fatigue strength curves obtained for each alloy and each welding technique are compared in terms of safety factors with fatigue design curves of welded joints provided by standards. Material and welding process effects on fatigue strength are discussed; the influence of the weld seam geometry is assessed by evaluating the fatigue strength reduction factor. This parameter is computed by using the Volumetric Method of the Notch Fracture Mechanics and defined as the ratio of the effective stress and the gross stress. Effective stress is defined on the weld toe stress distribution by the minimum of relative stress gradient method. Distribution of opening stress at weld toe is analysed also with the finite element analysis.

  13. A Probabilistic Damage Tolerance Concept for Welded Joints

    DEFF Research Database (Denmark)

    Lassen, T.; Sørensen, John Dalsgaard

    2002-01-01

    The first part of this paper presented the required statistics and stochastic models for reliability analysis of the fatigue fracture of welded plate joints. This present Part 2 suggests a probabilistic damage tolerance supplement to the design S–N curves for welded joints. The goal is to provide...

  14. Mechanical behaviour of Astm A 297 grade Hp joints welded using different processes

    International Nuclear Information System (INIS)

    The influence of different arc welding processes on mechanical behaviour was studied for cast heat resistant stainless steel welded joints, in the as welded conditions. ASTM A 297 grade HP with niobium and niobium/titanium additions were welded following three different welding procedures, using shielded metal arc welding gas tungsten arc welding and plasma arc welding, in six welded joints. The welded joint mechanical behaviour was evaluated by ambient temperature and 870 deg C tensile tests; and creep tests at 900 deg C and 50 MPa. Mechanical test results showed that the welding procedure qualification following welding codes is not suitable for high temperature service applications. (author)

  15. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    OpenAIRE

    Torres López, Edwar A.; Ramirez, Antonio J.

    2015-01-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized u...

  16. Effect of Manganese on the Mechanical Properties of Welded As-Cast Aluminium Joint

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2013-11-01

    Full Text Available The effects of manganese on the mechanical properties of welded and un-weld as-cast 6063 aluminium alloy has been studied. Alloys of varying percentage of manganese from 0.019 to 0.24 were sand cast. A wooden pattern of dimensions 200×100×100mm was used, the aluminium (500g was charged into an induction furnace and heated to 750°C for 15 minutes, this was followed by the addition of weighed powdered manganese, stirred and heated at the same temperature for another 5 minutes and thereafter poured into the already prepared sand mould at a temperature of 690°C. The as-cast aluminium samples, were sectioned into two equal parts of 45mm each using power hack saw; a weld groove was created between the sides of the samples using an electric hand grinding machine, the groove served as the path along which the filler metal was deposited on the aluminium, a single v butt joint was produced from each sample and Metal Inert Gas Welding process was carried out to produce the required joint design. The different cast samples were machined to the different test pieces after which they were assessed to determine their mechanical properties (impact, hardness (welded joint and heat affected zone and tensile tests. The microstructures of the welded samples were also studied. From the results, it was observed that Sample F, which has 0.172% Mn, has the best hardness and impact strength while sample C with 0.160% Mn has the highest ultimate tensile strength.

  17. High temperature strength of hastelloy x welded joints

    International Nuclear Information System (INIS)

    In the design of high temperature structures such as ASME Code N-47, the high temperature strength characteristics of welded joints become the problem. Also, the design of the welded parts in high temperature structures in the present state is according to the standard in which the bimetallic behavior of welded parts is not considered, accordingly, it is much problematic. In this paper, the high temperature strength characteristics of Hastelloy X welded joints are described, and the problems in the present design are pointed out, moreover, some comment is given to the evaluation of high temperature strength for the future. In the ASME Code, Case N-47, the strength of welded joints is required to be the same as that of parent metals. Therefore, the data on the high temperature strength of welded joints must be collected. The results of tensile test at room temperature, 700, 800, 900 and 1000 deg C on the parent metal and EB and TIG welded joints of Hastelloy X are shown. Also, the characteristics of mono-axial creep rupture, internal pressure creep rupture, and high temperature, low cycle fatigue are reported. The lowering of strength in the tension, creep and fatigue of welded joints must be examined and evaluated in view of the combined behavior of parent metals and weld metals. (Kako, I.)

  18. 深海脐带缆内套钢管全位置脉冲TIG对接焊研究%Research on Full Position Pulse TIG Butt Welding of Steel Pipes in Deep-sea Umbilical Cable

    Institute of Scientific and Technical Information of China (English)

    杜兴吉; 夏正文; 王坤

    2014-01-01

    深海脐带缆是连接上部控制装置和海底生产系统的生命线,其内每根由数十至数百根钢管对接焊成的内套钢管质量必须是无懈可击的。由于管-管对接焊接时存在特殊性,在焊接过程中较容易出现焊接缺陷,严重影响到整个脐带缆的工作性能。通过大量试验,对每根长12~40 m的钢管进行精密组对,并采用全位置脉冲TIG焊技术对无法转动的小直径钢管环缝进行焊接,焊接采用TIG焊一次焊接成形,确定了最佳的焊接工艺规范参数,获得了焊缝表面成形美观、根部焊透性好、接头质量可靠等性能优良的焊接接头。%The deep sea umbilical cable is the lifeline for connecting the topside control facilities and the undersea production system;the quality of each steel pipe in umbilical cable which consists of tens to hundreds of steel pipe butt welding must be impeccable. Because the particularity exists in tube-tube butt welding, the welding defects occur easily in welding course, which seriously affects the working performance of umbilical cable. Through a large number of tests, during precision group for each 12 m to 40 m steel pipe, the circumferential weld of small diameter steel pipe of unable to rotate was welded by full position pulse TIG welding process. It determined the best welding procedure specification parameters, and obtained perfect welded joints with good weld profile, good penetrability and excellent quality.

  19. Structure and properties of welded joints under laser and arc welding of Zr-2.5%Nb alloy

    International Nuclear Information System (INIS)

    Laser welding was used for improving plasticity of welded joints of Zr-2.5%Nb compositions. It is noted that laser welding of Zr-2.5%Nb alloy at 100-120 m/h rate allows to produce joints featuring high quality, high strength and plasticity of welds whose bend angel equals 160-180 deg. Corrosion resistance of joints in sulphuric, nitric and acetic acids is at the level of basic metal resistance. Decrease of weld width, heat contribution and chemical inhomogeneity of weld metal and HAZ under laser welding conditions reduces the tendency of weld joints to intercrystal corrosion in a 70% solution of sulphuric acid

  20. Characterizations of InAs quantum dot lasers butt-joint coupled with silicon photonics waveguides

    Science.gov (United States)

    Wang, Zihao; Yao, Ruizhe; Preble, Stefan; Lee, Chi-Sen; Guo, Wei

    2016-03-01

    InAs quantum dot (QD) laser heterostructures are grown by molecular beam epitaxy (MBE) system on GaAs substrates and fabricated. The InAs QD lasers exhibit comparable properties of the state-of-the-art QD lasers with the threshold current density Jth and efficiency ηi of 475A/cm2 and 72.6%, respectively, at room temperature. The quantum dot laser emission is butt-joint coupled into silicon photonics waveguides by aligning the laser and silicon photonics chips with two translation stages. Due to the optical feedback to the laser cavity at the air/Si interface, the laser power self-pulsation and reduced threshold current density are observed. And the effective facet reflectivity, Reff, of 62.7% is obtained from the theoretically analysis of the laser characteristics. Furthermore, the silicon photonics waveguides interface is coated with the SiO2/TiO2 antireflection (AR) coating layers, and no laser performance interference is observed owing the reduced optical feedback.

  1. Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints

    Science.gov (United States)

    Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.

    2016-02-01

    During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.

  2. Modelling of damage development and ductile failure in welded joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been......, a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example, the...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly...

  3. Tensile and shear behavior of undermatched welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Ferrel, M.; Dexter, R.J. [Lehigh Univ., Bethlehem, PA (United States)

    1995-12-31

    Large-scale specimens were made from HSLA-100 steel plate (690 MPa minimum yield strength) featuring groove welds with varying strength ranging from overmatched to significantly undermatched. Tensile tests with transverse groove welds demonstrated that moderately undermatched joints (15% or less) can achieve strength and ductility as good as the overmatched welds. Severely undermatched joints (> 25%) provide full strength, but only limited ductility. The constraint in the large-scale specimens, as in the actual structures, increases the load capacity of the undermatched joints. Unlike the large-scale specimens, conventional flat-strap cross-weld tension specimens cut from the same undermatched welds fail prematurely due to lack of constraint. Shear tests showed that undermatched groove welds do not affect shear strength and ductility. The test results could be reasonably simulated using small-strain elastoplastic finite-element analysis.

  4. Non-destructive Residual Stress Analysis Around The Weld-Joint of Fuel Cladding Materials of ZrNbMoGe Alloys

    OpenAIRE

    Parikin; Bandriyana; I. Wahyono; A.H. Ismoyo

    2003-01-01

    The residual stress measurements around weld-joint of ZrNbMoGe alloy have been carried out by using X-ray diffraction technique in PTBIN-BATAN. The research was performed to investigate the structure of a cladding material with high temperature corrosion resistance and good weldability. The equivalent composition of the specimens (in %wt.) was 97.5%Zr1%Nb1%Mo½%Ge. Welding was carried out by using TIG (tungsten inert gas) technique that completed butt-joint with a current 20 amperes. Three reg...

  5. A study on residual stress distribution of welded joints

    International Nuclear Information System (INIS)

    Wings for defense industry such as fighters, missiles, and rockets should have no deformation or damage on the structure, strength, and hardness safety of constituted pared and the structures near to the bodies. The structures of existing wings had holes for light weight and plates and frames were fixed with rivets or screws, thus, there were difficulties and limits in light weight. In this study, an improvement was made in current joint methods through EB welding and laser welding for light weight of wings and welding strength was measured through strength test. In addition, finite element analysis was performed for welding process so as to induce optimum welding condition

  6. Comparative study on welding characteristics of laser-additional current hybrid welded T-joint of aluminium and titanium alloy

    OpenAIRE

    Zhang Xinge; Li Liqun; Chen Yanbin; Zhu Xiaocui; Li Yansheng; Guo Xinjian

    2015-01-01

    In order to improve the properties of laser overlap welded T-joint, laser-additional current hybrid welding process is put forward. In this paper, the welding characteristics of laser-additional current hybrid welded aluminum and titanium alloy T-joint were conducted and compared. The weld width at faying surface increase, which results in tensile shear load increasing compared with those of laser welding for both aluminum and titanium alloy, but the effect of current on aluminum alloy is mor...

  7. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    Science.gov (United States)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-05-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  8. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    Science.gov (United States)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-03-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  9. Experience gained in field welding of pipe butt welds utilising the orbital-MAG process. Erfahrungen mit dem Metall-Aktivgas-Orbital-Schweissen von Rundnaehten im Feld

    Energy Technology Data Exchange (ETDEWEB)

    Hess, H. (Mannesmann Anlagenbau AG, Stuttgart (Germany, F.R.)); Wellnitz, G. (Mannesmann Anlagenbau AG, Duesseldorf (Germany, F.R.))

    For the field welding of a pipe gas storage consisting of nine 318 m pipe lengths of 2520 mm o.d. with 23 mm wall thickness, the orbital-MAG process was successfully applied. Utilising the stovepipe welding technique with cellulose type electrodes for root and hotpass, the fill and cap layers were applied with the mechanised orbital-MAG process. Optimal joint fit and weld bead sequence led to economies in costs and preparation. The safety of the process is demonstrated in the mechanical test results obtained in the procedure qualification tests together with the NDE results from the field welds. The final, hydrostatic, acceptance test was performed under a pressure of 65 bar. No defects were observed. (orig.).

  10. Characterization of titanium welded joints by the orbital gas tungsten arc welding process for aerospace application

    Directory of Open Access Journals (Sweden)

    José A. Orlowski de Garcia

    2010-08-01

    Full Text Available In this work, three welding programs for orbital gas tungsten arc welding (GTAW, previously developed, were used, using pulsed current and increasing speed (#A, constant current (#B and pulsed current and decreasing current (#C. One of these should be used for the propulsion system of the Satellite CBERS (China – Brazil Earth Resources Satellite. Welded joints using tubes of commercially pure titanium were obtained with these procedures, which were characterized by means of mechanical and metallographic tests. The obtained results showed that the three welding procedures produce welded joints free of defects and with adequate shape. Although small differences on mechanical properties and on microstructure have been observed, the three welding programs attained compatible results with international standards used in the aerospace segment. The welding program #B, due to the reduced heat input used, was considered to obtain slightly advantage over the others.

  11. Moiré method analysis for tensile strain field of 2024 aluminum alloy welded joint

    Institute of Scientific and Technical Information of China (English)

    徐文立; 魏艳红; 刘雪松; 方洪渊; 赵敏; 田锡唐

    2003-01-01

    Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position-welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.

  12. Low cycle fatigue of mechanically heterogeneous welded joints

    International Nuclear Information System (INIS)

    A consideration is given to welded joints made of two dissimilar materials, namely, a material M of lesser strength and a material T of higher strength. It is shown that in near the contact mild - hard material zones under elastic - plastic deformation of the material M a triaxial stress state is realized as the strains are distributed irregularly. An increase in the rigidity of stress state results in a decrease of plasticity and durability of M material. Mild interlayers have a stronger effect on the strength of welded joint, especially, when low cycle loading. In mechanically nonuniform welded joints with V- and X- shaped welds in the most loaded zones the intensity of strains increases with a decrease of relative thickness of a root of penetration α0 for a mild weld, and with an increase of 2α angle for a hard material. Then, it is not recommended to take α048 grad

  13. X-ray inspection of concrete steel welded joints

    International Nuclear Information System (INIS)

    The most suitable method for the inspection of welded joints in the building practice is the nondestructive X-ray method. The relevant characteristics include the kind of the welded joint and the way it is stressed. The permissible number of defects is determined taking into account the way of using the welded joint (reinforced concrete structures frequently stressed, statically stressed, and welded joints not used as load-bearing ones). After evaluating the radiograph, the samples were subjected to tensile tests. Defects were evaluated in compliance with the corresponding Czechoslovak state standard. Tests so far performed on defective structures have given evidence that more than 50% material defects are due to the primary production or production technology. (M.D.). 7 figs., 2 tabs., 16 refs

  14. Method and instrument for judging welded joints

    International Nuclear Information System (INIS)

    This non-destructive method works in real time and evaluates the mechanical stress waves going out from the weld. The invention is described using a laser welding instrument as an example. (RW) 891 RW/RW 892 MKO

  15. Mechanical Properties and Microstructure of Dissimilar Material Welded Joints

    OpenAIRE

    Ziewiec A.; Tasak E.; Ziewiec K.; Formowicz K.

    2014-01-01

    The paper presents results of the mechanical testing and the microstructure analysis of dissimilar welded joint of the R350HT steel and the high-manganese (Hadfield) cast steel using Cr-Ni cast steel spacer. The simulation tests of the welded joint surface deformation were carried out. The macroscopic and microscopic investigation were made using light microscopy (LM) and scanning electron microscopy (SEM). Content of the magnetic phase was measured using magnetoscope. The quantitative metall...

  16. Evaluation of cold crack susceptibility on HSLA steel welded joints

    OpenAIRE

    Silverio-Freire Júnior, R. C.; Moura-Maciel, T.; Guedes da Silva, P.

    2003-01-01

    The present study addresses an evaluation of the effect of several welding parameters on cold cracking formation in welded joints of High Strength and Low Alloy steels, as well as the resulting microstructures and hardness values. The main parameters studied include the variation of the preheating temperature, drying time of the electrode, chemical composition and thickness of the base metal. The presence of cold cracking in the joints was analyzed from Tekken tests using steel plates made of...

  17. Corrosion Protection of the Zone of Thermal Action (Zone of Butt of Tubes While Welding) from the Inside When Laying Multifunctional Pipeline Systems

    OpenAIRE

    Glouschenkov, V. A.; Karpukhin, V. F.

    2008-01-01

    The work is aimed at handling a main problem of corrosion protection of the pipeline s interior section adjacent to a weld butt. It is proposed to execute fastening of elements of the protective system of pipes by application of the pulse-magnetic technology which has essential technical and economical advantages over other methods. Protection of end sections of pipes is performed by pulse-magnetic pressing-in of a bush made from stainless steel or by pulse-magnetic welding of rings from a pr...

  18. Simulation of the Thermal Process of Butt Welding of Polyethylene Pipes at Low Temperatures

    Science.gov (United States)

    Starostin, N. P.; Ammosova, O. A.

    2016-06-01

    A theoretical study has been made of the thermal process of welding polyethylene pipes for gas pipelines at low ambient air temperatures. The mathematical model used takes into account the heat of the phase transition in the temperature range, as well as the thermal effect of the fin formed by the slip. Computing experiments have shown that it is possible to control the temperature regime in welding at low ambient air temperatures and provide, in the thermal influence zone, the same change in the temperature field as at permissible air temperatures.

  19. A study of structure and mechanical properties of welded joints in polyethylene pipes

    International Nuclear Information System (INIS)

    The structure and the mechanical properties of a butt weld in a polyethylene pipe were examined and contrasted to non-welded PE pipe. X-ray diffraction, differential scanning calorimeter and fourier transform infra red spectrometer measurements revealed details of axial amorphous and crystal orientation in the original pipe. Contrary to expectations considering the squeeze flow nature of butt-welding, formation of randomly oriented crystal structure was determined in the weld region. Tensile and notched impact tests at ambient and sub-ambient temperatures and varying rates of impact showed that welding consistently reduced resistance to failure. Microscopic evaluation of the brittle fracture surfaces revealed the surface morphology of the welded zone to be coarser than the non-welded PE material

  20. Fatigue propagation through welded joints of pressure vessels

    International Nuclear Information System (INIS)

    An assessment was made of the behaviour under cyclic load (crack propagation rate and low cycle fatigue) of the metal deposited and of the area affected by the heat of the welded joints assembling the components of the primary circuit. In order to be sure that the results are as representative as possible, the tests were made on metal from joints carried out with the same parameters as actual joints. The studies described here concerned the deposited metal of the welded joints of vessels and the deposited metal in Ni-Cr-Fe alloy of INCONEL 600 type joining the plates at the bottom of steam generators

  1. Optimization of GMAW process of AA 6063-T5 aluminum alloy butt joints based on the response surface methodology and on the bead geometry; Optimizacion del proceso de soldadura GMAW de uniones a tope de la aleacion AA 6063-T5 basada en la metodologia de superficie de respuesta y en la geometria del cordon de soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, V.; Martinez-Conesa, E. J.; Segura, F.; Manjabacas, M. C.; Abellan, E.

    2012-11-01

    The geometry of the weld beads is characterized by the overhead, the width and the penetration. These values are indices of the behavior of the welded joint and therefore, they can be considered as factors that control the process. This work is performed to optimize the GMAW process of the aluminum alloy AA 6063-T5 by means of the response surface methodology (RSM). The variables herein considered are the arc voltage, the welding speed, the wire feed speed and the separation between surfaces in butt joints. The response functions that are herein studied are the overhead, the width, the penetration and the angle of the bead. The obtained results by RSM show high grade of agreement with the experimental values. The procedure is experimentally validated by welding for the theoretically obtained optimized technological conditions and a wide agreement between theoretical and experimental values is found. (Author) 16 refs.

  2. MODELLING AND CHARACTERIZATION OF LASER WELDED INCOLOY 800 HT JOINTS

    Directory of Open Access Journals (Sweden)

    Sathiya Paulraj

    2016-06-01

    Full Text Available This study aims at finding the effect of laser welding speed on incoloy 800 HT. This alloy is one of the potential materials for Generation IV nuclear plants. Laser welding has several advantages over arc welding such as low fusion zone, low heat input and concentrated heat intensity. Three different welding speeds were chosen and CO2 laser welding was performed. 2D modeling and simulation were done using ANSYS 15 to find out the temperature distribution at different welding speeds and it was found that an increase in the welding speed decreased the temperature. Mechanical properties such as tensile strength, toughness and hardness were evaluated. The effect of welding speed on metallurgical characteristics was studied using optical microscopy (OM, Scanning Electron Microscopy (SEM with EDS, X-Ray Diffraction (XRD technique and fractographic analysis. From the results it was found that high welding speed (1400 mm/min decreased the joint strength. The M23C6 and Ni3Ti carbides were formed in a discrete chain and in a globular form along the grain boundaries of the weld region which increased the strength of the grain boundaries. Fractographic evaluations of the tested specimens for welding speed (1000 and 1200 mm/min showed deep and wide dimples indicating ductile failures.

  3. Orbital TIG (GTAW) welding for highest weld joint quality requirements

    International Nuclear Information System (INIS)

    Due to its many advantages orbital TIG (GTAW) welding has become the major standard for mechanised tube and pipe weldings in various industries such as: Semiconductor, food and beverage, dairy and brewery, chemical and bio-/pharmaceutical industry, vessel construction, aerospace, offshore and shipbuilding, heat-exchanger, fossil and nuclear power generation. Today's state-of-the-art technology allows orbital weldings of tubes, pipes, fittings or similar parts from 2,3 mm O.D. up to unlimited sizes (including flat plate). Wall thicknesses from 0,3 mm to 175 mm (narrow groove) can easily be accommodated. For difficult applications like inbore weldings, valve seat repairs or video-controlled remote welds, special equipment can be provided or individually manufactured on customer's demand. (orig.)

  4. 20钢玻璃内衬防腐管与304不锈钢管对接工艺分析%Study on Butt Welding Process of 20 Steel Glass Lining Anticorrosion Tube and 304 Stainless Steel Pipe

    Institute of Scientific and Technical Information of China (English)

    赵泽敬; 赵志彬; 毛习飞; 王志文

    2015-01-01

    对于20钢玻璃内衬防腐管与304不锈钢钢管对接选用和耐蚀堆焊层相同的材料AT-ERNi625焊丝进行打底,填充盖面分别选择了AT-ERNi625焊丝和304焊丝,采用拉伸、弯曲试验、显微硬度试验测试焊接接头力学性能;通过扫描电镜、光学显微镜对焊缝断口及显微组织进行分析。结果表明,焊缝抗拉强度大于20钢抗拉强度,其显微硬度从母材到焊缝,从盖面层到打底层都呈现下降趋势,其力学性能满足使用要求;在母材20钢一侧出现了脱碳层,焊缝一侧出现增碳层,焊缝中的组织主要是少量的针状铁素体和奥氏体。%For 20 steel glass lining anticorrosion tube and 304 stainless steel pipe butt welding, it selected AT-ERNi625 welding wire to conduct backing, which is the same material as corrosion resistant surfacing layer. Filling and covering respectively chose ERNi625 welding wire and 304 welding wire. The mechanical properties of welded joints were tested by tensile test and microhardness test, and the weld fracture and microstructure were analyzed by scanning electron microscope, optical microscope. The results indicated that the tensile strength of weld is higher than that of 20 steel, and the microhardness present a downward trend from base metal to weld, from covering welding layer to backing layer. The mechanical properties can meet application requirements. The decarburization layer appeared at the side of the parent metal 20 steel, and recarburization layer appeared at the side of weld. The organization in weld mainly consist of a small amount of acicular ferrite and austenite.

  5. Residual stress simulation of circumferential welded joints

    Directory of Open Access Journals (Sweden)

    Melicher R.

    2007-11-01

    Full Text Available Residual stresses are an important consideration in the component integrity and life assessment of welded structure. The welding process is very complex time dependent physical phenomenon with material nonlinearity. The welding is a thermal process with convection between fluid flow and welding body, between welding bodyand environment. Next type of boundary conditions is radiation and thermo-mechanical contact on the outer surface of gas pipe in the near of weld. The temperature variation so obtained is utilised to find the distribution of the stress field.In this paper, a brief review of weld simulation and residual stress modelling using the finite element method (FEM by commercial software ANSYS is presented. Thermo-elastic-plastic formulations using a von Mises yield criterion with nonlinear kinematics hardening has been employed. Residual axial and hoop stresses obtained from the analysis have been shown. The commercial FEM code ANSYS was used for coupled thermalmechanical analysis.

  6. Comparative study on welding characteristics of laser-additional current hybrid welded T-joint of aluminium and titanium alloy

    Directory of Open Access Journals (Sweden)

    Zhang Xinge

    2015-01-01

    Full Text Available In order to improve the properties of laser overlap welded T-joint, laser-additional current hybrid welding process is put forward. In this paper, the welding characteristics of laser-additional current hybrid welded aluminum and titanium alloy T-joint were conducted and compared. The weld width at faying surface increase, which results in tensile shear load increasing compared with those of laser welding for both aluminum and titanium alloy, but the effect of current on aluminum alloy is more obvious. The porosity defect within the laser-additional current hybrid welded joint sharply reduces compared with that within laser welding. The tensile shear load of aluminum alloy and titanium alloy hybrid welded joints respectively increase 21% and 15%. The effects of additional current on welding characteristics of aluminum alloy and titanium alloy are compared and analyzed.

  7. Characterization of titanium welded joints by the orbital gas tungsten arc welding process for aerospace application

    OpenAIRE

    José A. Orlowski de Garcia; Gérson Luiz de Lima; Wilson D. Bocallão Pereira; Valdir Alves Guimarães; Carlos de Moura Neto; Ronaldo Pinheiro R. Paranhos

    2010-01-01

    In this work, three welding programs for orbital gas tungsten arc welding (GTAW), previously developed, were used, using pulsed current and increasing speed (#A), constant current (#B) and pulsed current and decreasing current (#C). One of these should be used for the propulsion system of the Satellite CBERS (China – Brazil Earth Resources Satellite). Welded joints using tubes of commercially pure titanium were obtained with these procedures, which were characterized by means of mechanical an...

  8. Comparison of five evaluation methods of residual stress in a welded pipe joint

    International Nuclear Information System (INIS)

    Residual stress distributions in a 4-inch-diameter carbon-steel pipe butt-welded joint were evaluated using five methods. The analytical evaluation methods used were inherent strain analysis and thermal elastic-plastic analysis. The experimental methods were X-ray diffraction and strain-gauge measurement for the surface residual stress and as well as neutron diffraction for the internal stress. The residual stress distributions determined using three methods agreed well with each other, both for surface stress and internal stress. The characteristics of the evaluation methods were summarized, and it was found that the most suitable method for any particular situation can be selected depending on the purpose by considering the evaluated location and the operating conditions of the object to be evaluated. (author)

  9. Microstructures of a welded joint using an irradiated wrapper tube

    International Nuclear Information System (INIS)

    The behavior of helium in welded joint fabricated using tungsten inert gas (TIG) welding process for a type 316 stainless steel wrapper tube irradiated in a fast reactor was investigated. The wrapper tube was irradiated to (1.5 - 4.2) x 1026 n/m2 (helium level of 3 to 9 appm) at 395 - 410 degrees C. All welded joints fractured in the heat-affected zone (HAZ). The microstructures of each portion of the base metal, the HAZ and the fusion zone in a welded joint were examined through a transmission electron microscope. Small helium bubbles were observed in number density of 2 x 1020 m-3 in the matrix and rarely found on the grain boundaries of the base metal. In the HAZ, small and large helium bubbles mixed and lined up along the grain boundaries. In particular, some of them elongated along the grain boundary. In the matrix of the fusion zone, delta-ferrite phases and unresolved carbides were scattered. Large cavities were attached to these precipitates and also occurred along grain boundaries. These results suggest that the failure in the HAZ of welded joints is attributed to the preferential growth and coalescence of helium bubbles in the grain boundaries of the HAZ caused by weld heat input and stress during welding

  10. Neuro-Fuzzy Model for the Prediction and Classification of the Fused Zone Levels of Imperfections in Ti6Al4V Alloy Butt Weld

    Directory of Open Access Journals (Sweden)

    Giuseppe Casalino

    2013-01-01

    Full Text Available Weld imperfections are tolerable defects as stated from the international standard. Nevertheless they can produce a set of drawbacks like difficulty to assembly, reworking, limited fatigue life, and surface imperfections. In this paper Ti6Al4V titanium butt welds were produced by CO2 laser welding. The following tolerable defects were analysed: weld undercut, excess weld metal, excessive penetration, incomplete filled groove, root concavity, and lack of penetration. A neuro-fuzzy model for the prediction and classification of the defects in the fused zone was built up using the experimental data. Weld imperfections were connected to the welding parameters by feed forward neural networks. Then the imperfections were clustered using the C-means fuzzy clustering algorithm. The clusters were named after the ISO standard classification of the levels of imperfection for electron and laser beam welding of aluminium alloys and steels. Finally, a single-value metric was proposed for the assessment of the overall bead geometry quality. It combined an index for each defect and functioned according to the criterion “the-smallest-the-best.”

  11. Process for quality assurance of welded joints for electrical resistance point welding

    International Nuclear Information System (INIS)

    In order to guarantee the reproducibility of welded joints of even quality (above all in the metal working industry), it is proposed that before starting resistance point welding, a preheating current should be allowed to flow at the site of the weld. A given reduction of the total resistance at the site of the weld should effect the time when the preheating current is switched over to welding current. This value is always predetermined empirically. Further possibilities of controlling the welding process are described, where the measurement of thermal expansion of the parts is used. A standard welding time is given. The rated course of electrode movement during the process can be predicted and a running comparison of nominal and actual values can be carried out. (RW)

  12. Optimal parameters determination of the orbital weld technique using microstructural and chemical properties of welded joint

    International Nuclear Information System (INIS)

    The paper deals with the study of the main parameters of thermal cycle in Orbital Automatic Weld, as a particular process of the GTAW Weld technique. Also is concerned with the investigation of microstructural and mechanical properties of welded joints made with Orbital Technique in SA 210 Steel, a particular alloy widely use during the construction of Economizers of Power Plants. A number of PC software were used in this sense in order to anticipate the main mechanical and structural characteristics of Weld metal and the Heat Affected Zone (HAZ). The papers also might be of great value during selection of optimal Weld parameters to produce sound and high quality Welds during the construction / assembling of structural components in high requirements industrial sectors and also to make a reliable prediction of weld properties

  13. New Developed Welding Electrode for Improving the Fatigue Strength of Welded Joints

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new welding electrode, low transformation temperatur e electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing methods.It was proved that the best transformation starting temperature from austenite to martensite of the deposited metal of LTTE was at about 191℃ and it was obtained by adding alloying elements such as Cr, Ni, Mn and Mo. The microstructure of the weld metal of the LTTE was low carbon martensite and residual austenite. The compressive residual stress was induced around the weld of the LTTE and the -145 MPa in compression could be obtained in middle of weld metal. The fatigue tests showed that the fatigue strength of the longitudinal welded joints welded with the LTTE at 2×106 cycles was improved by 59% compared with that of the same type of welded joints welded with conventional E5015 and the fatigue life was increased by 47 times at 162 MPa. It is a very valuable method to improve the fatigue performance of welded joints.

  14. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    Science.gov (United States)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  15. Properties of bainitic T/P24 steel welded joints

    International Nuclear Information System (INIS)

    Examination results of T/P24 steel tube and pipe welded joints are presented, which find their application in conventional power installations for water-walls, headers and superheater tubes. Welded test joints without post-weld heat treatment (PWHT) and after stress relieving have been subjected to examinations and tests. The examination results proof, that PWHT is not necessary for thin-walled tubes made of T24 steel. In the case of thick elements, as the tested P24 steel pipes (φ 406 x 32 mm), PWHT is mandatory, but their application not always ensures the required impact strength 41 J. The decisive influence on the impact strength of welded joints, made in P24 steel pipes, has the bead deposition technique. (author)

  16. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  17. Influence of Welding Current and Joint Design on the Tensile Properties of SMAW Welded Mild Steel Joints Prof. Rohit Jha1 , Dr. A.K. Jha

    Directory of Open Access Journals (Sweden)

    Prof. Rohit Jha

    2014-06-01

    Full Text Available Present study includes welding characteristics of weldment with respect to different types of weld design and welding current. Mild steel plates of 6mm were welded using different joint designs. Single V, Double V and Flat surfaces were joined by Shielded Metal Arc Welding process. Welding current was varied in all the cases. Mechanical properties such as ultimate tensile strength, yield strength and percentage elongation were evaluated. Results indicated that the single V joint design depict maximum UTS in comparison to other welding joints and also weld properties of joints (weldment increases to some extent up-to a particular current level, after which the strength decreases. Welding current also affect the welding speed.

  18. Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar joint between semi-solid metal 356-T6 and aluminum alloys 6061-T651

    OpenAIRE

    Muhamad Tehyo; Prapas Muangjunburee; Abdul Binraheem; Somchai Chuchom; Nisida Utamarat

    2012-01-01

    The objective of this research is to investigate the effect of welding parameters on the microstructure and mechanicalproperties of friction stir (FS) welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM) 356-T6and AA6061-T651 by a computerized numerical control (CNC) machine. The base materials of SSM356-T6 and AA6061-T651were located on the advancing side (AS) and on the retreating side (RS), respectively. For this experiment, the FS weldedmaterials were join...

  19. Effect of joint design on ballistic performance of quenched and tempered steel welded joints

    International Nuclear Information System (INIS)

    Highlights: • Traditional usage of austenitic stainless steel filler for armour steel welding shows poor ballistic performance. • Earlier efforts show dubious success on ballistic resistance of armour steel joints. • Comparative evaluation of equal/unequal joint design on ballistic performance. • Effect of joint design covers the main aspects of successful bullet stoppage. - Abstract: A study was carried out to evaluate the effect of joint design on ballistic performance of armour grade quenched and tempered steel welded joints. Equal double Vee and unequal double Vee joint configuration were considered in this study. Targets were fabricated using 4 mm thick tungsten carbide hardfaced middle layer; above and below which austenitic stainless steel layers were deposited on both sides of the hardfaced interlayer in both joint configurations. Shielded metal arc welding process was used to deposit for all layers. The fabricated targets were evaluated for its ballistic performance and the results were compared in terms of depth of penetration on weld metal. From the ballistic test results, it was observed that both the targets successfully stopped the bullet penetration at weld center line. Of the two targets, the target made with unequal double Vee joint configuration offered maximum resistance to the bullet penetration at weld metal location without any bulge at the rear side. The higher volume of austenitic stainless steel front layer and the presence of hardfaced interlayer after some depth of soft austenitic stainless steel front layer is the primary reason for the superior ballistic performance of this joint

  20. Radiographic and ultrasonic testings of welded joints of 6063 aluminium alloy

    International Nuclear Information System (INIS)

    A study on evaluation of weld defects in aluminium butt joints was made in a comparative way through the radiographic and ultrasonic testing. This work was conducted with pipes 5 IPS (6,35 mm thickness) of 6063 aluminium alloy, circumferential TIG welded, due to the difficulty on performing non-destructive testing with this schedule. It was concluded thta ultrasonic testing has adequate sensitivity when setting gain adjustment is made with aid of a reference curve constructed by using a Reference Block (among others studied) with 1,5 mm dia. Hole as reference reflector, and a 5 MHz angle beam search-unit. In this case the ultrasonic testing is more accurate than radiographic testing to detect planar defects like lack of fusion and lack of penetration. Defect sizing by ultrasonic methods employed were 6 and 20 dB drop methods. In spite of your observed limitations concerning the establishment of the real size of defects, the procedure applied was precise for locate and define the weld defects that where found in this study. (author)

  1. Assessment Of Joints Using Friction Stir Welding And Refill Friction Stir Spot Welding Methods

    Directory of Open Access Journals (Sweden)

    Lacki P.

    2015-09-01

    Full Text Available FSW (Friction Stir Welding and RFSSW (Refill Friction Stir Spot Welding joints have been increasingly used in industrial practice. They successfully replace fusion-welded, riveted or resistance-welded joints. In the last two decades, dynamic development of this method has stimulated investigations of the fast methods for joint diagnostics. These methods should be non-destructive and easy to be used in technological processes. The methods of assessment of joint quality are expected to detect discontinuities in the structures welded using FSW and FSSW methods. Reliable detection of flaws would substantially extend the range of applications of FSW joints across many sectors of industry, including aviation. The investigations carried out in this paper allowed for characterization of defects present in FSW and RFSSW joints. Causes of these defects were also stressed. An overview of the methodologies for assessment of joint quality was presented. Results of assessment of the quality of joints made of 2024T6 aluminium sheet metal using FSW and RFSSW method were presented.

  2. Creep rupture properties of welded joints of heat resistant steels

    International Nuclear Information System (INIS)

    In this study, the high-temperature mechanical and creep rupture properties of Grade 91/Grade 91 (Mod. 9Cr-Mo) similar welded joints and Grade 91/Inconel 82/SUS304 dissimilar welded joints were examined. The effects of temperature and stress on the failure location in the joints were also investigated. Creep rupture tests were conducted at 823, 873, and 923 K; the applied stress ranges were 160-240, 80-160, and 40-80 MPa, respectively. The creep rupture strengths of the specimens with welded joints were lower than those of the specimens of the base metal at all temperature levels; in addition, these differences in creep strength increased with temperature. After being subjected to long-term creep rupture tests, the fracture type exhibited by the dissimilar welded joints was transformed from Types V and VII to Type IV. It was estimated that the fracture type exhibited by the dissimilar welded joints after 100,000-h rupture strength tests at 823 K and 872 K was Type IV fracture. (author)

  3. Creep Rupture Properties of Welded Joints of Heat Resistant Steels

    Science.gov (United States)

    Yamazaki, Masayoshi; Watanabe, Takashi; Hongo, Hiromichi; Tabuchi, Masaaki

    In this study, the high-temperature mechanical and creep rupture properties of Grade 91/Grade 91 (Mod. 9Cr-Mo) similar welded joints and Grade 91/Inconel 82/SUS304 dissimilar welded joints were examined. The effects of temperature and stress on the failure location in the joints were also investigated. Creep rupture tests were conducted at 823, 873, and 923 K; the applied stress ranges were 160-240, 80-160, and 40-80 MPa, respectively. The creep rupture strengths of the specimens with welded joints were lower than those of the specimens of the base metal at all temperature levels; in addition, these differences in creep strength increased with temperature. After being subjected to long-term creep rupture tests, the fracture type exhibited by the dissimilar welded joints was transformed from Types V and VII to Type IV. It was estimated that the fracture type exhibited by the dissimilar welded joints after 100,000-h rupture strength tests at 823 K and 873 K was Type IV fracture.

  4. Portable power tool machines weld joints in field

    Science.gov (United States)

    Spier, R. A.

    1966-01-01

    Portable routing machine for cutting precise weld joints required by nonstandard pipe sections used in the field for transfer of cryogenic fluids. This tool is adaptable for various sizes of pipes and has a selection of router bits for different joint configurations.

  5. Serviceability of welded joints in the extreme conditions

    International Nuclear Information System (INIS)

    At design of nuclear fusion reactor the principal importance present the energy-stressed elements of the reactor discharge chambers such as the divertor, limiter, and first wall. Construction of divertor device presents the compound of copper-tungsten type. For implementation of serviceable construction the important task is development of reliable joint between heterogeneous materials. Technology of heterogeneous tungsten-copper welded joints with use of the soldering on the base copper-manganese system is implemented. It is shown, that the soldering has necessary complex of the features (shock viscosity, relative extension) allowing to obtain the welded joints keeping the serviceability under the neutron irradiation conditions, high temperatures, and strong cyclic thermal flows action. In the result od thermo-cyclic tests it is established that the examined welded joints keep serviceability at thermal flow heating with capacity θ=10 MW/m2 during 2·103 cycles

  6. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    Science.gov (United States)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  7. Fatigue behaviour of welded joints assembled by longitudinal corrugated plates

    Institute of Scientific and Technical Information of China (English)

    王志宇; 王清远; 刘永杰; 孙美

    2015-01-01

    Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the testS−N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.

  8. The Investigation of Structure Heterogeneous Joint Welds in Pipelines

    Directory of Open Access Journals (Sweden)

    Lyubimova Lyudmila

    2016-01-01

    Full Text Available Welding joints of dissimilar steels don’t withstand design life. One of the important causes of premature destructions can be the acceleration of steel structural degradation due to cyclic mechanical and thermal gradients. Two zones of tube from steel 12H18N9T, exhibiting the structural instability at early stages of the decomposition of a supersaturated solid austenite solution, were subjected to investigation. Methods of x-ray spectral and structure analysis, micro hardnessmetry were applied for the research. Made the following conclusions, inside and outside tube wall surfaces of hazardous zones in welding joint have different technological and resource characteristics. The microhardness very sensitive to changes of metal structure and can be regarded as integral characteristic of strength and ductility. The welding processes are responsible for the further fibering of tube wall structure, they impact to the characteristics of hot-resistance and long-term strength due to development of ring cracks in the welding joint of pipeline. The monitoring of microhardness and structural phase conversions can be used for control by changes of mechanical properties in result of post welding and reductive heat treatment of welding joints.

  9. Experimental examination of fatigue life of welded joint with stress concentration

    Directory of Open Access Journals (Sweden)

    Miodrag Arsic

    2016-03-01

    Full Text Available This paper presents results of experimental examinations of stress concentration influence to fatigue life of butt welded joints with K-groove, produced from the most frequently used structural steel S355J2+N. One group of experiments comprised examinations carried out on the K-groove specimens with stress concentrators of edged notch type. Specimens with short cracks (limited length of initial crack, defined on the basis of the experience from fracture mechanics by the three points bending examinations, have been examined according to standard for the determination of S-N curve, and aimed to determine fatigue strengths for different lengths of initial crack and Relationship between fatigue strength and crack length. Other group of experiments comprised examinations of specimens with edge notch, prepared in accordance with ASTM E 399 for three points bending, in order to establish regularity between crack growth and range of exerted stress intensity factor aimed to determine resistance of welded joint to initial crack growth, namely fatigue threshold (ΔKth.

  10. Spot weld arrangement effects on the fatigue behavior of multi-spot welded joints

    International Nuclear Information System (INIS)

    In the present study, the effects of spot weld arrangements in multi-spot welded joints on the fatigue behavior of the joints are studied. Three different four-spot welded joints are considered: one-row four-spot parallel to the loading direction, one-row four-spot perpendicular to the loading direction and two-row four-spot weld specimens. The experimental fatigue test results reveal that the differences between the fatigue lives of three spot welded types in the low cycle regime are more considerable than those in the high cycle regime. However, all kinds of spot weld specimens have similar fatigue strength when approaching a million cycles. A non-linear finite element analysis is performed to obtain the relative stress gradients, effective distances and notch strength reduction factors based on the volumetric approach. The work here shows that the volumetric approach does a very good job in predicting the fatigue life of the multi-spot welded joints

  11. Laser welding of advanced high strength steels

    OpenAIRE

    Ahmed, Essam Ahmed Ali

    2011-01-01

    This research work focuses on characterization of CO2 laser beam welding (LBW) of dual phase (DP) and transformation induced plasticity (TRIP) steel sheets based on experimental, numerical simulation and statistical modeling approaches. The experimental work aimed to investigate the welding induced-microstructures, hardness, tensile properties and formability limit of laser welding butt joints of DP/DP, TRIP/TRIP and DP/TRIP steel sheets under different welding speeds. The effects of shieldin...

  12. Single pass hybrid laser–MIG welding of 4-mm thick copper without preheating

    International Nuclear Information System (INIS)

    Highlights: • For the first time, hybrid laser–arc welding is used in copper joining process. • Butt welding of 4-mm copper is achieved at high speed and without preheating. • Defect-free joint is obtained in butt-joint configuration with a right gap size. • Laser–MIG hybrid welding is a feasible, efficient welding method for copper. - Abstract: Laser–arc hybrid welding of highly reflective T2 copper was conducted and significant synergy effect was observed. Effects of primary welding parameters on the shape and integrity of copper joints were studied through bead-on-plate (BOP) welding test. Results of X-ray inspection and infrared photography showed that both porosity susceptibility and crack susceptibility were highly dependent on welding heat input or energy coupling efficiency, but had totally different trend, which narrowed the process window of BOP welding of copper. Hot crack and porosity were successfully suppressed by using a square butt joint configuration with a proper gap size. A 4-mm thick, defect-free butt joint was obtained by single-pass hybrid welding at a speed of 1.3 m/min without preheating the work piece. The microstructure, microhardness, mechanical properties and tensile fracture surface of the butt joint obtained were studied. Tensile strength and elongation rate of the butt joint obtained were about 87% and 56% of that of base metal, respectively. The lowered mechanical properties of butt welded copper joint were related to the softening of fusion zone (FZ) and its vicinity, the coarse microstructure in FZ and heat affected zone (HAZ), and the possible concentration of impurity elements at the central region of FZ

  13. Development of a technology for laser welding of the 1424 aluminum alloy with a high strength of the welded joint

    Science.gov (United States)

    Annin, B. D.; Fomin, V. M.; Karpov, E. V.; Malikov, A. G.; Orishich, A. M.; Cherepanov, A. N.

    2015-11-01

    Results of an experimental study of properties of joints obtained by using different regimes of laser welding of the 1424 alloy (Al-Mg-Li) are reported. The strength and structure of the welded joints are determined. The influence of various types of welded joint straining on its strength is studied. It is demonstrated that the joint strength increases in the case of plastic straining.

  14. Research on the properties of laser welded joints of aluminum killed cold rolled steel

    Institute of Scientific and Technical Information of China (English)

    阎启; 曹能; 俞宁峰

    2002-01-01

    Aluminum killed cold rolled steel used for automobiles was welded shows that high quality of welding can be realized at welding speed of laser welded joints for aluminum killed cold rolled steel increased compared to those of the base metal while the formability decreased. Forming limit diagram of joint material indicated that the laser weld seam should avoid the maximum deformation area of automobile parts during the designing period for the position of weld seam.

  15. Definition of welded joints arrangement in pressure vessels

    International Nuclear Information System (INIS)

    The arrangement of welded joints in a pressure vessel is normally a tiresome and lengthy task. This is especially so when long vessels are provided with a great concentration of nozzles, reinforcements, rings and many other accessories. The manual solution is seldom economical from the viewpoint of minimum waste of plates and minimum labor for cutting, bevelling and welding. This paper presents a computer application that allows a more economical solution in a shorter time. (Author)

  16. Impact tests on welded joints between the steel X 20 CrMoV 12 1 and 10 CrMo 9 10

    Energy Technology Data Exchange (ETDEWEB)

    Dueren, C.; Jahn, E.; Langhardt, W.; Schleimer, W.

    1982-05-03

    In a joint study of four works the toughness behaviour in the heat affected zone of welded joints between the steels X 20 CrMoV 12 1 and 10 CrMo 9 10 has been investigated. For manual arc and submerged arc welds using filler metals similar to X 20 CrMoV 12 1 or 10 CrMo 9 10, impact values were measured at room temperature on these weld junction sides where the different metals partner butt, which were partly lower than the minimum value of 34 J on the DVM transverse specimen required for the parent metals. The cause was the carbon diffusion during tempering after welding which, at the interface between the two steels, lead to the formation of a decarburized zone in the steel and weld metal 10 CrMo 9 10 and of a carbide seam in the steel and weld metal X 20 CrMoV 12 1. This phenomenon was especially pronounced in welds using a filler metal similar to 10 CrMo 9 10. It was further intensified by quenching and tempering. THis decrease of toughness did not occur when, by using the high-nickel filler metal S-NiCr 15 FeMn, carbon diffusion was largely suppressed during usual tempering after welding.

  17. Damage tolerance reliability analysis of automotive spot-welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran; Ni Kan

    2003-07-01

    This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture.

  18. Residual stress relief in MAG welded joints of dissimilar steels

    International Nuclear Information System (INIS)

    This paper addresses the relief of residual stress in welded joints between austenitic and non-alloyed ferritic-pearlitic steels. A series of similar and dissimilar steel joints based on the 18G2A (ferritic-pearlitic) and 1H18N10T (austenitic) steels were produced, some of which were stress relieved by annealing and some by mechanical prestressing. For the as-welded and stress relieved test joints the residual stresses were measured by trepanning. To aid the interpretation of these results, 2D plane stress finite element analysis has been performed to simulate the residual stress relieving methods. Analysis of the results has shown that thermal stress relieving of welded joints between dissimilar steels is not effective and may even increase residual stresses, due to the considerable difference in thermal expansion of the joined steels. It was found that, for the loads imposed, the effectiveness of the mechanical stress relieving of dissimilar steel welded joints was much lower than that of similar steel joints

  19. Technology of Welding Joints Mixed with Duplex Steel

    Directory of Open Access Journals (Sweden)

    Słania J.

    2016-03-01

    Full Text Available Results of the examinations of sample plates of mixed joints with the duplex steel were discussed. Examinations were taken on the sample plates of mixed joints of sheet plates type P355NL1 and X2CrNiMoN22-5-3 welded by the flux-cored wire DW-329A by the Kobelco company of the following category T 22 9 3 NL RC/M3 in the gas shroud M21 (Ar+18%CO2 (plate no.1, and nickel covered electrodes E Ni 6082 by the Böhler company (plate no. 2. Results of the side bend test of welded joint, transverse tensile test, stretching of the weld metal, impact strength, micro and macroscopic metallographic examinations, and measurements of the delta ferrite content were presented.

  20. Quantitative Metal Magnetic Memory Reliability Modeling for Welded Joints

    Institute of Scientific and Technical Information of China (English)

    XING Haiyan; DANG Yongbin; WANG Ben; LENG Jiancheng

    2016-01-01

    Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sumKvs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, theKvs statistical law is investigated, which shows thatKvs obeys Gaussian distribution. SoKvs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratioT, and the maximal error betweenprediction reliability degreeR1and verification reliability degreeR2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.

  1. Quantitative metal magnetic memory reliability modeling for welded joints

    Science.gov (United States)

    Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng

    2016-03-01

    Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.

  2. Design consideration for wet welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Szelagowski, P.; Osthus, V. [GKSS Research Center, Geesthacht (Germany); Petershagen, H.; Pohl, R. [Univ. Hamburg (Germany). Inst. fuer Schiffbau; Lafaye, G. [Stolt Comex Seaway S.A., Marseille (France)

    1996-12-01

    Wet welding has become a joining technique that under certain circumstances can provide results which cannot be distinguished between wet or dry production and the achievable mechanical quality is comparable to dry atmospheric welds. Wet welding is not a process which can be applied easily and which can be properly handled by untrained diver welders. Wet welding is more than any other kind of welding process or procedure a joining technique that requires the full job-concentration and -knowledge of an excellent trained and skilled diver welder throughout the whole production time, who is 100% identifying himself with his task. Furthermore he must be fully aware of the production requirements and possible metallurgical/environmental reactions and outcomes. He must be able to be fully concentrated on the process performance throughout his total work shift. In short: he must be an outstanding expert in his field. The following paper will highlight these subjects and show the necessity of their exact observation to achieve excellent quality in wet welding.

  3. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  4. Technical Letter Report - Preliminary Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Susan L.; Cumblidge, Stephen E.; Doctor, Steven R.; Hall, Thomas E.; Anderson, Michael T.

    2008-05-29

    The U.S. Nuclear Regulatory Commission (NRC) has a multi-year program at the Pacific Northwest National Laboratory (PNNL) to provide engineering studies and assessments of issues related to the use of nondestructive evaluation (NDE) methods for the reliable inspection of nuclear power plant components. As part of this program, there is a subtask 2D that was set up to address an assessment of issues related to the NDE of high density polyethylene (HDPE) butt fusion joints. This work is being driven by the nuclear industry wanting to employ HDPE materials in nuclear power plant systems. This being a new material for use in nuclear applications, there are a number of issues related to its use and potential problems that may evolve. The industry is pursuing ASME Code Case N-755 entitled “Use of Polyethylene (PE) Plastic Pipe for Section III, Division 1, Construction and Section XI Repair/Replacement Activities” that contains the requirements for nuclear power plant applications of HDPE. This Code Case requires that inspections be performed after the fusion joint is made by visually examining the bead that is formed and conducting a pressure test of the joint. These tests are only effective in general if gross through-wall flaws exist in the fusion joint. The NRC wants to know whether a volumetric inspection can be conducted on the fusion joint that will reliably detect lack-of-fusion conditions that may be produced during joint fusing. The NRC has requested that the work that PNNL is conducting be provided to assist them in resolving this inspection issue of whether effective volumetric NDE can be conducted to detect lack of fusion (LOF) in the butt HDPE joints. PNNL had 24 HDPE pipe specimens manufactured of 3408 material to contain LOF conditions that could be used to assess the effectiveness of NDE in detecting the LOF. Basic ultrasonic material properties were measured and used to guide the use of phased arrays and time-of-flight diffraction (TOFD) work that

  5. Strength Investigation of Thick Welded T-Joint using Finite Element Modelling

    OpenAIRE

    Aidy Ali; Tun Chun Yung; Z. A. Zulkefli; Nuraini Abdul Aziz; B. B. Sahari; M. Zadeh

    2010-01-01

    The paper discusses the computation of finite element modelling (FEM) of a thick welded joint as a high load transfer joint. The FEM utilises MSC PATRAN/NASTRAN software programs to predict and simulate the critical area of a welded joint. The elasticity limit for the specimen was determined and stress distribution was achieved in the joint to indicate critical parts of a welded T-joint and predict the critical locations for crack initiation in this kind of joint. Simulation and experimental ...

  6. Rock-mass experiments on jointed welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, F.D.; Finley, R.E.; George, J.T.

    1990-04-01

    Field tests emphasizing development and demonstration of equipment and instruments are part of Sandia National Laboratories` rock mechanics program. The successful conduct of demonstration tests has allowed assessment of test techniques and an evaluation of the mechanical behavior of jointed welded tuff. The most recent endeavor consisted of high-pressure flatjack test yielding load and deformation histories sufficient to evaluate rock-mass modulus and to provide in situ results against which analytical models can be compared. Test results were used to calculate rock-mass moduli which compare favorably with previous estimates for jointed welded tuff. 6 refs., 7 figs., 1 tab.

  7. Rock-mass experiments on jointed welded tuff

    International Nuclear Information System (INIS)

    Field tests emphasizing development and demonstration of equipment and instruments are part of Sandia National Laboratories' rock mechanics program. The successful conduct of demonstration tests has allowed assessment of test techniques and an evaluation of the mechanical behavior of jointed welded tuff. The most recent endeavor consisted of high-pressure flatjack test yielding load and deformation histories sufficient to evaluate rock-mass modulus and to provide in situ results against which analytical models can be compared. Test results were used to calculate rock-mass moduli which compare favorably with previous estimates for jointed welded tuff. 6 refs., 7 figs., 1 tab

  8. 复相钢CP800焊缝冷裂纹敏感性研究%COLD CRACKING SUSCEPTIBILITY OF WELDED JOINT OF CP800 STEEL

    Institute of Scientific and Technical Information of China (English)

    韩坤; 李清山; 李健; 孙慧珺; 张梅; 徐云峰

    2012-01-01

    The butt joint, Y shape butt joint, tee joint and control thermal severity (CTS) of the welded joint (lap joint) were studied after the gas shielded arc welding for CP800 steel. The macroscopic morphology, microstructure and properties of different welding points were measured to study the weld ability and cold cracking susceptibility of CP800 steel. The test results showed that the steel was appropriate for various welding forms of automobile parts due to the lower weld cold cracking susceptibility. The microstructure of heat affected zone was granular ferrite, bainite and a small amount of lath bainite, which were well distributed and the fusion was good. The hardness distribution of the four different welding forms was similar and the maximum hardness value was 320 HV, lower than 350 HV. The impact toughness of base metal, heat affected zone and fusion zone of Y shape butt joint was higher than 23 J, and the fracture surface was dimple fracture under the scanning electron microscope.%采用气体保护焊对试验钢CP800分别进行对接、斜Y、T型(角接)、CTS(搭接)焊接,测试分析不同焊接接头形式下的宏观形貌、微观组织和性能的变化,以研究CP800钢的可焊性和冷裂纹敏感性.实验结果表明:试验钢适用于各种焊接形式下的汽车结构件,具有很低的焊缝冷裂纹敏感性.焊接热影响区的组织为粒状铁素体、贝氏体以及少量的板条贝氏体,分布均匀,焊缝熔合良好.4种不同焊接方式下的焊缝硬度分布一致,最高硬度值为320 HV,小于350 HV.斜Y坡口对接接头处的母材、热影响区以及熔合区的冲击性能均大于23 J,其断口形貌均为韧窝形状.

  9. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  10. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-03-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  11. Residual stress and microstructure evolution by manufacturing processes for welded pipe joint in austenitic stainless steel type 316L

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) has been observed near the heat affected zone (HAZ) of welded pipe joint made of austenitic stainless steel type 316L, even though sensitization is not observed. Therefore, It can be considered that the effect of residual stress on SCC is more important. In the joining process of pipes, butt-welding is conducted after machining. Residual stress is generated by both processes. In case of welding after machining, it can be considered that residual stress due to machining is changed by welding thermal cycle. In this study, residual stress and microstructure evolution due to manufacturing processes is investigated. Change of residual stress distribution caused by processing history is examined by X-ray diffraction method. Residual stress distribution has a local maximum stress in the middle temperature range of the HAZ caused by processing history. Hardness measurement result also has a local maximum hardness in the same range of the HAZ. By using FE-SEM/EBSD, it is clarified that microstructure shows recovery in the high temperature range of HAZ. Therefore, residual stress distribution is determined by microstructure evolution and superposition effect of processing history. In summary, not only any part of manufacturing processes such as welding or machining but also treating all processes as processing history of pipes are important to evaluate SCC. (author)

  12. Investigation of the corrosion behaviour of laser-TIG hybrid welded Mg alloys

    International Nuclear Information System (INIS)

    The paper presents the corrosion behaviour of the laser-tungsten inert gas welded Mg alloy. The effects of microstructure variations of Mg alloy joint on the corrosion behaviour and reliabilities of joint are investigated. The results demonstrate that the effects of some weld defects and precipitated phases on the corrosion behaviour of weld joint are very little, and corrosion resistance of joint is predominantly influenced by grain refinement or interactions of grain refinement and continued net-shaped β phases. Moreover, the corrosion resistance of weld joints and welding mode (butt and lap joint) keep a close relation, which must not be ignored.

  13. Fatigue life estimation of ultrasonic spot welded Mg alloy joints

    International Nuclear Information System (INIS)

    Highlights: • Fatigue life test of USWed similar Mg alloy was investigated. • USW joints exhibited a superior fatigue life compared with other welding processes. • Life prediction model agreed fairly well with the obtained experimental results. • The fatigue failure mode changed with decreasing cyclic load level. - Abstract: Lightweight magnesium alloys are increasingly used in automotive and other transportation industries for weight reduction and fuel efficiency improvement. The structural application of magnesium components requires proper welding and fatigue resistance to guarantee their durability and safety. The objective of this investigation was to identify failure mode and estimate fatigue life of ultrasonic spot welded (USWed) lap joints of an AZ31B-H24 magnesium alloy. It was observed that the solid-state USWed joints exhibited a superior fatigue life compared with other welding processes. Fatigue failure mode changed from interfacial failure to transverse-through-thickness crack growth with decreasing cyclic load level, depending on the welding energy. Fatigue crack initiation and propagation occurred from both the notch tip inside the faying surface and the edge of sonotrode indentation-footprints due to the presence of stress concentration. A life prediction model for the spot welded lap joints developed by Newman and Dowling was adopted to estimate the fatigue lives of the USWed magnesium alloy joints. The fatigue life estimation, based on the fatigue crack growth model with the global and local stress intensity factors as a function of kink length and the experimentally determined kink angle, agreed fairly well with the obtained experimental results

  14. Size effect of welded thin-walled tubular joints

    OpenAIRE

    Mashiri, Fidelis Rutendo; Zhao, Xiao-Ling; Hirt, Manfred A.; NUSSBAUMER, Alain

    2007-01-01

    This paper clarifies the terminologies used to describe the size effect on fatigue behaviour of welded joints. It summarizes the existing research on size effect in the perspective of newly defined terminologies. It identifies knowledge gaps in designing tubular joints using the hot spot stress method, i.e. thin-walled tubular joints with wall thickness less than 4 mm and thick-walled tubular joints with wall thickness larger than 50 mm or diameter to thickness ratio less than 24. It is the t...

  15. Equalization of Ti-6Al-4 V alloy welded joint by scanning electron beam welding

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The equalization of Ti-6Al-4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm equiaxed grains by scanning electron beam welding. The anodic polarization curve of 150 μm equiaxed grains coincides with that of base metal. Equal corrosion resistance between weld metal and base metal was ob tained. Uniform microstructure and solutedistribution are the basis of equalization. Corrosion rate of weld with 150 μm equiaxed grains is the lowest, 2.45 times lower than that of 650 μm columnar grains. Weld strength is 98% as much as that of base metal, yield-strength ratio is 99.5%, which is 3.6% higher than that of base metal.

  16. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard;

    2010-01-01

    This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel. The...... the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing...... in mass production and some inherent initial problems are discussed. The treatment of a few critical welds leads to a significant increase in fatigue performance of the entire structure and the possibility for better utilization of very high-strength steel....

  17. Sub-milliampere threshold operation of butt-jointed built-in membrane DFB laser bonded on Si substrate.

    Science.gov (United States)

    Inoue, Daisuke; Lee, Jieun; Hiratani, Takuo; Atsuji, Yuki; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2015-03-23

    We fabricated GaInAsP/InP waveguide-integrated lateral-current-injection (LCI) membrane distributed feedback (DFB) lasers on a Si substrate by using benzocyclobutene (BCB) adhesive bonding for on-chip optical interconnection. The integration ofa butt-jointed built-in (BJB) GaInAsP passive waveguide was performed by organometallic vapor-phase epitaxy (OMVPE).By introducing a strongly index-coupled DFB structure with a 50-µm-long cavity, a threshold current of 230 µA was achieved for a stripe width of 0.8 µm under room-temperature continuous-wave (RT-CW) conditions. The maximum output power of 32 µW was obtained. The lasing wavelength and submode suppression ratio (SMSR) were 1534 nm and 28 dB, respectively, at a bias current of 1.2 mA. PMID:25837115

  18. Laser Shock Processing of Metal Sheet and Welded Joints

    Institute of Scientific and Technical Information of China (English)

    ZOU Shi-kun; TAN Yong-sheng; ZHANG Xiao-bin; LIU Fang-jun

    2004-01-01

    In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of Al-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel 1Cr18Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about 1mm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test, the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding 1Cr18Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of 1Cr1 8Ni9Ti welded joints.

  19. Laser Shock Processing of Metal Sheet and Welded Joints

    Institute of Scientific and Technical Information of China (English)

    ZOUShi-kun; TANYong-sheng; ZHANGXiao-bin; LIUFang-jun

    2004-01-01

    In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of A1-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel 1Crl8Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about lmm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test, the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding 1Crl8Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of 1Crl 8Ni9Ti welded joints.

  20. Effect of Welding Parameters on the Weldability of Material

    OpenAIRE

    S. P. Tewari,; Ankur Gupta; Jyoti Prakash

    2010-01-01

    In this study, the effect of various welding parameters on the weldability of Mild Steel specimens having dimensions 50mm× 40mm× 6 mm welded by metal arc welding were investigated. The welding current, arc voltage, welding speed, heat input rate are chosen as welding parameters. The depth of penetrations were measured for each specimen after the welding operation on closed butt joint and the effects of welding speed and heat input rate parameters on depth of penetration were investigated.

  1. Research of the Resistance of Contact Welding Joint of R65 Type Rail

    Directory of Open Access Journals (Sweden)

    Kęstutis Dauskurdis

    2015-03-01

    Full Text Available In the article the R65 type rail joints that were welded by resistance welding are analysed. Survey methodology of the research consists of the following parts: visual inspection of welded joint, ultrasonic rail inspection, hardness test of upper part of the rail, fusion area research, the measurement hardness test of heat-softened area, the measurement microhardness test, microstructure research of the welded joint, impact strength experiments, chemical analysis of welded joint, wheel-rail interaction research using the finite element method (FEM. The results of the research are analysed and the quality of weld is evaluated. The conclusion is based on the results of this research.

  2. Experiments on Large-Diameter Welded Hollow Spherical Joint

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-zhong; ZHU Hong-ping; XIONG Shi-shu

    2009-01-01

    We experimented on welded hollow spherical joint of a stadium steel roof to investigate the stress and strain distributions on the surface of the joint and determine the ultimate bearing capacity. Then, finite element analysis was made to cross-examine the experimental results. When the test load was 140% of the design load, the stress at the bottom of the fourth wimble pipe reached the yield point. The experimental results agree with the analytical results well.

  3. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    International Nuclear Information System (INIS)

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  4. Research on the Electrochemical Corrosion Behavior of Carbon Steel Pipe Welded Joint%碳钢管线焊接接头的电化学腐蚀行为研究

    Institute of Scientific and Technical Information of China (English)

    李维锋; 韩永典; 路永新; 孙紫麾; 陈英; 舒欣欣; 许威; 杨鹏; 毛晓军; 杨寿海; 徐连勇

    2015-01-01

    母材选用 A106B 管线钢,焊丝选用2.4 mm 的实芯焊丝 ER70S-G,使用两种焊接工艺(GTAW+SMAW和GTAW)进行钢管对接焊,试样焊接前后均无热处理。通过对焊接接头的焊缝、热影响区和母材的极化曲线测量,研究了两种焊接工艺所得焊接接头各区域的腐蚀行为。结果表明,两种接头不同区域的耐蚀性为:母材>热影响区>焊缝。%In this article, it used two kinds of welding process (GTAW+SMAW and GTAW)to carry out butt welding for A106B pipeline steel, selecting 2.5 mm solid core welding wire of ER70S-G, without heat treatment for test sample before and after welding. Through polarization curve measurement for welded joint weld, HAZ and base metal, the corrosion behavior of welded joints various regions under two welding process were studied. The results showed that the corrosion resistance of two kinds of welded joints various regions are as follows:the base metal>HAZ>weld.

  5. Weld geometry strength effect in 2219-T87 aluminum

    Science.gov (United States)

    Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.

    1981-01-01

    A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.

  6. Butt welding characteristics of austenitic 304 stainless steel using a continuous wave Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decease in the fusion zone size. The penetration depth increased with the increase in laser power

  7. Friction welding of dissimilar metal joints with intermediate layers

    Directory of Open Access Journals (Sweden)

    P. Kustroń

    2007-04-01

    Full Text Available Purpose: Metals such as titanium, vanadium, zirconium, niobium, molybdenum and also tantalum and tungsten must be protected at elevated temperatures from the effects of oxygen, nitrogen and hydrogen. For this reason, it is of interest, both from the innovative and practical points of view, to investigate the possibility of using the process of friction welding to produce joints in these materials.Design/methodology/approach: Investigations were made on the pseudoalloy of tungsten of D18 type an alloy produced by a powder-metallurgy method of sintering tungsten grains, which form the matrix (95% by weight, with the bonding phase formed by Ni-Fe alloy.Findings: In the course of the direct friction welding of dissimilar metal joints in niobium and titanium with steel and D18 pseudoalloy of tungsten, hard intermetallic phases are formed which cannot be removed from the whole area of the joint. The use of interlayers of metals, which in the solid state do not form intermetallic phases with the metals of the joint, ensures the absence of microcracking in the joint. For the steel-niobium, or D18 pseudoalloy of tungsten-niobium joints, an interlayer of copper can be used, but for joints with titanium an additional vanadium layer is required.Research limitations/implications: In the case of a joint made in niobium and D18 pseudoalloy of tungsten there is a possibility of intermetallic phases being formed between Nb and bonding elements – Fe and Ti. A very hard zone id formed with many microcracks so further investigations are needed.Originality/value: The possibility of using the process of friction welding to produce joints in these materials.

  8. Numerical modelling of liquid material flow in the fusion zone of hybrid welded joint

    OpenAIRE

    Kubiak, M.

    2011-01-01

    This paper concerns modelling of liquid metal motion in the fusion zone of laser-arc hybrid butt-welded plate. Velocity field in the fusion zone and temperature field in welded plate were obtained on the basis of the solution of mass, momentum and energy conservationsequations. Differential equations were solved using Chorin’s projection method and finite volume method. Melting and solidificationprocesses were taken into account in calculations assuming fuzzy solidification front where fluid ...

  9. Eddy-current inspection of welded joints of electro-welded pipes with using measurement result visualization

    International Nuclear Information System (INIS)

    Results on experimental studies of welded joints of electro-welded pipes with artificial defects through eddy currents are presented. Decoding and graphical interpretation of testing results are carried out through the computerized visualisation system of eddy currents signals converters. Possibility of evaluating the quality of pipe welding with eddy currents images decoding is shown. 8 refs., 3 figs

  10. Thermal-deformation effect of welding on A 1 reactor pressure vessel weld joints properties and state of stress

    International Nuclear Information System (INIS)

    The methods are compared of electroslag welding and of arc welding with a view to their possible application in welding the Bohunice A-1 reactor pressure vessel. Considered are the thermal deformation effects of welding on the physical properties and the stress present in welded joints. For testing, plates were used having the dimensions of 1100x2300x200 mm and rings with 4820 mm outer diameter, 1800 mm height and 170 mm thickness made of steel CSN 413O30 modified with Ni, Al+Ti. The deformation effect of welding on the residual surface and triaxial stress, the specific stored energy, the initiation temperature of brittle crack and the critical size of the initiation defect corresponding to the thermal deformation effect of welding were determined. It was found that for electroslag welding, there is a low probability of crack formation in the joints, a low level of residual stress and a low level of specific stored energy in a relatively wide joint zone. For arc welding there is a considerable probability of defect formation in the vicinity of the sharp boundary of the joint, a high level of the triaxial state of stress in the tensile region, and a high level of specific stored energy concentrated in the narrow zone of weld joints. The recommended thermal process is given for welding pressure vessels made of the CSN 413030 steel modified with Ni, Al+Ti, and 150 to 200 mm in thickness. (J.P.)

  11. Multi-response optimization of CO2 laser welding process of austenitic stainless steel

    OpenAIRE

    Benyounis, Khaled; Olabi, Abdul-Ghani; Hashmi, Saleem

    2008-01-01

    Recently, laser welding of austenitic stainless steel has received great attention in industry, due to its wide spread application in petroleum refinement stations, power plant, pharmaceutical industry and households. Therefore, mechanical properties should be controlled to obtain good welded joints. The welding process should be optimized by the proper mathematical models. In this research, the tensile strength and impact strength along with the joint operating cost of laser welded butt join...

  12. Acoustic testing of welded joints of steam pipelines with the cast stub tube of a slide valve

    International Nuclear Information System (INIS)

    Specific task has been made, i.e. to determine whether it is possible to conduct reliable inspection of a welded joint in a rolled pipe made of 12Kh1MF steel 18-22 mm thick with a cast branch piece of the lock gate made of 20KhMFL steel 27-40 mm thick, its outer diameter being 290 mm. The lock gate is intended for service under a pressure of 9.8 MPa and temperature of the working fluid 540 deg C. It is shown that acoustic testing of welded joints in the power engineering equipment with cast elements is possible with a sensitivity corresponding to the flat-bottom reflector area of at least 7 mm2, and minimal noise resistance of 2 dB in case of non-optimal angle of the butt end boring on the joint inner surface. Methodological recommendations on acoustic testing of the above-mentioned joints are made

  13. Mechanical behavior of multipass welded joint during stress relief annealing

    International Nuclear Information System (INIS)

    An investigation into mechanical behavior of a multipass welded joint of a pressure vessel during stress relief annealing was conducted. The study was performed theoretically and experimentally on idealized research models. In the theoretical analysis, the thermal elastic-plastic creep theory developed by the authors was applied. The behavior of multipass welded joints during the entire thermal cycle, from welding to stress relief annealing, was consistently analyzed by this theory. The results of the analysis show a good, fundamentally coincidence with the experimental findings. The outline of the results and conclusions is as follows. (1) In the case of the material (2 1/4Cr-1Mo steel) furnished in this study, the creep strain rate during stress relief annealing below 5750C obeys the strain-hardening creep law using the transient creep and the one above 5750C obeys the power creep law using the stational creep. (2) In the transverse residual stress (σsub(x)) distribution after annealing, the location of the largest tensile stress on the top surface is about 15 mm away from the toe of weld, and the largest at the cross section is just below the finishing bead. These features are similar to those of welding residual stresses. But the stress distribution after annealing is smoother than one from welding. (3) The effectiveness of stress relief annealing depends greatly on the annealing temperature. For example, most of residual stresses are relieved at the heating stage with a heating rate of 300C/hr. to 1000C/hr. if the annealing temperature is 6500C, but if the annealing temperature is 5500C, the annealing is not effective even with a longer holding time. (4) In the case of multipass welding residual stresses studied in this paper, the behaviors of high stresses during annealing are approximated by ones during anisothermal relaxation. (auth.)

  14. Experimental investigation of laser beam welding of explosion-welded steel/aluminum structural transition joints

    International Nuclear Information System (INIS)

    The steel/aluminum structural transition joints are widely used in shipbuilding industry due to the advantages of joining these two materials with important weight savings while exploiting their best properties. The use of laser welding to strongly connect components made of Fe and Al alloys as base materials with Fe/Al structural transition joints is very attractive. The authors report results achieved during the laser welding of these particular joints with the scope to evaluate effects of the laser-induced thermal loads on the integrity of the Fe/Al bond interface, from metallurgical and mechanical points of view. The increase of both inter-metallic film thickness and extension were detected as a result of the laser beam induced heat on the Fe/Al bond interface. These increases did not cause severe reductions of the mechanical resistance of the investigated structural transition joint.

  15. Mechanical Properties and Microstructure of Dissimilar Material Welded Joints

    Directory of Open Access Journals (Sweden)

    Ziewiec A.

    2014-10-01

    Full Text Available The paper presents results of the mechanical testing and the microstructure analysis of dissimilar welded joint of the R350HT steel and the high-manganese (Hadfield cast steel using Cr-Ni cast steel spacer. The simulation tests of the welded joint surface deformation were carried out. The macroscopic and microscopic investigation were made using light microscopy (LM and scanning electron microscopy (SEM. Content of the magnetic phase was measured using magnetoscope. The quantitative metallographic investigation was used for assessment of ferrite and martensite contents and X-ray diffraction phase analysis was carried out. The results showed that during cooling of the spacer after welding, the transformation of metastable austenite into martensite proceeded. In addition to work hardening, the phase transformation of austenite into martensite occurs during the process of the superficial deformation of the spacer while simulated exploitation. This leads to a substantial increase of hardness, and at the same time, causes the increase of wear resistance of the welded joints of crossovers.

  16. Control of structure and properties of critical welded joints on basis of applying the pulsed welding production process

    International Nuclear Information System (INIS)

    A study is made into the influence of self-adjusting pulsed welding conditions on mechanical properties and structure of steel multilayer welded joints, in particular, when welding steel 12Kh1MF tubes for steam lines operating under high pressure and temperature conditions. It is stated that the regime suggested results in formation of dispersed and homogeneous structure, uniform distribution of microhardness and a welded joint ultimate strength increase by 10-15 % in comparison to the welding with a stationary-burning arc

  17. Bench for mechanical cleaning of circular welded joints

    International Nuclear Information System (INIS)

    A special bench for weld reinforcement removal and mechanical cleaning of the heat affected zones was designed to provide for a possibility of an ultrasonic testing of welded joints in the course of steam generator section fabrication. The bench comprises a mechanized roller support for fixing and rotating the workpiece; a lap-cutting device for external machining; milling/grinding tractor for internal machining and a delivery table for tractor approach and departure. The bench performance and overall view are presented. The operation succession is described

  18. Properties of welded joints produced by a high power laser beam

    International Nuclear Information System (INIS)

    Bending, tensile and impact tests are carried out using two low-alloy steels to find possibilities of CO2 high power laser application for welding steel with through penetration. It is shown that welding with 20KW beam at the velocity of 90 m/h gives the possibility to weld 8-15 mm thick plates possessing satisfactory mechanical properties. It is pointed out, that in spite of the martensite presence in weld metal and heat affected zone, a weld has the strength no less than the basic metal. Impact strength values of laser welded joints are higher than those of submerged arc welded joints

  19. Evaluation of double jointing girth welds of high grade line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Da-Ming; Lazor, Robert; Taylor, David [TransCanada PipeLines Limited, Calgary, Alberta, (Canada)

    2010-07-01

    Double jointing welds are more and more used in the pipeline industry because of good welding productivity and consistent weld quality. However, high heat input welding results in softening and has a detrimental effect on the properties of the welded joint. The softening effect of the heat affected zone (HAZ) can potentially cause highly localized deformation. The pipe body material and girth weld need to be evaluated as an integrated material system. This study presents the preliminary results of an evaluation program developed by TransCanada for evaluating double joint welds of high grade pipes such as X80 and X100. The evaluation program included different kinds of tests. The preliminary results showed that the proposed multi-gauge measurement of cross - tests measuring HAZ softening is effective. This study is the first step towards fully implementing evaluation of double jointing high grade pipes. This paper describes a new approach to understanding and evaluating double joint welds in high grade pipes.

  20. Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar joint between semi-solid metal 356-T6 and aluminum alloys 6061-T651

    Directory of Open Access Journals (Sweden)

    Muhamad Tehyo

    2012-09-01

    Full Text Available The objective of this research is to investigate the effect of welding parameters on the microstructure and mechanicalproperties of friction stir (FS welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM 356-T6and AA6061-T651 by a computerized numerical control (CNC machine. The base materials of SSM356-T6 and AA6061-T651were located on the advancing side (AS and on the retreating side (RS, respectively. For this experiment, the FS weldedmaterials were joined under two different tool rotation speeds (1,750 and 2,000 rpm and six welding speeds (20, 50, 80, 120, 160,and 200 mm/min, which are the two prime joining parameters in FSW. From the investigation, the higher tool rotation speedaffected the weaker material’s (SSM maximum tensile strength less than that under the lower rotation speed. As for weldingspeed associated with various tool rotation speeds, an increase in the welding speed affected lesser the base material’s tensilestrength up to an optimum value; after which its effect increased. Tensile elongation was generally greater at greater toolrotation speed. An averaged maximum tensile strength of 206.3 MPa was derived from a welded specimen produced at the toolrotation speed of 2,000 rpm associated with the welding speed of 80 mm/min. In the weld nugget, higher hardness was observedin the stir zone than that in the thermo-mechanically affected zone. Away from the weld nugget, hardness levels increased backto the levels of the base materials. The microstructures of the welding zone in the FS welded dissimilar joint can be characterizedboth by the recrystallization of SSM356-T6 grains and AA6061-T651 grain layers.

  1. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  2. Research on fatigue behavior of welded joint spraying fused by low transformation temperature alloy powder

    International Nuclear Information System (INIS)

    Highlights: • The new prolong life method of MSF about welded joint was put forward. • The low transformation temperature alloy powder was applied to the method of MSF. • The fatigue strength of LTT-joint increases by 74.07%. - Abstract: Modification of spraying fused (MSF) of plasma arc as heat source was used to improve the fatigue performance of welded joint, which both fundamentally reduced stress concentration at weld toe and achieved metallurgical bond between spraying fused coating and welding. The low transformation temperature alloy powder was applied to the method of MSF. After spraying fusion, especially spraying fused joint by low transformation temperature alloy powder, the distribution of residual stress is more difficult to be obtained. Finite element (FE) simulation as an important tool was used to determine the stress field and temperature field of spraying fused joint. Simulated results show that as-welded joint and welded joint spraying fused by conventional nickel base alloy powder (Conventional-joint) present tensile stress. The stress of welded joint spraying fused by low transformation temperature alloy powder (LTT-joint) is compressive stress. Fatigue test results indicated that under the condition of 2 × 106 cycles, the fatigue strength of as-welded joint is 135 MPa, while that of Conventional-joint and LTT-joint is 218 MPa and 235 MPa, respectively. The fatigue strength of Conventional-joint increases by 61.48%, and fatigue strength of LTT-joint increases by 74.07%

  3. Ultrasonic flaw detection of the thin-walled articles weld joints

    International Nuclear Information System (INIS)

    Two versions of the weld joints ultrasonic flaw detections for thin-walled articles using computer-assisted flaw detector on display of which the color picture is formed are described. The detection method of weld joints flaws obtained at contact and diffusive welding is developed

  4. The study of measuring technology on the dynamic mechanical properties of welded joint with high strain rate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dynamic mechanical property's curves of every part of welded joint were obtained. For studying the dynamic behavior of mechanical heterogeneity of welded joint, important data were offered. The method of test creates a new way of studying dynamic mechanical properties of welded joint.

  5. Ultrasonic inspection of AA6013 laser welded joints

    Directory of Open Access Journals (Sweden)

    Adriano Passini

    2011-09-01

    Full Text Available Interest in laser beam welding for aerospace applications is continuously growing, mainly for aluminum alloys. The joints quality is usually assessed by non-destructive inspection (NDI. In this work, bead on plate laser welds on 1.6 mm thick AA6013 alloy sheets, using a 2 kW Yb-fiber laser were obtained and inspected by pulse/echo ultrasonic phased-array technique. Good and poor quality welds were inspected in order to verify the limits of inspection, comparing also to X-ray radiography and metallographic inspections. The results showed that ultrasonic phased array technique was able to identify the presence of grouped porosity, through the attenuation of the amplitude of the echo signal. This attenuation is attributed to the scattering of the waves caused by micro pores, with individual size below the resolution limit of the equipment, but when grouped, can cause a perceptive effect on the reflection spectra.

  6. Mechanical properties and corrosion resistance of dissimilar stainless steel welds

    OpenAIRE

    J. Łabanowski

    2007-01-01

    Purpose: The purpose of this paper is to determine the influence of welding on microstructure, mechanical properties, and stress corrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Duplex 2205 and austenitic 316L steels were used. Butt joints of plates 15 mm in thickness were performed with the use of submerged arc welding (SAW) method. The heat input was in the range of 1.15 – 3.2 kJ/mm. Various plates’ edge preparation...

  7. Friction stir welding of dissimilar joint between semi-solid metal 356 and AA 6061-T651 by computerized numerical control machine

    Directory of Open Access Journals (Sweden)

    Muhamad Tehyo

    2011-08-01

    Full Text Available The objective of this research is to investigate the effect of welding parameters on the microstructure and mechanicalproperties of friction stir welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM 356 and AA6061-T651 by a Computerized Numerical Control (CNC machine. The base materials of SSM 356 and AA 6061-T651 werelocated on the advancing side (AS and on the retreating side (RS, respectively. Friction Stir Welding (FSW parameterssuch as tool pin profile, tool rotation speed, welding speed, and tool axial force influenced the mechanical properties of theFS welded joints significantly. For this experiment, the FS welded materials were joined under two different tool rotationspeeds (1,750 and 2,000 rpm and six welding speeds (20, 50, 80, 120, 160, and 200 mm/min, which are the two prime joiningparameters in FSW. A cylindrical pin was adopted as the welding tip as its geometry had been proven to yield better weldstrengths. From the investigation, the higher tool rotation speed affected the weaker material’s (SSM maximum tensilestrength less than that under the lower rotation speed. As for welding speed associated with various tool rotation speeds, anincrease in the welding speed affected lesser the base material’s tensile strength up to an optimum value; after which its effectincreased. Tensile elongation was generally greater at greater tool rotation speed. An averaged maximum tensile strength of197.1 MPa was derived for a welded specimen produced at the tool rotation speed of 2,000 rpm associated with the weldingspeed of 80 mm/min. In the weld nugget, higher hardness was observed in the stir zone and the thermo-mechanically affectedzone than that in the heat affected zone. Away from the weld nugget, hardness levels increased back to the levels of the basematerials. The microstructures of the welding zone in the FS welded dissimilar joint can be characterized both by the recrystallizationof SSM 356 grains and

  8. Welding of titanium alloy by different types of lasers

    OpenAIRE

    A. Lisiecki

    2012-01-01

    Purpose: of this paper was focused on comparing the welding modes during laser welding of butt joints of titanium alloy Ti6Al4V sheets 1.5 and 2.0 mm thick with direct diode laser and Disk solid state laser.Design/methodology/approach: Bead-on-plate welds were produced at different parameters of laser welding, different welding speed, different output laser power resulted in different heat input of laser welding process. The test welds were investigated by visual test, metallographic observat...

  9. Subsection method of fatigue design for welded joints treated by ultrasonic peening

    Institute of Scientific and Technical Information of China (English)

    Wang Ting; Wang Dongpo; Huo Lixing; Zhang Yufeng

    2006-01-01

    Concerning the notable difference between the S-N curve slope of welded joints treated by ultrasonic peening treatment (UPT) and that of as-welded joints, the subsection method is put forward for fatigue design of welded joints treated by UPT, using the design method of nominal S-N curves. Results show that, in medium life zone, strength grade of the fatigue design curves for UPT welded joints is two grades higher than that for as-welded joints. Furthermore, in medium life zone, strength grade of the fatigue design curves for UPT welded joints is three grades lower than that in long life zone.Conclusion of the comparison is that as for different joint types in different life zones, fatigue design should be processed according to different S-N curves respectively.

  10. Development of micro machining tools for finishing weld joint

    International Nuclear Information System (INIS)

    GE, Hitachi and Toshiba are jointly constructing advanced boiling water reactor (ABWR) Units 6 and 7 at Kashiwazaki Kariwa Nuclear Power Plant Station, Tokyo Electric Power Co. The ABWR features enhanced operability and safety as a whole plant through simplicity and improved performance. To achieve these improvement, one of the key features of technical innovation adopted in the ABWR design, ten reactor internal pumps (RIP) are adopted as the reactor recirculation system. The RIP casing to hold the RIP constituting the primary pressure boundary together with a RPV is welded to the nozzle on a RPV lower shell with Gas Tungsten Arc Welding (GTAW). The welding is on V-groove using automatic GTAW technique from the inside of the casing. The penetration bead (the back side of the weld) therefore needs to be finished with machining tools to inspect the qualification of the welding. This paper summarizes the development of the special purpose micro machines which are installed inside the narrow gap being provided between the RIP casing and the RPV (skirt) to finish the penetration bead. (author)

  11. Study of Microstructure and Properties of Non-Electric Welded Joints

    Institute of Scientific and Technical Information of China (English)

    MA Shi-ning; LUO Lin; HU Jun-zhi; XU Xiao-ping

    2004-01-01

    Non-electric welding, which combines the advantages of traditional welding and Self-propagating Hightemperature Synthesis (SHS), is a newly developed technology because of its simple process and no energy supplement during welding. In this paper, two pieces of 45 steel sheets were welded by Non-electric welding, and the properties of joints were studied. The microstructure and mechanical properties were investigated by SEM, EDAX, hardness tester and tensile tester.The interfaces of the joints and matrix show excellent metallurgical bonding, and the elements of joints have diffused into substrate. Welded joints have high mechanical properties. The bonding strength can reach 348 MPa, and the impact toughness is 44 J/cm2. Non-electric welding technology also can weld non-ferrous, and this technology especially suited to be used at the emergent maintenance of field.

  12. Friction welding of dissimilar metal joints with intermediate layers

    OpenAIRE

    P. Kustroń; Ambroziak, A.; Korzeniowski, M.

    2007-01-01

    Purpose: Metals such as titanium, vanadium, zirconium, niobium, molybdenum and also tantalum and tungsten must be protected at elevated temperatures from the effects of oxygen, nitrogen and hydrogen. For this reason, it is of interest, both from the innovative and practical points of view, to investigate the possibility of using the process of friction welding to produce joints in these materials.Design/methodology/approach: Investigations were made on the pseudoalloy of tungsten of D18 type ...

  13. Material test data of SUS304 welded joints

    International Nuclear Information System (INIS)

    This report summarizes the material test data of SUS304 welded joints. Numbers of the data are as follows: Tensile tests 71 (Post-irradiation: 39, Others: 32), Creep tests 77 (Post-irradiation: 20, Others: 57), Fatigue tests 50 (Post-irradiation: 0), Creep-fatigue tests 14 (Post-irradiation: 0). This report consists of the printouts from 'the structural material data processing system'. (author)

  14. Material test data of SUS304 welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Asayama, Tai [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kawakami, Tomohiro [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-10-01

    This report summarizes the material test data of SUS304 welded joints. Numbers of the data are as follows: Tensile tests 71 (Post-irradiation: 39, Others: 32), Creep tests 77 (Post-irradiation: 20, Others: 57), Fatigue tests 50 (Post-irradiation: 0), Creep-fatigue tests 14 (Post-irradiation: 0). This report consists of the printouts from 'the structural material data processing system'. (author)

  15. On-line evaluating on quality of mild steel joints in resistance spot welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage, as information source, were synchronously collected. Input power and dynamic resistance were selected as monitoring waveforms. Eight characteristic parameters relating to weld quality were extracted from the monitoring waveforms. Secondly, tensile-shear strength of the spot-welded joint was employed as evaluating target of weld quality. Through correlation analysis between every two parameters of characteristic vector, five characteristic parameters were reasonably selected to found a mapping model of weld quality estimation. At last, the model was realized by means of the algorithms of Radial Basic Function neural network and sample matrixes. The results showed validations by a satisfaction in evaluating weld quality of mild steel joint on-line in spot welding process.

  16. Non-destructive Residual Stress Analysis Around The Weld-Joint of Fuel Cladding Materials of ZrNbMoGe Alloys

    International Nuclear Information System (INIS)

    The residual stress measurements around weld-joint of ZrNbMoGe alloy have been carried out by using X-ray diffraction technique in PTBIN-BATAN. The research was performed to investigate the structure of a cladding material with high temperature corrosion resistance and good weldability. The equivalent composition of the specimens (in %wt.) was 97.5%Zr1%Nb1%Mo½%Ge. Welding was carried out by using TIG (tungsten inert gas) technique that completed butt-joint with a current 20 amperes. Three region tests were taken in specimen while diffraction scanning, While diffraction scanning, tests were performed on three regions, i.e., the weld core, the heat-affected zone (HAZ) and the base metal. The reference region was determined at the base metal to be compared with other regions of the specimen, in obtaining refinement structure parameters. Base metal, HAZ and weld core were diffracted by X-ray, and lattice strain changes were calculated by using Rietveld analysis program. The results show that while the quantity of minor phases tend to increase in the direction from the base metal to the HAZ and to the weld core, the quantity of the ZrGe phase in the HAZ is less than the quantity of the ZrMo2 phase due to Ge element evaporation. The residual stress behavior in material shows that minor phases i.e., Zr3Ge and ZrMo2 are more dominant than the Zr matrix. The Zr3Ge and ZrMo2 experienced sharp straining, while Zr phase was weak-lined from HAZ to weld core. The hydrostatic residual stress (σ) in around weld-joint of ZrNbMoGe alloy is compressive stress which has minimum value at about -2.73 GPa in weld core region. (author)

  17. Laser welding process tailored to tube-sheet joint requirements for heat exchangers manufacturing for nuclear power plants

    International Nuclear Information System (INIS)

    The aim of this work is to highlight the viability of the laser welding process to weld tuba to tube-sheet joints. The laser welding process provides higher welding speed, narrower weld beads and lower heat input than arc processes. So the laser welding process of tuba to tube-sheet joints will be able to reduce the cycle time of the welding process in heat exchangers manufacturing, reducing also thermal distortions.

  18. Welded joint properties of 08Cr2.25Mo1NiNb type steel

    International Nuclear Information System (INIS)

    The results are given of a study into the effect of the chemical composition on the mechanical and structural properties of welded joint of steel 08Cr2.25Mo1NiNb. The welded joints were obtained by manual arc welding using coated electrodes. For assessing short-term strength and plastic properties, tensile tests at normal temperature, notch toughness tests, hardness measurements and bending tests were conducted. The welded joint microstructure was also analysed. The minimal values of the yield point can be obtained in welded joints of melts with the Nb content at a level of the stabilization ratio. The highest hardness values were obtained in the welding metal ranges, which, however, does not negatively affect the plastic properties of the joint. Lower values of notch toughness were found for welding metals with higher carbon content. (M.S.)

  19. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  20. Effect of post weld heat treatment on the microstructure and corrosion behavior of AA2219 aluminum alloy joints welded by variable polarity tungsten inert gas welding

    International Nuclear Information System (INIS)

    Highlights: • PWHT was used to improve the microstructure and properties of AA2219 joints. • Tensile strength increased by 44% and joint efficiency reached 76% after PWHT. • IGC and SCC resistance of PWHT joints was superior to that of welded joints. • Susceptibility to corrosion behavior was caused by formation of Al2Cu phase. - Abstract: AA2219 aluminum alloy was successfully welded by variable polarity tungsten inert gas (TIG) welding, and the effect of post weld heat treatment (PWHT) process on the microstructure, mechanical properties, and corrosion behavior of the welded joints was investigated. The PWHT process being used for the welded joints was consisted of solution treatment at 535 °C for 30 min, water quenching, and artificial aging at 175 °C for a soaking time of 12 h. The microstructure and precipitated phase of the as-welded joints and PWHT joints were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X ray diffraction (XRD) and transmission electron microscopy (TEM), while the corrosion behavior was evaluated by intergranular corrosion and stress corrosion cracking. The results showed that, by implementing PWHT, the microstructure of the joint was more homogeneous than the welded joint. Meanwhile, the tensile strength was increased by 44% and the joint efficiency reached 76%. Moreover, the corrosion resistance of the PWHT joint was superior to that of the welded joint. The heat affected zone (HAZ) was observed to be the most critical corroded zone, the susceptibility to corrosion behavior of the HAZ was attributed to the dissolution and segregation of Al2Cu phase along the grain boundaries

  1. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    International Nuclear Information System (INIS)

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding

  2. Fatigue strength improvement of MIG-welded joint by shot peening

    Science.gov (United States)

    Azida Che Lah, Nur; Ali, Aidy

    2011-02-01

    In this study, the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel MIG-welded joint has been studied quantitatively. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity and inclusions found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 63% on MIG-welded samples.

  3. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  4. 大板梁翼板对接焊缝的超声波检测%Ultrasonic Testing on Butt Weld of Wing Plate of Main Girder

    Institute of Scientific and Technical Information of China (English)

    唐垚; 喻星星

    2015-01-01

    The ultrasonic testing method of the butt weld of the wing plate with a thickness of 140 mm of the main girder in the utility boiler is introduced. The selection of the probe, the determination of the scanning method in the detection process and the method for depicting the DAC curve using the CSK-Ⅳ test block are mainly discussed.%介绍了电站锅炉大板梁140 mm厚翼板对接焊缝的超声波检测方法. 主要论述了检测过程中探头的选取、 扫查方式的确定以及利用CSK-Ⅳ试块制作DAC曲线的方法.

  5. The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes

    Science.gov (United States)

    Daavari, Morteza; Vanini, Seyed Ali Sadough

    2015-09-01

    Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.

  6. Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using Kriging model and GA

    Science.gov (United States)

    Gao, Zhongmei; Shao, Xinyu; Jiang, Ping; Cao, Longchao; Zhou, Qi; Yue, Chen; Liu, Yang; Wang, Chunming

    2016-09-01

    It is of great significance to select appropriate welding process parameters for obtaining optimal weld geometry in hybrid laser-arc welding. An integrated optimization approach by combining Kriging model and GA is proposed to optimize process parameters. A four-factor, five-level experiment using Taguchi L25 is conducted considering laser power (P), welding current (A), distance between laser and arc (D) and traveling speed (V). Kriging model is adopted to approximate the relationship between process parameters and weld geometry, namely depth of penetration (DP), bead width (BW) and bead reinforcement (BR). The constructed Kriging model was used for parameters optimization by GA to maximize DP, minimize BW and ensure BR at a desired value. The effects of process parameters on weld geometry are analyzed. Microstructure and micro-hardness are also discussed. Verification experiments demonstrate that the obtained optimum values are in good agreement with experimental results.

  7. Explosive welding of transition pipes joint with zirconium alloy-stainless steel

    International Nuclear Information System (INIS)

    The explosive welding technology of two kinds of transition pipes joints with Zr-2 + stainless steel and Zr2.5Nb + stainless steel is researched. The mechanical properties and micro-structure in the bonding zone of the transition pipes joint produced by this welding technology are checked. It is seen that there are some micro-characteristics concerning the strength bonding between the welding metals in the bonding zone of transition pipes joint

  8. Investigation of Residual Stresses and Distortion in Welded Pipe-Flange Joint of Different Classes

    OpenAIRE

    Muhammad Abid

    2012-01-01

    ABSTRACT: Pipe and flange joints are commonly used in petrochemical, nuclear and process industries. Commonly, welding is used to make these joints which produces residual stresses and distortions. These stresses have detrimental effects on the structural integrity and service performance of the welded pipe joints. The objective of this study is to investigate the residual stresses and distortions during Gas Metal Arc Welding of pipe of schedule 40, nominal diameter 200 mm with different ANSI...

  9. Durability of welded joints of heat resistant steels with crack-similar defects

    International Nuclear Information System (INIS)

    Estimation of the effect of cracks and crack-similar defects on supporting power of welded joints is important for estimation of workability and substantiation of control periodicity of welded joints of responsible elements of power equipment operating under creep. High-temperature welded joints of heat resistant steels of Cr-Mo-V system are shown to be characterized by low sensitivity to stress concentration

  10. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    Science.gov (United States)

    Filacchioni, G.; Montanari, R.; Tata, M. E.; Pilloni, L.

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  11. Evaluation of cold crack susceptibility on HSLA steel welded joints

    Directory of Open Access Journals (Sweden)

    Silverio-Freire Júnior, R. C.

    2003-04-01

    Full Text Available The present study addresses an evaluation of the effect of several welding parameters on cold cracking formation in welded joints of High Strength and Low Alloy steels, as well as the resulting microstructures and hardness values. The main parameters studied include the variation of the preheating temperature, drying time of the electrode, chemical composition and thickness of the base metal. The presence of cold cracking in the joints was analyzed from Tekken tests using steel plates made of SAR 80 T, 100 T and 120 T with of various thickness. The plates were welded by Shielded Metal Arc Welding either with or without pre-heating. Different preheating temperatures were studied, i.e., 375, 455 and 525 K. AWS E 12018 G and 11018 G electrodes were used under different conditions, i.e., not dried or dried up to 2, 3 and 4 h at 515 K. The results indicated the presence of cracks in the welded metals with the combination of hardness values above 230 HV and the formation of high contents of acicular ferrite (above 93 % in the welds without preheating. Higher crack susceptibility was also observed in the thick welded metal plates.

    Este trabajo evalúa la influencia de la variación de temperatura de precalentamiento, del tiempo de secado del electrodo, de la composición química y del espesor del metal base sobre la formación de fisuras en frío, inducidas por el hidrógeno en juntas soldadas de aceros de alta resistencia y baja aleación y su relación con la microestructura y dureza resultante. Para esto, se analizó la presencia de fisuras en frío en probetas para ensayos Tekken, fabricadas a partir de chapas de aceros SAR 80 T, 100 T y 120 T, con diferentes espesores y soldados por proceso de arco eléctrico con electrodo revestido, sin precalentamiento y con precalentamiento, a 375, 455 y 525 K, empleando electrodos AWS E 12018 G y 11018 G no secados y secados durante 2, 3 y 4 h. Los resultados obtenidos indicaron la presencia de fisuras

  12. Study of residual stresses in welded joints of dual phase HSLA steel used in automotive industry

    International Nuclear Information System (INIS)

    One way of weight reduction in automotive vehicles is through the use of high strength and low alloy (HSLA) steels, which enables the use of small thickness plates. Whereas the appearance of residual stresses is intrinsic to the welding process, this study evaluates the residual stresses generated in welded joints obtained by TIG and LASER welding processes and comparing them. Residual stresses were measured by X-rays diffraction technique, using a portable device with Crκα radiation applying the double exposure method. It also evaluates the influence of shot peening treatment applied after welding, in the bend tests conducted for both welding conditions and TIG welded joints showed higher stability of compressive stresses after welding. The metallographic analysis by optical microscopy complemented the welded joints characterization. (author)

  13. Ultrasonic defect detection method for socket welding joint

    International Nuclear Information System (INIS)

    The present invention provides a method of detecting defects over a wide range of a socket weld portion of various kinds of pipelines used, for example, in a nuclear power plant. Namely, an inclined probe is disposed to a jig for detecting defects by ultrasonic waves. This is rotated at least by one turn along the peripheral surface of the material to be detected such as weld tube joints. Defects of weld portion of the material can be detected automatically by using ultrasonic waves during the rotation. The inclined probe for detecting defects by ultrasonic waves comprises a transmission portion having a planar transmittance oscillator disposed to a wedge on the transmission side and a receiving portion comprising a planar receiving oscillator disposed to a wedge on the receiving side. With such a constitution, ultrasonic waves are emitted from the transmission portion to the defect detection portion in the welded portion. If a defect is present, defective echo is reflected to the receiving portion disposed ahead of the probe. Since the defective echo changes depending on the height of the detective portion, the estimation of the height of the defect can be facilitated. (I.S.)

  14. An Investigation on the Influence of Root Defects on the Fatigue Life of the Welded Structure of a Large Two-Stroke Diesel Engine

    DEFF Research Database (Denmark)

    Hansen, Anders V.; Olesen, John Forbes; Agerskov, Henning

    2004-01-01

    The crankshaft housings of large two-stroke diesel engines are welded structures subjected to constant amplitude loading and designed for infinite life at full design load. A new design of the so-called frame box has been introduced in the engine using butt welded joints of thick plates, welded f...

  15. STUDY ON DYNAMIC J-INTEGRAL OF MECHANICAL HETEROGENEOUS WELDED JOINT

    Institute of Scientific and Technical Information of China (English)

    F.Q. Tian; D.Y. He; X.Y. Li; Y.W. Shi; D. Zhang

    2004-01-01

    Welded joint is a mechanical heterogeneous body, and mechanical heterogeneity has great effect on dynamic fracture behaviour of welded joints. In the present investigation, dynamic response curve and dynamic J-integral of practical undermatched welded joint and whole base and whole weld three-point-bend (TPB) models containing longitudinal crack are computed. Dynamic J-integral is evaluated using virtual crack extension (VCE) method and the computation is performed using MARC finite element code. Because of the effect of inertia,dynamic load response curve of computed model waves periodically. Dynamic J-integral evaluated by VCE method is path independent. The effect of inertia has little influence on dynamic J-integral curve. The value of dynamic J-integral of undermatched welded joint is lower than that of whole base metal and higher than that of whole weld metal. The results establish the foundation of safety evaluation for dynamic loaded welded structures.

  16. Experimental characterization and modeling of the creep strength at 550 C of ASME Grade 92 steel welded joints

    International Nuclear Information System (INIS)

    In the framework of the development of Generation IV nuclear power plants, ASME Grade 92 ferritic-martensitic steel is a candidate material for components subjected to long-term creep at high temperature. The aim of this study is to characterize the microstructure of Grade 92 butt welded joints and to model their creep behavior at 550 C. Two filler rods were used for this study. The microstructure of the different weld regions was quantitatively characterized. In order to understand the weaker mechanical properties of the ICHAZ compared to the other regions of the welded joint, the microstructures of the base metal and the ICHAZ were compared at different scales (SEM, EBSD, TEM on thin foils and extractive replicas). No significant difference regarding micro-texture, sub-structure and precipitation state was highlighted between both microstructures. The origin of the weaker resistance of the ICHAZ to viscoplastic flow is still not fully understood. A softer zone was found in the base metal close to the ICHAZ, yet with finer sub-grains than the base metal. It was supposed to be a thermo-mechanically-affected zone (TMAZ). At high temperatures and low stress levels, Grade 92 welded joints may be sensitive to type IV cracking, which occurs in the inter-critical heat affected zone (ICHAZ). Creep tests conducted at 550 C on cross-weld specimens revealed that fracture takes place in the ICHAZ, even for short-term creep tests (i.e., lifetime lower than 1000 h). In order to model the creep behavior of the welded joint, viscoplastic constitutive equations for the different regions of the weld assembly were required. The viscoplastic behavior of the base metal, weld metal and of the ICHAZ were modeled using a phenomenological approach. The viscoplastic flow behavior of the weld metal and of the ICHAZ was experimentally determined (i) from tensile tests with displacement field measurements and (ii) from creep tests on tensile bars notched in the region of interest. An

  17. Research on fatigue behavior and residual stress of large-scale cruciform welding joint with groove

    International Nuclear Information System (INIS)

    Highlights: • The fatigue behavior of the large-scale cruciform welding joint with groove was studied. • The longitudinal residual stress of the large-scale cruciform welding joint was tested by contour method. • The fatigue fracture mechanism of the large-scale cruciform welding joint with groove was analyzed. - Abstract: Fatigue fracture behavior of the 30 mm thick Q460C-Z steel cruciform welded joint with groove was investigated. The fatigue test results indicated that fatigue strength of 30 mm thick Q460C-Z steel cruciform welded joint with groove can reach fatigue level of 80 MPa (FAT80). Fatigue crack source of the failure specimen initiated from weld toe. Meanwhile, the microcrack was also found in the fusion zones of the fatigue failure specimen, which was caused by weld quality and weld metal integrity resulting from the multi-pass welds. Two-dimensional map of the longitudinal residual stress of 30 mm thick Q460C-Z steel cruciform welded joint with groove was obtained by using the contour method. The stress nephogram of Two-dimensional map indicated that longitudinal residual stress in the welding center is the largest

  18. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  19. AECL devises new nuclear welding system

    International Nuclear Information System (INIS)

    Automatic autogenous TIG pipe butt welding equipment has been developed for producing joints in reactor coolant monitoring systems for tubes of between 6 and 25 mm diameter and up to 3 mm wall thickness in stainless steel. The equipment is designed to work on site with power requirements of up to 2.2 KW maximum. A major feature of the design, therefore, was a welding system of sufficiently small size, portability and ruggedness to be able to withstand on-site conditions. Quality control is carried out automatically by a comparison of welding parameters with those of a standard acceptable weld. Details of power source characteristics and welding procedure are given. (author)

  20. Quenching microstructure and properties of 300M ultra-high strength steel electron beam welded joints

    International Nuclear Information System (INIS)

    Highlights: ► Electron beam welding is applied in 300M steel. ► The welded joint tensile strength can reach 1900 MPa and 97% of base metal strength. ► The microstructures of 300M steel welded joints are tempered martensite. -- Abstract: The 300M steel was welded by electron beam welding (EBW) with optimized welding parameters in the annealed state. As-welded, for comparison, and as-quenched (oil quenching at 870 °C × 1 h and tempering at 315 °C × 2 h) welded joints were investigated in this paper. The microstructure and fracture morphology were analyzed using scanning electron microscopy (SEM) and optical microscope. X-ray energy spectrum analysis was used to determine chemical composition of phases formed at the joint. The microhardness and tensile strength were evaluated. Results indicate that the weld metal microstructures of the as-welded joint are lower bainite, retained austenite and pro-eutectoid ferrite; the heat affected zone microstructure is sorbite with undissolved particles. The microstructure of as-quenched joint is tempered martensite. The tensile strength of the joints after quenching reached 1900 MPa.

  1. Mechanical properties of duplex steel welded joints in large-size constructions

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2012-09-01

    Full Text Available Purpose: On the basis of sources and own experiments, the analysis of mechanical properties, applications as well as material and technological problems of ferritic-austenitic steel welding were carried out. It was shown the area of welding applications, particularly welding of large-size structures, on the basis of example of the FCAW method of welding of the UNS S3 1803 duplex steel in construction of chemical cargo ships.Design/methodology/approach: Welding tests were carried out for duplex UNS S31803 steel plates, 9.5, 14.5 and 18.5 mm thick, with flux-cored wire The effect of welding with increased threshold space on mechanical properties of welded joints was determined when compared to those obtained in result of welding with 6 mm threshold space as well as to recommendations of DNV regulations and rulesFindings: It was shown that widening of threshold space tolerance and wide-gap welding of duplex steel is possible, i.e. completion of welded joints by one-side vertical bottom-top welding (PF with no need for applying the process of edge pad welding in case of weld groove geometry with the threshold space ranging 6 to 10 mm, from the point of view of meeting requirements with respect to mechanical properties by welded jointsResearch limitations/implications: The welding heat input exceeding the recommended values might influence the precipitation processes in the HAZ, what need further experiments.Practical implications: Application of high value of the welding heat input will be profitable in terms of the welding costs.Originality/value: An original value of the paper is to prove that a usage of high value welding heat input provides the best joints quality

  2. A study on welded joint toughness of X-60 steel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Charpy impact test and COD test were performed on the specimens subjected to simulated welded thermal cycle and the specimens taken from welded joint. The optical microscope, TEM, SEM, EDAX and XRD analysis have been used to investigate the behaviors of second phase particles and the effects of microstructure on toughness separately. The results are as follows. The dispersed second phase particles can effectively retard the growth of austenite grain in the coarse-grained HAZ (CGHAZ), and improve the toughness. When t8/5 is different, the behaviors of the particles are also different in dissolving, coarsening and re-precipitating. The ability of retarding the growth of austenite grain will be affected. When t8/5 increases from 10 s to 70 s, the microstructure of CGHAZ will transform from upper bainite and granular bainite to granular bainite, and the size of austenite grain will grow a little, thus the toughness of the materials decreases slightly.

  3. Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints

    International Nuclear Information System (INIS)

    Highlights: → The effects of post-weld aging treatment on the properties of joints is studied. → The post-weld aging treatment increases the tensile strength of TIG welded joints. → The strengthening is due to a balance of dissolution, reversion and precipitation. → Simple post-weld aging at 140 oC enhances the properties of the welded joints. -- Abstract: This paper reports the influence of post-weld aging treatment on the microstructure, tensile strength, hardness and Charpy impact energy of weld joints low thickness 7075 T6 aluminium alloy welded by Tungsten Inert Gas (TIG). Hot cracking occurs in aluminium welds when high levels of thermal stress and solidification shrinkage are present while the weld is undergoing various degrees of solidification. Weld fusion zones typically exhibit microstructure modifications because of the thermal conditions during weld metal solidification. This often results in low weld mechanical properties and low resistance to hot cracking. It has been observed that the mechanical properties are very sensitive to microstructure of weld metal. Simple post-weld aging treatment at 140 oC applied to the joints is found to be beneficial to enhance the mechanical properties of the welded joints. Correlations between microstructures and mechanical properties were discussed.

  4. Study on the mechanical heterogeneity of electron beam welded thick TC4-DT joints

    International Nuclear Information System (INIS)

    Highlights: ► Electron beam welding affects the mechanical properties of 50 mm thick TC4-DT alloy. ► EBW improves the strength and microhardness, while reduces ductility of TC4-DT alloy. ► Mechanical heterogeneity between the WM and BM is smaller than 1.3. ► Mechanical heterogeneity is dependent on the size of β phase and martensite. - Abstract: Tensile properties and microhardness of electron beam welded thick damage-tolerant Ti–6Al–4V joints with the weld cross-section of parallel shaped and taper shaped configurations were examined. Moreover, the mechanical heterogeneity along the weld depth was studied. The results indicate that for both the shaped joints, the weld metal exhibits increased strength and microhardness, while decreased ductility and toughness as compared with the base metal. The mechanical properties of the weld metal are heterogeneous along the weld depth. With the increase of weld depth, the strength and microhardness increase. The weld middle position has smaller mechanical heterogeneity than the weld top and weld root. Moreover, the heterogeneity of parallel shaped welds along the weld depth is lower than that of taper shaped welds. It is also found that the change of mechanical properties such as strength and microhardness has microstructure dependent trend. The mechanical heterogeneity along the weld depth is dependent on the grain size change of β phase and martensite.

  5. Study on the mechanical heterogeneity of electron beam welded thick TC4-DT joints

    Energy Technology Data Exchange (ETDEWEB)

    Lu Wei, E-mail: luwei870808@126.com [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Li Xiaoyan; Lei Yongping; Shi Yaowu [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2012-04-01

    Highlights: Black-Right-Pointing-Pointer Electron beam welding affects the mechanical properties of 50 mm thick TC4-DT alloy. Black-Right-Pointing-Pointer EBW improves the strength and microhardness, while reduces ductility of TC4-DT alloy. Black-Right-Pointing-Pointer Mechanical heterogeneity between the WM and BM is smaller than 1.3. Black-Right-Pointing-Pointer Mechanical heterogeneity is dependent on the size of {beta} phase and martensite. - Abstract: Tensile properties and microhardness of electron beam welded thick damage-tolerant Ti-6Al-4V joints with the weld cross-section of parallel shaped and taper shaped configurations were examined. Moreover, the mechanical heterogeneity along the weld depth was studied. The results indicate that for both the shaped joints, the weld metal exhibits increased strength and microhardness, while decreased ductility and toughness as compared with the base metal. The mechanical properties of the weld metal are heterogeneous along the weld depth. With the increase of weld depth, the strength and microhardness increase. The weld middle position has smaller mechanical heterogeneity than the weld top and weld root. Moreover, the heterogeneity of parallel shaped welds along the weld depth is lower than that of taper shaped welds. It is also found that the change of mechanical properties such as strength and microhardness has microstructure dependent trend. The mechanical heterogeneity along the weld depth is dependent on the grain size change of {beta} phase and martensite.

  6. Microstructure and properties of Mg/Al joint welded by gas tungsten arc welding-assisted hybrid ultrasonic seam welding

    International Nuclear Information System (INIS)

    Graphical abstract: Gas tungsten arc welding (GTAW) was introduced into ultrasonic seam welding of Mg and Al dissimilar metals for the first time as shown in (a). The preceding GTAW can preheat the sheet metal to enhance the weldability. Without improving the ultrasonic power, the direct joining of 1 mm thick Al and Mg alloys sheets was accomplished and the maximum lap shear strength was 1 kN at a GTAW current of 30 A, approximately 40% of AZ31B Mg alloy base metal, as shown in (b). - Highlights: • Mg and Al were joined in solid state by hybrid ultrasonic seam welding. • The preceding GTAW heat source enhanced the acoustic bonding effect. • The maximum lap shear strength was 1 kN at a GTAW current of 30 A. - Abstract: A novel gas tungsten arc welding (GTAW) assisted hybrid ultrasonic seam welding MgAZ31B and Al6061 alloy sheets with satisfactory joint strength were successfully achieved using a previous GTAW preheating heat source. The preceding GTAW reduced the sheet hardness but enhanced the acoustic softening effect and materials plasticity. Therefore, the direct joining of 1 mm thick MgAZ31B and Al6061 alloy sheets can be obtained without improving the ultrasonic power. The effect of GTAW current on the microstructure and mechanical properties was investigated. The tensile shear strength of the joint increased with GTAW current up to a maximum strength and then decreased dramatically with higher GTAW current. The maximum lap shear strength was 1 kN at a GTAW current of 30 A, approximately 40% of AZ31B Mg alloy base metal. The failure occurred by interface fracture mode, and the fracture patterns exhibited brittle fracture mode with cleavage facet feature

  7. High-temperature creep rupture of low alloy ferritic steel butt-welded pipes subjected to combined internal pressure and end loadings.

    Science.gov (United States)

    Vakili-Tahami, F; Hayhurst, D R; Wong, M T

    2005-11-15

    Constitutive equations are reviewed and presented for low alloy ferritic steels which undergo creep deformation and damage at high temperatures; and, a thermodynamic framework is provided for the deformation rate potentials used in the equations. Finite element continuum damage mechanics studies have been carried out using these constitutive equations on butt-welded low alloy ferritic steel pipes subjected to combined internal pressure and axial loads at 590 and 620 degrees C. Two dominant modes of failure have been identified: firstly, fusion boundary failure at high stresses; and, secondly, Type IV failure at low stresses. The stress level at which the switch in failure mechanism takes place has been found to be associated with the relative creep resistance and lifetimes, over a wide range of uniaxial stresses, for parent, heat affected zone, Type IV and weld materials. The equi-biaxial stress loading condition (mean diameter stress equal to the axial stress) has been confirmed to be the worst loading condition. For this condition, simple design formulae are proposed for both 590 and 620 degrees C. PMID:16243708

  8. Application of the crack tip opening displacement method (COD) to the study of steel welded joints

    International Nuclear Information System (INIS)

    The C.O.D. method was applied to steel welded plates (steel 15 MDV-4-05 intended for pressure vessels). In order to select a welding technique, the impact strength of various welded joints at different temperatures was compared with the respective value of C.O.D. for notches located in the melted zone or in the heat affected zone

  9. Failure Behavior of Three-Steel Sheets Resistance Spot Welds: Effect of Joint Design

    Science.gov (United States)

    Pouranvari, M.; Marashi, S. P. H.

    2012-08-01

    There is a lack of comprehensive understanding concerning failure characteristics of three-steel sheet resistance spot welds. In this article, macro/microstructural characteristics and failure behavior of 1.25/1.25/1.25 mm three-sheet low carbon steel resistance spot welds are investigated. To evaluate the mechanical properties of the joint, the tensile-shear test was performed in three different joint designs. Mechanical performance of the joint was described in terms of peak load, energy absorption, and failure mode. The critical weld nugget size required to insure pullout failure mode was obtained for each joint design. It was found that the joint design significantly affects the mechanical properties and the tendency to fail in the interfacial failure mode. It was also observed that stiffer joint types exhibit higher critical weld size. Fusion zone size along sheet/sheet interface proved to be the most important controlling factor of spot weld peak load and energy absorption.

  10. Effects of flashing and upset sequences on microstructure, hardness, and tensile properties of welded structural steel joints

    International Nuclear Information System (INIS)

    Highlights: → Flash butt welding ASTM A529 steel specimens with varied process settings. → Tensile, hardness, and nondestructive evaluation of welds and HAZs. → Acicular ferrite in weld zone provides necessary strength and ductility. → Maximum hardness achieved within the weld zone. → Quantity of interfacial inclusions depends on upset dimension and flashing time. -- Abstract: In this study, ASTM A529 carbon-manganese steel angle specimens were joined by flash butt welding and the effects of varying process parameter settings were investigated. The resulting weld metal and heat affected zones were examined and further processed using tensile testing, Rockwell hardness testing, ultrasonic scanning, optical microscopy, and scanning electron microscopy with energy dispersive spectroscopy. Test results showed that hardness was increased in the weld zone for all specimens, which can be attributed to the extensive deformation of the upset operation. Statistical analysis of experimental data highlighted the sensitivity of weld strength and the presence of weld zone inclusions and interfacial defects to the process factors of upset current, flashing time duration, and upset dimension. Microstructural analysis revealed various phases within the weld and heat affected zone, including acicular ferrite, Widmanstatten or side-plate ferrite, and grain boundary ferrite. Fractography of tensile specimens indicated brittle cleavage fracture within the weld zone for certain factor combinations. The significance of process factor levels on microstructure, fracture characteristics, and weld zone strength, inclusions, and embrittlement was analyzed.

  11. Application of new GMAW welding methods used in prefabrication of P92 (X10CrWMoVNb9-2) pipe butt welds

    Energy Technology Data Exchange (ETDEWEB)

    Urzynicok, Michal [Boiler Elements Factory ' ZELKOT' , Koszecin (Poland); Kwiecinski, Krzysztof; Slania, Jacek [Instytut Spawalnictwa, Gliwice (Poland); Szubryt, Marian [TUEV Nord, Katowice (Poland)

    2010-07-01

    Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using TIG process combined with MMA processes. Progress in MAG process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding technology. The investigation also involved microscopic and fractographic examinations. The results reveal that welding with new methods such as GMAW is by no means inferior to a currently applied MMA method yet the time of the process is shorter by 50%. The article present the world's first known positive results in welding of P92 grade steel using GMAW welding method. (orig.)

  12. Carbon diffusion in friction welded joints of refractory metals in a liquid

    International Nuclear Information System (INIS)

    Research highlights: → The carbon from shielding liquid decomposition interacts with the metals being welded. This applies to the surface layers on the flash. → In vanadium-vanadium and vanadium-other metal joints a marked increase in microhardness in a narrow zone at the surface of the joint and carbide segregations in this zone on the vanadium side occur. → In titanium joints an increase in carbon content in the weld zone occurs. - Abstract: The effect of carbon on materials joined by friction welding in a liquid was studied. Titanium and tantalum specimens resistance-heated in a liquid and then specimens friction-welded in a liquid were tested. Same-metal (titanium, vanadium, tantalum) joints and dissimilar-metal joints were friction welded. The distribution of microhardness in the friction welded joints and their microstructure and linear concentration profiles were determined. The carbon from shielding liquid decomposition interacts with the metals being welded. This applies to the surface layers on the flash. In vanadium-vanadium and vanadium-other metal joints a marked increase in microhardness in a narrow zone at the surface of the joint and carbide segregations in this zone on the vanadium side occur. In titanium joints an increase in carbon content in the weld zone occurs.

  13. Electron microscopy and microanalysis of steel weld joints after long time exposures at high temperatures

    Science.gov (United States)

    Jandová, D.; Kasl, J.; Rek, A.

    2010-02-01

    The structural changes of three trial weld joints of creep resistant modified 9Cr-1Mo steels and low alloyed chromium steel after post-weld heat treatment and long-term creep tests were investigated. Smooth cross-weld specimens ruptured in different zones of the weld joints as a result of different structural changes taking place during creep exposures. The microstructure of the weld joint is heterogeneous and consequently microstructural development can be different in the weld metal, the heat affected zone, and the base material. Precipitation reactions, nucleation and growth of some particles and dissolution of others, affect the strengthening of the matrix, recovery at high temperatures, and the resulting creep resistance. Therefore, a detailed study of secondary phase's development in individual zones of weld joints can elucidate mechanism of cracks propagation in specific regions and the causes of creep failure. Type I and II fractures in the weld metal and Type IV fractures in the fine prior austenite grain heat affected zones occurred after creep tests at temperatures ranging from 525 to 625 °C and under stresses from 40 to 240 MPa. An extended metallographic study of the weld joints was carried out using scanning and transmission electron microscopy, energy-dispersive and wave-dispersive X-ray microanalysis. Carbon extraction replicas and thin foils were prepared from individual weld joint regions and quantitative evaluation of dislocation substructure and particles of secondary phases has been performed.

  14. Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints

    Science.gov (United States)

    Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.

    Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.

  15. Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V

    Science.gov (United States)

    Torkamany, M. J.; Malek Ghaini, F.; Poursalehi, R.; Kaplan, A. F. H.

    2016-04-01

    Pulsed Nd:YAG laser welding of pure niobium plate to titanium alloy Ti-6Al-4V sheet in butt joint is studied regarding the laser/metal interaction modes. To obtain the optimized process parameters in dissimilar welding of Ti-6Al-4V/Nb, the melting ratio of laser beam energy for each weld counterpart is evaluated experimentally. Different laser welding modes of keyhole and conduction are predicted regarding the absorbed energy from the similar laser pulses on each weld counterpart. Laser keyhole and conduction welding were observed simultaneously through direct visualization of laser interaction with dissimilar metals using High Speed Imaging (HSI) system.

  16. Strength and microstructure of 2091 Al-Li alloy TIG welded joint

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microstructure and tensile properties of TIG welding joints of 2091 Al-Li alloy were investigated both in as-welded and different postweld heat treatment condition. The results show that solution strengthening played an important role in the as-welded condition, though the precipitation strengthening δ' phase formed already in the as-welded weld metal, but its effect was not apparent due to the lower volume fraction of δ' phase. So the strength coefficient (φ) of the welded joint/base metal was 64%. After artificially aging heat treatment, the precipitation strengthening effect increased much due to the formation of more δ' phase and s' phase. Its φ value was increased up to 89%. The highest strength of the welded joints was obtained after solid solution and then artificially aged heat treatment. Due to the proper size of precipitation strengthening phases and their well distribution, the φ value was increased up to 98%.

  17. Numerical Modelling Of Thermal And Structural Phenomena In Yb:YAG Laser Butt-Welded Steel Elements

    OpenAIRE

    Kubiak M.; Piekarska W.; Stano S.; Saternus Z.

    2015-01-01

    The numerical model of thermal and structural phenomena is developed for the analysis of Yb:YAG laser welding process with the motion of the liquid material in the welding pool taken into account. Temperature field and melted material velocity field in the fusion zone are obtained from the numerical solution of continuum mechanics equations using Chorin projection method and finite volume method. Phase transformations in solid state are analyzed during heating and cooling using classical mode...

  18. Porosity evolution in aluminum alloy 2024 bop and butt defocused welding by Yb-YAG disk laser

    OpenAIRE

    Alfieri, Vittorio; Cardaropoli, Francesco; Caiazzo, Fabrizia; Sergi, Vincenzo

    2011-01-01

    In many industrial applications, in order to obtain good results in laser welding processes, it may not be sufficient to use a focused beam on the upper surface, so a defocused beam is required instead. This study aims to investigate which advantages a defocused beam may offer in welding aluminum alloy 2024 using Yb:YAG disk laser. A characterization of laser beam geometry is preliminary necessary, in order to correlate bead features and effective specific energy provided. Porosity content de...

  19. Analysis of Welding Joint on Handling High Level Waste-Glass Canister

    International Nuclear Information System (INIS)

    The analysis of welding joint of stainless steel austenitic AISI 304 for canister material has been studied. At the handling of waste-glass canister from melter below to interim storage, there is a step of welding of canister lid. Welding quality must be kept in a good condition, in order there is no gas out pass welding pores and canister be able to lift by crane. Two part of stainless steel plate in dimension (200 x 125 x 3) mm was jointed by welding. Welding was conducted by TIG machine with protection gas is argon. Electric current were conducted for welding were 70, 80, 90, 100, 110, 120, 130, and 140 A. Welded plates were cut with dimension according to JIS 3121 standard for tensile strength test. Hardness test in welding zone, HAZ, and plate were conducted by Vickers. Analysis of microstructure by optic microscope. The increasing of electric current at the welding, increasing of tensile strength of welding yields. The best quality welding yields using electric current was 110 A. At the welding with electric current more than 110 A, the electric current influence towards plate quality, so that decreasing of stainless steel plate quality and breaking at the plate. Tensile strength of stainless steel plate welding yields in requirement conditions according to application in canister transportation is 0.24 kg/mm2. (author)

  20. Operation reliability of plasma arc-welded joints for NPP pipings

    International Nuclear Information System (INIS)

    A technology has been developed of plasma-arc welding joints of pipe of steel 12Kh18N10T to replace the factory welding technology using the electrodes EA-400/10 t. It is established that the decisive influence of the formation and microcontinuity of the welded joint is produced by satisfying the optimum values of current and welding rate. Deviation from these values results in nonpenetrations and burnings. A study has been made of the welded joint strength properties at temperatures of 20, 200, 350 deg C and low-cycle fatigue at 350 deg C. The joints made by plasma-arc welding are shown to have higher cyclic strength and resistance to brittle fracture than those made by the former technology

  1. X-Ray Structural Study of 09Nn2Si Steel Welded Joints

    Science.gov (United States)

    Golikov, N. I.; Platonov, A. A.; Saraev, Y. N.

    2015-09-01

    The article is devoted to handling a vital scientific and technical problem of improving operational reliability and safety of critical constructions, exploited in Siberia and Far North, by developing of new technological approaches to welding. In the article results of X-ray diffraction examinations of 09Mn2Si steel welded joints are given, produced by different welding operations. Resulting from researches, the authors have concluded that pulse-arc welding is the most preferred welding process as compared with direct current welding.

  2. Fracture toughness of welded joints of a high strength low alloy steel

    International Nuclear Information System (INIS)

    The fracture toughness of the different regions of welded joints of a high strength low alloy steel, Niocor 2, was evaluated at different temperatures and compared with the toughness of the base metal. The studied regions were: the weld metal, fusion boundary and heat affected zone. The welding process used was the manual metal arc. It is shown that the weld metal region has the highest toughness values. (Author)

  3. INVESTIGATIONS INTO EFFECT OF RESIDUAL STRESSES ON MECHANICAL BEHAVIOUR OF DUPLEX STAINLESS STEEL WELD JOINT

    OpenAIRE

    Jamal Jalal Dawood; Charudatta Subhash Pathak; Atul Sitarm Padalkar

    2014-01-01

    Duplex stainless steel alloy is widely used in the manufacture of pressure vessels, nuclear plant, chemical refineries and paper mill. Welding is the most preferred fabrication method in these structural applications; however during welding the work piece is subjected to thermal cycle as a result residual stresses are developed in the weld. Residual stresses have significant effect on performance of the weld joint subjected to tensile loading. In addition to this duplex stainless steel is wel...

  4. Genetic Algorithm Coupled with the Neural Network for Fatigue Properties of Welding Joints Predicting

    Directory of Open Access Journals (Sweden)

    Nan Zhou

    2012-08-01

    Full Text Available The prediction of fatigue life of metal welded joints plays an important role at lower manufacturing costs and reduces accidents for engineering materials, the response of metal welded joints to fatigue properties has highly non-linear, so it is difficult to establish an accurate theoretical model using traditional method to predict its fatigue life. It is appropriate to consider modeling methods developed in other fields in order to provide adequate models for metal welded joints behavior on fatigue properties. Accordingly, a new system predict method, based on a hybrid genetic algorithm (GA with the Back-propagation neural network (BPNN, for the simultaneous establishment of a predict model structure of fatigue life of metal welded joints and the related parameters is proposed. Based on the self-learning ability and approximation of non-linear mapping capability of the BPNN, by taking the advantages of the powerful ability of global optimization, implicit parallelism and high stability of the GA, the optimal parameters have been automatically determined, we establish a parameter adaptive optimization of GANN model to fit and predict the fatigue life of metal welded joints. GANN establishes the mapping relationship between the fatigue properties of metal welded joints and a variety of influencing factors, having greatly increased the computational efficiency for the fatigue properties of metal welded joints, also had a higher predict accuracy. The superiority of GANN had been tested by the prediction of the fatigue life of welded joints in different process parameters.

  5. Mechanical properties of austenitic stainless steel welded joints at high temperature

    International Nuclear Information System (INIS)

    Different test methods to define the characteristics of joints and their behavior in service are discussed, and various processes used in industrial projects are considered. The choice of process depends on many factors; thickness of the parts to be assembled, geometry of the joints etc... For construction designed to work at high temperature the reference process is manual welding. Electron welding and certain automatic welding methods are also examined

  6. Electron beam welding of tube-tube plate joints with a sectional chamber system

    International Nuclear Information System (INIS)

    The welding problem in a tube-tube plate and tube-lid joint of AlMgSi 1 is described, and conventional solutions and the progressive solution of electron beam welding with a newly developed machine with 'local' vacuum are presented. Set-up, functioning, machine characteristics and functions of the machine as well as fabrication difficulties and their solution are outlined. Furthermore, a progressive ultrasonic test method for the given welded joints is given. (orig./LH)

  7. Application of the local approach to the fatigue assessment for welded joints

    Institute of Scientific and Technical Information of China (English)

    王东坡; 张玉凤; 霍立兴; 陈俊梅; 王文先

    2003-01-01

    The fatigue behavior of welded structures is currently determined by means of recommendations defined in terms of S-N curve corresponding to the detail classes of welded joints without taking account of the actual geometry of the weld. A new fatigue strength assessment method based on Dang Van multiaxial fatigue limit criterion was introduced, which is named the local approach and presented by Institut de Soudure recently. The local approach has advantages in taking welding residual stresses and the geometry of the weld toe and weld root into consideration. The application of the local approach to the fatigue strength assessment of low carbon steel Q235B welded joints was studied. The fatigue tests and finite element analysis results show that the local approach parameters recommended by Institut de Soudure were incorrectly for low carbon steel Q235B welded joints. With aluminum alloy welded joints being used widely, the parameters of the local approach used for aluminum alloy welded joints were obtained and verified on bases of the fatigue tests and finite element analysis.

  8. Objective size measurements of defects in welded joint radiography

    International Nuclear Information System (INIS)

    The feasibility was experimentally tested of an objective measurement of the size of defects in welded joints using the CA-1 electronic module. This module in cooperation with a closed television circuit will allow the summation of up to 400 television images in its memory, it measures and graphically represents the value of the videosignal at various points of the vertical column of the television image. The result of the measurement is a brightness profile proportional to the radiographed thicknesses at a chosen point in the image of the welded joint. An X-ray machine and isotopes Ir-192 and Co-60 were used for radiography. It was found that the device allowed to assess the size of faults in the direction of irradiation much more objectively that a simple comparison of the defect image density in a radiogram or of the defect brightness on a display. The measurement error was determined at 10 to 20% of defect size. (Z.M.). 1 fig

  9. Ultrasonic C-scanning imaging inspection of superplastic solid-state welded joint quality

    Institute of Scientific and Technical Information of China (English)

    张柯柯; 陈怀东; 杨蕴林; 薛锦

    2002-01-01

    Based on a large amount of dissection at welded interface and quantitative microscopic examination of welded rate, the suitable limit grey scale value was determined, and the welded rate of superplastic solid-state welding interface of heterogeneous steel was systematically studied by means of self-made ultrasonic C-scanning imaging inspection system. The experimental results show: the welded state of superplastic solid-state welding interface of heterogeneous steel can be conducted to be more accurately, reliably and quickly inspected by means of this system, and the ultrasonic testing results are good consistent with actual examination results of the interface defective distribution. Within the extent of the suitble welded rate,the welded rate in 40Cr/T10A superplastic welding process tested by this system is linear with its tensile strength of joint.

  10. Validation of nondestructive testing technology of nickel base alloys welded joints

    International Nuclear Information System (INIS)

    This report summarized modification items of 'ultrasonic testing guide for in-service inspection of light-water type nuclear power plant components' (JEAG4207-2004) for ultrasonic testing method of dissimilar metal welded joints of vessel nozzle and safe end, on the base of basic test using simulated real size test specimen with EDM notch and accuracy confirmation test using real size test specimen with simulated SCC for nickel base alloy welded joints, and their explanatory notes on defect detect ability, measurement accuracy of indication length, scatter of measured values, setting of basic sensitivity of longitudinal wave, scanning direction, and detection test results of EDM notch crossing welded joint, selection of scanning condition and detection test results of defect crossing safe end dissimilar welded joints, were attached. As for circumferential direction scanning (for defect crossing welded joints), 45 - 60 degree variable longitudinal refraction angle beam probe was chosen. (T. Tanaka)

  11. Effect of Scandium on Corrosion Resistance of Welded Joint of Al-6Mg-Zr Alloy

    Institute of Scientific and Technical Information of China (English)

    Tao Binwu; Li Songmei; Liu Jianhua

    2005-01-01

    The corrosion resistance of welded joints of Al-6Mg-Sc-Zr alloy was studied by neutral salt spray and exfoliation corrosion methods. The microstructure of welded joints was investigated by using optical microscope and transmission electron micrograph (TEM). It is demonstrated that the welded joints of Al-6Mg-Sc-Zr alloy are more corrosion resistance, comparing with Al-6Mg-Zr alloy. The addition of scandium in the alloy results in (Al3Sc, Zr) particles, potently refined grains and restrained recrystallization process. The formation of homogeneous, discontinuous distribution of β-phase in welded joints improves the corrosion resistance of welded joints of Al-Mg-Zr alloy with high level content of magnesium.

  12. Laser welding of the 12Kh18N10T steel

    International Nuclear Information System (INIS)

    A possibility of laser welding of 5 and 6 mm thick butt joints of the 12Kh18N10T stainless steel has been studied. The laser beam power constituted 5 and 23 kW and rates-75 and 250 m/h, respectively. Both two-sided air blasting of the molten pool by helium and the AN-60 flux were used for the weld metal protection from oxidation. The quality of welding was assessed on the basis of the results metallographic and X-ray structural analyses of welds and mechanical tests. The effect of welding parameters and weld metal protection technique on the quality of welded joints has been shown. The mechanical properties of welded joints are satisfactory. It has been made the conclusion on the possibility of laser welding of the above steel for the weld metal protection from oxidation using fluxes and inert gases

  13. Numerical Modelling Of Thermal And Structural Phenomena In Yb:YAG Laser Butt-Welded Steel Elements

    Directory of Open Access Journals (Sweden)

    Kubiak M.

    2015-06-01

    Full Text Available The numerical model of thermal and structural phenomena is developed for the analysis of Yb:YAG laser welding process with the motion of the liquid material in the welding pool taken into account. Temperature field and melted material velocity field in the fusion zone are obtained from the numerical solution of continuum mechanics equations using Chorin projection method and finite volume method. Phase transformations in solid state are analyzed during heating and cooling using classical models of the kinetics of phase transformations as well as CTA and CCT diagrams for welded steel. The interpolated heat source model is developed in order to reliably reflect the real distribution of Yb:YAG laser power obtained by experimental research on the laser beam profile.

  14. Effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy joints

    International Nuclear Information System (INIS)

    In this paper, the effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy plates were investigated by microstructural observations, microhardness tests and tensile tests. The results show that the microstructure in the fusion zone consisted of fine α-Mg equiaxed dendrite crystals and dispersed β-Mg17Al12 particles. With an increase in welding speed, the sizes of α-Mg grains and β-Mg17Al12 particles in the fusion zone decreased and the volume fraction of β-Mg17Al12 particles increased. The ultimate tensile strength, yield strength and elongation of welded joint increased when the welding speed increased from 1800 mm min−1 to 2800 mm min−1. In addition, the average hardness value of fusion zone and heat-affected zone increased with the increase in welding speed

  15. Effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jun, E-mail: shenjun@cqu.edu.cn; Wen, Libiao; Li, Yang; Min, Dong

    2013-08-20

    In this paper, the effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy plates were investigated by microstructural observations, microhardness tests and tensile tests. The results show that the microstructure in the fusion zone consisted of fine α-Mg equiaxed dendrite crystals and dispersed β-Mg{sub 17}Al{sub 12} particles. With an increase in welding speed, the sizes of α-Mg grains and β-Mg{sub 17}Al{sub 12} particles in the fusion zone decreased and the volume fraction of β-Mg{sub 17}Al{sub 12} particles increased. The ultimate tensile strength, yield strength and elongation of welded joint increased when the welding speed increased from 1800 mm min{sup −1} to 2800 mm min{sup −1}. In addition, the average hardness value of fusion zone and heat-affected zone increased with the increase in welding speed.

  16. Welding of Thermomechanically Rolled Steel by Yb:YAG Disk Laser / Spawanie Stali Walcowanej Termomechanicznie Laserem Dyskowym Yb:YAG

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 5.0 mm thick butt joints of thermomechanically rolled steel S700MC was investigated. The Yb:YAG disk laser TruDisk 3302 emitted at 1.03 μm was used for the trials of autogenous welding. The effect of laser welding parameters and thus thermal conditions of welding on weld shape, microstructure of weld metal and heat affected zone (HAZ, tensile strength, bending angle, impact toughness and microhardness profile was determined. Studies have shown that it is advantageous to provide a high welding speed and low heat input. High cooling rate of weld metal and HAZ leads to the formation of a favorable structure characterized by a large proportion of fine-grained acicular ferrite and provides high mechanical properties of butt joints.

  17. High-quality MOVPE butt-joint integration of InP/AlGaInAs/InGaAsP-based all-active optical components

    DEFF Research Database (Denmark)

    Kulkova, Irina; Kadkhodazadeh, Shima; Kuznetsova, Nadezda;

    2014-01-01

    In this paper, we demonstrate the applicability of MOVPE butt-joint regrowth for integration of all-active InP/AlGaAs/InGaAsP optical components and the realization of high-functionality compact photonic devices. Planar high-quality integration of semiconductor optical amplifiers of various epi...... interface. In closest vicinity to the mask, the growth profile revealed a bent-up shape which is associated with an increase in the bandgap energy resulting from the combined effect of growth rate suppression and higher Ga concentration. This increase in bandgap energy makes the interface partially...

  18. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  19. Ultrasonic Nondestructive Testing of Superplastic Solid-State Welding Joint for Different Steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on quantitative microscopic examinations of welds and welding rate for different steels (40Cr and T10A) joint, which possess the ultra-fine microstructure after high frequency hardening (HFH) and salt-bath cyclic quenching (SCQ), the suitable defect grey scale threshold value was determined, and the welding rate of superplastic solid-state welding of different steels (40Cr and T10A steel) was systematically inspected and analyzed by means of self-made ultrasonic imaging inspection system. The experimental results showed that the superplastic solid-state weld of different steels can be inspected more accurately, reliably and quickly by this system, and the results were in good accordance with that of metallographic observation. The welding rate of superplastic welding is in linear relation with tensile strength of joint.

  20. Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Edward J.; Anderson, Michael T.

    2012-08-01

    This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in §50.55a.

  1. Residual stresses in welded structures

    International Nuclear Information System (INIS)

    The nature of residual stresses in welded structures is discussed in terms of their magnitude, directionality, spatial distribution, range and variability. The effects of the following factors on the residual stresses are considered: material properties, material manufacture, structural geometry, fabrication procedure, welding procedure, post-weld treatments and service conditions. Examples are given of residual stress distributions in plate butt welds, circumferential butt welds and weld cladding. These illustrate the different magnitudes and distributions of residual stress that can be found in different joint geometries, and demonstrate the effects of the mechanical, thermal and metallurgical properties of the constituent materials and the sensitivity of residual stresses to pass sequence and to the restraints applied during welding. Further examples for the common case of circumferential butt welds in pipes and pressure vessels are used to illustrate the extent of residual stresses as a function of distance from the weld and the effects of post-weld heat treatment. Measurements or analytical predictions of residual stresses are often subject to significant scatter or variability. This scatter may be due to systematic factors such as variability in measurement location or material properties, or to experimental error in measured data, erroneous assumptions in analytical modelling or unknown factors such as pre-existing residual stresses, inadequately documented welding or fabrication procedures or unrecorded local repairs. Improved prediction and reduction of uncertainty of residual stresses will require better recording of the whole manufacturing and service history of the welded structure and its component materials and better understanding and analysis of the many processes that may affect the residual stresses

  2. "Foreign material" to verify root fusion in welded joints

    Science.gov (United States)

    Kleint, R. E.

    1980-01-01

    Foil or thin wire at weld root is used to verify weld penetration. When weld is adequate, material mixes with weld and traces of it diffuse to weld crown. Spectroscopic analysis of samples identifies foreign material and verifies root has fused. Weld roots are usually inaccessible to visual inspection, and X-ray and ultrasonic inspection techniques are not always reliable. Good results are obtained with use of gold/nickel alloy.

  3. Chemical reactivity of thermo-hardenable steel weld joints investigated by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    The chemical reactivity of oxide-free weld joints made of thermo-hardened carbon steel in different electrolytes was investigated by chronopotentiometry, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The objective was to identify the role of different electrolyte constituents on the electrochemical behaviour of the different materials constituting the weld joint, namely the weld material, the heat affected zone (HAZ) and the base carbon steel. Hardness measurements by Vickers and nano-indentation techniques indicated that the weld material is harder than the heat affected zone and the base carbon steel due to a Widmanstaetten ferrite-type structure of the weld. Electrochemical measurements were performed on polished cross-sections on these weld joints in four electrolytes containing different additives. The weld joints are active in all tested electrolytes and the composition of the electrolytes dictates the dissolution even though the main chemical reactivity mechanism remains unaffected. A balanced presence of oxidative agent, inhibitor and HF in the electrolyte is necessary to obtain a homogeneous chemical attack on weld joint and Si-rich inclusion removal in weld material, while avoiding excessive attack roughening and/or pitting of the carbon steel

  4. Joint performance of CO2 laser beam welding 5083-H321 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Qi Junfeng; Zhang Dongyun; Xiao Rongshi; Chen Kai; Zuo Tiechuan

    2007-01-01

    Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam autogenous welding and wire feed welding are conducted on 4mm thick 5083-H321 aluminum alloy sheets at different welding variables. The mechanical properties and microstructure characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Experimental results indicate that both the tensile strength and hardness of laser beam welds are affected by the constitution of filler material, except the yield strength. The soften region of laser beam welds is not in the heat-affected zone (HAZ). The tensile fracture of laser beam welded specimens takes place in the weld zone and close to the weld boundary because of different filler materials. Some pores are found on the fracture face, including hydrogen porosities and blow holes, but these pores have no influence on the tensile strength of laser beam welds. Tensile strength values of laser beam welds with filler wire are up to 345.57MPa, 93% of base material values, and yield strengths of laser beam welds are equivalent to those of base metal (264.50MPa).

  5. Selected problems connected with execution of mixed welded joints of creep resistant steels

    International Nuclear Information System (INIS)

    Some problems of the Polish energetics were presented as well as new creep resistant steels used in power plant installations. The welding technology of mixed joints of the P91 steel with 10H2M, 13HMF and X20CrMoV 12.1 steels were discussed. Properties of welded joints made of the above mentioned steels were given and some problems connected with the execution of this joints were high-lighted. (author)

  6. Creep Rupture of Mismatched Welded Joints of Steels with Dissimilar Creep Strengths

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The finite element analysis of mismatched welded joints with a 30°groove angle was performed to study the mechanical behavior of DMWJs (dissimilar metal welded joints). It is concluded that the distribution of stress triaxiality in the DMWJs is uneven, especially near the fusion lines. The degree of creep strength mismatch has remarkable effect on the distribution. The higher the level of mismatch is, the more uneven the distribution is and the easier for premature failure to occur in the joint.

  7. Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy

    Science.gov (United States)

    Liu, Ting; Yan, Fei; Liu, Sang; Li, Ruoyang; Wang, Chunming; Hu, Xiyuan

    2016-06-01

    In this paper, laser-arc hybrid welding of 10 mm thick low-thermal-expansion superalloy GH909 components was carried out to obtain a joint with good performance. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum and other methodologies. The results showed that weld joints with a desirable wineglass-shaped weld profile can be obtained employing appropriate process parameters. The different grains in between the upper central seam and the bottom seam were associated with the temperature gradient, the pool's flow and the welding thermal cycle. MC-type carbides and eutectic phases (γ+Laves) were produced at grain boundaries due to the component segregation during the welding process. In addition, γ‧ strengthening phase presented in the interior of grains, which kept a coherent relationship with the matrix. The lowest hardness value occurred in the weld center, which indicated that it was the weakest section in the whole joint. The average tensile strength of the joints reached to 632.90 MPa, nearly 76.84% of the base metal. The fracture analysis revealed that the fracture mode of the joint was ductile fracture and the main reason for joint failure was as a result of the occurrence of porosities produced in the weld during the welding process.

  8. Improving the fatigue performance of longitudinal welded joints by low transformation temperature electrodes

    Institute of Scientific and Technical Information of China (English)

    王文先; 霍立兴; 王东坡; 张玉凤; 荆洪阳; 杨新岐

    2003-01-01

    For a longitudinal welded joint, the tensile residual stresses are as high as the yield stress of the metal, so that the weld toes are sensitive to fatigue load. In this case a low transformation temperature electrode (LTTE) is one of the most useful methods used to improve the fatigue strength of the longitudinal welded joint, because the tensile residual stress is reduced or changed into compressive stress. Three kinds of longitudinal welded joints were selected to conduct fatigue tests. The tests results show that the fatigue strengths at 2×106 cycles of the joints welded with LTTE were improved by 41%, 47% and 59% respectively compared with those of the joints welded with E5015, and the fatigue lives at 162 MPa were improved by 9.9 times, 9.6 times and 46.8 times respectively. Furthermore, the LTTE method is not necessary to add process after welding and so that it can be valuable method to improve the fatigue performance of longitudinal welded joints.

  9. Structure and properties of welded joints produced by pulsating and stationary arcs

    International Nuclear Information System (INIS)

    Comparison studies of the structure and properties of welded joints were carried out for the 245x45 mm pipeline made of the 15Kh1M1F steel and produced by manual welding with pulsating and stationary arcs. Service behaviour of welded joints was evaluated from the metal structure, cold resistance, fracture toughness and heat resistance. The manual welding by pulsating arc is shown to provide formation of 15Kh1M1F steel tube joints with more favourable structure and properties and also with higher cold resistance, deformability and heat resistance. High tempering (710-740 deg C, 3 h) is required for the welded joints produced both by pulsating and stationary arcs

  10. Embrittlement of welded joints of low-carbon maraging high-alloyed steels

    International Nuclear Information System (INIS)

    The causes of crack formation in the multilayer maraging welded joints of the 08Kh15N5D2T steel after thermal recycle of argon-arc welding are investigated. It was determined that brittle delayed damage is observed to occur in places of extended residual welded stresses as a result of the increase of hydrogen content in the metaljoint. In the heat affected zone hydrogen redistribution takes place under the effect of welded thermal cycle and after full joint cooling as well

  11. Fatigue of welded joint in a stainless steel AISI 304 L

    International Nuclear Information System (INIS)

    The flexion fatigue behavior for the base metal and welded joint of an AISI 304 L stainless steel type, used in the Angra-1 reactor, was determined. An automatic welding process was used with improved procedures in order to assure better welding metallurgy. Fatigue tests samples reinforcements were done to allow the evaluation of metallurgical variables, specially the role played by delta ferrite. The resulting welded joint showed better fatigue life than the base metal. Delta ferrite was found to play an important role on the initiation and propagation processes of the fatigue cracks. (Author)

  12. The local heat treatment technology for not easily accessible welded joints of sodium-conducting pipes in nuclear power stations

    International Nuclear Information System (INIS)

    Experimental works results in local heat treatment of not easily accessible welded joints for the nuclear power stations sodium-conducting pipes using flexible wired resistance heaters are described. Vertical welded joints 820x13, 630x13, 219x10 and 245x11 were studied. It was found out that for the tubes welded joints 219x10 and 245x11mm the normal process of austenization without reflectors inside the welded joint is achieved under heating by means of one electric heater. It was suggested that the electric heater capacity should be increased for tubes welded joints 820x13 and 630x13 mm

  13. Single-sided laser beam welding of a dissimilar AA2024–AA7050 T-joint

    International Nuclear Information System (INIS)

    Highlights: • Single-sided laser beam welding of a dissimilar AA2024–AA7050 T-joint was realised. • For this purpose a fibre laser with high power and a large beam diameter was used. • Porosity-free weld seams with low penetration into the skin material were achieved. • The mechanical properties are comparable to that of double-sided welded T-joints. - Abstract: In the aircraft industry double-sided laser beam welding of skin–stringer joints is an approved method for producing defect-free welds. But due to limited accessibility – as for the welding of skin–clip joints – the applicability of this method is limited. Therefore single-sided laser beam welding of T-joints becomes necessary. This also implies a reduction of the manufacturing effort. However, the main obstacle for the use of single-sided welding of T-joints is the occurrence of weld defects. An additional complexity represents the combination of dissimilar and hard-to-weld aluminium alloys – like Al–Cu and Al–Zn alloys. These alloys offer a high strength-to-density ratio, but are also associated with distinct weldability problems especially for fusion welding techniques like laser beam welding. The present study demonstrates how to overcome the weldability problems during single-sided laser beam welding of a dissimilar T-joint made of AA2024 and AA7050. For this purpose a high-power fibre laser with a large beam diameter is used. Important welding parameters are identified and adjusted for achieving defect-free welds. The obtained joints are compared to double-sided welded joints made of typical aircraft aluminium alloys. In this regard single-sided welded joints showed the expected differing weld seam appearance, but comparable mechanical properties

  14. Low-cycle fatigue of welded joints of alloy AMg5

    International Nuclear Information System (INIS)

    The authors study the low-cycle fatigue of welded joints of aluminum alloy AMg5 in order to determine the cyclic strength coefficient of welded seams. Tests were carried out on cylindrical specimens of the parent metal, welded specimens, and models of welded vessels. The average values of mechanical properties of the specimens and the parent metal are shown. It is shown that when designing welded vessels of aluminum alloy AMg5, the permissible amplitudes of conventional compressive stresses are recommended to be determined as the lower of the two values calculated using the equations presented

  15. Numerical and Experimental Evaluation on the Residual Stresses of Welded Joints

    Science.gov (United States)

    Huh, Sun Chul; Park, Wonjo; Yang, Haesug; Jung, Haeyoung; Kim, Chuyoung

    Wings for the defense industry such as fighters, missiles, and rockets should show no deformation or damage on the structure. The structures of existing wings had holes for weight reduction. The plates and frames were fixed with rivets or screws, which limited the weight reduction possible. In this study, an improvement was made in jointing methods through EB welding and laser welding. Welding strength was measured through tension testing. In addition, finite element analysis was performed for the welding process so as to deduce the optimum welding condition.

  16. Ultrasonic inspection of the brazed joint and explosive welds used to repair the PFR evaporators

    International Nuclear Information System (INIS)

    A small number of in-service failures associated with the steam-tube to tube-plate welds of the PFR evaporators led to the decision to protect the welds by sleeving. The philosophy was to insert a sleeve through the tube-plate and into the steam tube, thus bridging the existing weld. The top portion of the sleeve was to be explosively welded to the zone adjacent to the top face of the tube-plate and the lower portion brazed into the steam tube. This paper deals with the development and use of ultrasonics to test both the brazed and explosively welded joints

  17. The non-destructive examination of butt-fillet tube-to-tubeplate welds for sodium-heated steam generators

    International Nuclear Information System (INIS)

    The paper describes the inspection techniques which have been developed at Risley Nuclear Laboratories over the last decade for the tube-to-tubeplate welds in the sodium heated evaporator units of the Prototype Fast Reactor at Dounreay, Caithness, Scotland. These techniques include radiography for the fabrication inspection, magnetic crack detection for failure investigations and ultrasonic inservice inspection techniques. A computerised data recording system is also described for the inservice inspection techniques. (author)

  18. Integrity of Polymethylmethacrylate (PMMA) Chemically Welded Joints Examined

    Science.gov (United States)

    Lerch, Bradley A.; Thesken, John C.; Bunnell, Charles T.; Kurta, Carol E.; Sydenstricker, Mike

    2005-01-01

    NASA Glenn Research Center s Capillary Flow Experiments (CFE) program is developing experiment payloads to explore fluid interfaces in microgravity on the International Space Station. The information to be gained from the CFE is relevant to the design of fluid-bearing systems in which capillary forces predominate, for example in the passive positioning of liquids in spacecraft fuel tanks. To achieve the science goals of CFE, Glenn researchers constructed several types of experiment vessels. One type of vessel, known as the interior corner flow (ICF), will be used to determine important transients for low-gravity liquid management in a two-phase system. Each vessel has a cylindrical fluid reservoir connected to each end of the test chamber by internal transport tubes, each with a quarter-turn shutoff valve (see the following photograph). These multipiece vessels are made from polymethylmethacrylate (PMMA) because of its excellent optical properties (i.e., the fluids can be observed easily in the vessel). Because of the complexity of certain vessels, the test chamber had to be manufactured in pieces and welded chemically. Some past experience with adhesive bonded plastic showed that the experiment fluid degraded the adhesive to the point of failure. Therefore, it was necessary to see if the fluid also degraded the chemically welded PMMA joints.

  19. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    OpenAIRE

    Lisiecki A.; Burdzik R.; Siwiec G.; Konieczny Ł.; Warczek J.; Folęga P.; Oleksiak B.

    2015-01-01

    Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, espe...

  20. Fatigue crack propagation properties on corrosion resistant welded joints

    International Nuclear Information System (INIS)

    Fatigue crack growth resistance properties are obtained through fatigue crack propagation tests. The results, obtained from a log-log plot presents three regions: region I, where the microstructure, mean stress and environment have a high influence. Region II, that presents a linear behavior and region III where the material reaches the fracture toughness and results in an instable fracture. In this work it is studied the behavior of corrosion resistant USI SAC 50 steel welded joints, using compact tension specimens with notch localized on the base metal, heat affected zone and melted zone. It is obtained stable crack propagation equations type Paris equation for the region II, with 95% confidence limit. It is observed that the heat-affected zone presents a major scatter. (authors)

  1. Ultrasonic testing of pressure contact welded joints of heterogeneous tubes

    International Nuclear Information System (INIS)

    A method of ultrasonic testing of welded joints of tubes of heterogeneous 12Kh1MF and 1Kh18N12T steels is described. The tubes are 32 to 57 mm in diameter with the walls 4 to 6 mm thick. A prism of a serial inclined converter rated at 5 MHz has been used for testing. The testing has been conducted by a singly - and doubly reflected beam at the incident angle of 50 deg. The sensitivity margin of the converter is 35 dB at a 6 to 9 dB signal/noise ratio. 25 specimens have been tested. The test results have shown that amplide of echosignal in a defective sample is by 2 dB higher as compared with the reference signal. Criteria according to which a sample is considered to be defective are given

  2. Hydrogen effect on properties of welded joints of pipes made of nickel-free corrosion resistant steels

    International Nuclear Information System (INIS)

    The dependence between hydrogen saturation of 08Kh18T1 steel welded joints and metal ductility has been found. It is shown that one of the main reasons of cracks formation in welded joints of 08Kh18T1 steel pipes is hydrogen embrittlement. Facilities for improved protection of welding pool and cooled off joint of gas saturation from atmosphere in manufacturing welded pipes of small diameter are developed

  3. A repair process for an heterogenous welded joint between a nuclear reactor component tube and a pipe

    International Nuclear Information System (INIS)

    The repairing process involves cutting a tubular section of the tube and the pipe, which includes the welded joint, and preparing an austenitic stainless steel tubular section for substitution; the section is then narrow-joint welded with the low-alloy steel tube, and finally welded to the austenitic stainless steel pipe. Application to repairing a welded joint between a PWR pressurizer tube and the expansion pipe of the pressurizer. (authors). 7 refs., 3 figs

  4. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  5. Characterization of laser weld joints in ASTM A387 grade 91 steel

    International Nuclear Information System (INIS)

    Laser welding is a high power - density joining process; well known for its deep penetration, narrow heat affected zone and negligible joint distortion and therefore, it facilitates fabrication of complex structures. ASTM A387 Grade 91 steel is a ferritic/martensitic steel (FMS), which is widely used in super critical thermal power plants as steam generator material. This is also a potential candidate for fast breeder reactor clad material and also forms the basis for development of reduced activation ferritic/martensitic steel (RAFMS), which is an accepted material for fabrication of Test Blanket Material (TBM) for International Thermonuclear Experimental Reactor (ITER). Joining of this material for fabrication of steam generator is routinely done using conventional welding techniques like TIG, SMAW etc. However, there are many limitations associated with conventional welding techniques due to martensitic transformation of this material while cooling, multiple pass requirements, higher heat input, distortion and soft inter-critical microstructure. Besides, there are geometrical constraints associated with conventional welding processes when it comes to fabricate complex structures with limited access to the joint line. Laser welding is a potential solution to overcome most of these limitations; however, not much work has been reported on laser welding of this material. This paper presents detailed analysis and discussion of the microstructural evolution during laser welding and PWHT of the weld joint and also correlates the same with the experimentally measured mechanical properties of the weld joints

  6. Qualification of electron-beam welded joints between copper and stainless steel for cryogenic application

    Science.gov (United States)

    Lusch, C.; Borsch, M.; Heidt, C.; Magginetti, N.; Sas, J.; Weiss, K.-P.; Grohmann, S.

    2015-12-01

    Joints between copper and stainless steel are commonly applied in cryogenic systems. A relatively new and increasingly important method to combine these materials is electron-beam (EB) welding. Typically, welds in cryogenic applications need to withstand a temperature range from 300K down to 4K, and pressures of several MPa. However, few data are available for classifying EB welds between OFHC copper and 316L stainless steel. A broad test program was conducted in order to qualify this kind of weld. The experiments started with the measurement of the hardness in the weld area. To verify the leak-tightness of the joints, integral helium leak tests at operating pressures of 16 MPa were carried out at room- and at liquid nitrogen temperature. The tests were followed by destructive tensile tests at room temperature, at liquid nitrogen and at liquid helium temperatures, yielding information on the yield strength and the ultimate tensile strength of the welds at these temperatures. Moreover, nondestructive tensile tests up to the yield strength, i.e. the range in which the weld can be stressed during operation, were performed. Also, the behavior of the weld upon temperature fluctuations between room- and liquid nitrogen temperature was tested. The results of the qualification indicate that EB welded joints between OFHC copper and 316L stainless steel are reliable and present an interesting alternative to other technologies such as vacuum brazing or friction welding.

  7. THE INFLUENCE OF CURRANT MMA WELDING ON THE TENSILE STRENGHT OF JOINT

    Directory of Open Access Journals (Sweden)

    Piotr Penkała

    2014-03-01

    Full Text Available Welding with coated electrodes is still growing method of joining metals in construction machinery. If the electrodes are properly selected and current welding can weld materials in a wide range of geometric dimensions and species. With carefully selected ingredients one can introduce additional elements to the welded material and the joint during welding. An important issue in the electric welding is a welding current selection, depending on the thickness of the electrode and material thickness. The use of too low operating current cause instability and inadequate mechanical properties of the weld, resulting from insufficient melting of the material combined. Too high operating current results in the weld metal spraying and thermal overload of the electrode. For welding samples that were used to test the strength of the electrode used ESAB OK. 46.00 a diameter of 3.2 mm. Product of the company will provide a range of welding current ranging from 80 A to 150 A. The samples were welded currents amounting to 90 A, 115 A and 150 A. Due to problems with arc ignition and its instability is not made ​​of welded samples current of 80 A.

  8. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  9. Fracture toughness of welded joints of a high strenghth low alloy steel

    International Nuclear Information System (INIS)

    The fracture toughness of welded joints of a high strength low alloy atmospheric corrosion resistant steel was investigated. The welded joints were produced using the manual metal arc welding process and fracture toughness was evaluated by the COD method. An effort was made in order to correlate the microstructure of the different regions of the welded joints and their critical COD values. The results appear to indicate that when the structure of the heat affected zone is formed mainly by bainite and ferritic grains the fracture toughness tends to increase. Also, an increase on the amount of acicular ferrite on the weld metal tends to improve its fracture toughness. The fusion boundary showed a structure formed mainly by bainite and ferrite grains and its fracture toughness was higher than that of the parent metal at room temperature whereas it was lower at 00C. Both at 00C and room temperature the fracture toughness of the weld metal was better than those of the other regions of the welded joints. The correlations between critical values of COD and the microstructures of the different regions of the welded joints were very difficult. (Author)

  10. A study on end-cap end-plate spot weld joint detachment

    International Nuclear Information System (INIS)

    Detachment of end-cap/end-plate spot weld joints have been reported in the PHWR fuel bundles during their service in the reactor as well as during wet and dry storage of spent fuels. A fuel assembly received for Post Irradiation Examination (PIE) had three fuel pins detached from their end-plate at the spot weld joints. One fuel bundle from MAPS-2 had shown a crack in the rib of end-plate. The detailed metallographic investigation was carried out to ascertain the cause of such spot weld detachment. An attempt has also been made to ascertain residual stresses present in the end-cap/end-plate spot weld joints in the as fabricated fuel bundles. Surface profile of the welded end-plate showed noticeable deformation in between the welds and at the junction of long radial rib and the inner ring which produces tensile bending stresses. Apart from the hydrogen concentration, residual stress present in the spot weld joint play a significant role in promoting the failure process. Delayed hydride cracking (DHC) has been identified as the cause of detachment of spot weld joints as well as cracking the ribs of end-plate. Possible solution for avoiding such type of failure has been brought out in the paper

  11. Welding technology R and D on port joint of JT-60SA vacuum vessel

    International Nuclear Information System (INIS)

    Highlights: ► Mock-up of the upper vertical, most difficult port, is successfully weld-jointed. ► Quality as the product joint and the controllability of the manipulator are assured. ► Perspectives to the other ordinary port joints are discussed through this R and D. -- Abstract: This paper focuses on one of the JT-60SA vacuum vessel manufacturing R and D, onsite welding technology of the port joint. The work space is limited inside the vessel, and manipulator application is examined through the simulation and the mock-up trial. As a result, the most difficult port of the upper vertical is successfully weld-jointed. The quality as the product joint and the controllability of the manipulator are assured and perspectives to the other ordinary port joints are discussed with issues gained from this R and D

  12. Friction stir welding (FSW of aluminium foam sandwich panels

    Directory of Open Access Journals (Sweden)

    M. Bušić

    2016-07-01

    Full Text Available The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and flexural strength for three-point bending test have been determined for samples taken from the welded joints. Results have confirmed anticipated effects of independent variables.

  13. Laser spot welding of cobalt-based amorphous foils dependence of the quality of the joint on the welding regime

    International Nuclear Information System (INIS)

    The intensity of the shear strength was chosen as an indicator for the quality of the joint performed by laser spot welding of cobalt-based amorphous foils. The shearing force is defined as depending of the most important laser welding parameters: U, tp and Def, The modeling of the dependence was performed by a regressive analysis of the achieved results of one planned three factors central composition orthogonal plan of second degree. (Author)

  14. Investigation of flux-powder wire’s components-stabilizers on welding and technological properties in underwater welding

    OpenAIRE

    КАХОВСЬКИЙ М.Ю.; Максимов, С. Ю.

    2015-01-01

    Based on long-term experience of welding by mechanized flux-cored wires, the E.O. Paton Electric Welding Institute investigated a self-protecting flux-cored wire for wet underwater welding of stainless steels type 18-10. It allows to perform welding of butt, fillet and overlapped joints in flat and vertical positions of high-alloy corrosion-resistant steels type of 18-10 (AISI 304L, 308L, 347 and 321). The article presents results of development of welding-repair technology using self-shielde...

  15. Macrostructural and microstructural features of 1 000 MPa grade TRIP steel joint by CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Wang Wenquan; Sun Daqian; Kang Chungyun

    2008-01-01

    Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructural features of the welded joint were investigated. The increase of welding speed reduced the width of the weld bead and the porosities in the weld bead resulting from the different flow mode of melted metal in weld pool. The decrease of welding power or use of shield gas of helium also contributed to the reduction of porosity in the weld bead due to the alleviation of induced plasma formation, thus stabilizing the keyhole. The porosity formation intimately correlated with the evaporation of alloy element Mn in the base metal. The laser welded metal had same martensite microstructure as that of water-quenched base metal. The welding parameters which increased cooling rate all led to fine microstructures of the weld bead.

  16. Precipitation of Niobium Boride Phases at the Base Metal/Weld Metal Interface in Dissimilar Weld Joints

    Science.gov (United States)

    Výrostková, Anna; Kepič, Ján; Homolová, Viera; Falat, Ladislav

    2015-07-01

    In this work, the analysis of failure mechanism in the heat affected zone is described in dissimilar weld joints between advanced martensitic steel T92 and Ni-base weld metal. The joints were treated with two different post-weld heat treatments and tested. For the creep, tensile, and Charpy impact tests, the samples with interfacially located notch were used. Moreover long term aging at 625 °C was applied before the tensile and notch toughness tests. Decohesion fractures ran along carbides at the T92 BM/WM interfaces in case of the modified PWHT, whereas type IV cracking was the prevailing failure mechanism after the classical PWHT in the creep test. In the notch tensile and Charpy impact tests, with the notch at T92 base metal/weld metal interface, fractures ran along the interface with a hard phase on the fracture surface along with the ductile dimple and brittle quasi-cleavage fracture. The phase identified as niobium boride (either NbB and/or Nb3B2) was produced during welding at the end of the solidification process. It was found in the welds regardless of the post-weld heat treatment and long-term aging.

  17. Estimation of creep life of thick welded joints using a simple model. Creep characteristics in thick welded joint and their improvements. 2

    International Nuclear Information System (INIS)

    The information of the creep behavior of the thick welded joint is very important to secure the safety of the elevated temperature vessels like the nuclear reactors. The creep behavior of the thick welded point is very complex, thence it is difficult to practice the experiment or the theoretical analysis. A simple accurate model for theoretical analysis was developed in the first study. The simple model is constructed of several one-dimensional finite elements which can analyze three-dimensional creep behavior under a assumption. The model is easy to treat, and needs only a little labor and computation time to simulate the creep curve and local strain of the thick welded joint. In this second study, the capability of the model is expanded to estimate the creep life of the thick welded joint. New model can easily estimate the time of the rupture of the thick welded joint. It is verified comparing the result with the experimental one that the model can accurately predict the creep life. The histories of the local strains to the rupture time may be observed in the simulation by using the model. The information will be useful to improve the creep characteristics of the joints. (author)

  18. Fracture toughness of narrow-gap welded joints in the nuclear pressure vessel steel 22 NiMoCr 37

    International Nuclear Information System (INIS)

    The mechanical testing of narrow-gap welded joints in 100 and 200 mm thick sections of the steel 22 NiMoCr 37 has revealed that the weld metal, and not the heat affected zone (HAZ) or the weld metal-parent metal boundary, is the critical region. This modified gas-shielded welding process operates with a very low heat input of the order of 6.500 Jcm-1pass-1 and the combination of small diameter welding wires and high welding speeds contributes to the excellent joint properties in the as-welded condition. (Auth.)

  19. Corrosion Behavior of Welded Joints of Al-6Mg Alloy with Trace Scandium Addition

    Institute of Scientific and Technical Information of China (English)

    Wang Yue

    2004-01-01

    Al-6Mg alloy with trace Sc addition was prepared by means of melting-casting.The samples of the welded joints of Al-6Mg alloy with trace Sc addition were made by method of manual argon-arc welding.Neutral salt spray test was carried out by referring to GB/T10125-1997 and GB6384-1986 practice.Exfoliation testing was carried out in accordance with the method of Al-Mg alloy exfoliation corrosion test.The corrosion behaviors of the welded joints of AlMg alloy with high level of Mg and trace Sc addition were studied.The microstructures of the welded joints were observed by using optical microscope and transmission electron microscope.The corrosion resistance mechanism of the alloy was also involved.This work intended to determine if the welded joints of Al-6Mgalloy with trace Sc addition can have excellent corrosion resistance, when their strength are clearly improved.The results show that trace content of Sc refines the grains of alloys effectively, raises remarkably the corrosion resistance of the welded joints of Al-6Mg alloy with trace Sc addition.The corrosion resistance mechanisms are that there is free of continuous grain boundary precipitation or network which could be susceptible to corrosion in the microstructure of welded joints.

  20. Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy

    Science.gov (United States)

    Yu, J.; Gou, G.; Zhang, L.; Zhang, W.; Chen, H.; Yang, Y. P.

    2016-07-01

    Stress corrosion cracking is one of the major issues for welded joints of 6005A-T6 aluminum alloy in high-speed trains. High residual stress in the welded joints under corrosion results in stress corrosion cracking. Ultrasonic impact treatment was used to control the residual stress of the welded joints of 6005A-T6 aluminum alloy. Experimental tests show that ultrasonic impact treatment can induce compressive longitudinal and transverse residual stress in the welded joint, harden the surface, and increase the tensile strength of welded joints. Salt-fog corrosion tests were conducted for both an as-welded sample and an ultrasonic impact-treated sample. The surface of the treated sample had far fewer corrosion pits than that of the untreated sample. The treated sample has higher strength and lower tensile residual stress than the untreated sample during corrosion. Therefore, ultrasonic impact treatment is an effective technique to improve the stress corrosion cracking resistance of the welded joints of 6005A-T6 aluminum alloy.

  1. Characterization on strength and toughness of welded joint for Q550 steel

    Indian Academy of Sciences (India)

    Jiang Qinglei; Li Yajiang; Wang Juan; Zhang Lei

    2011-02-01

    Q550 high strength steel was welded using gas shielded arc welding and three different welding wires without pre- or post-heat treatments. The paper investigates the influence of welding wire on the microstructure, tensile strength and impact toughness of Q550 steel weld joints. Results showed that the microstructure of the weld metal of joints produced using ER50-6 wire was a mixture of acicular ferrite and grain boundary ferrite including pro-eutectoid ferrite and ferrite side plate. Acicular ferrite was mainly obtained in the weld metal of the joints produced using MK.G60-1 wire. Pro-eutectoid ferrite was present along the boundary of prior austenite. Crack initiation occurred easily at pro-eutectoid ferrite when the joint was subjected to tensile. Tensile strength and impact toughness were promoted with increasing acicular ferrite. Tensile strength of the joint fabricated using MK.G60-1 wire was close to that of base metal. And tensile samples fractured at location of the fusion zone, which had lower toughness and thus became the weak region in the joint. Impact absorbing energy was the highest in the heat affected zone. Fibrous region in fracture surfaces of impact specimens was characterized as transgranular fracture with the mechanism of micro-void coalescence. Acicular ferrite microstructure region corresponded to relatively large dimples while boundary ferrite microstructure corresponded to small dimples.

  2. Multi-objective optimization of weld geometry in hybrid fiber laser-arc butt welding using Kriging model and NSGA-II

    Science.gov (United States)

    Gao, Zhongmei; Shao, Xinyu; Jiang, Ping; Wang, Chunming; Zhou, Qi; Cao, Longchao; Wang, Yilin

    2016-06-01

    An integrated multi-objective optimization approach combining Kriging model and non-dominated sorting genetic algorithm-II (NSGA-II) is proposed to predict and optimize weld geometry in hybrid fiber laser-arc welding on 316L stainless steel in this paper. A four-factor, five-level experiment using Taguchi L25 orthogonal array is conducted considering laser power ( P), welding current ( I), distance between laser and arc ( D) and traveling speed ( V). Kriging models are adopted to approximate the relationship between process parameters and weld geometry, namely depth of penetration (DP), bead width (BW) and bead reinforcement (BR). NSGA-II is used for multi-objective optimization taking the constructed Kriging models as objective functions and generates a set of optimal solutions with pareto-optimal front for outputs. Meanwhile, the main effects and the first-order interactions between process parameters are analyzed. Microstructure is also discussed. Verification experiments demonstrate that the optimum values obtained by the proposed integrated Kriging model and NSGA-II approach are in good agreement with experimental results.

  3. Tensile Fracture Location Characterizations of Friction Stir Welded Joints of Different Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Huijie LIU; Hidetoshi FUJII; Masakatsu MAEDA; Kiyoshi NOGI

    2004-01-01

    The tensile fracture location characterizations of the friction stir welded joints of the AA1050-H24 and AA6061-T6Al alloys were evaluated in this study. The experimental results show that the fracture locations of the joints are different for the different Al alloys, and they are affected by the FSW parameters. When the joints are free of welding defects, the AA1050-H24 joints are fractured in the HAZ and TMAZ on the AS and the fracture parts undergo a large amount of plastic deformation, while the AA6061-T6 joints are fractured in the HAZ on the RS and the fracture surfaces are inclined a certain degree to the bottom surfaces of the joints. When some welding defects exist in the joints, the AA1050-H24 joints are fractured on the RS or AS, the AA6061-T6 joints are fractured on the RS, and all the fracture locations are near to the weld center. The fracture locations of the joints are dependent on the internal structures of the joints and can be explained by the microhardness profiles and defect morphologies of the joints.

  4. First industrial application of MAG STT welding with auto adaptative joint control

    International Nuclear Information System (INIS)

    The Welding Institute has participated to an extraordinary plan: the manufacture of the new LHC (Large Hadron Collider) particles accelerator in a circular tunnel of 27 km of circumference, at the European laboratory for particles physics (CERN) located at the Franco-Swiss frontier. The LHC dipolar magnets wires constituted in semi-cylinders of 15 m length in 316 LN, thickness 10 mm, are assembled in horizontal-vertical position. The Welding Institute has developed a software allowing to implement the auto-adaptative welding with follow of laser joint, using the MAG STT (Surface Tension Transfer) process. The modeling of welding laws connected with the strategy of joints filling runs (in multi-passes), absorb the physical tolerances of the preparation (clearance, poor alignment, root of joint...) and this in welding dynamical condition. (O.M.)

  5. Investigation of Fatigue Crack Propagation in Spot-Welded Joints Based on Fracture Mechanics Approach

    Science.gov (United States)

    Hassanifard, S.; Bonab, M. A. Mohtadi; Jabbari, Gh.

    2013-01-01

    In this paper, fatigue crack propagation life of resistance spot welds in tensile-shear specimens is investigated based on the calculation of stress intensity factors and J-integral using three-dimensional finite element method. For comparison, experimental works on 5083-O aluminum alloy spot-welded joints have been carried out to verify the numerical predictions of fatigue crack propagation of welded joints. A lot of analyses have been performed to obtain stress intensity factors and J-integral in tensile-shear specimens of spot-welded joints by using commercial software ANSYS. These gathered data have been formulated by using statistical software SPSS. The results of fatigue propagation life and predicted fatigue crack path revealed very good agreement with the experimental fatigue test data and photograph of cross-section of the fatigued spot-weld specimens.

  6. Ultrasonic depth-sizing errors of crack-like defects in saddle-shaped weld joints

    International Nuclear Information System (INIS)

    In order to determine crack depth in primarily loop recirculation (PLR) piping of boiling water reactors, ultrasonic angle beam testing using time of flight measurement of the diffracted signal from the crack tip, is employed. There are some power stations in Japan having saddle-shaped weld joints at branch connections in PLR piping. If the angle beam testing is applied without considering curvature of saddle-shaped weld joints, unlike weld joints of straight piping, it can be predicted that determined depth by the typical technique mentioned above contains a geometrical error due to the curvature. This issue has never been discussed in welds of branch connections. This paper deals with this issue with a mockup and phased array inspection system. As a result, the geometrical error is negligibly small in comparison to underlying depth-sizing errors of stress corrosion cracks in authentic stainless steel welds. (author)

  7. Microstructure of Aluminum/Glass Joint Bonded by Ultrasonic Wire Welding

    Science.gov (United States)

    Iwamoto, Chihiro

    2013-11-01

    An Al/glass joint created by using ultrasonic welding was analyzed by means of multiscale observation techniques. A cross-sectional analysis of the microstructure revealed that a directly joined interface without reaction phases formed at the periphery of a round joined region. The size of Al grains markedly decreased after ultrasonic welding and some subgrains were observed along the interface. The finer Al grains observed around the periphery of the joined interface showed active plastic flow that promoted welding.

  8. Modelling of ultrasonic impact treatment (UIT) of welded joints and its effect on fatigue strength

    OpenAIRE

    K.L. Yuan; Sumi, Y.

    2015-01-01

    Ultrasonic impact treatment (UIT) is a remarkable post-weld technique applying mechanical impacts in combination with ultrasound into the welded joints. In the present work, a 3D simulation method including welding simulation, numerical modelling of UIT-process and an evaluation of fatigue crack growth has been developed. In the FE model, the actual treatment conditions and local mechanical characteristics due to acoustic softening are set as input parameters. The plastic deformat...

  9. Study of residual stresses in welded joints using the blind hole drilling method

    OpenAIRE

    Lyaturinsky, V. О.; Sidorenko, M. V.

    2015-01-01

    In today's production of cranes’ welded structures objective information about the state of residual stresses after welding is needed. The greatest residual stresses (RS) in combination with a high propensity to ruin have heat-affected zones (HAZ) of welded joints. The calculated as well as experimental determination of RS in these areas is difficult. Purpose. The purpose of this article is selection, adaptation and further improvement of the methodology for RS determining in the HAZ of crane...

  10. Friction Stir Spot Welding: A Review on Joint Macro- and Microstructure, Property, and Process Modelling

    OpenAIRE

    Yang, X.W.; Fu, T; Li, W. Y.

    2014-01-01

    Friction stir spot welding (FSSW) is a very useful variant of the conventional friction stir welding (FSW), which shows great potential to be a replacement of single-point joining processes like resistance spot welding and riveting. There have been many reports and some industrial applications about FSSW. Based on the open literatures, the process features and variants, macro- and microstructural characteristics, and mechanical properties of the resultant joints and numerical simulations of t...

  11. Increase of the Reproducibility of Joints Welded with Magnetic Pulse Technology Using Graded Surface Topographies

    OpenAIRE

    Rebensdorf, A.; Boehm, S

    2016-01-01

    The reproducibility of individual welding methods depends to large extents on the material properties. This is especially the case for impact welding as tests have shown that the surface properties influence the joint formation. With the aim to influence the formation and position of the lower curve of the welding process window, this paper focuses on how the surface topography influences an asymmetrical impact. Additionally, relevant process parameters (e.g. collision speed, c...

  12. USING TEMPERATURE TRACES IN NON-DESTRUCTIVE DIAGNOSTICS OF RESIDUAL STRESSES OF WELDED JOINTS

    OpenAIRE

    Popov Aleksandr Leonidovich; Kurov Dmitriy Andreevich

    2012-01-01

    Diagnostics of residual welding stresses based on the layout of temperature traces that (i) characterize isothermals of maximal temperatures within a thermal cycle of welding and (ii) are retained on the metal surface of a welded joint represents a prospective trend of non-destructive methods of control of residual stresses. The traces to be examined include both natural (temper colours and fusion boundaries) and artificial traces formed on the metal surface in the course of fusio...

  13. Application of narrow groove welding process to nuclear pipes

    International Nuclear Information System (INIS)

    Experiments on narrow groove welding with a single string bead deposition per layer were performed using automatic orbital TIG welding equipment, and the narrow groove shape and welding conditions were optimized for stainless steel and carbon steel pipes. The characteristics of narrow groove weld joints of these materials were investigated in the areas of metallurgical structure and mechanical properties. The process of one bead per layer was found to produce a good homogeneous weld and the total weld has the same micro structure between two regular fusion lines and, therefore, uniform mechanical properties. Based on these test results, the narrow groove welding process was applied to butt weld joints for austenitic stainless steel pipe with a large diameter. (author)

  14. The lean duplex stainless steel welded joint after isothermal aging heat treatment

    Directory of Open Access Journals (Sweden)

    Z. Brytan

    2013-03-01

    Full Text Available Purpose: The purpose of this paper is the microstructural evaluation of the lean duplex stainless steel UNS S32101 (EN 1.4162 welded joints after isothermal aging heat treatment at 650°C. The scanning electron microscopy (SEM and electron backscatter diffraction (EBSD was applied in the microstructural analysis.Design/methodology/approach: The welding joints were produced using the metal active gas (MAG method where the filler metal was in wire form grade Avesta LDX 2101. During the process a shielding gas mixture of Ar + 2.5% CO2 was applied and as a forming gas pure technical argon was used.Findings: The welded joint in the as-welded condition shows Cr2N nitride precipitation in the HAZ, while isothermal aging at 650°C for 15 min causes further precipitation of nitrides, both in the parent metal, as well as in the HAZ and the weld area. Increasing the aging time at this temperature to 90 min causes the formation of numerous nitrides at the grain boundaries of austenite and ferrite and nitride precipitation inside ferritic grains in each zone of the welded joint.Research limitations/implications: The electron backscatter diffraction of particular zones of the welded joints considered only austenite and ferrite and their character was evaluated, while small precipitates like chromium nitrides were omitted in this study and will be evaluated in the further work.Originality/value: Sometimes the production cycle involves the heat treatment of welded components made of lean duplex stainless steel. In such situations the additional heating of the welds and heat affected zone can produce carbides, nitrides or sigma phase precipitation - the extent of which depends on the temperature and time of heat treatment. These issues are widely reported in relation to the base material but not when considering welded joints, which may behave differently

  15. Joint performance of laser-TIG double-side welded 5A06 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-bin; MIAO Yu-gang; LI Li-qun; WU Lin

    2009-01-01

    The influence of welding parameters on mechanical properties and microstructure of the welds of laser-TIG double-side welded 5A06 aluminum alloy was investigated. The results show that the weld cross-sectional shape has an intimate relation with the mechanical properties and microstructure of the welds. The symmetrical "X" cross-section possesses a relatively higher tensile strength and elongation than the others, about 91% and 58% of those of base metal, respectively. The good weld profiles and free defects are responsible for the improvement of tensile properties. Due to low hardness of the fusion zone, this region is the weakest area in the tensile test and much easier to fracture. The loss of Mg element is responsible for the decrease of mechanical properties of the joints. The microstructure of "X" cross-section has an obvious difference along the direction of weld depth, and that of the "H" cross-section is consistent and coarse.

  16. Optimization of parameters and study of joint microstructure of resistance spot welding of magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Wang Yarong; Zhang Zhongdian; Li Dongqing

    2006-01-01

    Experimental investigations on the DC spot welding of Mg alloy AZ31B are presented. Experiments are carried out to study the influence of spot welding parameters (electrode force, welding heat input and welding time) on the tensile shear load and the diameter of nugget, based on an orthogonal test and analysis method. The optimum parameters are as follows:electrode force is 2 000 N, welding heat input is 80% and welding time is 6 cycles. The microstructure of spot weld is single fine equiaxed crystals in the nugget, of which the structure is β-Mg17Al12 precipitated on α-Mg boundaries induced by nonequilibrium freezing. And the surface condition of the workpiece has great influence on the joint quality.

  17. Crack initiation and propagation in welded joints of turbine and boiler steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Low cycle fatigue (LCF) tests have been performed at 300 and 565 degrees C on welded joints and on microstructures to be found in or near welded joints in a low alloy ferritic steel 0.5 Cr, 0.5 Mo, 0.25 V. The difference in lifetimes between the 300 degrees C and 565 degrees C tests was small comparing the same microstructures and strain ranges, although the stress amplitude was greater at 300 degrees C. Under constant stress conditions the fatigue life depended on the fatigue life of the parent metal but under constant strain conditions the lifetime was governed by that of the bainitic structures. Strain controlled LCF tests have been performed at 750 degrees C on welded joints in the austenitic steel AISI 316 and on different parent and weld metals used in these joints. In continuously cycled samples all cracks were transgranular and initiated at the surface; hold-time samples displayed internally initiated intergranular cracking in the weld metal. Under constant strain conditions the 316 parent and weld metals exhibited similar lifetimes. When considering a constant stress situation the strength of the microsturctures decreased in the following order: Sanicro weld metal, cold deformed parent metal, undeformed parent metal and weld metal (K.A.E.)

  18. Ultrasonic inspection of austenitic welded joints of equipment of nuclear power plant

    International Nuclear Information System (INIS)

    The ultrasonic control technique has been checked according to main provisions of the instruction during experimental-production control of welded joints of austenitic pipeline of 560x34 mm of 12Kh18NKh12T steel welded by electrode of austenite-ferrite class. The weld seam root of the above pipeline has been welded by means of argon-arc welding. Alpha-phase content in a melt metal has been at 3-4% level. Real and artificial defects in a form of slag inclusions, pores, asbestos pieces have been in the seam metal. It is shown that longitudinal ultrasonic vibrations in a clad austenitic metal have less damping than transverse vibrations at the same wave length and may be recommended for control by the direct beam of austenitic welded joints of 12Kh18N12T steel. The recommended by normalyzing materials control sensitivity level ensures revealing dangerous defects of planar type in a welded joint root not always found by radiation control methods. A rejected sensitivity level which does not lead to re-evaluation of items as a result of ultrasonic longitudinal wave reflection from dendrite welded joint structure is chosen

  19. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    OpenAIRE

    Akinlabi OYETUNJI; Nwafagu NWIGBOJI

    2014-01-01

    The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS) was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS) of the butt joint samples increases with increase in core diameter of...

  20. Fatigue crack propagation in welded joint of austenitic steel for nuclear power engineering

    International Nuclear Information System (INIS)

    The crack propagation characteristics were obtained for Cr-Ni type austenitic steel 08Kh18N10T under variable stress in the individual zones of a welded joint on a pipe. Measurements of the threshold deviation of the stress intensity factor, ΔKp, showed that the root zone of the pipe welded joint was the weakest point as concerns crack propagation. The threshold values obtained for the filler metal on the pipe outer surface were considerably greater than those for the root zone of the welded joint and slightly greater than those for the base material and for the transition between the joint and the base material. The measured propagation response showed that the rate of fatigue crack propagation was for the base material higher by up to one order for low ΔK than for the filler joint and the root zone of the joint. (J.B.). 5 figs., 3 tabs., 6 refs

  1. Strength Investigation of Thick Welded T-Joint using Finite Element Modelling

    Directory of Open Access Journals (Sweden)

    Aidy Ali

    2010-01-01

    Full Text Available The paper discusses the computation of finite element modelling (FEM of a thick welded joint as a high load transfer joint. The FEM utilises MSC PATRAN/NASTRAN software programs to predict and simulate the critical area of a welded joint. The elasticity limit for the specimen was determined and stress distribution was achieved in the joint to indicate critical parts of a welded T-joint and predict the critical locations for crack initiation in this kind of joint. Simulation and experimental results show good in agreement and the sources of some differences in these results are discussed.Defence Science Journal, 2010, 60(1, pp.112-118, DOI:http://dx.doi.org/10.14429/dsj.60.118

  2. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    Science.gov (United States)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  3. Structural, chemical and deformation changes in friction welded joint of dissimilar steels

    Directory of Open Access Journals (Sweden)

    N. Ratković

    2014-10-01

    Full Text Available Fundamental principles of friction welding of dissimilar steels (high speed and tempering steel from the aspect of metallurgical and chemical processes occurring in the joint zone are presented in this paper. Considering that phenomena accompanying the friction welding are interdependent, it was necessary to experimentally determine the process variable parameters, to establish the optimal welding regime. The experiments were set and realized so that all the variables were analyzed as a function of the friction time. The metallographic investigations included analysis of the joint zone microstructure through structural phases and hardness changes, due to influence of the heat treatment - annealing. The experimental work included analysis of the geometry changes, the joint zone structure and the basic mechanical characteristics of the joint realized by the friction welding.

  4. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    Science.gov (United States)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone

  5. Microstructures and properties of laser welding joint of super-eutectic ZA alloy

    International Nuclear Information System (INIS)

    Highlights: ► It is a new process for the forming of ZA alloy via laser welding. ► A good joint by pulsed laser welding has been achieved successfully. ► It may be applied other non-ferrous alloys in various engineering applications. -- Abstract: In this paper, we describe the experimental laser welding of ZA alloy. The formation of the weld demonstrated that pulsed laser welding for ZA alloy was more effective than continuous laser welding. The characteristics of microstructures and properties of the ZA alloy’s bond area welded by pulsed laser were investigated using an optical microscope, X-Ray Diffractometer (referred to as XRD) and other methodologies. The applicable technological parameters include welding speed of 0.9 m/min, pulsed laser power of 1.8 kW, impulse period of 3 ms and duty cycle of 3:4. The average micro-hardness of the laser welding seam zone is higher than that of the ZA alloy substrate, which is as high as 183HV. The microstructures in the weld consist of primary η phase (the white dendritic structure), β phase (the black block distribution around η phase), and eutectic phases (β + η) (platy layer). The average strength of the joints is 119 MPa, 70% of that of the base metal.

  6. Improvements in welding parameters for a new design of zircaloy-4 tube-end plug joints

    International Nuclear Information System (INIS)

    This work presents the experimental results for the characterization of welds using a new design for zircaloy-4 tube-end plug joints, applicable to the production of fuel elements for the Atucha I Nuclear Plant. Test specimens were prepared following the new joint design and were welded using orbital welding equipment. Hydrogen content was measured in the different welding areas, and corrosion tests, and mechanical and microstructural descriptions were carried out, obtaining values that meet the current production standards. We reported previously that test samples welded in equipment with a smaller camera showed some relatively high hydrogen levels, together with alterations in the welded zone in the corrosion tests. Given these results, new tests were undertaken to optimize the welding parameters, being very careful with the purity of the welding atmosphere and in the handling of the samples. The intensity of the welding current was increased slightly to obtain better penetration of the material, without significantly increasing the heat input. The traction resistance values improved, reducing the hydrogen content to well below the maximum allowed by the standards (25 ppm) in all the welding zones and obtaining satisfactory results in the corrosion tests

  7. Numerical analysis of thermal stresses in welded joint smade of steels X20 and X22

    OpenAIRE

    Mladenović Saša M.; Šijački-Zeravčić Vera M.; Bakić Gordana M.; Lozanović-Šajić Jasmina V.; Rakin Marko P.; Đurđević Andrijana A.; Đukić Miloš B.

    2014-01-01

    Stress calculation of steam pipeline is presented, focused on the welded joint. Numerical calculation was performed using the finite element method to obtain stress distribution in the welded joint made while replacing the valve chamber. Dissimilar materials were used, namely steel 10CrMoV9-10 according to EN 10216-2 for the valve chamber, the rest of steam pipeline was steel X20, whereas the transition piece material was steel X22. Residual stresses were c...

  8. Mechanism of hydrogen enhanced-cracking of high-strength steel welded joints

    OpenAIRE

    J. Ćwiek; A. Zieliński

    2006-01-01

    Purpose: Purpose of this paper is evaluation of susceptibility of high-strength steel welded joints to hydrogendegradation and establishing of applicable mechanism of their hydrogen-enhanced cracking.Design/methodology/approach: High-strength quenched and tempered steel grade S690Q and its weldedjoints have been used. Susceptibility to hydrogen degradation of steel and welded joints has been evaluatedusing monotonically increasing load. Slow strain rate test (SSRT) was carried out on round sm...

  9. Use of LMA-1 laser microanalyzer for investigation of joint welds of high-alloy steels

    International Nuclear Information System (INIS)

    A method for quantitative local analysis of steels with the use of LMA-1 laser microanalyzer has been developed. The method has been used for investigation of the distribution of Cr, Ni, Mn, Si, and Ti elements in welded joints of 10Kh20N7T steel. It is shown that the chemical composition of the microareas of the joint is inhomogeneous, which may cause cracking in the welds

  10. Static and repeated-strength static f stud joints made by percussion capacitor-type welding

    International Nuclear Information System (INIS)

    Results of the experimental study of static and repeated-static strength of stud joints, made by percussion capacitoA-type welding, are presented. Under conditions of stretching, cut and bend the effect of loading type, cycle asymmetry, sublayer material and oxide layer on its surface, as well as defects of welding in the form of undercuttings and caverns on the resistance of the joints to repeated-alternating loading on the basis of 5000 cycles, has been studied

  11. Re-analysis of fatigue data for welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard;

    2010-01-01

    Experimental fatigue data for welded joints have been collected and subjected to re-analysis using the notch stress approach according to IIW recommendations. This leads to an overview regarding the reliability of the approach, based on a large number of results (767 specimens). Evidently, there......-welded joints agree quite well with the FAT 225 curve; however a reduction to FAT 200 is suggested in order to achieve approximately the same safety as observed in the nominal stress approach....

  12. Analysis of quality control efficiency for NPP pipeline welded joints using nondestructive methods

    International Nuclear Information System (INIS)

    The problems of improving the quality of nondestructive examination for welded joints of NPP cooling system pipelines are considered. The data of ultrasonic testing and radiography of the welded joints of pipelines 800 mm in-diameter at the Smolensk and Kursk NPPs are analyzed. The conclusion on the necessity of accurate fulfilment of the existing PN AEh G-7-010-89 Rules of testing during NPP contruction and operation is made

  13. Tension fracture behaviors of welded joints in X70 steel pipeline

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The surface of welded joints in X70 steel pipeline was processed by laser shock wave, its mechanical behaviors of tension fracture were analyzed with tension test,and the fracture morphologies and the distributions of chemical element were observed with scanning electron microscope and energy dispersive spectrum,respectively.The experimental results show that the phenomenon of grain refinement occurs in the surface of welded joints in X70 steel pipeline after the laser shock processing,and compressive re...

  14. Influence of Welding With Two-Jet Gas Shielding On the Shaping of a Welding Joint

    Science.gov (United States)

    Chinakhov, D. A.; Chinakhova, E. D.; Grichin, S. V.; Gotovschik, Y. M.

    2016-04-01

    The author considers gas-dynamic influence upon microhardness and weld configuration of single-pass welds from steel 30HGSA when welding with consumable electrode under double-jet shielding. The relations to the chosen controlled welding parameters (Q, L, I) are developed and the controlling influence of the gas-dynamic affect of dynamic shield gas jet over formation of welds from alloy-treated steel 30HGSA is determined.

  15. Liquid-Phase-Impacting Diffusion Welding Mechanism and Microstructure of Welded Joint of Al Matrix Composite SiCp/101A

    Institute of Scientific and Technical Information of China (English)

    Jitai NIU; Wei GUO; Qingchang MENG; Xinmei ZHANG; Xingqiu LIU; Guangtao ZHOU

    2003-01-01

    The liquid-phase-impacting (LPI) diffusion welding mechanism and microstructure of welded joint of aluminum matrixcomposite SiCp/101A have been studied. It shows that by LPl diffusion welding, the interface state between SiCparticle and matrix is prominen

  16. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys

    International Nuclear Information System (INIS)

    The heat treatable aluminium alloy AA2024 is used extensively in the aircraft industry because of its high strength to weight ratio and good ductility. The non-heat treatable aluminium alloy AA5083 possesses medium strength and high ductility and used typically in structural applications, marine, and automotive industries. When compared to fusion welding processes, friction stir welding (FSW) process is an emerging solid state joining process which is best suitable for joining these alloys. The friction stir welding parameters such as tool pin profile, tool rotational speed, welding speed, and tool axial force influence the mechanical properties of the FS welded joints significantly. Dissimilar FS welded joints are fabricated using five different tool pin profiles. Central composite design with four parameters, five levels, and 31 runs is used to conduct the experiments and response surface method (RSM) is employed to develop the model. Mathematical regression models are developed to predict the ultimate tensile strength (UTS) and tensile elongation (TE) of the dissimilar friction stir welded joints of aluminium alloys 2024-T6 and 5083-H321, and they are validated. The effects of the above process parameters and tool pin profile on tensile strength and tensile elongation of dissimilar friction stir welded joints are analysed in detail. Joints fabricated using Tapered Hexagon tool pin profile have the highest tensile strength and tensile elongation, whereas the Straight Cylinder tool pin profile have the lowest tensile strength and tensile elongation. The results are useful to have a better understanding of the effects of process parameters, to fabricate the joints with desired tensile properties, and to automate the FS welding process.

  17. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    International Nuclear Information System (INIS)

    Highlights: • Friction bit joining (FBJ) and weld-bonding (adhesive + FBJ) processes. • FBJ to spot weld high-strength Al alloy to high-strength steel. • Lap shear strength of ∼10 kN for high-strength Al alloy to high-strength steel. • Effective corrosion mitigation by combining FBJ with adhesive. - Abstract: In this work, we have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. The FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly prepared joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints

  18. Fiber-laser welding for ultra-high tensile strength steel and stainless steel

    International Nuclear Information System (INIS)

    Ultra-high tensile strength steel of 980 or 1150 MPa class has been often used for a large scale construction machine with lightweight parts because of transport weight limit. This steel needs its pre-processing before welding and has a tendency of delayed cracking, that requests a high welding technique with qualified welders. Austenitic stainless steel frequency used for nuclear energy related equipments has much strains caused by welding because of a large coefficient of thermal expansion. As a welding with small amount of its heat input and without a large size facility like a vacuum chamber, a fiber-laser welding was chosen to apply to equipments made of ultra-high tensile strength steel and stainless steel. Tensile and bending tests for I-butt and around 2mm root gap welded joints of high strength steel of 980 MPa showed their mechanical properties were similar to those of base metal. I-butt welded joints of high strength steel of 1150 MPa showed similar mechanical properties of base metal but as for root gap welded joint, a filler metal was not available. With filler metal of 980 MPa instead, the welded joints showed similar tensile strength of base metal but a crack occurred at the bending test according to the JIS welding procedure qualification specification. Application of fiber laser welding to stainless steel had been conducted successfully for I-butt welded joints of good penetration up to the plate thickness of 8mm. As an example, T-joint of mercury target vessel for J-PARC was produced by fiber laser welding, that became to apply to other nuclear equipments. (T. Tanaka)

  19. The influence of pieces thickness on metallographic structure of welded joints

    OpenAIRE

    D. Dobrotă; G. Iacobescu; I. Ghionea; Ionescu, N

    2016-01-01

    The main objective of this paper was to establish how the thickness of welded pieces influences the metallographic structure of welded joints. Thus were made a total of 6 samples, and from each sample were taken test specimens for metallographic analysis of the base material, the filler material respective heat affected zone (HAZ). The samples were carried out by welding process: metal active gases (MAG) using a steel E 36-4, and the welded pieces had a thickness between 10 and 24 mm. The wel...

  20. Creep properties of welded joints in copper canisters for nuclear waste containment

    International Nuclear Information System (INIS)

    Copper canisters for nuclear waste containment can be expected to be exposed to temperatures up to 1000C. Since the material is pure copper, creep properties must be taken into account in particular for the welded joints in the canisters. In the paper creep rupture properties of parent metal, weld metal, and simulated heat affected zones are presented for 1100C. About ten times shorter rupture times were found for the weld metal in comparison to the parent metal. Cross weld specimens showed even shorter rupture times

  1. Orbital plasma keyhole welding of 12--13% Cr low carbon martensitic line pipe steels and weld joint corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, H.; Dietrich, S. [Univ. der Bundeswehr Hamburg (Germany); Tystad, M.; Knagenhjelm, H.O.; Andersen, T.R. [Norsk Hydro A/S Porsgrunn (Norway). Forskningssenteret

    1995-10-01

    Based on requirements for more economical pipe laying procedures in the oil and gas industry, the potential of the orbital plasma keyhole process for welding of 12--13% Cr martensitic low carbon steels together with resulting hardness and corrosion properties is investigated. As a result, downhill orbital welding speeds up to 6--7 mm/s at 6--10 mm wall thickness are achieved. For hardness reduction, local postweld heating of 600--700 C at up to 10 min was required. Pitting corrosion resistance of the weld joints was reduced by welding but could be restored by postweld heating above 750--800 C, which, however, might produce hardness levels not satisfying NACE requirements due to formation of untempered martensite.

  2. Hybrid laser-Metal Inert Gas welding of Al–Mg–Si alloy joints: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Highlights: • Microstructure and mechanical properties of the welded joint have been investigated. • Reasons for the strength loss of the welded joint have been discussed. • The distribution of strengthening elements has been obtained using synchroton radiation X-rays. - Abstract: Hybrid fiber laser-Metal Inert Gas (MIG) welding is an advanced joining technology that is increasingly employed in the modern industry. In this paper, hybrid fiber laser-MIG welding was applied to join 5 mm thick AA6005-T5 alloy used in the carbody of high-speed railway vehicles. The mechanical properties of the hybrid welded joints were investigated. The results showed that the hybrid welded joints have more excellent mechanical properties than that of the MIG joints. However, there is still strength loss in the hybrid welded joins comparing with the base metal. The reason for the loss of the strength was studied from the aspects of microstructure and vaporization of strengthening elements

  3. Numerical analysis of thermal stresses in welded joint smade of steels X20 and X22

    Directory of Open Access Journals (Sweden)

    Mladenović Saša M.

    2014-01-01

    Full Text Available Stress calculation of steam pipeline is presented, focused on the welded joint. Numerical calculation was performed using the finite element method to obtain stress distribution in the welded joint made while replacing the valve chamber. Dissimilar materials were used, namely steel 10CrMoV9-10 according to EN 10216-2 for the valve chamber, the rest of steam pipeline was steel X20, whereas the transition piece material was steel X22. Residual stresses were calculated, in addition to design stresses, indicating critical regions and necessity for post-weld heat treatment.

  4. Stress-corrosion crasking of welded joints of zirconium alloy with 2.5% niobium

    International Nuclear Information System (INIS)

    Effect of the welding conditions and annealing temperature on resistance to stress-corrosion cracking of welded joints of zirconium alloy with 2.5% Nb and zirconium iodide in CH3OH+0.4 g/l HCl solution, the tensile stress being 0.9 σT, is studied. Time before cracking in welded joints of zirconium alloy with 2.5% Nb and zirconium iodide in initial state and after annealing at 850 K in 24 hours. Annealing at 1020 and 1270 K increases time before cracking of the basic metal and zirconium alloy with 2.5% Nb to 3500 h

  5. Hydrogen Embrittlement of Welded Joint Made of Supermartensitic Stainless Steel in Environment Containing Sulfane

    Directory of Open Access Journals (Sweden)

    Jonšta P.

    2016-06-01

    Full Text Available The work is focused on evaluation of resistance of the welded joint made of supermartensitic 13Cr6Ni2.5Mo stainless steel to sulfide stress cracking. Testing method A and solution B in accordance with NACE TM 0177 were used. All the testing samples were ruptured in a very short time interval but welded joint samples were fractured primarily in the weld metal or in heat affected zone and not in the basic material. Material analysis of samples were made with use of a ZEISS NEOPHOT 32 light microscope and a JEOL 6490LV scanning electron microscope.

  6. Structure and mechanical properties of the welded joints of large-diameter pipes

    Science.gov (United States)

    Khotinov, V. A.; Arabei, A. B.; Pyshmintsev, I. Yu.; Farber, V. M.

    2013-05-01

    The structure and mechanical properties of the technological welded joints of large-diameter pipes of strength class K60 produced by two companies are studied. Along with standard mechanical properties (σ0.2, σu, δ, ψ), specific work of deformation a (tensile toughness) and true rupture strength S f are estimated from an analysis of the stress-strain diagrams constructed in true coordinates. The mechanical behavior is found to be different for samples cut from different zones of a welded joint (central weld, heat-affected zone, and base metal). The mutual correlation between parameters a, S f, and impact toughness KCV is considered.

  7. Hydrogen effect on tendency to brittle fracture of welded joints in WWER-1000 reactor vessels

    International Nuclear Information System (INIS)

    Hydrogen effect on tendency to brittle fracture of varions welded joint zones under a 12 MPa pressure, at operatting temperatures, various deformation rates and hydrogen concentrations has been studied. Welded joints of shrouds 4535X295 mm in diameter of 15Kh2NMFA steel have been investigated. It has been found that for raising resistance to hydrogen embrittlement of WWER type reactor vessels it is reasonable to decrease a detrimental impurities content (antimony, tin, arsenic, zinc lead) in the base metal and welding wire. To prevent reactor vessel damages due to hydrogen embrittlement steelaustenite internal surface cladding is reqUired

  8. The effects of dynamic load on behaviour of welded joint A-387 Gr. 11 alloyed steel

    Directory of Open Access Journals (Sweden)

    O. Popović

    2013-01-01

    Full Text Available The in-service behaviour of alloyed steel A-387 Gr. 11 Class 1, for pressure vessels, used for high temperature applications, depends on the properties of its welded joint, with parent metal (BM, heat-affected-zone (HAZ and weld metal (WM, as constituents. Charpy testing of BM, WM and HAZ, together with, determination of the parameters of fatigue-crack growth and fatigue threshold ΔKth was used, in order to understand, how heterogeneity of structure and different mechanical properties of welded joint constituents affect on crack initiation and propagation.

  9. Ultrasonic test procedure for evaluating fuel clad endcap weld joints of PHWRs

    International Nuclear Information System (INIS)

    This paper describes the application of ultrasonic test method and digital signal analysis techniques for the detection of fine defects of ≅10 percent of wall thickness in resistance welded endcap-clad tube joints of fuel elements used in pressurized heavy water reactors (PHWRs). Standardization of test methodology was carried out using reference defects made on inner an outer surface of the weld region and subsequently, testing wa carried out on a number of endcap weld joint suspected to have natural defects which were rejected in the helium leak testing. The results obtained were further validated by destructive metallography, thereby confirming the sensitivity and reliability of the developed test methodology

  10. JOINTING PROCESS OF THE SAE 1020 WITH MAG WELD'S REGION HAVE BEEN INVESTIGATED AND FACTOR OF MISMATCH DETERMINED

    Directory of Open Access Journals (Sweden)

    Cevdet MERİÇ

    1997-03-01

    Full Text Available In this study, the jointing process of the SAE 1020 low carbon steel, generally used in the industry, has been done by the MAG weld method. The aim of this study is to examine the mismatch between base and weld metal. After the jointing process, mechanical and metalographical properties of the weld region, HAZ, and the weld metal of the samples considered here were searched, and CTOD (Crack Tip Opening Displacement was identified.

  11. Pulsed TIG welding in the fabrication of nuclear components and structures

    International Nuclear Information System (INIS)

    TIG welding is an important welding technique in nuclear plant fabrication for the welding of critical components and structures where a high level of weld integrity is demanded. Whilst the process is ideally suited to precision welding, since the arc is a small intense heat source, it has proved to be somewhat intolerant to production variations in 'difficult' applications, such as tube to tube plate welding and orbital tube welding with tube in the fixed position. Whilst the problems directly associated with this intolerance (of the welding process) are less frequently observed when used manually, difficulties are experienced in fully mechanised welding operations particularly when welding to a relatively rigid approved procedure. Pulsing of the welding current was developed as a technique to achieve greater control of the behaviour of the weld pool. Instead of moving the weld pool in a continuous motion around the joint, welding was conducted intermittently in the form of overlapping spots. This technique, which offers significant advantages over continuous current welding has been exploited in nuclear fabrication for welding those components which demand a high level of weld quality. In this paper, the essential features of this technique are described and, in indicating its advantages, examples have been drawn from recent experiences on the welding of two types of joint for the Advanced Gas Cooled Reactor, a tube sheet and a butt joint in the G Position. (author)

  12. Joint strength in high speed friction stir spot welded DP 980 steel

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Nathan; Miles, Michael; Hartman, Trent; Hovanski, Yuri; Hong, Sung Tae; Steel, Russell

    2014-05-01

    High speed friction stir spot welding was applied to 1.2 mm thick DP 980 steel sheets under different welding conditions, using PCBN tools. The range of vertical feed rates used during welding was 2.5 mm – 102 mm per minute, while the range of spindle speeds was 2500 – 6000 rpm. Extended testing was carried out for five different sets of welding conditions, until tool failure. These welding conditions resulted in vertical welding loads of 3.6 – 8.2 kN and lap shear tension failure loads of 8.9 – 11.1 kN. PCBN tools were shown, in the best case, to provide lap shear tension fracture loads at or above 9 kN for 900 spot welds, after which tool failure caused a rapid drop in joint strength. Joint strength was shown to be strongly correlated to bond area, which was measured from weld cross sections. Failure modes of the tested joints were a function of bond area and softening that occurred in the heat-affected zone.

  13. Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints

    Science.gov (United States)

    Zhou, L.; Wang, T.; Zhou, W. L.; Li, Z. Y.; Huang, Y. X.; Feng, J. C.

    2016-06-01

    The ultra-high-strength Al-Zn-Mg-Cu alloy, 7050-T7451, was friction stir welded at a constant tool rotation speed of 600 rpm. Defect-free welds were successfully obtained at a welding speed of 100 mm/min, but lack-of-penetration defect was formed at a welding speed of 400 mm/min. The as-received material was mainly composed of coarse-deformed grains with some fine recrystallized grains. Fine equiaxed, dynamic, recrystallized grains were developed in the stir zone, and elongated grains were formed in the thermomechanically affected zone with dynamic recovered subgrains. Grain sizes in different regions of friction stir-welded joints varied depending on the welding speed. The sizes and distributions of precipitates changed in different regions of the joint, and wider precipitation free zone was developed in the heat-affected zone compared to that in the base material. Hardness of the heat-affected zone was obviously lower than that of the base material, and the softening region width was related to the welding speed. The tensile strength of the defect-free joints increased with the increasing welding speed, while the lack-of-penetration defect greatly reduced the tensile strength. The tensile fracture path was significantly influenced by the position and orientation of lack-of-penetration defect.

  14. Numerical Analysis of Welding Residual Stress and Distortion in Laser+GMAW Hybrid Welding of Aluminum Alloy T-Joint

    Institute of Scientific and Technical Information of China (English)

    Guoxiang XU; Chuansong WU; Xuezhou MA; Xuyou WANG

    2013-01-01

    A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint.And the characteristics of residual stress distribution and deformation are numerically investigated.In the simulation,the heat source model takes into account the effect of joint geometric shape and welding torch slant on the heat flux distribution and a sequentially coupled thermo-mechanical method is used.The calculated results show that higher residual stress is distributed in and surround the weld zone.Its peak value is very close to the yield strength of base metal.Besides,a large deformation appears in the middle and rear part of the weldment.

  15. On Post-Weld Heat Treatment of a Single Crystal Nickel-Based Superalloy Joint by Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    T. J. Ma

    2015-09-01

    Full Text Available Three types of post-weld heat treatment (PWHT, i.e. solution treatment + primary aging + secondary aging (I, secondary aging (II, and primary aging + secondary aging (III, were applied to a single crystal nickel-based superalloy joint made with linear friction welding (LFW. The results show that the grains in the thermomechanically affected zone (TMAZ coarsen seriously and the primary γ' phase in the TMAZ precipitates unevenly after PWHT I. The primary γ' phase in the TMAZ and weld zone (WZ precipitates insufficiently and fine granular secondary γ' phase is observed in the matrix after PWHT II. After PWHT III, the primary γ' phase precipitates more sufficiently and evenly compared to PWHTs I and II. Moreover, the grains in the TMAZ have not coarsened seriously and fine granular secondary γ' phase is not found after PWHT III. PWHT III seems more suitable to the LFWed single crystal nickel-based superalloy joints when performing PWHT.

  16. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... in the weld causing expulsion of the melt pool. Trailing beams were applied to melt additional material and ensure a melt pool. The method showed good results for increasing tolerances to impurities and reduction of scrapped parts from blowouts during laser welding....

  17. Yttrium effect on corrosion resistance of the 12Kh18N10T steel welded joints

    International Nuclear Information System (INIS)

    Electrochemical method has been used to investigate the yttrium effect on corrosion resistance of the weld deposited metal and the welded joints of the 12Kh18H1DT chromium-nickel austenitic steel yttrium introduction in the metall of the weld is accomplished through the electrode coating. It is shown, that modification of the welded joints of the 12Kh18N10T steel with yttrium (0.010-O.027%) increases the corrosion resistance, promotes more complete transition of the alloying elements (chromium, nickel, aluminium, niobium) and decreases the content of bad impurities (S and O2) in the weld deposited metal. Yttrium transition factor when using alumoyttrium foundry alloy is 0.05-0.10

  18. Reliability assessment and prediction of a fatigue design criterion for the gas-welded joints

    International Nuclear Information System (INIS)

    Gas metal arc welding is a very important and useful technology in the fabrication of railroad cars and commercial vehicle structures. However, since the fatigue strength of the joints welded by gas metal arc welding is considerably lower than that of the parent material due to stress concentration and metallurgical changes at the weld, the fatigue-strength assessment of welded joints is very important for the reliability and durability of railroad cars and the establishment of a criterion for long-life fatigue design. In this paper, in order to save time and cost for the fatigue design, an accelerated life-prediction method that is based on the theory of statistical reliability was investigated. Its usefulness was verified by comparing the (Δσa)R-Nf relationship that was obtained from actual fatigue test results with the (Δσa)R-(Nf)ALP relationship that was derived from accelerated life testing. And the reliability of the predicted life was evaluated. The reliability of the accelerated life-prediction on the base of actual test data was analyzed to be 80% for the plug-type gas-welded joints and 95% for the ring-type gas-welded joints

  19. Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints

    International Nuclear Information System (INIS)

    Highlights: ► Range of parameters for defect-free friction stir welded AA 6061-T4 was reached. ► A model was developed for predicting UTS and EL of friction stir welded AA 6061-T4. ► The maximum values of UTS and EL of joints were estimated by developed model. ► The optimum values of FSW process parameters were determined. -- Abstract: In this investigation response surface methodology based on a central composite rotatable design with three parameters, five levels and 20 runs, was used to develop a mathematical model predicting the tensile properties of friction stir welded AA 6061-T4 aluminum alloy joints at 95% confidence level. The three welding parameters considered were tool rotational speed, welding speed and axial force. Analysis of variance was applied to validate the predicted model. Microstructural characterization and fractography of joints were examined using optical and scanning electron microscopes. Also, the effects of the welding parameters on tensile properties of friction stir welded joints were analyzed in detail. The results showed that the optimum parameters to get a maximum of tensile strength were 920 rev/min, 78 mm/min and 7.2 kN, where the maximum of tensile elongation was obtained at 1300 rev/min, 60 mm/min and 8 kN.

  20. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints

    Directory of Open Access Journals (Sweden)

    G. Rambabu

    2015-12-01

    Full Text Available The aluminium alloy AA2219 (Al–Cu–Mg alloy is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components. Friction stir welding (FSW is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfaces. The welding parameters, such as tool pin profile, rotational speed, welding speed and axial force, play major role in determining the microstructure and corrosion resistance of welded joint. The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions. Dynamic polarization testing was carried out to determine critical pitting potential in millivolt, which is a criteria for measuring corrosion resistance and the data was used in model. Further the response surface method (RSM was used to develop the model. The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.

  1. Improvement of creep strength of TIG welded hastelloy X alloy joint

    International Nuclear Information System (INIS)

    The creep strength of the TIG welded joints of Hastelloy X is sometimes weaker than that of the parent material. Especially in the internal pressure creep test using cylindrical test pieces, this phenomenon appears conspicuously. This is because in the case of the cylinders having circumferential joints, the rupture time becomes short due to the enhanced creep phenomenon, in which the welded metal is pulled by the parent material having large creep rate, and its creep rate increases. In order to improve this defect, it was attempted to improve the creep strength of the welded metal by adding B, Zr and rare earth elements to the welding rods. As the result, by adding several tens ppm of B, the weldability was not harmed, and the remarkable effect of improvement was observed. Also it was found that rare earth elements were considerably effective. In the cylindrical test pieces having joints, for which these improved welding rods were used, the joints which broke in the parent material were able to be obtained. As for the case of the cylindrical test pieces having circumferential and longitudinal joints, the comparison of creep strength was carried out, but nearly the same strength was shown, and it was proposed to regard the circumferential joints as important similarly to the longitudinal joints. (Kako, I.)

  2. Numerical and microstructural evaluation of 9%Cr welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, K. [National Institute for Materials Science (Japan); Bauer, M.; Kauffmann, F.; Klenk, A. [Stuttgart Univ. (Germany). MPA

    2008-07-01

    Microstructural changes after creep at 600 C were investigated on E911 welded joints, focusing on the influence of multiaxiality of stress on microstructure of the fine-grained heat-affected zone (FGHAZ). In FGHAZ, more creep voids were observed in the interior portion of the specimen, compared with the outer surface. This is due to the higher multiaxiality of stress in the interior portion. There was no significant growth of VX particles during creep because of their higher thermal stability in base metal and FGHAZ. For M{sub 23}C{sub 6}, the growth during creep in FGHAZ was faster than in the base metal. There was no large difference in the growth rate of M{sub 23}C{sub 6} between the interior portion and near the outer surface. The number of Z-phase particles after creep in the base metal was higher than that in the FGHAZ. For FGHAZ, the number of Z-phase particles was higher in the interior portion of the specimen in contrast with near the outer surface. Increase in subgrain size and decrease in dislocation density were observed after creep in the base metal and the FGHAZ. For FGHAZ, the subgrain size and dislocation density after creep in the interior portion were almost the same as near the outer surface. (orig.)

  3. The effect of seismic loading on the fatigue strength of welded joints

    International Nuclear Information System (INIS)

    Earthquakes sometimes damage steel structures. Structures which are not seriously damaged are still used after earthquakes but their fatigue strength may have been reduced by the large cyclic loadings imposed by the earthquakes. In order to clarify the effect of seismic loading on the fatigue strength of welded joints, high cycle fatigue and variable amplitude fatigue tests after a number of large initial strain cycles were performed. The large strain cycles formed a short crack at the toe of the weld in a low cycle fatigue that triggered a high cycle fatigue strength reduction. The high cycle fatigue limit of welded joints after initial strain cycles is governed by the threshold stress intensity factor of the short crack. The formation of short cracks also enhanced the damage accumulation for subsequent variable amplitude loading. It is important to keep all of the stress variations after earthquake below the fatigue limit of the cracked welded joints to avoid fatigue damage accumulation after an earthquake

  4. The effect of seismic loading on the fatigue strength of welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Y. [Department of Intelligent Machinery and Systems, Kyushu University, Fukuoka 819-0395 (Japan)], E-mail: ykondo@mech.kyushu-u.ac.jp; Okuya, K. [Department of Residential and Architectural System Engineering, Kyushu Polytechnic College, Fukuoka 802-0985 (Japan)

    2007-11-15

    Earthquakes sometimes damage steel structures. Structures which are not seriously damaged are still used after earthquakes but their fatigue strength may have been reduced by the large cyclic loadings imposed by the earthquakes. In order to clarify the effect of seismic loading on the fatigue strength of welded joints, high cycle fatigue and variable amplitude fatigue tests after a number of large initial strain cycles were performed. The large strain cycles formed a short crack at the toe of the weld in a low cycle fatigue that triggered a high cycle fatigue strength reduction. The high cycle fatigue limit of welded joints after initial strain cycles is governed by the threshold stress intensity factor of the short crack. The formation of short cracks also enhanced the damage accumulation for subsequent variable amplitude loading. It is important to keep all of the stress variations after earthquake below the fatigue limit of the cracked welded joints to avoid fatigue damage accumulation after an earthquake.

  5. Effects of molten state of ultrasonic welded joints of plastics on their strength

    Institute of Scientific and Technical Information of China (English)

    YAN Jiuchun; LIU Jingquan; ZHOU Yusheng; YANG Shiqin; ZHOU Fuhong

    2001-01-01

    Effects of molten state of ultrasonic welded joints of plastics on their strength were investigated. Physical parameters such as temperature, viscosity and thickness of melting layers of plastic material joints were measured and analyzed. Results show that when the welding vibration amplitude and pressure increase, the temperature increases, the viscosity decreases, and the thickness of molten layer decreases. The microstructure of weld fusion zone was observed by using an optical microscope. It was found that there is strong orientation along transverse direction in the microstructure of fusion zone. Testing results show that the mechanics performance of welded joints are obviously anisotropic, and strongly affected by the thickness of molten layer and the extent of orientation.

  6. Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint

    Directory of Open Access Journals (Sweden)

    Kong Xiangfeng

    2016-01-01

    Full Text Available The diffusible hydrogen in steel weldments is one of the main reasons that led to hydrogen assisted cracking. In this paper, the results of literatures survey and preliminary tests of the diffusible hydrogen in underwater wet welding joint were presented. A fluid-discharge method of for measuring the diffusible hydrogen in weldment was introduced in detail. Two kinds of underwater welding electrode diffusible hydrogen are 26.5 mL/100g and 35.5 mL/100g by fluid-discharge method, which are high levels. The diffusible hydrogen of underwater welding is higher than atmospheric welding, and the result is closely related to welding material. The best way to control the diffusible hydrogen is adjusting welding material and improving fluidity of slag.

  7. Comparison of joint designs for laser welding of cast metal plates and wrought wires.

    Science.gov (United States)

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2013-01-01

    The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding. PMID:22080283

  8. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    Science.gov (United States)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  9. Experimental analysis of dissimilar metal weld joint: Ferritic to austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rathod, Dinesh W., E-mail: dineshvrathod@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pandey, Sunil [Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016 (India); Singh, P.K. [Bhabha Atomic Research Centre, Mumbai 400085 (India); Prasad, Rajesh [Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2015-07-15

    The dissimilar metal weld (DMW) joint between SA508Gr.3Cl.1 ferritic steel and SS304LN using Inconel 82/182 consumables was required in the nuclear power plants. The joint integrity assessment of these welds requires mechanical and metallurgical properties evaluation in weldment regions. The joint was subjected to 100% radiography test and bend test and transverse tensile test. Welding and testing were carried out as per the requirements of ASME Sec-IX and acceptance criteria as per ASME Sec-III. The transverse tensile test results indicated the failure from the weld metal although it satisfies the minimum strength requirement of the ASME requirements; therefore, the DMW joint was analyzed in detail. Straight bead deposition technique, fine slag inclusion, less reliable radiograph technique, plastic instability stress, yield strength ratio and metallurgical deteriorations have been contributed to failure of the DMW joint from the weld region. In the present work, the factors contributing to the fracture from weld metal have been discussed and analyzed.

  10. Hydrogen embrittlement of welded joints for the heat-treatable XABO 960 steel heavy plates

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2010-01-01

    Full Text Available Purpose: In the paper, influence of hydrogen on mechanical properties of welded joints from heat-treatable structural XABO 960 steel plates was investigated.Design/methodology/approach: The heat treatment of welded plate specimens was performed, and then the specimens were charged with hydrogen electrolytically generated from 1 N H2SO4 solution. The following studies were carried out: static tensile test, hardness investigations, macroscopic metallographic investigations as well as investigations with the use of a scanning microscope.Findings: Hydrogen embrittlement of welded joints from XABO 960 steel plates was revealed by a distinct decrease of ductility and a slight decrease of strength. On the basis of metallographic investigations, it was found that in a fracture region there are fine pores created by the presence of hydrogen and its displacement due to formed stresses and plastic deformation. It was shown that welded joints are susceptible to hydrogen cracking in the heat affected zone and in the fusion zone.Research limitations/implications: TEM investigations on structure of the steel were predicted.Practical implications: The obtained results can be used for searching the appropriate way of improving the hydrogen embrittlement resistance of welded joints of the heat-treatable structural XABO 960 steel plates.Originality/value: The hydrogen embrittlement of welded joints of the heat-treatable XABO 960 steel plates was investigated.

  11. Experimental analysis of dissimilar metal weld joint: Ferritic to austenitic stainless steel

    International Nuclear Information System (INIS)

    The dissimilar metal weld (DMW) joint between SA508Gr.3Cl.1 ferritic steel and SS304LN using Inconel 82/182 consumables was required in the nuclear power plants. The joint integrity assessment of these welds requires mechanical and metallurgical properties evaluation in weldment regions. The joint was subjected to 100% radiography test and bend test and transverse tensile test. Welding and testing were carried out as per the requirements of ASME Sec-IX and acceptance criteria as per ASME Sec-III. The transverse tensile test results indicated the failure from the weld metal although it satisfies the minimum strength requirement of the ASME requirements; therefore, the DMW joint was analyzed in detail. Straight bead deposition technique, fine slag inclusion, less reliable radiograph technique, plastic instability stress, yield strength ratio and metallurgical deteriorations have been contributed to failure of the DMW joint from the weld region. In the present work, the factors contributing to the fracture from weld metal have been discussed and analyzed

  12. Resistance welding of tubes at low regidual pressure jn tube cavity

    International Nuclear Information System (INIS)

    The procedure of butt resistance welding of boilers in diameter of 32 mm at low residual pressure in tube cavities has been studied. It is shown that the creation of low residual pressure in tube cavity makes it possible to produce qualitative joints of tubes of the 20, 12Kh1MF, 12Kh18N12T steels. The maximum relative deformation in the butt zone should be in the range of 0.5...0.6

  13. Development of welded joints for steel and zirconium tubes at nuclear power plants

    International Nuclear Information System (INIS)

    The design of transition joints and the technique of joining dissimilar materials by solid-phase vacuum diffusion welding are discussed, using as an example joints between tubes made of stainless steel 06X18H10T and tubes of zirconium alloy with 2.5% (mass) of niobium (transition joints of RBMK pressure tubes). The results of tests demonstrating the performance of diffusion-welded joints and of studies on the transition joints are presented, and the results of calculating the stressed-strained states of a transition joint are described, covering the range from the fabrication stage (residual stresses) through operation (residual and operational stresses). Detailed structural analysis has been performed for the zirconium-steel bonding layer. The long operation history of transition joints in RBMK reactors is summarized. (authors)

  14. Design of a welded joint for robotic, on-orbit assembly of space trusses

    Science.gov (United States)

    Rule, William K.

    1992-12-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station

  15. Adaptive control of penetration and joint following for robotic GTA welding

    International Nuclear Information System (INIS)

    A statistical-based method for adaptive control of weld pool penetration and joint following in Tungsten Inert Gas Welding as an approach to process and trajectory control of robotic GTA welding has been designed and simulated. Welding process parameters such as: base current and time, pulse current and time, electrode tip to work piece distance, filler travelling speed, torch speed and work piece thickness were used for finding the equations which describe the interrelationship between the aforementioned variables and penetration depth as well as bead width. The calculation of these equations was developed from the statistical regression analysis of 80 welds deposited using various combinations of welding parameters. For monitoring of the work piece thickness variations, an ultrasonic device was used. In order to control the weld trajectory, a CCD camera was also used. The results showed that the misalignment of the progressive heat affected zone which is adjacent to the weld puddle can be detected, and used for control of the weld trajectory. Also, it was found that scanning of a certain region of the captured image in front of the weld puddle decreases the data processing time drastically

  16. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  17. Welding of Thermomechanically Rolled Steel by Yb:YAG Disk Laser / Spawanie Stali Walcowanej Termomechanicznie Laserem Dyskowym Yb:YAG

    OpenAIRE

    Lisiecki A.

    2015-01-01

    Autogenous laser welding of 5.0 mm thick butt joints of thermomechanically rolled steel S700MC was investigated. The Yb:YAG disk laser TruDisk 3302 emitted at 1.03 μm was used for the trials of autogenous welding. The effect of laser welding parameters and thus thermal conditions of welding on weld shape, microstructure of weld metal and heat affected zone (HAZ), tensile strength, bending angle, impact toughness and microhardness profile was determined. Studies have shown that it is advantage...

  18. CO2 laser welding of AISI 321stainless steel

    International Nuclear Information System (INIS)

    CO2 laser welding of AISI 321austenitic stainless steel has been carried out. Bead on plate welds on 2 mm thick steel were performed with 450W CO2 laser at speeds ranging from 200 to 900 mm/min. It was observed that weld depth and width was decreased with increasing the speed at constant laser power. Butt welds on different sheet thickness of 1, 2 and 2.5 mm were performed with laser power of 450 W and at speed 750, 275 and 175 mm/min, respectively. The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy and SEM. The austenite/delta ferrite microstructure was reported in the welded zone. The microhardness and tensile strength of the welded joints were measured and found almost similar to base metal due to austenitic nature of steel

  19. Rupture locations of friction stir welded joints of AA2017-T351 and AA6061-T6 aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Hui-jie; FENG Ji-cai; H. Fujii; M. Maeda; K. Nogi

    2005-01-01

    The tensile rupture locations of friction stir welded joints of AA2017-T351 and AA6061-T6 aluminum alloys were examined. The experiments show that the rupture locations of the joints are different for the two aluminum alloys, which are influenced by the welding parameters. When the joints are free of welding defects, the AA2017-T351 joints are ruptured in the weld nugget adjacent to the thermo-mechanically affected zone on the advancing side and the rupture surfaces appear as oval contours of the weld nugget, while the AA6061-T6 joints are ruptured in the heat affected zone on the retreating side and the rupture surfaces are inclined at a certain degree to the bottom surfaces of the joints. When welding defects are present in the joints, the AA2017-T351 joints are ruptured in the weld center, while the AA6061-T6 joints are ruptured on the retreating side near the weld center. The rupture locations of the joints are dependent on the internal structures of the joints and can be explained through them.

  20. Effect of post-weld heat treatment on the mechanical properties of electron beam welded joints for CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingsheng, E-mail: chunjing.li@fds.org.cn; Zheng, Shuhui; Liu, Shaojun; Li, Chunjing; Huang, Qunying

    2013-11-15

    In this paper the microstructure and mechanical properties of electron beam weld (EBW) joints for China low activation martensitic (CLAM) steel, which underwent a series of different post weld heat treatments (PWHTs) were studied. The aim of the study was to identify suitable PWHTs that give a good balance between strength and toughness of the EBW joints. The microstructural analyses were performed by means of optical microscope (OM) and scanning electron microscope (SEM). The mechanical properties were determined via tensile tests and Charpy impact tests. The results showed that the tensile strength of the as-weld joint (i.e. without any PWHT) were close to that of the base metal, but the impact toughness was only 13% of that of the base metal due to the existence of a delta-ferrite microstructure. To achieve a significant improvement in toughness a PWHT needs to be performed. If a one-step PWHT is applied tempering at 760 °C for 2 h gives EBW joints with high strength at a still acceptable toughness level. If a two-step PWHT is applied, a process involving quenching at 980 °C for 0.5 h followed by tempering at 740 °C or 760 °C for 2 h gives EBW joints with high strength and toughness properties. Whenever possible a two-step PWHT should be applied in favor of a one-step process, because of higher resulting strength and toughness properties.