WorldWideScience

Sample records for butanols

  1. (Liquid + liquid) equilibrium of {water + phenol + (1-butanol, or 2-butanol, or tert-butanol)} systems

    International Nuclear Information System (INIS)

    Hadlich de Oliveira, Leonardo; Aznar, Martin

    2010-01-01

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  2. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    Science.gov (United States)

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  3. Solvents (butanol, acetone, and ethanol)

    Energy Technology Data Exchange (ETDEWEB)

    Yarovenko, V L; Nakhmanovich, B M

    1963-07-17

    The method involves use of carbohydrate containing plant raw-material, e.g., hydrolyzates of corn cob and pulp. The material is subjected to fermentation with acetone-butanol bacteria with addition of starch-industry wastes as source of proteins (gluten and gluten-containing water) and nutrient salts.

  4. Problems with the microbial production of butanol.

    Science.gov (United States)

    Zheng, Yan-Ning; Li, Liang-Zhi; Xian, Mo; Ma, Yu-Jiu; Yang, Jian-Ming; Xu, Xin; He, Dong-Zhi

    2009-09-01

    With the incessant fluctuations in oil prices and increasing stress from environmental pollution, renewed attention is being paid to the microbial production of biofuels from renewable sources. As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hygroscopicity. A variety of cheap substrates have been successfully applied in the production of biobutanol, highlighting the commercial potential of biobutanol development. In this review, in order to better understand the process of acetone-butanol-ethanol production, traditional clostridia fermentation is discussed. Sporulation is probably induced by solvent formation, and the molecular mechanism leading to the initiation of sporulation and solventogenesis is also investigated. Different strategies are employed in the metabolic engineering of clostridia that aim to enhancing solvent production, improve selectivity for butanol production, and increase the tolerance of clostridia to solvents. However, it will be hard to make breakthroughs in the metabolic engineering of clostridia for butanol production without gaining a deeper understanding of the genetic background of clostridia and developing more efficient genetic tools for clostridia. Therefore, increasing attention has been paid to the metabolic engineering of E. coli for butanol production. The importation and expression of a non-clostridial butanol-producing pathway in E. coli is probably the most promising strategy for butanol biosynthesis. Due to the lower butanol titers in the fermentation broth, simultaneous fermentation and product removal techniques have been developed to reduce the cost of butanol recovery. Gas stripping is the best technique for butanol recovery found so far.

  5. Solvent (acetone-butanol: ab) production

    Science.gov (United States)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  6. (Liquid + liquid) equilibrium of {l_brace}water + phenol + (1-butanol, or 2-butanol, or tert-butanol){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadlich de Oliveira, Leonardo [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil)

    2010-11-15

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  7. Volumetric properties of ternary (IL + 2-propanol or 1-butanol or 2-butanol + ethyl acetate) systems and binary (IL + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate) systems

    International Nuclear Information System (INIS)

    Bahadur, Indra; Deenadayalu, Nirmala; Tywabi, Zikhona; Sen, Sabyasachi; Hofman, Tadeusz

    2012-01-01

    Highlights: ► Experimental densities were determined at T = (298.15, 303.15, and 313.15) K. ► IL: methyl trioctylammonium bis(trifluoromethylsulfonyl)imide was used. ► Virial Based Mixing Rule correlation of the binary excess molar volume data. ► Binary excess molar volume was both negative and positive. ► Ternary excess molar volume data was correlated with the Cibulka equation. - Abstract: The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA] + [Tf 2 N] − ) was used for three of the five binary systems studied. The binary systems were ([MOA] + [Tf 2 N] − + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures. The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.

  8. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

    Science.gov (United States)

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2013-11-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

  9. Solvents (butanol, acetone, and ethanol). [USSR Patent

    Energy Technology Data Exchange (ETDEWEB)

    Yarovenko, V L; Nakhmanovich, B M

    1963-07-17

    The method involves use of carbohydrate-containing plant raw-material, e.g. hydrolyzates of corn cob and pulp. The material is subjected to fermentation with acetone-butanol bacteria with addition of starch-industry wastes as source of proteins (gluten and gluten-containing water) and nutrient salts.

  10. Comparative Autoignition Trends in Butanol Isomers at Elevated Pressure

    KAUST Repository

    Weber, Bryan W.

    2013-03-21

    Autoignition experiments of stoichiometric mixtures of s-, t-, and i-butanol in air have been performed using a heated rapid compression machine (RCM). At compressed pressures of 15 and 30 bar and for compressed temperatures in the range 715-910 K, no evidence of a negative temperature coefficient region in terms of ignition delay response is found. The present experimental results are also compared with previously reported RCM data of n-butanol in air. The order of reactivity of the butanols is n-butanol > s-butanol ≈ i-butanol > t-butanol at the lower pressure but changes to n-butanol > t-butanol > s-butanol > i-butanol at higher pressure. In addition, t-butanol shows preignition heat release behavior, which is especially evident at higher pressures. To help identify the controlling chemistry leading to this preignition heat release, off-stoichiometric experiments are further performed at 30 bar compressed pressure, for t-butanol at φ = 0.5 and φ = 2.0 in air. For these experiments, higher fuel loading (i.e., φ = 2.0) causes greater preignition heat release (as indicated by greater pressure rise) than the stoichiometric or φ = 0.5 cases. Comparison of the experimental ignition delays with the simulated results using two literature kinetic mechanisms shows generally good agreement, and one mechanism is further used to explore and compare the fuel decomposition pathways of butanol isomers. Using this mechanism, the importance of peroxy chemistry in the autoignition of the butanol isomers is highlighted and discussed. © 2013 American Chemical Society.

  11. Phenotypic characterisation of Saccharomyces spp. for tolerance to 1-butanol.

    Science.gov (United States)

    Zaki, A M; Wimalasena, T T; Greetham, D

    2014-11-01

    Biofuels are expected to play a role in replacing crude oil as a liquid transportation fuel, and research into butanol has highlighted the importance of this alcohol as a fuel. Butanol has a higher energy density than ethanol, butanol-gasoline blends do not separate in the presence of water, and butanol is miscible with gasoline (Szulczyk, Int J Energy Environ 1(1):2876-2895, 40). Saccharomyces cerevisiae has been used as a fermentative organism in the biofuel industry producing ethanol from glucose derived from starchy plant material; however, it typically cannot tolerate butanol concentrations greater than 2 % (Luong, Biotechnol Bioeng 29 (2):242-248, 27). 90 Saccharomyces spp. strains were screened for tolerance to 1-butanol via a phenotypic microarray assay and we observed significant variation in response with the most tolerant strains (S. cerevisiae DBVPG1788, S. cerevisiae DBVPG6044 and S. cerevisiae YPS128) exhibiting tolerance to 4 % 1-butanol compared with S. uvarum and S. castelli strains, which were sensitive to 3 % 1-butanol. Response to butanol was confirmed using traditional yeast methodologies such as growth; it was observed that fermentations in the presence of butanol, when using strains with a tolerant background, were significantly faster. Assessing for genetic rationale for tolerance, it was observed that 1-butanol-tolerant strains, when compared with 1-butanol-sensitive strains, had an up-regulation of RPN4, a transcription factor which regulates proteasome genes. Analysing for the importance of RPN4, we observed that a Δrpn4 strain displayed a reduced rate of fermentation in the presence of 1-butanol when compared with the BY4741 background strain. This data will aid the development of breeding programmes to produce better strains for future bio-butanol production.

  12. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    International Nuclear Information System (INIS)

    Jeor, Jeffery D.; Reed, David W.; Daubaras, Dayna L.; Thompson, Vicki S.

    2016-01-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  13. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  14. Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch.

    Science.gov (United States)

    Hu, Xiuting; Wei, Benxi; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    The aim of this study was to examine the interaction between amylose and 1-butanol during the 1-butanol-hydrochloric acid (1-butanol-HCl) hydrolysis of normal rice starch. The interaction model between amylose and 1-butanol was proposed using gas chromatography-mass spectrometry (GC-MS), (13)C cross polarization and magic angle spinning NMR analysis ((13)C CP/MAS NMR), differential scanning calorimetry (DSC), and thermalgravimetric analysis (TGA). GC-MS data showed that another form of 1-butanol existed in 1-butanol-HCl-hydrolyzed normal rice starch, except in the form of free molecules absorbed on the starch granules. The signal of 1-butanol-HCl-hydrolyzed starch at 100.1 ppm appeared in the (13)C CP/MAS NMR spectrum, indicating that the amylose-1-butanol complex was formed. DSC and TGA data also demonstrated the formation of the complex, which significantly affected the thermal properties of normal rice starch. These findings revealed that less dextrin with low molecular weight formed might be attributed to resistance of this complex to acid during 1-butanol-HCl hydrolysis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  15. Butanol biorefineries: Use of novel technologies to produce biofuel butanol from sweet sorghum bagasse (SSB)

    Science.gov (United States)

    In order to produce butanol biofuel at a competitive price, agricultural residues such as SSB should be used. This feedstock was studied as a substitute to corn to lower feedstock costs and broaden beyond a food crop. In addition, cutting edge science & technology was applied. In these studies we us...

  16. Butanol production from thin stillage using Clostridium pasteurianum.

    Science.gov (United States)

    Ahn, Jae-Hyung; Sang, Byoung-In; Um, Youngsoon

    2011-04-01

    The production of butanol from thin stillage by Clostridium pasteurianum DSM 525 was evaluated in the paper. At initial pH values ranging from 5.0 to 7.0 C. pasteurianum DSM 525 produced 6.2-7.2 g/L of butanol utilizing glycerol in thin stillage as the main carbon source, with yields of 0.32-0.44 g butanol produced/g glycerol consumed, which are higher than previously reported yields (e.g., 0.14-0.31 g butanol/g glycerol, Biebl, 2001). Lactic acid in the thin stillage acted as a buffering agent, maintaining the pH of the medium within a range of 5.7-6.1. Lactic acid was also utilized along with glycerol, enhancing butanol production (6.5 g/L butanol vs. 8.7 g/L butanol with 0 and 16 g/L lactic acid, respectively). These results demonstrate the feasibility of cost-effective butanol production using thin stillage as a nutrient-containing medium with a pH buffering capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Eco-efficient butanol separation in the ABE fermentation process

    NARCIS (Netherlands)

    Patraşcu, Iulian; Bîldea, Costin Sorin; Kiss, Anton A.

    2017-01-01

    Butanol is considered a superior biofuel, as it is more energy dense and less hygroscopic than the more popular ethanol, resulting in higher possible blending ratios with gasoline. However, the production cost of the acetone-butanol-ethanol (ABE) fermentation process is still high, mainly due to the

  18. Characteristics of Butanol Isomers Oxidation in a Micro Flow Reactor

    KAUST Repository

    Bin Hamzah, Muhamad Firdaus

    2017-01-01

    Ignition and combustion characteristics of n-butanol/air, 2-butanol.air and isobutanol/air mixtures at stoichiometric (ϕ = 1) and lean (ϕ = 0.5) conditions were investigated in a micro flow reactor with a controlled temperature profile from 323 K

  19. Butanol Production from Leftover Beverages and Sport Drinks

    NARCIS (Netherlands)

    Raganati, Francesca; Procentese, Alessandra; Montagnaro, Fabio; Olivieri, Giuseppe; Marzocchella, Antonio

    2015-01-01

    The aim of this paper is twofold: (1) to identify an alternative disposal process for the industry of high-sugar-content beverages (HSCBs) and (2) to contribute to the study of butanol production from non-edible feedstocks. HSCBs were used as a renewable feedstock to produce butanol by

  20. Effects of n-butanol on barley microspore embryogenesis

    DEFF Research Database (Denmark)

    Castillo, Ana Maria; Nielsen, Nanna; Jensen, Anni

    2014-01-01

    crosses with different microspore embryogenesis capacities were selected for n-butanol application in anther and isolated microspore cultures. Application of 0.1 % n-butanol after a mannitol stress treatment in anther culture significantly increased the number of embryos (up to almost twice) and green...

  1. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There is abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol

  2. Optimization Study for Butanol Extraction from Butanol-Water Using Fatty Acid Methyl Ester (FAME) as Solvent

    International Nuclear Information System (INIS)

    Nurul Izzati Ab Rahim; Mohd Irfan Hatim Mohamed Dzahir; Wan Nurul Hidayah Wan Othman

    2015-01-01

    The oil crisis, warned the humanity's depends on oil was not sustainable and recently, there are plenty of renewable resources had been developed. Much attention has been given to the solvent extraction process to separate butanol from butanol-water mixture using fatty acid methyl ester (FAME) as a solvent. In this respect, the use of FAME as a green solvent which are locally available has greater potential for butanol extraction process. Therefore, an experimental work has been carried out to study its feasibility as a potential solvent. A single stage extraction process as performed to evaluate the ability to achieve optimal extract butanol. The extraction process was carried out to evaluate the distribution coefficient of butanol with the effects of other parameters such as reaction temperature (50-70 degree Celsius) and butanol-water mixture to solvent ratio (1:1, 1:1.5, 1:2). The constant parameter is the stirring speed (300 rpm). Response Surface Methodology (RSM) in conjunction with the Central Composition Design (CCD) as employed to statistically evaluate and optimize the butanol extraction process. It was found that the distribution coefficient has achieved an optimum level of 1.92 % at the following conditions: (i) butanol-water mixtures to solvent ratio (1:1.48) and (ii) reaction temperature (62.75 degree Celsius). (author)

  3. DOMESTIC BUTANOL-PRODUCING STRAINS OF THE Clostridium GENUS

    Directory of Open Access Journals (Sweden)

    O. O. Tigunova

    2017-02-01

    Full Text Available The aim of the work was to summarize the results of own research concerning obtaining butanol producing strains of Clostridium genus, to identify them by physiological, morphological and genetic methods. Further study of characteristics and biological features of the strains, and various approaches in biotechnological process of butanol production are discussed. The work includes methods to increase butanol accumulation by producer strains. Perspectives of using chemical mutagenesis in Clostridia as a method of increasing butanol production are considered. The feasibility of using non-food raw material as a substrate for fermentation is discussed. Different methods of pretreatment and their impact on the accumulation of butanol in the liquid medium are compared. Butanol accumulation is shown to increase significantly if the synthesis precursors are added as components of enzymatic medium, and the “reverse bard” is used to reduce waste production without affecting the level of butanol synthesis. The problem of conservation of producing strains is given, and protective medium for microorganisms during the freeze-drying is defined.

  4. Impact of zinc supplementation on the improved fructose/xylose utilization and butanol production during acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Bai, Feng-Wu

    2016-01-01

    Lignocellulosic biomass and dedicated energy crops such as Jerusalem artichoke are promising alternatives for biobutanol production by solventogenic clostridia. However, fermentable sugars such as fructose or xylose released from the hydrolysis of these feedstocks were subjected to the incomplete utilization by the strains, leading to relatively low butanol production and productivity. When 0.001 g/L ZnSO4·7H2O was supplemented into the medium containing fructose as sole carbon source, 12.8 g/L of butanol was achieved with butanol productivity of 0.089 g/L/h compared to only 4.5 g/L of butanol produced with butanol productivity of 0.028 g/L/h in the control without zinc supplementation. Micronutrient zinc also led to the improved butanol production up to 8.3 g/L derived from 45.2 g/L xylose as sole carbon source with increasing butanol productivity by 31.7%. Moreover, the decreased acids production was observed under the zinc supplementation condition, resulting in the increased butanol yields of 0.202 g/g-fructose and 0.184 g/g-xylose, respectively. Similar improvements were also observed with increasing butanol production by 130.2 % and 8.5 %, butanol productivity by 203.4% and 18.4%, respectively, in acetone-butanol-ethanol fermentations from sugar mixtures of fructose/glucose (4:1) and xylose/glucose (1:2) simulating the hydrolysates of Jerusalem artichoke tubers and corn stover. The results obtained from transcriptional analysis revealed that zinc may have regulatory mechanisms for the sugar transport and metabolism of Clostridium acetobutylicum L7. Therefore, micronutrient zinc supplementation could be an effective way for economic development of butanol production derived from these low-cost agricultural feedstocks. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. New industrial butanol-producing organism, Clostridium amylovorum

    Energy Technology Data Exchange (ETDEWEB)

    Cataldi, M S

    1964-01-01

    A new Clostridium was isolated from starch-containing substances; it ferments corn and potato starch and sugar molasses, giving important yields of butanol and acetone; it is gram-positive, strictly anaerobic and sporulates in plectron form.

  6. Process for the fermentative production of acetone, butanol and ethanol

    Science.gov (United States)

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  7. Compressed liquid densities of 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico)]. E-mail: lgalicial@ipn.mx; Camacho-Camacho, Luis E. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico)

    2007-02-15

    (p, {rho}, T) properties were determined in liquid phase for 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa using a vibrating tube densimeter. The uncertainty is estimated to be lower than {+-}0.2 kg . m{sup -3} for the experimental densities. Nitrogen and water were used as reference fluids for the calibration of the vibrating tube densimeter. Experimental densities of 1-butanol and 2-butanol were correlated with a short empirical equation and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations were reported. Published densities of 1-butanol and 2-butanol are compared with values calculated with the BWRS EoS using the parameters obtained in this work. The experimental data determined here are also compared with available correlations for 1-butanol and 2-butanol.

  8. Compressed liquid densities of 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa

    International Nuclear Information System (INIS)

    Zuniga-Moreno, Abel; Galicia-Luna, Luis A.; Camacho-Camacho, Luis E.

    2007-01-01

    (p, ρ, T) properties were determined in liquid phase for 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa using a vibrating tube densimeter. The uncertainty is estimated to be lower than ±0.2 kg . m -3 for the experimental densities. Nitrogen and water were used as reference fluids for the calibration of the vibrating tube densimeter. Experimental densities of 1-butanol and 2-butanol were correlated with a short empirical equation and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations were reported. Published densities of 1-butanol and 2-butanol are compared with values calculated with the BWRS EoS using the parameters obtained in this work. The experimental data determined here are also compared with available correlations for 1-butanol and 2-butanol

  9. The synthesis of [1-11C]-butanol

    International Nuclear Information System (INIS)

    Helus, F.; Maier-Borst, W.; Oberdorfer, F.; Silvester, D.J.

    1982-01-01

    11 C-labelled butanol has been synthesised for use as a tracer in the assessment of regional blood supply for substrate utilisation in tumors. 11 CO 2 was produced by the 14 N(p,a) 11 C reactions in a cyclotron. 11 C-butanol was formed by the carboxylation of n-propyl magnesium chlorides with 11 CO 2 , and reduction of the resulting 11 C-butyric acid with LiAlH 4 . (U.K.)

  10. Recovery of Butanol by Counter-Current Carbon Dioxide Fractionation with its Potential Application to Butanol Fermentation

    Directory of Open Access Journals (Sweden)

    Miriam Solana

    2016-06-01

    Full Text Available A counter-current CO2 fractionation method was applied as a mean to recover n-butanol and other compounds that are typically obtained from biobutanol fermentation broth from aqueous solutions. The influence of operating variables, such as solvent-to-feed ratio, temperature, pressure and feed solution composition was experimentally studied in terms of separation efficiency, butanol removal rate, total removal and butanol concentration in the extract at the end of the continuous cycle. With respect to the temperature and pressure conditions investigated, results show that the highest separation efficiency was obtained at 35 °C and 10.34 MPa. At these operating conditions, 92.3% of the butanol present in the feed solution was extracted, and a concentration of 787.5 g·L−1 of butanol in the extract was obtained, starting from a feed solution of 20 g·L−1. Selectivity was calculated from experimental data, concluding that our column performs much better than a single equilibrium stage. When adding ethanol and acetone to the feed solution, ethanol was detected in the water-rich fraction (raffinate, whereas the highest concentration of acetone was found in the butanol rich fraction (extract.

  11. Henry's law constants and infinite dilution activity coefficients of cis-2-butene, dimethylether, chloroethane, and 1,1-difluoroethane in methanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-methyl-2-butanol

    International Nuclear Information System (INIS)

    Miyano, Yoshimori; Kobashi, Takahiro; Shinjo, Hiroshi; Kumada, Shinya; Watanabe, Yusuke; Niya, Wataru; Tateishi, Yoko

    2006-01-01

    Henry's law constants and infinite dilution activity coefficients of cis-2-butene, dimethylether, chloroethane, and 1,1-difluoroethane in methanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-methyl-2-butanol in the temperature range of 250 K to 330 K were measured by a gas stripping method and partial molar excess enthalpies were calculated from the activity coefficients. A rigorous formula for evaluating the Henry's law constants from the gas stripping measurements was used for the data reduction of these highly volatile mixtures. The uncertainty is about 2% for the Henry's law constants and 3% for the estimated infinite dilution activity coefficients. In the evaluation of the infinite dilution activity coefficients, the nonideality of the solute such as the fugacity coefficient and Poynting correction factor cannot be neglected, especially at higher temperatures. The estimated uncertainty of the infinite dilution activity coefficients includes 1% for nonideality

  12. Genetic Engineering In BioButanol Production And Tolerance

    Directory of Open Access Journals (Sweden)

    Ashok Rao

    Full Text Available ABSTRACT The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and butanol tolerance by various genetically engineered microbes.

  13. Effects of humus on acetone-butanol fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Kovats, J

    1963-01-01

    Adding 6 to 8 g humus-rich soil dried at 80/sup 0/ to 100 cc sterilized molasses, containing 3.8 sucrose and 0.1% (NH/sub 4/)/sub 2/HPO/sub 4/, inoculated with acetone-butanol fermentative bacteria, increased acetone, butanol, and ethanol yields by 30, 50, and 40%, respectively. The acetone-to-butanol ratio increased from 1.85 to 2.1-2.3 in low and 2.6-2.8 in high sucrose-molasses concentrations. Yields of total organic solvents increased from 25 to 36-8% of the sucrose present. Inorganic salts from ashed humus soils were only 10 to 20% less effective in enhancing fermentation than the whole soil. It is postulated that the fermentation is enhanced by trace elements present in the soil.

  14. Development of a high temperature microbial fermentation process for butanol

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donor and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.

  15. Characteristics of Butanol Isomers Oxidation in a Micro Flow Reactor

    KAUST Repository

    Bin Hamzah, Muhamad Firdaus

    2017-05-01

    Ignition and combustion characteristics of n-butanol/air, 2-butanol.air and isobutanol/air mixtures at stoichiometric (ϕ = 1) and lean (ϕ = 0.5) conditions were investigated in a micro flow reactor with a controlled temperature profile from 323 K to 1313 K, under atmospheric pressure. Sole distinctive weak flame was observed for each mixture, with inlet fuel/air mixture velocity set low at 2 cm/s. One-dimensional computation with comprehensive chemistry and transport was conducted. At low mixture velocities, one-stage oxidation was confirmed from heat release rate profiles, which was broadly in agreement with the experimental results. The weak flame positions were congruent with literature describing reactivity of the butanol isomers. These weak flame responses were also found to mirror the trend in Anti-Knock Indexes of the butanol isomers. Flux and sensitivity analyses were performed to investigate the fuel oxidation pathways at low and high temperatures. Further computational investigations on oxidation of butanol isomers at higher pressure of 5 atm indicated two-stage oxidation through the heat release rate profiles. Low temperature chemistry is accentuated in the region near the first weak cool flame for oxidation under higher pressure, and its impact on key species – such as hydroxyl radical, hydrogen peroxide and carbon monoxide – were considered. Both experimental and computational findings demonstrate the advantage of employing the micro flow reactor in investigating oxidation processes in the temperature region of interest along the reactor channel. By varying physical conditions such as pressure, the micro flow reactor system is proven to be highly beneficial in elucidating oxidation behavior of butanol isomers in conditions in engines such as those that mirror HCCI operations.

  16. Multitarget global sensitivity analysis of n-butanol combustion.

    Science.gov (United States)

    Zhou, Dingyu D Y; Davis, Michael J; Skodje, Rex T

    2013-05-02

    A model for the combustion of butanol is studied using a recently developed theoretical method for the systematic improvement of the kinetic mechanism. The butanol mechanism includes 1446 reactions, and we demonstrate that it is straightforward and computationally feasible to implement a full global sensitivity analysis incorporating all the reactions. In addition, we extend our previous analysis of ignition-delay targets to include species targets. The combination of species and ignition targets leads to multitarget global sensitivity analysis, which allows for a more complete mechanism validation procedure than we previously implemented. The inclusion of species sensitivity analysis allows for a direct comparison between reaction pathway analysis and global sensitivity analysis.

  17. Some problems of local production of acetone and butanol

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C; Chang, Y P

    1959-01-01

    Conditions of laboratory and plant cultivation of acetone-butanol fermentation bacteria are considered (effects of pH of the medium, temperature, and starch content in raw material on yield of fermentation products) and also the conditions of isolation of the final products produced.

  18. Mutant strain of C. acetobutylicum and process for making butanol

    Science.gov (United States)

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  19. LYOPHILIZATION EFFECT ON PRODUCTIVITY OF BUTANOL-PRODUCING STRAINS

    Directory of Open Access Journals (Sweden)

    O. O. Tigunova

    2016-10-01

    Full Text Available Investigation of lyophilization effect on the productivity of butanol-producing strains was the aim of our research. For this purpose we used butanol-producing strains; technical glycerol; biomass of switchgrass Panicum virgatum L. Lyophilization was performed using a lyophilization-drying. The effect of the protective medium on residual moisture of freezedrying cultures suspensions depending on the concentration of glucose and sucrose was studed. It was shown that the lowest residual moisture was attained by using glucose and sucrose in amount of 10% and if the samples of freeze-drying bacteria had been saved for one month at 4 οC the productivity did not decrease. As temperature preservation was increased the productivity of the cultures was gradually decreased and it was greatly reduced at 30 οC. So the protective medium composition was optimized for lyophilization of butanol-producing strains as follows: sucrose 10.0%; gelatin 10.0%; agar 0.02%. It was shown that the preservation of samples of freeze-drying bacteria for six months at a temperature of 4 οC did not affect the productivity of strains. It was found that cultures could use glycerol as a carbon source for butanol accumulation before lyophilization.

  20. Chemical structures of an n-butanol counterflow flame

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S.M.; Thomson, M.J. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering

    2007-07-01

    N-butanol, also known as biobutanol, is an attractive alternative biofuel that can replace gasoline in transportation applications. Biobutanol can be produced via the fermentation of sugars, starches, and lignocellulose obtained from agricultural feedstocks. Although biobutanol offers several advantages over ethanol, its detailed combustion characteristics are not well known. In order to determine the effect of fuel structure on combustion products, this paper presented the results of a study that examined the emission and temperature profiles of an n-butanol counterflow flame. The paper presented the experimental data and discussed the potential reaction mechanisms that rationalized the observed species profiles. It was found that significant quantities of acetylene, acetaldehyde, ethane, and propene were measured in the n-butanol flame and that the reaction pathways leading to the formation of these compounds were yet to be identified. In addition, significant concentrations of formaldehyde and acetaldehyde were found. Results will be utilized to validate a detailed chemical kinetic model for n-butanol combustion. 13 refs., 3 figs.

  1. Metabolic engineering toward 1-butanol derivatives in solvent producing clostridia

    NARCIS (Netherlands)

    Siemerink, M.A.J.

    2010-01-01

    Chapter 1 of this thesis gives an overview about the history of the acetone, butanol and ethanol (ABE) fermentation. The responsible solventogenic clostridia with their central metabolism are briefly discussed. Despite the fact that scientific research on the key organisms of the ABE process has

  2. Intermediate species measurement during iso-butanol auto-ignition

    KAUST Repository

    Ji, Weiqi

    2015-10-01

    © 2015 The Combustion Institute.Published by Elsevier Inc. All rights reserved. This work presents the time histories of intermediate species during the auto-ignition of iso-butanol at high pressure and intermediate temperature conditions obtained using a rapid compression machine and recently developed fast sampling system. Iso-butanol ignition delays were acquired for iso-butanol/O2 mixture with an inert/O2 ratio of 7.26, equivalence ratio of 0.4, in the temperature range of 840-950 K and at pressure of 25 bar. Fast sampling and gas chromatography were used to acquire and quantify the intermediate species during the ignition delay of the same mixture at P = 25.3 bar and T = 905 K. The ignition delay times and quantitative measurements of the mole fraction time histories of methane, ethene, propene, iso-butene, iso-butyraldehyde, iso-butanol, and carbon monoxide were compared with predictions from the detailed mechanisms developed by Sarathy et al., Merchant et al., and Cai et al. It is shown that while the Sarathy mechanism well predicts the overall ignition delay time, it overpredicts ethene by a factor of 6-10, underpredicts iso-butene by a factor of 2, and overpredicts iso-butyraldehyde by a factor of 2. Reaction path and sensitivity analyses were carried out to identify the reactions responsible for the observed inadequacy. The rates of iso-butanol hydrogen atom abstraction by OH radical and the beta-scission reactions of hydroxybutyl radicals were updated based on recently published quantum calculation results. Significant improvements were achieved in predicting ignition delay at high pressures (25 and 30 bar) and the species concentrations of ethene and iso-butene. However, the updated mechanism still overpredicts iso-butyraldehyde concentrations. Also, the updated mechanism degrades the prediction in ignition delay at lower pressure (15 bar) compared to the original mechanism developed by Sarathy et al.

  3. Intermediate species measurement during iso-butanol auto-ignition

    KAUST Repository

    Ji, Weiqi; Zhang, Peng; He, Tanjin; Wang, Zhi; Tao, Ling; He, Xin; Law, Chung K.

    2015-01-01

    © 2015 The Combustion Institute.Published by Elsevier Inc. All rights reserved. This work presents the time histories of intermediate species during the auto-ignition of iso-butanol at high pressure and intermediate temperature conditions obtained using a rapid compression machine and recently developed fast sampling system. Iso-butanol ignition delays were acquired for iso-butanol/O2 mixture with an inert/O2 ratio of 7.26, equivalence ratio of 0.4, in the temperature range of 840-950 K and at pressure of 25 bar. Fast sampling and gas chromatography were used to acquire and quantify the intermediate species during the ignition delay of the same mixture at P = 25.3 bar and T = 905 K. The ignition delay times and quantitative measurements of the mole fraction time histories of methane, ethene, propene, iso-butene, iso-butyraldehyde, iso-butanol, and carbon monoxide were compared with predictions from the detailed mechanisms developed by Sarathy et al., Merchant et al., and Cai et al. It is shown that while the Sarathy mechanism well predicts the overall ignition delay time, it overpredicts ethene by a factor of 6-10, underpredicts iso-butene by a factor of 2, and overpredicts iso-butyraldehyde by a factor of 2. Reaction path and sensitivity analyses were carried out to identify the reactions responsible for the observed inadequacy. The rates of iso-butanol hydrogen atom abstraction by OH radical and the beta-scission reactions of hydroxybutyl radicals were updated based on recently published quantum calculation results. Significant improvements were achieved in predicting ignition delay at high pressures (25 and 30 bar) and the species concentrations of ethene and iso-butene. However, the updated mechanism still overpredicts iso-butyraldehyde concentrations. Also, the updated mechanism degrades the prediction in ignition delay at lower pressure (15 bar) compared to the original mechanism developed by Sarathy et al.

  4. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol.

    Science.gov (United States)

    Tian, Xiaoxu; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2013-01-14

    Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    OpenAIRE

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from thes...

  6. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  7. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production.

    Science.gov (United States)

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian

    2016-01-01

    Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption. © 2015 Wiley Periodicals, Inc.

  8. Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production

    Science.gov (United States)

    Morozova, Tatyana; Semyonov, Sergey

    2017-11-01

    It is known that the use of lignocellulosic hydrolysates reduces the production cost of biofuel such as biobutanol and bioethanol. But for the most successful application of the hydrolysates for the biofuel production, it is necessary to apply an inexpensive and effective detoxification method and to use of cost-effective growth factors. In the present study, we evaluated the use of an acid hydrolysate of spruce and an enzymatic hydrolysate of miscanthus cellulose for the biobutanol production. To remove inhibitors from the hydrolysates, we applied the traditional physicochemical method with overliming and the biodetoxification method based on the use of the specially adapted activated sludge. Calcium hydroxide (150 g/L) was used for the neutralization. The biological method of detoxification of lignocellulosic hydrolysates was carried out under non-sterile conditions at room temperature by the specially adapted activated sludge of the urban wastewater treatment plants. The acetone-butanol fermentation was carried out by a strain of bacteria Clostridium acetobutylicum ATCC 824. The treatment by overliming removed 84-85 % and 83-86% of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysates respectively. Using the method of biodetoxification the content of furfural decreased by 98% and concentration of 5-HMF - by 97-99%. In the present study as an inexpensive source of growth substances for the fermentation of the hydrolysates it has been suggested to use decantate of the brewer's spent grain. The obtained results showed that the brewer's spent grain can be used in the biofuel production as efficiently as the synthetic growth substances.

  9. Recent trends in acetone, butanol, and ethanol (ABE production

    Directory of Open Access Journals (Sweden)

    Keikhosro Karim

    2015-12-01

    Full Text Available Among the renewable fuels considered as a suitable substitute to petroleum-based gasoline, butanol has attracted a great deal of attention due to its unique properties. Acetone, butanol, and ethanol (ABE can be produced biologically from different substrates, including sugars, starch, lignocelluloses, and algae. This process was among the very first biofuel production processes which was commercialized during the First World War. The present review paper discusses the different aspects of the ABE process and the recent progresses made. Moreover, the microorganisms and the biochemistry of the ABE fermentation as well as the feedstocks used are reviewed. Finally, the challenges faced such as low products concentration and products` inhibitory effects on the fermentation are explained and different possible solutions are presented and reviewed.

  10. System-level modeling of acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Liao, Chen; Seo, Seung-Oh; Lu, Ting

    2016-05-01

    Acetone-butanol-ethanol (ABE) fermentation is a metabolic process of clostridia that produces bio-based solvents including butanol. It is enabled by an underlying metabolic reaction network and modulated by cellular gene regulation and environmental cues. Mathematical modeling has served as a valuable strategy to facilitate the understanding, characterization and optimization of this process. In this review, we highlight recent advances in system-level, quantitative modeling of ABE fermentation. We begin with an overview of integrative processes underlying the fermentation. Next we survey modeling efforts including early simple models, models with a systematic metabolic description, and those incorporating metabolism through simple gene regulation. Particular focus is given to a recent system-level model that integrates the metabolic reactions, gene regulation and environmental cues. We conclude by discussing the remaining challenges and future directions towards predictive understanding of ABE fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Extractions of isoquinoline alkaloids with butanol and octanol.

    Science.gov (United States)

    Gregorová, Jana; Babica, Jan; Marek, Radek; Paulová, Hana; Táborská, Eva; Dostál, Jirí

    2010-09-01

    Six different isoquinoline alkaloids (sanguinarine, chelerythrine, berberine, coptisine, allocryptopine, and protopine) were extracted by butanol and octanol from aqueous solution, pH 4.5. The samples were analyzed by HPLC. Butanol extraction was non-selective, alkaloids passed into organic phase in 83-98%. Octanol extraction provided more selective yields: sanguinarine 99%, chelerythrine 94%, berberine 18%, coptisine 16%, allocryptopine 7.5%, protopine 7%. Further, we tested octanol treatment of extract from Dicranostigma lactucoides. The octanol extraction yields were also selective: sanguinarine 98%, chelerythrine 92%, chelirubine 92.5%, protopine 6% and allocryptopine 3.5%. 6-Butoxy-5,6-dihydrosanguinarine and 6-butoxy-5,6-dihydrochelerythrine were prepared and their NMR and MS data are reported and discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Synthesis of (1-/sup 11/C)-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Oberdorfer, F; Helus, F; Maier-Borst, W [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.); Silvester, D J [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit

    1982-09-20

    A method for carrier-free labelling of n-butanol with the positron emitting radionuclide carbon-11 (half-life 20.4 min) is described. Labelling was achieved by carboxylation of n-propyl magnesium chloride with /sup 11/C-labelled carbon dioxide and the subsequent reduction of the resulting free (1-/sup 11/C)-butyric acid with LiAlH/sub 4/ after hydrolysis of the Grignard complex. The procedure permits /sup 11/C-labelled butanol to be prepared in high activity and high radiochemical purity for in vivo biological studies only 25 min after the start of carboxylation of the Grignard compound. Gas chromatography and HPLC were used to assess the purity of the product. To maintain carrier-free conditions, atmospheric carbon dioxide was rigorously excluded from all reagents and every parts of the apparatus.

  13. The synthesis of [1-11C]-butanol

    International Nuclear Information System (INIS)

    Oberdorfer, F.; Helus, F.; Maier-Borst, W.; Silvester, D.J.

    1982-01-01

    A method for carrier-free labelling of n-butanol with the positron emitting radionuclide carbon-11 (half-life 20.4 min) is described. Labelling was achieved by carboxylation of n-propyl magnesium chloride with 11 C-labelled carbon dioxide and the subsequent reduction of the resulting free [1- 11 C]-butyric acid with LiAlH 4 after hydrolysis of the Grignard complex. The procedure permits 11 C-labelled butanol to be prepared in high activity and high radiochemical purity for in vivo biological studies only 25 min after the start of carboxylation of the Grignard compound. Gas chromatography and HPLC were used to assess the purity of the product. To maintain carrier-free conditions, atmospheric carbon dioxide was rigorously excluded from all reagents and every parts of the apparatus. (author)

  14. IRIS Toxicological Review of n-Butanol (External Review Draft ...

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of n-butanol that will appear in the Integrated Risk Information System (IRIS) database. EPA is undertaking an Integrated Risk Information System (IRIS) health assessment for n-butanol. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment paradigm, i.e., hazard identification and dose-response evaluation. IRIS assessments are used in combination with specific situational exposure assessment information to evaluate potential public health risk associated with environmental contaminants.

  15. Selectivities of rare earth oxide catalysts for dehydration of butanols

    International Nuclear Information System (INIS)

    Bernal, S.; Trillo, J.M.

    1980-01-01

    The catalytic dehydration of 2-propanol, 1-butanol, and 2-butanol over La 2 O 3 , CeO 2 , Pr 6 O 11 , Sm 2 O 3 , Eu 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , and Yb 2 O 3 is studied. Because of the gradual variation of the general properties of 4f oxides, the former group has been considered a likely series to analyze the existence of definite correlations between alkene distribution and catalyst properties, often reported in the literature. According to our study, the effect of temperature on product distribution may strongly restrict the validity of such correlations. This point is discussed on the basis of the linear relationships found here between the activation energy (E/sub a/) and the log of the preexponential factor

  16. An economic evaluation of biological conversion of wheat straw to butanol: A biofuel

    International Nuclear Information System (INIS)

    Qureshi, N.; Saha, B.C.; Cotta, M.A.; Singh, V.

    2013-01-01

    Highlights: ► An economic evaluation of bioconversion of wheat straw to butanol was performed. ► Wheat straw and utilities impact butanol economics significantly. ► Sulfuric acid and sodium hydroxide affect butanol production cost adversely. ► Annexation of butanol plant to an existing distillery improves butanol economics. ► Butanol production cost from wheat straw was estimated to be $1.31–1.00/kg. - Abstract: A cost estimation study was performed for a biological butanol production plant with a capacity of 150 × 10 6 kg butanol/year. Wheat straw (WS) was used as a feedstock. In addition to butanol, acetone (78.05 × 10 6 kg/year) and ethanol (28.54 × 10 6 kg/year) would also be produced. The total capital cost for this plant was $193.07 × 10 6 . This exercise was based in part on data generated in our laboratory and in part on data obtained from literature. The design, mass balance, and energy balance simulations were performed using SuperPro Designer (Version 8.5003, 2012). For butanol production wheat straw would be pretreated with dilute (1% v/v) sulfuric acid at 121 °C for 1 h followed by separate hydrolysis (using enzymes), fermentation and recovery. Enzyme cost for wheat straw hydrolysis was adapted from literature ($0.16/kg butanol). Utilities which included steam/high pressure steam, cooling/chilling water, and electricity represented the major cost of the operation (49.18%) followed by raw materials (26.81%). Based on batch fermentation of wheat straw hydrolysate and distillative recovery of acetone butanol ethanol (ABE), butanol production cost was estimated to be $1.30/kg for a grass-rooted/green-field plant. Application of a membrane recovery process could reduce this price to $1.00/kg for a plant annexed to an existing distillery.

  17. Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation – Evaluation of engine performance, exhaust emissions, heat release and flammability analysis

    International Nuclear Information System (INIS)

    Şahin, Zehra; Durgun, Orhan; Aksu, Orhan N.

    2015-01-01

    Highlights: • n-Butanol/diesel fuel blends and n-butanol fumigation investigated experimentally. • Flammability analysis of n-butanol performed. • Smoke decreases significantly for n-butanol/diesel fuel blends and n-butanol fumigation. • HC emission increases significantly for n-butanol/diesel fuel blends and n-butanol fumigation. • 2% n-Butanol/diesel fuel blend decreases slightly BSFC. - Abstract: The aim of this paper is to investigate and compare the effects of n-butanol/diesel fuel blends (nBDFBs) and n-butanol fumigation (nBF) on the engine performance and exhaust emissions in a turbocharged automobile diesel engine. Also, evaluations based on heat release and flammability analysis have been done. Experiments have been performed for various n-nBDFBs and nBF at different engine speeds and loads. For nBDFBs and nBF tests; nB2, nB4 and nB6 and nBF2, nBF4 and nBF6n-butanol percentages were selected. Here, for example nB2 and nBF2 contains 2% n-butanol and 98% diesel fuel by volume respectively. The test results showed that smoke decreases significantly by applying both of these two methods. However, decrement ratios of smoke for fumigation method are higher than that of blend method. NO x emission decreases for nB2, but it increases for nB4 and nB6 at selected engine speeds and loads. NO x emission decreases generally for nBF. For nB2 and nB4, BSFC decreases slightly but it increases for nB6. For nBF, BSFC increases at all of the test conditions. Adding n-butanol to diesel fuel becomes expensive for two methods. For nBDFBs, heat release rate (HRR) diagrams exhibit similar typical characteristic to NDF. However, for nBF, HRR shows slightly different pattern from NDF and a double peak is observed in the HRR diagram. The first peak occurs earlier than NDF and the second peak takes places later. In addition, this diagram shows that the first peak becomes larger and the second peak diminishes as n-butanol ratio is increased. Because of pilot injection of

  18. Biofuel Production Using Butanol and Used Transformer Oil

    OpenAIRE

    J.Antony Pradeep; K.Kishore Kumar, UG Scholars; D.Balasubramanian Asst Prof

    2016-01-01

    Energy demand of the world increases tremendously. The use of fossil fuels to this extent makes it limited and it is an important cause for global warming. To reduce the emission of greenhouse gases and fossil fuel usage, many developments were made using renewable energy. Ethanol was used as a substitute for gasoline lately but it is highly corrosive and need separate tankers for transportation. Instead of using ethanol, butanol will give high mileage, less corrosive and has higher flash and...

  19. LIGNOCELLULOSIC BIOMASS AFTER EXPLOSIVE AUTOHYDROLYSIS AS SUBSTRATE TO BUTANOL OBTAINING

    Directory of Open Access Journals (Sweden)

    Tigunova

    2016-08-01

    Full Text Available The aim of the work was investigation of the effect of the explosive autohydrolysis on lignocellulosic biomass (saving, switchgrass biomass for consequent use as a substrate to produce biofuels such as butanol. Butanol-producing strains, switchgrass Panicum virgatum L. biomass and its components after autohydrolysis were used in study. The thermobaric pressure pretreatment of lignocellulosic biomass was carried out using specially designed equipment. The effect of explosive autohydrolysis on lignocellulosic biomass for further use in producing biofuels using microbial conversion was studied. Components of lignocellulosic biomass were fractionated after undergoing thermobaric treatment. The possibility of using different raw material components after using explosive autohydrolysis processing to produce biobutanol was found. Products of switchgrass biomass autohydrolysis were shown to need further purification before fermentation from furfural formed by thermobaric pretreatment and inhibiting the growth of microorganisms. The ability of strains of the genus Clostridium to use cellulose as a substrate for fermentation was proved. It was found that using explosive autohydrolysis pretreatment to savings allowed boosting the butanol accumulation by 2 times.

  20. Fragrance material review on 2-methyl-4-phenyl-2-butanol.

    Science.gov (United States)

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-4-phenyl-2-butanol when used as a fragrance ingredient is presented. 2-methyl-4-phenyl-2-butanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-4-phenyl-2-butanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. assessment of aryl alkyl alcohols when used as fragrance ingredients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. IRIS Toxicological Review of n-Butanol (Interagency Science ...

    Science.gov (United States)

    On September 8, 2011, the Toxicological Review of n-Butanol (External Review Draft) was released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. In the new IRIS process, introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments with EPA's response and the interagency science consultation draft of the IRIS Toxicological Review of n-Butanol and the charge to external peer reviewers are posted on this site. EPA is undertaking an Integrated Risk Information System (IRIS) health assessment for n-butanol. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment paradigm, i.e., hazard identification and dose-response evaluation. IRIS assessments are used in combination with specific situational exposure assessment information to evaluate potential public health risk associated with environmental contaminants.

  2. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor.

    Science.gov (United States)

    Raganati, F; Olivieri, G; Procentese, A; Russo, M E; Salatino, P; Marzocchella, A

    2013-06-01

    Butanol production by Clostridium acetobutylicum DSM 792 fermentation was investigated. Unsupplemented cheese whey was adopted as renewable feedstock. The conversion was successfully carried out in a biofilm packed bed reactor (PBR) for more than 3 months. The PBR was a 4 cm ID, 16 cm high glass tube with a 8 cm bed of 3mm Tygon rings, as carriers. It was operated at the dilution rate between 0.4h(-1) and 0.94 h(-1). The cheese whey conversion process was characterized in terms of metabolites production (butanol included), lactose conversion and biofilm mass. Under optimized conditions, the performances were: butanol productivity 2.66 g/Lh, butanol concentration 4.93 g/L, butanol yield 0.26 g/g, butanol selectivity of the overall solvents production 82 wt%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  4. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    OpenAIRE

    Paritta Prayoonyong

    2014-01-01

    The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesis...

  5. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    Science.gov (United States)

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  6. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 1. Process Simulations

    Science.gov (United States)

    BACKGROUND: Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor-liquid equilibrium and parti...

  7. Novel developments in butanol fermentation: Microbial genetics to agricultural substrates, process technology, and downstream processing

    Science.gov (United States)

    Butanol is the major product of acetone-butanol-ethanol (ABE; ratio 3:6:1) fermentation. It can be produced from various carbohydrates such as glucose, corn, molasses, and whey permeate (a by-product of the dairy industry) using microbial strains such as Clostridium beijerinckii and/or C. acetobuty...

  8. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.; Badra, Jihad; Javed, Tamour; Alabbad, Mohammed; Bokhumseen, Nehal; Gaillard, Patrick; Babiker, Hassan; Farooq, Aamir; Sarathy, Mani

    2015-01-01

    work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range

  9. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    Directory of Open Access Journals (Sweden)

    Paritta Prayoonyong

    2014-12-01

    Full Text Available The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesised by residue curve map analysis, the distillation flowsheet for ethanol dehydration by 1-butanol comprises a double-feed column integrated with an overhead decanter and a simple column. The double-feed column is used to recover water as the top product, whereas the simple column is used for recovering ethanol and 1-butanol. The separation feasibility and the economically near-optimal designs of distillation columns in the flowsheet are evaluated and identified by using the boundary value design method. The distillation flowsheet using 1-butanol is compared with the conventional process using benzene as entrainer. Based on their total annualised costs, the ethanol dehydration process using 1-butanol is less economically attractive than the process using benzene. However, 1-butanol is less toxic than benzene.

  10. Production of n-butanol from whey filtrate using Clostridium acetobutylicum NCIB 2951

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, I S

    1980-01-01

    Production of the important solvent n-butanol by traditional fermentation of corn mash or molasses by Clostridium acetobutylicum produces a mixed end product in the ratio butanol:acetone:ethanol 6:3:1. Laboratory experiments have shown that H2SO4 casein whey after ultrafiltration to remove protein (DSA 40, 5658) is a possible substrate for butanol fermentation, which would also reduce a major waste disposal problem. The organism was maintained in the casein whey permeate; inocula were heat-shocked at 70 degrees Celcius for 90 s, followed by incubation at 30 degrees Celcius for 3 days to provide working cultures. Whey permeate supplemented with 0.5% (w/v) yeast extract was adjusted to pH 6.5 with 1 M NH4OH, inoculated with 5% culture and incubated at 30 degrees Celcius. Cell counts were recorded daily, together with residual lactose concentration and production of butyric acid, acetic acid, butanol, acetone and ethanol (determined by GLC). Initially butyric and acetic acids were produced, but after 2 days conversion to butanol and acetone began. Cell growth ceased after 3 days, but conversion continued to reach a maximum yield of butanol after 5 days, in the favourable ratio of butanol:acetone:ethanol of 10:1:1. Inhibition by end products prevented complete utilization of the lactose. Omission of the yeast supplement produced a slower but similar fermentation reaching a butanol yield of 1.3% after 7 days. The ultrafiltration may not be necessary. (Refs. 3).

  11. Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol.

    Science.gov (United States)

    Li, Yuyang; Yuan, Wenhao; Li, Tianyu; Li, Wei; Yang, Jiuzhong; Qi, Fei

    2018-04-25

    n-Butanol is a promising renewable biofuel and has a lot of advantages as a gasoline additive compared with ethanol. Though the combustion of pure n-butanol has been extensively investigated, the chemical structures of large hydrocarbons doped with n-butanol, especially for aromatic fuels, are still insufficiently understood. In this work, rich premixed toluene/n-butanol/oxygen/argon flames were investigated at 30 Torr with synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The blending ratio of n-butanol was varied from 0 to 50%, while the equivalence ratio was maintained at a quite rich value (1.75) for the purpose of studying the influence of n-butanol on the aromatic growth process. Flame species including radicals, reactive molecules, isomers and polycyclic aromatic hydrocarbons (PAHs) were identified and their mole fraction profiles were measured. A kinetic model of toluene/n-butanol combustion was developed from our recently reported toluene and n-butanol models. It is observed that the production of most toluene decomposition products and larger aromatics was suppressed as the blending ratio of n-butanol increases. Meanwhile, the addition of n-butanol generally enhanced the formation of most observed C2-C4 hydrocarbons and C1-C4 oxygenated species. The rate of production (ROP) analysis and experimental observations both indicate that the interaction between toluene and n-butanol in their decomposition processes mainly occurs at the formation of small intermediates, e.g. acetylene and methyl. In particular, the interaction between toluene and n-butanol in methyl formation influences the formation of large monocyclic aromatics such as ethylbenzene, styrene and phenylacetylene, making their maximum mole fractions decay slowly upon increasing the blending ratio of n-butanol compared with toluene and benzyl. The increase of the blending ratio of n-butanol reduces the formation of key PAH precursors such as benzyl, fulvenallenyl

  12. O-15-butanol PET activation study on declarative memory

    International Nuclear Information System (INIS)

    Krause, B.J.; Schmidt, D.; Mottaghy, F.M.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich; Halsband, U.; Tellmann, L.; Herzog, H.

    1998-01-01

    Aim: In this study, neuroanatomical correlates of encoding and retrieval in paired associate learning were evaluated with positron emission tomography using auditorily presented highly imaginable words. Methods: Six right-handed normal male volunteers took part in the study. Each subject underwent six O-15-butanol PET scans. On each of the six trials the memory task began with the injection of a bolus of O-15-butanol. The subjects had to learn and retrieve twelve word pairs (highly imaginable words, not semantically related). The presentation of nonsense words served as reference condition. Results: Recall accuracy after 2-4 presentations was high during the PET measurement. In both encoding and retrieval we found anterior cingulate activation. We show bilateral dorsalateral prefrontal activation during the encoding of auditorily presented word pair associates, whereas retrieval led to left frontal activation. Furthermore, we demonstrate the importance of the precuneus in the retrieval of highly imaginable world-pair associates. Conclusion: Our results support the hypothesis of the presence of distributed widespread brain structures subserving episodic declarative memory. (orig.) [de

  13. Molecular dynamics of tert-butanol studied by neutron transmission

    International Nuclear Information System (INIS)

    Amaral, L.Q.; Fulfaro, R.; Vinhas, L.A.

    1974-01-01

    Neutron transmission of the globular compound tert-butanol (CH 3 ) 3 COH have been measured in the temperature interval O 0 C to 40 0 C for 6.13 A neutrons and in the neutron wavelength range 4A to 7.5A in the liquid and solid states. Results show that the cross-section difference at the state transition in 24 0 C is 13%, while it is only approximately 1% at the first order phase transition in 14 0 C. Evidence of existence of third crystalline phase with the lowest cross-section has been found. The barrier to interval methyl rotation in the solid states is estimated as (3.=+ - 0.5) Kcal/mol and does change much over the phase and state transitions. The observed dynamical changes must be due to movements of the whole molecule and evidence that tert-butanol is not in the strict sense a plastic crystal. Correlation with heat capacity results is discussed

  14. Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422

    DEFF Research Database (Denmark)

    Hou, Xiaoru; From, Nikolaj; Angelidaki, Irini

    2017-01-01

    Seaweed represents an abundant, renewable, and fast-growing biomass resource for 3rd generation biofuel production. This study reports an efficient butanol fermentation process carried out by Clostridium beijerinckii DSM-6422 using enzymatic hydrolysate of the sugar-rich brown seaweed Laminaria...... digitata harvested from the coast of the Danish North Sea as substrate. The highest butanol yield (0.42g/g-consumed-substrates) compared to literature was achieved, with a significantly higher butanol:acetone-butanol-ethanol (ABE) molar ratio (0.85) than typical (0.6). This demonstrates the possibility...... of using the seaweed L. digitata as a potential biomass for butanol production. For the first time, consumption of alginate components was observed by C. beijerinckii DSM-6422. The efficient utilization of sugars and lactic acid further highlighted the potential of using this strain for future development...

  15. Excess Molar Volumes and Viscosities for Binary Mixtures of 1-Alkoxypropan-2-ols with 1-Butanol,and 2-Butanol at 298.15 K and Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    PAL Amalendu; GABA Rekha

    2007-01-01

    Excess molar volumes VEm and kinematic viscosities v have been measured as a function of composition for binary mixtures of propylene glycol monomethyl ether (1-methoxy-2-propanol),MeOCH2CH(OH)Me,propylene glycol monoethyl ether (1-ethoxy-2-propanol), EtOCH2CH(OH)Me,propylene glycol monopropyl ether (1-propoxy-2-propanol), PrOCH2CH(OH)Me, propylene glycol monobutyl ether (1-butoxy-2-propanol),BuOCH2CH(OH)Me,and propylene glycol tert-butyl ether (1-tert-butoxy-2-propanol),t-BuOCH2CH(OH)Me with 1-butanol,and 2-butanol,at 298.15 K and atmospheric pressure.The excess molar volumes are negative across the entire range of composition for all the systems with 1-butanol,and positive for the systems 2-butanol+1-methoxy-2-propanol,and +1-propoxy-2-propanol,negative for the systems 2-butanol+1-butoxy-2-propanol,and change sign for the systems 2-butanol+1-ethoxy-2-propanol,and +1-tert-butoxy-2-propanol.From the experimental data,the deviation in dynamic viscosity η from Σxiηi has been calculated.Both excess molar volumes and viscosity deviations have been correlated using a Redlich-Kister type polynomial equation by the method of least-squares for the estimation of the binary coefficients and the standard errors.

  16. The influence of n-butanol blending on the ignition delay times of gasoline and its surrogate at high pressures

    KAUST Repository

    Agbro, Edirin; Tomlin, Alison S.; Lawes, Malcolm; Park, Sungwoo; Sarathy, Mani

    2016-01-01

    between those of stoichiometric gasoline and stoichiometric n-butanol across the temperature range studied. At lower temperatures, delays for the blend were however, much closer to those of n-butanol than gasoline despite n-butanol being only 20

  17. Emission, efficiency, and influence in a diesel n-butanol dual-injection engine

    International Nuclear Information System (INIS)

    Zhu, Yanchun; Chen, Zheng; Liu, Jingping

    2014-01-01

    Highlights: • Dual-injection combustion for diesel n-butanol dual-fuel is investigated. • Higher EGR rate results in lower NOx and ITE, but higher smoke, HC and CO. • Larger butanol fraction results in lower smoke and ITE, but higher NOx, HC and CO. • Advanced injection can decrease smoke, HC and CO, and increase ITE. • Coupling of butanol fraction, EGR and injection timing makes for a better performance. - Abstract: In this work, a dual-injection combustion mode for diesel n-butanol dual-fuel, combined direct injection (DI) of diesel with port fuel injection (PFI) of n-butanol, was introduced. Effects of n-butanol fraction, EGR rate and injection timing on this mode were studied on a modified single-cylinder diesel engine at the speed of 1400 r/min and the IMEP of 1.0 MPa. The results indicate that with increased EGR rate, NOx emissions reduce, but smoke emissions increase. As n-butanol fraction is increased, smoke emissions decrease with a small increase in NOx. However, higher HC and CO emissions, higher indicated specific fuel consumption (ISFC) and lower indicated thermal efficiency (ITE) have to be paid with increased n-butanol fraction, especially at high EGR condition. Advancing diesel injection timing suitably has the capacity of mitigating those costs and further decreasing smoke emissions with a small penalty in NOx emissions. Coupling of large butanol fraction, high EGR rate, and advanced injection suitably contributes to a better balance between emissions and efficiency in the diesel n-butanol dual-injection engine

  18. Investigation on the lean combustion performance of a hydrogen-enriched n-butanol engine

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng

    2017-01-01

    Highlights: • H_2 addition avails improving thermal efficiency of n-butanol engines. • Lean burn limit of n-butanol engine is extended by H_2 addition. • H_2 addition shortens the n-butanol engine combustion duration. • HC and CO from the n-butanol engine are decreased by H_2 addition. - Abstract: n-Butanol is a feasible fuel candidate for spark-ignition engines. The current paper carried out an experiment to explore effects of hydrogen addition on further improving the performance of a n-butanol engine under the part load and lean conditions. Within the test, the engine intake pressure and speed were respectively kept at 61.5 kPa and 1400 rpm. The volumetric fractions of hydrogen in the total intake gas (hydrogen + air) were constrained at 0 and 3%, respectively. Under a certain hydrogen blending level, the global excess air ratio of in-cylinder charge which was changed from the stoichiometric to near the lean burn limit was adjusted by varying the n-butanol injection duration. The experimental results confirmed that the brake thermal efficiency was heightened and the lean burn limit was extended after the hydrogen addition. Besides, compared with the pure n-butanol combustion, the hydrogen enrichment enables the engine to gain dropped ignition delay and rapid combustion duration. Moreover, CO and HC from the pure n-butanol engine were reduced by the hydrogen addition. NOx were generally reduced when the excess air ratio was raised. This suggested that NOx from the hydrogen-enriched butanol engine could also be controlled by lean combustion.

  19. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.

    Science.gov (United States)

    Wang, Zhenyu; Cao, Guangli; Zheng, Ju; Fu, Defeng; Song, Jinzhu; Zhang, Junzheng; Zhao, Lei; Yang, Qian

    2015-01-01

    Consolidated bioprocessing (CBP) of butanol production from cellulosic biomass is a promising strategy for cost saving compared to other processes featuring dedicated cellulase production. CBP requires microbial strains capable of hydrolyzing biomass with enzymes produced on its own with high rate and high conversion and simultaneously produce a desired product at high yield. However, current reported butanol-producing candidates are unable to utilize cellulose as a sole carbon source and energy source. Consequently, developing a co-culture system using different microorganisms by taking advantage of their specific metabolic capacities to produce butanol directly from cellulose in consolidated bioprocess is of great interest. This study was mainly undertaken to find complementary organisms to the butanol producer that allow simultaneous saccharification and fermentation of cellulose to butanol in their co-culture under mesophilic condition. Accordingly, a highly efficient and stable consortium N3 on cellulose degradation was first developed by multiple subcultures. Subsequently, the functional microorganisms with 16S rRNA sequences identical to the denaturing gradient gel electrophoresis (DGGE) profile were isolated from consortium N3. The isolate Clostridium celevecrescens N3-2 exhibited higher cellulose-degrading capability was thus chosen as the partner strain for butanol production with Clostridium acetobutylicum ATCC824. Meanwhile, the established stable consortium N3 was also investigated to produce butanol by co-culturing with C. acetobutylicum ATCC824. Butanol was produced from cellulose when C. acetobutylicum ATCC824 was co-cultured with either consortium N3 or C. celevecrescens N3-2. Co-culturing C. acetobutylicum ATCC824 with the stable consortium N3 resulted in a relatively higher butanol concentration, 3.73 g/L, and higher production yield, 0.145 g/g of glucose equivalent. The newly isolated microbial consortium N3 and strain C. celevecrescens N3

  20. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Liu, Yu; Li, Jun; Jin, Chao

    2015-01-01

    Highlights: • A sudden drop is observed in spray penetration for B10S10D80 fuel at 800 and 900 K. • With increasing of temperature, auto-ignition timings of fuels become unperceivable. • Low n-butanol addition has little effect on autoignition timings from 800 to 1200 K. • n-Butanol additive can reduce soot emissions at the near-wall regions. • Larger soot reduction is seen at higher ambient temperatures for n-butanol addition. - Abstract: The processes of spray penetrations, flame propagation and soot formation and oxidation fueling n-butanol/biodiesel/diesel blends were experimentally investigated in a constant volume combustion chamber with an optical access. B0S20D80 (0% n-butanol, 20% soybean biodiesel, and 80% diesel in volume) was prepared as the base fuel. n-Butanol was added into the base fuel by volumetric percent of 5% and 10%, denoted as B5S15D80 (5% n-butanol/15% soybean biodiesel/80% diesel) and B10S10D80 (10% n-butanol/10% soybean biodiesel/80% diesel). The ambient temperatures at the time of fuel injection were set to 800 K, 900 K, 1000 K, and 1200 K. Results indicate that the penetration length reduces with the increase of n-butanol volumes in blending fuels and ambient temperatures. The spray penetration presents a sudden drop as fueling B10S10D80 at 800 K and 900 K, which might be caused by micro-explosion. A larger premixed combustion process is observed at low ambient temperatures, while the heat release rate of high ambient temperatures presents mixing controlled diffusion combustion. With a lower ambient temperature, the auto-ignition delay becomes longer with increasing of n-butanol volume in blends. However, with increasing of ambient temperatures, the auto-ignition timing between three fuels becomes unperceivable. Generally, low n-butanol addition has a limited or no effect on the auto-ignition timing in the current conditions. Compared with the base fuel of B0S20D80, n-butanol additive with 5% or 10% in volume can reduce soot

  1. The effect of fermentable carbohydrate on sporulation and butanol production by Clostridium acetobutylicum P262

    Energy Technology Data Exchange (ETDEWEB)

    Awang, G.M.; Ingledew, W.M.; Jones, G.A. (Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Applied Microbiology and Food Science)

    1992-10-01

    This study was conducted to determine whether or not a variation in the type of carbohydrate fermented by Clostridium acetobutylicum could be exploited to inhibit sporulation during the butanol-producing phase of fermentation and thus enhance butanol production. C. acetobutylicum P262 was found to ferment a wide variety of carbohydrates, but butanol production was not necessarily enhanced when percentage sporulation was low. Butanol concentration was more related to the total amount of acidic end-products (acetic and butyric acid) reutilized by the microorganism for solvent production and to the type and amount of carbohydrate utilized. Fermentation of cellobiose led to conditions resulting in complete acid reutilization and the highest butanol concentration (10.4-10.6 g/l). In cultures containing a mixture of glucose and cellobiose, glucose repression of cellobiose utilization resulted in lower butanol concentrations (6.6-7.5 g/l). Sporulation was dependent on the type of carbohydrate utilized by the microorgamism. Glucose had a greater enhancing effect on the sporulation process (22-42%) than starch (9-12%) or cellobiose (22-34%). It was concluded that whereas the type of carbohydrate fermented has a specific effect on the extent of sporulation of a culture, conditions of low sporulation did not enhance butanol concentration unless carbohydrate utilization and the reutilization of acidic products were high. (orig.).

  2. Experimental investigation on CRDI engine using butanol-biodiesel-diesel blends as fuel

    Science.gov (United States)

    Divakar Shetty, A. S.; Dineshkumar, L.; Koundinya, Sandeep; Mane, Swetha K.

    2017-07-01

    In this research work an experimental investigation of butanol-biodisel-diesel blends on combustion, performance and emission characteristics of a direct injection (DI) diesel engine is carried out. The blends are prepared at different proportions and fuel properties such as calorific value, viscosity, flash point and fire point, cloud point, pour point of butanol (B), biodiesel (B), diesel (D), biodiesel-diesel (BD) blends and butanol-biodiesel-diesel (BBD) blends are determined. The engine test is conducted at different speed and load. From the results obtained for fuel properties we can observe that the flash, fire and pour point, viscosity and density are decreasing by increasing the percentage of butanol in BBD blends. It is also observed that the performance parameters such as brake thermal efficiency (BTE) and exhaust gas temperature increases with increase in the proportion of butanol in BBD blend. However, the brake specific fuel consumption (BFSC) decreases with increase in the proportion of butanol in BBD blend. The increase of butanol in BBD blends also influence to increase on emission characteristic such as carbon monoxide (CO), hydrocarbon (HC) and oxides of nitrogen (NOx).

  3. Central depressant activity of butanol fraction of Securinega virosa root bark in mice.

    Science.gov (United States)

    Magaji, Mohammed Garba; Yaro, Abdullahi Hamza; Musa, Aliyu Muhammad; Anuka, Joseph Akponso; Abdu-Aguye, Ibrahim; Hussaini, Isa Marte

    2012-05-07

    Securinega virosa is a commonly used medicinal plant in African traditional medicine in the management of epilepsy and mental illness. Previous studies in our laboratory showed that the crude methanol root bark extract of the plant possesses significant behavioral effect in laboratory animals. In an attempt to isolate and characterize the biological principles responsible for the observed activity, this study is aimed at evaluating the central depressant activity of the butanol fraction of the methanol root bark extract of Securinega virosa. The medial lethal dose of the butanol fraction was estimated using the method of Lorke. Preliminary phytochemical screening was conducted on the butanol fraction using standard protocol. The behavioral effect of the butanol fraction (75, 150 and 300mg/kg) was evaluated using diazepam induced sleep test, hole-board test, beam walking assay, staircase test, open field test and elevated plus maze assay, all in mice. The median lethal dose of the butanol fraction was estimated to be 1256.9mg/kg. The preliminary phytochemical screening revealed the presence of tannins, saponins, alkaloids, flavonoids, cardiac glycosides, similar to those found in the crude methanol extract. The butanol fraction significantly (Ptime taken to complete the task and number of foot slips in the beam walking assay, suggesting that it does not induce significant motor coordination deficit. Diazepam (2mg/kg), the standard agent used significantly (Popen field test, the butanol fraction significantly reduced the number of square crossed as well as the number of rearing. However, the butanol fraction did not significantly alter the behavior of mice in the elevated plus maze assay, while diazepam (0.5mg/kg) significantly (Ptime spent in the open arm and reduced the number of closed arm entry. The findings of this study suggest that the butanol fraction of Securinega virosa root bark contains some bioactive principles that are sedative in nature. Copyright

  4. Reaction Mechanisms and HCCI Combustion Processes of Mixtures of n-Heptane and the Butanols

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-03-01

    Full Text Available A reduced primary reference fuel (PRF-Alcohol-Di-tert-butyl Peroxide (DTBP mechanism with 108 species and 435 reactions, including sub-mechanisms of PRF, methanol, ethanol, DTBP and the four butanol isomers, is proposed for homogeneous charge compression ignition (HCCI engine combustion simulations of butanol isomers/n-heptane mixtures. HCCI experiments fuelled with butanol isomer/n-heptane mixtures on two different engines are conducted for the validation of proposed mechanism. The mechanism has been validated against shock tube ignition delays, laminar flame speeds, species profiles in premixed flames and engine HCCI combustion data, and good agreements with experimental results are demonstrated under various validation conditions. It is found that although the reactivity of neat tert-butanol is the lowest, mixtures of tert-butanol/n-heptane exhibit the highest reactivity among the butanol isomer/n-heptane mixtures if the n-heptane blending ratio exceeds 20% (mole. Kinetic analysis shows that the highest C-H bond energy in the tert-butanol molecule is partially responsible for this phenomenon. It is also found that the reaction tC4H9OH+CH3O2 =tC4H9O+CH3O2H plays important role and eventually produces the OH radical to promote the ignition and combustion. The proposed mechanism is able to capture HCCI combustion processes of the butanol/n-heptane mixtures under different operating conditions. In addition, the trend that tert-butanol /n-heptane has the highest reactivity is also captured in HCCI combustion simulations. The results indicate that the current mechanism can be used for HCCI engine predictions of PRF and alcohol fuels.

  5. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  6. Effect of Si/Al{sub 2} Ratio on 2-butanol Dehydration over HY Zeolite Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Euna; Choi, Hyeonhee; Jeon, Jong-Ki [Kongju National University, Cheonan (Korea, Republic of)

    2015-02-15

    Synthesis of butenes through dehydration of 2-butanol was investigated over HY zeolite catalysts. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. 2-Butanol conversion was increased with increase of Si/Al{sub 2} ratio of HY zeolite catalysts, which can be ascribed to increase of acid strength with increase of Si/Al{sub 2} ratio. Selectivities to 1-butene, trans-2-butene, and cis-2-butene were not greatly influenced by the change of the Si/Al{sub 2} ratio of HY zeolite. As a result, it was advantageous to use a HY zeolite catalyst with 60 Si/Al{sub 2} ratio for maximizing the yield of 1-butene in the dehydration of 2-butanol. The optimal reaction temperature for maximizing the yield of 1-butene was 250 .deg. C over HY (60) catalyst.

  7. Effect of Si/Al2 Ratio on 2-butanol Dehydration over HY Zeolite Catalysts

    International Nuclear Information System (INIS)

    Jung, Euna; Choi, Hyeonhee; Jeon, Jong-Ki

    2015-01-01

    Synthesis of butenes through dehydration of 2-butanol was investigated over HY zeolite catalysts. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. 2-Butanol conversion was increased with increase of Si/Al 2 ratio of HY zeolite catalysts, which can be ascribed to increase of acid strength with increase of Si/Al 2 ratio. Selectivities to 1-butene, trans-2-butene, and cis-2-butene were not greatly influenced by the change of the Si/Al 2 ratio of HY zeolite. As a result, it was advantageous to use a HY zeolite catalyst with 60 Si/Al 2 ratio for maximizing the yield of 1-butene in the dehydration of 2-butanol. The optimal reaction temperature for maximizing the yield of 1-butene was 250 .deg. C over HY (60) catalyst

  8. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Dong, Jin-Jun; Han, Rui-Zhi; Xu, Guo-Chao; Gong, Lei; Xing, Wan-Ru; Ni, Ye

    2018-07-01

    The toxicity of furfural residues (FRs) hydrolysate is a major obstacle in its application. This work focused on the detoxification of FRs hydrolysate and its application in butanol fermentation. Combination of activated carbon and resin 717 was appropriate for the detoxification of hydrolysate. Mixed sterilization of FRs hydrolysate and corn steep liquor (CSL) was better than the separate ones, since proteins in CSL could adsorb and remove toxic components during sterilization. The results further confirmed that simultaneous sterilization of activated carbon + resin and fermentation medium was more efficient for detoxification and butanol production, in which 76.4% of phenolic compounds and 99.3% of Maillard reaction products were removed, 8.48 g/L butanol and 12.61 g/L total solvent were obtained. This study provides feasible and economic approaches for the detoxification of FRs hydrolysate and its application in butanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of n-Butanol on Chromosomal Damage in Mice Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    Nahid Mansouri

    2016-07-01

    Full Text Available Background: n-Butanol is a four-carbon alcohol used widely in foods, cosmetics industries, biology and chemistry research laboratories, and other fields. Long time-effects of inhalation or consumption of small amounts of Butanol on human health are still unknown. On the other hand, numerous reports about the development of n-Butanol toxicity are available. The main objective of the study was to investigate the effects of inhaled and oral administration of n-Butanol as a long-term in vivo investigation.Materials and Methods: Small white laboratory, male mice (20-30 g were used in 11 groups (n=4 including experimental 1 to 6, 1 to 4 control "A” and positive control groups. Experimental groups 1-3, for 10, 20, and 40 days; 5 hours a day were inside a box with ventilation facilities exposed to air saturated with n-Butanol vapor. Experimental groups 4 to 6, received water containing n-Butanol 0.2%, 1% and 5% for 10 days. Control groups B, 1 to 3 was placed for 10, 20, and 40 days inside a similar box exposed to normal air, respectively. Control group B 4 received water without any particular substance for 10 days. The positive control group received 30µl subcutaneous vinblastine. Bone marrow cells were extracted 24 hours after treatments and stained by May-Grünwald-Giemsa staining and the number of micronucleus was counted. Vinblastine, as a positive control, increased an average of micronucleus numbers significantly compared to control group (P<0.001.Results: n-Butanol inhalation caused no significant difference in 1-3 experimental groups in the average numbers of micronucleus compared to control group, even in the 40 days treatment group, average numbers of micronucleus was decreased comparing to control group (P<0.05. Also, oral administration of 0.2% and 1% n-Butanol had no effect on the average micronucleus numbers compared to the control group, while oral administration of 5% n-Butanol caused even decrease in average numbers of micronucleus

  10. Solubility of carbon dioxide, methane, and ethane in 1-butanol and saturated liquid densities and viscosities

    International Nuclear Information System (INIS)

    Kariznovi, Mohammad; Nourozieh, Hossein; Abedi, Jalal

    2013-01-01

    Highlights: • Experimental solubilities of CH 4 , C 2 H 6 , and CO 2 in 1-butanol and saturated liquid properties. • Solubilities and saturated liquid densities were predicted with SRK and PR EOS. • Solubility of C 2 H 6 in 1-butanol is higher than CH 4 and CO 2 . • Liquid density and viscosity reduces with dissolution of CH 4 and C 2 H 6 . • Dissolution of CO 2 increases liquid density and reduces liquid viscosity. -- Abstract: A designed pressure–volume–temperature (PVT) apparatus has been used to measure the (vapor + liquid) equilibrium properties of three binary mixtures (methane +, ethane +, and carbon dioxide + 1-butanol) at two temperatures (303 and 323) K and at the pressures up to 6 MPa. The solubility of the compressed gases in 1-butanol and the saturated liquid densities and viscosities were measured. In addition, the density and viscosity of pure 1-butanol were measured at two temperatures (303 and 323) K and at the pressures up to 10 MPa. The experimental results show that the solubility of the gases in 1-butanol increases with pressure and decreases with temperature. The dissolution of gases in 1-butanol causes a decline in the viscosity of liquid phase. The saturated liquid density follows a decreasing trend with the solubility of methane and ethane. However, the dissolution of carbon dioxide in 1-butanol leads to an increase in the density of liquid phase. The experimental data are well correlated with Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOSs). SRK EOS was slightly superior for correlating the saturated liquid densities

  11. Impact of higher n-butanol addition on combustion and performance of GDI engine in stoichiometric combustion

    International Nuclear Information System (INIS)

    Chen, Zheng; Yang, Feng; Xue, Shuo; Wu, Zhenkuo; Liu, Jingping

    2015-01-01

    Highlights: • Effects of 0–50% n-butanol addition on GDI engine are experimentally studied. • Higher n-butanol fractions increase combustion pressure and fasten burning rate. • Higher n-butanol fractions increase BSFC but improve BTE. • Higher n-butanol fractions enhance combustion stability but increase knock intensity. • Higher n-butanol fractions reduce exhaust temperature and NOx emissions. - Abstract: An experimental study was carried out on a turbocharged gasoline direct injection (GDI) engine fueled by n-butanol/gasoline blends. Effects of n-butanol percents (15%, 30%, and 50%) on combustion and performance of the engine operating on stoichiometric combustion condition were discussed and also compared with pure gasoline in this paper. The results indicate that n-butanol/gasoline blends increase combustion pressure and pressure rise rate, fasten burning rate, and shorten ignition delay and combustion duration, as compared to pure gasoline. Moreover, these trends are impacted more evidently with increased n-butanol fraction in the blends. In addition, higher n-butanol percent of gasoline blends increase combustion temperature but decrease the temperature in the later stage of expansion stroke, which contributes to the control of exhaust temperature at high-load. With regards to engine performance, higher n-butanol percent in the blends results in increased brake specific fuel consumption (BSFC) and higher brake thermal efficiency (BTE). However, higher n-butanol addition helps to improve combustion stability but shows slightly higher knock possibility in high-load. In that case, the knock trend could be weakened by retarding ignition timing. Moreover, higher n-butanol addition significantly decreases NOx emissions, but it increases CO emissions obviously.

  12. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.

    Science.gov (United States)

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-06-20

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production.

  13. Combustion of n-butanol/diesel mixtures in prechamber diesel engines. Die Verbrennung von n-Butanol-Dieselkraftstoff-Gemischen im Vorkammer-Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, E

    1989-01-01

    Systematic tests showed that n-butane was the most promising diesel fuel substitute. Mixtures of n-butanol and diesel fuel were tested on an engine test bench, and the performance was compared with commercial diesel fuels. Pollutant concentrations in the exhaust (soot, particulates, and NO/sub x/) were lower than with unmixed diesel fuel, while the engine performance remained more or less constant. In the problematic operating ranges, partial thermal insulation of the combustion chamber improved the performance of the n-butanol/diesel fuel mixture. (orig.) With 60 figs.

  14. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics

    Directory of Open Access Journals (Sweden)

    Fenkl Michael

    2016-01-01

    Full Text Available The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.

  15. An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

    KAUST Repository

    Wakale, Anil Bhaurao; Mohamed, Samah; Naser, Nimal; Jaasim, Mohammed; Banerjee, Raja; Im, Hong G.; Sarathy, Mani

    2018-01-01

    Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.

  16. Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422.

    Science.gov (United States)

    Hou, Xiaoru; From, Nikolaj; Angelidaki, Irini; Huijgen, Wouter J J; Bjerre, Anne-Belinda

    2017-08-01

    Seaweed represents an abundant, renewable, and fast-growing biomass resource for 3rd generation biofuel production. This study reports an efficient butanol fermentation process carried out by Clostridium beijerinckii DSM-6422 using enzymatic hydrolysate of the sugar-rich brown seaweed Laminaria digitata harvested from the coast of the Danish North Sea as substrate. The highest butanol yield (0.42g/g-consumed-substrates) compared to literature was achieved, with a significantly higher butanol:acetone-butanol-ethanol (ABE) molar ratio (0.85) than typical (0.6). This demonstrates the possibility of using the seaweed L. digitata as a potential biomass for butanol production. For the first time, consumption of alginate components was observed by C. beijerinckii DSM-6422. The efficient utilization of sugars and lactic acid further highlighted the potential of using this strain for future development of large-scale cost-effective butanol production based on (ensiled) seaweed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Performance and emission characteristics of compression ignition engine operating with false flax biodiesel and butanol blends

    Directory of Open Access Journals (Sweden)

    Mustafa Atakan Akar

    2016-02-01

    Full Text Available In this study, fuel properties, engine performance, and emission characteristics of diesel fuel, false flax biodiesel, and their blends with butanol have been evaluated. Blend ratios used in this study were diesel–biodiesel–butanol (70% diesel–20% biodiesel–10% butanol and 60% diesel–20% biodiesel–20% butanol by volume and biodiesel–diesel (20% biodiesel–80% diesel and 100% biodiesel by volume. Experiments showed that 10% alcohol addition to diesel and biodiesel fuels caused a decrease in torque value up to 8.57%. When butanol ratio raised to 20%, torque value decreased to an average of 12.7% and power values decreased to an average of 13.57%. Specific fuel consumption increased to an average of 10.63% and 12.80% with 10% and 20% butanol addition, respectively. Alcohol addiction into conventional diesel and biodiesel fuel slightly increased NOX emissions. Supplement of alcohol decreased CO and CO2 emissions when it was entrained to diesel and increased it when it was added to biodiesel. It means that addition of alcohol to diesel changed CO and CO2 emissions.

  18. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States); Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-10-15

    Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (author)

  19. An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

    KAUST Repository

    Wakale, Anil Bhaurao

    2018-04-03

    Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.

  20. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1.

    Science.gov (United States)

    Nasser Al-Shorgani, Najeeb Kaid; Kalil, Mohd Sahaid; Wan Yusoff, Wan Mohtar; Shukor, Hafiza; Hamid, Aidil Abdul

    2015-12-01

    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparative studies of citric acid, acetone-butanol, and alcohol fermentation processes in beet molasses from several sugar factories

    Energy Technology Data Exchange (ETDEWEB)

    Kovats, J; Zuckerind, Z

    1963-01-01

    Citric acid (I) fermentation is the most sensitive to volatile acids and coloring matter contents of molasses, and butanol fermentation, the least. Citric acid and alcohol production decrease as volatile acids and coloring matter increase, but this last factor has a favorable effect on the acetone-butanol fermentation. Molasses which are suitable for citric acid production are also suitable for alcohol but not always for acetone-butanol.

  2. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically...... prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate...

  3. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    Science.gov (United States)

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Steen, EricJ.; Chan, Rossana; Prasad, Nilu; Myers, Samuel; Petzold, Christopher; Redding, Alyssa; Ouellet, Mario; Keasling, JayD.

    2008-11-25

    BackgroundIncreasing energy costs and environmental concerns have motivated engineering microbes for the production of ?second generation? biofuels that have better properties than ethanol.Results& ConclusionsSaccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha) were substituted for the Clostridial enzymes and their effect on n-butanol production was compared. By choosing the appropriate isozymes, we were able to improve production of n-butanol ten-fold to 2.5 mg/L. The most productive strains harbored the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, rather than the R. eutropha isozyme, which uses NADPH, and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli rather than that from R. eutropha. Surprisingly, expression of the genes encoding the butyryl-CoA dehydrogenase from C. beijerinckii (bcd and etfAB) did not improve butanol production significantly as previously reported in E. coli. Using metabolite analysis, we were able to determine which steps in the n-butanol biosynthetic pathway were the most problematic and ripe for future improvement.

  5. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    Science.gov (United States)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  6. Hydrophobic Hyflon® AD/PVDF membranes for butanol dehydration via pervaporation

    KAUST Repository

    Jalal, Taghreed

    2015-10-21

    Novel hydrophobic Hyflon® AD /PVDF membranes were developed and investigated for n-butanol dehydration via pervaporation. The coating protocols for thin defect-free Hyflon® AD selective layer on the PVDF support was optimized. Water and n-butanol transport was measured, analyzing the effect of operating conditions. The water flux through the newly developed membranes was higher than 150 g/m2.h with selectivity for water higher than 99 wt %. The focus was on the use of Hyflon® AD as the selective layer for n-butanol dehydration. The membrane application can be extended to other solvents, supporting an effective and simple method for dehydration with hydrophobic membranes.

  7. Hydrophobic Hyflon® AD/PVDF membranes for butanol dehydration via pervaporation

    KAUST Repository

    Jalal, Taghreed; Bettahalli Narasimha, Murthy Srivatsa; Le, Ngoc Lieu; Nunes, Suzana Pereira

    2015-01-01

    Novel hydrophobic Hyflon® AD /PVDF membranes were developed and investigated for n-butanol dehydration via pervaporation. The coating protocols for thin defect-free Hyflon® AD selective layer on the PVDF support was optimized. Water and n-butanol transport was measured, analyzing the effect of operating conditions. The water flux through the newly developed membranes was higher than 150 g/m2.h with selectivity for water higher than 99 wt %. The focus was on the use of Hyflon® AD as the selective layer for n-butanol dehydration. The membrane application can be extended to other solvents, supporting an effective and simple method for dehydration with hydrophobic membranes.

  8. Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor.

    Science.gov (United States)

    Napoli, Fabio; Olivieri, Giuseppe; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero

    2010-06-01

    In this study, we report on a butanol production process by immobilized Clostridium acetobutylicum in a continuous packed bed reactor (PBR) using Tygon rings as a carrier. The medium was a solution of lactose (15-30 g/L) and yeast extract (3 g/L) to emulate the cheese whey, an abundant lactose-rich wastewater. The reactor was operated under controlled conditions with respect to the pH and to the dilution rate. The pH and the dilution rate ranged between 4 and 5, the dilution rate between 0.54 and 2.4 h(-1) (2.5 times the maximum specific growth rate assessed for suspended cells). The optimal performance of the reactor was recorded at a dilution rate of 0.97 h(-1): the butanol productivity was 4.4 g/Lh and the selectivity of solvent in butanol was 88%(w).

  9. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    Science.gov (United States)

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  10. Comparative analysis of the Performance and Emission Characteristics of ethanol-butanol-gasoline blends

    Science.gov (United States)

    Taneja, Sumit; Singh, Perminderjit, Dr; Singh, Gurtej

    2018-02-01

    Global warming and energy security being the global problems have shifted the focus of researchers on the renewable sources of energy which could replace petroleum products partially or as a whole. Ethanol and butanol are renewable sources of energy which can be produced through fermentation of biomass. A lot of research has already been done to develop suitable ethanol-gasoline blends. In contrast very little literature available on the butanol-gasoline blends. This research focuses on the comparison of ethanol-gasoline fuels with butanol-gasoline fuels with regard to the emission and performance in an SI engine. Experiments were conducted on a variable compression ratio SI engine at 1600 rpm and compression ratio 8. The experiments involved the measurement of carbon monoxide, carbon dioxide, oxides of nitrogen and unburned hydrocarbons emission and among performance parameters brake specific fuel consumption and brake thermal efficiency were recorded at three loads of 2.5kgs (25%), 5kgs (50%) and 7.5kgs (75%). Results show that ethanol and butanol content in gasoline have decreased brake specific fuel consumption, carbon monoxide and unburned hydrocarbon emissions while the brake thermal efficiency and oxides of nitrogen are increased. Results indicate thatbutanol-gasoline blends have improved brake specific fuel consumption, carbon monoxide emissions in an SI engine as compared to ethanol-gasoline blends. The carbon dioxide emissions and brake thermal efficiencies are comparable for ethanol-gasoline blends and butanol-gasoline blends. The butanol content has a more adverse effect on emissions of oxides of nitrogen than ethanol.

  11. Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine

    International Nuclear Information System (INIS)

    Dhamodaran, Gopinath; Esakkimuthu, Ganapathy Sundaram; Pochareddy, Yashwanth Kutti; Sivasubramanian, Harish

    2017-01-01

    Global concern over rising greenhouse gas emission levels and the availability of fossil fuels has led to the development of biofuels, and the use of gasoline formulations with oxygenated compounds has become common practice for improving fuel quality. This empirical study evaluated the effects of oxygenated gasoline fuel blends on air quality. Tests were conducted on a four-stroke, four-cylinder multi-point fuel injection (MPFI) spark ignition (SI) engine using an eddy current dynamometer to investigate the combustion and emissions behaviour of n-butanol blends. Blends comprising n-butanol (N10, N20, and N30) and unleaded gasoline were tested over a rotational speed range of 1400 rpm–2800 rpm under a constant load of 20 Nm. The results obtained indicate that use of n-butanol blends produced lower hydrocarbon (HC) and carbon monoxide (CO) levels than unleaded gasoline but nitrogen oxide (NO_x) emissions were found to be higher. When ignition timing was retarded, NOx emissions for all n-butanol blends decreased. The peak in-cylinder pressures and heat release rates for the blends were also found to be higher than for unleaded gasoline (UG). COV_I_M_E_P of gasoline was higher than that of n-butanol/gasoline blends. - Highlights: • Using oxygenated compound gasoline formulations is common for improving fuel quality. • Blends of n-butanol with unleaded gasoline were tested between 1400 rpm and 2800 rpm. • Blends increased brake thermal efficiency and produced lower HC and CO but higher NOx. • Lower NOx was observed when ignition timing was retarded. • Peak in-cylinder pressures and heat release rates for blends were higher.

  12. Butanol production from concentrated lactose/whey permeate: Use of pervaporation membrane to recover and concentrate product

    Science.gov (United States)

    In these studies butanol (acetone butanol ethanol, or ABE) was produced from concentrated lactose/whey permeate containing 211 gL-1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system a p...

  13. Isolasi Dan Identifikasi Terpenoid dari Fraksi n-Butanol Herba Lampasau (Diplazium esculentum Swartz

    Directory of Open Access Journals (Sweden)

    Maria Dewi Astuti

    2017-03-01

    Full Text Available Abstrak Telah dilakukan penelitian yang bertujuan untuk mengidentifikasi senyawa kimia yang diisolasi dari fraksi n-butanol ekstrak metanol herba lampasau (Diplazium esculentum Swartz. Ekstrak metanol diperoleh secara maserasi dan difraksinasi berturut-turut denganpetroleum eter, etil asetat, dan n-butanol. Fraksi n­-butanol difraksinasidengan kromatografi kolom dengan fase diam silika gel dihasilkan fraksi A, B, C, dan D. Fraksi B dimurnikan dengan kromatografi lapis tipis preparatif pada silika geldihasilkan isolat B1. Isolat B1 berupa padatan tidak berwarna danberfluoresensi putih di bawah lampu UV 366 nm. Panjang gelombang maksimum pada spektra UV  isolat B1 adalah 225 nm dan 272.5 nm yang menunjukkan adanya ikatan rangkap tak terkonjugasi. Spektra IR isolat B1 menunjukkan adanya gugus C=C, –OH, C=O lakton, –CO, C–H ulur, dan C–H tekuk. Spektra 1H-NMR isolat B1 menunjukkan sinyal proton pada ikatan rangkap, proton –OH, proton pada –CH2 yang terikat atom oksigen, serta proton gugus metil –CH3. Berdasarkan data spektra UV, IR, dan 1H-NMR maka isolat B1 disarankan sebagai turunan senyawa triterpenoid hopan-lakton. Kata kunci : diplazium esculentum Swartz, fraksi n-butanol, triterpenoid hopan-lakton  Abstract The research  aims to identify chemical compounds isolated fromn-butanol fraction methanol extract of lampasau herbs (Diplazium esculentum Swartz. The methanol extract was obtained by maceration and fractioned by petroleum ether, ethyl acetate, andn-butanol. N-butanol fraction was fractionated using column chromatography on silica gel produced fractions A, B, C, and D. Fraction B was purified by preparative thin layer chromatography on silica gel produced isolate B1. Isolate B1was colorless solid and has white fluorescent under UV lamp 366 nm. The maximum wavelength on UV spectra of B1 are 225 nm and 272,5 nm indicates the unconjugated double bond. IR spectra of B1 showed the vibration of C=C, –OH, C=O lactone, –CO, C

  14. Effects of port fuel injection (PFI) of n-butanol and EGR on combustion and emissions of a direct injection diesel engine

    International Nuclear Information System (INIS)

    Chen, Zheng; Liu, Jingping; Wu, Zhenkuo; Lee, Chiafon

    2013-01-01

    Highlights: • A DI diesel engine with PFI of n-butanol in combination with EGR is investigated. • Butanol concentration and EGR have a coupled impact on combustion process. • A combination of butanol PFI and EGR can break through tradeoff between NOx and soot. • DI diesel with butanol PFI has lower ITE than DI of diesel–butanol blends. - Abstract: An experimental investigation was conducted on a direct injection (DI) diesel engine with exhaust gas recirculation (EGR), coupled with port fuel injection (PFI) of n-butanol. Effects of butanol concentration and EGR rate on combustion, efficiency, and emissions of the tested engine were evaluated, and also compared to a DI mode of diesel–butanol blended fuel. The results show butanol concentration and EGR rate have a coupled impact on combustion process. Under low EGR rate condition, both the peak cylinder pressure and the peak heat release rate increase with increased butanol concentration, but no visible influence was found on the ignition delay. Under high EGR rate condition, however, the peak cylinder pressure and the peak heat release rate both decrease with increased butanol concentration, accompanied by longer ignition delay and longer combustion duration. As regard to the regulated emissions, HC and CO emissions increase with increased butanol concentration, causing higher indicated specific fuel consumption (ISFC) and lower indicated thermal efficiency (ITE). It is also noted that butanol PFI in combination with EGR can change the trade-off relationship between NOx and soot, and simultaneously reduce both into a very low level. Compared with the DI mode of diesel–butanol blended fuel, however, the DI diesel engine with butanol PFI has higher HC and CO emissions and lower ITE. Therefore, future research should be focused on overcoming the identified shortcomings by an improved injection strategy of butanol PFI

  15. Estimation of VLE of binary systems (tert-butanol + 2-ethyl-1-hexanol) and (n-butanol + 2-ethyl-1-hexanol) using GMDH-type neural network

    International Nuclear Information System (INIS)

    Ketabchi, S.; Ghanadzadeh, H.; Ghanadzadeh, A.; Fallahi, S.; Ganji, M.

    2010-01-01

    The group method of data handling (GMDH) method was used to estimate (vapour + liquid) equilibrium (VLE) for the binary systems of (tert-butanol + 2-ethy1-1-hexanol) and (n-butanol + 2-ethy1-1-hexanol). Using this method, a new model was proposed, which is suitable for predicting the VLE data. In this publication, the proposed model was 'trained' before requested predictions. The data set was divided into two parts: 70% were used as data for 'training' (either 10 or 12), and 30% were used as a test set, which were randomly extracted from the database (either 14 or 16). After the training on the input-output process, the predicted values were compared with those of experimental values in order to evaluate the performance of the GMDH neural network method. The model values showed a very good regression with the experimental results.

  16. Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures

    Science.gov (United States)

    Ali, Anwar; Ansari, Sana; Uzair, Sahar; Tasneem, Shadma; Nabi, Firdosa

    2015-11-01

    Densities ρ and ultrasonic speeds u for pure diethylene glycol, 1-butanol, 2-butanol, and 1,4-butanediol and for their binary mixtures over the entire composition range were measured at 298.15 K, 303.15 K, 308.15 K, and 313.15 K. Using these data, the excess molar volumes, VE_m, deviations in isentropic compressibilities, {\\varDelta }ks, apparent molar volumes, V_{φi} , partial molar volumes, overline{V}_{m,i} , and excess partial molar volumes, overline{V}_{m,i}^E , have been calculated over the entire composition range, and also the excess partial molar volumes of the components at infinite dilution, overline{V}_{m,i}^{E,infty } have been calculated. The excess functions have been correlated using the Redlich-Kister equation at different temperatures. The variations of these derived parameters with composition and temperature are presented graphically.

  17. Alternative fuels in domestic heating markets. Experimental testing of n-butanol as component in domestic heating oil; Alternative fluessige Energietraeger im Raumwaermemarkt. Experimentelle Ueberpruefung von n-Butanol als Beimischung zu Heizoel EL

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H.; Dohn, N.; Rheinberg, O. van [RWTH Aachen (Germany). OWI Oel-Waerme-Inst. GmbH

    2012-02-15

    N-butanol has already been tested successfully as partial substitute for diesel fuel. However, to date there are no corresponding studies available regarding the use of n-butanol as bio-component in domestic heating oil. Thus, physical and chemical norm parameters of n-butanol/heating oil blends and their combustion specific characteristics in steady operation were examined. The combustion of blends of domestic heating oil and butanol (up to 20 % (v/v)) in a common yellow burner did not indicate negative influence and did not yield a significant change in emissions of carbon monoxide, nitrogen oxides or soot. All tests were conducted without any modifications of the burner to the use of n-butanol. The flash point drops below the limit of 55 C with 1 % (v/v) butanol already and is therefore a flammable liquid. Its use as a substitute for heating oil is therefore limited by safety regulations. Practical applications of n-butanol as bio-component could be its utilization in low concentrations or in facilities providing suitable storage capabilities. (orig.)

  18. Fermentation of sweet sorghum syrup to butanol in the presence of natural nutrients and inhibitors

    Science.gov (United States)

    Sweet sorghum syrups represent a renewable raw material that can be available year-round for production of biofuels and biochemicals. Sweet sorghum sugars have been used as sources for butanol production in the past but most often the studies focused on sweet sorghum juice and not on sweet sorghum s...

  19. Chiral recognition in electron scattering by S- and R-2-butanol

    DEFF Research Database (Denmark)

    Jones, Nykola C.; Hoffmann, Søren Vrønning; Field, David

    2015-01-01

    Experiments are described involving the low energy scattering of electrons from the two optical enantiomers S- and R- 2-butanol. Using a synchrotron radiation photoionization source on the ASTRID storage ring, scattering spectra are reported between a few meV and 140 meV at an electron energy...

  20. High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes

    Science.gov (United States)

    Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew

    Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.

  1. Butanol biorefineries: simultaneous product removal & process integration for conversion of biomass & food waste to biofuel

    Science.gov (United States)

    Butanol, a superior biofuel, packs 30% more energy than ethanol on a per gallon basis. It can be produced from various carbohydrates and lignocellulosic (biomass) feedstocks. For cost effective production of this renewable and high energy biofuel, inexpensive feedstocks and economical process techno...

  2. Influence of concentration of sucrose on the acetone-butanol fermentation by different strains of Clostridium

    Energy Technology Data Exchange (ETDEWEB)

    Bahadue, K; Saroj, K K

    1959-01-01

    To culture media containing (NH/sub 4/)/sub 2/SO/sub 4/ (0.34 g) and MgSO/sub 4/ (0.16 g), were added 5, 10, and 20% sucrose, respectively; the pH was adjusted to 6.4 with KH/sub 2/PO/sub 4/-NaOH buffer; the volume of each medium was made up to 200 ml. The media were sterilized. After cooling, the media at the 5, 10, 20% sucrose levels were inoculated separately with C. butyricum, C. butyricum 6084, C. acetobutylicum NRRL B-527, C. pasteurianum NRRL B-598, C. butylicus NRRL B-592, and C. pasteurianum ATCC 6013. The cultures were incubated for 20 days at 35 degrees. For maximum butanol yield the 5% sucrose level was optimum for all the strains tested. At the 10% sucrose level great increase in sugar consumption occurred with C. butyricum Frolund, C. pasteurianum ATCC-6013, and C. butylicus IAL 15-152. Twice as much sucrose was consumed with C. acetobutylicum ATCC 6013, and NRRL B-572, and C. pasteurianum NRRL B-598. The increased sucrose consumption did not result in increased production of butanol or acetone. No acetone or butanol was formed with C. butyricum Frolund when the sucrose concentration was increased from 5 to 10%. With the increase in sucrose concentration, the formation of butanol and acetone decreased; acid formation was also inhibited.

  3. Chemical constituents in n-butanol fractions of Costus afer ker Gawl leaf and stem

    Directory of Open Access Journals (Sweden)

    Godswill Nduka Anyasor

    2014-04-01

    Conclusion: The bioactive compounds identified in the n-butanol fractions of C. afer leaves and stem may explain the folkloric use of C. afer plant in the treatment of chronic inflammatory and oxidative stress related diseases. [J Intercult Ethnopharmacol 2014; 3(2.000: 78-84

  4. A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides.

    Science.gov (United States)

    Bramono, Sandhi Eko; Lam, Yuen Sean; Ong, Say Leong; He, Jianzhong

    2011-10-01

    A unique mesophilic Clostridium species strain BOH3 is obtained in this study, which is capable of fermenting monosaccharides to produce butanol and hydrolyzing polysaccharides to produce hydrogen (H(2)) and volatile fatty acids (VFAs). From 30 g/L of glucose and xylose each, batch culture BOH3 was able to produce 4.67 and 4.63 g/L of butanol. Enhancement treatments by increasing the inoculated cells improved butanol production to 7.05 and 7.41 g/L, respectively. Hydrogen production (2.47 and 1.93 mmol) was observed when cellulose and xylan (10 g/L each) were used, suggesting that strain BOH3 possesses xylanolytic and cellulolytic capabilities. These unique features reveal the strain's novelty as most wild-type solventogenic strains have not been reported to have such properties. Therefore, culture BOH3 is promising in generating butanol and hydrogen from renewable feedstock. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Bio-butanol recovery using non-fluorinated task-specific ionic liquids (TSILs)

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Garsia, C.M.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Biobutanol has received major attention as an alternative for and additive to fossil fuels. Biobutanol produced via fermentation is hampered by low butanol concentrations in the fermentation broth. An efficient separation process is required to make biobutanol production economically viable. In this

  6. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol

    International Nuclear Information System (INIS)

    Irimescu, Adrian

    2012-01-01

    Highlights: ► Iso-butanol use in a port injection spark ignition engine. ► Fuel conversion efficiency calculated based on chassis dynamometer measurements. ► Combined study of engine efficiency and air–fuel mixture temperature. ► Excellent running characteristics with minor fuel system modifications. ► Up to 11% relative drop in part load efficiency due to incomplete fuel vaporization. -- Abstract: Alcohols are increasingly used as fuels for spark ignition engines. While ethanol is most commonly used, long chain alcohols such as butanol feature several advantages like increased heating value and reduced corrosive action. This study investigated the effect of fueling a port injection engine with iso-butanol, as compared to gasoline operation. Performance levels were maintained within the same limits as with the fossil fuel without modifications to any engine component. An additional electronic module was used for increasing fuel flow by extending the injection time. Fuel conversion efficiency decreased when the engine was fueled with iso-butanol by up to 9% at full load and by up to 11% at part load, calculated as relative values. Incomplete fuel evaporation was identified as the factor most likely to cause the drop in engine efficiency.

  7. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    Science.gov (United States)

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  8. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Simona Silvia; Tornatore, Cinzia; Machitto, Luca; Valentino, Gerardo; Corcione, Felice Esposito [Istituto Motori-CNR, Naples (Italy)

    2012-07-01

    Fuel blend of alcohol and conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 20% and 40% of n-butanol blended in volume with pure gasoline was investigated through cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Fuel injections both in closed valve and open valve conditions were considered. Comparisons between the parameters related to the flame luminosity and the pressure signals were performed. Butanol blends allowed working in more advanced spark timing without knocking occurrence. The duration of injection for Butanol blends was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. BU40 granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects including the emission of ultrafine carbonaceous particles at the exhaust. In-cylinder investigations were correlated to engine out emissions. (orig.)

  9. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) (External Review Draft)

    Science.gov (United States)

    The IRIS Toxicological Review of tert-Butyl Alcohol (tert-Butanol) was released for external peer review in June 2017. EPA’s Science Advisory Board’s (SAB) Chemical Assessment Advisory Committee (CAAC) will conduct a peer review of the scientific basis supporting ...

  10. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) (Public Comment Draft)

    Science.gov (United States)

    EPA is developing an Integrated Risk Information System (IRIS) assessment of tert-butyl Alcohol (tert-butanol) and has released the public comment draft assessment for public comment and external peer review. When final, the assessment will appear on the IRIS databa...

  11. The Influence of Water on Butanol Isomers Pervaporation Transport through Polyethylene Membrane..

    Czech Academy of Sciences Publication Activity Database

    Petričkovič, Roman; Setničková, Kateřina; Uchytil, Petr

    2013-01-01

    Roč. 107, APR 2 (2013), s. 85-90 ISSN 1383-5866 R&D Projects: GA ČR GA104/09/1165 Institutional support: RVO:67985858 Keywords : pervaporation * binary mixtures butanol iso mers-water * polyethylene membranes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.065, year: 2013

  12. Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic

    DEFF Research Database (Denmark)

    Hviid, Anne-Mette Meisner; Jensen, Peter Ruhdal; Kilstrup, Mogens

    2017-01-01

    resistant lactic acid bacteria. Combined results from alcohol survival rate, live/dead staining, and a novel usage of the beta-galactosidase assay, revealed that while high concentrations of ethanol and hexanol were cytostatic to L. lactis, high concentrations of butanol were cytotoxic, causing irreparable...

  13. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution

    Science.gov (United States)

    Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. In these studies we investigated use of food waste to produce butanol by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initia...

  14. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus.

    Science.gov (United States)

    Wu, Pengfei; Wang, Genyu; Wang, Gehua; Børresen, Børre Tore; Liu, Hongjuan; Zhang, Jianan

    2016-01-14

    One major problem of ABE (acetone, butanol and ethanol) fermentation is high oxygen sensitivity of Clostridium acetobutylicum. Currently, no single strain has been isolated or genetically engineered to produce butanol effectively under aerobic conditions. In our previous work, a symbiotic system TSH06 has been developed successfully by our group, and two strains, C. acetobutylicum TSH1 and Bacillus cereus TSH2, were isolated from TSH06. Compared with single culture, TSH06 showed promotion on cell growth and solvent accumulation under microaerobic conditions. To simulate TSH06, a new symbiotic system was successfully re-constructed by adding living cells of B. cereus TSH2 into C. acetobutylicum TSH1 cultures. During the fermentation process, the function of B. cereus TSH2 was found to deplete oxygen and provide anaerobic environment for C. acetobutylicum TSH1. Furthermore, inoculation ratio of C. acetobutylicum TSH1 and B. cereus TSH2 affected butanol production. In a batch fermentation with optimized inoculation ratio of 5 % C. acetobutylicum TSH1 and 0.5 % B. cereus TSH2, 11.0 g/L butanol and 18.1 g/L ABE were produced under microaerobic static condition. In contrast to the single culture of C. acetobutylicum TSH1, the symbiotic system became more aerotolerant and was able to produce 11.2 g/L butanol in a 5 L bioreactor even with continuous 0.15 L/min air sparging. In addition, qPCR assay demonstrated that the abundance of B. cereus TSH2 increased quickly at first and then decreased sharply to lower than 1 %, whereas C. acetobutylicum TSH1 accounted for more than 99 % of the whole population in solventogenic phase. The characterization of a novel symbiotic system on butanol fermentation was studied. The new symbiotic system re-constructed by co-culture of C. acetobutylicum TSH1 and B. cereus TSH2 showed excellent performance on butanol production under microaerobic conditions. B. cereus TSH2 was a good partner for C. acetobutylicum TSH1 by providing an anaerobic

  15. Inflammatory Mediator Profiling of n-butanol Exposed Upper Airways in Individuals with Multiple Chemical Sensitivity.

    Directory of Open Access Journals (Sweden)

    Thomas Meinertz Dantoft

    Full Text Available Multiple Chemical Sensitivity (MCS is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology.The aim of this study was to examine baseline and low dose n-butanol-induced upper airway inflammatory response profiles in MCS subjects versus healthy controls.Eighteen participants with MCS and 18 age- and sex-matched healthy controls were enrolled in the study. Epithelial lining fluid was collected from the nasal cavity at three time points: baseline, within 15 minutes after being exposed to 3.7 ppm n-butanol in an exposure chamber and four hours after exposure termination. A total of 19 cytokines and chemokines were quantified. Furthermore, at baseline and during the exposure session, participants rated the perceived intensity, valence and levels of symptoms and autonomic recordings were obtained.The physiological and psychophysical measurements during the n-butanol exposure session verified a specific response in MCS individuals only. However, MCS subjects and healthy controls displayed similar upper airway inflammatory mediator profiles (P>0.05 at baseline. Likewise, direct comparison of mediator levels in the MCS group and controls after n-butanol exposure revealed no significant group differences.We demonstrate no abnormal upper airway inflammatory mediator levels in MCS subjects before or after a symptom-eliciting exposure to low dose n-butanol, implying that upper airways of MCS subjects are functionally intact at the level of cytokine and chemokine production and secretory capacity. This suggests that previous findings of increased cytokine plasma levels in MCS are unlikely to be caused by systemic priming via excessive upper airway inflammatory processes.

  16. Inflammatory Mediator Profiling of n-butanol Exposed Upper Airways in Individuals with Multiple Chemical Sensitivity.

    Science.gov (United States)

    Dantoft, Thomas Meinertz; Skovbjerg, Sine; Andersson, Linus; Claeson, Anna-Sara; Lind, Nina; Nordin, Steven; Brix, Susanne

    2015-01-01

    Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology. The aim of this study was to examine baseline and low dose n-butanol-induced upper airway inflammatory response profiles in MCS subjects versus healthy controls. Eighteen participants with MCS and 18 age- and sex-matched healthy controls were enrolled in the study. Epithelial lining fluid was collected from the nasal cavity at three time points: baseline, within 15 minutes after being exposed to 3.7 ppm n-butanol in an exposure chamber and four hours after exposure termination. A total of 19 cytokines and chemokines were quantified. Furthermore, at baseline and during the exposure session, participants rated the perceived intensity, valence and levels of symptoms and autonomic recordings were obtained. The physiological and psychophysical measurements during the n-butanol exposure session verified a specific response in MCS individuals only. However, MCS subjects and healthy controls displayed similar upper airway inflammatory mediator profiles (P>0.05) at baseline. Likewise, direct comparison of mediator levels in the MCS group and controls after n-butanol exposure revealed no significant group differences. We demonstrate no abnormal upper airway inflammatory mediator levels in MCS subjects before or after a symptom-eliciting exposure to low dose n-butanol, implying that upper airways of MCS subjects are functionally intact at the level of cytokine and chemokine production and secretory capacity. This suggests that previous findings of increased cytokine plasma levels in MCS are unlikely to be caused by systemic priming via excessive upper airway inflammatory processes.

  17. A Numerical Study of Spray Characteristics in Medium Speed Engine Fueled by Different HFO/n-Butanol Blends

    Directory of Open Access Journals (Sweden)

    Hashem Nowruzi

    2014-01-01

    Full Text Available In the present study, nonreacting and nonevaporating spray characteristics of heavy fuel oil (HFO/n-butanol blends are numerically investigated under two different high pressure injections in medium speed engines. An Eulerian-Lagrangian multiphase scheme is used to simulate blend of C14H30 as HFO and 0%, 10%, 15%, and 20% by volume of n-butanol. OpenFOAM CFD toolbox is modified and implemented to study the effect of different blends of HFO/n-butanol on the spray characteristics at 600 and 1000 bar. To validate the presented simulations, current numerical results are compared against existing experimental data and good compliance is achieved. Based on the numerical findings, addition of n-butanol to HFO increases the particles volume in parcels at 600 bar. It was also found that blend fuels increase the number of spray particles and the average velocity of spray compared to pure HFO. Moreover, under injection pressure of 1000 bar, HFO/n-butanol blends compared to pure HFO fuel decrease particles volume in parcels of spray. Another influence of HFO/n-butanol blends is the decrease in average of particles diameter in parcels. Meanwhile, the effect of HFO/n-butanol on spray length is proved to be negligible. Finally, it can be concluded that higher injection pressure improves the spray efficiency.

  18. Growth of Pseudomonas taiwanensis VLB120∆C biofilms in the presence of n-butanol.

    Science.gov (United States)

    Halan, Babu; Vassilev, Igor; Lang, Karsten; Schmid, Andreas; Buehler, Katja

    2017-07-01

    Biocatalytic processes often encounter problems due to toxic reactants and products, which reduce biocatalyst viability. Thus, robust organisms capable of tolerating or adapting towards such compounds are of high importance. This study systematically investigated the physiological response of Pseudomonas taiwanensis VLB120∆C biofilms when exposed to n-butanol, one of the potential next generation biofuels as well as a toxic substance using microscopic and biochemical methods. Initially P. taiwanensis VLB120∆C biofilms did not show any observable growth in the presence of 3% butanol. Prolonged cultivation of 10 days led to biofilm adaptation, glucose and oxygen uptake doubled and consequently it was possible to quantify biomass. Complementing the medium with yeast extract and presumably reducing the metabolic burden caused by butanol exposure further increased the biomass yield. In course of cultivation cells reduced their size in the presence of n-butanol which results in an enlarged surface-to-volume ratio and thus increased nutrient uptake. Finally, biofilm enhanced its extracellular polymeric substances (EPS) production when exposed to n-butanol. The predominant response of these biofilms under n-butanol stress are higher energy demand, increased biomass yield upon medium complements, larger surface-to-volume ratio and enhanced EPS production. Although we observed a distinct increase in biomass in the presence of 3% butanol it was not possible to cultivate P. taiwanensis VLB120∆C biofilms at higher n-butanol concentrations. Thereby this study shows that biofilms are not per se tolerant against solvents, and need to adapt to toxic n-butanol concentrations. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Characterization of an immobilized cell, trickle bed reactor during long term butanol (ABE) fermentation.

    Science.gov (United States)

    Park, C H; Okos, M R; Wankat, P C

    1990-06-20

    Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and

  20. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.; Sarathy, Mani

    2013-01-01

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical

  1. The influence of n-butanol blending on the ignition delay times of gasoline and its surrogate at high pressures

    KAUST Repository

    Agbro, Edirin

    2016-09-24

    The influence of blending n-butanol at 20% by volume on the ignition delay times for a reference gasoline was studied in a rapid compression machine (RCM) for stoichiometric fuel/air mixtures at 20 bar and 678-858 K. Delay times for the blend lay between those of stoichiometric gasoline and stoichiometric n-butanol across the temperature range studied. At lower temperatures, delays for the blend were however, much closer to those of n-butanol than gasoline despite n-butanol being only 20% of the mixture. Under these conditions n-butanol acted as an octane enhancer over and above what might be expected from a simple linear blending law. The ability of a gasoline surrogate, based on a toluene reference fuel (TRF), to capture the main trends of the gasoline/n-butanol blending behaviour was also tested within the RCM. The 3-component TRF based on a mixture of toluene, n-heptane and iso-octane was able to capture the trends well across the temperature range studied. Simulations of ignition delay times were also performed using a detailed blended n-butanol/TRF mechanism based on the adiabatic core assumption and volume histories from the experimental data. Overall, the model captured the main features of the blending behaviour, although at the lowest temperatures, predicted ignition delays for stoichiometric n-butanol were longer than those observed. A brute-force local sensitivity analysis was performed to evaluate the main chemical processes driving the ignition behaviour of the TRF, n-butanol and blended fuels. The reactions of fuel + OH dominated the sensitivities at lower temperatures, with H abstraction from n-butanol from a and 7 sites being key for both the n-butanol and the blend. At higher temperatures the decomposition of H2O2 and reactions of HO2 and that of formaldehyde with OH became critical, in common with the ignition behaviour of other fiiels. Remaining uncertainties in the rates of these key reactions are discussed. Crown Copyright (C) 2016 Published

  2. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes.

    Science.gov (United States)

    Loder, Andrew J; Zeldes, Benjamin M; Garrison, G Dale; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-10-01

    n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. Copyright © 2015, American Society for

  3. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    Science.gov (United States)

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Thermophysical properties of N, N-dimethylacetamide mixtures with n-butanol

    Science.gov (United States)

    Maharolkar, Aruna P.; Murugkar, A. G.; Khirade, P. W.; Mehrotra, S. C.

    2017-09-01

    The refraction, dielectric, viscosity, density, data of the binary mixtures of N, N-dimethylacetamide (DMA) with n-butanol at 308.15 and 313.15 K. The measured parameters used to obtain derived properties like Bruggeman factor, molar refraction and excess static dielectric constant, excess inverse relaxation time, excess molar volume and excess viscosity, excess molar refraction. The variation in magnitude with composition and temperature of these quantities has been used to discuss the type, strength and nature of binary interactions. Results confirm that there are strong hydrogen-bond interactions between unlike molecules of DMA+ n-butanol mixtures and that 1: 1 complexes are formed and strength of intermolecular interaction increases with temperature.

  5. Investigation of hydrolysis products in the acetone-butanol fermentation of vegetable agricultural waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M

    1960-01-01

    Determinations of the fundamental chemical composition of corn stalk, sunflower husk, and hemp scutch by chromatography were reported, e.g. pentoses (1.98, 1.98, 2.01%), hexoses (1.59, 1.72, 2.01% respectively.) and various amino acids (arginine, asparagine, histidine, glutamine, glycine, lysine, proline, serine, tyrosine, threonine, cysteine, cystine, alanine, and aspartic and glutamic acids). The sterilized products from the hydrolysis (pentoses, hexoses) in a combined mixture with a meal mash were normally fermented at 37/sup 0/ in the presence of acetone-butanol bacteria for 40 to 48 hours, yielding 10.46 to 12.50% of acetone, 15.09 to 18.0% of butanol, 3.79 to 6.08% of ethanol (a total yielding being 30 to 42% of solvents).

  6. Combining regio- and enantioselectivity of lipases for the preparation of (R)-4-chloro-2-butanol.

    Science.gov (United States)

    Méndez, Jonh J; Oromi, Mireia; Cervero, Maria; Balcells, Mercè; Torres, Mercè; Canela, Ramon

    2007-01-01

    Preparation of 98% ee (R)-4-chloro-2-butanol was carried out by the enzymatic hydrolysis of chlorohydrin esters, using fungal resting cells and commercial enzymes. Hydrolyzes were carried out using lipases from Candida antarctica (Novozym 435), C. rugosa, Rhizomucor miehei (Lipozyme IM), Burkolia cepacia, and resting cells of Rhizopus oryzae and Aspergillus flavus. The influence of the enzyme, the solvent, the temperature, and the alkyl chain length on the selectivity of hydrolyzes of isomeric mixtures of chlorohydrin esters is described. Regioselectivity was higher than 95% for some of the tested lipases. Novozym 435 allowed preparation of the (R)-4-chloro-2-butanol after 15 min of reaction at 30-40 degrees C. (c) 2006 Wiley-Liss, Inc.

  7. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts.

    Science.gov (United States)

    Xin, Fengxue; Dong, Weiliang; Jiang, Yujia; Ma, Jiangfeng; Zhang, Wenming; Wu, Hao; Zhang, Min; Jiang, Min

    2018-06-01

    Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.

  8. Improving Fructose Utilization and Butanol Production by Clostridium acetobutylicum via Extracellular Redox Potential Regulation and Intracellular Metabolite Analysis.

    Science.gov (United States)

    Chen, Li-Jie; Wu, You-Duo; Xue, Chuang; Bai, Feng-Wu

    2017-10-01

    Jerusalem artichoke (JA) can grow well in marginal lands with high biomass yield, and thus is a potential energy crop for biorefinery. The major biomass of JA is from tubers, which contain inulin that can be easily hydrolyzed into a mixture of fructose and glucose, but fructose utilization for producing butanol as an advanced biofuel is poor compared to glucose-based ABE fermentation by Clostridium acetobutylicum. In this article, the impact of extracellular redox potential (ORP) on the process is studied using a mixture of fructose and glucose to simulate the hydrolysate of JA tubers. When the extracellular ORP is controlled above -460 mV, 13.2 g L -1 butanol is produced from 51.0 g L -1 total sugars (40.1 g L -1 fructose and 10.9 g L -1 glucose), leading to dramatically increased butanol yield and butanol/ABE ratio of 0.26 g g -1 and 0.67, respectively. Intracellular metabolite and q-PCR analysis further indicate that intracellular ATP and NADH availabilities are significantly improved together with the fructose-specific PTS expression at the lag phase, which consequently facilitate fructose transport, metabolic shift toward solventogenesis and carbon flux redistribution for butanol biosynthesis. Therefore, the extracellular ORP control can be an effective strategy to improve butanol production from fructose-based feedstock. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C.

    2010-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  10. Vapor-liquid equilibria for the acetone-ethanol-n-propanol-tert-butanol-water system

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Uchida, K.; Kojima, K.

    1981-12-01

    This study deals with the measurement of vapor-liquid equilibria for the five-component system acetone-ethanol-n-propanol-tert-butanol-water at 760 mmHg and prediction of vapor-liquid equilibria by the ASOG group contribution method. The five-component system in this work is composed of a part of the components obtained during ethanol production by vapor-phase hydration of ethylene. 6 refs.

  11. Fermentation of molasses-flour mashes by acetone-butanol bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Chekasina, E V

    1962-01-01

    With Clostridium acetobutylicum used in a continuous fermentation, where the mash passes through 5 to 12 fermenters, sufficient conversion of starch to mono- and disaccharides will occur; the number of fermenters were chosen and mash changed so that fresh mash remains for 34 hours in the cycle. After a 29 hour fermentation average yields were: acetone 4.5, ethanol 3.0, butanol 7.5%.

  12. EFFECT OF COMPOSITION OF FUEL CONTAINING BUTANOL ON WORKING PROCESS PARAMETERS OF DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    D. G. Hershan

    2017-01-01

    Full Text Available Computational researches the effect of composition of fuel containing butanol on working process parameters of 4ЧН 11/12,5 diesel engine on the external speed characteristic have been conducted. Nominal power is 140 kW at engine speed 2300 min–1. The engine is equipped with gas turbine pressure charging with intercooling of charging air, accumulator-type fuel-handling system. Calculations of the working process have been made in accordance with the developed computer program and models. Investigations have been carried out in two stages: without any changes in regulation of fuel-handling system and with cyclic fuel delivery that ensure such value of excess air factor at various operational modes which corresponds to the operation with diesel fuel. All the obtained results have been analyzed in the paper. The paper shows changes in mean indicated pressure, specific indicated fuel consumption, indicated efficiency, specific nitrogen oxides emissions for various modes in question while using 5, 10, 15, 20, 25 and 30 % mixture of diesel fuel with butanol. Dependences of parameters pertaining to diesel operation have been determined according to external speed characteristic for various mixtures and the obtained data make it possible to justify parameters of the fuel-handling system. It has been recommended to use a diesel fuel-butanol mixture containing 15 % of butanol without any changes in regulating and design engine parameters. It has been revealed that in order to improve parameters of the engine operational process mixture composition must be changed while changing the operational mode. An injector nozzle with a compound needle for the fuel-handling system has been developed and it allows to change fuel composition according to engine operational mode.

  13. Direct Visualization of 2-Butanol Adsorption and Dissociation on TiO2(110)

    International Nuclear Information System (INIS)

    Zhang, Zhenrong; Bondarchuk, Olexsandr; Kay, Bruce D.; White, J. M.; Dohnalek, Zdenek

    2007-01-01

    Atomically resolved scanning tunneling microscopy (STM) images of identical regions of a TiO2(110) surface were gathered before and after controlled doses of 2-butanol (CH3CH2CH(OH)CH3) at ambient temperature (∼300 K). When dosing is initiated, 2-butanol preferentially adsorbs at bridge-bonded oxygen vacancy (BBOv) sites and dissociates via O-H, not C-O, bond scission to form paired 2-butoxy and hydroxyl species evidenced by two local maxima in STM line profiles. The measured separation is 0.4 nm, slightly larger than the measured separation (0.3 nm) between neighboring bridge-bonded oxygen anions in the surface unit cell of TiO2(110). As the dose increases, but before all the BBOv are occupied, there is direct STM evidence of hydroxyl proton hopping to an adjacent oxygen anion row. This process is facilitated by species bound to 5-coordinate Ti4+ rows, presumably undissociated 2-butanol, that hop slowly compared the STM imaging time scale. The backbones of these mobile species are centered over the Ti4+ rows with preference for lying parallel to these rows. On the other hand, the carbon backbones of the 2-butoxy species that fill BBOv's are centered over the O2- rows and prefer an orientation perpendicular to these rows. As the oxygen vacancy concentration increases from 0.4 to 11% and 2-butanol is dosed the ratio of mobile species to 2-butoxy species decreases for doses that do not fill all the BBOv

  14. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Experimental investigation on SI engine using gasoline and a hybrid iso-butanol/gasoline fuel

    International Nuclear Information System (INIS)

    Elfasakhany, Ashraf

    2015-01-01

    Highlights: • iso-Butanol–gasoline blends (iB) using up to 10 vol.% butanol were examined in SIE. • iB extensively decrease the greenhouse effect of SI engine. • iB without engine tuning led to a drop in engine performance at all speeds. • iB provide higher performance and lower CO and CO 2 emissions than n-butanol blends. • iB grant lower CO and UHC than gasoline at <2900 r/min, but overturn at >2900 r/min. - Abstract: Experimental investigation on pollutant emissions and performance of SI engine fueled with gasoline and iso-butanol–gasoline blends is carried out. Engine was operated at speed range of 2600–3400 r/min for each blend (3, 7 and 10 vol.% iso-butanol) and neat gasoline. Results declare that the CO and UHC emissions of neat gasoline are higher than those of the blended fuels for speeds less than or equal to 2900 r/min; however, for speeds higher than 2900 r/min, we have an opposite impact where the blended fuels produce higher level of CO and UHC emissions than the gasoline fuel. The CO 2 emission at using iso-butanol–gasoline blends is always lower than the neat gasoline at all speeds by up to 43%. The engine performance results demonstrate that using iso-butanol–gasoline blends in SI engine without any engine tuning lead to a drop in engine performance within all speed range. Without modifying the engine system, overall fuel combustion of iso-butanol–gasoline blends was quasi-complete. However, when engine system is optimized for blended fuels, iso-butanol has significant oxygen content and that can lead to a leaner combustion, which improves the completeness of combustion and therefore high performance and less emissions would be obtained. Finally, the performance and emissions of iso-butanol–gasoline blends are compared with those of n-butanol–gasoline blends at similar blended rates and engine working conditions. Such comparison is directed to evaluate the combustion dissimilarity of the two butanol isomers and also to

  16. Design and economic analysis of a macroalgae-to-butanol process via a thermochemical route

    International Nuclear Information System (INIS)

    Okoli, Chinedu O.; Adams, Thomas A.; Brigljević, Boris; Liu, Jay J.

    2016-01-01

    Highlights: • Novel macroalgae-to-butanol plants are designed and assessed for U.S. and S. Korea. • The lowest MBSP of 1.97 $/L was obtained for the S. Korean natural gas import plant. • S. Korean plant with no fossil utilities had lowest CO_2 avoided cost of 620 $/tCO_2e. • Macroalgae-to-butanol plants CO_2 avoided costs are competitive with other biofuels. • CO_2 avoided costs of assessed plants are most sensitive to changes in gasoline price. - Abstract: In this work, a first of its kind assessment of butanol production from macroalgae through a thermochemical route is carried out. Different process configurations were designed and simulated in Aspen Plus to quantify their mass and energy balances. Furthermore, economic and environmental metrics such as the minimum butanol selling price (MBSP), and cost of CO_2 equivalent emissions (CO_2e) avoided were used to assess the potential of the different configurations under different market scenarios, with comparisons carried out amongst the configurations as well as against standard literature references of similar processes. Finally, a sensitivity analysis was used to assess the impact that changes in key parameters have on the considered metrics. The results show that configurations which import natural gas and electricity as utility sources alongside the macroalgae feedstock offer the lowest MBSP, however they do poorly when cost of CO_2e avoided is considered. On the other hand, the configurations which utilize only macroalgae offer the best potential for cost of CO_2e avoided but have the poorest values for MBSP. In addition, the cost of CO_2e avoided obtained for the best configurations are in line with literature references. However, the MBSP values are higher than literature references for butanol derived from cellulosic feedstock primarily due to the high ash content in seaweed. The sensitivity analyses results show that changes in gasoline prices have a very significant effect on the plant

  17. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution.

    Science.gov (United States)

    Huang, Haibo; Singh, Vijay; Qureshi, Nasib

    2015-01-01

    Waste is currently a major problem in the world, both in the developing and the developed countries. Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. This study investigated using food waste to produce acetone, butanol, and ethanol (ABE) by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initial glucose 56.7 g/L) was used to produce 14.2 g/L of ABE with a fermentation productivity and a yield of 0.22 g/L/h and 0.35 g/g, respectively. In a similar fermentation 81 g/L of food waste (containing equivalent glucose of 60.1 g/L) was used as substrate, and the culture produced 18.9 g/L ABE with a high ABE productivity of 0.46 g/L/h and a yield of 0.38 g/g. Fermentation of food waste at higher concentrations (129, 181 and 228 g/L) did not remarkably increase ABE production but resulted in high residual glucose due to the culture butanol inhibition. An integrated vacuum stripping system was designed and applied to recover butanol from the fermentation broth simultaneously to relieve the culture butanol inhibition, thereby allowing the fermentation of food waste at high concentrations. ABE fermentation integrated with vacuum stripping successfully recovered the ABE from the fermentation broth and controlled the ABE concentrations below 10 g/L during fermentation when 129 g/L food waste was used. The ABE productivity with vacuum fermentation was 0.49 g/L/h, which was 109 % higher than the control fermentation (glucose based). More importantly, ABE vacuum recovery and fermentation allowed near-complete utilization of the sugars (~98 %) in the broth. In these studies it was demonstrated that food waste is a superior feedstock for producing butanol using Clostridium beijerinckii. Compared to costly glucose, ABE fermentation of food waste has several advantages including lower feedstock cost, higher productivity, and less residual sugars.

  18. Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends

    International Nuclear Information System (INIS)

    Li, Yuqiang; Meng, Lei; Nithyanandan, Karthik; Lee, Timothy H.; Lin, Yilu; Lee, Chia-fon F.; Liao, Shengming

    2017-01-01

    Bio-butanol is typically produced by acetone-butanol-ethanol (ABE) fermentation, however, the recovery of bio-butanol from the ABE mixture involves high costs and energy consumption. Hence it is of interest to study the intermediate fermentation product, i.e. ABE, as a potentially alternative fuel. In this study, an experimental investigation of the performance, combustion and emission characteristics of a port fuel-injection SI engine fueled with ABE-gasoline blends was carried out. By testing different ABE-gasoline blends with varying ABE content (0 vol%, 10 vol%, 30 vol% and 60 vol% referred to as G100, ABE10, ABE30 and ABE60), ABE formulation (A:B:E of 1:8:1, 3:6:1 and 5:4:1 referred to as ABE(181), ABE(361) and ABE(541)), and water content (0.5 vol% and 1 vol% water referred to as W0.5 and W1), it was found that ABE(361)30 performed well in terms of engine performance and emissions, including brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), carbon monoxide (CO), unburned hydrocarbons (UHC) and nitrogen oxides (NO_x) emissions. Then, ABE(361)30 was compared with conventional fuels, including E30, B30 (30 vol% ethanol or butanol blended with gasoline) and pure gasoline (G100) under various equivalence ratios and engine loads. Overall, a higher BTE (0.2–1.4%) and lower CO (1.4–4.4%), UHC (0.3–9.9%) and NO_x (4.2–14.6%) emissions were observed for ABE(361)30 compared to those of G100 in some cases. Therefore, ABE could be a good alternative fuel to gasoline due to the environmentally benign manufacturing process (from non-edible biomass feedstock and without a recovery process), and the potential to improve energy efficiency and reduce pollutant emissions. - Highlights: • ABE (acetone-butanol-ethanol) was used as a green alternative fuel. • ABE-gasoline blends with various ratios of ABE, ABE component and water were test. • Combustion, performance and emissions characteristics were investigated. • Adding ABE into

  19. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Directory of Open Access Journals (Sweden)

    Ahmad K. H.

    2017-01-01

    Full Text Available Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without

  20. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Science.gov (United States)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The

  1. Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends

    International Nuclear Information System (INIS)

    Elfasakhany, Ashraf

    2014-01-01

    Highlights: • Using of 3 and 7 vol.% n-butanol blends in SI engine is studied for the first time. • Engine performance and emissions depend on both engine speed and blend rates. • CO and UHC for blended fuels are maximum at 3000–3100 r/min. • The higher the rate of n-butanol, the lower the emissions and performance. • This study strongly supports using low blend rates of n-butanol (<10 vol.%) in ICE. - Abstract: In this paper, exhaust emissions and engine performance have been experimentally studied for neat gasoline and gasoline/n-butanol blends in a wide range of working speeds (2600–3400 r/min) without any tuning or modification on the gasoline engine systems. The experiment has the ability of evaluating performance and emission characteristics, such as break power, torque, in-cylinder pressure, volumetric efficiency, exhaust gas temperature and concentrations of CO 2 , CO and UHC. Results of the engine test indicated that using n-butanol–gasoline blended fuels slightly decrease the output torque, power, volumetric efficiency, exhaust gas temperature and in-cylinder pressure of the engine as a result of the leaning effect caused by the n-butanol addition; CO, CO 2 and UHC emissions decrease dramatically for blended fuels compared to neat gasoline because of the improved combustion since n-butanol has extra oxygen, which allows partial reduction of the CO and UHC through formation of CO 2 . It was also noted that the exhaust emissions depend on the engine speed rather than the n-butanol contents

  2. Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Pfromm, Peter H.; Amanor-Boadu, Vincent; Nelson, Richard; Vadlani, Praveen; Madl, Ronald

    2010-01-01

    Fermentation-derived butanol is a possible alternative to ethanol as a fungible biomass-based liquid transportation fuel. We compare the fermentation-based production of n-butanol vs. ethanol from corn or switchgrass through the liquid fuel yield in terms of the lower heating value (LHV). Industrial scale data on fermentation to n-butanol (ABE fermentation) or ethanol (yeast) establishes a baseline at this time, and puts recent advances in fermentation to butanol in perspective. A dynamic simulation demonstrates the technical, economic and policy implications. The energy yield of n-butanol is about half that of ethanol from corn or switchgrass using current ABE technology. This is a serious disadvantage for n-butanol since feedstock costs are a significant portion of the fuel price. Low yield increases n-butanol's life-cycle greenhouse gas emission for the same amount of LHV compared to ethanol. A given fermenter volume can produce only about one quarter of the LHV as n-butanol per unit time compared to ethanol. This increases capital costs. The sometimes touted advantage of n-butanol being more compatible with existing pipelines is, according to our techno-economic simulations insufficient to alter the conclusion because of the capital costs to connect plants via pipeline.

  3. Adsorption of water and butanol in silicalite-1 film studied with in situ attenuated total reflectance-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Farzaneh, Amirfarrokh; Zhou, Ming; Potapova, Elisaveta; Bacsik, Zoltán; Ohlin, Lindsay; Holmgren, Allan; Hedlund, Jonas; Grahn, Mattias

    2015-05-05

    Biobutanol produced by, e.g., acetone-butanol-ethanol (ABE) fermentation is a promising alternative to petroleum-based chemicals as, e.g., solvent and fuel. Recovery of butanol from dilute fermentation broths by hydrophobic membranes and adsorbents has been identified as a promising route. In this work, the adsorption of water and butanol vapor in a silicalite-1 film was studied using in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy to better understand the adsorption properties of silicalite-1 membranes and adsorbents. Single-component adsorption isotherms were determined in the temperature range of 35-120 °C, and the Langmuir model was successfully fitted to the experimental data. The adsorption of butanol is very favorable compared to that of water. When the silicalite-1 film was exposed to a butanol/water vapor mixture with 15 mol % butanol (which is the vapor composition of an aqueous solution containing 2 wt % butanol, a typical concentration in an ABE fermentation broth, i.e., the composition of the gas obtained from gas stripping of an ABE broth) at 35 °C, the adsorption selectivity toward butanol was as high as 107. These results confirm that silicalite-1 quite selectively adsorbs hydrocarbons from vapor mixtures. To the best of our knowledge, this is the first comprehensive study on the adsorption of water and butanol in silicalite-1 from vapor phase.

  4. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    Directory of Open Access Journals (Sweden)

    Hongzhen Luo

    Full Text Available In this study, an efficient acetone-butanol-ethanol (ABE fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1 extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2 enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3 direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  5. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II-Fed-batch fermentation

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Cotta, Michael A.

    2008-01-01

    In these studies, Clostridium beijerinckii P260 was used to produce butanol (acetone-butanol-ethanol, or ABE) from wheat straw (WS) hydrolysate in a fed-batch reactor. It has been demonstrated that simultaneous hydrolysis of WS to achieve 100% hydrolysis to simple sugars (to the extent achievable under present conditions) and fermentation to butanol is possible. In addition to WS, the reactor was fed with a sugar solution containing glucose, xylose, arabinose, galactose, and mannose. The culture utilized all of the above sugars. It was noticed that near the end of fermentation (286-533 h), the culture had difficulties utilizing xylose. As a result of supplemental sugar feed to the reactor, ABE productivity was improved by 16% as compared with previous studies. In our previous experiment on simultaneous saccharification of WS and fermentation to butanol, a productivity of 0.31 g L -1 h -1 was observed, while in the present studies a productivity of 0.36 g L -1 h -1 was observed. It should be noted that a productivity of 0.77 g L -1 h -1 was observed when the culture was highly active. The fed-batch fermentation was operated for 533 h. It should be noted that C. beijerinckii P260 can be used to produce butanol from WS in integrated fermentations

  6. Numerical analysis of a downsized spark-ignition engine fueled by butanol/gasoline blends at part-load operation

    International Nuclear Information System (INIS)

    Scala, F.; Galloni, E.; Fontana, G.

    2016-01-01

    Highlights: • Bio-fuels will reduce the overall CO_2 emission. • The properties of butanol/gasoline–air mixtures have been determined. • A 1-D model of a SI engine has been calibrated and validated. • The butanol content reduces the combustion duration. • The optimal ignition timing slightly changes. - Abstract: In this paper, the performance of a turbocharged SI engine, firing with butanol/gasoline blends, has been investigated by means of numerical simulations of the engine behavior. When engine fueling is switched from gasoline to alcohol/gasoline mixture, engine control parameters must be adapted. The main necessary modifications in the Electronic Control Unit have been highlighted in the paper. Numerical analyses have been carried out at partial load operation and at two different engine speeds (3000 and 4000 rpm). Several n-butanol/gasoline mixtures, differing for the alcohol contents, have been analyzed. Such engine performances as torque and indicated efficiency have been evaluated. Both these characteristics decrease with the alcohol contents within the mixtures. On the contrary, when the engine is fueled by neat n-butanol, torque and efficiency reach values about 2% higher than those obtained with neat gasoline. Furthermore, the optimal spark timing, for alcohol/gasoline mixture operation, must be retarded (up to 13%) in comparison with the correspondent values of the gasoline operation. In general, engine performance and operation undergo little variations when fuel supplying is switched from gasoline to alcohol/gasoline blends.

  7. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin

    Directory of Open Access Journals (Sweden)

    Amrit Pal Toor

    2011-05-01

    Full Text Available Esters are an important pharmaceutical intermediates and very useful perfumery agents. In this study the esterification of acetic acid with n-butanol and iso-butanol over an acidic cation exchange resin, Amberlyst 15 were carried out. The effects of certain parameters such as temperature, catalyst loading, initial molar ratio between reactants on the rate of reaction were studied. The experiments were conducted in a stirred batch reactor in the temperature range of 351.15 K to 366.15K.Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled.The activation energy for the esterification of acetic acid with n-butanol and iso butanol is found to be 28.45 k J/mol and 23.29 kJ/mol respectively. ©2011 BCREC UNDIP. All rights reserved.(Received: 16th December 2010, Revised: 19th March 2011; Accepted: 7th April 2011[How to Cite: A.P. Toor, M. Sharma, G. Kumar, and R. K. Wanchoo. (2011. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 23-30. doi:10.9767/bcrec.6.1.665.23-30][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.665.23-30 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/665 ] | View in 

  8. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.

    2013-11-21

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  9. Enzymology of acetone-butanol-isopropanol formation. Final technical report, June 1, 1985--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiann-Shin

    1998-03-01

    Several species of anaerobic bacteria within the genus Clostridium produce acetone, n-butanol, and isopropanol (solvents), which are important industrial chemicals and fuel additives. Commercial production of solvents by the clostridia is a classical example of largescale chemical production by bacterial fermentation. Although the fermentation has been in use for decades, it still faces problems that include strain degeneration, a relatively low final product concentration due to butanol toxicity, and a need to fine-tune the growth conditions to achieve a high yield. The long-term goal of this project was to understand the fundamental properties of bacterial solvent production for the purpose of achieving a positive control on the metabolic switch leading to solvent production and on the proportion of useful products formed as well as of developing strategies for preventing the degeneration of producing strains. The objectives for the project included those approved in 1985 for the initial project period and those approved in 1988, 1991, and 1994 when the project was renewed. The objectives for the entire project period may be summarized as (1) To purify and characterize the enzymes that are specifically required for the formation of acetone, butanol, and isopropanol by the clostridia, (2) To clone and characterize the genes that encode enzymes or regulatory proteins for the production of solvents, and the emphasis was to determine the control mechanism for the transcription of the solvent-production genes, (3) To characterize the onset of solvent production and the intra- and extra-cellular parameters surrounding the metabolic switch to solvent production, and (4) To determine the genetic identity of the strains of solvent-producing clostridia that are currently in use by investigators around the world.

  10. Separation of xylose oligomers using centrifugal partition chromatography with a butanol-methanol-water system.

    Science.gov (United States)

    Lau, Ching-Shuan; Clausen, Edgar C; Lay, Jackson O; Gidden, Jennifer; Carrier, Danielle Julie

    2013-01-01

    Xylose oligomers are the intermediate products of xylan depolymerization into xylose monomers. An understanding of xylan depolymerization kinetics is important to improve the conversion of xylan into monomeric xylose and to minimize the formation of inhibitory products, thereby reducing ethanol production costs. The study of xylan depolymerization requires copious amount of xylose oligomers, which are expensive if acquired commercially. Our approach consisted of producing in-house oligomer material. To this end, birchwood xylan was used as the starting material and hydrolyzed in hot water at 200 °C for 60 min with a 4 % solids loading. The mixture of xylose oligomers was subsequently fractionated by a centrifugal partition chromatography (CPC) with a solvent system of butanol:methanol:water in a 5:1:4 volumetric ratio. Operating in an ascending mode, the butanol-rich upper phase (the mobile phase) eluted xylose oligomers from the water-rich stationary phase at a 4.89 mL/min flow rate for a total fractionation time of 300 min. The elution of xylose oligomers occurred between 110 and 280 min. The yields and purities of xylobiose (DP 2), xylotriose (DP 3), xylotetraose (DP 4), and xylopentaose (DP 5) were 21, 10, 14, and 15 mg/g xylan and 95, 90, 89, and 68 %, respectively. The purities of xylose oligomers from this solvent system were higher than those reported previously using tetrahydrofuran:dimethyl sulfoxide:water in a 6:1:3 volumetric ratio. Moreover, the butanol-based solvent system improved overall procedures by facilitating the evaporation of the solvents from the CPC fractions, rendering the purification process more efficient.

  11. Densities, viscosities, and isobaric heat capacities of the system (1-butanol + cyclohexane) at high pressures

    International Nuclear Information System (INIS)

    Torín-Ollarves, Geraldine A.; Martín, M. Carmen; Chamorro, César R.; Segovia, José J.

    2014-01-01

    Highlights: • The densities of cyclohexane and its mixtures with 1-butanol were measured. • The excess molar volumes were calculated and correlated. • The viscosities were measured at atmospheric pressure. • The isobaric heat capacities were measured at p = (0.1 to 25) MPa at T = (293.15 and 313.15) K. • A positive deviation from the ideal behavior is observed. - Abstract: The cyclohexane and the system of 1-butanol + cyclohexane have been characterized using densities, viscosities and isobaric heat capacities measurements. For that, the densities were measured in a high-pressure vibrating tube densimeter at five temperatures from (293.15 to 333.15) K and pressures up to 100 MPa. The measurements were correlated with the empirical Tamman–Tait equation. Moreover, the isobaric heat capacities of the binary system were measured in a high-pressure automated flow calorimeter at T = (293.15 and 313.15) K and pressures up to 25 MPa for pure cyclohexane and in admixture with 1-butanol. The excess molar heat capacities were assessed for the mixture and a positive deviation from the ideality was obtained, except for a small part in the region rich in alkanol. The viscosity measurements were carried out, at the calorimeter conditions, for correcting the experimental values of isobaric heat capacities due to friction along the tube. The viscosity was measured at atmospheric pressure in a Stabinger Anton Paar SVM 3000 viscometer in the temperature range of (293.15 to 333.15) K for cyclohexane and the mixtures. At high pressure, the viscosities were estimated using Lucas method

  12. Experimental determination of critical data of multi-component mixtures containing potential gasoline additives 2-butanol by a flow-type apparatus

    International Nuclear Information System (INIS)

    He, Maogang; Xin, Nan; Wang, Chengjie; Liu, Yang; Zhang, Ying; Liu, Xiangyang

    2016-01-01

    Graphical abstract: Experimental critical pressures of 2-butanol + hexane + heptane system. - Highlights: • Critical properties of six binary systems and two ternary systems were measured. • Six binary systems containing 2-butanol show non-ideal behavior in their T c –x 1 curves. • Non-ideal behavior of mixtures with 2-butanol relies on azeotropy. • Experimental data for binary systems were fitted well with Redlich–Kister equation. • Critical surfaces of ternary systems were plotted using the Cibulka’s expressions. - Abstract: In this work, we used a flow method for measurement of critical properties of six binary mixtures (2-butanol + cyclohexane, 2-butanol + hexane, 2-butanol + heptane, 2-butanol + octane, 2-butanol + nonane and 2-butanol + decane) and two ternary mixtures (2-butanol + hexane + heptane and 2-butanol + octane + decane). The critical properties were determined by observing the disappearance and reappearance of the gas–liquid phase meniscus in a quartz glass tube. The standard uncertainties of temperatures and pressures for both binary and ternary mixtures were estimated to be less than 0.2 K and 5.2 kPa, respectively. These critical data provide the boundaries of the two-phase regions of the related mixture systems. Six binary systems show non-ideal behaviors in the loci of critical temperatures. We used the Redlich–Kister equations to correlate the critical temperatures and pressures of these systems and listed the binary interaction parameters. The maximum average absolute deviation (AAD) of each binary system between experimental data and calculated results from Redlich–Kister equations is 0.038% for critical temperatures, and 0.244% for critical pressures. Moreover, the two ternary systems were newly reported and correlated by Cibulka’s and Singh’s expressions. The maximum AAD of critical temperatures and critical pressures are 0.103% and 0.433%, respectively.

  13. Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation

    International Nuclear Information System (INIS)

    Garcia-Vidal, Jesus A.; Duran-Valle, Carlos J.; Ferrera-Escudero, Santiago

    2006-01-01

    Two activated carbons treated with mineral acids (HNO 3 and sulfonitric mixture) have been tested as acid catalysts in the epoxides (1,2-epoxyhexane and styrene oxide) ring-opening reaction with 1-butanol under microwave (MW) irradiation. The mayor obtained product is that resulting of the alcohol addition to the most substituted carbon in the epoxide ring. The most active catalyst is that treated with sulfonitric mixture. The use of a MW oven allows achieving to the complete conversion of styrene oxide in only 2 min

  14. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    Science.gov (United States)

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated

  15. Modeling the Fate of Groundwater Contaminants Resulting from Leakage of Butanol-blended Fuel

    Science.gov (United States)

    2010-03-01

    Toyama et al., 1995) ADH IIG N.R. 14.7 11.12 (Toyama et al., 1995) Pichia pastoris N.R. 4.8 N.R. (Borzeix et al., 1995) Mixed culture ( trickle - bed ... reactor ) 16.8 0.10 42.2 (Heinze and Friedrich, 1997) ( ) ( )1 min ˆ ˆ( ); ; molS S Smg protein mg Ld q Kµµ − ⋅ ; N.R.: not reported Mariano et...Research. 32(7): 2065-2072, 1998. Dagaut, P. and C. Togbe. Oxidation kinetics of butanol-gasoline surrogate mixtures in a jet-stirred reactor

  16. Surface chemistry of 2-butanol and furfural on Cu, Au and Cu/Au single crystals

    OpenAIRE

    Megginson, Rory

    2016-01-01

    In this study, the adsorption of 2-butanol and furfural was investigated on Au (111), Cu (111) and Cu/Au (111) surfaces. It was hoped that by studying how these species adsorbed on these surfaces , insight would be provided into the roles of Cu and Au in the “hydrogen free” hydrogenation of furfural to furfuryl alcohol. This is a valuable process as currently furfuryl alcohol is derived from crude oil but it is possible to derive furfural from corn husk making it a greener process...

  17. Inflammatory Mediator Profiling of n-butanol Exposed Upper Airways in Individuals with Multiple Chemical Sensitivity

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Skovbjerg, Sine; Andersson, Linus

    2015-01-01

    Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology. The aim of this study...... inflammatory mediator profiles (P>0.05) at baseline. Likewise, direct comparison of mediator levels in the MCS group and controls after n-butanol exposure revealed no significant group differences. We demonstrate no abnormal upper airway inflammatory mediator levels in MCS subjects before or after a symptom...

  18. Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Vidal, Jesus A. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Campus Universitario, Avda. de Elvas, s/n, E-06071-Badajoz (Spain); Duran-Valle, Carlos J. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Campus Universitario, Avda. de Elvas, s/n, E-06071-Badajoz (Spain)]. E-mail: carlosdv@unex.es; Ferrera-Escudero, Santiago [Departamento de Quimica Inorganica y Quimica Tecnica, Universidad Nacional de Educacion a Distancia, C/Senda del Rey, 9, E-28040 Madrid (Spain)

    2006-06-30

    Two activated carbons treated with mineral acids (HNO{sub 3} and sulfonitric mixture) have been tested as acid catalysts in the epoxides (1,2-epoxyhexane and styrene oxide) ring-opening reaction with 1-butanol under microwave (MW) irradiation. The mayor obtained product is that resulting of the alcohol addition to the most substituted carbon in the epoxide ring. The most active catalyst is that treated with sulfonitric mixture. The use of a MW oven allows achieving to the complete conversion of styrene oxide in only 2 min.

  19. Effective method of fermentation of Riga hydrolyzates of corn cobs and other vegetable waste products for butanol and acetone

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Kameneva, L; Kalnina, V

    1963-01-01

    A simplified method is described for the production of butanol and acetone. The acid mixture (H/sub 3/PO/sub 4/, 10 to 20%; H/sub 2/SO/sub 4/, 90 to 80%) used to hydrolyze corn cobs and other vegetable waste products served also to invert the sugar of molasses which was added in 3 parts to 1 part hydrolyzate on the basis of reducing sugar content. The mixture was then diluted and neutralized with NH/sub 4/OH to pH 6.3 to 6.8. In this way a suitable hydrolyzate medium containing the appropriate amounts of mineral salts as well as invert sugar was provided for fermentation by Clostridium butyricum Prazmowsky. Lignin which precipitated during hydrolysis served as a solid phase which helped to accelerate fermentation. Combined yields of butanol, acetone, and small amounts of ethanol amounted to 30 to 38% of the available sugar; approximately 67% consisted of butanol.

  20. Investigation of uncertainties associated with the production of n-butanol through ethanol catalysis in sugarcane biorefineries.

    Science.gov (United States)

    Pereira, Lucas G; Dias, Marina O S; MacLean, Heather L; Bonomi, Antonio

    2015-08-01

    This study evaluated the viability of n-butanol production integrated within a first and second generation sugarcane biorefinery. The evaluation included a deterministic analysis as well as a stochastic approach, the latter using Monte Carlo simulation. Results were promising for n-butanol production in terms of revenues per tonne of processed sugarcane, but discouraging with respect to internal rate of return (IRR). The uncertainty analysis determined there was high risk involved in producing n-butanol and co-products from ethanol catalysis. It is unlikely that these products and associated production route will be financially attractive in the short term without lower investment costs, supportive public policies and tax incentives coupled with biofuels' production strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A new process for the valorisation of a bio-alcohol. The oxidehydration of 1-butanol into maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Caldarelli, A.; Cavani, F.; Garone, O.; Pavarelli, G. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; Bologna Univ. (Italy). CIRCC, Research Unit; Dubois, J.L. [ARKEMA, Colombes (France); Mitsova, I.; Simeonova, L. [JSC, Russe (Bulgaria). Orgachim

    2012-07-01

    This paper deals with a study on the gas-phase transformation of 1-butanol into maleic anhydride, using different types of catalysts. Indeed, catalytic acid properties are needed to dehydrate 1-butanol into 1-butene, whereas redox-type properties are required for the oxidation of the olefin into maleic anhydride. The two types of active sites can be combined in bifunctional systems, showing both acid and redox-type properties. We found that vanadyl pyrophosphate catalyzes the one-pot reaction, giving a maximum selectivity to maleic anhydride of 28%. In fact, various side reactions contributed to the formation of by-products, eg, 1-butanol (oxidative) dehydrogenation into butyraldehyde, formation of light carboxylic acids and carbon oxides, and condensation of unsaturated C{sub 4} intermediates (butenes and butadiene) with the formed maleic anhydride to yield heavier compounds. (orig.)

  2. NEW STRAIN PRODUCERS OF BIOBUTANOL. III. METHODS OF INCREASED BUTANOL ACCUMULATION FROM BIOMASS OF SWITCHGRASS Panicum virgatum L.

    Directory of Open Access Journals (Sweden)

    Tigunova O. O.

    2015-08-01

    Full Text Available The aim of this work was to enlarge accumulation of butanol from switchgrass Panicum virgatum L. biomass using strains-producers obtained from grounds and silts of Kyiv lakes. The objects of the study were strains of C. acetobutylicum ІМВ B-7407 (IFBG C6H, Clostridium acetobutylicum IFBG C6H 5М and Clostridium tyrobutyricum IFBG C4B from the "Collections of microbial strains and lines of plants for food and agricultural biotechnology" of the Public Institution "Institute of Food Biotechnology and Genomics" of the National Academy of Sciences of Ukraine. Gas chromatography was used to determine the alcohol concentration at the stage of solvent synthesis. To determine the effect of butanol precursors during cultivation, butyric, lactic and acetic acids were used. Optimization of processing parameters, which was based on the needs of cultures, allowed us to increase the yield by 20 and 50% for the initial and mutant strain respectively. Using synthetic precursors (such as lactic, butyric and acetic acid during cultivation increased total concentration of butanol by 1.7 times. To optimize the process, a study was carried out using acetone- butyl grains. Using of acetone-butyl grains in concentrations up to 60% does not affect the synthesis of butanol by C. acetobutylicum IFBG C6H 5M. Increasing the concentration of grains led to decrease in accumulation of butanol. Almost double increase in accumulation of the target product (butanol was achieved using two-stage fermentation and/or precursors of synthesis. It was shown the possibility of using acetone-butyl grains in fermentation. As a result the mass fraction of the waste was reduced.

  3. Modular design of metabolic network for robust production of n-butanol from galactose-glucose mixtures.

    Science.gov (United States)

    Lim, Hyun Gyu; Lim, Jae Hyung; Jung, Gyoo Yeol

    2015-01-01

    Refactoring microorganisms for efficient production of advanced biofuel such as n-butanol from a mixture of sugars in the cheap feedstock is a prerequisite to achieve economic feasibility in biorefinery. However, production of biofuel from inedible and cheap feedstock is highly challenging due to the slower utilization of biomass-driven sugars, arising from complex assimilation pathway, difficulties in amplification of biosynthetic pathways for heterologous metabolite, and redox imbalance caused by consuming intracellular reducing power to produce quite reduced biofuel. Even with these problems, the microorganisms should show robust production of biofuel to obtain industrial feasibility. Thus, refactoring microorganisms for efficient conversion is highly desirable in biofuel production. In this study, we engineered robust Escherichia coli to accomplish high production of n-butanol from galactose-glucose mixtures via the design of modular pathway, an efficient and systematic way, to reconstruct the entire metabolic pathway with many target genes. Three modular pathways designed using the predictable genetic elements were assembled for efficient galactose utilization, n-butanol production, and redox re-balancing to robustly produce n-butanol from a sugar mixture of galactose and glucose. Specifically, the engineered strain showed dramatically increased n-butanol production (3.3-fold increased to 6.2 g/L after 48-h fermentation) compared to the parental strain (1.9 g/L) in galactose-supplemented medium. Moreover, fermentation with mixtures of galactose and glucose at various ratios from 2:1 to 1:2 confirmed that our engineered strain was able to robustly produce n-butanol regardless of sugar composition with simultaneous utilization of galactose and glucose. Collectively, modular pathway engineering of metabolic network can be an effective approach in strain development for optimal biofuel production with cost-effective fermentable sugars. To the best of our

  4. Differential modification of oxic and anoxic components of radiation damage by t-butanol, an. OH radical scavenger

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, S M.J.; Kesavan, P C [Jawaharlal Nehru Univ., New Delhi (India). School of Life Sciences

    1979-03-01

    Caryopses of a hull-less barley strain (IB 65) were gamma-irradiated (10 to 45 krad) in oxygenated and oxygen-free water in the presence of t-butanol (5 x 10/sup -3/ to 10/sup -1/M), and eight-day seedling growth was then measured. The results showed that t-butanol afforded partial radio-protection against oxic damage and potentiated the anoxic damage in both dry and metabolizing barley seeds. Attention is given to the possible basic differences in the oxygen effect(s) in prokaryotes and eukaryotes, and to the involvement of .OH radicals under these conditions.

  5. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation.

    Science.gov (United States)

    Xu, Guo-Chao; Ding, Ji-Cai; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-03-01

    In this study, an effective corn stover (CS) pretreatment method was developed for biobutanol fermentation. Deep eutectic solvents (DESs), consisted of quaternary ammonium salts and hydrogen donors, display similar properties to room temperature ionic liquid. Seven DESs with different hydrogen donors were facilely synthesized. Choline chloride:formic acid (ChCl:formic acid), an acidic DES, displayed excellent performance in the pretreatment of corn stover by removal of hemicellulose and lignin as confirmed by SEM, FTIR and XRD analysis. After optimization, glucose released from pretreated CS reached 17.0 g L(-1) and yield of 99%. The CS hydrolysate was successfully utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864, achieving butanol titer of 5.63 g L(-1) with a yield of 0.17 g g(-1) total sugar and productivity of 0.12 g L(-1)h(-1). This study demonstrates DES could be used as a promising and biocompatible pretreatment method for the conversion of lignocellulosic biomass into biofuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.

    Science.gov (United States)

    Zhang, Yan; Han, Bei; Ezeji, Thaddeus Chukwuemeka

    2012-02-15

    The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Badr, H.R.; Toledo, R.; Hamdy, M.K. [University of Georgia, Athens (Greece). Food Science and Technology Dept.

    2001-07-01

    Eight Clostridium acetobutylicum strains were examined for {alpha}-amylase and strains B-591, B-594 and P-262 had the highest activities. Defibered-sweet-potato-slurry (DSPS), containing 39.7 g starch l{sup -1}, supplemented with potassium phosphate (1.0 g l{sup -1}), cysteine-HCl (5.0 g l{sup -1}), the antifoam (polypropylene glycol, 0.1 mg ml{sup -1}), was used a continuous feedstock (FS) to a multistage bioreactor system for acetone-ethanol-butanol (AEB) fermentation. The system consisted on four columns (three vertical and one near horizontal) packed with beads containing immobilized cells of C. acetobutylicum P-262. When DSPS was pumped into the bioreactor system, at a flow rate of 2.36 ml min{sup -1}, the effluent has 7.73 g solvents l{sup -1} (1.56, acetone; 0.65, ethanol; 5.52 g, butanol) and no starch. Productivity of total solvents synthesized during continuous operation were 1.0 g 1{sup -1}h{sup -1} and 19.5 % yield compared to 0.12 g l{sup -1}h{sup -1} with 29% yield using the batch system. We proposed using DSPS for AEB fermentation in a continuous mode with immobilized P-262 cells that are active amylase producers which will lead to cost reduction compared to the batch system. (Author)

  8. Cardiovascular activity of the n-butanol fraction of the methanol extract of Loranthus ferrugineus Roxb.

    Directory of Open Access Journals (Sweden)

    O.Z. Ameer

    2010-02-01

    Full Text Available We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae. By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks. The n-butanol fraction of LFME (NBF-LFME produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.

  9. Combustion and emissions characteristics of a compression ignition engine fueled with n-butanol blends

    Science.gov (United States)

    Yusri, I. M.; Mamat, R.; Ali, O. M.; Aziz, A.; Akasyah, M. K.; Kamarulzaman, M. K.; Ihsan, C. K.; Mahmadul, H. M.; Rosdi, S. M.

    2015-12-01

    The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using 4-cylinder, 4-stroke common rail direct injection CI engine to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.

  10. Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production.

    Science.gov (United States)

    Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens

    2009-11-01

    In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.

  11. Macroalgae Butanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-02-01

    Broad Funding Opportunity Announcement Project: E. I. du Pont de Nemours & Company (DuPont) and Bio Architecture Lab, Inc. (BAL) are exploring the commercial viability of producing fuel-grade isobutanol from macroalgae (seaweed). Making macroalgae an attractive substrate for biofuel applications however, will require continued technology development. Assuming these developments are successful, initial assessments suggest macroalgae aquafarming in our oceans has the potential to produce a feedstock with cost in the same range as terrestrial-based substrates (crop residuals, energy crops) and may be the feedstock of choice in some locations. The use of macroalgae also diversifies the sources of U.S. biomass in order to provide more options in meeting demand for biofuels. The process being developed will use a robust industrial biocatalyst (microorganism) capable of converting macroalgal-derived sugars directly into isobutanol. Biobutanol is an advanced biofuel with significant advantages over ethanol, including higher energy content, lower greenhouse gas emissions, and the ability to be blended in gasoline at higher levels than ethanol without changes to existing automobiles or the fuel industry infrastructure. Butamax™ is currently commercializing DuPont’s biobutanol fermentation technology that uses sugar and starch feedstocks.

  12. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Science.gov (United States)

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  13. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production

    DEFF Research Database (Denmark)

    Anfelt, Josefine; Kaczmarzyk, Danuta; Shabestary, Kiyan

    2015-01-01

    There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. An n-butanol pathway was inserted into a ...

  14. Process economics of renewable biorefineries: butanol and ethanol production in integrated bioprocesses from lignocellulosics and other industrial by-products

    Science.gov (United States)

    This chapter provides process economic details on production of butanol from lignocellulosic biomass and glycerol in integrated bioreactors where numerous unit operations are combined. In order to compare various processes, economic evaluations were performed using SuperPro Designer Software (versio...

  15. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were

  16. Prospects and challenges for the recovery of 2-butanol produced by vacuum fermentation - a techno-economic analysis.

    Science.gov (United States)

    Pereira, Joana P C; Lopez-Gomez, Gustavo; Reyes, Noelia G; van der Wielen, Luuk A M; Straathof, Adrie J J

    2017-07-01

    The conceptual design of a bio-based process for 2-butanol production is presented for the first time. Considering a hypothetical efficient producing strain, a vacuum fermentation is proposed to alleviate product toxicity, but the main challenge is the energy-efficient product recovery from the vapor. Three downstream scenarios were examined for this purpose: 1) multi-stage vapor recompression; 2) temperature swing adsorption; and 3) vapor absorption. The processes were simulated using Aspen Plus, considering a production capacity of 101 kton/yr. Process optimization was performed targeting the minimum selling price of 2-butanol. The feasibility of the different configurations was analyzed based on the global energy requirements and capital expenditure. The use of integrated adsorption and absorption minimized the energy duty required for azeotrope purification, which represents 11% of the total operational expenditure in Scenario 1. The minimum selling price of 2-butanol as commodity chemical was estimated as 1.05 $/kg, 1.21 $/kg, and 1.03 $/kg regarding the fermentation integrated with downstream scenarios 1), 2), and 3), respectively. Significant savings in 2-butanol production could be achieved in the suggested integrated configurations if more efficient microbial strains were engineered, and more selective adsorption and absorption materials were found for product recovery. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    Science.gov (United States)

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Efficient Catalytic Conversion of Ethanol to 1-Butanol via the Guerbet Reaction over Copper- and Nickel-Doped Porous

    NARCIS (Netherlands)

    Sun, Zhuohua; Vasconcelos, Anais Couto; Bottari, Giovanni; Stuart, Marc C. A.; Bonura, Giuseppe; Cannilla, Catia; Frusteri, Francesco; Barta, Katalin

    The direct conversion of ethanol to higher value 1-butanol is a catalytic transformation of great interest in light of the expected wide availability of bioethanol originating from the fermentation of renewable resources. In this contribution we describe several novel compositions of porous metal

  19. Acetone enhances the direct analysis of total condensed tannins in plant tissues by the butanol-HCl-iron assay

    Science.gov (United States)

    The butanol-HCl spectrophotometric assay is widely used to quantify extractable and insoluble forms of condensed tannin (CT, syn. proanthocyanidin) in foods, feeds, and foliage of herbaceous and woody plants. However, this method underestimates total CT content when applied directly to plant materia...

  20. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal

    Science.gov (United States)

    Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...

  1. Comparison of combustion characteristics of n-butanol/ethanol–gasoline blends in a HCCI engine

    International Nuclear Information System (INIS)

    He, Bang-Quan; Liu, Mao-Bin; Zhao, Hua

    2015-01-01

    Highlights: • The blends with alcohol autoignite early in the conditions highly diluted by exhaust. • n-Butanol is more reactive than ethanol in the blend with the same alcohol content. • Autoignition timing delays with retarding IVO timing for all alcohol–gasoline blends. • Advanced autoignition for the blends with alcohol leads to lower thermal efficiency. - Abstract: As a sustainable biofuel, n-butanol can be used in conventional spark ignition (SI) and compression ignition (CI) engines in order to reduce the dependence on fossil fuel. Homogeneous charge compression ignition (HCCI) is a novel combustion to improve the thermal efficiency of conventional SI engines at part loads. To understand the effect of alcohol structure on HCCI combustion under stoichiometric conditions highly diluted by exhaust gases, the combustion characteristics of n-butanol, ethanol and their blends with gasoline were investigated on a single cylinder port fuel injection gasoline engine with fixed intake/exhaust valve lifts at the same operating conditions in this study. The results show that autoignition timing for alcohol–gasoline blends is dependent on alcohol types and its concentration in the blend, engine speed and intake valve opening (IVO)/exhaust valve closing (EVC) timing. In the operating conditions with the residual gases more than 38% by mass in the mixture, alcohol–gasoline blends autoignite more easily than gasoline. Autoignition timing for n-butanol–gasoline blend is earlier than that for ethanol–gasoline blend with the same alcohol volume fraction at 1500 rpm in most cases while the autoignition timings for the blends with alcohol are relatively close at 2000 rpm at the same IVO/EVC timing. Combustion stability is improved with advanced EVC timing at a fixed IVO timing, which is benefit for the improvement in the thermal efficiency in the case of alcohol–gasoline blends. In addition, n-butanol–gasoline blends autoignite earlier than their ethanol

  2. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052

    Directory of Open Access Journals (Sweden)

    Kim Pan-Jun

    2011-08-01

    Full Text Available Abstract Background Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis. Interrogating C. beijerinckii metabolism from a systems viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications. Results We present the first genome-scale metabolic model (iCM925 for C. beijerinckii, containing 925 genes, 938 reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected from the three databases--highlighting the importance of evaluating the predictive accuracy of the resulting genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain, and evaluated the ability of the model to simulate measured substrate uptake and product production rates. Experimentally observed fermentation profiles were found to lie within the solution space of the model; however, under an optimal growth objective, additional constraints were needed to reproduce the observed profiles--suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction of actively utilized reactions in simulations--constrained to reflect experimental rates--originated from the set of reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher's exact test

  3. Combustion performance and pollutant emissions analysis using diesel/gasoline/iso-butanol blends in a diesel engine

    International Nuclear Information System (INIS)

    Wei, Mingrui; Li, Song; Xiao, Helin; Guo, Guanlun

    2017-01-01

    Highlights: • The diesel/gasoline/iso-butanol blends were investigated in a CI engine. • Blend with gasoline or iso-butanol produce higher HC emission. • CO increase at low loads and decrease at medium and high loads with blend fuels. • Gasoline or iso-butanol decrease large particles but increase small particles. • Blend fuels reduce total PM number and mass concentrations. - Abstract: In this study, the effects of diesel/gasoline/iso-butanol blends, including pure diesel (D100), diesel (70%)/gasoline (30%) (D70G30, by mass), diesel (70%)/iso-butanol (30%) (D70B30) and diesel (70%)/gasoline (15%)/iso-butanol (15%) (D70G15B15), on combustion and exhaust pollutant emissions characteristics in a four-cylinder diesel engine were experimentally investigated under various engine load conditions with a constant speed of 1800 rpm. The results indicated that D70G30, D70G15B15 and D70B30 delayed the ignition timing and shortened the combustion duration compared to D100. Additionally, CA50 was retarded when engine fuelled with D70G30, D70G15B15 and D70B30 at low engine load conditions, but it was advanced at medium and high engine loads. The maximum pressure rise rates (MPRRs) of D70G30, D70G15B15 and D70B30 were increased compared with D100 except for at engine load of 0.13 MPa BMEP (brake mean effective pressure). Meanwhile, D70G15B15 and D70B30 produced higher brake specific fuel consumption (BSFC) than that of D100. The effects of diesel blend with gasoline or iso-butanol on exhaust pollutant emissions were varied with loads. CO emissions were increased obviously and NOx emissions were decreased under low engine loads. However, CO emissions were decreased and NOx emissions were slightly increased under the medium and high engine load conditions. However, D70G30, D70G15B15 and D70B30 leaded to higher HC emissions than D100 regardless the variation of engine load. Moreover, the particulate matter (PM) (diameter, number and mass concentrations) emissions by using

  4. Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine

    International Nuclear Information System (INIS)

    Wei, Haiqiao; Feng, Dengquan; Pan, Mingzhang; Pan, JiaYing; Rao, XiaoKang; Gao, Dongzhi

    2016-01-01

    Highlights: • N-butanol shows better knock resistance characterized by improved KLST. • Bu20 blend fuel slightly degrades the knock resistance compared with gasoline. • Knock oscillation frequency depends on combustion chamber resonance modes. • Probability distribution is applied to evaluate variation of knock intensity. - Abstract: n-Butanol is a very competitive alternative biofuel for spark ignition (SI) engines given its many advantages. Current researches are mainly concentrated on the overall combustion and emissions performance concerning the feasibility of n-butanol gasoline blends in SI engines. In this work, focus was given on the knocking combustion characteristics of operation with pure n-butanol as well as a blend fuel with 20% volume content of n-butanol (Bu20), which was investigated experimentally in a direct-injection spark ignition (DISI) single cylinder engine. Operation condition is fixed at a constant engine speed of 1500 r/min, using three throttle openings with stoichiometric air–fuel ratio. Spark timing was swept to achieve different knocking levels. The results of n-butanol and Bu20 were benchmarked against those obtained by the research octane number (RON) 92 commercial gasoline. Compared with the baseline fuel gasoline, neat n-butanol shows better anti-knock ability with more advanced knock limited spark timing, whereas slightly deteriorative knock resistance can be found for Bu20. It is hypothesized Bu20 has higher end gas temperature due to its higher brake mean effective pressure (BMEP) and faster burning rate compared with gasoline, which indicates the knock tendency depends not only on the fuel octane number, but also on the factors that affect the end gas thermodynamic state. The heavier knock propensity of Bu20 is furthermore confirmed by its more advanced knock onset and higher peak oscillation pressure. Results of fast fourier transform (FFT) indicate the knocking oscillation frequencies are mainly determined by the

  5. Study of performance and emission characteristics of a partially coated LHR SI engine blended with n-butanol and gasoline

    Directory of Open Access Journals (Sweden)

    Nitesh Mittal

    2013-09-01

    Full Text Available To meet the present requirements of the automotive industry, there is continuous search to improve the performance, exhaust emission, and life of the IC engines. The meet the first two challenges, researchers are working both on newer engine technologies and fuels. Some of the published work indicates that coating on the combustion surface of the engine with ceramic material results in improved performance and reduced emission levels when fueled with alternate fuel blended fuels, and this serves as a base for this work. Normal-Butanol has molecular structure that is adaptable to gasoline, and it is considered as one of the alternative fuels for SI engines. Blending butanol with gasoline changes the properties of the fuel and alters the engine performance and emission characteristics. This is because heat which is released at a rate as a result of combustion of the compressed air–fuel mixture in the combustion chamber gets changed with respect to change fuel properties, air fuel ratio, and engine speed. An experimental investigation is carried out on a partially insulated single cylinder SI engine to study the performance and emission characteristics when fueled with two different blends of butanol and gasoline. The cylinder head surface and valves are coated with a ceramic material consisting of Zirconium dioxide (ZrO2 with 8% by weight of Yttrium Oxide (Y2O3 to a thickness of 0.3 mm by plasma spray method. Two different fuel blends containing 10% and 15% by volume of butanol in Gasoline are tested on an engine dynamometer using the uncoated and ceramic coated engines. The results strongly indicate that combination of ceramic coated engine and butanol gasoline blended fuel has potential to improve the engine performance.

  6. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-10-04

    The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

  7. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Gottekere, Kumar Narayanappa

    2017-10-01

    Nitrogen oxides and smoke are the substantial emissions for the diesel engines. Fuels comprising high-level oxygen content can have low smoke emission due to better oxidation of soot. The objective of the paper is to assess the potential to employ oxygenated fuel, i.e., n-butanol and its blends with the neat diesel from 0 to 30% by volume. The experimental and computational fluid dynamic (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol-diesel blends for various injection timings (9°, 12°, 15°, and 18°) using modern twin-cylinder, four-stroke, common rail direct injection (CRDI) engine. Experimental results reveal the increase in brake thermal efficiency (BTE) by ~ 4.5, 6, and 8% for butanol-diesel blends of 10% (Bu10), 20% (Bu20), and 30% (Bu30), respectively, compared to neat diesel (Bu0). Maximum BTE for Bu0 is 38.4%, which is obtained at 12° BTDC; however, for Bu10, Bu20 and Bu30 are 40.19, 40.9, and 41.7%, which are obtained at 15° BTDC, respectively. Higher flame speed of n-butanol-diesel blends burn a large amount of fuel in the premixed phase, which improves the combustion as well as emission characteristics. CFD and experimental results are compared and validated for all fuel blends for in-cylinder pressure and nitrogen oxides (NO x ), and found to be in good agreement. Both experimental and simulation results witnessed in reduction of smoke opacity, NO x , and carbon monoxide emissions with the increasing n-butanol percentage in diesel fuel.

  8. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  9. Studies on physical properties of cadmium soaps. Part 2. Conductance behavior in 1-butanol

    International Nuclear Information System (INIS)

    Varma, R.P.; Virmani, A.K.

    1981-01-01

    Specific conductance of cadmium soap solutions in 1-butanol has been measured at temperatures 308-323 K. These soaps form micellar aggregates and the c.m.c. which increases with decreasing chain length of the soaps (C 18 -C 5 ) has been found to be independent of temperature. Conductance behavior of soaps is given by the equation: log lambda = A+B log C. log lambda = A+B log C. Constant A decreases with increasing temperature, whereas B is found independent. These constants, however, increase with an increase in the chain length of the soaps. Dissociation constant K, molecular conductance at infinite dilution lamda infinity, activation energy of conductance ΔE lamda, and activation parameters of dissociation ΔH 0 , ΔG 0 and ΔS 0 have been evaluated. (author)

  10. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    Science.gov (United States)

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  11. Industrial optimization of acetone-butanol fermentation: A study of the utilization of Jerusalem artichokes

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, R.; Blanchet, D.; Vandecasteele, J.P.

    1985-12-01

    Acetone-butanol fermentation of the Jerusalem artichoke has been studied as a case for systematic investigation of the industrial optimization of both strain selection and fermentation operation. Hydrolysis of the inulinic oligofructans of the substrate was found necessary for optimal performance but could be achieved with a selected strain using a moderate amount of inulinase added at the beginning of the fermentation. Apart from ammonia, no nutritrional supplementation of the medium was found necessary. The marked influence of pH in the fermentation performance prompted a detailed search for a method of controlling pH during fermentation. With an optimized procedure, solvent production of 23-24 g/l were obtained in 36 h. Detailed fermentation balances are presented. An industrial process for ABE production from Jerusalem artichoke or sugar beet has been defined and tested in the pilot plant. (orig.).

  12. Technical and economic assessment of processes for the production of butanol and acetone

    Science.gov (United States)

    1982-01-01

    This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.

  13. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    Science.gov (United States)

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

    Directory of Open Access Journals (Sweden)

    Kubiczek Artur

    2017-03-01

    Full Text Available Room-temperature ionic liquids (RTILs are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liquids, yet focusing strictly on the separation of n-butanol from model aqueous solutions. Such research is undertaken mainly with the intention of facilitating biological butanol production, which is usually carried out through the ABE fermentation process. So far, various sorts of RTILs have been tested for this purpose while mostly ternary liquid-liquid systems have been investigated. The industrial design of liquid-liquid extraction requires prior knowledge of the state of thermodynamic equilibrium and its relation to the process parameters. Such knowledge can be obtained by performing a series of extraction experiments and employing a certain mathematical model to approximate the equilibrium. There are at least a few models available but this paper concentrates primarily on the NRTL equation, which has proven to be one of the most accurate tools for correlating experimental equilibrium data. Thus, all the presented studies have been selected based on the accepted modeling method. The reader is also shown how the NRTL equation can be used to model liquid-liquid systems containing more than three components as it has been the authors’ recent area of expertise.

  15. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.

    Science.gov (United States)

    Abd-Alla, Mohamed Hemida; Zohri, Abdel-Naser Ahmed; El-Enany, Abdel-Wahab Elsadek; Ali, Shimaa Mohamed

    2015-04-01

    One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Combustion characteristics of a gasoline engine with independent intake port injection and direct injection systems for n-butanol and gasoline

    International Nuclear Information System (INIS)

    He, Bang-Quan; Chen, Xu; Lin, Chang-Lin; Zhao, Hua

    2016-01-01

    Highlights: • Different injection approaches for n-butanol and gasoline affect combustion events. • High n-butanol percentage in the total energy of fuels improves combustion stability. • N-butanol promotes ignition and shortens combustion duration. • Lean burn increases indicated mean effective pressure at fixed total energy of fuels. • Different fuel injection methods slightly affect indicated mean effective pressure. - Abstract: N-butanol, as a sustainable biofuel, is usually used as a blend with gasoline in spark ignition engines. In this study, the combustion characteristics were investigated on a four-cylinder spark ignition gasoline engine with independent port fuel injection and direct injection systems for n-butanol and gasoline in different operating conditions. The results show that in the case of port fuel injection of n-butanol with direct injection gasoline at a given total energy released in a cycle, indicated mean effective pressure is slightly affected by spark timing at stoichiometry while it changes much more with delayed spark timing in lean burn conditions and is much higher in lean burn conditions compared to stoichiometry at given spark timings. With the increase of n-butanol percentage in a fixed total energy released in a cycle at given spark timings, ignition timing advances, combustion duration shortens, indicated mean effective pressure and indicated thermal efficiency increase. For the cases of port fuel injection of n-butanol with direction injection gasoline and port fuel injection of gasoline with direction injection n-butanol at a fixed total energy released in a cycle, their indicated mean effective pressures are close. But their combustion processes are dependent on fuel injection approaches.

  17. Phase equilibrium properties of binary and ternary systems containing di-isopropyl ether + 1-butanol + benzene at 313.15 K

    International Nuclear Information System (INIS)

    Villamanan, Rosa M.; Martin, M. Carmen; Chamorro, Cesar R.; Villamanan, Miguel A.; Segovia, Jose J.

    2006-01-01

    (Vapour + liquid) equilibria data of (di-isopropyl ether + 1-butanol + benzene) (di-isopropyl ether + 1-butanol) and (1-butanol + benzene) have been measured at T = 313.15 K using an isothermal total pressure cell. Data reduction by Barker's method provides correlations for the excess molar Gibbs energy using the Margules equation for the binary systems and the Wohl expansion for the ternary. The Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems reported here

  18. Performance analyses of a spark-ignition engine firing with gasoline–butanol blends at partial load operation

    International Nuclear Information System (INIS)

    Galloni, E.; Fontana, G.; Staccone, S.; Scala, F.

    2016-01-01

    Highlights: • The potential of butanol has been investigated at partial load operation. • Torque and thermal efficiency slightly decrease when the alcohol content increases. • At part load, spark advance does not require changes when alcohol content increases. - Abstract: Biofuels seem to represent one of the most promising means for the limitation of the greenhouse gas emissions coming from traditional energy systems. In this paper, the performance of a “downsized” spark-ignition engine, fueled by gasoline and bio-butanol blends (20% and 40% butanol mass percentage), has been analyzed. In the first phase of this activity, the experimental tests have been carried out at operating points ranging from low to medium engine speed and load. The first investigations were aimed to assess the main differences among the different fuels in terms of output torque, thermal efficiency, combustion duration and optimal spark timing. In order to study the engine behavior in a wide range of fuel mixtures, these parameters have been evaluated for equivalence ratio values ranging from 1.25 to 0.83. The results obtained in this step show that both the engine torque and thermal efficiency slightly decrease (meanly about 4%) when the blend alcohol content increases. However, butanol increases the burning rate of lean mixtures and an interesting result is that the spark advance does not require adjustments when fueling changes from neat gasoline to bio-butanol/gasoline blends. Later, the pollutant emissions and the CO_2 emissions, for both rich and lean mixtures of pure gasoline and gasoline bio-butanol blends, have been measured. In general, firing with alcohol blends, NO_x and CO emissions remain quite the same, HC emissions slightly decrease while the CO_2 emissions slightly increase. At the end, in order to reproduce the real world urban driving cycle, stoichiometric mixtures have been analyzed. In these conditions, the engine thermal efficiency, at given speed and torque

  19. Study on the knock tendency and cyclical variations of a HCCI engine fueled with n-butanol/n-heptane blends

    International Nuclear Information System (INIS)

    Li, Gang; Zhang, Chunhua; Zhou, Jiawang

    2017-01-01

    Highlights: • The HCCI combustion was achieved on an engine fueled by n-butanol/n-heptane blends. • The knock tendency and cyclical variation of the HCCI combustion were studied. • The knock tendency can be weakened by increasing the blending ratio of n-butanol. • The knock tendency and cyclical variation are sensitive to the combustion phasing. • Cyclical variation always shows an opposite trend with the knock tendency. - Abstract: The homogeneous charge compression ignition (HCCI) combustion operation is conducted in the 2nd cylinder of a natural-aspirated four-stroke diesel engine. In the HCCI combustion mode, the n-butanol, n-heptane and their blends are injected into the intake port to form a lean homogeneous air-fuel mixture, which is consumed by the autoignition after compression. The objective of this study is to investigate the knock tendency and the cyclical variations of the HCCI engine. Experimental results show that the volume fraction of n-butanol affects the knock tendency greatly, which obviously decreases as the n-butanol volume fraction increases. The knocking combustion in the HCCI combustion is characterized by the high heat release rate (HRR). Both elevating the engine speed and raising the intake temperature contributes to an obvious increase in HRR and the knock tendency. But the HRR and knock tendency may slightly decrease when the engine speed reaches to 1400 rev/min and intake temperature reaches to 160 °C. Furthermore, the knock tendency can be weakened by increasing the excess air-fuel ratio. Cyclical variations of the HCCI engine are quantified by the coefficient of variation for the peak pressure (COV_P_m_a_x) and it exhibits an almost opposite trend to the knock tendency. The COV_P_m_a_x may considerably increase along with either increasing the blending ratio of n-butanol or increasing the excess air-fuel ratio. Moreover, it is reveled that the COV_P_m_a_x is sensitive to the relative position of peak HRR. The cyclical

  20. One-Step Nonaqueous Synthesis of Pure Phase TiO2 Nanocrystals from TiCl4 in Butanol and Their Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Tieping Cao

    2011-01-01

    Full Text Available Pure phase TiO2 nanomaterials were synthesized by an autoclaving treatment of TiCl4 with butanol as a single alcohol source. It was found that the control of molar ratio of TiCl4 to butanol played an important role in determining the TiO2 crystal phase and morphology. A high molar ratio of TiCl4 to butanol favored the formation of anatase nanoparticles, whereas rutile nanorods were selectively obtained at a low molar ratio of TiCl4 to butanol. Evaluation of the photocatalytic activity of the synthesized TiO2 was performed in terms of decomposition of organic dye rhodamine B under ultraviolet irradiation. It turned out that the as-synthesized TiO2 crystallites possessed higher photocatalytic activities toward bleaching rhodamine B than Degussa P25, benefiting from theirhigh surface area, small crystal size as well as high crystallinity.

  1. The n-Butanol Fraction and Rutin from Tartary Buckwheat Improve Cognition and Memory in an In Vivo Model of Amyloid-β-Induced Alzheimer's Disease.

    Science.gov (United States)

    Choi, Ji Yeon; Lee, Jeong Min; Lee, Dong Gu; Cho, Sunghun; Yoon, Young-Ho; Cho, Eun Ju; Lee, Sanghyun

    2015-06-01

    This study examined the beneficial effects of the n-butanol fraction and rutin extracted from tartary buckwheat (TB) on learning and memory deficits in a mouse model of amyloid β (Aβ)-induced Alzheimer's disease (AD). Learning and memory were assessed using the T-maze, object recognition, and Morris water maze tests. Animals administered Aβ showed impaired cognition and memory, which were alleviated by oral administration of an n-butanol fraction and rutin extracted from TB. Similarly, Aβ-induced increases in nitric oxide formation and lipid peroxidation in the brain, liver, and kidneys were attenuated by treatment with n-butanol fraction and rutin from TB in addition to antioxidant effects observed in control (nonAβ-treated) animals. The results of the present study suggest that the n-butanol fraction and rutin extracted from TB are protective against and have possible therapeutic applications for the treatment of AD.

  2. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel

    International Nuclear Information System (INIS)

    Zheng, Zunqing; Yue, Lang; Liu, Haifeng; Zhu, Yuxuan; Zhong, Xiaofan; Yao, Mingfa

    2015-01-01

    Highlights: • Two-stage injection using diesel blended fuel at high EGR (46%) was studied. • Blending fuels induce retarded pilot heat release and have less effect on MPRR. • Effects of injection parameters of blended fuels on emissions are similar to diesel. • Different fuels have little influence on post combustion heat release. • Small quantity post injection close to main results in better efficiency and emissions. - Abstract: The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy

  3. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli.

    Science.gov (United States)

    Chin, Wei-Chih; Lin, Kuo-Hsing; Liu, Chun-Chi; Tsuge, Kenji; Huang, Chieh-Chen

    2017-04-11

    N-Butanol has favorable characteristics for use as either an alternative fuel or platform chemical. Bio-based n-butanol production using microbes is an emerging technology that requires further development. Although bio-industrial microbes such as Escherichia coli have been engineered to produce n-butanol, reactive oxygen species (ROS)-mediated toxicity may limit productivity. Previously, we show that outer-membrane-targeted tilapia metallothionein (OmpC-TMT) is more effective as an ROS scavenger than human and mouse metallothioneins to reduce oxidative stress in the host cell. The host strain (BUT1-DE) containing the clostridial n-butanol pathway displayed a decreased growth rate and limited n-butanol productivity, likely due to ROS accumulation. The clostridial n-butanol pathway was co-engineered with inducible OmpC-TMT in E. coli (BUT3-DE) for simultaneous ROS removal, and its effect on n-butanol productivity was examined. The ROS scavenging ability of cells overexpressing OmpC-TMT was examined and showed an approximately twofold increase in capacity. The modified strain improved n-butanol productivity to 320 mg/L, whereas the control strain produced only 95.1 mg/L. Transcriptomic analysis revealed three major KEGG pathways that were significantly differentially expressed in the BUT3-DE strain compared with their expression in the BUT1-DE strain, including genes involved in oxidative phosphorylation, fructose and mannose metabolism and glycolysis/gluconeogenesis. These results indicate that OmpC-TMT can increase n-butanol production by scavenging ROS. The transcriptomic analysis suggested that n-butanol causes quinone malfunction, resulting in oxidative-phosphorylation-related nuo operon downregulation, which would diminish the ability to convert NADH to NAD + and generate proton motive force. However, fructose and mannose metabolism-related genes (fucA, srlE and srlA) were upregulated, and glycolysis/gluconeogenesis-related genes (pfkB, pgm) were

  4. The addition of bio-butanol to GHGenius and a review of the GHG emissions from diesel engines with urea SCR

    International Nuclear Information System (INIS)

    2007-01-01

    The GHGenius model was developed to analyze the emissions of contaminants associated with the use and production of traditional and alternative transportation fuels. Over 140 vehicle and fuel combinations can be used with the model, which is continuously updated with new information on existing processes, new pathways, and new features. This paper provided details of the addition of a butanol production pathway and a urea system for heavy duty diesel engines. Butanol has recently been proposed as a gasoline additive for use with ethanol or as an alternative to ethanol in low-level gasoline blends. A corn to butanol pathway for low level blends was considered as the most appropriate pathway for North American applications. Estimates of energy required were made based on economic assessments and the estimated cost of energy at the time the estimates were made. In the second approach, an ethanol process model was modified to have the same water and feedstock ratios as a butanol feedstock. Total energy balances for the traditional butanol production system were poor due to the large energy requirement in the butanol production process. Low butanol concentrations were attributed to butanol toxicity to fermentation organisms. However, energy credits from co-products were large compared to many other pathways, and were attributed to the energy intensity of hydrogen and acetone. This report also provided details of selective catalytic reduction (SCR) processes that used ammonia or urea with a catalyst to produce water and gaseous nitrogen. Total energy balances and emissions impacts on the full lifecycle of SCR systems for diesel engines were provided. 13 refs., 17 tabs., 8 figs

  5. Gene expression profiling in persons with multiple chemical sensitivity before and after a controlled n-butanol exposure session

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Skovbjerg, Sine; Andersson, Linus

    2017-01-01

    was that unexposed and symptom-free MCS participants have similar gene expression patterns to controls and a second hypothesis that MCS participants can be separated from controls based on differential gene expression upon a controlled n-butanol exposure. Participants were exposed to 3.7 ppm n-butanol while seated...... min after being exposed to and 4 hours after the exposure. Participants suffering from MCS and healthy controls were recruited through advertisement at public places and in a local newspaper. 36 participants who considered themselves sensitive were prescreened for eligibility. 18 sensitive persons...... displayed similar gene expression levels both at baseline and after the exposure and the computed AUC values were likewise comparable between the 2 groups. The intragroup variation in expression levels among MCS participants was noticeably greater than the controls. MCS participants and controls have...

  6. Experimental study on the performance and emissions of a compression ignition engine fuelled with butanol diesel blends

    International Nuclear Information System (INIS)

    Maki, Duraid F.; Prabhakaran, P.

    2010-01-01

    An experimental investigation on the application of the blends of butanol with diesel to a direct injection diesel engine was carried out. Experimental tests were carried out to study the performance and emissions of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with butanol to replace conventional diesel as the fuel for diesel engine; the fuel consumption, brake efficiency, exhaust temperature, and volumetric efficiency of the engine fuelled by the blends were comparable with that fuelled by diesel. The characteristics of the emissions were also studied. CO, CO 2 , HC and NO X are measured and compared with the base fuel case when the conventional diesel is used alone. The results were different for different speeds, loads and blends. (author)

  7. Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: Fermentative versus catalytic routes

    International Nuclear Information System (INIS)

    Pereira, L.G.; Dias, M.O.S.; Mariano, A.P.; Maciel Filho, R.; Bonomi, A.

    2015-01-01

    Highlights: • Financial and environmental impacts of n-butanol production were investigated. • Analysis showed promising economic results for ABE fermentation scenarios. • Ethanol catalysis to butanol presented discouraging figures. • n-Butanol use as fuel demonstrated favorable GHG emissions results. - Abstract: n-Butanol produced from renewable resources has attracted increasing interest, mostly for its potential use as liquid biofuel for transportation. Process currently used in the industry (Acetone–Butanol–Ethanol fermentation – ABE) faces major technical challenges, which could be overcome by an alternative production through ethanol catalysis. In this study, both routes are evaluated by means of their financial viabilities and environmental performance assessed through the Virtual Sugarcane Biorefinery methodological framework. Comparative financial analysis of the routes integrated to a first and second generation sugarcane biorefinery shows that, despite the drawbacks, ABE process for fermentation of the pentoses liquor is more attractive than the catalysis of ethanol to n-butanol and co-products. n-Butanol use as fuel demonstrated favorable environmental results for climate change as figures showed over 50% reduction in greenhouse gas emission compared with gasoline.

  8. Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8.

    Science.gov (United States)

    Martin-Calvo, Ana; Van der Perre, Stijn; Claessens, Benjamin; Calero, Sofia; Denayer, Joeri F M

    2018-04-18

    The vapor phase adsorption of butanol from ABE fermentation at the head space of the fermenter is an interesting route for the efficient recovery of biobutanol. The presence of gases such as carbon dioxide that are produced during the fermentation process causes a stripping of valuable compounds from the aqueous into the vapor phase. This work studies the effect of the presence of carbon dioxide on the adsorption of butanol at a molecular level. With this aim in mind Monte Carlo simulations were employed to study the adsorption of mixtures containing carbon dioxide, butanol and ethanol. Molecular models for butanol and ethanol that reproduce experimental properties of the molecules such as polarity, vapor-liquid coexistence or liquid density have been developed. Pure component isotherms and heats of adsorption have been computed and compared to experimental data to check the accuracy of the interacting parameters. Adsorption of butanol/ethanol mixtures has been studied in absence and presence of CO2 on two representative materials, a pure silica LTA zeolite and a hydrophobic metal-organic framework ZIF-8. To get a better understanding of the molecular mechanism that governs the adsorption of the targeted mixture in the selected materials, the distribution of the molecules inside the structures was analyzed. The combination of these features allows obtaining a deeper understanding of the process and to identify the role of carbon dioxide in the butanol purification process.

  9. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB.

    Science.gov (United States)

    Lu, Congcong; Yu, Le; Varghese, Saju; Yu, Mingrui; Yang, Shang-Tian

    2017-11-01

    Clostridium beijerinckii CC101 was engineered to overexpress aldehyde/alcohol dehydrogenase (adhE2) and CoA-transferase (ctfAB). Solvent production and acid assimilation were compared between the parental and engineered strains expressing only adhE2 (CC101-SV4) and expressing adhE2, ald and ctfAB (CC101-SV6). CC101-SV4 showed an early butanol production from glucose but stopped pre-maturely at a low butanol concentration of ∼6g/L. Compared to CC101, CC101-SV6 produced more butanol (∼12g/L) from glucose and was able to re-assimilate more acids, which prevented "acid crash" and increased butanol production, under all conditions studied. CC101-SV6 also showed better ability in using glucose and xylose present in sugarcane bagasse hydrolysate, and produced 9.4g/L solvents (acetone, butanol and ethanol) compared to only 2.6g/L by CC101, confirming its robustness and better tolerance to hydrolysate inhibitors. The engineered strain of C. beijerinckii overexpressing adhE2 and ctfAB should have good potential for producing butanol from lignocellulosic biomass hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biobutanol as fuel for direct alcohol fuel cells - Investigation of Sn-modified Pt catalyst for butanol electro-oxidation

    OpenAIRE

    Puthiyapura, Vinod Kumar; Dan J. L. Brett,; Andrea E. Russell,; Wen-Feng Lin,; Hardacre, Chris

    2016-01-01

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies ...

  11. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  12. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Adisakwattana, Sirichai

    2015-07-18

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. The aim of this study was to investigate the antidiabetic activity of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin (STZ) induced diabetic rats. The aqueous ethanol extract and n-butanol fraction of Moringa stenopetala leaves hydroalcoholic (500 mg/kg body weight) and metformin (150 mg/kg body weight) were administered to diabetic rats. Blood glucose, lipid profiles, liver and kidney function were examined after 14 days of experiment. Histopathological profile of the pancreas was also observed in diabetic rats at the end of study. An oral sucrose challenge test was also carried out to assess the post prandial effect of the extract. Oral administration of the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves (500 mg/kg body weight) and metformin (150 mg/kg) significantly reduced blood glucose level (PMoringa stenopetala leaves possess antihyperglycemic and antihyperlipidemic properties, and alleviate STZ-induced pancreatic damage in diabetic rats. The beneficial effects of plant material in inhibition of diabetes-induced complications are being investigated.

  13. Biocatalyzed processes for production of commodity chemicals: Assessment of future research advances for N-butanol production

    Science.gov (United States)

    Ingham, J. D.

    1984-01-01

    This report is a summary of assessments by Chem Systems Inc. and a further evaluation of the impacts of research advances on energy efficiency and the potential for future industrial production of acetone-butanol-ethanol (ABE) solvents and other products by biocatalyzed processes. Brief discussions of each of the assessments made by CSI, followed by estimates of minimum projected energy consumption and costs for production of solvents by ABE biocatalyzed processes are included. These assessments and further advances discussed in this report show that substantial decreases in energy consumption and costs are possible on the basis of specific research advances; therefore, it appears that a biocatalyzed process for ABE can be developed that will be competitive with conventional petrochemical processes for production of n-butanol and acetone. (In this work, the ABE process was selected and utilized only as an example for methodology development; other possible bioprocesses for production of commodity chemicals are not intended to be excluded.) It has been estimated that process energy consumption can be decreased by 50%, with a corresponding cost reduction of 15-30% (in comparison with a conventional petrochemical process) by increasing microorganism tolerance to n-butanol and efficient recovery of product solvents from the vapor phase.

  14. Effect of butanolic fraction of yellow and black maca (Lepidium meyenii) on the sperm count of adult mice.

    Science.gov (United States)

    Inoue, N; Farfan, C; Gonzales, G F

    2016-10-01

    Lepidium meyenii, known as maca, is a popular nutraceutical food which is grown over 4,000 m above sea level in the Peruvian central highlands. Maca contains alkaloids, but there are no studies on their biological effects. The butanol fraction obtained from methanol extract of maca hypocotyls contains alkaloids. The effects of butanol/aqueous fractions partitioned from methanol extract of yellow and black maca were examined. Total phenolic content (TPC) and antioxidant capacity by 2,2'-diphenyl-1-picrylhydrazyl were used to evaluate maca fractions in vitro. Daily sperm production and sperm count in epididymis and vas deferens in mice were determined as biological effect of maca extracts in vivo. Yellow maca (21.7%±0.69) had better antioxidant capacity than black maca (18.2% ± 0.12; p maca. TPC is higher in the aqueous fraction than in the methanolic extract of yellow or black maca. Black maca administration resulted in higher concentration of sperm count in epididymis and vas deferens compared to yellow maca. A higher biological effect was observed in methanolic extract and in aqueous extract than in the butanol fraction of maca. In conclusion, better biological effect was observed in the methanolic extract of maca than in its partitioned fractions. © 2016 Blackwell Verlag GmbH.

  15. Antinociceptive activities of crude methanolic extract and phases, n-butanolic, chloroformic and ethyl acetate from Caulerpa racemosa (Caulerpaceae

    Directory of Open Access Journals (Sweden)

    Everton T. Souza

    Full Text Available In this study, we attempted to identify the possible antinociceptive actions of n-butanolic phase, chloroformic phase, ethyl acetate phase and crude methanolic extract obtained from Caulerpa racemosa. This seaweed is cosmopolitan in world, mainly in tropical regions. The n-butanolic, chloroformic, ethyl acetate phases and crude methanolic extract, all administered orally in the concentration of 100 mg/kg, reduced the nociception produced by acetic acid by 47.39%, 70.51%, 76.11% and 72.24%, respectively. In the hotplate test the chloroformic and ethyl acetate phase were activite in this models. In the neurogenic phase on formalin test, were observed that crude methanolic extract (51.77%, n-butanolic phase (35.12%, chloroformic phase (32.70% and indomethacin (32.06% were effective in inhibit the nociceptive response. In the inflammatory phase, only the ethyl acetate phase (75.43% and indomethacin (47.83% inhibited significantly the nociceptive response. Based on these data, we can infer that the ethyl acetate phase shows a significant anti-inflammatory profile, whose power has not yet been determined. However, pharmacological and chemical studies are continuing in order to characterize the mechanism(s responsible for the antinociceptive action and also to identify other active principles present in Caulerpa racemosa.

  16. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Science.gov (United States)

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    Science.gov (United States)

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Butanol Dehydration over V₂O₅-TiO₂/MCM-41 Catalysts Prepared via Liquid Phase Atomic Layer Deposition.

    Science.gov (United States)

    Choi, Hyeonhee; Bae, Jung-Hyun; Kim, Do Heui; Park, Young-Kwon; Jeon, Jong-Ki

    2013-04-29

    MCM-41 was used as a support and, by using atomic layer deposition (ALD) in the liquid phase, a catalyst was prepared by consecutively loading titanium oxide and vanadium oxide to the support. This research analyzes the effect of the loading amount of vanadium oxide on the acidic characteristics and catalytic performance in the dehydration of butanol. The physical and chemical characteristics of the TiO₂-V₂O₅/MCM-41 catalysts were analyzed using XRF, BET, NH₃-TPD, XRD, Py-IR, and XPS. The dehydration reaction of butanol was performed in a fixed bed reactor. For the samples with vanadium oxide loaded to TiO₂/MCM-41 sample using the liquid phase ALD method, it was possible to increase the loading amount until the amount of vanadium oxide reached 12.1 wt %. It was confirmed that the structural properties of the mesoporous silica were retained well after titanium oxide and vanadium loading. The NH₃-TPD and Py-IR results indicated that weak acid sites were produced over the TiO₂/MCM-41 samples, which is attributed to the generation of Lewis acid sites. The highest activity of the V₂O₅(12.1)-TiO₂/MCM-41 catalyst in 2-butanol dehydration is ascribed to it having the highest number of Lewis acid sites, as well as the highest vanadium dispersion.

  19. Influence of evaporation and solvent mixtures on the absorption of toluene and n-butanol in human skin in vitro.

    Science.gov (United States)

    Boman, A; Maibach, H I

    2000-03-01

    The influence of forced ventilation on the percutaneous absorption of butanol and toluene was studied in vitro. Human skin was exposed to the neat solvents and the solvents in binary mixtures with each other and in ternary mixtures with chloroform:methanol. The exposure was either unventilated or ventilated with various flow rates. At the ventilated exposure the skin absorption of all solvents and solvent mixtures was markedly reduced compared to unventilated exposure. Exposure with solvent mixtures increased the amounts of solvent absorbed as well as absorption rates. The absorption of the butanol component was most influenced. Increase in absorption was 11 to 9 times depending on whether toluene or chloroform/methanol was cosolvent. There was also an interindividual variation of absorption rate, varying with a factor of 3.5 for toluene and 4.3 for n-butanol within the 3 skin donors used. Skin absorption of volatile organic solvents at continuous ventilated conditions is related to their volatility and to the ventilation rate.A sufficient workplace ventilation is an important occupational hygienic measure not only to reduce exposure via respiration but to reduce absorption via the skin of volatile compounds as well.

  20. Enhanced butanol production and reduced autolysin activity after chloramphenicol treatment of Clostridium acetobutylicum ATCC 824

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xiangdong; Traxler, R.W. (Rhode Island Univ., Kingston, RI (United States). Dept. of Food Science and Nutrition)

    1992-06-01

    Release of autolysin during the late exponential growth phase of Clostridium acetobutylicum resulted in early lysis of the culture and reduction of solvent formation. A simple and effective way of reducing autolysin activity and increasing solvent production is partial inhibition of protein synthesis with chloramphenicol (CAP). The extracellular autolytic activity in the culture, determined by following loss of turbidity of washed clostridial cells in 0.04 M sodium phosphate buffer at 37deg C, was decreased by 40% after CAP treatment. This caused an extension of cell viability by 12 h and an increase in butanol production by 30%. The optimal time of CAP addition was 12 h of incubation, and the optimal antibiotic concentration was 120 {mu}g/ml. The effects of CAP on the fermentation are due to the inhibition of protein synthesis leading to a decrease in autolysin level in the culture. The results obtained provide economic advantages for industrial production of solvents by minimizing autolysin activity and maximizing solvent yield during the critical solvent-producing phase. (orig.).

  1. Candida albicans PROTEIN PROFILE CHANGES IN RESPONSE TO THE BUTANOLIC EXTRACT OF Sapindus saponariaL.

    Directory of Open Access Journals (Sweden)

    Adriana FIORINI

    2016-01-01

    Full Text Available Candida albicans is an opportunistic human pathogen that is capable of causing superficial and systemic infections in immunocompromised patients. Extracts of Sapindus saponaria have been used as antimicrobial agents against various organisms. In the present study, we used a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS to identify the changes in protein abundance of C. albicans after exposure to the minimal inhibitory concentration (MIC and sub-minimal inhibitory concentration (sub-MIC of the butanolic extract (BUTE of S. saponaria and also to fluconazole. A total of six different proteins with greater than 1.5 fold induction or repression relative to the untreated control cells were identified among the three treatments. In general, proteins/enzymes involved with the glycolysis (GPM1, ENO1, FBA1, amino acid metabolism (ILV5, PDC11 and protein synthesis (ASC1 pathways were detected. In conclusion, our findings reveal antifungal-induced changes in protein abundance of C. albicans. By using the previously identified components of the BUTE of S. saponaria(e.g., saponins and sesquiterpene oligoglycosides, it will be possible to compare the behavior of compounds with unknown mechanisms of action, and this knowledge will help to focus the subsequent biochemical work aimed at defining the effects of these compounds.

  2. Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L

    Directory of Open Access Journals (Sweden)

    Kang Se-Chan

    2011-02-01

    Full Text Available Abstract Background Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE had previously unreported anti-allergic or anti-inflammatory effects. Methods This study examined the effect of ALBE on the release of β-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs, and nuclear factor (NF-κB using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment. Results We observed significant inhibition of β-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 μg/mL suppressed not only the transcriptional activation of NF-κB, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes. Conclusions These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-κB activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis.

  3. Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L.

    Science.gov (United States)

    Sohn, Eun-Hwa; Jang, Seon-A; Joo, Haemi; Park, Sulkyoung; Kang, Se-Chan; Lee, Chul-Hoon; Kim, Sun-Young

    2011-02-08

    Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE) had previously unreported anti-allergic or anti-inflammatory effects. This study examined the effect of ALBE on the release of β-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment. We observed significant inhibition of β-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 μg/mL) suppressed not only the transcriptional activation of NF-κB, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes. These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-κB activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis.

  4. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    Science.gov (United States)

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  5. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation.

    Science.gov (United States)

    Díaz, Víctor Hugo Grisales; Tost, Gerard Olivar

    2016-10-01

    Techno-economic study of acetone, butanol and ethanol (ABE) fermentation from lignocellulose was performed. Simultaneous saccharification, fermentation and vacuum evaporation (SFS-V) or pervaporation (SFS-P) were proposed. A kinetic model of metabolic pathways for ABE fermentation with the effect of phenolics and furans in the growth was proposed based on published laboratory results. The processes were optimized in Matlab®. The end ABE purification was carried out by heat-integrated distillation. The objective function of the minimization was the total annualized cost (TAC). Fuel consumption of SFS-P using poly[1-(trimethylsilyl)-1-propyne] membrane was between 13.8 and 19.6% lower than SFS-V. Recovery of furans and phenolics for the hybrid reactors was difficult for its high boiling point. TAC of SFS-P was increased 1.9 times with supplementation of phenolics and furans to 3g/l each one for its high toxicity. Therefore, an additional detoxification method or an efficient pretreatment process will be necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  7. Synthesis of mesoporous SAPO-34 molecular sieves and their applications in dehydration of butanols and ethanol.

    Science.gov (United States)

    Jun, Jong Won; Jeon, Jaewoo; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2013-04-01

    Microporous SAPO-34 molecular sieves were hydrothermally synthesized with microwave irradiation in the presence of tetraethylammonium hydroxide (TEAOH) as a template. SAPO-34 molecular sieves with mesoporosity were also prepared in the presence of carbon black as a hard template. By increasing the content of the carbon black template in the synthesis, the mesopore volume increased. Dehydration of alcohols (butanols and ethanol) was carried out with the synthesized SAPO-34 molecular sieves, and the lifetime of the catalysts for the dehydration reaction increased as the mesoporosity increased. Moreover, the performance of the microporous catalyst synthesized with microwave was better than that of the catalyst obtained with conventional electric heating. The relative performance of the catalytic dehydration may be explained by the mesoporosity and the crystal size. Therefore, it may be concluded that small-sized SAPO-34 molecular sieves with high mesoporosity can be produced efficiently with microwave irradiation in the presence of carbon black template, and the molecular sieves are effective in the stable dehydration of alcohols.

  8. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Gholamreza Salehi Jouzani

    2015-03-01

    Full Text Available Recently, lignocellulosic biomass as the most abundant renewable resource has been widely considered for bioalcohols production. However, the complex structure of lignocelluloses requires a multi-step process which is costly and time consuming. Although, several bioprocessing approaches have been developed for pretreatment, saccharification and fermentation, bioalcohols production from lignocelluloses is still limited because of the economic infeasibility of these technologies. This cost constraint could be overcome by designing and constructing robust cellulolytic and bioalcohols producing microbes and by using them in a consolidated bioprocessing (CBP system. This paper comprehensively reviews potentials, recent advances and challenges faced in CBP systems for efficient bioalcohols (ethanol and butanol production from lignocellulosic and starchy biomass. The CBP strategies include using native single strains with cellulytic and alcohol production activities, microbial co-cultures containing both cellulytic and ethanologenic microorganisms, and genetic engineering of cellulytic microorganisms to be alcohol-producing or alcohol producing microorganisms to be cellulytic. Moreover, high-throughput techniques, such as metagenomics, metatranscriptomics, next generation sequencing and synthetic biology developed to explore novel microorganisms and powerful enzymes with high activity, thermostability and pH stability are also discussed. Currently, the CBP technology is in its infant stage, and ideal microorganisms and/or conditions at industrial scale are yet to be introduced. So, it is essential to bring into attention all barriers faced and take advantage of all the experiences gained to achieve a high-yield and low-cost CBP process.

  9. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    Science.gov (United States)

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Phenolic and lignan glycosides from the butanol extract of Averrhoa carambola L. root.

    Science.gov (United States)

    Wen, Qingwei; Lin, Xing; Liu, Yeqi; Xu, Xiaohui; Liang, Tao; Zheng, Ni; Kintoko; Huang, Renbin

    2012-10-19

    Fifteen compounds, which included six chiral lignans and nine phenolic glycosides, were separated from the butanol fraction of Averrhoa carambola L. root and identified. All of the compounds, namely 3,4,5-trimethoxyphenol-1-O-β-D-glucopyranoside, benzyl-1-O-β-D-glucopyranoside, (+)-5'-methoxyisolariciresinol 3α-O-β-D-gluco-pyranoside, (+)-isolariciresinol 3α-O-β-D-glucopyranoside, koaburaside, (+)-lyoniresinol 3α-O-β-D-glucopyranoside, (-)-lyoniresinol 3α-O-β-D-glucopyranoside, (-)-5'-methoxyisolariciresinol 3α-O-β-D-glucopyranoside, (-)-isolariciresinol 3α-O-β-D-glucopyranoside, 3,5-dimethoxy-4-hydroxyphenyl 1-O-β-apiofuranosyl (1''→6')-O-β-D-glucopyranoside, 3,4,5-trimethoxyphenyl 1-O-β-apiofuranosyl (1''→6')-β-gluco-pyranoside, methoxyhydroquinone-4-β-D-glucopyranoside, (2S)-2-O-β-D-gluco-pyranosyl-2-hydroxyphenylacetic acid, 3-hydroxy-4-methoxyphenol 1-O-β-D-apio-furanosyl-(1''→6')-O-β-D-glucopyranoside and 4-hydroxy-3-methoxyphenol 1-O-β-D-apiofuranosyl-(1''→6')-O-β-D-glucopyranoside were isolated from this plant for the first time.

  11. Phenolic and Lignan Glycosides from the Butanol Extract of Averrhoa carambola L. Root

    Directory of Open Access Journals (Sweden)

    Renbin Huang

    2012-10-01

    Full Text Available Fifteen compounds, which included six chiral lignans and nine phenolic glycosides, were separated from the butanol fraction of Averrhoa carambola L. root and identified. All of the compounds, namely 3,4,5-trimethoxyphenol-1-O-β-D-glucopyranoside (1, benzyl-1-O-β-D-glucopyranoside (2, (+-5'-methoxyisolariciresinol 3α-O-β-D-gluco-pyranoside (3, (+-isolariciresinol 3α-O-β-D-glucopyranoside (4, koaburaside (5, (+-lyoniresinol 3α-O-β-D-glucopyranoside (6, (−-lyoniresinol 3α-O-β-D-glucopyranoside (7, (−-5'-methoxyisolariciresinol 3α-O-β-D-glucopyranoside (8, (−-isolariciresinol 3α-O-β-D-glucopyranoside (9, 3,5-dimethoxy-4-hydroxyphenyl 1-O-β-apiofuranosyl (1''→6'-O-β-D-glucopyranoside (10, 3,4,5-trimethoxyphenyl 1-O-β-apiofuranosyl (1''→6'-β-gluco-pyranoside (11, methoxyhydroquinone-4-β-D-glucopyranoside (12, (2S-2-O-β-D-gluco-pyranosyl-2-hydroxyphenylacetic acid (13, 3-hydroxy-4-methoxyphenol 1-O-β-D-apio-furanosyl-(1''→6'-O-β-D-glucopyranoside (14 and 4-hydroxy-3-methoxyphenol 1-O-β-D-apiofuranosyl-(1''→6'-O-β-D-glucopyranoside (15 were isolated from this plant for the first time.

  12. Estudio de volumen molar y refracción molar de miscelas de triglicéridos (triacetina, tributirina o tricaprilina) y alcoholes (etanol, 1-butanol o 1-hexanol)

    OpenAIRE

    Rodríguez Rodríguez, M.; Galán Vallejo, M.; Muñoz Cueto, María J.

    1992-01-01

    Values of molar refraction for every studied mixtures show linear plots versus molar fractions of triglyceride. Values of molar volume show this behaviour, but only for tributyrin-butanol or tricaprylin-butanol miscellas. However, in tributyrin-ethanol mixtures, volume contractions have been found, whereas triacetin-butanol and tributyrin-hexanol show volume expansions. These facts are related to the mode of being structured of the alcohol and triglyceride molecules in mixtures. A linea...

  13. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    International Nuclear Information System (INIS)

    Bao, Guanhui; Dong, Hongjun; Zhu, Yan; Mao, Shaoming; Zhang, Tianrui; Zhang, Yanping; Chen, Zugen; Li, Yin

    2014-01-01

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance

  14. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Guanhui [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Dong, Hongjun; Zhu, Yan; Mao, Shaoming [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China); Zhang, Tianrui [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China); Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin (China); Zhang, Yanping [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China); Chen, Zugen [Department of Human Genetics, School of Medicine, University of California, Los Angeles, CA 90095 (United States); Li, Yin, E-mail: yli@im.ac.cn [CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing (China)

    2014-08-08

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.

  15. 1-Butanol absorption in poly(styrene-divinylbenzene) ion exchange resins for catalysis.

    Science.gov (United States)

    Pérez-Maciá, M A; Curcó, D; Bringué, R; Iborra, M; Rodríguez-Ropero, F; van der Vegt, N F A; Aleman, Carlos

    2015-12-21

    The swelling behaviour of poly(styrene-co-divinylbenzene), P(S-DVB), ion exchange resins in 1-butanol (BuOH) has been studied by means of atomistic classical molecular dynamics simulations (MD). The topological characteristics reported for the resin in the dry state, which exhibited complex internal loops (macropores), were considered for the starting models used to examine the swelling induced by BuOH contents ranging from 10% to 50% w/w. Experimental measurements using a laser diffraction particle size analyzer indicate that swelling causes a volume variation with respect to the dry resin of 21%. According to MD simulations, such a volume increment corresponds to a BuOH absorption of 31-32% w/w, which is in excellent agreement with the indirect experimental estimation (i.e. 31% w/w). Simulations reveal that, independently of the content of BuOH, the density of the swelled resin is higher than that of the dry resin, evidencing that the alcohol provokes important structural changes in the polymeric matrix. Thus, BuOH molecules cause a collapse of the resin macropores when the content of alcohol is ≤20% w/w. In contrast, when the concentration of BuOH is close to the experimental value (∼30% w/w), P(S-DVB) chains remain separated by pores faciliting the access of the reactants to the reaction centers. On the other hand, evaluation of both bonding and non-bonding interactions indicates that the mixing energy is the most important contribution to the absorption of BuOH into the P(S-DVB) resin. Overall, the results displayed in this work represent a starting point for the theoretical study of the catalytic conversion of BuOH into di-n-butyl ether in P(S-DVB) ion exchange resins using sophisticated electronic methods.

  16. Comparison of simulation and experimental results for a model aqueous tert-butanol solution

    Science.gov (United States)

    Overduin, S. D.; Patey, G. N.

    2017-07-01

    Molecular dynamics simulations are used to investigate the behavior of aqueous tert-butanol (TBA) solutions for a range of temperatures, using the CHARMM generalized force field (CGenFF) to model TBA and the TIP4P/2005 or TIP4P-Ew water model. Simulation results for the density, isothermal compressibility, constant pressure heat capacity, and self-diffusion coefficients are in good accord with experimental measurements. Agreement with the experiment is particularly good at low TBA concentration, where experiments have revealed anomalies in a number of thermodynamic properties. Importantly, the CGenFF model does not exhibit liquid-liquid demixing at temperatures between 290 and 320 K (for systems of 32 000 molecules), in contrast with the situation for several other common TBA models [R. Gupta and G. N. Patey, J. Chem. Phys. 137, 034509 (2012)]. However, whereas real water and TBA are miscible at all temperatures where the liquid is stable, we observe some evidence of demixing at 340 K and above. To evaluate the structural properties at low concentrations, we compare with both neutron scattering and recent spectroscopic measurements. This reveals that while the CGenFF model is a definite improvement over other models that have been considered, the TBA molecules still exhibit a tendency to associate at low concentrations that is somewhat stronger than that indicated by experiments. Finally, we discuss the range and decay times of the long-range correlations, providing an indication of the system size and simulation times that are necessary in order to obtain reliable results for certain properties.

  17. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    Science.gov (United States)

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  18. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingrui; Du, Yinming; Jiang, Wenyan; Chang, Wei-Lun; Yang, Shang-Tian [Ohio State Univ., Columbus, OH (United States). William G. Lowrie Dept. of Chemical and Biomolecular Engineering; Tang, I-Ching [Bioprocessing Innovative Company, Dublin, OH (United States)

    2012-01-15

    Clostridium tyrobutyricum ATCC 25755 can produce butyric acid, acetic acid, and hydrogen as the main products from various carbon sources. In this study, C. tyrobutyricum was used as a host to produce n-butanol by expressing adhE2 gene under the control of a native thiolase promoter using four different conjugative plasmids (pMTL82151, 83151, 84151, and 85151) each with a different replicon (pBP1 from C. botulinum NCTC2916, pCB102 from C. butyricum, pCD6 from Clostridium difficile, and pIM13 from Bacillus subtilis). The effects of different replicons on transformation efficiency, plasmid stability, adhE2 expression and aldehyde/alcohol dehydrogenase activities, and butanol production by different mutants of C. tyrobutyricum were investigated. Among the four plasmids and replicons studied, pMTL82151 with pBP1 gave the highest transformation efficiency, plasmid stability, gene expression, and butanol biosynthesis. Butanol production from various substrates, including glucose, xylose, mannose, and mannitol were then investigated with the best mutant strain harboring adhE2 in pMTL82151. A high butanol titer of 20.5 g/L with 0.33 g/g yield and 0.32 g/L h productivity was obtained with mannitol as the substrate in batch fermentation with pH controlled at {proportional_to}6.0. (orig.)

  19. Rate constant measurements for the overall reaction of OH + 1-butanol → products from 900 to 1200 K.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-03-15

    The rate constant for the overall reaction OH + 1-butanol → products was determined in the temperature range 900 to 1200 K from measurements of OH concentration time histories in reflected shock wave experiments of tert-butyl hydroperoxide (TBHP) as a fast source of OH radicals with 1-butanol in excess. Narrow-linewidth laser absorption was employed for the quantitative OH concentration measurement. A detailed kinetic mechanism was constructed that includes updated rate constants for 1-butanol and TBHP kinetics that influence the near-first-order OH concentration decay under the present experimental conditions, and this mechanism was used to facilitate the rate constant determination. The current work improves upon previous experimental studies of the title rate constant by utilizing a rigorously generated kinetic model to describe secondary reactions. Additionally, the current work extends the temperature range of experimental data in the literature for the title reaction under combustion-relevant conditions, presenting the first measurements from 900 to 1000 K. Over the entire temperature range studied, the overall rate constant can be expressed in Arrhenius form as 3.24 × 10(-10) exp(-2505/T [K]) cm(3) molecule(-1) s(-1). The influence of secondary reactions on the overall OH decay rate is discussed, and a detailed uncertainty analysis is performed yielding an overall uncertainty in the measured rate constant of ±20% at 1197 K and ±23% at 925 K. The results are compared with previous experimental and theoretical studies on the rate constant for the title reaction and reasonable agreement is found when the earlier experimental data were reinterpreted.

  20. High-temperature oxidation chemistry of n-butanol--experiments in low-pressure premixed flames and detailed kinetic modeling.

    Science.gov (United States)

    Hansen, N; Harper, M R; Green, W H

    2011-12-07

    An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the α-C(4)H(9)O radical (CH(3)CH(2)CH(2)˙CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by Oßwald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via β-scission. Enols are detected experimentally, with their importance being overpredicted by the model.

  1. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.

    Science.gov (United States)

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2015-04-01

    In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii.

  2. A systematic study of the isothermal crystallization of the mono-alcohol n-butanol monitored by dielectric spectroscopy

    DEFF Research Database (Denmark)

    Jensen, Mikkel Hartmann; Hecksher, Tina; Niss, Kristine

    2015-01-01

    Isothermal crystallization of the mono-hydroxyl alcohol n-butanol was studied with dielectric spectroscopy in real time. The crystallization was carried out using two different sample cells at 15 temperatures between 120 K and 134 K. Crystallization is characterized by a decrease of the dielectric...... intensity. In addition, a shift in relaxation times to shorter times was observed during the crystallization process for all studied temperatures. The two different sample environments induced quite different crystallization behaviors, consistent and reproducible over all studied temperatures...... that a microscopic interpretation of crystallization measurements requires multiple probes, sample cells, and protocols....

  3. Nonlinear parameter (B/A) measurements in methanol, 1-butanol and 1-octanol for different pressures and temperatures

    International Nuclear Information System (INIS)

    Plantier, F.; Daridon, J.L.; Lagourette, B.

    2002-01-01

    Experimental determinations versus pressure of the nonlinear acoustic parameter B/A have been conducted for methanol, 1-butanol and 1-octanol in the pressure range 0-50 MPa and temperature range 303.15-373.15 K. These measurements proceed from an experimental technique based on a phase comparison method allowing to measure the change in sound speed with the pressure for an isentropic process. The value of B/A is found to decrease with increasing pressure and seems to be an increasing function of temperature. A comparison with the data determined numerically by the classical thermodynamic method has also been performed. (author)

  4. The effect of tert-butanol on the formation of Cr2O3 nanoparticles by gamma radiolysis

    International Nuclear Information System (INIS)

    Alrehaily, L.M.; Joseph, J.M.; Wren, J.C.

    2014-01-01

    Gamma irradiation of an aqueous solution initially containing 0.1 - 10 mM Cr(VI) led to the formation of uniform-sized nanoparticles in the range of 9-30 nm depending on the initial concentration. The particles were characterized using FT-IR and found to be composed of Cr 2 O 3 . Addition of tert-butanol (an ·OH scavenger) was found to be very effective in increasing the particle size to the range of 20-60 nm. (author)

  5. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  6. Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin.

    Science.gov (United States)

    Wu, Jinglan; Zhuang, Wei; Ying, Hanjie; Jiao, Pengfei; Li, Renjie; Wen, Qingshi; Wang, Lili; Zhou, Jingwei; Yang, Pengpeng

    2015-01-01

    Separation of butanol based on sorption methodology from acetone-butanol-ethanol (ABE) fermentation broth has advantages in terms of biocompatibility and stability, as well as economy, and therefore gains much attention. In this work a chromatographic column model based on the solid film linear driving force approach and the competitive Langmuir isotherm equations was used to predict the competitive sorption behaviors of ABE single, binary, and ternary mixture. It was observed that the outlet concentration of weaker retained components exceeded the inlet concentration, which is an evidence of competitive adsorption. Butanol, the strongest retained component, could replace ethanol almost completely and also most of acetone. In the end of this work, the proposed model was validated by comparison of the experimental and predicted ABE ternary breakthrough curves using the real ABE fermentation broth as a feed solution. © 2014 American Institute of Chemical Engineers.

  7. Neutron total cross-section of hydrogenous and deuterated 1- and 2-propanol and n-butanol measured using the VESUVIO spectrometer

    Science.gov (United States)

    Rodríguez Palomino, L. A.; Dawidowski, J.; Márquez Damián, J. I.; Cuello, G. J.; Romanelli, G.; Krzystyniak, M.

    2017-10-01

    This work presents the total cross sections of a set of normal and deuterated alcohols (hydrogenous 1- and 2-propanol and n-butanol, 1-propanol(OD) and fully deuterated 2-propanol and n-butanol), measured at spectrometer VESUVIO (ISIS spallation neutron source, United Kingdom). Granada's Synthetic Model was applied to describe those systems and a satisfactory agreement with the measured total cross section was achieved in the range of energies from 10-3 to 100 eV. The input parameters of the model were determined from the essential features of the vibrational spectra of the atoms that compose the systems, which were studied using Molecular Dynamics.

  8. Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Enmin [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000 (China); Liu, Xiaohuan, E-mail: liuxiaohuancaf@163.com [School of Engineering, National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Lin’an 311300 (China); Jiang, Jinhua [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000 (China); Fu, Shenyuan [School of Engineering, National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Lin’an 311300 (China); Chu, Fuxiang [Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210037 (China)

    2016-11-30

    Highlights: • LBR-Zr was evaluated as a novel biosorbent for phosphate removal. • Effects of process factors on phosphate adsorption were studied in detail. • LBR-Zr showed markedly enhanced phosphate adsorption compared to LBR. • The underlying mechanism for phosphate adsorption of LBR-Zr was fully investigated. - Abstract: Zirconium(IV) loaded lignocellulosic butanol residue (LBR-Zr) used for the adsorption of phosphate (P) ions from aqueous solution was synthesized and evaluated. The adsorption isotherms were fitted well with the Freundlich and Temkin modes. Thermodynamic analyses indicated that phosphate adsorption on the LBR-Zr increased with increasing temperature from 298 to 338 K. The kinetic datas were described better by the pseudo-second-order adsorption kinetic rate model. Increasing pH suppressed phosphate adsorption. Coexisting anions study exhibited that the incorporation of CO{sub 3}{sup 2−} anion had the largest influence on the phosphate adsorption capacity. The mechanism of adsorption process on LBR-Zr was analyzed by FTIR (Fourier transform infrared spectroscopy), scanning electron microscope (SEM) with an EDX (energy dispersive X-ray) and X-ray photoelectron spectroscopy (XPS) technologies, respectively. The above results confirmed that surface hydroxyl groups on biosorbent LBR-Zr were replaced by phosphate. The LBR-Zr with good specific affinity towards phosphate was a promising biosorbent for phosphate removal from aqueous solution. The research would be beneficial for developing a promising, eco-friendly phosphate biosorbent from plentiful lignocellulosic butanol residue.

  9. The effect of CTAB on synthesis in butanol of samaria and gadolinia doped ceria - nickel oxide ceramics

    International Nuclear Information System (INIS)

    Arakaki, A.R.; Cunha, S.M.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R.

    2011-01-01

    In this work it was synthesized doped ceria and Samaria gadolinia - nickel oxide ceramics, mainly applied as anodes Fuel Cells Solid Oxide. Powders of composition Ce 0,8 (SmGd) 0,2 O 1,9 /NiO and mass ratio of 40: 60% were initially synthesized by hydroxides coprecipitation and then treated solvo thermically in butanol. Cerium samarium, gadolinium and nickel chlorides and CTAB with molar ratio metal / CTAB ranging from 1 to 3, were used as raw materials Powders were treated in butanol at 150 deg C for 16h. The powders were analyzed by X-ray diffraction, scanning electron microscopy, specific surface area for adsorption of nitrogen and particle size distribution by laser beam scattering. The ceramics were analyzed by scanning electron microscopy and density measurements by immersion technique in water. The results showed that the powders had the characteristic crystalline structures of ceria and nickel hydroxide, and high specific surface area (80 m 2 / g). The characterizations of ceramics demonstrated high chemical homogeneity and porosity values of 30%. (author)

  10. Nanostructured composite TiO{sub 2}/carbon catalysts of high activity for dehydration of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Cyganiuk, Aleksandra [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Klimkiewicz, Roman [Institute of Low Temperature and Structure Research PAN, 50-422 Wroclaw (Poland); Bumajdad, Ali [Faculty of Science, Kuwait University, PO Box 5969 Safat, Kuwait 13060 (Kuwait); Ilnicka, Anna [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Lukaszewicz, Jerzy P., E-mail: jerzy_lukaszewicz@o2.pl [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland)

    2015-08-15

    Highlights: • New biotechnological method for fabrication of composite catalysts. • In situ synthesis of nanosized TiO{sub 2} clusters in the carbon matrix. • High dispersion of TiO{sub 2} in carbon matrix. • High catalytic activity achieved for very low active phase content. • Efficient dehydration of n-butanol to butane-1. - Abstract: A novel method of wood impregnation with titanium ions is presented. Titanium(IV) ions were complexed to peroxo/hydroxo complexes which were obtained by treating a TiCl{sub 4} water solution with H{sub 2}O{sub 2}. The solution of chelated titanium ions was used for the impregnation of living stems of Salix viminalis wood. Saturated stems were carbonized at 600–800 °C, yielding a microporous carbon matrix, in which nanoparticles of TiO{sub 2} were uniformly distributed. A series of composite TiO{sub 2}–carbon catalysts was manufactured and tested in the process of n-butanol conversion to butane-1. The composite catalysts exhibited very high selectivity (ca. 80%) and yield (ca. 30%) despite a low content of titanium (ca. 0.5% atomic). The research proved that the proposed functionalization led to high dispersion of the catalytic phase (TiO{sub 2}), which played a crucial role in the catalyst performance. High dispersion of TiO{sub 2} was achieved due to a natural transport of complexed titanium ions in living plant stems.

  11. Production of butanol (a biofuel) from agricultural residues: Part II - Use of corn stover and switchgrass hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Dien, Bruce; Iten, Loren; Bowman, Michael J.; Cotta, Michael A. [United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research, 1815 N. University Street, Peoria, IL 61604 (United States); Hughes, Stephen; Liu, Siqing [USDA-ARS-NCAUR, Renewable Product Technology, 1815 N. University Street, Peoria, IL 61604 (United States); Sarath, Gautam [USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska, 314 Biochemistry Hall, East Campus, Lincoln, NE 68583 (United States)

    2010-04-15

    Acetone butanol ethanol (ABE) was produced from hydrolysed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 g L{sup -1} total ABE. In this experiment an ABE yield and productivity of 0.41 and 0.31 g L{sup -1} h{sup -1} was achieved, respectively. Fermentation of untreated corn stover hydrolysate (CSH) exhibited no growth and no ABE production; however, upon dilution with water (two fold) and wheat straw hydrolysate (WSH, ratio 1:1), 16.00 and 18.04 g L{sup -1} ABE was produced, respectively. These experiments resulted in ABE productivity of 0.17-0.21 g L{sup -1} h{sup -1}. Inhibitors present in CSH were removed by treating the hydrolysate with Ca(OH){sub 2} (overliming). The culture was able to produce 26.27 g L{sup -1} ABE after inhibitor removal. Untreated switchgrass hydrolysate (SGH) was poorly fermented and the culture did not produce more than 1.48 g L{sup -1} ABE which was improved to 14.61 g L{sup -1}. It is suggested that biomass pretreatment methods that do not generate inhibitors be investigated. Alternately, cultures resistant to inhibitors and able to produce butanol at high concentrations may be another approach to improve the current process. (author)

  12. Role of Calcination Temperature on the Hydrotalcite Derived MgO–Al2O3 in Converting Ethanol to Butanol

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Santosa, Daniel M.; Li, Xiaohong S.; Devaraj, Arun; Karkamkar, Abhijeet J.; Wang, Yong

    2015-10-09

    In the base catalyzed ethanol condensation reactions, the calcined MgO-Al2O3 derived hydrotalcites used broadly as catalytic material and the calcination temperature plays a big role in determining the catalytic activity. The characteristic of the hydrotalcite material treated between catalytically relevant temperatures 450ºC and 800ºC have been studied with respect to the physical, chemical, and structural properties and compared with catalytic activity testing. With the increasing calcination temperature, the total measured catalytic basicity dropped linearly with the calcination temperature and the total measured acidity stayed the same for all the calcination temperatures except 800ºC. However, the catalyst activity testing does not show any direct correlation between the measured catalytic basicity and the catalyst activity to the ethanol condensation reaction to form 1-butanol. The highest ethanol conversion of 44 percent with 1-butanol selectivity of 50 percent was achieved for the 600ºC calcined hydrotalcite material.

  13. Process design and economics of a flexible ethanol-butanol plant annexed to a eucalyptus kraft pulp mill.

    Science.gov (United States)

    Pereira, Guilherme C Q; Braz, Danilo S; Hamaguchi, Marcelo; Ezeji, Thaddeus C; Maciel Filho, Rubens; Mariano, Adriano P

    2018-02-01

    This work proposes a strategy, from a process design standpoint, for pulp companies to enter the Brazilian ethanol market. The flexible plant converts eucalyptus-derived glucose to either ethanol or butanol (according to market conditions) and xylose only to butanol production. Depending on the biomass pretreatment technology, Monte Carlo simulations showed that the Net Present Value (NPV) of the flexible plant increases by 20-28% in relation to an ethanol-dedicated plant. Whereas the lower costs of the steam explosion technology turns the investment more attractive (NPV = 184 MMUSD; IRR = 29%), the organosolv technology provides better flexibility to the plant. This work also shows that excessive power consumption is a hurdle in the development of flash fermentation technology chosen for the flexible plant. These results indicate that conventional batch fermentation is preferable if the enzymatic hydrolysis step operates with solids loading up to 20 wt%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    Science.gov (United States)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine

  15. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  16. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.; Sarathy, Mani; Má rchese, Anthony J.

    2013-01-01

    -octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content

  17. Suitability of yeast autolyzates, potato pulp, and starch-factory water for addition to molasses mash in the acetone-butanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, S; Imielski, A; Zakrzewsda, I

    1960-01-01

    Addition of potato pulp, yeast extraction, and starch-factory water to fermenting molasses mash did not increase the final concentrations of acetone and butanol. Addition of 5% of yeast autolyzates to the mash enriched with 0.5 to 0.75% barley flour increased production by 4 to 10%.

  18. Hydrogen abstraction from n-butanol by the methyl radical: high level ab initio study of abstraction pathways and the importance of low energy rotational conformers.

    Science.gov (United States)

    Katsikadakos, D; Hardalupas, Y; Taylor, A M K P; Hunt, P A

    2012-07-21

    Hydrogen abstraction reactions by the methyl radical from n-butanol have been investigated at the ROCBS-QB3 level of theory. Reaction energies and product geometries for the most stable conformer of n-butanol (ROH) have been computed, the reaction energies order α channel more stable than the β-channel? Why do the two C(γ)-H H-abstraction TS differ in energy? The method and basis set dependence of the TS barriers is investigated. The Boltzmann probability distribution for the n-butanol conformers suggests that low energy conformers are present in approximately equal proportions to the most stable conformer at combustion temperatures where ĊH(3) radicals are present. Thus, the relative significance of the various H-abstraction channels has been assessed for a selection of higher energy conformers (ROH'). Key results include finding that higher energy n-butanol conformers (E(ROH') > E(ROH)) can generate lower energy product radicals, E(ROH') < E(ROH). Moreover, higher energy conformers can also have a globally competitive TS energy for H-abstraction.

  19. Toxicological study of the butanol fractionated root extract of Asparagus africanus Lam., on some blood parameter and histopathology of liver and kidney in mice.

    Science.gov (United States)

    Kebede, Sintayehu; Afework, Mekbeb; Debella, Asfaw; Ergete, Wondwossen; Makonnen, Eyasu

    2016-01-27

    The butanol fractionated root extract of Asparagus africanus Lam., a traditional herb widely used to treat various ailments were analyzed for the presence of potential toxicity after single (acute) and repeated (subchronic) dose oral administration in adult swiss albino mice using gavages. For the acute study, butanol fractionated extract of the plant was administered in single doses of 1000, 3000 and 5000 mg/kg body weight. In the sub-chronic dose study, the extract was administered at doses of 300 and 600 mg/kg body weight/day for 42 days. Selected hematological and biochemical parameters of the blood followed by histopathological analysis were investigated after 42 days of daily administrations. The results were expressed as M ± SE, and differences at P fraction of the extract has high safety profile when given orally. After 42 days of daily dosing, in the sub-chronic study, no clinically significant changes were observed for hematological and biochemical parameters. Except an occasional small number of focal mononuclear lymphocytic cells infiltrations around the central and portal triad of the liver of a few mice, the histopathological parameters do not show significant change. It is concluded that, the butanol fractionated extract from A. africanus at the given dose does not show significant toxicity. The presence of focal inflammation on the liver of a few mice may be associated to the presence of flavonoid glycoside in the butanol fractionated extract.

  20. A process integration approach for the production of biological iso-propanol, butanol and ethanol using gas stripping and adsorption as recovery methods

    NARCIS (Netherlands)

    Pyrgakis, Konstantinos A.; Vrije, de G.J.; Siegers-Budde, M.A.W.; Kyriakou, Kyriakos; Lopez Contreras, A.M.; Kokossis, Antonis C.

    2016-01-01

    Biomass fermentation to Iso-propanol, Butanol and Ethanol (IBE) is particularly important as IBE is a common building block in the development of biorefineries and IBE-producing bacteria are robust industrial organisms, capable to utilize the sugars of the lignocellulosic biomass. Research is

  1. Kinetic studies on the transesterification of sunflower oil with 1-butanol catalyzed by Rhizomucor miehei lipase in a biphasic aqueous-organic system

    NARCIS (Netherlands)

    Ilmi, Miftahul; Hommes, Arne; Winkelman, Jozef; Hidayat, C.; Heeres, Hero

    2016-01-01

    The kinetics of sunflower oil transesterification with 1-butanol using a homogeneous lipase (Rhizomucor miehei) in an aqueous-organic biphasic system were studied in a stirred batch reactor set-up. An initial screening study was performed to optimize relevant process conditions (enzyme

  2. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260

    Science.gov (United States)

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  3. Investigation of acetone, butanol and carbon dioxide as new breath biomarkers for convenient and noninvasive diagnosis of obstructive sleep apnea syndrome.

    Science.gov (United States)

    Bayrakli, Ismail; Öztürk, Önder; Akman, Hatice

    2016-12-01

    The objective of the present study was to investigate whether analysis of carbon dioxide, acetone and/or butanol present in human breath can be used as a simple and noninvasive diagnosis method for obstructive sleep apnea syndrome (OSAS). For this purpose, overnight changes in the concentrations of these breath molecules were measured before and after sleep in 10 patients who underwent polysomnography and were diagnosed with OSAS, and were compared with the levels of these biomarkers determined after sleep in 10 healthy subjects. The concentrations of exhaled carbon dioxide were measured using external cavity laser-based off-axis cavity enhanced absorption spectroscopy, whereas the levels of exhaled acetone and butanol were determined using thermal desorption gas chromatography mass spectrometry. We observed no significant changes in the levels of exhaled acetone and carbon dioxide in OSAS patients after sleep compared with pre-sleep values and compared with those in healthy control subjects. However, for the first time, to our knowledge, analyses of expired air showed an increased concentration of butanol after sleep compared with that before sleep and compared with that in healthy subjects. These results suggest that butanol can be established as a potential biomarker to enable the convenient and noninvasive diagnosis of OSAS in the future. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Acetone enhances the direct analysis of Procyanidin- and Prodelphinidin-based condensed tannins in lotus species by the butanol-HCl-iron assay

    Science.gov (United States)

    The butanol-HCl spectrophotometric assay is widely used for quantifying extractable and insoluble condensed tannins (CT, syn. proanthocyanidins) in foods, feeds, and foliage of herbaceous and woody plants, but the method underestimates total CT content when applied directly to plant material. To imp...

  5. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    Science.gov (United States)

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Isobaric vapor–liquid–liquid–solid equilibrium of the water + NaCl + 1-butanol system at 101.3 kPa

    International Nuclear Information System (INIS)

    Garcia-Cano, Jorge; Gomis, Vicente; Asensi, Juan Carlos; Saquete, Maria Dolores; Font, Alicia

    2016-01-01

    Highlights: • Vapor–liquid–liquid and vapor–liquid equilibrium data are determined. • Vapor–liquid–solid and vapor–liquid–liquid–solid equilibrium data are determined. • Results are compared with literature data. • The influence of salt on water + 1-butanol equilibria is studied. • The influence of temperature is also studied. - Abstract: A mixture of water + NaCl + 1-butanol at 101.3 kPa is studied in order to determine the influence of salt on its experimental vapor–liquid–liquid–solid equilibrium. A detailed analysis of the evolution with temperature of the different equilibrium regions is carried out. The study is conducted at a constant pressure of 101.3 kPa in a recirculating still that has been modified by our research group. The changes in the 1-butanol/water composition ratio in the vapor phase that are provoked by the salt are studied as a function of equilibrium region. In addition, the mutual solubility of 1-butanol and water is assessed in the liquid–liquid and solid–liquid regions.

  7. Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine.

    Science.gov (United States)

    Rahman, Md Mofijur; Rasul, Mohammad Golam; Hassan, Nur Md Sayeed; Azad, Abul Kalam; Uddin, Md Nasir

    2017-10-01

    This paper aims to investigate the effect of the addition of 5% alcohol (butanol) with biodiesel-diesel blends on the performance, emissions, and combustion of a naturally aspirated four stroke multi-cylinder diesel engine at different engine speeds (1200 to 2400 rpm) under full load conditions. Three types of local Australian biodiesel, namely macadamia biodiesel (MB), rice bran biodiesel (RB), and waste cooking oil biodiesel (WCB), were used for this study, and the data was compared with results for conventional diesel fuel (B0). Performance results showed that the addition of butanol with diesel-biodiesel blends slightly lowers the engine efficiency. The emission study revealed that the addition of butanol additive with diesel-biodiesel blends lowers the exhaust gas temperature (EGT), carbon monoxide (CO), nitrogen oxide (NOx), and particulate matter (PM) emissions whereas it increases hydrocarbon (HC) emissions compared to B0. The combustion results indicated that in-cylinder pressure (CP) for additive added fuel is higher (0.45-1.49%), while heat release rate (HRR) was lower (2.60-9.10%) than for B0. Also, additive added fuel lowers the ignition delay (ID) by 23-30% than for B0. Finally, it can be recommended that the addition of 5% butanol with Australian biodiesel-diesel blends can significantly lower the NOx and PM emissions.

  8. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.

    Science.gov (United States)

    Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu; Li, Fu-Li

    2017-04-01

    Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii , leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD + ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative

  9. Experimental investigation of particle emissions under different EGR ratios on a diesel engine fueled by blends of diesel/gasoline/n-butanol

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Wang, Qingxin; Zhou, Chengzhong; Mo, Chunlan; Wang, Xueqiang

    2016-01-01

    Highlights: • The effects of EGR and blend fuels on particulate emission were studied in CI engine. • EGR ⩽ 20%, gasoline or n-butanol increases total particulate number concentration. • EGR ⩾ 30%, gasoline or n-butanol reduces total particulate number concentration. • As EGR ratio increased, the particulate mass concentrations of four fuels increased. • Gasoline or n-butanol increases the ratio of sub-25 nm particles number concentration. - Abstract: The particle emission characteristics of a high-pressure common-rail engine under different EGR conditions were investigated, using pure diesel (D100), diesel/gasoline (with a volume ratio of 70:30, D70G30), diesel/n-butanol (with a volume ratio of 70:30, D70B30) and diesel/gasoline/n-butanol (with a volume ratio of 70:15:15, D70G15B15) for combustion. Our results show that, with increasing EGR ratios, the in-cylinder pressure peak decreases and the heat release is delayed for the combustion of each fuel. At an EGR ratio of 30%, the combustion pressure peaks of D70G30, D70B30, D70G15B15 and D100 have similar values; with an EGR ratio of 40%, the combustion pressure peaks and release rate peaks of D70G30 and D70G15B15 are both lower with respect to D100. For small and medium EGR ratios (⩽20%), after the addition of gasoline and/or n-butanol to the fuel, the total particle number concentration (TPNC) increases, while both the soot emissions and the average geometric size of particles decrease. At large EGR ratios (30% and 40%), the TPNC of D70B30, D70G15B15 and D70G20 compared to D100 are reduced by a maximum amount of 74.7%, 66.7% and 28.6%, respectively. As the EGR ratio increases, the total particle mass concentration increases gradually for all four fuels. Blending gasoline or/and n-butanol into diesel induces an increase in the number concentration of sub-25 nm particles (PN25) which may be harmful in terms of health. However, the PN25 decreases with increasing the EGR ratio for all the tested fuels

  10. Total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf and the antibacterial activity towards Escherichia coli and Staphylococcus aureus

    Science.gov (United States)

    Rita, Wiwik Susanah; Swantara, I. Made Dira; Asih, I. A. Raka Astiti; Sinarsih, Ni Ketut; Suteja, I. Kadek Pater

    2016-03-01

    Total flavonoid and phenolic contents in some natural products was suspected of having a positive correlation to its activity in inhibiting the growth of bacteria. The aim of this study was to determine the total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf, and to evaluate the antibacterial activity towards Escherechia coli and Staphylococcus aureus. Extraction of compounds was done by ethanol 96%, followed by fractionation into n-hexane, ethyl acetate, and n-butanol. Determination of total flavonoid and phenolic contents was done by UV-Vis Spectrophotometer using standard of quersetin and galic acid respectively. In addition, antibacterial activity was evaluated by agar disc diffusion method. Extraction of 1000 g of Samanea saman leaf was obtained 80 g of ethanol extracts, fractionation of the extract was obtained 8.02 g of n-hexane extracts, 7.11 g of ethyl acetate extracts, 13.5 g of n-butanol extracts, and 14.16 g of aqueous extracts. Phytochemical screening of the n-butanol extracts revealed the presence of flavonoid and phenolic compounds. Total flavonoid and phenolic contents were successively 43.5798 mg QE/100g and 34.0180 mg GAE/100g. The butanol extracts inhibited the growth of S.aureus higher than the growth of E.coli. At the concentration of 2, 4, 6, 8 % (b/v), and positive control (meropenem μg/disc), inhibition zone towards S. aureus was successively 5.67, 9.33, 10.33, 12.00, and 32.33 mm, while the inhibition zone towards E. coli was1.33, 3.33, 4.33, 5.43, and 34.00 mm.

  11. Theoretical Kinetic Study of the Unimolecular Keto–Enol Tautomerism Propen-2-ol ↔ Acetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol

    KAUST Repository

    Grajales Gonzalez, Edwing

    2018-03-21

    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with its favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Enols are important intermediates in the combustion of C4 alcohols, as well as in atmospheric processes. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular tautomerism of propen-2-ol ↔ acetone, which is included in butanol combustion kinetic models, is assigned rate parameters based on the tautomerism vinyl alcohol ↔ acetaldehyde as an analogy. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the titled reaction was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) ab initio calculations, with multistructural torsional anharmonicity and variational transition state theory considerations in a wide temperature and pressure range (200-3000 K; 0.1-108 kPa). Results differ from vinyl alcohol ↔ acetaldehyde analogue reaction, which shows lower rate constant values. It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption.

  12. Inotropic and chronotropic effects of crude extract and its butanol fraction of dry fruit of aegle marmelos linn. in isolated working rat heart

    International Nuclear Information System (INIS)

    Rahman, A.U.

    2016-01-01

    The fruit of Aegle marmelos Linn. is a most edible part of the tree, ripe, unripe and dry fruit is recommended for wide variety of disorders. Lack of pharmacological evaluation limits the use to nutritional value. Dry and ripe fruit of A. marmelos was investigated as crude extract and its butanol fraction in isolated working male Wistar rat heart. Aortic out flow, coronary effluent, cardiac output, dP/dt(max), dP/dt(min), systolic and diastolic pressure, heart rate, and aortic pressure were measured. Preload and after load was kept constant. These parameters are relevant to cardiac physiology and pathological conditions. All the concentrations of crude extract caused concentration-dependent effects. The crude extract decreased coronary effluent at 100.0 and 300.0 mg/mL, increased the dP/dt(max) at 300.0 mg/mL, systolic pressure and aortic pressure were observed maximum at 100.0 mg/mL. Whereas, aortic out flow, dP/dt(min) diastolic pressure and cardiac output and heart rate remained unaffected. The butanol fraction increased the aortic outflow, dP/dt(max), aortic pressure at 10.0 and 30.0 mg/mL maximally. Whereas, dP/dt(min), diastolic pressure and cardiac output remained unaffected. Coronary effluent at 1.0, 10.0, and 30.0 mg/mL and heart rate at 10.0 and 30.0 mg/mL were decreased maximally. It seems that the bioactive compound got concentrated in butanol fraction according to polarity of the solvent. The crude extract and butanol fraction were found to be positive inotropic whereas, butanol fraction showed negative chronotropic effect as well. (author)

  13. Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline

    International Nuclear Information System (INIS)

    Merola, Simona Silvia; Tornatore, Cinzia; Irimescu, Adrian; Marchitto, Luca; Valentino, Gerardo

    2016-01-01

    Given the instability in supply and finite nature of fossil fuels, alternative renewable energy sources are continuously investigated throughout the production–distribution-use chain. Within this context, the research presented in this work is focused on using butanol as gasoline replacement in a Direct Injection Spark Ignition engine. The impact of this fuel on the combustion processes was investigated using optical diagnostics and conventional methods in a transparent single cylinder engine. Three different load settings were investigated at fixed engine speed, with combined throttling and mixture strength control. The engine was operated in homogenous charge mode, with commercial gasoline and pure n-butanol fueling. High spatial and temporal resolution visualization was applied in the first phase of the combustion process in order to follow the early flame development for the two fuels. The optical data were completed with conventional measurements of thermodynamic data and pollutants emission at the exhaust. Improved performance was obtained in throttled stoichiometric mode when using the alternative fuel, while at wide open throttle, gasoline featured higher indicated mean effective pressure at both air–fuel ratio settings. These overall findings were correlated to flame characteristics; the alcohol was found to feature more distorted flame contour compared to gasoline, especially in lean conditions. Differences were reduced during throttled stoichiometric operation, confirming that mass transfer processes, along with fuel chemistry and physical properties, exert a significant influence on local phenomena during combustion. - Highlights: • Butanol can replace gasoline without performance penalties in throttled, stoichiometric operation. • Butanol induces higher flame contour distortion than gasoline, especially in lean case. • Fuel chemical–physical properties strongly influence local phenomena during combustion. • Butanol ensured lower smoke

  14. Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Dimaratos, A.M.; Giakoumis, E.G.; Rakopoulos, D.C.

    2011-01-01

    Highlights: → Turbocharged diesel engine emissions during starting with bio-diesel or n-butanol diesel blends. → Peak pollutant emissions due to turbo-lag. → Significant bio-diesel effects on combustion behavior and stability. → Negative effects on NO emissions for both blends. → Positive effects on smoke emissions only for n-butanol blend. -- Abstract: The control of transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, as stringent criteria for exhaust emissions must be met. Starting, in particular, is a process of significant importance owing to its major contribution to the overall emissions during a transient test cycle. On the other hand, bio-fuels are getting impetus today as renewable substitutes for conventional fuels, especially in the transport sector. In the present work, experimental tests were conducted at the authors' laboratory on a bus/truck, turbocharged diesel engine in order to investigate the formation mechanisms of nitric oxide (NO), smoke, and combustion noise radiation during hot starting for various alternative fuel blends. To this aim, a fully instrumented test bed was set up, using ultra-fast response analyzers capable of capturing the instantaneous development of emissions as well as various other key engine and turbocharger parameters. The experimental test matrix included three different fuels, namely neat diesel fuel and two blends of diesel fuel with either bio-diesel (30% by vol.) or n-butanol (25% by vol.). With reference to the neat diesel fuel case during the starting event, the bio-diesel blend resulted in deterioration of both pollutant emissions as well as increased combustion instability, while the n-butanol (normal butanol) blend decreased significantly exhaust gas opacity but increased notably NO emission.

  15. Theoretical Kinetic Study of the Unimolecular Keto–Enol Tautomerism Propen-2-ol ↔ Acetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol

    KAUST Repository

    Grajales Gonzalez, Edwing Javier; Monge Palacios, Manuel; Sarathy, Mani

    2018-01-01

    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with its favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Enols are important intermediates in the combustion of C4 alcohols, as well as in atmospheric processes. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular tautomerism of propen-2-ol ↔ acetone, which is included in butanol combustion kinetic models, is assigned rate parameters based on the tautomerism vinyl alcohol ↔ acetaldehyde as an analogy. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the titled reaction was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) ab initio calculations, with multistructural torsional anharmonicity and variational transition state theory considerations in a wide temperature and pressure range (200-3000 K; 0.1-108 kPa). Results differ from vinyl alcohol ↔ acetaldehyde analogue reaction, which shows lower rate constant values. It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption.

  16. Analyse des memdranes de déshydratation du melange eau t butanol par procede de pervaporation.

    Directory of Open Access Journals (Sweden)

    Mahacine Amrani

    2007-01-01

    Full Text Available The performance of commercially available polymeric membranes was investigated respect to the dehydration of binary mixtures of t-butanol and water by pervaporation process. The range of concentration investigated  CH2O  20 wt%   was selected according to industrial needs. Fluxes and selections were monitored as dehydratation proceeded, and the performances of both membranes were compared. In addition, the effect of temperature was investigated in the 60 to 100°C range, covering the pervaporation operating conditions. Increasing the operating temperature resulted, as expected, in larger water pervaporation fluxes for both membranes. For the range of the investigated conditions, water fluxes through the polymeric 2510 PERVAP membrane were found to be larger than those of the silica 2000 US membrane. The difference in performances becomes much more marked for higher temperatures.

  17. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    Science.gov (United States)

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.

    Science.gov (United States)

    Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L

    2018-05-22

    Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

  19. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    Science.gov (United States)

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Acetone-butanol fermentation of blackstrap molasses. An effective factor of some symbiotic organisms against an abnormal fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, A; Kinoshita, S; Okumura, T

    1954-01-01

    There were three types of abnormal fermentation in the industrial acetone-butanol fermentation of blackstrap molasses; one of them called B type, was characterized by the extremely prolonged acidity peak, and sluggishness experiments were carried out to find some symbiotic organisms among various aerobic bacteria and yeasts for several strains of Clostridium acetobutylicum. Torula utilis showed an outstanding effectiveness for a rapid completion of the fermentation, and the yields of solvents was much increased. Culture filtrate of T. utilis contained a soluble and thermolabile effective factor, and showed high invertase activity. A close relation was found between high yields of solvents and the degree of inversion of molasses medium. Thus, the effective factor against sluggishness was ascribed to the invertase activity of the yeast. Some inhibiting factors to invertase of C. acetobutylicum were presumed to be present in molasses as the principal cause of the sluggishness.

  1. Acetone-butanol fermentation of blackstrap molasses. An effective factor of some symbiotic organisms against an abnormal fermentation. [Torula utilis

    Energy Technology Data Exchange (ETDEWEB)

    Shige, A; Kinoshita, S; Okumura, T

    1954-01-01

    There were three types of industrial acetone-butanol fermentation of blackstrap molasses; one of them, called B type, was characterized by the extremely prolonged acidity peak, and sluggishness experiments were carried out to find some symbiotic organisms among various aerobic bacteria and yeasts for several strains of Clostridium acetobutylicum. Torula utilis showed an outstanding effectiveness for a rapid completion of the fermentation, and the yields of solvents was much increased. Culture filtrate of T. utilis contained a soluble and invertase activity. A close relation was found between high yields of solvents and the degree of inversion of molasses medium. Thus, the effective factor against sluggishness was ascribed to the invertase activity of the yeast. Some inhibiting factors to invertase of C. acetobutylicum were presumed to be present in molasses as the principal cause of the sluggishness.

  2. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  3. Glass Formation of n-Butanol: Coarse-grained Molecular Dynamics Simulations Using Gay-Berne Potential Model

    Science.gov (United States)

    Xie, Gui-long; Zhang, Yong-hong; Huang, Shi-ping

    2012-04-01

    Using coarse-grained molecular dynamics simulations based on Gay-Berne potential model, we have simulated the cooling process of liquid n-butanol. A new set of GB parameters are obtained by fitting the results of density functional theory calculations. The simulations are carried out in the range of 290-50 K with temperature decrements of 10 K. The cooling characteristics are determined on the basis of the variations of the density, the potential energy and orientational order parameter with temperature, whose slopes all show discontinuity. Both the radial distribution function curves and the second-rank orientational correlation function curves exhibit splitting in the second peak. Using the discontinuous change of these thermodynamic and structure properties, we obtain the glass transition at an estimate of temperature Tg=120±10 K, which is in good agreement with experimental results 110±1 K.

  4. Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

    Directory of Open Access Journals (Sweden)

    B. Ndaba

    2015-06-01

    Full Text Available Single- and co-culture clostridial fermentation was conducted to obtain organic alcohols and acids from sweet sorghum juice as a low cost feedstock. Different inoculum concentrations of single cultures (3, 5, 10 v/v % as well as different ratios of C. acetobutylicum to C. tetanomorphum (3:10, 10:3, 6.5:6.5, 3:3, and 10:10 v/v %, respectively were utilized for the fermentation. The maximum butanol concentration of 6.49 g/L was obtained after 96 h fermentation with 10 % v/v C. acetobutylicum as a single culture. The fermentation with 10% v/v C. tetanomorphum resulted in more than 5 g/l butyric acid production. Major organic acid concentration (lactic acid of 2.7 g/L was produced when an inoculum ratio of 6.5: 6.5 %v/v C. acetobutylicum to C. tetanomorphum was used.

  5. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  6. Phase equilibria of microemulsion forming system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol

    DEFF Research Database (Denmark)

    Kahl, Heike; Quitzsch, Konrad; Stenby, Erling Halfdan

    1997-01-01

    of multicomponent system is the coexistence of a highly structural liquid phase enriched with amphiphilic compounds and an excess water or an excess oil phase or both of them. The phase behaviour was studied experimentally by use of turbidity titration and HPLC measurements and theoretically by application...... of the UNIQUAC-equation and the UNIFAC-method. The UNIFAC-method is able to describe the phase behaviour in the quaternary system qualitatively, without fitting parameters. However, by applying the UNIQUAC-method, with adjustable parameters, it was only possible to model the ternary subsystems. The modelling......A systematic investigation of the phase behaviour involving microemulsions is presented with respect to experimental and calculated data for the four-component system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol and its corresponding ternaries at 25°C. The main feature of this kind...

  7. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  8. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    Science.gov (United States)

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  9. Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels

    International Nuclear Information System (INIS)

    Serras-Pereira, J.; Aleiferis, P.G.; Walmsley, H.L.; Davies, T.J.; Cracknell, R.F.

    2013-01-01

    Highlights: • Heat flux sensors used to characterise the locations of fuel spray wall impingement. • Droplet evaporation modelling used to study the effect of fuel properties. • Behaviour of ethanol and butanol distinctively different to hydrocarbons. -- Abstract: Future fuel stocks for spark-ignition engines are expected to include a significant portion of bio-derived components with quite different chemical and physical properties to those of liquid hydrocarbons. State-of-the-art high-pressure multi-hole injectors for latest design direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in in-cylinder fuel targeting by selection of the exact number and angle of the nozzle’s holes. However, in order to maximise such benefits for future spark-ignition engines and minimise any deteriorating effects with regards to exhaust emissions, it is important to avoid liquid fuel impingement onto the cylinder walls and take into consideration various types of biofuels. This paper presents results from the use of heat flux sensors to characterise the locations and levels of liquid fuel impingement onto the engine’s liner walls when injected from a centrally located multi-hole injector with an asymmetric pattern of spray plumes. Ethanol, butanol, iso-octane, gasoline and a blend of 10% ethanol with 90% gasoline (E10) were tested and compared. The tests were performed in the cylinder of a direct-injection spark-ignition engine at static conditions (i.e. quiescent chamber at 1.0 bar) and motoring conditions (at full load with inlet plenum pressure of 1.0 bar) with different engine temperatures in order to decouple competing effects. The collected data were analysed to extract time-resolved signals, as well as mean and standard deviation levels of peak heat flux. The results were interpreted with reference to in-cylinder spray formation characteristics, as well as fuel evaporation rates obtained by modelling

  10. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer films for gene delivery.

    Science.gov (United States)

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E; Green, Jordan J

    2013-07-10

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.

  11. Adsorption behavior of n-butanol molecules on negatively charged surfaces of electrodes of mercury, gallium, and alloys In-Ga and Tl-Ga

    International Nuclear Information System (INIS)

    Damskin, B.B.; Baturina, O.A.; Vasil'ev, S.Yu.; Emets, V.V.; Kazarinov, V.E.

    1999-01-01

    Curves of differential capacitance in the interfaces Hg/H 2 O, Ga/H 2 O, (In-Ga)/H 2 O and (Tl-Ga)H 2 O in 0.05 M Na 2 SO 4 solutions with different additions of n-butanol have been obtained by the bridge method at a frequency of 420 Hz and temperature of 32 deg C. The method of regression analysis of the curves permitted ascertaining the adsorption parameters of n-butanol for the range of charges q, where there is no chemisorption of H 2 O dipoles. The data obtained suggested that the difference in the adsorption behaviour of organic molecules on the metals studied in the range of higher negative charges is largely determined by different electron electrochemical work functions, the definition being given by S. Trasatti [ru

  12. (3-Aminopropyl)-4-methylpiperazine End-capped Poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based Multilayer Films for Gene Delivery

    Science.gov (United States)

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J

    2013-01-01

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 hours, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4′-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface. PMID:23755861

  13. Vapor-liquid equilibrium ratio of trace furfural in water+1-butanol system; Mizu+1-butanorukei ni okeru biryo no furufuraru no kieki heikohi

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, A.; Hatate, Y.; Aikou, R. [Kagoshima Univ. (Japan). Faculty of Engineering

    1997-11-01

    Vapor-liquid equilibria of a water + 1-butanol system containing a trace amount of furfural were measured at atmospheric pressure by use of a Iino-type still for systems of limited miscibility. Vapor-liquid compositions for the major components (water and 1-butanol) are shown to be nearly coincident with those of the binary system. In the partially miscible region, the vapor-liquid equilibrium ratios of the trace component (furfural) at bubble point were found to be 2.5 and 0.46. Consequently, the partition coefficient of the trace component between the two liquid phases is 5.4. The equilibrium ratio curve of the trace component is presented, in which the calculated curve within the partially miscible region is shown to be coincident with the experimental data. 5 refs., 3 figs., 1 tab.

  14. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    International Nuclear Information System (INIS)

    Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Sykes, E. Charles H.; Carrasco, Javier; Michaelides, Angelos

    2016-01-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our

  15. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Sykes, E. Charles H., E-mail: charles.sykes@tufts.edu [Department of Chemistry, Tufts University, Medford, Massachusetts 02155 (United States); Carrasco, Javier [CIC Energigune, Albert Einstein 48, 01510 Miñano, Álava (Spain); Michaelides, Angelos [Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-03-07

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our

  16. Copper-based nanocatalysts for 2-butanol dehydrogenation: Screening and optimization of preparation parameters by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Geravand, Elham; Shariatinia, Geravand; Yaripour, Fereydoon [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sahebdelfar, Saeed [National Iranian Petrochemical Company, P. O. Box 1493, Tehran (Iran, Islamic Republic of)

    2015-12-15

    Two types of copper-based dehydrogenation nanocatalysts (Cu/ZnO/Al{sub 2}O{sub 3} and Cu/SiO{sub 2}) were prepared from various precursors by impregnation (IM), sol-gel (SG) and co precipitation (COPRE) methods. The structures of samples were characterized by N{sub 2} adsorption-desorption, XRD, XRF, TPR, N{sub 2}O-Titration, FT-IR, FE-SEM and TEM techniques. The catalytic performance tests in vapor-phase dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were carried out in a fixed-bed reactor at a temperature of 260 .deg. C under atmospheric pressure and LHSV of 4mL/(h·g cat). The experimental results indicated that (i) the copper oxide over the COPRE nanocatalyst was reduced at a lower temperature (222 .deg. C) in comparison with the CuO reduced on the SG and IM samples (243 and 327 .deg. C, respectively). Also, the percentage of reduction of CuO species on COPRE catalyst was the highest (98.8%) in comparison with the two other samples, (ii) the COPRE nanocatalyst exhibited the highest activity for the dehydrogenation of 2-butanol to MEK, and (iii) co-precipitation method was selected as an optimum method for preparation of nanocatalyst. The central composite experimental design method was applied for investigation of the effects of four critical preparation factors on the MEK selectivity of Cu/ZnO/Al{sub 2}O{sub 3} nanocatalyst. The results showed that Cu/Zn molar ratio and precipitation pH are the most effective factors on the response and the optimum conditions for synthesis of Cu/ZnO/Al{sub 2}O{sub 3} nanocatalyst with maximum selectivity of MEK were T(pre)=67.5 .deg. C, T(aging)=68.8 .deg. C, pH(pre)=7.27 and Cu/Zn molar ratio=1.38. The performance of the prepared nanocatalyst at the optimum conditions was comparable to the commercially available nanocatalyst.

  17. (3-Aminopropyl)-4-methylpiperazine End-capped Poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based Multilayer Films for Gene Delivery

    OpenAIRE

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J

    2013-01-01

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed ...

  18. Response surface methodology based optimization of diesel–n-butanol –cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics

    International Nuclear Information System (INIS)

    Atmanlı, Alpaslan; Yüksel, Bedri; İleri, Erol; Deniz Karaoglan, A.

    2015-01-01

    Highlights: • RSM based optimization for optimum blend ratio of diesel fuel, n-butanol and cotton oil was done. • 65.5 vol.% diesel fuel, 23.1 vol.% n-butanol and 11.4 vol.% cotton oil (DnBC) was determined. • DnBC decreased brake torque, brake power, BTE and BMEP, while increased BSFC. • DnBC decreased NO x , CO and HC emissions. - Abstract: Many studies declare that 20% biodiesel is the optimum concentration for biodiesel–diesel fuel blends to improve performance. The present work focuses on finding diesel fuel, n-butanol, and cotton oil optimum blend ratios for diesel engine applications by using the response surface method (RSM). Experimental test fuels were prepared by choosing 7 different concentrations, where phase decomposition did not occur in the phase diagram of −10 °C. Experiments were carried out at full load conditions and the constant speed (2200 rpm) of maximum brake torque to determine engine performance and emission parameters. According to the test results of the engine, optimization was done by using RSM considering engine performance and exhaust emissions parameters, to identify the rates of concentrations of components in the optimum blend of three. Confirmation tests were employed to compare the output values of concentrations that were identified by optimization. The real experiment results and the R 2 actual values that show the relation between the outputs from the optimizations and real experiments were determined in high accordance. The optimum component concentration was determined as 65.5 vol.% diesel, 23.1 vol.% n-butanol and 11.4 vol.% cotton oil (DnBC). According to engine performance tests brake torque, brake power, BTE and BMEP of DnBC decreased while BSFC increased compared to those of diesel fuel. NO x , CO and HC emissions of DnBC drastically decreased as 11.33%, 45.17% and 81.45%, respectively

  19. Enhanced bioenergy recovery from oil-extracted microalgae residues via two-step H2/CH4 or H2/butanol anaerobic fermentation.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Shu-Hsien

    2016-03-01

    Algae-based biodiesel is considered a promising alternative energy; therefore, the treatment of microalgae residues would be necessary. Anaerobic processes can be used for treating oil-extracted microalgae residues (OMR) and at the same time for recovering bioenergy. In this study, anaerobic batch experiments were conducted to evaluate the potential of recovering bioenergy, in the forms of butanol, H2, or CH4, from pretreated OMR. Using pretreated OMR as the only substrate, a butanol yield of 0.086 g/g-carbohydrate was obtained at carbohydrate of 40 g/L. With supplemented butyrate, a highest butanol yield of 0.192 g/g-carbohydrate was achieved at pretreated OMR containing 25 g/L of carbohydrate with 15 g/L of butyrate addition, attaining the highest energy yield of 3.92 kJ/g-OMR and energy generation rate of 0.65 kJ/g-OMR/d. CH4 production from pretreated OMR attained an energy yield of 8.83 kJ/g-OMR, but energy generation rate required further improvement. H2 production alone from pretreated OMR might not be attractive regarding energy yield, but it attained a superb energy generation rate of 0.68 kJ/g-OMR/d by combining H2 production from pretreated OMR and butanol production from pretreated OMR with supplementary butyrate from H2 fermentation supernatant. This study demonstrated an integrated system as an option for treating OMR and recovering bioenergy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact

    International Nuclear Information System (INIS)

    Chen, Zheng; Wu, Zhenkuo; Liu, Jingping; Lee, Chiafon

    2014-01-01

    Highlights: • Effects of EGR on high n-butanol/diesel ratio blend (Bu40) were investigated and compared with neat diesel (Bu00). • Bu40 has higher NOx due to wider combustion high-temperature region. • Bu40 has lower soot due to local lower equivalence ratio distribution. • Bu40 has higher CO due to lower gas temperature in the late expansion process. • For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. - Abstract: In this work, the combustion and emission fundamentals of high n-butanol/diesel ratio blend with 40% butanol (i.e., Bu40) in a heavy-duty diesel engine were investigated by experiment and simulation at constant engine speed of 1400 rpm and an IMEP of 1.0 MPa. Additionally, the impact of EGR was evaluated experimentally and compared with neat diesel fuel (i.e., Bu00). The results show that Bu40 has higher cylinder pressure, longer ignition delay, and faster burning rate than Bu00. Compared with Bu00, moreover, Bu40 has higher NOx due to wider combustion high-temperature region, lower soot due to local lower equivalence ratio distribution, and higher CO due to lower gas temperature in the late expansion process. For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. Meanwhile, there is no significant change in HC and CO emissions and indicated thermal efficiency (ITE) with EGR until EGR threshold is reached. When EGR rate exceeds the threshold level, HC and CO emissions increase dramatically, and ITE decreases markedly. Compared with Bu00, the threshold of Bu40 appears at lower EGR rate. Consequently, combining high butanol/diesel ratio blend with medium EGR has the potential to achieve ultra-low NOx and soot emissions simultaneously while maintaining high thermal efficiency level

  1. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  2. Acetone-Butanol-Ethanol (ABE) production in fermentation of enzymatically hydrolyzed cassava flour by Clostridium beijerinckii BA101 and solvent separation.

    Science.gov (United States)

    Lépiz-Aguilar, Leonardo; Rodríguez-Rodríguez, Carlos E; Arias, María Laura; Lutz, Giselle

    2013-08-01

    Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, 40℃, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the first 24 h and a solventogenic phase afterwards. An average of 37.01 g/l ABE was produced after 83 h, with a productivity of 0.446 g/l/h. Butanol production was 25.71 g/l with a productivity of 0.310 g/l/h, high or similar to analogous batch processes described for other substrates. Solvent separation by different combinations of fractioned and azeotropic distillation and liquid-liquid separation were assessed to evaluate energetic and economic costs in downstream processing. Results suggest that the use of cassava as a substrate in ABE fermentation could be a cost-effective way of producing butanol in tropical regions.

  3. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    Science.gov (United States)

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792.

    Science.gov (United States)

    Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom

    2012-03-01

    Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L(-1) was obtained at a dilution rate of 0.22 h(-1) with glucose as a substrate compared to 12.64 g L(-1) at 0.5 h(-1) dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L(-1) h(-1)) was obtained at a dilution rate of 1.9 h(-1) with glucose as a substrate whereas solvent productivity (12.14 g L(-1) h(-1)) was obtained at a dilution rate of 1.5 h(-1) with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.

  5. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation.

    Science.gov (United States)

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Lignocellulose-derived microbial inhibitors such as furfural and 5-hydroxymethyl furfural adversely affect fermentation of lignocellulosic biomass hydrolysates to fuels and chemicals due to their toxicity on fermenting microbes. To harness the potential of lignocellulose as a cheap source of fermentable sugars, in situ detoxification of furfural and other lignocellulose-derived microbial inhibitors is essential. To enhance in situ detoxification and tolerance of furfural by Clostridium beijerinckii NCIMB 8052 during acetone-butanol-ethanol (ABE) fermentation, the effect of glycerol on NADH/NADPH generation and ABE production by furfural (4, 5, and 6 g/L)-challenged cultures was investigated in this study. In all instances, beneficial outcomes were observed. For example, the fermentation medium supplemented with glycerol and subjected to 5 g/L furfural elicited up to 1.8- and 3-fold increases, respectively, in NADH and NADPH levels in C. beijerinckii 8052 relative to the control culture. These critical changes are the likely underpinnings for the glycerol-mediated 2.3-fold increase in the rate of detoxification of 5 g/L furfural, substrate consumption, and ABE production compared to the unsupplemented medium. Collectively, these results demonstrate that increased intracellular NADH/NADPH in C. beijerinckii 8052 due to glycerol utilization engenders favorable effects on many aspects of cellular metabolism, including enhanced furfural reduction and increased ABE production.

  6. Endothelium-Dependent Vasorelaxant Effect of Butanolic Fraction from Caryocar brasiliense Camb. Leaves in Rat Thoracic Aorta

    Directory of Open Access Journals (Sweden)

    Lais Moraes de Oliveira

    2012-01-01

    Full Text Available Caryocar brasiliense Camb. “pequi” is a native plant from the Cerrado region of Brazil that contains bioactive components reported to be antioxidant agents. Previous work has demonstrated that dietary supplementation with pequi decreased the arterial pressure of volunteer athletes. We found that the crude hydroalcoholic extract (CHE of C. brasiliense leaves relaxed, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine, and that the butanolic fraction (BF produced an effect similar to that of the CHE. Aortic relaxation induced by BF was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylatecyclase inhibitor ODQ. However, incubation with atropine and pyrilamine had no effect on the BF-induced vasorelaxation. Moreover, this effect was not inhibited by indomethacin and tetraethylammonium. The concentration-response curve to calcium in denuded-endothelium rings was not modified after incubation with BF, and the vasorelaxation by BF in endothelium-intact rings precontracted with KCl was abolished after incubation with L-NAME. In addition, administration of BF in anesthetized rats resulted in a reversible hypotension. The results reveal that C. brasiliense possesses both in vivo and in vitro activities and that the vascular effect of BF involves stimulation of the nitric oxide/cyclic GMP pathway.

  7. Acetone-butanol-ethanol from sweet sorghum juice by an immobilized fermentation-gas stripping integration process.

    Science.gov (United States)

    Cai, Di; Wang, Yong; Chen, Changjing; Qin, Peiyong; Miao, Qi; Zhang, Changwei; Li, Ping; Tan, Tianwei

    2016-07-01

    In this study, sweet sorghum juice (SSJ) was used as the substrate in a simplified ABE fermentation-gas stripping integration process without nutrients supplementation. The sweet sorghum bagasse (SSB) after squeezing the fermentable juice was used as the immobilized carrier. The results indicated that the productivity of ABE fermentation process was improved by gas stripping integration. A total 24g/L of ABE solvents was obtained from 59.6g/L of initial sugar after 80h of fermentation with gas stripping. Then, long-term of fed-batch fermentation with continuous gas stripping was further performed. 112.9g/L of butanol, 44.1g/L of acetone, 9.5g/L of ethanol (total 166.5g/L of ABE) was produced in overall 312h of fermentation. At the same time, concentrated ABE product was obtained in the condensate of gas stripping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fuel composition effect on the electrostatically-driven atomization of bio-butanol containing engine fuel blends

    International Nuclear Information System (INIS)

    Agathou, Maria S.; Kyritsis, Dimitrios C.

    2012-01-01

    Highlights: ► Sprays of alcohol-containing blends are amenable to electrostatic manipulation. ► Monodispersion is non-achievable for conditions pertaining to automotive applications. ► Electrical conductivity and surface tension do not determine fully the spray behavior. ► Non-dimensional analysis was performed to classify flow regimes for each blend. ► We numbers revealed the possibility of droplet secondary break-up. - Abstract: Electrostatically assisted sprays of three fuel blends of bio-butanol, ethanol and heptane were studied experimentally. Mixture composition was selected such that electrical conductivity and surface tension were kept constant for all three mixtures. In this manner, the effect of fuel composition was investigated in a context that broadens the classical focus on the effective decrease of surface tension through the action of electrostatic fields. High-speed visualization was used in order to capture e-spray morphology. In addition, probability density functions of the e-spray droplet size and velocity were measured using Phase-Doppler Anemometry for a variety of flow rates and applied voltages. The dependence of droplet average diameter on both flow rate and applied electric field was highlighted. Polydisperse sprays were observed which was rationalized through the calculation of droplet Weber numbers that pointed to the possibility of a secondary droplet break-up.

  9. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.

  11. Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol

    Directory of Open Access Journals (Sweden)

    Simona Silvia Merola

    2017-06-01

    Full Text Available Within the context of ever wider expansion of direct injection in spark ignition engines, this investigation was aimed at improved understanding of the correlation between fuel injection strategy and emission of nanoparticles. Measurements performed on a wall guided engine allowed identifying the mechanisms involved in the formation of carbonaceous structures during combustion and their evolution in the exhaust line. In-cylinder pressure was recorded in combination with cycle-resolved flame imaging, gaseous emissions and particle size distribution. This complete characterization was performed at three injection phasing settings, with butanol and commercial gasoline. Optical accessibility from below the combustion chamber allowed visualization of diffusive flames induced by fuel deposits; these localized phenomena were correlated to observed changes in engine performance and pollutant species. With gasoline fueling, minor modifications were observed with respect to combustion parameters, when varying the start of injection. The alcohol, on the other hand, featured marked sensitivity to the fuel delivery strategy. Even though the start of injection was varied in a relatively narrow crank angle range during the intake stroke, significant differences were recorded, especially in the values of particle emissions. This was correlated to the fuel jet-wall interactions; the analysis of diffusive flames, their location and size confirmed the importance of liquid film formation in direct injection engines, especially at medium and high load.

  12. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4.

    Science.gov (United States)

    Herman, Nicolaus A; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji; Miller, Michael J; Zhang, Wenjun

    2017-01-15

    While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 10 6 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. This paper presents the first steps toward advanced genetic engineering of the industrial butanol

  13. Evaluation of Butanol–Gasoline Blends in a Port Fuel-injection, Spark-Ignition Engine Évaluation de mélange butanol-essence dans un moteur à allumage commandé à injection indirecte

    Directory of Open Access Journals (Sweden)

    Dernotte J.

    2009-11-01

    Full Text Available This paper assesses different butanol–gasoline blends used in a port fuel-injection, spark-ignition engine to quantify the influence of butanol addition on the emission of unburned hydrocarbons, carbon monoxide, and nitrogen oxide. Furthermore, in-cylinder pressure was measured to quantify combustion stability and to compare the ignition delay and fully developed turbulent combustion phases as given by 0%–10% and 10%–90% Mass Fraction Burned (MFB. The main findings are: 1 a 40% butanol/60% gasoline blend by volume (B40 minimizes HC emissions; 2 no significant change in NOx emissions were observed, with the exception of the 80% butanol/20% gasoline blend; 3 the addition of butanol improves combustion stability as measured by the COV of IMEP; 4 butanol added to gasoline reduces ignition delay (0%–10% MFB; and 5 the specific fuel consumption of B40 blend is within 10% of that of pure gasoline for stoichiometric mixture. Cet article évalue le potentiel de l’utilisation de différents mélanges butanolessence dans un moteur à allumage commandé à injection indirecte afin de quantifier l’influence de l’ajout de butanol sur les émissions des hydrocarbures imbrûlés (HC, le monoxyde de carbone (CO et les oxydes d’azote (NOx. De plus, l’influence sur la stabilité de combustion, le délai d’inflammation et sur la durée de la phase de combustion turbulente développée y sont également présentés. Les principaux résultats: 1 un mélange de 40% butanol et 60% essence (B40 par volume diminue les émissions de HC; 2 aucun effet significatif sur les émissions de NOx n’a été observé à l’exception du mélange 80% butanol/20% essence; 3 l’ajout de butanol améliore la stabilité de combustion ; 4 l’ajout de butanol réduit le délai d’inflammation, quantifié par la durée pour consommer 10% de masse de gaz frais; et 5 la consommation spécifique de carburant pour un mélange stoechiométrique de B40 est 10% sup

  14. Excited state intramolecular charge transfer reaction in binary mixtures of water and tertiary butanol (TBA): alcohol mole fraction dependence.

    Science.gov (United States)

    Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit

    2008-02-07

    The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.

  15. Spark discharge and flame inception analysis through spectroscopy in a DISI engine fuelled with gasoline and butanol

    Science.gov (United States)

    Irimescu, A.; Merola, S. S.

    2017-10-01

    Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug’s electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part

  16. Enhanced Butanol Production by Clostridium acetobutylicum NCIMB 13357 Grown on Date Fruit as Carbon Source in P2 Medium

    Directory of Open Access Journals (Sweden)

    Emran I. Khamaiseh

    2014-01-01

    Full Text Available The production of biobutanol was studied by the cultivation of Clostridium acetobutylicum NCIMB 13557 in P2 medium including date fruit as the sole substrate. The effect of P2 medium and the effect of different concentrations of date fruit ranging from 10 to 100 g/L on biobutanol production were investigated. Anaerobic batch culture was carried out at 35°C incubation temperature and pH 7.0 ± 0.2 for 72 h. Experimental results showed that the lowest yield of biobutanol and acetone-butanol-ethanol (ABE was 0.32 and 0.35 gram per gram of carbohydrate consumed (g/g, respectively, when an initial date fruit concentration of 10 g/L was utilized. At this fruit date concentration a biobutanol production value of 1.56 g/L was obtained. On the other hand, the maximum yield of biobutanol (0.48 g/g and ABE (0.63 g/g was produced at 50 g/L date fruit concentration with a biobutanol production value as high as 11 g/L. However, when a higher initial date fruit concentration was used, biobutanol and ABE production decreased to reach the yield of 0.22 g/g and 0.35 g/g, respectively, where 100 g/L date fruit was used. Similar results also revealed that 10.03 g/L biobutanol was produced using 100 g/L date fruit.

  17. Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw.

    Science.gov (United States)

    Li, Jingwen; Wang, Lan; Chen, Hongzhang

    2016-11-01

    The acetone-butanol-ethanol (ABE) fermentation of lignocellulose at high solids content has recently attracted extensive attention. However, the productivity of high solids ABE fermentation of lignocellulose is typically low in traditional processes due to the lack of efficient intensifying methods. In the present study, periodic peristalsis, a novel intensifying method, was applied to improve ABE production by the simultaneous saccharification and fermentation (SSF) of steam-exploded corn straw using Clostridium acetobutylicum ATCC824. The ABE concentration and the ABE productivity of SSF at a solids content of 17.5% (w/w) with periodic peristalsis were 17.1 g/L and 0.20 g/(L h), respectively, which were higher than those obtained under static conditions (15.2 g/L and 0.14 g/(L h)). The initial sugar conversion rate over the first 12 h with periodic peristalsis was 4.67 g/(L h) at 10 FPU/g cellulase dosage and 15% (w/w) solids content, an increase of 49.7% compared with the static conditions. With periodic peristalsis, the period of batch fermentation was shortened from 108 h to 84 h. The optimal operating regime was a low frequency (6 h -1 ) of periodic peristalsis in the acid-production phase (0-48 h) of SSF. Therefore, periodic peristalsis should be an effective intensifying method to increase the productivity of ABE fermentation at high solids content. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Chemiluminescence analysis of the effect of butanol-diesel fuel blends on the spray-combustion process in an experimental common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia S.

    2015-01-01

    Full Text Available Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40 were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40% together with a strong smoke number decrease (>80% and NOx concentration increase (@50% were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.

  19. Modelado matemático y simulación para mejorar la producción de butanol en la fermentación ABE

    OpenAIRE

    Henao Siso, Lessa Victoria

    2014-01-01

    La fermentación ABE es un proceso biocatalítico que utiliza un microorganismo para procesar los hidratos de carbono y producir solventes como: la acetona, butanol y etanol. Tanto el Clostridium acetobutylicum como el Clostridium beijerinckii han demostrado ser bacterias útiles para la fermentación ABE y con ellas se han realizado esfuerzos para mejorar su producción, empleando diversos sustratos. Para ello se planeó obtener un modelo matemático de un proceso de fermentación ABE que actualment...

  20. The Draft Genome Sequence of Clostridium sp. Strain NJ4, a Bacterium Capable of Producing Butanol from Inulin Through Consolidated Bioprocessing.

    Science.gov (United States)

    Jiang, Yujia; Lu, Jiasheng; Chen, Tianpeng; Yan, Wei; Dong, Weiliang; Zhou, Jie; Zhang, Wenming; Ma, Jiangfeng; Jiang, Min; Xin, Fengxue

    2018-05-23

    A novel butanogenic Clostridium sp. NJ4 was successfully isolated and characterized, which could directly produce relatively high titer of butanol from inulin through consolidated bioprocessing (CBP). The assembled draft genome of strain NJ4 is 4.09 Mp, containing 3891 encoded protein sequences with G+C content of 30.73%. Among these annotated genes, a levanase, a hypothetical inulinase, and two bifunctional alcohol/aldehyde dehydrogenases (AdhE) were found to play key roles in the achievement of ABE production from inulin through CBP.

  1. Excess enthalpies of binary and ternary mixtures containing dibutyl ether (DBE), 1-butanol, and heptane at T = 298.15 K and 313.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Fernando; Alaoui, Fatima E.M. [Departamento de Ingenieria Electromecanica, Escuela Politecnica Superior, Universidad de Burgos, E-09006 Burgos (Spain); Segovia, Jose J.; Villamanan, Miguel A. [Grupo de Termodinamica y Calibracion TERMOCAL, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Montero, Eduardo A., E-mail: emontero@ubu.e [Departamento de Ingenieria Electromecanica, Escuela Politecnica Superior, Universidad de Burgos, E-09006 Burgos (Spain)

    2010-01-15

    Experimental excess molar enthalpies of the ternary systems left bracedibutyl ether (DBE) + 1-butanol + heptaneright brace and the corresponding binary systems at T = 298.15 K and T = 313.15 K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the binary and the ternary systems show endothermic character. The experimental data for the binary and ternary systems have been fitted using the Redlich-Kister equation, the NRTL and UNIQUAC models. The values of the standard deviation indicate good agreement between the experimental results and those calculated from the equations.

  2. Excess enthalpies of binary and ternary mixtures containing dibutyl ether (DBE), 1-butanol, and heptane at T = 298.15 K and 313.15 K

    International Nuclear Information System (INIS)

    Aguilar, Fernando; Alaoui, Fatima E.M.; Segovia, Jose J.; Villamanan, Miguel A.; Montero, Eduardo A.

    2010-01-01

    Experimental excess molar enthalpies of the ternary systems {dibutyl ether (DBE) + 1-butanol + heptane} and the corresponding binary systems at T = 298.15 K and T = 313.15 K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the binary and the ternary systems show endothermic character. The experimental data for the binary and ternary systems have been fitted using the Redlich-Kister equation, the NRTL and UNIQUAC models. The values of the standard deviation indicate good agreement between the experimental results and those calculated from the equations.

  3. Berberine as a chemical and pharmacokinetic marker of the butanol-extracted Food Allergy Herbal Formula-2.

    Science.gov (United States)

    Yang, Nan; Srivastava, Kamal; Song, Ying; Liu, Changda; Cho, Sool; Chen, Yujuan; Li, Xiu-Min

    2017-04-01

    Food Allergy Herbal Formula-2 (FAHF-2) provided protection against peanut anaphylaxis in a murine model and induced beneficial immune-modulation in humans. Butanol-refined FAHF-2, B-FAHF-2, retained safety and efficacy in the peanut allergic murine model at only 1/5 of FAHF-2 dosage. One compound, berberine, was isolated and identified in vitro as a bioactive component present in FAHF-2 and B-FAHF-2. The aim of this study was to investigate berberine as a chemical and pharmacokinetic marker of B-FAHF-2. The consistency of constituents between B-FAHF-2 and FAHF-2 was tested. Peanut allergic C3H/HeJ mice were orally administered with 1mg of berberine or B-FAHF-2 containing an equivalent amount of berberine, and the ability to protect against peanut anaphylaxis and pharmacokinetic parameters were determined. Human intestinal epithelial cells (Caco-2) were cultured with berberine with or without the nine individual herbal constituents in B-FAHF-2, and the absorbed berberine levels were determined. Berberine is one of the major components in B-FAHF-2 and FAHF-2 formula. In a peanut allergic mouse model, B-FAHF-2, but not berberine, protected mice from anaphylaxis reactions. Pharmacokinetic profiles showed that the C max of B-FAHF-2 fed mice was 289.30±185.40ng/mL; whereas berberine alone showed very low bioavailability with C max value of 35.13±47.90ng/mL. Caco-2 cells influx assay showed that 7 of 9 herbal constituents in B-FAHF-2 increased berberine absorption at rates ranging from 18 to 205%. B-FAHF-2 remarkably increased the bioavailability of berberine. Berberine can be used as chemical and pharmacokinetic marker of B-FAHF-2. Other herbal components in B-FAHF-2 may facilitate the absorption of berberine. Copyright © 2017. Published by Elsevier B.V.

  4. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Cotta, Michael A.

    2008-01-01

    In these studies, alkaline peroxide pretreatment of wheat straw was investigated. Pretreated wheat straw was hydrolyzed using cellulolytic and xylanolytic enzymes, and the hydrolysate was used to produce butanol using Clostridium beijerinckii P260. The culture produced less than 2.59 g L -1 acetone-butanol-ethanol (ABE) from alkaline peroxide wheat straw hydrolysate (APWSH) that had not been treated to reduce salt concentration (a neutralization product). However, fermentation was successful after inhibitors (salts) were removed from the hydrolysate by electrodialysis. A control glucose fermentation resulted in the production of 21.37 g L -1 ABE, while salt removed APWSH resulted in the production of 22.17 g L -1 ABE. In the two fermentations, reactor productivities were 0.30 and 0.55 g L -1 h -1 , respectively. A comparison of use of different substrates (corn fiber, wheat straw) and different pretreatment techniques (dilute sulfuric acid, alkaline peroxide) suggests that generation of inhibitors is substrate and pretreatment specific

  5. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product.

    Science.gov (United States)

    Zhao, Xinhe; Kasbi, Mayssa; Chen, Jingkui; Peres, Sabine; Jolicoeur, Mario

    2017-12-01

    The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L -1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis. © 2017 Wiley Periodicals, Inc.

  8. Meta-analysis and functional validation of nutritional requirements of solventogenic Clostridia growing under butanol stress conditions and coutilization of D-glucose and D-xylose.

    Science.gov (United States)

    Heluane, Humberto; Evans, Matthew R; Dagher, Sue F; Bruno-Bárcena, José M

    2011-07-01

    Recent advances in systems biology, omics, and computational studies allow us to carry out data mining for improving biofuel production bioprocesses. Of particular interest are bioprocesses that center on microbial capabilities to biotransform both the hexose and pentose fractions present in crop residues. This called for a systematic exploration of the components of the media to obtain higher-density cultures and more-productive fermentation operations than are currently found. By using a meta-analysis approach of the transcriptional responses to butanol stress, we identified the nutritional requirements of solvent-tolerant strain Clostridium beijerinckii SA-1 (ATCC 35702). The nutritional requirements identified were later validated using the chemostat pulse-and-shift technique. C. beijerinckii SA-1 was cultivated in a two-stage single-feed-stream continuous production system to test the proposed validated medium formulation, and the coutilization of D-glucose and D-xylose was evaluated by taking advantage of the well-known ability of solventogenic clostridia to utilize a large variety of carbon sources such as mono-, oligo-, and polysaccharides containing pentose and hexose sugars. Our results indicated that C. beijerinckii SA-1 was able to coferment hexose/pentose sugar mixtures in the absence of a glucose repression effect. In addition, our analysis suggests that the solvent and acid resistance mechanisms found in this strain are differentially regulated compared to strain NRRL B-527 and are outlined as the basis of the analysis toward optimizing butanol production.

  9. Preparation of H-mordenite/MCM-48 composite and its catalytic performance in the alkylation of toluene with tert-butanol

    Science.gov (United States)

    Zhou, Zhiwei; Cheng, Fuling; Qin, Juan; Yu, Pengcheng; Xu, Lin; Gu, Zhiqiang; Liu, Xiaoqin; Wu, Wenliang

    2017-09-01

    A series of HM/MCM-48 samples with different SiO2/Al2O3 molar ratio were prepared by sol-gel method. The prepared catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, FT-IR, SEM, and TEM techniques, and their catalytic performance was investigated in alkylation of toluene with tert-butanol. The adsorption capacity and the acid sites amount of HM/MCM-48-4 sample prepared by growing MCM-48 on the surface of HM zeolite are much higher than that of their mechanical mixture (HM/MCM-48(4) sample) due to its biporous structure; it shows higher catalytic performance than other HM/MCM-48 samples. The influence of reaction conditions on the catalytic performance of HM/MCM-48-4 zeolite was discussed. Toluene conversion of 41.4% and p-tert-butyltoluene selectivity of 73.5% were obtained at the weight ratio of toluene to HM/MCM-48-4 of 5, reaction temperature of 453 K, reaction time of 5 h and the molar ratio of toluene to tert-butanol of 0.5.

  10. Alkalization of steam and condensate with 2-amino-1-butanol and hydrazine; Alkalisering av aanga och kondensat med butanolamin och hydrazin

    Energy Technology Data Exchange (ETDEWEB)

    Falk, I [Studsvik Material AB, Nykoeping (Sweden)

    1996-04-01

    To maintain a low corrosion level in steam- and condensate systems at power and industrial plants, an alkalization of the steam is needed. A low corrosion level lowers the risk of operation disturbances and reduces the cost of the condensate clean up. A better knowledge in the behavior of the alkalis will improve the possibilities to avoid the corrosion attacks. In this work experimental measurements have been carried out during steam boiler conditions as temperature, continuous steam generation and condensation. It has been found that the volatility of 2-amino-1-butanol is very low during stationary dynamic conditions at 250 deg C and 120 deg C. To achieve a high ph-value in the final condensate a very high concentration of 2-amino-1-butanol is thus needed especially when the steam contains acidic compounds. The alkalization effect is obtained from ammonia which is created by thermal decomposition of hydrazine in the boiler water. It is necessary to carry out experimental investigations showing the thermal stability of organic compounds in boiler water before it is possible to recommend them as better volatile alkalis than ammonia and hydrazine. 6 refs, 13 figs

  11. Sustainable hydrogen production from bio-oil model compounds (meta-xylene) and mixtures (1-butanol, meta-xylene and furfural).

    Science.gov (United States)

    Bizkarra, K; Barrio, V L; Arias, P L; Cambra, J F

    2016-09-01

    In the present work m-xylene and an equimolecular mixture of m-xylene, 1-butanol and furfural, all of them bio-oil model compounds, were studied in steam reforming (SR) conditions. Three different nickel catalysts, which showed to be active in 1-butanol SR (Ni/Al2O3, Ni/CeO2-Al2O3 and Ni/La2O3-Al2O3), were tested and compared with thermodynamic equilibrium values. Tests were carried out at temperatures from 800 to 600°C at atmospheric pressure with a steam to carbon ratio (S/C) of 5.0. Despite the different bio-oils fed, the amount of moles going through the catalytic bed was kept constant in order to obtain comparable results. After their use, catalysts were characterized by different techniques and those values were correlated with the activity results. All catalysts were deactivated during the SR of the mixture, mainly by coking. The highest hydrogen yields were obtained with Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts in the SR of m-xylene and SR of the mixture, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Investigating N-Butanol and Ethyl Acetate Fractions of Nigella Sativa on Motoneurons’ Density of Spinal Cord Ventral Horn in Rats with Compressived Injury of Sciatic Nerve

    Directory of Open Access Journals (Sweden)

    M Ferdosi makan

    2015-02-01

    Methods: In this study, 24 Wistar male rats with average body weight of 250gr to 300gr were divided into four groups of six: control, compression, A(compression + n-butanol fraction 75mg/kg and B(compression+ethyl acetate fraction75mg/kg. In compression and treatment groups, sciatic nerve of the right leg underwent compression (30sec. In fact, the extract was injected intraperitoneally twice after the compression. After 28days, lumbar segments of spinal cord L2-L4 were sampled under perfusion method. After going through tissue processes, they were cut in serial sections (7µ, and stained with toluidine blue. Then, the density of alpha-motoneurons of spinal cord ventral horn was measured by using dissector method. Conclusion: The study findings revealed that n-butanol fraction of Nigella sativa caused an increase in neuronal density which posesses neuroprotective effects. This could be due to antioxidant and anti inflammatory effects of this herb. However, increases in neuronal density in ethyl acetate fraction didn’t prove to be significant.

  13. Liquid density of biofuel mixtures: (Dibutyl ether + 1-butanol) system at pressures up to 140 MPa and temperatures from (293.15 to 393.15) K

    International Nuclear Information System (INIS)

    Alaoui, Fatima E.M.; Montero, Eduardo A.; Bazile, Jean-Patrick; Aguilar, Fernando; Boned, Christian

    2011-01-01

    Highlights: → New density data for binary mixtures of (dibutyl ether + 1-butanol) are reported. → The pressure and temperature intervals are 0.1 to 140 MPa and 293.15 to 393.15 K. → 445 Data points measured at five compositions were fitted to a Tait-like equation. → Excess volumes have been calculated from the experimental data. → The isobaric expansivity and the isothermal compressibility have been derived. - Abstract: This work reports new experimental density data (445 points) for binary mixtures of (dibutyl ether + 1-butanol) over the composition range (five compositions; 0.15 ≤ dibutyl ether mole fraction x ≤ 0.85), from (293.15 to 393.15) K (every 20 K), and for 15 pressures from (0.1 to 140) MPa (every 10 MPa). An Anton Paar vibrating tube densimeter, calibrated with an uncertainty of ±0.5 kg . m -3 was used to perform these measurements. The experimental density data were fitted with a Tait-like equation with low standard deviations. Excess volumes have been calculated from the experimental data and fitted by the Redlich-Kister equation. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation.

  14. Liquid density of biofuel mixtures: (Dibutyl ether + 1-butanol) system at pressures up to 140 MPa and temperatures from (293.15 to 393.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Alaoui, Fatima E.M. [Laboratoire des Fluides Complexes, Faculte des Sciences et Techniques, UMR CNRS 5150, Universite de Pau, BP 1155, 64013 Pau Cedex (France); Departamento de Ingenieria Electromecanica, Escuela Politecnica Superior, Universidad de Burgos, E-09006 Burgos (Spain); Montero, Eduardo A., E-mail: emontero@ubu.es [Departamento de Ingenieria Electromecanica, Escuela Politecnica Superior, Universidad de Burgos, E-09006 Burgos (Spain); Bazile, Jean-Patrick [Laboratoire des Fluides Complexes, Faculte des Sciences et Techniques, UMR CNRS 5150, Universite de Pau, BP 1155, 64013 Pau Cedex (France); Aguilar, Fernando [Departamento de Ingenieria Electromecanica, Escuela Politecnica Superior, Universidad de Burgos, E-09006 Burgos (Spain); Boned, Christian [Laboratoire des Fluides Complexes, Faculte des Sciences et Techniques, UMR CNRS 5150, Universite de Pau, BP 1155, 64013 Pau Cedex (France)

    2011-11-15

    Highlights: > New density data for binary mixtures of (dibutyl ether + 1-butanol) are reported. > The pressure and temperature intervals are 0.1 to 140 MPa and 293.15 to 393.15 K. > 445 Data points measured at five compositions were fitted to a Tait-like equation. > Excess volumes have been calculated from the experimental data. > The isobaric expansivity and the isothermal compressibility have been derived. - Abstract: This work reports new experimental density data (445 points) for binary mixtures of (dibutyl ether + 1-butanol) over the composition range (five compositions; 0.15 {<=} dibutyl ether mole fraction x {<=} 0.85), from (293.15 to 393.15) K (every 20 K), and for 15 pressures from (0.1 to 140) MPa (every 10 MPa). An Anton Paar vibrating tube densimeter, calibrated with an uncertainty of {+-}0.5 kg . m{sup -3} was used to perform these measurements. The experimental density data were fitted with a Tait-like equation with low standard deviations. Excess volumes have been calculated from the experimental data and fitted by the Redlich-Kister equation. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation.

  15. The Influence of 1-Butanol and Trisodium Citrate Ion on Morphology and Chemical Properties of Chitosan-Based Microcapsules during Rigidification by Alkali Treatment

    Science.gov (United States)

    Chatterjee, Sudipta; Salaün, Fabien; Campagne, Christine

    2014-01-01

    Linseed oil which has various biomedical applications was encapsulated by chitosan (Chi)-based microcapsules in the development of a suitable carrier. Oil droplets formed in oil-in-water emulsion using sodium dodecyl sulfate (SDS) as emulsifier was stabilized by Chi, and microcapsules with multilayers were formed by alternate additions of SDS and Chi solutions in an emulsion through electrostatic interaction. No chemical cross-linker was used in the study and the multilayer shell membrane was formed by ionic gelation using Chi and SDS. The rigidification of the shell membrane of microcapsules was achieved by alkali treatment in the presence of a small amount of 1-butanol to reduce aggregation. A trisodium citrate solution was used to stabilize the charge of microcapsules by ionic cross-linking. Effects of butanol during alkali treatment and citrate in post alkali treatment were monitored in terms of morphology and the chemical properties of microcapsules. Various characterization techniques revealed that the aggregation was decreased and surface roughness was increased with layer formation. PMID:25474188

  16. Butanol / Honda CRADA Report

    Science.gov (United States)

    2015-02-01

    Beam Overall (includes collar) 8’-6” Cruise Speed 35 knots @ 4500 RPM Operational Draft (DIW4 with engines vertical) 3’-3” Maximum Operating...system, it froze upon startup. To restart the system, the test engineer remotely walked the boat crewman through the required steps.  Interaction...install request, automatically installing a mouse driver on the port. The data flowing through the port caused this “virtual mouse ” to randomly

  17. Butanol by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, M

    1960-07-19

    BuOH is produced by inoculating a carbohydrate mash with Clostridium saccharoperbutylacetonicum (ATCC 13564), fermenting the inoculated mash, and recovering the BuOH by fractional distillation. Thus, a medium containing sugar 4, (NH/sub 4/)/sub 2/SO/sub 4/ 0.2, Ca superphosphate 0.1, and CoCO/sub 3/ 0.3% is inoculated with a C. saccharoperbutylacetonicum culture and cultivated at 30/sup 0/ until the acidity begins to decrease. Then the culture is transferred to a second medium of similar composition. This transfer is repeated a third time, and then the culture is transferred to the main mash (same composition) and fermented for 60 hours at 30/sup 0/. The yield of BuOH is 11.5 g/1 or 25.5% of the sugar supplied.

  18. Splitting of 9-iodo-1,7-carborane by potassium hydroxide in butanol with butoxy group substitution for iodine atom when formation of anions of 1-butoxy- and 5-butoxy-nido-7,9-dicarbaundecaborate

    International Nuclear Information System (INIS)

    Zakharkin, L.I.; Ol'shevskaya, V.A.; Guseva, V.V.; Panfilova, S.Yu.

    2000-01-01

    The 9-iodo-1,7-carborane by heating in the potassium hydroxide butanol solution is splitted into the stereoisomeric anions of the nido-7,9-dicarbaundecaborate substituting under the reaction conditions the butoxy-group for iodine atom with formation of anions of the 1-butoxy- and -butoxy-nido-7,9-dicarbaundecaborate [ru

  19. Improvement of the liver pathology by the aqueous extract and the n-butanol fraction of Sida pilosa Retz in Schistosoma mansoni-infected mice.

    Science.gov (United States)

    Jatsa, Hermine Boukeng; Russo, Remo Castro; Pereira, Cintia Aparecida de Jesus; Aguilar, Edenil Costa; Garcia, Cristiana Couto; Araújo, Emília Souza; Oliveira, Jailza Lima Rodrigues; Rodrigues, Vanessa Fernandes; de Oliveira, Vinícius Gustavo; Alvarez-Leite, Jacqueline Isaura; Braga, Fernão Castro; Louis-Albert Tchuem Tchuente; Kamtchouing, Pierre; Negrão-Corrêa, Deborah Aparecida; Teixeira, Mauro Martins

    2016-03-02

    Sida pilosa Retz (Malvaceae) is a plant used in Africa for the treatment of intestinal helminthiasis, lower abdominal pains and dysmenorrhea. In order to determine the potential use of S. pilosa in the treatment of schistosomiasis mansoni, we evaluated the schistosomicidal, antioxidant and anti-fibrotic properties of the aqueous extract and the n-butanol fraction of its aerial parts. S. pilosa aqueous extract (SpAE) at 100, 200 and 400mg/kg and n-butanol fraction (SpBF) at 50, 100 and 200mg/kg were administered per os to Schistosoma mansoni-infected mice for 4 weeks. Praziquantel (100mg/kg × 5 days) was used as reference drug. After sacrifice, worm burden and egg count, transaminases and proteins levels were evaluated. Malondialdehyde (MDA), lipid hydroperoxydes (LOOH), catalase (CAT), superoxide dismutase (SOD), eosinophil peroxidase (EPO) and myeloperoxidase (MPO) were also measured. The anti-fibrotic effect of the plant was evaluated by the determination of hydroxyproline and γ-interferon (IFN-γ). The treatment of S. mansoni-infected mice by SpAE or SpBF resulted in a moderate reduction of worm burden and egg load in the liver and intestine. Both SpAE and SpBF significantly reversed the increasing liver proteins, MDA, LOOH and CAT levels induced by the infection. Moreover, SOD activity was improved by SpAE and SpBF. Schistosomiasis mansoni considerably increased the EPO (p<0.001) and MPO activities (p<0.001). SpAE treatment significantly reduced EPO and MPO activities at all doses. SpBF failed to reduce the increasing MPO and decreased EPO only at the highest dose. S. mansoni-infection induced an increase in hydroxyproline content (p<0.001) and a decrease in IFN-γ level (p<0.001). Both SpAE and SpBF significantly reduced hepatic hydroxyproline content, while only SpAE (p<0.05) improved IFN-γ level. These results suggest that the liver pathology in schistosomiasis mansoni is improved by S. pilosa aqueous extract, which disclosed a moderate schistosomicidal

  20. Separation of the potential G-quadruplex ligands from the butanol extract of Zanthoxylum ailanthoides Sieb. & Zucc. by countercurrent chromatography and preparative high performance liquid chromatography.

    Science.gov (United States)

    Han, Tian; Cao, Xueli; Xu, Jing; Pei, Hairun; Zhang, Hong; Tang, Yalin

    2017-07-21

    G-quadruplex DNA structure is considered to be a very attractive target for antitumor drug design due to its unique role in maintaining telomerase activities. Therefore, discovering ligands with high stability of G-quadruplex structure is of great interest. In this paper, pH-zone refining counter current chromatography (CCC) and preparative high performance liquid chromatography (HPLC) were employed for the separation of potent G-quadruplex ligands from the n-butanol fraction of the crude extract of Zanthoxylum ailanthoides, which is a traditional Chinese medicine recently found to display high inhibitory activity against several human cancer cells. The 75% aqueous ethanol extract of the stem bark of Z. ailanthoides and its fractions with petroleum ether, ethyl acetate and n-butanol displayed almost the same G-quadruplex stabilization ability. Here, pH-zone refining CCC was used for the separation of the alkaloids from the n-butanol fraction by a seldom used solvent system composed of dichloromethane-methanol-water (4:1:2.5) with 10mM TEA in the organic stationary phase as retainer and 10mM HCl in the aqueous mobile phase as eluter. Compounds I, II and III were obtained, with purity greater than 95%, in the quantities of 31.2, 94.0, and 26.4mg respectively from 300mg of lipophilic fraction within 80min, which were identified as three tetrahydroprotoberberines isolated for the first time in this plant. In addition, a phenylpropanoid glycoside compound IV (Syringin), an isoquinoline (Magnoflorine, V), and two lignin isomers (+)-lyoniresiol-3α-O-β-d-glucopyranoside (VI) and (-)-lyoniresinol -3α-O-β-D -glucopyranoside (VII) were isolated by traditional CCC together with preparative HPLC. Compounds IV, V, VI and VII were obtained, with purity greater than 95%, in the quantities of 4.0, 13.2, 6.7, and 6.5mg respectively from 960mg of hydrophilic fraction. Among the seven isolated compounds, tetrahydroprotoberberine I, II and III were found to display remarkable

  1. Field evaluation of synthetic lure (3-methyl-1-butanol) when compared to non odor-baited control in capturing Anopheles mosquitoes in varying land-use sites in Madagascar.

    Science.gov (United States)

    Zohdy, Sarah; Derfus, Kristin; Andrianjafy, Mbolatiana Tovo; Wright, Patricia C; Gillespie, Thomas R

    2015-03-07

    Malaria is the 4(th) largest cause of mortality in Madagascar. To better understand malaria transmission dynamics, it is crucial to map the distribution of the malaria vectors, mosquitoes belonging to the genus Anopheles. To do so, it is important to have a strong Anopheles-specific lure to ensure the maximum number of captures. Previous studies have isolated volatiles from the human skin microbiota and found the compound 3-methyl-1-butanol to be the most attractive to the malaria mosquito, Anopheles gambiae, in a laboratory setting; and recommended 3-methyl-1-butanol as a compound to increase An. gambiae captures in the field. To date, this compound's ability to lure wild mosquitoes in differing land-use settings has not been tested. In this study, we evaluate the role of the synthetic compound, 3-methyl-1-butanol in combination with field produced CO(2) in attracting Anopheles mosquitoes in varying land-use sites in Madagascar. CDC miniature light traps in combination with field produced CO(2) were deployed in and around six villages near Ranomafana National Park, Madagascar. To test the role of 3-methyl-1-butanol in luring Anopheles mosquitoes, two traps were set in each land-use site (village, agricultural sites, and forested habitats affiliated with each village). One was baited with the synthetic odor and the other was kept as a non-baited control. While 3-methyl-1-butanol baited traps did capture An. gambiae s.l. in this study, we did not find traps baited with synthetic 3-methyl-1-butanol to be more successful in capturing Anopheles mosquitoes, (including Anopheles gambiae s.l.) than the non odor-baited control traps in any of the land-use sites examined; however, regardless of odor bait, trapping near livestock pens resulted in the capture of significantly more Anopheles specimens. A strong synthetic lure in combination with insecticide has great potential as a mosquito control. Our findings suggest that trapping mosquitoes near livestock in malaria

  2. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures

    International Nuclear Information System (INIS)

    Uyumaz, Ahmet

    2015-01-01

    Highlights: • Combustion was retarded with the increase of the amount of isopropanol and n-butanol in the test fuels. • Combustion was advanced with the increase of air inlet temperature on HCCI combustion. • Isopropanol seems more suitable fuel due to controlling the HCCI combustion and preventing knocking. • Almost zero NO emissions were measured when alcohol used except for n-heptane and B20 test fuels. - Abstract: An experimental study was conducted in a single cylinder, four stroke port injection Ricardo Hydra test engine in order to determine the effects of pure n-heptane, the blends of n-heptane and n-butanol fuels B20, B30, B40 (including 20%, 30%, 40% n-butanol and 80%, 70%, 60% n-heptane by vol. respectively) and the blends of n-heptane and isopropanol fuels P20, P30, P40 (including 20%, 30%, 40% isopropanol and 80%, 70%, 60% n-heptane by vol. respectively) on HCCI combustion. Combustion and performance characteristics of n-heptane, n-butanol and isopropanol were investigated at constant engine speed of 1500 rpm and λ = 2 in a HCCI engine. The effects of inlet air temperature were also examined on HCCI combustion. The test results showed that the start of combustion was advanced with the increasing of inlet air temperature for all test fuels. Start of combustion delayed with increasing percentage of n-butanol and isopropanol in the test fuels. Knocking combustion was seen with B20 and n-heptane test fuels. Minimum combustion duration was observed in case of using B40. Almost zero NO emissions were measured with test fuels apart from n-heptane and B20. The test results also showed that CO and HC emissions decreased with the increase of inlet air temperature for all test fuels. Isopropanol showed stronger resistance for knocking compared to n-butanol in HCCI combustion due to its higher octane number. It was determined that n-butanol was more advantageous according to isopropanol as thermal efficiency. As a result it was found that the HCCI

  3. Estudio de volumen molar y refracción molar de miscelas de triglicéridos (triacetina, tributirina o tricaprilina y alcoholes (etanol, 1-butanol o 1-hexanol

    Directory of Open Access Journals (Sweden)

    Rodríguez Rodríguez, M.

    1992-12-01

    Full Text Available Values of molar refraction for every studied mixtures show linear plots versus molar fractions of triglyceride. Values of molar volume show this behaviour, but only for tributyrin-butanol or tricaprylin-butanol miscellas. However, in tributyrin-ethanol mixtures, volume contractions have been found, whereas triacetin-butanol and tributyrin-hexanol show volume expansions. These facts are related to the mode of being structured of the alcohol and triglyceride molecules in mixtures. A linear relationship between molar volume and temperature have been found, and also a linear dependence between the coefficient of thermal expansion at constant pressure and the molar fraction of triglyceride.

    Los valores de la refracción molar en todas las miscelas estudiadas presentan variaciones lineales frente a la fracción molar de triglicérido. la misma variación que presentan los valores del volumen molar de las miscelas tributirina y tricaprilina en butanol. Sin embargo, en las miscelas de tributirina-etanol se encuentran contracciones de volumen mientras que en las de triacetina-butanol y tributirina-hexanol expansiones, atribuidas en ambos casos a la forma de estructurarse las moléculas de alcohol y triglicérido en las miscelas. Por otra parte, se encuentra una variación lineal entre el volumen molar de las miscelas y la temperatura, y se establece una relación lineal entre el coeficiente de dilatación térmico molar a presión constante y la fracción molar de triglicérido en los cinco sistemas estudiados.

  4. Dynamic viscosities of 2-butanol with alkanes (C{sub 8}, C{sub 10}, and C{sub 12}) at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, B.; Dominguez, A.; Tojo, J. E-mail: jtojo@uvigo.es

    2004-04-01

    The dynamic viscosities, densities, and speed of sound for the binary mixtures (2-butanol with octane, or decane, or dodecane) at several temperatures T=(293.15, 298.15, 303.15) K have been measured over the whole composition range and atmospheric pressure along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility, and viscosity deviation for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. UNIQUAC equation were used to correlate the experimental viscosity data. UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures.

  5. Synthesis of sulfated titania supported on mesoporous silica using direct impregnation and its application in esterification of acetic acid and n-butanol

    International Nuclear Information System (INIS)

    Wang Yuhong; Gan Yunting; Whiting, Roger; Lu Guanzhong

    2009-01-01

    A new method has been developed for the preparation of sulfated titania (S-TiO 2 ) supported on mesoporous silica. The use of direct exchange of metal containing precursors for the surfactants in the as-synthesized MCM-41 substrate produced a product with high sulfur content without serious blockage of the pore structure of MCM-41. The pore sizes and volumes of the resultant S-TiO 2 /MCM-41 composites were found to vary markedly with the loading of TiO 2 . The strong acidic character of the composites obtained was examined by using them as catalysts for the esterification of acetic acid and n-butanol. - Abstract: XRD profiles of the composites of S-TiO 2 /MCM-41 with different TiO 2 contents. The low angle peaks indicate the MCM-41-like structure retained and a TiO 2 phase appeared at high angle region. Display Omitted

  6. Determinación de la acidez de sólidos por la prueba catalítica de la deshidratación del 1-butanol

    Directory of Open Access Journals (Sweden)

    Jaime Olmedo Pérez Oliveros

    2005-01-01

    Full Text Available En este trabajo se examina la deshidratación catalítica de 1-butanol para determinar la naturaleza de los centros ácidos de muestras de circonia sulfatada con o sin el dopaje de Ce, Sb o W así como, muestras de ZSM-5, Al-MCM-41 y permutita (aluminosilicato de naturaleza amorfa. La acidez de los diferentes catalizadores se ordenó dependiendo de la medida de la actividad catalítica y de la magnitud de las relaciones de abundancia relativa de los isómeros cis-buteno/trans-buteno (CB/TB, 1-buteno/trans-buteno (1B/TB e isobuteno/trans-buteno (IB/TB. Se encontró que la actividad aumenta a mayor contenido de sulfato en la circonia. Además, el catalizador Al-MCM-41 muestra un comportamiento similar a la mejor muestra de circonia sulfatada.

  7. Activity coefficients at infinite dilution and enthalpies of solution of methanol, 1-butanol, and 1-hexanol in 1-hexyl-3-methyl-imidazolium bis(trifluoromethyl-sulfonyl) imide

    International Nuclear Information System (INIS)

    Heintz, Andreas; Verevkin, Sergey P.; Lehmann, Jochen K.; Vasiltsova, Tatiana V.; Ondo, Daniel

    2007-01-01

    Activity coefficients at infinite dilution γ i ∼ of methanol, 1-butanol, and 1-hexanol in the ionic liquid 1-hexyl-3-methyl-imidazolium bis(trifluoromethyl-sulfonyl) imide ([HMIM][NTf 2 ]) have been determined by gas chromatography using the ionic liquids as stationary phase. The measurements were carried out at different temperatures between 298K and 396K. From the temperature dependence of the limiting activity coefficients partial molar excess enthalpies at infinite dilution H i E,∼ of the alcohol in the ionic liquid have been derived. Additionally, enthalpies of solution of the same alcohols in the [HMIM][NTf 2 ] have been measured at T=298.15K in the range of low concentrations using titration calorimetry. Results at infinite dilution, H i E,∼ , are compared with those indirectly obtained from activity coefficients in infinite dilution γ i ∼ . Within the experimental error of both methods thermodynamic consistency has been confirmed

  8. Rapid evaporation at the superheat limit of methanol, ethanol, butanol and n-heptane on platinum films supported by low-stress SiN membranes.

    Science.gov (United States)

    Ching, Eric J; Avedisian, C Thomas; Cavicchi, Richard C; Chung, Do Hyun; Rah, Jeff; Carrier, Michael J

    2016-10-01

    The bubble nucleation temperatures of several organic liquids (methanol, ethanol, butanol, n-heptane) on stress-minimized platinum (Pt) films supported by SiN membranes is examined by pulse-heating the membranes for times ranging from 1 µs to 10 µs. The results show that the nucleation temperatures increase as the heating rates of the Pt films increase. Measured nucleation temperatures approach predicted superheat limits for the smallest pulse times which correspond to heating rates over 10 8 K/s, while nucleation temperatures are significantly lower for the longest pulse times. The microheater membranes were found to be robust for millions of pulse cycles, which suggests their potential in applications for moving fluids on the microscale and for more fundamental studies of phase transitions of metastable liquids.

  9. Excess parameters for binary mixtures of ethyl benzoate with 1-propanol, 1-butanol and 1-pentanol at T=303, 308, 313, 318, and 323 K

    International Nuclear Information System (INIS)

    Sreehari Sastry, S.; Babu, Shaik; Vishwam, T.; Parvateesam, K.; Sie Tiong, Ha.

    2013-01-01

    Various thermo–acoustic parameters, such as excess isentropic compressibility (K s E ), excess molar volume (V E ), excess free length (L f E ), excess Gibb's free energy (ΔG *E ), and excess Enthalpy (H E ), have been calculated from the experimentally determined data of density, viscosity and speed of sound for the binary mixtures of ethyl benzoate+1-propanol, or +1-butanol, or +1-pentanol over the entire range of composition at different temperatures (303, 308, 313, 318 and 323 K). The excess functions have been fitted to the Redlich–Kister type polynomial equation. The deviations for excess thermo–acoustic parameters have been explained on the basis of the intermolecular interactions present in these binary mixtures

  10. Excess parameters for binary mixtures of ethyl benzoate with 1-propanol, 1-butanol and 1-pentanol at T=303, 308, 313, 318, and 323 K

    Energy Technology Data Exchange (ETDEWEB)

    Sreehari Sastry, S., E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Babu, Shaik, E-mail: babu.computers@gmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Vishwam, T., E-mail: vishwam@gitam.edu [Department of Engineering Physics, Gitam University, Hyderabad Campus, Andhra Pradesh 502 239 (India); Parvateesam, K., E-mail: kps27031966@gmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522 510 (India); Sie Tiong, Ha., E-mail: hast@utar.edu.my [Faculty of Science, Department of Chemical Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak (Malaysia)

    2013-07-01

    Various thermo–acoustic parameters, such as excess isentropic compressibility (K{sub s}{sup E}), excess molar volume (V{sup E}), excess free length (L{sub f}{sup E}), excess Gibb's free energy (ΔG{sup *E}), and excess Enthalpy (H{sup E}), have been calculated from the experimentally determined data of density, viscosity and speed of sound for the binary mixtures of ethyl benzoate+1-propanol, or +1-butanol, or +1-pentanol over the entire range of composition at different temperatures (303, 308, 313, 318 and 323 K). The excess functions have been fitted to the Redlich–Kister type polynomial equation. The deviations for excess thermo–acoustic parameters have been explained on the basis of the intermolecular interactions present in these binary mixtures.

  11. Bio-plasticizer production by hybrid acetone-butanol-ethanol fermentation with full cell catalysis of Candida sp. 99-125.

    Science.gov (United States)

    Chen, Changjing; Cai, Di; Qin, Peiyong; Chen, Biqiang; Wang, Zheng; Tan, Tianwei

    2018-06-01

    Hybrid process that integrated fermentation, pervaporation and esterification was established aiming to improve the economic feasibility of the conventional acetone-butanol-ethanol (ABE) fermentation process. Candida sp 99-125 cells were used as full-cell catalyst. The feasibility of batch and fed-batch esterification using the ABE permeate of pervaporation (ranging from 286.9 g/L to 402.9 g/L) as substrate were compared. Valuable butyl oleate was produced along with ethyl oleate. For the batch esterification, due to severe inhibition of substrate to lipase, the yield of butyl oleate and ethyl oleate were only 24.9% and 3.3%, respectively. In contrast, 75% and 11.8% of butyl oleate and ethyl oleate were obtained, respectively, at the end of the fed-batch esterification. The novel integration process provides a promising strategy for in situ upgrading ABE products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Spray-combustion process characterization in a common rail diesel engine fuelled with butanol-diesel blends by conventional methods and optical diagnostics

    Directory of Open Access Journals (Sweden)

    Simona Silvia Merola

    2014-04-01

    Full Text Available The target of a sustainable mobility has led to investigate advanced combustion modes and fuels technologies. On the other side, the increasing global energy demand and the decreasing fossil-energy resources are enhancing the interest in the use of renewable alternative fuels for compression ignition engines with the target of near-zero emission levels. Although performance and emissions of alternative-fuel within light-duty diesel engines have been extensively investigated, results of fuel chemical composition impact on combustion by integrated optical methodologies are lacking. In order to meet this challenge, one of the main objectives of the research efforts is to characterize the combustion and species evolution. In this investigation, conventional tests and optical diagnostics were employed to enhance the comprehension of the combustion process and chemical markers in a common rail compression ignition engine powered by butanol-diesel blends. The investigation was focused on the effect of the injection strategy and blend composition on in-cylinder spray combustion and soot formation, through UV-visible digital imaging and natural emission spectroscopy. Experiments were performed in an optically accessible single cylinder high swirl compression ignition engine, equipped with a common rail multi-jets injection system. UV-visible emission spectroscopy was used to follow the evolution of the combustion process chemical markers. Spectral features of OH were identified and followed during the spray combustion process examining different pilot-main dwell timings. Soot spectral evidence in the visible wavelength range was correlated to soot engine out emissions. In this work, conventional and optical data related to diesel fuel blended with 40 % of n-butanol will be presented.

  13. Multinuclear NMR characterization of CTAB-hexanol-water, sodium oleate-butanol-water and triton X-100-decanol-water microemulsions

    International Nuclear Information System (INIS)

    Nagy, J.B.; Bodart-Ravet, I.; Derouane, E.G.; Gourgue, A.; Verfaillie, J.P.

    1989-01-01

    Multinuclear NMR is a very valuable tool to characterize micellar systems or microemulsions. It allows one to determine c.m.c. values, to study the dissolution of organic molecules, the solvation of cations and anions, the structural changes occurring in a ternary diagram, the mobility of the molecules, etc. This review paper essentially deals with the characterization of cationic (CTAB-hexanol-water), anionic (sodium oleate-butanol-water) and neutral (Triton X-100-decanol-water) reversed micelles. The use of paramagnetic ions [Ni(II), CO(II), Fe(III), etc.] is particularly emphasized to characterize the site of solubilization and their interaction with surfactant and cosurfactant molecules 13 C-NMR). It is concluded, that the metallic ions are basically solvated in the inner water cores and one or more hexanol molecules are included in their first coordination shells in the CTAB-hexanol-water microemulsions. In the Triton X-100-decanol-water microemulsions, both decanol and Triton X-100 molecules enter the first coordination shell of Co(II) ions which are dissolved in both aqeous water cores and the organic medium. 19 F-NMR of a fluorinated probe molecule is particularly useful to study the size of the inner water cores. The method is based on the partition of the molecules between the interface and the organic medium. However, this method has to be applied with great care, and the computed data have to be compared to other physico-chemical results. Both 19 F- and 23 Na-NMR results show a great variation of the behaviour of the sodium oleate-butanol-water system in the so-called bicontinuous region. The Na + ions are oriented independently on a hypothetical inverse micellar droplet. (author). 43 refs.; 18 figs.; 7 tabs

  14. Isolation of a solventogenic Clostridium sp. strain: fermentation of glycerol to n-butanol, analysis of the bcs operon region and its potential regulatory elements.

    Science.gov (United States)

    Panitz, J C; Zverlov, V V; Pham, V T T; Stürzl, S; Schieder, D; Schwarz, W H

    2014-02-01

    A new solventogenic bacterium, strain GT6, was isolated from standing water sediment. 16S-rRNA gene analysis revealed that GT6 belongs to the heterogeneous Clostridium tetanomorphum group of bacteria exhibiting 99% sequence identity with C. tetanomorphum 4474(T). GT6 can utilize a wide range of carbohydrate substrates including glucose, fructose, maltose, xylose and glycerol to produce mainly n-butanol without any acetone. Additional products of GT6 metabolism were ethanol, butyric acid, acetic acid, and trace amounts of 1,3-propanediol. Medium and substrate composition, and culture conditions such as pH and temperature influenced product formation. The major fermentation product from glycerol was n-butanol with a final concentration of up to 11.5 g/L. 3% (v/v) glycerol lead to a total solvent concentration of 14 g/L within 72 h. Growth was not inhibited by glycerol concentrations as high as 15% (v/v). The solventogenesis genes crt, bcd, etfA/B and hbd composing the bcs (butyryl-CoA synthesis) operon of C. tetanomorphum GT6 were sequenced. They occur in a genomic arrangement identical to those in other solventogenic clostridia. Furthermore, the sequence of a potential regulator gene highly similar to that of the NADH-sensing Rex family of regulatory genes was found upstream of the bcs operon. Potential binding sites for Rex have been identified in the promoter region of the bcs operon of solvent producing clostridia as well as upstream of other genes involved in NADH oxidation. This indicates a fundamental role of Rex in the regulation of fermentation products in anaerobic, and especially in solventogenic bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the o/w microemulsion quenching technique.

    Science.gov (United States)

    Mojahedian, Mohammad M; Daneshamouz, Saeid; Samani, Soliman Mohammadi; Zargaran, Arman

    2013-09-01

    Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) are novel medicinal carriers for controlled drug release and drug targeting in different roots of administration such as parenteral, oral, ophthalmic and topical. These carriers have some benefits such as increased drug stability, high drug payload, the incorporation of lipophilic and hydrophilic drugs, and no biotoxicity. Therefore, due to the cost-efficient, proportionally increasable, and reproducible preparation of SLN/NLC and the avoidance of organic solvents used, the warm microemulsion quenching method was selected from among several preparation methods for development in this research. To prepare the warm O/W microemulsion, lipids (distearin, stearic acid, beeswax, triolein alone or in combination with others) were melted at a temperature of 65°C. After that, different ratios of Tween60 (10-22.5%) and glyceryl monostearate (surfactant and co-surfactant) and water were added, and the combination was stirred. Then, 1-butanol (co-surfactant) was added dropwise until a clear microemulsion was formed and titration continued to achieve cloudiness (to obtain the microemulsion zone). The warm o/w microemulsions were added dropwise into 4°C water (1:5 volume ratio) while being stirred at 400 or 600 rpm. Lipid nanosuspensions were created upon the addition of the warm o/w microemulsion to the cold water. The SLN were obtained over a range of concentrations of co-surfactants and lipids and observed for microemulsion stability (clearness). For selected preparations, characterization involved also determination of mean particle size, polydispersity and shape. According to the aim of this study, the optimum formulations requiring the minimum amounts of 1-butanol (1.2%) and lower temperatures for creation were selected. Mono-disperse lipid nanoparticles were prepared in the size range 77 ± 1 nm to 124 ± 21 nm according to a laser diffraction particle size analyzer and transmission electron

  16. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.

    Science.gov (United States)

    Zhang, Jie; Zong, Wenming; Hong, Wei; Zhang, Zhong-Tian; Wang, Yi

    2018-03-09

    Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endogenous immune systems. Here, we report the exploitation of Type I-B CRISPR-Cas of Clostridium tyrobutyricum for genome engineering. In silico CRISPR array analysis and plasmid interference assay revealed that TCA or TCG at the 5'-end of the protospacer was the functional protospacer adjacent motif (PAM) for CRISPR targeting. With a lactose inducible promoter for CRISPR array expression, we significantly decreased the toxicity of CRISPR-Cas and enhanced the transformation efficiency, and successfully deleted spo0A with an editing efficiency of 100%. We further evaluated effects of the spacer length on genome editing efficiency. Interestingly, spacers ≤ 20 nt led to unsuccessful transformation consistently, likely due to severe off-target effects; while a spacer of 30-38 nt is most appropriate to ensure successful transformation and high genome editing efficiency. Moreover, multiplex genome editing for the deletion of spo0A and pyrF was achieved in a single transformation, with an editing efficiency of up to 100%. Finally, with the integration of the alcohol dehydrogenase gene (adhE1 or adhE2) to replace cat1 (the key gene responsible for butyrate production and previously could not be deleted), two mutants were created for n-butanol production, with the butanol titer reached historically record high of 26.2 g/L in a batch fermentation. Altogether, our results demonstrated the easy programmability and high efficiency of endogenous CRISPR-Cas. The developed protocol herein has a broader applicability to other prokaryotes containing endogenous CRISPR-Cas systems. C. tyrobutyricum could be employed as an excellent platform to be engineered for biofuel

  17. Attenuation of dermal wounds via downregulating oxidative stress and inflammatory markers by protocatechuic acid rich n-butanol fraction of Trianthema portulacastrum Linn. in wistar albino rats.

    Science.gov (United States)

    Yadav, Ekta; Singh, Deepika; Yadav, Pankajkumar; Verma, Amita

    2017-12-01

    Oxidative stress and inflammation contribute as a key factor for retarding the process of dermal wound healing. Trianthema portulcastrum Linn. (TP) leaves reported to possess antioxidant, antifungal, anti-inflammatory and antibacterial properties, which could make TP a promising wound healing agent. The current study was aimed to estimate the antioxidant potential of the fractionated hydroethanolic extract of TP leaves and evaluate wound healing activity by excision and incision wound models along with the assessment of possible underlying mechanism. Ethyl acetate, chloroform and n-butanol fractions of the hydroethanolic extract of TP leaves were examined for in vitro antioxidant ability by DPPH method. Strongest antioxidant activity bearing n-butanol fraction (nBuTP) was further analyzed quantitatively by High Performance Liquid Chromatography coupled with Diode Array Detector (HPLC-DAD). Wound healing potential of nBUTP using excision and incision wound model was studied. Wistar albino rats were randomly divided into four groups, containing six animals in each group; group I served as control treated with simple ointment base, group II was standard group, treated with povidone-iodine ointment USP (5%), group III treated with nBuTP 5% w/w ointment, and group IV treated with nBuTP 10%w/w ointment. All the groups were topically applied their respective ointments, once daily, till the complete healing achieved. Wound healing was assessed by analyzing % wound closure, hydroxyproline content, epithelialization period, tensile strength, enzymatic antioxidative status and inflammatory markers. Total phenolic and flavonoid content of the extract was estimated to be 112.32±1.12 and 84.42±0.47mg/g, respectively. HPLC-DAD of nBuTP confirmed the presence of chlorogenic acid (20.74±0.03), protocatechuic acid (34.45±0.02mg/g), caffeic acid (4.31±0.03mg/g) and ferulic acid (1.43±0.01mg/g). 5% and 10%w/w nBuTP ointment significantly accelerated the wound healing process

  18. N-Butanol and Aqueous Fractions of Red Maca Methanolic Extract Exerts Opposite Effects on Androgen and Oestrogens Receptors (Alpha and Beta in Rats with Testosterone-Induced Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Diego Fano

    2017-01-01

    Full Text Available Benign Prostatic Hyperplasia (BPH affects, worldwide, 50% of 60-year-old men. The Peruvian plant red maca (Lepidium meyenii inhibits BPH in rodents. This study aimed to determine the effects of methanolic red maca extract and its n-butanol and aqueous fractions on expression of androgen and oestrogen receptors in rats with testosterone enanthate-induced BPH. Thirty-six rats in six groups were studied. Control group received 2 mL of vehicle orally and 0.1 mL of propylene glycol intramuscularly. The second group received vehicle orally and testosterone enanthate (TE (25 mg/0.1 mL intramuscularly in days 1 and 7. The other four groups were BPH-induced with TE and received, during 21 days, 3.78 mg/mL of finasteride, 18.3 mg/mL methanol extract of red maca, 2 mg/mL of n-butanol fraction, or 16.3 mg/mL of aqueous fraction from red maca. Treatments with red maca extract and its n-butanol but not aqueous fraction reduced prostate weight similar to finasteride. All maca treated groups restored the expression of ERβ, but only the aqueous fraction increased androgen receptors and ERα. In conclusion, butanol fraction of red maca reduced prostate size in BPH by restoring expression of ERβ without affecting androgen receptors and ERα. This effect was not observed with aqueous fraction of methanolic extract of red maca.

  19. N-Butanol and Aqueous Fractions of Red Maca Methanolic Extract Exerts Opposite Effects on Androgen and Oestrogens Receptors (Alpha and Beta) in Rats with Testosterone-Induced Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Fano, Diego; Vásquez-Velásquez, Cinthya; Gonzales-Castañeda, Cynthia; Guajardo-Correa, Emanuel; Orihuela, Pedro A; Gonzales, Gustavo F

    2017-01-01

    Benign Prostatic Hyperplasia (BPH) affects, worldwide, 50% of 60-year-old men. The Peruvian plant red maca (Lepidium meyenii) inhibits BPH in rodents. This study aimed to determine the effects of methanolic red maca extract and its n-butanol and aqueous fractions on expression of androgen and oestrogen receptors in rats with testosterone enanthate-induced BPH. Thirty-six rats in six groups were studied. Control group received 2 mL of vehicle orally and 0.1 mL of propylene glycol intramuscularly. The second group received vehicle orally and testosterone enanthate (TE) (25 mg/0.1 mL) intramuscularly in days 1 and 7. The other four groups were BPH-induced with TE and received, during 21 days, 3.78 mg/mL of finasteride, 18.3 mg/mL methanol extract of red maca, 2 mg/mL of n-butanol fraction, or 16.3 mg/mL of aqueous fraction from red maca. Treatments with red maca extract and its n-butanol but not aqueous fraction reduced prostate weight similar to finasteride. All maca treated groups restored the expression of ER β , but only the aqueous fraction increased androgen receptors and ER α . In conclusion, butanol fraction of red maca reduced prostate size in BPH by restoring expression of ER β without affecting androgen receptors and ER α . This effect was not observed with aqueous fraction of methanolic extract of red maca.

  20. N-Butanol and Aqueous Fractions of Red Maca Methanolic Extract Exerts Opposite Effects on Androgen and Oestrogens Receptors (Alpha and Beta) in Rats with Testosterone-Induced Benign Prostatic Hyperplasia

    Science.gov (United States)

    Vásquez-Velásquez, Cinthya

    2017-01-01

    Benign Prostatic Hyperplasia (BPH) affects, worldwide, 50% of 60-year-old men. The Peruvian plant red maca (Lepidium meyenii) inhibits BPH in rodents. This study aimed to determine the effects of methanolic red maca extract and its n-butanol and aqueous fractions on expression of androgen and oestrogen receptors in rats with testosterone enanthate-induced BPH. Thirty-six rats in six groups were studied. Control group received 2 mL of vehicle orally and 0.1 mL of propylene glycol intramuscularly. The second group received vehicle orally and testosterone enanthate (TE) (25 mg/0.1 mL) intramuscularly in days 1 and 7. The other four groups were BPH-induced with TE and received, during 21 days, 3.78 mg/mL of finasteride, 18.3 mg/mL methanol extract of red maca, 2 mg/mL of n-butanol fraction, or 16.3 mg/mL of aqueous fraction from red maca. Treatments with red maca extract and its n-butanol but not aqueous fraction reduced prostate weight similar to finasteride. All maca treated groups restored the expression of ERβ, but only the aqueous fraction increased androgen receptors and ERα. In conclusion, butanol fraction of red maca reduced prostate size in BPH by restoring expression of ERβ without affecting androgen receptors and ERα. This effect was not observed with aqueous fraction of methanolic extract of red maca. PMID:29375645

  1. UVC-mutagenesis in acetogens: resistance to methanol, ethanol, acetone, or n-butanol in recombinants with tailored genomes as the step in engineering of commercial biocatalysts for continuous CO₂/H₂ blend fermentations.

    Science.gov (United States)

    Kiriukhin, Michael; Tyurin, Michael; Gak, Eugene

    2014-05-01

    Time- and cost-efficient six-step UVC-mutagenesis was developed and validated to generate acetogen mutants with preliminary reduced genomes to prevent product inhibition in the to-be-engineered commercial biocatalysts. Genome reduction was performed via elimination of pta, ack, spo0A, spo0J and some pro-phage genes. UVC-mutants such as Clostridium sp. MT1784RG, Clostridium sp. MT653RG, Clostridium sp. MT896RG, and Clostridium sp. MT1962RG (all 4 share 97 % DNA homology with Clostridium ljungdahlii ATCC 55383) were selected based on resistance to methanol (3 M), ethanol (3.6 M), acetone (2.5 M), or n-butanol (0.688 M), respectively. As a part of the biocatalyst engineering algorithm, genome reduction step was associated with integration of attTn7 recognition sequence to the chromosomes of each of the above strains to prepare the defined integration sites for future integration of multi-copy synthetic operons encoding biosynthesis of methanol, ethanol, acetone or n-butanol. Reduced genome mutants had cell duplication times decreased compared to the same for the respective parental strains. All groups of mutants had decreased share of palmitic (C16:0) and increased share of oleic (C18:1) acids along with detection of isopropylstearate (C20) compared to the parental strains. Mutants resistant to acetone and n-butanol also had monounsaturated fatty acid (C20:1) not found in parental strains. Cyclopropane fatty acid (C21) was identified only in n-butanol resistant mutants.

  2. Evaluation of Antiradical and Anti-Inflammatory Activities of Ethyl Acetate and Butanolic Subfractions of Agelanthus dodoneifolius (DC. Polhill & Wiens (Loranthaceae Using Equine Myeloperoxidase and Both PMA-Activated Neutrophils and HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Rainatou Boly

    2015-01-01

    Full Text Available The ethyl acetate and n-butanolic subfractions of Agelanthus dodoneifolius were investigated for their antioxidant and antimyeloperoxidase (MPO activities. The reactive oxygen species (ROS generation was assessed by lucigenin-enhanced chemiluminescence (CL and dichlorofluorescein- (DCF- induced fluorescence techniques from phorbol myristate acetate- (PMA- stimulated equine neutrophils and human myeloid cell line HL-60, respectively. In parallel, the effects of the tested subfractions were evaluated on the total MPO release by stimulated neutrophils and on the specific MPO activity by means of immunological assays. The results showed the potent activity of the butanolic subfraction, at least in respect of the chemiluminescence test (IC50 = 0.3±0.1 µg/mL and the ELISA and SIEFED assays (IC50 = 2.8±1.2 µg/mL and 1.3±1.0 µg/mL, respectively. However, the ethyl acetate subfraction was found to be the most potent in the DCF assay as at the highest concentration, DCF fluorescence intensity decreases of about 50%. Moreover, we demonstrated that the ethyl acetate subfraction was rich in catechin (16.51% while it was not easy to identify the main compounds in the butanolic subfraction using the UPLC-MS/MS technique. Nevertheless, taken together, our results provide evidence that Agelanthus dodoneifolius subfractions may represent potential sources of natural antioxidants and of antimyeloperoxidase compounds.

  3. Densities and volume properties of (water + tert-butanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.

    2011-01-01

    The densities of {water (1) + tert-butanol (2)} binary mixture were measured over the temperature range (274.15 to 348.15) K at atmospheric pressure using 'Anton Paar' digital vibrating-tube densimeter. Density measurements were carried out over the whole concentration range at (308.15 to 348.15) K. The following volume parameters were calculated: excess molar volumes and thermal isobaric expansivities of the mixture, partial molar volumes and partial molar thermal isobaric expansivities of the components. Concentration dependences of excess molar volumes were fitted with Redlich-Kister equation. The results of partial molar volume calculations using four equations were compared. It was established that for low alcohol concentrations at T ≤ 208 K the inflection points at x 2 ∼ 0.02 were observed at concentration dependences of specific volume. The concentration dependences of partial molar volumes of both water and tert-butanol had extremes at low alcohol content. The temperature dependence of partial molar volumes of water had some inversion at x 2 ∼ 0.65. The temperature dependence of partial molar volumes of tert-butanol at infinite dilution had minimum at ∼288 K. It was discovered that concentration dependences of thermal isobaric expansivities of the mixture at small alcohol content and low temperatures passed through minimum.

  4. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.

    Science.gov (United States)

    Kumar, Brajesh; Kumar, Shashi; Sinha, Shishir; Kumar, Surendra

    2018-08-01

    A thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H 2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573-1473 K), pressure (1-10 atm), and steam/fuel molar feed ratio (F ABE  = 5.5-12) have been investigated on equilibrium compositions of products, H 2 , CO, CO 2 , CH 4 and solid carbon. The best suitable conditions for maximization of desired product H 2 , suppression of CH 4 , and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H 2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    Science.gov (United States)

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  6. Thermodynamic and transport properties of (1-Butanol + 1,4-Butanediol) at temperatures from (298.15 to 318.15) K

    International Nuclear Information System (INIS)

    Zorebski, Edward; Geppert-Rybczynska, Monika

    2010-01-01

    Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich-Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg-Nissan and McAllister equations for viscosities of mixtures have also been examined.

  7. The n-butanolic extract of Opuntia ficus-indica var. saboten enhances long-term memory in the passive avoidance task in mice.

    Science.gov (United States)

    Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Park, Dong Hyun; Jung, Seo Yun; Kim, Hyoung Ja; Lee, Yong Sup; Jin, Changbae; Ryu, Jong Hoon

    2010-08-16

    Opuntia ficus-indica var. saboten Makino (Cactaceae) is used to treat burns, edema, dyspepsia, and asthma in traditional medicine. The present study investigated the beneficial effects of the n-butanolic extract of O. ficus-indica var. saboten (BOF) on memory performance in mice and attempts to uncover the mechanisms underlying its action. Memory performance was assessed with the passive avoidance task, and western blotting and immunohistochemistry were used to measure changes in protein expression and cell survival. After the oral administration of BOF for 7 days, the latency time in the passive avoidance task was significantly increased relative to vehicle-treated controls (P<0.05). Western blotting revealed that the expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated cAMP response element binding-protein (pCREB), and phosphorylated extracellular signal-regulated kinase (pERK) 1/2 were significantly increased in hippocampal tissue after 7 days of BOF administration (P<0.05). Doublecortin and 5-bromo-2-deoxyuridine immunostaining also revealed that BOF significantly enhanced the survival of immature neurons, but did not affect neuronal cell proliferation in the subgranular zone of the hippocampal dentate gyrus. These results suggest that the subchronic administration of BOF enhances long-term memory, and that this effect is partially mediated by ERK-CREB-BDNF signaling and the survival of immature neurons. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Synthesis and characterization of completely soluble polyaniline salts via inverse emulsion polymerization using a mixture of chloroform and 2- butanol as a dispersing medium

    International Nuclear Information System (INIS)

    Gul, S.; Bilal, S.

    2011-01-01

    Polyaniline (PANI) is one of the most promising candidates for possible technological applications. PANI has potential applications in batteries, anion exchanger, tissue engineering, inhibition of steel corrosion, fuel cell, sensors and so on. However, its insolubility in common organic solvents limits its range of applications. In the present study an attempt has been made to synthesize soluble polyaniline salt via inverse polymerization pathway using benzoyl peroxide as oxidant and dodecylbenzenesulfonic acid (DBSA) as dopant as well as a surfactant. A mixture of chloroform and 2-butanol was used as dispersion medium for the first time. The influence of synthesis parameters such as concentration of aniline, benzoyl peroxide and DBSA on the yield and other properties of the resulting PANI salt was studied. The synthesized PANI salt was found to be completely soluble in DMSO, DMF, chloroform and in a mixture of toluene and 2-propanol. The synthesized polymer salt was also characterized with cyclic voltammetry, SEM, XRD, UV-Vis spectroscopy and viscosity measurements. TGA was used to analyze the thermal properties of synthesized polymer. The extent of doping of the PANI salt was determined from UV-Vis spectra and TGA analysis. The activation energy for the degradation of the polymer was calculated with the help of TGA. (author)

  9. Experimental evaluation of the effect of compression ratio on performance and emission of SI engine fuelled with gasoline and n-butanol blend at different loads

    Directory of Open Access Journals (Sweden)

    Rinu Thomas

    2016-09-01

    Full Text Available Never ending demand for efficient and less polluting engines have always inspired newer technologies. Extensive study has been done on variable compression ratio, a promising in-cylinder technology, in the recent past. The present work is an experimental investigation to examine the variation of different parameters such as brake thermal efficiency, exhaust gas temperature and emissions with respect to change in compression ratio in a single-cylinder carbureted SI engine at different loads with two different fuels. Experiments were conducted at three different compression ratios (CR = 7:1, 8.5:1 and 10:1. The fuels used in this study are pure gasoline and 20% n-butanol blend (B20 in gasoline. The results showed that brake thermal efficiency increases with CR at all loads. Further, the experimental results showed the scope of improving the part-load efficiency of SI engine by adopting the concept of variable compression ratio (VCR technology, especially when fuels with better anti-knock characteristics are used. The uncertainty analysis of the experiments based on the specifications of the equipment used is also tabulated.

  10. Extractionless GC/MS analysis of gamma-hydroxybutyrate and gamma-butyrolactone with trifluoroacetic anhydride and heptafluoro-1-butanol from aqueous samples.

    Science.gov (United States)

    Sabucedo, Alberto J; Furton, Kenneth G

    2004-06-01

    gamma-Hydroxybutyrate (GHB) is a DEA Schedule I drug of abuse commonly spiked into beverages to incapacitate victims of sexual assault. GHB is a challenging drug for analysis by GC/MS because of its small size, charged nature, low volatility, and intramolecular esterification leading to gamma-butyrolactone (GBL). In this work an extractionless technique has been developed that allows for the use of an aqueous sample for direct derivatization. The technique uses a solution of trifluoroacetic anhydride (TFAA) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (HFB) to derivatize the active hydrogens of GHB. The conversion of GBL into GHB can be forced under alkaline conditions by diluting the sample in 10 mM borate buffer, pH 12. GBL found in beverages intended for human consumption is treated as a Schedule I control substance analogue. Spikes of the two compounds into several beverage matrices gave quantitative recovery of GHB by GC/MS. The derivatization produces higher molecular mass products whose fragmentation pattern provides multiple peaks for confirmation and quantification. The concentration of GBL can also be indirectly determined by the method developed. Therefore, this extractionless technique is rapid, sensitive, and selective for the confirmation of the presence of GHB and GBL in commercial beverages.

  11. Association between Secondhand Smoke in Hospitality Venues and Urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol Concentrations in Non-Smoking Staff.

    Science.gov (United States)

    Kim, Jeonghoon; Lee, Kiyoung; Kwon, Ho-Jang; Lee, Do Hoon; Kim, KyooSang

    2016-11-08

    The purpose of this study was to determine the relationship between urinary cotinine and total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) concentrations in non-smoking staff and the indoor levels of fine particles (PM 2.5 ) in hospitality venues that allow smoking, with respect to demographic and indoor environmental factors. We evaluated 62 hospitality venues that allowed smoking in Seoul, Korea. A real-time aerosol monitor was used to measure indoor PM 2.5 concentrations. Field technicians recorded indoor environmental characteristics. One non-smoking staff member in each hospitality venue was tested for urinary cotinine and total NNAL concentrations. Demographic characteristics were obtained from self-reported staff questionnaires. Natural-log (ln)-transformed PM 2.5 concentrations were significantly correlated with the ln-transformed cotinine ( r = 0.31) and the total NNAL concentrations ( r = 0.32). In multivariable regression analysis, the urinary cotinine concentrations of the staff members were significantly correlated with indoor PM 2.5 concentrations; those with the highest concentrations were more likely to be women or staff members that worked in venues with a volume hospitality venues that allow smoking.

  12. Secondhand smoke exposure within semi-open air cafes and tobacco specific 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) concentrations among nonsmoking employees.

    Science.gov (United States)

    Vardavas, Constantine I; Karabela, Maria; Agaku, Israel T; Matsunaga, Yuko; Myridakis, Antonis; Kouvarakis, Antonis; Stephanou, Euripides G; Lymperi, Maria; Behrakis, Panagiotis K

    2014-10-01

    Secondhand smoke (SHS) is a defined occupational hazard. The association though between SHS exposure in semi-open air venues and tobacco specific carcinogen uptake is an area of debate. A cross sectional survey of 49 semi-open air cafes in Athens, Greece was performed during the summer of 2008, prior to the adoption of the national smoke free legislation. All venues had at least 1 entire wall open to allow for free air exchange. Indoor concentrations of particulate matter smaller than 2.5 microns (PM2.5) attributable to SHS were assessed during a work shift, while 1 non-smoking employee responsible for indoor and outdoor table service from each venue provided a post work shift urine sample for analysis of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). Post work shift NNAL concentrations were correlated with work shift PM2.5 concentrations attributable to SHS (r = 0.376, p = 0.0076). Urinary NNAL concentrations among employees increased by 9.5%, per 10 μg/m(3) increase in PM2.5 concentrations attributable to SHS after controlling for the time of day and day of week. These results indicate that the commonly proposed practice of maintaining open sliding walls as a means of free air exchange does not lead to the elimination of employee exposure to tobacco specific carcinogens attributable to workplace SHS.

  13. Gas-phase rate coefficients for the OH + n-, i-, s-, and t-butanol reactions measured between 220 and 380 K: non-Arrhenius behavior and site-specific reactivity.

    Science.gov (United States)

    McGillen, Max R; Baasandorj, Munkhbayar; Burkholder, James B

    2013-06-06

    Butanol (C4H9OH) is a potential biofuel alternative in fossil fuel gasoline and diesel formulations. The usage of butanol would necessarily lead to direct emissions into the atmosphere; thus, an understanding of its atmospheric processing and environmental impact is desired. Reaction with the OH radical is expected to be the predominant atmospheric removal process for the four aliphatic isomers of butanol. In this work, rate coefficients, k, for the gas-phase reaction of the n-, i-, s-, and t-butanol isomers with the OH radical were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to monitor its temporal profile. Rate coefficients were measured over the temperature range 221-381 K at total pressures between 50 and 200 Torr (He). The reactions exhibited non-Arrhenius behavior over this temperature range and no dependence on total pressure with k(296 K) values of (9.68 ± 0.75), (9.72 ± 0.72), (8.88 ± 0.69), and (1.04 ± 0.08) (in units of 10(-12) cm(3) molecule(-1) s(-1)) for n-, i-, s-, and t-butanol, respectively. The quoted uncertainties are at the 2σ level and include estimated systematic errors. The observed non-Arrhenius behavior is interpreted here to result from a competition between the available H-atom abstraction reactive sites, which have different activation energies and pre-exponential factors. The present results are compared with results from previous kinetic studies, structure-activity relationships (SARs), and theoretical calculations and the discrepancies are discussed. Results from this work were combined with available high temperature (1200-1800 K) rate coefficient data and room temperature reaction end-product yields, where available, to derive a self-consistent site-specific set of reaction rate coefficients of the form AT(n) exp(-E/RT) for use in atmospheric and combustion chemistry modeling.

  14. Theoretical Kinetic Study of the Unimolecular and H-Assisted Keto-Enol Tautomerism Propen-2-ol ↔Acetone. Pressure Effects and Implications in the Pyrolysis and Oxidation of tert- And 2-Butanol

    KAUST Repository

    Grajales Gonzalez, Edwing Javier

    2018-05-01

    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with their favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular and H-assisted tautomerism of propen-2-ol to acetone, which are included in butanol combustion kinetic models, are assigned rate parameters based on the analogous unimolecular tautomerism vinyl alcohol ↔ acetaldehyde and H addition to the double bound of iso-butene, respectively. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the unimolecular and H-assisted tautomerism, i-C3H5OH⟺CH3COCH3 and i-C3H5OH+Ḣ⟺CH3COCH3+Ḣ, was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) and CCSD(T)/aug-cc-pVTZ//M062X/cc-pVTZ ab initio calculations, respectively. For H-assisted tautomerism, the reaction takes place in two consecutive steps: i-C3H5OH+Ḣ⟺CH3ĊOHCH3 and CH3ĊOHCH3⟺CH3COCH3+Ḣ. Multistructural torsional anharmonicity and variational transition state theory were considered in a wide temperature and pressure range (200 K – 3000 K, 0.1 kPa – 108 kPa). It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior for both isomerizations. Results for unimolecular tautomerism differ from vinyl alcohol ↔ acetaldehyde analogue reactions, which shows lower rate constant values. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed unimolecular rate constants showed important differences in comparison with previous results, such as larger acetone yield and

  15. The Immunosuppressant Effect Comparation Between Ethyl Acetate and n-Butanol Fractions of Kalanchoe Pinnata (Lmk Pers In 2,6,10,14 Tetramethylpentadecane-Treated Mice

    Directory of Open Access Journals (Sweden)

    Niken Indriyanti

    2017-07-01

    Full Text Available Immunosuppressant drugs are the main treatment of lupus patient. The ACR and SLICC treatment guidelines are able to increase the quality of life, but the outcome is not satisfying since the off-label therapy of corticosteroids and cytotoxic drugs give a lot of side effects. Many breakthrough efforts still develop in order to find the safe and effective drugs for lupus, such as finding immunosuppressant drugs from natural resources. One of the potential resources is Kalanchoe pinnata (Lmk Pers, which have immunosuppressant, anti-inflammatory, antinociceptive, and antioxidant effects. Thus, in the previous study, we found the effect of the aqueous extract of Kalanchoe pinnata (Lmk Pers is active to repair the lupus manifestation in 2,6,10,14 tetramethylpentadecane (TMPD-treated mice. Then, this research was focused on the in vivo immunosuppressant effect of a flavonoid-rich fraction of the extract which was consisted of the ethyl acetate (FE and n-butanol (FB fractions. The induction method and the extraction procedure were the same as the previous study and then the fractionation was performed by using liquid-liquid extraction. After 2-week treatment of both fractions, we obtained the differences in the total leukocytes, organ indexes, and also the spleen, kidney, and joint structure parameters. The total leukocyte of the FE group was 3,600±264 cells/mm3, which was lower than that in the FB group. The spleen and kidney indexes increased after the administration of FB fraction, while the FE fraction was not. At last, despite the histology observation of spleen resembled mild structural changes differences, the clear differences between both treatment groups occurred in the kidney and joint histology. The differences led to a conclusion that the FE fraction has the better immunosuppressant effect in TMPD-treated mice.

  16. Development and application of a rat PBPK model to elucidate kidney and liver effects induced by ETBE and tert-butanol

    International Nuclear Information System (INIS)

    Salazar, Keith D.; Brinkerhoff, Christopher J.; Lee, Janice S.; Chiu, Weihsueh A.

    2015-01-01

    Subchronic and chronic studies in rats of the gasoline oxygenates ethyl tert-butyl ether (ETBE) and tert-butanol (TBA) report similar noncancer kidney and liver effects but differing results with respect to kidney and liver tumors. Because TBA is a major metabolite of ETBE, it is possible that TBA is the active toxic moiety in all these studies, with reported differences due simply to differences in the internal dose. To test this hypothesis, a physiologically-based pharmacokinetic (PBPK) model was developed for ETBE and TBA to calculate internal dosimetrics of TBA following either TBA or ETBE exposure. This model, based on earlier PBPK models of methyl tert-butyl ether (MTBE), was used to evaluate whether kidney and liver effects are consistent across routes of exposure, as well as between ETBE and TBA studies, on the basis of estimated internal dose. The results demonstrate that noncancer kidney effects, including kidney weight changes, urothelial hyperplasia, and chronic progressive nephropathy (CPN), yielded consistent dose–response relationships across routes of exposure and across ETBE and TBA studies using TBA blood concentration as the dose metric. Relative liver weights were also consistent across studies on the basis of TBA metabolism, which is proportional to TBA liver concentrations. However, kidney and liver tumors were not consistent using any dose metric. These results support the hypothesis that TBA mediates the noncancer kidney and liver effects following ETBE administration; however, additional factors besides internal dose are necessary to explain the induction of liver and kidney tumors. - Highlights: • We model two metabolically-related fuel oxygenates to address toxicity data gaps. • Kidney and liver effects are compared on an internal dose basis. • Noncancer kidney effects are consistent using TBA blood concentration. • Liver weight changes are consistent using TBA metabolic rate. • Kidney and liver tumors are not consistent using

  17. Development and application of a rat PBPK model to elucidate kidney and liver effects induced by ETBE and tert-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Keith D., E-mail: Salazar.keith@epa.gov [Toxicity Pathways Branch, IRIS Division, NCEA, ORD, US EPA, Washington, DC 20460 (United States); Brinkerhoff, Christopher J., E-mail: Brinkerhoff.Chris@epa.gov [Risk Assessment Division, OPPT, OCSPP, US EPA, Washington, DC 20460 (United States); Lee, Janice S., E-mail: Lee.JaniceS@epa.gov [Toxicity Pathways Branch, IRIS Division, NCEA, ORD, US EPA, Washington, DC 20460 (United States); Chiu, Weihsueh A., E-mail: wchiu@cvm.tamu.edu [Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A& M University, College Station, TX 77843 (United States)

    2015-11-01

    Subchronic and chronic studies in rats of the gasoline oxygenates ethyl tert-butyl ether (ETBE) and tert-butanol (TBA) report similar noncancer kidney and liver effects but differing results with respect to kidney and liver tumors. Because TBA is a major metabolite of ETBE, it is possible that TBA is the active toxic moiety in all these studies, with reported differences due simply to differences in the internal dose. To test this hypothesis, a physiologically-based pharmacokinetic (PBPK) model was developed for ETBE and TBA to calculate internal dosimetrics of TBA following either TBA or ETBE exposure. This model, based on earlier PBPK models of methyl tert-butyl ether (MTBE), was used to evaluate whether kidney and liver effects are consistent across routes of exposure, as well as between ETBE and TBA studies, on the basis of estimated internal dose. The results demonstrate that noncancer kidney effects, including kidney weight changes, urothelial hyperplasia, and chronic progressive nephropathy (CPN), yielded consistent dose–response relationships across routes of exposure and across ETBE and TBA studies using TBA blood concentration as the dose metric. Relative liver weights were also consistent across studies on the basis of TBA metabolism, which is proportional to TBA liver concentrations. However, kidney and liver tumors were not consistent using any dose metric. These results support the hypothesis that TBA mediates the noncancer kidney and liver effects following ETBE administration; however, additional factors besides internal dose are necessary to explain the induction of liver and kidney tumors. - Highlights: • We model two metabolically-related fuel oxygenates to address toxicity data gaps. • Kidney and liver effects are compared on an internal dose basis. • Noncancer kidney effects are consistent using TBA blood concentration. • Liver weight changes are consistent using TBA metabolic rate. • Kidney and liver tumors are not consistent using

  18. Otimização da esterificação de ácido hexanóico com n-butanol empregando lipase (Termomyces lanuginosus imobilizada em gelatina

    Directory of Open Access Journals (Sweden)

    Everton Skoronski

    2013-01-01

    Full Text Available The application of Lipozyme (Termomyces lanuginosus immobilized in gelatin gel in aliphatic ester synthesis was investigated taking the esterification of hexanoic acid with n-butanol as a model reaction. Conditions were optimized by factorial design and the highest conversion was obtained under the following conditions: molar ratio alcohol: acid of 2:1, reaction time of 48 h and biocatalyst weight of 7.0 g. Under these conditions the esterification yield was around 98 %. The operational stability of the immobilized lipase was assessed and results showed that after 12 batch runs, the enzyme showed no significant loss of activity.

  19. Generation of counter ion radical (Br2(•-)) and its reactions in water-in-oil (CTAB or CPB)/n-butanol/cyclohexane/water) microemulsion.

    Science.gov (United States)

    Guleria, Apurav; Singh, Ajay K; Sarkar, Sisir K; Mukherjee, Tulsi; Adhikari, Soumyakanti

    2011-09-15

    Herein we report the generation of counterion radicals and their reactions in quaternary water-in-oil microemulsion. Hydrated electrons in the microemulsion CTAB/H(2)O/n-butanol/cyclohexane have a remarkably short half-life (∼1 μs) and lower yield as compared to that in the pure water system. Electrons are solvated in two regions: one is the water core and other the interface; however, the electrons in the water core have a shorter half-life than those in the interface. The decay of the solvated electrons in the interface is found to be water content dependent and it has been interpreted in terms of increased interfacial fluidity with the increase in water content of the microemulsion. Interestingly another species, dibromide radical anion (Br(2)(•-)) in CTAB and CPB microemulsions have been observed after the electron beam irradiation. Assuming that the extinction coefficient of the radicals is the same as that in the aqueous solution, the yields of the radicals per 100 eV are 0.29 and 0.48 for the Br(2)(•-) radical in CTAB and CPB containing microemulsions (W(0) = 40), respectively, under N(2)O saturated conditions. Further, we intended to study electron transfer reactions, which occur at and through the interface. The reaction of the Br(2)(•-) radical anion with ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] has been studied to generate the ABTS radical in the water core, and further, its reaction has been investigated with the water-insoluble molecule vitamin E (tocopherol) and water-soluble vitamin C (ascorbic acid). In the present study, we were able to show that, even for molecules which are completely insoluble in water, ABTS scavenging assay is possible by pulse radiolysis technique. Furthermore, these results show that it is possible to follow the reaction of the hydrated inorganic radical with solutes dissolved in the organic phase in a microemulsion without use of a phase transfer catalyst. © 2011 American Chemical Society

  20. Reichardt's dye and its reactions with the alkylating agents 4-chloro-1-butanol, ethyl methanesulfonate, 1-bromobutane and Fast Red B - a potentially useful reagent for the detection of genotoxic impurities in pharmaceuticals.

    Science.gov (United States)

    Corrigan, Damion K; Whitcombe, Michael J; McCrossen, Sean; Piletsky, Sergey

    2009-04-01

    Alkylating agents are potentially genotoxic impurities that may be present in drug products. These impurities occur in pharmaceuticals as by-products from the synthetic steps involved in drug production, as impurities in starting materials or from in-situ reactions that take place in the final drug product. Currently, analysis for genotoxic impurities is typically carried out using either HPLC/MS or GC/MS. These techniques require specialist expertise, have long analysis times and often use sample clean-up procedures. Reichardt's dye is well known for its solvatochromic properties. In this paper the dye's ability to undergo alkylation is reported. The reaction between Reichardt's dye and alkylating agents such as 4-chloro-1-butanol and ethyl methanesulfonate was monitored spectrophotometrically at 618 nm in acetonitrile and 624 nm in N,N-dimethylformamide. Changes in absorption were observed using low levels of alkylating agent (5-10 parts per million). Alkylation of the dye with 4-chloro-1-butanol and ethyl methanesulfonate was confirmed. Reichardt's dye, and its changing UV absorption, was examined in the presence of paracetamol (10 and 100 mg/ml). Whilst the alkylation-induced changes in UV absorption were not as pronounced as with standard solutions, detection of alkylation was still possible. Using standard solutions and in the presence of a drug matrix, Reichardt's dye shows promise as a reagent for detection of low levels of industrially important alkylating agents.

  1. {alpha}-Sb{sub 2}O{sub 4}-induced improvements of the catalytic behavior of MoO{sub 3}-(010) in the oxygen-assisted dehydration of 2-butanol: implications in selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gaigneaux, E.M. [Fonds National de la Recherche Scientifique of Belgium (Belgium); Naeye, M.L.; Dupont, O.; Ruiz, P.; Delmon, B. [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Callant, M.; Kartheuser, B. [CERTECH, Senefffe (Belgium)

    1998-12-31

    This article concerns the synergetic effects between an MoO{sub 3} sample composed of crystallites exposing preferentially the (010) basal faces and {alpha}-Sb{sub 2}O{sub 4} in the oxygen-assisted dehydration of 2-butanol at 220 C. The conversion of 2-butanol and the yield to butene improved when MoO{sub 3} was reacted in the presence of {alpha}-Sb{sub 2}O{sub 4}. The origin of the synergism is discussed. When reacted in the absence of {alpha}-Sb{sub 2}O{sub 4}, MoO{sub 3} got over-reduced and fragmented to MoO{sub 2}. MoO{sub 2} is intrinsically less active than MoO{sub 3} thus explaining that the deep reduction of MoO{sub 3} corresponds to its tendency to deactivate. In the presence of {alpha}-Sb{sub 2}O{sub 4}, the formation of MoO{sub 2} is inhibited with, as a consequence, the absence of deactivation. This leads to the synergetic effects obtained with the mechanical mixture of MoO{sub 3} with {alpha}-Sb{sub 2}O{sub 4}. (orig.)

  2. Butanol / Gasoline Mercury CRADA Report

    Science.gov (United States)

    2015-03-01

    synthetic rubber ) was replaced on 2 August 2013 with a Flexdraw hose (constructed of NBR - Nitrile Butadiene Rubber ). The manufacturer of the Flexdraw hose...likely contributed to the failure in combination with the swelling of the rubber . It is also noted that the parts are about 20 durometer points softer

  3. Butanol/Gasoline Test Plan

    Science.gov (United States)

    2012-03-01

    authorities. METHODS FOR CLEANING UP: Contain spillage and then collect with non-combustible absorbent material, (e.g. sand, soil , diatomaceous earth...SARA 311/312 Hazards: Fire Hazard, Acute Health Hazard, and Chronic Health Hazard CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIROMENT

  4. Antidiabetic, antioxidant and anti inflammatory properties of water and n-butanol soluble extracts from Saharian Anvillea radiata in high-fat-diet fed mice.

    Science.gov (United States)

    Kandouli, Chouaib; Cassien, Mathieu; Mercier, Anne; Delehedde, Caroline; Ricquebourg, Emilie; Stocker, Pierre; Mekaouche, Mourad; Leulmi, Zineb; Mechakra, Aicha; Thétiot-Laurent, Sophie; Culcasi, Marcel; Pietri, Sylvia

    2017-07-31

    polyphenolics-enriched hydroalcoholic and ethyl acetate extracts, the lyophilized aqueous (AQL) and butanol extracts were not toxic in cells (≤ 400µg/mL) or when given orally in normal mice (≤ 2000mg/kg), exerted a dose-dependent hypoglycemic action in diabetic mice, which was maximal at the dose of 150mg/kg. Upon administering this dose for 12 weeks, both extracts significantly ameliorated body weight control capacity, recovery of plasma glucose and insulin level, reduced oxidative stress in blood, myocardial and skeletal muscles, and improved hyperlipidemic and inflammatory status. Moreover, diabetes-related complications were optimally ameliorated by oral therapy based on halved doses (75mg/kg) of a mixture of AQL and metformin. Current investigation supports the traditional medicinal usage of Anvillea radiata and suggests that both readily accessible and low-cost bio-extracts have the potency to develop an antihyperglycemic, antihyperlipidemic and protective agent against beta-cells and muscle dysfunction at doses compatible with the common practices of indigenous people for the management of metabolic disorders. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  5. Direct and Indirect Determinations of Elementary Rate Constants H + O2: Chain Branching; the Dehydration of tertiary-Butanol; the Retro Diels-Alder Reaction of Cyclohexene; the Dehydration of Isopropanol

    Science.gov (United States)

    Heyne, Joshua S.

    Due to growing environmental concern over the continued use of fossil fuels, methods to limit emissions and partially replace fossil fuel use with renewable biofuels are of considerable interest. Developing chemical kinetic models for the chemistry that affects combustion properties is important to understanding how new fuels affect combustion energy conversion processes in transportation devices. This thesis reports the experimental study of several important reactions (the H + O2 branching reaction, the key decomposition reactions of tertiary-butanol, the dehydration reaction of isopropanol, and the retro Diels-Alder reaction of cyclohexene) and develops robust analysis methods to estimate the absolute uncertainties of specific elementary rate constants derived from the experimental data. In the study of the above reactions, both a direct and indirect rate constant determination technique with associated uncertainty estimation methodologies are developed. In the study of the decomposition reactions, a direct determination technique is applied to experimental data gathered in preparation of this thesis. In the case of the dehydration reaction of tertiary-butanol and the retro Diels-Alder reaction of cyclohexene, both of which are used as internal standards for relative rate studies (Herzler et al. 1997) and chemical thermometry (Rosado-Reyes et al. 2013) , analysis showed an ˜20 K difference in the reaction rate between the reported results and the previous recommendations. In light of these discrepancies, an uncertainty estimation of previous recommendations illuminated an uncertainty of at least 20 K for the dehydration reaction of tertiary-butanol and the retro Diels-Alder reaction of cyclohexene, thus resolving the discrepancies. The determination of the H + O2 branching reaction and decomposition reactions of isopropanol used an indirect determination technique. The uncertainty of the H + O2 branching reaction rate is shown to be underestimated by previous

  6. Excess molar volume, viscosity, and refractive index study for the ternary mixture {2-methyl-2-butanol (1) + tetrahydrofuran (2) + propylamine (3)} at different temperatures. Application of the ERAS-model and Peng-Robinson-Stryjek-Vera equation of state

    International Nuclear Information System (INIS)

    Fattahi, M.; Iloukhani, H.

    2010-01-01

    Densities, viscosities, and refractive indices of the ternary mixture consist of {2-methyl-2-butanol (1) + tetrahydrofuran (THF) (2) + propylamine (3)} at a temperature of 298.15 K and related binary mixtures were measured at temperatures of (288.15, 298.15, and 308.15) K at ambient pressure. Data were used to calculate the excess molar volumes and the deviations of the viscosity and refractive index. The Redlich-Kister and the Cibulka equations were used for correlating binary and ternary properties, respectively. The ERAS-model has been applied for describing the binary and ternary excess molar volumes and also Peng-Robinson-Stryjek-Vera (PRSV) equation of state (EOS) has been used to predict the binary and ternary excess molar volumes and viscosities.

  7. Formation of formaldehyde adducts in the reactions of DNA and deoxyribonucleosides with alpha-acetates of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and N-nitrosodimethylamine (NDMA).

    Science.gov (United States)

    Cheng, Guang; Wang, Mingyao; Upadhyaya, Pramod; Villalta, Peter W; Hecht, Stephen S

    2008-03-01

    The cytochrome P450-mediated alpha-hydroxylation of the carcinogenic nitrosamines N-nitrosodimethylamine (NDMA, 1), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 6a), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, 6b) produces diazonium ions and formaldehyde. The DNA-binding properties of the diazonium ions have been thoroughly characterized, and there is no doubt that they are critical in cancer induction by these nitrosamines. However, the possibility of additional DNA damage via released formaldehyde has not been reported. In this study, we used acetoxymethylmethylnitrosamine (5), 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (10a), and 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (10b) as stable precursors to the alpha-hydroxymethylnitrosamines that would be formed in the metabolism of NDMA, NNK, and NNAL. These alpha-acetates were incubated with calf thymus DNA in the presence of esterase at pH 7.0 and 37 degrees C. The DNA was isolated and enzymatically hydrolyzed to deoxyribonucleosides, and the hydrolysates were analyzed by liquid chromatography-electrospray ionization-mass spectrometry-selected ion monitoring for formaldehyde DNA adducts. Convincing evidence for the formation of the formaldehyde adducts N6-hydroxymethyl-dAdo (11), N4-hydroxymethyl-dCyd (12), N2-hydroxymethyl-dGuo (13), and the cross-links di-(N6-deoxyadenosyl)methane (14), (N6-deoxyadenosyl- N2-deoxyguanosyl)methane (15), and di-(N2-deoxyguanosyl)methane (16) was obtained in these reactions. These results demonstrate that NDMA, NNK, and NNAL have the potential to be bident carcinogens, damaging DNA through the metabolic formation of both diazonium ions and formaldehyde.

  8. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction

    Directory of Open Access Journals (Sweden)

    Hanno Richter

    2016-11-01

    Full Text Available Carboxydotrophic bacteria (CTB have received attention due to their ability to synthesize commodity chemicals from producer gas and synthesis gas (syngas. CTB have an important advantage of a high product selectivity compared to chemical catalysts. However, the product spectrum of wild-type CTB is narrow. Our objective was to investigate whether a strategy of combining two wild-type bacterial strains into a single, continuously fed bioprocessing step would be promising to broaden the product spectrum. Here, we have operated a syngas-fermentation process with Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction through gas stripping and product condensing within the syngas recirculation line. The main products from C. ljungdahlii fermentation at a pH of 6.0 were ethanol and acetate at net volumetric production rates of 65.5 and 431 mmol C•L-1•d-1, respectively. An estimated 2/3 of total ethanol produced was utilized by C. kluyveri to chain elongate with the reverse β-oxidation pathway, resulting in n-butyrate and n-caproate at net rates of 129 and 70 mmol C•L-1•d-1, respectively. C. ljungdahlii likely reduced the produced carboxylates to their corresponding alcohols with the reductive power from syngas. This resulted in the longer-chain alcohols n-butanol, n-hexanol, and n-octanol at net volumetric production rates of 39.2, 31.7, and 0.045 mmol C•L-1•d-1, respectively. The continuous production of the longer-chain alcohols occurred only within a narrow pH spectrum of 5.7-6.4 due to the pH discrepancy between the two strains. Regardless whether other wild-type strains could overcome this pH discrepancy, the specificity (mol carbon in product per mol carbon in all other liquid products for each longer-chain alcohol may never be high in a single bioprocessing step. This, because two bioprocesses compete for intermediates (i.e., carboxylates: 1 chain elongation; and 2 biological reduction. This innate

  9. Excess enthalpies of ternary mixtures of oxygenated additives + hydrocarbon mixtures in fuels and bio-fuels: Dibutyl ether (DBE) and 1-butanol and 1-hexene or cyclohexane or 2,2,4 trimethylpentane at 298.15 K and 313.15 K

    International Nuclear Information System (INIS)

    Aguilar, Fernando; Alaoui, Fatima E.M.; Segovia, José J.; Montero, Eduardo A.

    2013-01-01

    Highlights: ► New excess enthalpy data for ternary mixtures of dibutyl ether + hydrocarbon + 1-butanol are reported. ► Four ternary systems at 298.15 K and 313.15 K were measured by means of an isothermal flow calorimeter. ► 420 Data were fitted to a Redlich–Kister rational equation. ► Intermolecular and association effects involved in these systems have been discussed. - Abstract: New experimental excess molar enthalpy data (420 points) of the ternary systems dibutyl ether (DBE) and 1-butanol and 1-hexene at 298.15 K and 313.15 K, and DBE and 1-butanol and cyclohexane or 2,2,4-trimethylpentane (TMP) at 313.15 K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the ternary systems show endothermic character. The experimental data for the ternary systems have been fitted using the Redlich–Kister rational equation. Considerations with respect the intermolecular interactions amongst ether, alcohol and hydrocarbon compounds are presented.

  10. Thermodynamic and acoustic properties of binary mixtures of 1-butanol with 1,2-butanediol. The comparison with the results for 1,3-, and 1,4-butanediol

    International Nuclear Information System (INIS)

    Zorębski, Edward; Góralski, Paweł; Godula, Bożena; Zorębski, Michał

    2014-01-01

    Highlights: • Excess molar volume is negative and absolute value decreases with temperature. • Excess molar isobaric heat capacity is positive and decreases with temperature. • Slight contraction and enhanced rigidity observed in mixtures. • Increase of non-chemical attractive interactions in mixtures. • Correlation between isobaric molar heat capacity excesses and molar isobaric heat capacities of the pure butanediols. -- Abstract: Densities and isobaric heat capacities have been measured for (1-butanol + 1,2-butanediol) over the temperature range from (293.15 to 308.15) K and (282.15 to 320.15) K, respectively. The speed of sound at the temperature 298.15 K has been measured as well. Using these results, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, molar isobaric and isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values were calculated and expressed by Redlich–Kister polynomials. The results are discussed in terms of variations of the structure of the system caused by the participation of the two alcohols (with the same carbon chain but different hydroxyl groups) in the dynamic intermolecular association process through hydrogen bonding at various temperatures. Present findings are also compared with the previous results for 1,3-, and 1,4-butanediol

  11. Effects of butanol fraction of Ziziphus mucronata root ethanol extract on glucose homeostasis, serum insulin and other diabetes-related parameters in a murine model for type 2 diabetes.

    Science.gov (United States)

    Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-12-01

    Ziziphus mucronata Willd (Rhamnaceae) is currently used in Nigerian traditional treatment of diabetes mellitus. However, detailed information on the antidiabetic potential of the plant parts is presently unknown. The present study investigated the antidiabetic effects of the butanol fraction of Z. mucronata root (ZMBF) in a type 2 diabetes (T2D) model of rats. T2D was induced in rats by feeding a 10% fructose solution ad libitum for two weeks followed by an intraperitoneal injection of streptozotocin (40 mg/kg bw) and the animals were orally treated with ZMBF 150 or 300 mg/kg bw for five days a week for four weeks. Food and fluid intake, body weight changes and blood glucose levels were monitored during the experiment while other blood and organ specific diabetes-associated parameters were measured at the end of the experiment. After four-week treatment, significantly (p food and fluid intake, body weight gain, HOMA-β, HOMA-IR, serum fructosamine level, hepatic and renal function tests were not significantly (p > 0.05) affected by the treatment of ZMBF. Results of this study suggest that ZMBF treatment, at 300 mg/kg bw, possess antidiabetic activity, but could not ameliorate some diabetes-related parameters in type 2 diabetic rats.

  12. Comparison of Antioxidant Capability after Isopropanol Salting-Out Pretreatment and n-Butanol Partition Extraction, and Identification and Evaluation of Antioxidants of Sedum formosanum N.E.Br.

    Science.gov (United States)

    Chen, Jung-Hui; Lai, Wen-Hui; Lin, Shang-Dung; Lan, Cheng-Fong; Hsu, Shih-Lan; Liao, Ming-Yuan

    2016-04-19

    Crude extracts of Sedum formosanum N.E.Br. obtained from n-butanol partition (BP) and isopropanol salting-out pretreatment (ISP) were analyzed using antioxidation assays. The results indicated that the extract from ISP contained more potent antioxidants and thus exhibited more antioxidant activity in all the assays. The superoxide radical-scavenging activity and inhibition of nitric oxide radicals achieved after ISP were 3.65 and 2.18 times higher than those achieved through BP, respectively. Eight bioactive natural products were isolated and identified according to an analysis of antioxidation activity in different fractions of the ISP crude extract, namely three cyanophoric glycosides 1-3, three flavonoids 4-6 and two phenolic compounds (7 and a new compound 8). Among them, compounds 5 and 6 exhibit the highest antioxidation capability, and the ISP is suitable for obtaining compounds 5 and 6 using HPLC chromatograms. Therefore, ISP is an excellent extraction technology that can be used to extract antioxidant compounds in the nutraceutical and pharmaceutical industries.

  13. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats.

    Science.gov (United States)

    Ibrahim, Mohammed Auwal; Habila, James Dama; Koorbanally, Neil Anthony; Islam, Md Shahidul

    2016-05-13

    Ethnopharmacological surveys have reported that Parkia biglobosa (Jacq.) G. Don (Leguminosae) is among the plants commonly used in the traditional management of diabetes mellitus in Nigeria and Togo. This study investigated the anti-diabetic activity of the butanol fraction of P. biglobosa leaves (PBBF) in a type 2 diabetes (T2D) model of rats and a possible bioactive compound in the fraction. T2D was induced by feeding rats with a 10% fructose solution ad libitum for two weeks followed by an intraperitoneal injection of 40mg/kg body weight streptozotocin and the animals were orally treated with 150 and 300mg/kg BW of the PBBF for five days in a week. Another group of rats was non-diabetic but similarly administered with 300mg/kg BW of the PBBF. Food and fluid intakes, body weight changes and blood glucose levels were monitored during the experiment while other relevant diabetes-associated parameters were measured at the end of the experiment. The PBBF treatments significantly (P<0.05) decreased the blood glucose levels and improved the glucose tolerance ability compared to untreated diabetic rats. Furthermore, the treatments were found to improve pancreatic β cell function (HOMA-β), stimulate insulin secretions, decrease insulin resistance (HOMA-IR), restore liver glycogen, ameliorate serum dyslipidaemia and prevent hepatic and renal damages compared to untreated diabetic rats. Phytochemical analysis of the fraction led to the isolation of lupeol which inhibited α-glucosidase and α-amylase in non-competitive and uncompetitive inhibition patterns respectively. It was concluded that PBBF possessed remarkable anti-T2D activity which is mediated through modulation of β-cell function and stimulation of insulin secretion and the lower dose (150mg/kg BW) was found optimum for anti-T2D activity compared to the high dose (300mg/kg BW) in this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Liquid phase PVTx properties of (water + tert-butanol) binary mixtures at temperatures from 278.15 to 323.15 K and pressures from 0.1 to 100 MPa. II. Molar isothermal compressions, molar isobaric expansions, molar thermal pressure coefficients, and internal pressure

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.; Kolker, Arkadiy M.

    2013-01-01

    Highlights: ► Molar isothermal compressions and molar isobaric expansions were evaluated. ► Coefficients of thermal pressure and internal pressure were obtained. ► Concentration dependences of coefficients under study display extremes. ► Temperature and pressure dependences of internal pressure of the mixture were linear. -- Abstract: Molar isothermal compressions, molar isobaric expansions, molar coefficients of thermal pressure, and internal pressure were calculated over the whole concentration range of {water (1) + tert-butanol (2)} mixture at pressures from 0.1 to 100 MPa and temperatures from 278.15 to 323.15 K. It was revealed that the extremes, observed on concentration dependences of molar isothermal compression K T,m and molar isobaric expansion E P,m of the mixture, became more pronounced with pressure growth and temperature lowering. Values of molar thermal pressure coefficients of the mixture sharply rose at compositions with small TBA mole fraction and then decreased practically linearly with the alcohol content increasing. Temperature and pressure dependences of the mixture internal pressure were almost linear, and at low TBA concentrations changed significantly from the dependences of water, tert-butanol and their mixtures at large alcohol content

  15. 二氧化碳与2-丁醇二元体系在高压下的亨利系数和偏摩尔体积性质计算%Calculation of Henry's coefficient and partial molar volume of carbon dioxide in 2-butanol at elevated pressures

    Institute of Scientific and Technical Information of China (English)

    田爱琴; 孙洪博; 陈文涛; 王琳

    2012-01-01

    Based on vapor-liquid phase equilibria data for CO2+2-butanol binary system from 323K to 353K by constant-volume visual high-pressure cell, the solubility model of CO2 in 2-butanol was established with Krichevsky-Kasarnovsky equation. Henry's coefficients and partial molar volumes of CO2 at infinite dilution were calculated. Meanwhile, Partial molar volumes of CO2 and 2-butanol at equilibrium were calculated from partial molar volumes properties together with Peng-Robinson equation of state and Van der Waals-2 mixed rule. The results showed that Henry's coefficients and partial molar volumes of CO2 at infinite dilution were both the function of temperature, and Henry's coefficients decreased with temperature. The partial molar volumes of CO2 at infinite dilution were negative and the magnitudes decreased with temperature. The calculated effects of partial molar volumes of vapor and liquid phase at equilibrium showed that the partial molar volumes of CO2 and 2-butanol in liquid phase were positive, but in vapor the partial molar volumes of CO2 were negative and the partial molar volumes of 2-butanol were positive. The research provided theoretical basis for deciding supercritical extraction conditions and instructing industrial production.%利用固定体积可视高压釜测量出的在323 K~353 K温度范围内的CO2与2-丁醇二元体系在高压下的汽液相平衡数据,根据Krichevsky-Kasarnovsky方程建立了CO2在液相中的溶解度模型,得到了该二元体系在高压下的亨利系数和CO2在无限稀释溶液中的偏摩尔体积等性质.同时根据偏摩尔体积性质和Peng-Robinson状态方程及Van der Waals-2混合规则来计算该体系在平衡状态下的气、液相的偏摩尔体积.结果表明CO2在2-丁醇中的亨利系数和CO2在无限稀释溶液中的偏摩尔体积均为温度的函数,CO2在2-丁醇中的亨利系数随温度的升高而降低.CO2在无限稀释溶液中的偏摩尔体积(V)1∞在研究温度下均为

  16. nduced hyperlipidemic rats. Methods: Column chromatographic fractionation of butanol fraction of total methanol extract of leaves of Bauhinia variegata (Linn. yields four sub-fractions (sub-fraction A-D. All sub-fractions tested for their anti-hyperlipidemic activity. Sub-fractions administered at a dose of 65 mg/kg (oral to the Triton WR-1339 induced hyperlipidemic rats and total cholesterol, triglycerides, HDL, LDL and VLDL

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    2012-10-01

    Full Text Available Objective: To investigate the effect and evaluation of Anti-hyperlipidemic activity guided subfraction isolated from total methanolic extract of Bauhinia variegata (Linn. leaves on Triton WR-1339 induced hyperlipidemic rats. Methods: Column chromatographic fractionation of butanol fraction of total methanol extract of leaves of Bauhinia variegata (Linn. yields four subfractions (sub-fraction A-D. All sub-fractions tested for their anti-hyperlipidemic activity. Subfractions administered at a dose of 65 mg/kg (oral to the Triton WR-1339 induced hyperlipidemic rats and total cholesterol, triglycerides, HDL, LDL and VLDL level in the blood were checked. Results: Sub-fraction D showed significant reduction (P<0.05 among four sub-fraction in comparison with standard drug fenofibrate. Conclusions: From the above study it could be concluded that butanol sub-fraction D of Bauhinia variegata (Linn. not only have resulted in significant reduction in cholesterol, triglyceride, LDL, VLDL level but also increases the HDL level at a reduced dose level.

  17. Fermentation of sugar solutions to butanol, acetone, and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karsch, W; Schoeder, K

    1956-04-05

    A three-stage (two preliminary and one main stage) fermentation process with a high yield of fermentation products (BuOH, Me/sub 2/CO, and EtOH) due to the addition of Ca(OAc)/sub 2/ or AcOH is described. According to this the acetate is added in the first and second stages only; this saves a large amount of acetate. The acetate level of the solution can also be regulated by mixing fermentable solutions of different AcOH content.

  18. Fermentation of sugar solutions to butanol, acetone, and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karsch, W; Schoeder, K

    1956-04-05

    The fermentation process takes place with participation of BuOH bacteria. A favorable content of AcOH (0.1 to 0.4%) is achieved by distillation with steam, by mixing fermentable liquids of different AcOH contents, or by precipitation of excess AcOH as salts insoluble in water before the fermentation process itself. Thus, a total yield about 40% organic solvents based on the reduced sugar is obtained, i.e., 10 to 20% more than previously obtained.

  19. Effects of 1-butanol, neomycin and calcium on the photosynthetic ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-31

    Oct 31, 2011 ... (Shanghai Jierui Bio-Engineering Co., Ltd.) were used in the total. RNA extraction of ..... PC and reverse through calcium removal agent. EGTA indicating .... Photosynthetic characteristics and tolerance to photo- oxidation of ...

  20. Effects of 1-butanol, neomycin and calcium on the photosynthetic ...

    African Journals Online (AJOL)

    ajl yemi

    Institute of Food Crops, Jiangsu High Quality Rice R&D Center, Jiangsu Academy of Agricultural Sciences, Nanjing,. Jiangsu Province, 210014, China. Accepted 31 October, 2011. The effects .... and blue light source under the open system, with the following conditions: 1200 µmol m-2s-1 photosynthetic photon flux density.

  1. Butanol-acetone fermentation of sugar-cane juice

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, E V

    1958-01-01

    Sixteen new varieties of Clostridium acetobutylicum of varying activity were isolated from different sources. The most active one was obtained from sugar-cane roots. The effects of 86 additives were studied. The following formulation gave a 32% yield (with respect to sucrose) of solvent mixture (73% BuOH, 19 to 23% acetone, and 3 to 4% EtOH) sugar-cane juice (I) (20/sup 0/ Brix) 250 ml, ground Vicia sativa 1 g, KH/sub 2/PO/sub 4/ 2.5 g, CaCO/sub 3/ 4 g, H/sub 2/O 1000 ml; the pH of this solution was 5.6 to 6.0. Unclarified, it was inverted by invertase; the other components were added and the mixture was sterilized (20 minutes, 15 pounds).

  2. Study of continuous acetone-butanol fermentation by Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Yarovenko, V L; Nakhmanovich, B M; Shcheblykin, N P; Senkevich, V V

    1960-01-01

    Prophylactic sterilization of small scale equipment (2 fermenters, 3.5 cu. m. each) permitted continuous fermentation through 6 cycles (28 days), each with a new inoculum of C. acetobutylicum. Single cycles could be prolonged to 6 to 11 days without sterilization. Contamination, usually with lactic acid bacteria, sometimes preceded exhaustion of the culture. Input of flour mash at 0.6 to 1.2 cu. m./hr. and withdrawal of products were continuous; acetone yield 6.6 to 7.1 g./l.; residual sugars 0.63 to 0.79%.

  3. Butanol-acetone fermentation. Bibliographic synthesis and current trends

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, R. (Institut Francais du Petrole, Rueil-Malmaison (France))

    This article gives a synthesis of what is known about butyl-acetone fermentation from both the microbiological and technological standpoints. Different aspects of the metabolism of the microorganism used and of how it is regulated are considered. The performances of fermentation on traditional substrates (cornmeal or molasses) are compared with those recently obtained using Jerusalem artichokes at Institut Francais du Petrole as part of a new project on this fermentation for the purpose of producing substitute fuel.

  4. Fermentation of corn-cob hydrolyzates with butanol bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Senkevich, V V; Scheblykina, N A; Lipshits, V V

    1960-01-01

    Experiments to produce BuOH from hydrolyzates of corn cobs and sunflower husks after addition to beet molasses are described. Corn cobs were heated at atmosphere pressure at 100/sup 0/ for 3 to 8 hourse at 4.1% initial H/sub 2/SO/sub 4/ concentration, for sunflower hulls 120/sup 0/ for 20 minutes was used. The concentration,of solids was 25 and 33%, respectively. The hydrolyzate was neutralized with lime to pH 6.7 to 6.9 and (NH/sub 4/)/sub 2/DO/sub 4/ and superphosphate were added. The best yields were obtained if the mash contained 40 to 60% hydrolyzate and 60 to 40% molasses (on sugar basis). The sugar content of the mashes was 3.7%. Yields in total organic solvents and BuOH were 40% and 27%, respectively, calculated on the initial sugar in the mash. Fermentation time was 2 to 3 days. The strain used in probably a variety of Clostridium butylicum.

  5. Esterification of maleic acid and butanol using cationic exchange ...

    Indian Academy of Sciences (India)

    AARTI MULAY

    2017-11-15

    Nov 15, 2017 ... Special Issue on Recent Trends in the Design and Development of Catalysts and their Applications ... non-corrosive and eco-friendly nature, easy to separate and no ... of heterogeneous catalysts using ion exchange resin. ... The reactor was continu- ... 2.3a Gas chromatographic analysis: The liquid sam-.

  6. Anaerobic Biodegradation of Biofuels (Ethanol, Biodiesel, n-Propanol, n-Butanol, and iso-Butanol) in Aquifer Sediment (PP)

    Science.gov (United States)

    In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...

  7. Anaerobic Biodegradation of Biofuels (Ethanol, Biodiesel, n-Propanol, n-Butanol, and iso-Butanol) in Aquifer Sediment

    Science.gov (United States)

    In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...

  8. High solid fed-batch butanol fermentation with simultaneous product recovery: part II - process integration.

    Science.gov (United States)

    In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level o...

  9. Analgesic and anti-inflammatory activities of the n-butanol fraction of ...

    African Journals Online (AJOL)

    BF) using standard procedures. The median lethal dose (LD50) of the fraction was determined using Lorke's method and the analgesic effect was evaluated using acetic acid-induced writhing test in mice, while the anti-inflammatory activity was ...

  10. Production of longer-chain alcohols from biomass - butanol, isopropanol and 2,3-butanediol

    NARCIS (Netherlands)

    Lopez Contreras, A.M.; Kuit, W.; Siemerink, M.A.J.; Kengen, S.W.M.; Springer, J.; Claassen, P.A.M.

    2010-01-01

    Bioethanol is one of the main biofuels capable of substituting petroleum usage in vehicles, and has had one of the largest impacts to date. The first generation of bioethanol production has had a worldwide impact, though it is restricted by energy intensive grain-to-bioethanol production technology,

  11. 76 FR 25362 - Cooperative Research and Development Agreement: Butanol Fuel Blend Usage With Marine Outboard...

    Science.gov (United States)

    2011-05-04

    ... participants would identify and investigate the advantages, disadvantages, required technology enhancements... Development Agreements (CRADAs), are authorized by the Federal Technology Transfer Act of 1986 (Pub. L. 99- 502, codified at 15 U.S.C. 3710(a)). A CRADA promotes the transfer of technology to the private sector...

  12. Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

    OpenAIRE

    Kubiczek Artur; Kamiński Władysław

    2017-01-01

    Room-temperature ionic liquids (RTILs) are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liqu...

  13. Development of methods and systems for preparing hydrolyzates for acetone-butanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M

    1967-01-01

    Optimal conditions for hydrolysis of vegetable waste material, e.g., maize stalks, sunflower parings, and hemp wastes, with concentrated or dilute H/sub 2/SO/sub 4/ were established. Hydrolyzates were neutralized with Ca(OH)/sub 2/ to pH 5.5 to 6.0 and the supernatant was sterilized at 110 to 115/sup 0/ for 15 to 20 minutes and used for fermentation in mixtures with molasses or mash. The maximum amount of fermentation inhibitors which can be present in hydrolyzate is: 0.1% furfural, 0.03% HCO/sub 2/H and 0.001% As.

  14. In vitro antioxidant activity of n-butanol extract of Curcuma longa and ...

    African Journals Online (AJOL)

    Antioxidant activity of Curcuma longa rhizomes (Turmeric) has been widely investigated in Asia. This work evaluated the antioxidant potential of Nigerian variety of Curcuma longa with the main hypothesis that variation in plant phytochemicals in type and/or amount is a function of geographical location/soil type.

  15. Influence of concentration of sucrose on the acetone-butanol fermentation by different strains of Clostridium

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, K; Saroj, K K

    1959-01-01

    To culture media containing (NH/sub 4/)/sub 2/SO/sub 4/ (0.34 g) and MgSO/sub 4/ (0.16 g), were added 5, 10, and 20% sucrose, respectively; the pH was adjusted to 6.4 with KH/sub 2/PO/sub 4/-NaOH buffer; the volume of each medium was made up to 200 ml. The media were sterilized. After cooling, the media at the 5, 10, 20% sucrose levels were inoculated separately with C. butyricum, C. butyricum 6084, C. acetobutylicum NRRL B-527, C. pasteurianum NRRL B-598, C. butylicus NRRL B-592, nd C. pasteurianum ATCC 6013. The cultures were incubated for 20 days at 35/sup 0/. For maximum BuOH yield the 5% sucrose level was optimum for all the strains tested. At the 10% sucrose level great increase in sugar consumption occurred with C. butyricum Frolund, C. pasteurianum ATCC-6013, and C. butylicus IAL 15-152. Twice as much sucrose was consumed with C. acetobutylicum ATCC 10132, and NRRL B-572, and C. pasteurianum NRRL B-598. The increased sucrose consumption did not result in increased production of BuOH or acetone. No acetone or BuOH was formed with C. butyricum Frolund when the sucrose concentration was increased from 5 to 10%. With the increase in sucrose concentration, the formation of BuH and acetone decreased; acid formation was also inhibited.

  16. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    Science.gov (United States)

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Poly(Amido Amine)s containing agmatine and butanol side chains as efficient gene carriers

    NARCIS (Netherlands)

    Won, Young-Wook; Ankone, Martinus J.K.; Engbersen, Johannes F.J.; Feijen, Jan; Kim, S.W.

    2016-01-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of

  18. Barley Distillers Dried Grains with Solubles (DDGS) as Feedstock for Production of Acetone, Butanol and Ethanol

    NARCIS (Netherlands)

    Houweling-Tan, G.B.N.; Sperber, B.L.H.M.; Wal, van der H.; Bakker, R.R.C.; Lopez Contreras, A.M.

    2016-01-01

    Distillers dried grains with solubles (DDGS) represent important co-product from commercial yeast fermentations, including bioethanol, from grains. In view of the current expansion of the bioethanol fermentation process, with the concomitant increase in production of DDGS, alternative applications

  19. Changes in Membrane Plasmalogens of Clostridium pasteurianum during Butanol Fermentation as Determined by Lipidomic Analysis

    Czech Academy of Sciences Publication Activity Database

    Kolek, J.; Patáková, P.; Melzoch, K.; Sigler, Karel; Řezanka, Tomáš

    2015-01-01

    Roč. 10, č. 3 (2015) E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : FATTY-ACIDS * ACETOBUTYLICUM ATCC-824 * STREPTOMYCES -FRADIAE Subject RIV: EE - Microbiology, Virology Impact factor: 3.057, year: 2015

  20. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca

    NARCIS (Netherlands)

    Wal, van der H.; Sperber, B.L.H.M.; Houweling-Tan, G.B.N.; Bakker, R.R.C.; Brandenburg, W.A.; Lopez Contreras, Ana

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A

  1. Pengaruh Waktu Reaksi dan Rasio Molar terhadap Asam Oleat dengan Butanol pada Sintesa Plastisizer Butil Oleat

    OpenAIRE

    Selly, Mers; Nirwana, Nirwana; HS, Irdoni

    2015-01-01

    The amount of palm oil feedstock in Indonesia, encourages the development of palm oil industry product diversification. One alternative for providing value-added palm oil by esterification of oleic acid is contained in palm oil became known as butyl oleate plasticizers. Plasticizer is an additive compound added to polymer to improve flexibility and workabilitas. Step of this research is the preparation of H-zeolite catalysts and synthesis of the plasticizer butyl oleate esterification using n...

  2. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) (Preliminary Assessment Materials)

    Science.gov (United States)

    In August 2013, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for TBA to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in c...

  3. Anticancer activity of ethyl acetate and n-butanol extracts from ...

    African Journals Online (AJOL)

    user

    2011-04-25

    Apr 25, 2011 ... 7 and MDA-MB231 and the lung cancer cell line NCI-H1299 were used. The cells were ... The plants in the genus Agapetes, which are rich sources of ..... novel assay to measure loss of plasma membrane asymmetry during.

  4. In Vitro Antioxidant Activity of N-Butanol Extract Of Curcuma Longa

    African Journals Online (AJOL)

    Bulus et al.

    of these findings in the usage of Curcuma longa as food additives ... because active principles from these plants are thought to play important roles in ... turmeric, possesses wide spectrum of biological properties including .... nutrition and chemotherapy. ... their staple food and also in the management of local ailments.

  5. Serum butanol extractable iodine values for adolescents exposed in utero - Nagasaki

    Energy Technology Data Exchange (ETDEWEB)

    Burrow, G N; Hamilton, H B; Man, E B

    1961-10-18

    Serum BEI determinations were performed on 249 fifteen year old exposed and nonexposed apparently normal children all of whom were in utero at the time of the atomic bombing in Nagasaki, Japan. The girls were more mature in growth and development than the boys; the boys were probably near the peak stress of adolescent development. No statistically significant difference of BEI values was found between exposed and control groups. The trimester of gestation of the children at the time of exposure appeared to have no conclusive effect on the BEI value, but the number of subjects from each trimester was too small for satisfactory statistical analysis. Eleven females with goiter were analyzed separately. There was a slight preponderance of goiter in the exposed group, but the difference was not significant. The mean BEI value for the males was significantly lower than that for the females. The mean BEI values for Japanese adolescents are higher than for adolescents in the Middle Atlantic and New England states in the United States. 31 references, 2 tables.

  6. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    Science.gov (United States)

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  7. Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics and mass transfer based on fatty acid composition

    International Nuclear Information System (INIS)

    Likozar, Blaž; Levec, Janez

    2014-01-01

    Graphical abstract: Modelling of chemical equilibrium, reaction kinetics and mass transfer for triglyceride transesterification with different alcohols based on fatty acid composition. - Highlights: • Catalysed transesterification to biodiesel with various oils, alcohols and catalysts. • Analysis of components and reactivity based on fatty acid composition of all species. • Simultaneous modelling of mass transfer, reaction kinetics and chemical equilibrium. • Diffusivities, distribution and mass transfer coefficients for individual components. • Correlation of kinetic parameters with molecular structure of reactants and products. - Abstract: Mechanism of alcoholysis (e.g. methanolysis) using different oils, alcohols and homogeneous base catalysts was utilized to devise chemical kinetics and thermodynamics based on fatty acid composition, differentiating among triglycerides, diglycerides, monoglycerides and fatty acid alkyl esters (e.g. fatty acid alkyl esters, FAME) with bonded gadoleic, linoleic, linolenic, oleic, palmitic and stearic acid-originating substituents. Their concentrations were measured using an optimized high-performance liquid chromatography (HPLC) method. Hydrodynamics and diffusion limitations in emulsion were considered in overall model by determining diffusivities, distribution coefficients, molar volumes, boiling points and viscosities of individual components. Pre-exponential factors and activation energies were related with structure of reactants, intermediates and products acknowledging number of carbons, double bonds and alkyl branches by linear and mixed response surface methodology. Developed model may be used with batch and continuous flow reactors, e.g. for novel micro-structured or industrial-scale process intensification, different vegetable or non-edible oils (waste cooking Jatropha or microalgae lipids)

  8. The production of butanol fuel from renewable systems using a membrane assisted fermentation system, MBTC DOT-3018.

    Science.gov (United States)

    2011-03-10

    The U.S. presently imports over 60% of the crude oil that is used to generate most of the 180 billion gallons of gasoline and diesel fuel that are annually consumed in this country. It is estimated that in the U.S., there are at least 500 million dry...

  9. Preparation of Organic/Inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Ki Yong; Lee, Yong Taek [Kyung Hee University, Yongin (Korea, Republic of)

    2013-10-15

    In this paper, polymer composite membranes and ceramic composite membranes were prepared in order to compare differences in pervaporation performances relative to the support layers. PVDF was used for the polymer support layers, and a-Al{sub 2}O{sub 3} was used for the ceramic support layers. For active layer was coated for PDMS, which is a rubbery polymer. The characterization of membranes were analysed by SEM, contact angle, and XPS. We studied performances relative to the composite membrane support layers in the ABE mixture solutions. The results of the pervaporation, the flux of the ceramic composite membrane was shown to be 250.87 g/m{sup 2}h, which was higher than that of polymer composite membranes, at 195.64 g/m{sup 2}h. However, it was determined that the separation factor of the polymer composite membranes was 31.98 which were higher than that of the ceramic composite membranes, at 20.66.

  10. Blends of butanol and hydrotreated vegetable oils as drop-in replacement for diesel engines: Effects on combustion and emissions

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek-Lom, M.; Beránek, V.; Mikuška, Pavel; Křůmal, Kamil; Coufalík, Pavel; Sikorová, Jitka; Topinka, Jan

    2017-01-01

    Roč. 197, JUN (2017), s. 407-421 ISSN 0016-2361 R&D Projects: GA ČR(CZ) GA13-01438S Institutional support: RVO:68081715 ; RVO:68378041 Keywords : renewable diesel * engine * combustion Subject RIV: CB - Analytical Chemistry, Separation; DN - Health Impact of the Environment Quality (UEM-P) OBOR OECD: Analytical chemistry; Energy and fuels (UEM-P) Impact factor: 4.601, year: 2016

  11. Selective enzymic esterification of free fatty acids with .I.n./I.-butanol under microwave irradiation and under classical heating

    Czech Academy of Sciences Publication Activity Database

    Vacek, M.; Zarevúcka, Marie; Wimmer, Zdeněk; Stránský, Karel; Demnerová, K.; Legoy, M. D.

    2000-01-01

    Roč. 22, - (2000), s. 1565-1570 ISSN 0141-5492 R&D Projects: GA ČR GA203/99/1457; GA MŠk OC D13.10 Institutional research plan: CEZ:AV0Z4055905 Subject RIV: CE - Biochemistry Impact factor: 0.967, year: 2000

  12. The Carrier Gas Pressure Effect in a Laminar Flow Diffusion Chamber, Homogeneous Nucleation of n-Butanol in Helium

    Czech Academy of Sciences Publication Activity Database

    Hyvärinen, A-P.; Brus, David; Ždímal, Vladimír; Smolík, Jiří; Kulmala, M.; Viisanen, V.; Lihavainen, H.

    2006-01-01

    Roč. 124, č. 22 (2006), Art. No. 224304 ISSN 0021-9606 R&D Projects: GA AV ČR(CZ) IAA2076203 Institutional research plan: CEZ:AV0Z40720504 Keywords : supersaturated vapor * cloud chamber * background gas es Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  13. Blends of butanol and hydrotreated vegetable oils as drop-in replacement for diesel engines: Effects on combustion and emissions

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek-Lom, M.; Beránek, V.; Mikuška, Pavel; Křůmal, Kamil; Coufalík, Pavel; Sikorová, Jitka; Topinka, Jan

    2017-01-01

    Roč. 197, JUN (2017), s. 407-421 ISSN 0016-2361 R&D Projects: GA ČR(CZ) GA13-01438S Institutional support: RVO:68081715 ; RVO:68378041 Keywords : renewable diesel * engine * combustion Subject RIV: CB - Analytical Chemistry, Separation; DN - Health Impact of the Environment Quality (UEM-P) OBOR OECD: Analytical chemistry; Energy and fuel s (UEM-P) Impact factor: 4.601, year: 2016

  14. Selective Removal of Butanol from Aqueous Solution by Pervaporation with a PIM-1 Membrane and Membrane Aging

    Czech Academy of Sciences Publication Activity Database

    Žák, Michal; Klepić, M.; Červenková Šťastná, Lucie; Sedláková, Zuzana; Vychodilová, Hana; Hovorka, Š.; Friess, K.; Randová, A.; Brožová, Libuše; Jansen, J. C.; Khdhayyer, M.R.; Budd, P.M.; Izák, Pavel

    2015-01-01

    Roč. 151, SEP 4 (2015), s. 108-114 ISSN 1383-5866 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:67985858 ; RVO:61389013 Keywords : PIM membrane * aging of polymer membrane * pervaporation Subject RIV: CI - Industrial Chemistry, Chemical Engineering; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 3.299, year: 2015

  15. Acetone Enhances the Direct Analysis of Total Condensed Tannins in Forage Legumes by the Butanol-HCl Assay

    Science.gov (United States)

    Depending on concentration, condensed tannins (CT) in forages have no effect, enhance, or impede protein utilization and performance of ruminants. Defining optimal forage CT levels has been elusive, partly because current methods for estimating total soluble plus insoluble CT are laborious or inaccu...

  16. Increased Productivity of Clostridium Acetobutylicum Fermentation of Acetone, Butanol, and Ethanol by Pervaporation through Supported Ionic Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Schwarz, K.; Ruth, W.; Bahl, H.; Kragl, U.

    2008-01-01

    Roč. 78, č. 4 (2008), s. 597-602 ISSN 0175-7598 R&D Projects: GA ČR GA104/08/0600 Grant - others:MERG(XE) CT/2006/044737 Institutional research plan: CEZ:AV0Z40720504 Keywords : clostridium acetobutylicum * supported polymer membrane * pervaporation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.569, year: 2008

  17. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  18. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoprotrenol-induced cardiac necrosis and oxidative stress in rats: an EPR study

    Science.gov (United States)

    Panda, Sunanda

    2015-01-01

    The preventive effect of Moringa oleifera polyphenolic fraction (MOPF) on cardiac damage was evaluated in isoproterenol (ISO) induced cardiotoxicity model of Wistar rats. Male rats in different groups were treated with MOPF orally at the dose of 50, 100 and 150 mg/kg/day for 28 days and were subsequently administered (s.c.) with ISO (85 mg/kg body weight) for the last two days. At the end of the experiment levels of serum troponin-T, creatine kinase-MB, lactate dehydrogenase, content of malondialdehyde (MDA), activities/levels of different cellular antioxidants were estimated in control and experimental groups. Additionally, scavenging potential to the hydroxyl radical of the fraction was measured by electron paramagnetic resonance (EPR). ISO administered rats showed significant increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, and heart tissue MDA content. Furthermore, marked reduction in the activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione levels were observed. EPR study showed an increase in signal intensity in ISO-induced rats. Triphenyl tetrazolium chloride (TTC) staining of heart section revealed a marked increase in infarcted area in ISO-induced rats. Histological features of the heart also indicated a disruption in the structure of cardiac myofibrils in these animals. MOPF (100 mg/kg body weight) pretreatment prevented all these adverse effects of ISO. Present results show that the rich polyphenolic content of Moringa oleifera significantly reduced the myocardial damage and decreased the oxidative stress, possibly through hydroxyl radical scavenging activity as evidenced from the EPR spectra. PMID:26417351

  19. Noble Metal Decoration and Presulfation on TiO2: Increased Photocatalytic Activity and Efficient Esterification of n-Butanol with Citric Acid

    Directory of Open Access Journals (Sweden)

    Yu Niu

    2016-01-01

    Full Text Available TiO2 has been widely used as a key catalyst in photocatalytic reactions; it also shows good catalytic activity for esterification reactions. Different sulfated M-TiO2 nanoparticles (M = Ag, Au, Rh, and Pt were prepared by photodeposition and ultrasonic methods. The results show that the noble metal nanoparticles, which were loaded onto a TiO2 surface, slightly affected the crystal phase and particle size of TiO2. Among all the catalysts, SO42-/Au-TiO2 exhibited the best catalytic activity in the esterification reaction for the synthesis of citric acid n-butyl acetate and in the decomposition of methyl orange, as confirmed by a high conversion rate of up to 98.2% and 100% degradation rate, respectively. This can be attributed to an increase in the Lewis acidity of the catalyst and increased separation efficiency of electron-hole pairs. This superior catalyst has great potential applications in esterification reactions and wastewater treatments.

  20. Isothermal Vapour-Liquid Equilibria in the Ternary System tert-Butyl Methyl Ether + tert-Butanol + 2,2,4-Trimethylpentane and the Three Binary Subsystems

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Wichterle, Ivan

    2001-01-01

    Roč. 180, 1-2 (2001), s. 235-245 ISSN 0378-3812 R&D Projects: GA ČR GA104/99/0136 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapourůliquid equilibrium * experimental data * molar excess volume Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.217, year: 2001

  1. Predicción de la biodisponibilidad de pireno y fenantreno a través de su extractabilidad en butanol en suelos contaminados con diesel

    OpenAIRE

    Díaz, Gilberto; Ortiz, Rutilio; Bernal, Carolina

    2010-01-01

    La evaluación del riesgo para la salud humana y el ambiente asociado a suelos contaminados con hidrocarburos se ha basado tradicionalmente en la utilización de técnicas exhaustivas de extracción del contaminante presente en el suelo. Sin embargo, sólo una fracción del total del contaminante tiene un efecto tóxico en los diferentes organismos. El presente estudio plantea determinar la fracción biodisponible de 2 hidrocarburos aromáticos policíclicos (HAPs) en el suelo a través de una extracció...

  2. Butanol production from sweet sorghum bagasse (SSB) with high solids content: part I – comparison of liquid hot water pretreatment with dilute sulfuric acid

    Science.gov (United States)

    In these studies we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g·L-1) at 190 deg C for zero min (as soon as temperature reached 190 deg C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and ...

  3. La fermentation acétonobutylique. Synthèse bibliographique et orientations actuelles Butanol-Acetone Fermentation. Bibliographie Synthesis and Current Trends

    Directory of Open Access Journals (Sweden)

    Marchal R.

    2006-11-01

    Full Text Available Cet article présente une synthèse des connaissances sur la fermentation acétonobutylique tant d'un point de vue microbiologique que technologique. Divers aspects du métabolisme et de la régulation du microorganisme mis en oeuvre sont abordés. Les performances de la fermentation sur ses substrats traditionnels (farine de maïs ou mélasses sont comparées avec celles qui ont été récemment obtenues à partir du topinambour à l'Institut Français du Pétrole, dans le cadre d'un nouveau développement de cette fermentation pour la production de carburants. This article gives a synthesis of what is known about butylacetone fermentation from both the microbiological and technological standpoints. Different aspects of the metabolism of the microorganism used and of how it is regulated are considered. The performances of fermentation on traditional substrates (cornmeal or molasses are compared with those recently obtained using Jerusalem artichokes at Institut Français du Pétrole as part of a new project on this fermentation for the purpose of producing substitute fuel.

  4. Structural Properties of Pure Simple Alcohols from Ethanol, Propanol, Butanol, Pentanol, to Hexanol: Comparing Monte Carlo Simulations with Experimental SAXS Data

    Czech Academy of Sciences Publication Activity Database

    Tomšič, M.; Jamnik, A.; Fritz-Popovski, G.; Glatter, O.; Vlček, Lukáš

    2007-01-01

    Roč. 111, č. 7 (2007), s. 1738-1751 ISSN 1520-6106 Institutional research plan: CEZ:AV0Z40720504 Keywords : alcohols * saxs * monte carlo Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.086, year: 2007

  5. Production of biodiesel by transesterification of corn and soybean oils with ethanol or butanol using resin-bound truncated Candida antarctica lipase B

    Science.gov (United States)

    Enzymatic catalysts, such as lipases, have advantages over chemical catalysts for transesterification of triglycerides to produce biodiesel. A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western b...

  6. Synthesis of 2-Butanol by Selective Hydrogenolysis of 1,4-Anhydroerythritol over Molybdenum Oxide-Modified Rhodium-Supported Silica.

    Science.gov (United States)

    Arai, Takahiro; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2016-07-07

    Rh-MoOx /SiO2 (Mo/Rh=0.13) is an effective catalyst for the hydrogenolysis of 1,4-anhydroerythritol (1,4-AHERY) and provides 2-BuOH in high yield of 51 %. This is the first report of the production of 2-BuOH from 1,4-AHERY by hydrogenolysis. 1,4-AHERY was more suitable as a starting material than erythritol because the 2-BuOH yield from erythritol was low (34 %). Based on the kinetics and comparison of reactivities of the related compounds using Rh-MoOx /SiO2 and Rh/SiO2 catalysts, the modification of Rh/SiO2 with MoOx leads to the high activity and high selectivity to 2-BuOH because of the generation of reactive hydride species and the strong adsorption of 1,4-AHERY on MoOx species. The reaction proceeds by main two routes, (I) the combination of single C-O hydrogenolysis with the desorption of intermediates, a usual route in hydrogenolysis, and (II) multiple C-O hydrogenolysis without the desorption of intermediates from the active site, and the reaction mechanism for Route (II) is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vapor-Liquid Equilibria in the Binary and Ternary Systems Composed of 2-Methylpentane, 3-Methyl-2-Butanone and 3-Methyl-2-Butanol

    Czech Academy of Sciences Publication Activity Database

    Psutka, Štěpán; Wichterle, Ivan

    2005-01-01

    Roč. 50, č. 4 (2005), s. 1338-1342 ISSN 0021-9568 R&D Projects: GA ČR(CZ) GA104/03/1555; GA AV ČR(CZ) KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor-liquid equilibrium * binary- ternary systems * isothermal Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.610, year: 2005

  8. Isothermal Vapor-Liquid Equilibria in the Two Binary and the Ternary Systems Composed of tert-Amyl Methyl Ether, tert-Butanol, and Isooctane

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Pavlíček, Jan; Wichterle, Ivan

    2011-01-01

    Roč. 56, č. 4 (2011), s. 783-788 ISSN 0021-9568 R&D Projects: GA ČR GA104/07/0444 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor-liquid equilibrium * experimental data * prediction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.693, year: 2011

  9. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation's fuel supply. Ethanol is the primary biofuel in the US martket, distributed as a blend with petroleum gasoline in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  10. Isothermal Vapour-Liquid Equilibrium in the Binary tert-Butanol or 2,2,4-Trimethylpentane + 1-tert-Butoxy-2-Propanol, and in the Ternary tert-Butanol + 2,2,4-Trimethylpentane + 1-tert-Butoxy-2-Propanol Systems

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Wichterle, Ivan

    2001-01-01

    Roč. 189, 1-2 (2001), s. 111-118 ISSN 0378-3812 R&D Projects: GA ČR GA104/99/0136 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour-liquid equilibrium * experimental data * molar excess volume Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.217, year: 2001

  11. Experimental investigation of thermodynamic properties of binary mixture of acetic acid + n-butanol and acetic acid + water at temperature from 293.15 K to 343.15 K

    Science.gov (United States)

    Paul, M. Danish John; Shruthi, N.; Anantharaj, R.

    2018-04-01

    The derived thermodynamic properties like excess molar volume, partial molar volume, excess partial molar volume and apparent volume of binary mixture of acetic acid + n-butanolandacetic acid + water has been investigated using measured density of mixtures at temperatures from 293.15 K to 343.15.

  12. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction

    NARCIS (Netherlands)

    Richter, Hanno; Molitor, Bastian; Diender, Martijn; Machado de Sousa, Diana; Angenent, Largus T.

    2016-01-01

    Carboxydotrophic bacteria (CTB) have received attention due to their ability to synthesize commodity chemicals from producer gas and synthesis gas (syngas). CTB have an important advantage of a high product selectivity compared to chemical catalysts. However, the product spectrum of wild-type CTB

  13. Extended UNIQUAC Model for Correlation and Prediction of Vapor-Liquid-Liquid-Solid Equilibria in Aqueous Salt Systems Containing Non-Electrolytes. Part B. Alcohol (Ethanol, Propanols, Butanols) - Water-salt systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Iliuta, Maria Cornelia; Rasmussen, Peter

    2004-01-01

    The Extended UNIQUAC model for electrolyte solutions is an excess Gibbs energy function consisting of a Debye-Huckel term and a term corresponding to the UNIQUAC equation. For vapor-liquid equilibrium calculations, the fugacities of gas-phase components are calculated with the Soave-Redlich-Kwong......The Extended UNIQUAC model for electrolyte solutions is an excess Gibbs energy function consisting of a Debye-Huckel term and a term corresponding to the UNIQUAC equation. For vapor-liquid equilibrium calculations, the fugacities of gas-phase components are calculated with the Soave...... solid-liquid-vapor equilibrium and thermal property data for strongly non-ideal systems. In this work, the model is extended to aqueous salt systems containing higher alcohols. The calculations are based on an extensive database consisting of salt solubility data, vapor liquid equilibrium data...

  14. Theoretical Kinetic Study of the Unimolecular and H-Assisted Keto-Enol Tautomerism Propen-2-ol ↔Acetone. Pressure Effects and Implications in the Pyrolysis and Oxidation of tert- And 2-Butanol

    KAUST Repository

    Grajales Gonzalez, Edwing Javier

    2018-01-01

    and variational transition state theory were considered in a wide temperature and pressure range (200 K – 3000 K, 0.1 kPa – 108 kPa). It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior for both

  15. Prospects for Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  16. Biofuel production by recombinant microorganisms

    Science.gov (United States)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  17. Enhanced Down-Stream Processing of Biobutanol in the ABE Fermentation Process

    NARCIS (Netherlands)

    Bîldea, Costin Sorin; Patraşcu, Iulian; Segovia Hernandez, J. G.; Kiss, Anton A.; Kravanja, Zdravko; Bogataj, Miloš

    2016-01-01

    Butanol is considered a superior biofuel, as it is more energy dense and less hygroscopic than bioethanol, resulting in higher possible blending ratios with gasoline. However, the production cost of the acetone-butanol-ethanol (ABE) fermentation process is high, mainly due to the low butanol titer,

  18. Simultaneous clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate

    NARCIS (Netherlands)

    Berg, C. van den; Heeres, A.S.; Wielen, L.A.M. van der; Straathof, A.J.J.

    2013-01-01

    The recovery of 1-butanol from fermentation broth is energy-intensive since typical concentrations in fermentation broth are below 20gL -1. To prevent butanol inhibition and high downstream processing costs, we aimed at producing butyl esters instead of 1-butanol. It is shown that it is possible to

  19. Yeast genomics on food flavours

    NARCIS (Netherlands)

    Schoondermark-Stolk, Sung Ah

    2005-01-01

    The appearance and concentration of the fusel alcohol 3-methyl-1-butanol is important for the flavour of fermented foods. 3-Methyl-1-butanol is formed by yeast during the conversion of L-leucine. Identification of the enzymes and genes involved in the formation of 3-methyl-1-butanol is a major

  20. [Current status and prospects of biobutanol manufacturing technology].

    Science.gov (United States)

    Gu, Yang; Jiang, Yu; Wu, Hui; Liu, Xudong; Li, Zhilin; Li, Jian; Xiao, Han; Shen, Zhaobing; Zhao, Jingbo; Yang, Yunliu; Jiang, Weihong; Yang, Sheng

    2010-07-01

    Butanol is not only an important chemical feedstock but also expected to become a new generation biofuel. Thus, biological butanol production using renewable feedstocks has attracted renewed attention due to the worries of global oil supply and its impact on social and economic development. However, compared with petrochemical-derived butanol, biological butanol production is still not economically competition, because of its major drawbacks: high cost of the feedstocks, low butanol concentration in the fermentation broth and the co-production of low-value byproducts acetone and ethanol. Recently, Shanghai cooperative bio-butanol group (SCBG) developed a simple-to-complex technical route to improve bio-butanol production with a focus on: increasing butanol ratio in the solvent through metabolic engineering of Clostridia spp.; introducing and optimizing the butanol synthetic pathway in the species with high butanol tolerance; overcoming the glucose repression effect to utilize low-cost non-grain based feedstocks. SCBG believes that, through extensive domestic and international industry-university-research cooperation, a sustainable and economically viable process for biological butanol production can be established in the near future.

  1. Biotronics

    Science.gov (United States)

    2012-11-01

    including butanol, methanol, ethanol and isopropanol, as well as an alcohol- chloroform blend. To spin-coat a thin film for photonics applications...CTMA and then dissolved in butanol. PCBM was dissolved in chloroform prior to mixing it with DNA-CTMA in butanol. These solutions were spin coated...tris-(8-hydroxyquinoline) aluminum HTL Hole Transport Layer LUMO Lowest Unoccupied Molecular Orbital NPB N- propyl Bromide HBL Hole Blocking Layer

  2. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  3. A study on the treatment of non-biodegrable wastewater by using radiation

    International Nuclear Information System (INIS)

    Lee, Myeon Joo; Jin, Jun Ha; Yoon, Byeong Mok; Kim, Sam Rang; Yim, Moon Ho

    1994-08-01

    This study was carried out for decomposition of tert-butanol which has been called non-biodegradable wastewater by using gamma radiation combined with ozone. When tert-butanol was oxidized by ozone combined with irradiation, a large amount of tert-butanol could be not only easily converted into by-products, such as organic acid, but also oxidized to final products. The irradiation acts an important roll of production of O 2 - radical which is essential in decomposition of tert-butanol. (Author)

  4. Demonstration Results of Phytoremediation of Explosives-Contaminated Groundwater Using Constructed Wetlands At The Milan Army Ammunition Plant, Milan, Tennessee Volume IV.

    Science.gov (United States)

    1998-12-01

    Bromoform Bromomethane iso -Butanol n-Butanol 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride...1994 TABLE 10 DIRECT INJECTION .ANALYSIS OF NEW OIL AT 5 PPM Compound Acetone Benzene n-Butanol*,** iso -Butanol*,** Carbon tetrachlorid Carbon...Sediment 48.0 48.0 2977 16.2 Autocl.sediment 53.7 2.7 15.7 11.0 83.1 12755 16.2 Gravel 53.1 6.8 7.8 8.7 76.4 8583 16.2 Autocl.gravel 11.0 7.7

  5. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon

    NARCIS (Netherlands)

    Knudsen, D.; Urán, P.; Arnous, A.; Koppe, W.

    2007-01-01

    The current work aimed at tracing the causative components for soybean-induced enteritis in Atlantic salmon (Salmo salar L.). Soybean molasses was subjected to phase separation using n-butanol. Three subfractions were obtained as follows: butanol phase, precipitate, and water phase. The biochemical

  6. Ultrasonic study of molecular interaction in binary liquid mixtures at ...

    Indian Academy of Sciences (India)

    of alcohols in preparing a number of compounds like aldehydes, ketones, ... ometer (Mittal Enterprises, New Delhi, Model: M-82) operating at 2 MHz by the method ... 1-butanol and tert-butanol obtained were 876.4, 801.7 and 776.2 kg m 3, ...

  7. Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423

    NARCIS (Netherlands)

    Máté de Gérando, Hadrien; Wasels, François; Bisson, Angélique; Clement, Benjamin; Bidard, Frédérique; Jourdier, Etienne; López-Contreras, Ana María; Lopes Ferreira, Nicolas

    2018-01-01

    Background: There is a worldwide interest for sustainable and environmentally-friendly ways to produce fuels and chemicals from renewable resources. Among them, the production of acetone, butanol and ethanol (ABE) or Isopropanol, Butanol and Ethanol (IBE) by anaerobic fermentation has already a long

  8. Crude extract and purified components isolated from the stems of Tinospora crispa exhibit positive inotropic effects on the isolated left atrium of rats

    DEFF Research Database (Denmark)

    Praman, Siwaporn; Mulvany, Michael J.; Williams, David E.

    2013-01-01

    -butanol soluble material was concentrated and dried under reduced pressure and lyophilized to obtain a crude powder (Tinospora crispa extract). The active components of Tinospora crispa extract were separated by column chromatography and preparative HPLC. The effects and mechanisms of the n-butanol extract...

  9. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: : towards complete biomass valorisation

    NARCIS (Netherlands)

    Lancefield, Christopher S.; Panovic, Isabella; Deuss, Peter J.; Barta, Katalin; Westwood, Nicholas J.

    2017-01-01

    Here, we report on the ability of the biomass derived solvents ethanol and, in particular, n-butanol to fractionate lignocellulose into its main components. An organosolv system consisting of n-butanol containing 5% water and 0.2 M HCl at reflux was found to remove effectively the lignin and

  10. Influence of zirconium ion concentration in model extraction systems TBP - diluents - Zr+4 - nitric acid

    International Nuclear Information System (INIS)

    Rogoz, F.; Tlalka, M.

    1987-07-01

    In systems containing TBP, MBP, DBP and 1-butanol stable emulsions and precipitates are formed which separation is difficult in certain domain of concentration in zirconium ions. MPB and DBP increase stability of primary emulsion in kerosen and carbon tetrachloride but for different concentrations of nitric acid. Addition of 1-butanol decreases slightly the stability of primary emulsion [fr

  11. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    Science.gov (United States)

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  12. Functional Expression of the Thiolase Gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri

    Science.gov (United States)

    The first step of the butanol pathway involves an acetyl-CoA acetyltransferase (ACoAAT), which controls the key branching point from acetyl-CoA to butanol. ACoAAT, also known as thiolase (EC 2.3.1.9), is encoded by the thl gene and catalyzes ligation of 2 acetyl-CoA into acetoacetyl-CoA. Bioinform...

  13. Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator

    NARCIS (Netherlands)

    Ilmi, Miftahul; Abduh, Muhammad Yusuf; Hommes, Arne; Winkelman, Jozef; Hidayat, C.; Heeres, Hero

    2018-01-01

    Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)– water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous

  14. Downstream process options for the ABE fermentation.

    Science.gov (United States)

    Friedl, Anton

    2016-05-01

    Butanol is a very interesting substance both for the chemical industry and as a biofuel. The classical distillation process for the removal of butanol is far too energy demanding, at a factor of 220% of the energy content of butanol. Alternative separation processes studied are hybrid processes of gas-stripping, liquid-liquid extraction and pervaporation with distillation and a novel adsorption/drying/desorption hybrid process. Compared with the energy content of butanol, the resulting energy demand for butanol separation and concentration of optimized hybrid processes is 11%-22% for pervaporation/distillation and 11%-17% for liquid-liquid extraction/distillation. For a novel adsorption/drying/desorption process, the energy demand is 9.4%. But all downstream process options need further proof of industrial applicability. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Atmospheric chemistry of HFE-7000 (CF(3)CF (2)CF (2)OCH (3)) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (CF (3)CF (2)CF (2)CH (2)OH): kinetic rate coefficients and temperature dependence of reactions with chlorine atoms.

    Science.gov (United States)

    Díaz-de-Mera, Yolanda; Aranda, Alfonso; Bravo, Iván; Rodríguez, Diana; Rodríguez, Ana; Moreno, Elena

    2008-10-01

    The adverse environmental impacts of chlorinated hydrocarbons on the Earth's ozone layer have focused attention on the effort to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number of C-F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF(3)CF(2)CF(2)OCH(3)) (1) and its isomer CF(3)CF(2)CF(2)CH(2)OH (2). Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube-mass spectrometric technique at 1 Torr of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266-333 and 298-353 K for reactions of HFE-7000 and CF(3)CF(2)CF(2)CH(2)OH, respectively. The measured room temperature rate constants were k(Cl+CF(3)CF(2)CF(2)OCH(3)) = (1.24 +/- 0.28) x 10(-13) cm(3) molecule(-1) s(-1)and k(Cl+CF(3)CF(2)CF(2)CH(2)OH) = (8.35 +/- 1.63) x 10(-13) cm(3) molecule(-1) s(-1) (errors are 2sigma + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k (1)(266-333 K) = (6.1 +/- 3.8) x 10(-13)exp[-(445 +/- 186)/T] cm(3) molecule(-1) s(-1) and k (2)(298-353 K) = (1.9 +/- 0.7) x 10(-12)exp[-(244 +/- 125)/T] cm(3) molecule(-1) s(-1) (errors are 2sigma). The reactions are reported to proceed through the abstraction of an H atom to form HCl and the corresponding halo-alkyl radical. At 298 K and 1 Torr, yields on HCl of 0.95 +/- 0.38 and 0.97 +/- 0.16 (errors are 2sigma) were obtained for CF(3)CF(2)CF(2)OCH(3) and CF(3)CF(2)CF(2)CH(2)OH, respectively. The obtained kinetic rate constants are related to the previous data in the literature, showing a good agreement taking into account the error limits. Comparing the obtained results at room temperature, k (1) and k (2), HFE-7000 is significantly less reactive than its isomer C(3)F(7)CH(2)OH. A similar behavior has been reported for the reactions of other fluorinated alcohols and their isomeric fluorinated ethers with Cl atoms. Literature data, together with the results reported in this work, show that, for both fluorinated ethers and alcohols, the kinetic rate constant may be considered as not dependent on the number of -CF(2)- in the perfluorinated chain. This result may be useful since it is possible to obtain the required physicochemical properties for a given application by changing the number of -CF(2)- without changes in the atmospheric reactivity. Furthermore, lifetimes estimations for these CFCs substitutes are calculated and discussed. The average estimated Cl lifetimes are 256 and 38 years for HFE-7000 and C(3)H(7)CH(2)OH, respectively. The studied CFCs' substitutes are relatively short-lived and OH reaction constitutes their main reactive sink. The average contribution of Cl reactions to global lifetime is about 2% in both cases. Nevertheless, under local conditions as in the marine boundary layer, tau (Cl) values as low as 2.5 and 0.4 years for HFE-7000 and C(3)H(7)CH(2)OH, respectively, are expected, showing that the contribution of Cl to the atmospheric degradation of these CFCs substitutes under such conditions may constitute a relevant sink. In the case of CF(3)CF(2)CF(2)OCH(3), significant activation energy has been measured, thus the use of kinetic rate coefficient only at room temperature would result in underestimations of lifetimes and GWPs. The results obtained in this work may be helpful within the database used in the modeling studies of coastal areas. The knowledge of the atmospheric behavior and the structure-reactivity relationship discussed in this work may also contribute to the development of new environmentally acceptable chemicals. New volatile materials susceptible of emission to the troposphere should be subject to the study of their reactions with OH and Cl in the range of temperature of the troposphere. The knowledge of the temperature dependence of the kinetic rate constants, as it is now reported for the case of reactions 1 and 2, will allow more accurate lifetimes and related magnitudes like GWPs. Nevertheless, a better knowledge of the vertical Cl tropospheric distribution is still required.

  16. Feasibility of bio-based lactate esters as extractant for biobutanol recovery: (Liquid + liquid) equilibria

    International Nuclear Information System (INIS)

    Zheng, Shaohua; Cheng, Hongye; Chen, Lifang; Qi, Zhiwen

    2016-01-01

    Highlights: • Lactate esters were studied as solvent to remove butanol from aqueous media. • (Liquid + liquid) equilibrium data were measured at T = 298.15 K and 1 atm. • Selectivity and 1-butanol partition coefficient were calculated. • COSMO-based study of separation efficiency on solvent structure was conducted. - Abstract: As bio-based solvents, lactate esters can be used as extractant for removing 1-butanol from the aqueous fermentation broths. In order to evaluate the separation efficiency of butyl lactate and 2-ethylhexyl lactate for the extraction of 1-butanol from its mixture with water, the (liquid + liquid) equilibrium for the ternary systems {water (1) + 1-butanol (2) + lactate ester (3)} were measured at T = 298.15 K. The 1-butanol partition coefficient varied in the range of 4.46 to 10.29, and the solvent selectivity within 32.12 to 108.18. For the separation of low-concentration butanol from fermentation broths, butyl lactate exhibits higher partition coefficient and lower selectivity than 2-ethylhexyl lactate. The NRTL model was employed to correlate the experimental data, and the COSMO-RS theory was utilized to predict the (liquid + liquid) equilibria and to analyze the influence of lactate esters on extraction efficiency.

  17. Effects of substitution on counterflow ignition and extinction of C3 and C4 alcohols

    KAUST Repository

    Alfazazi, Adamu

    2016-06-17

    Dwindling reserves and inherent uncertainty in the price of conventional fuels necessitates a search for alternative fuels. Alcohols represent a potential source of energy for the future. The structural features of an alcohol fuel have a direct impact on combustion properties. In particular, substitution in alcohols can alter the global combustion reactivity. In this study, experiments and numerical simulations were conducted to investigate the critical conditions of extinction and autoignition of n-propanol, 1-butanol, iso-propanol and iso-butanol in non-premixed diffusion flames. Experiments were carried out in the counterflow configuration, while simulations were conducted using a skeletal chemical kinetic model for the C3 and C4 alcohols. The fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while the oxidizer stream is air. The experimental results show that autoignition temperatures of the tested alcohols increase in the following order: iso-propanol > iso-butanol > 1-butanol ≈ n-propanol. The simulated results for the branched alcohols agree with the experiments, while the autoignition temperature of 1-butanol is slightly higher than that of n-propanol. For extinction, the experiments show that the extinction limits of the tested fuels increase in the following order: n-propanol ≈ 1-butanol > iso-butanol > iso-propanol. The model suggests that the extinction limits of 1-butanol is slightly higher than n-propanol with extinction strain rate of iso-butanol and iso-propanol maintaining the experimentally observed trend. The transport weighted enthalpy (TWE) and radical index (Ri) concepts were utilized to rationalize the observed reactivity trends for these fuels.

  18. Theoretical study of chain transfer to solvent reactions of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Srinivasan, Sriraj; Grady, Michael C; Rappe, Andrew M; Soroush, Masoud

    2014-07-24

    This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.

  19. Effects of substitution on counterflow ignition and extinction of C3 and C4 alcohols

    KAUST Repository

    Alfazazi, Adamu; Niemann, Ulrich; Selim, Hatem; Cattolica, Robert J.; Sarathy, Mani

    2016-01-01

    Dwindling reserves and inherent uncertainty in the price of conventional fuels necessitates a search for alternative fuels. Alcohols represent a potential source of energy for the future. The structural features of an alcohol fuel have a direct impact on combustion properties. In particular, substitution in alcohols can alter the global combustion reactivity. In this study, experiments and numerical simulations were conducted to investigate the critical conditions of extinction and autoignition of n-propanol, 1-butanol, iso-propanol and iso-butanol in non-premixed diffusion flames. Experiments were carried out in the counterflow configuration, while simulations were conducted using a skeletal chemical kinetic model for the C3 and C4 alcohols. The fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while the oxidizer stream is air. The experimental results show that autoignition temperatures of the tested alcohols increase in the following order: iso-propanol > iso-butanol > 1-butanol ≈ n-propanol. The simulated results for the branched alcohols agree with the experiments, while the autoignition temperature of 1-butanol is slightly higher than that of n-propanol. For extinction, the experiments show that the extinction limits of the tested fuels increase in the following order: n-propanol ≈ 1-butanol > iso-butanol > iso-propanol. The model suggests that the extinction limits of 1-butanol is slightly higher than n-propanol with extinction strain rate of iso-butanol and iso-propanol maintaining the experimentally observed trend. The transport weighted enthalpy (TWE) and radical index (Ri) concepts were utilized to rationalize the observed reactivity trends for these fuels.

  20. Synergic effects in the extraction of paracetamol from aqueous NaCl solution by the binary mixtures of diethyl ether and low molecular weight primary alcohols

    Science.gov (United States)

    Nikolić, G. M.; Živković, J. V.; Atanasković, D. S.; Nikolić, M. G.

    2013-12-01

    Liquid-liquid extraction of paracetamol from aqueous NaCl solutions was performed with diethyl ether, 1-propanol, 1-butanol, isobutanol, 1-pentanol, and binary mixtures diethyl ether/1-propanol, diethyl ether/1-butanol, and diethyl ether/isobutanol. Among the pure solvents investigated in this study best extraction efficacy was obtained with 1-butanol. Synergic effects in the extraction with binary mixtures was investigated and compared with some other systems used for the extraction of poorly extractable compounds. Results obtained in this study may be of both fundamental and practical importance.