WorldWideScience

Sample records for butadiene rubber-polyvinyl chloride

  1. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    Science.gov (United States)

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  2. Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    1985-01-01

    Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

  3. Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

  4. Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

    CERN Document Server

    Deutsches Institut für Normung. Berlin

    2003-01-01

    Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

  5. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  6. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  7. [Identification of migrants from nitrile-butadiene rubber gloves].

    Science.gov (United States)

    Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio

    2003-04-01

    Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves.

  8. Novel Polyvinyl Alcohol/Styrene Butadiene Rubber Latex/Carboxymethyl Cellulose Nanocomposites Reinforced with Modified Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Yanjun Tang

    2013-01-01

    Full Text Available Novel polyvinyl alcohol (PVA/styrene butadiene rubber (SBR latex/carboxymethyl cellulose (CMC/halloysite nanotubes (HNTs nanocomposites were successfully prepared through physical blending. The as-obtained PVA/SBR/CMC/HNTs nanocomposites were coated on the surface of old corrugated container (OCC-based paper in an effort to improve the mechanical properties of paper. To improve the dispersion of HNTs and enhance the compatibility between HNTs and polymer matrix, HNTs were modified with titanate coupling agent (TCA. FT-IR, together with TGA, confirmed that TCA was grafted onto the surface of HNTs successfully. XRD demonstrated that the crystal structures of HNTs remained almost unchanged. TEM showed that modified HNTs exhibited good dispersion and possessed nanotubular structures with an outer diameter of around 50 nm and an inner diameter of about 20 nm. SEM gave an indication that modified HNTs were dispersed more uniformly than unmodified HNTs within PVA/SBR/CMC matrix. Rheological measurement exhibited that surface modification process enhanced the compatibility between HNTs and polymer matrix, thus resulting in the decreased viscosity of nanocomposites. In comparison with unmodified HNTs, modified HNTs were found to contribute more to the enhancement in mechanical properties, which might be attributed to the better dispersion and compatibility of modified HNTs evidenced by TEM, SEM, and rheological measurement.

  9. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  10. Studies on physical properties and fractography of electron beam irradiated poly(vinyl chloride)/epoxidized natural rubber blend in the presence of trimethylolpropane triacrylate

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2000-01-01

    The effect of irradiation on the 50/50 poly(vinyl chloride)/epoxidized natural rubber blend was studied in the presence of 3 phr trimethylolpropane triacrylate (TMPTA). The blend was irradiated by using a 3.0 MeV electron beam machine at doses ranging from 20 to 200 kGy in air and room temperature. The tensile properties, resilience and gel fractions of the blends were measured. Electron beam irradiation of the blend in the presence of the TMPTA were found to cause crosslinking which in effect caused an enhancement in modulus and gel fraction together with a concomitant decline in ultimate elongation. The irradiation has resulted in a less hysteretic poly(vinyl chloride)/epoxidized natural rubber blend, with increased rebound resilience. The tensile strength of the blend reached a maximum at 60 kGy followed by a slight decrease at higher doses, implying embrittlement due to the excessive crosslinking. The scanning electron micrographs of the fracture surfaces of the irradiated blends show evidence consistent with the above contention. (Author)

  11. Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber.

    Science.gov (United States)

    Przepiórkowska, A; Chrońska, K; Zaborski, M

    2007-03-06

    The noxious wastes from the tanning industry such as chrome-tanned leather shavings were used as the only filler of rubber mixes containing carboxylated butadiene-acrylonitrile rubber (XNBR) or butadiene-acrylonitrile rubber (NBR), and a dispersing agent Limanol PEV (Schill & Seilacher). The best form addition of leather powder to the rubber mixes is mixed the waste protein with zinc oxide. The leather powder added to the rubber mixes improves the mechanical properties: tensile strength (T(s)), elongation at break (epsilon(b)) and increase the cross-linking density of carboxylated XNBR and NBR rubber mixes. Satisfactory results of these studies are presented in this work.

  12. Polybutadiene and Styrene-Butadiene rubbers for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lucas N. [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Goiania, Goiania -GO (Brazil); Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil); Vieira, Silvio L. [Instituto de Fisica, Universidade Federal de Goias-UFG, Campus Samambaia, Goiania-GO (Brazil); Schimidt, Fernando [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Inhumas, Inhumas-GO (Brazil); Antonio, Patricia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil)

    2015-07-01

    Polybutadiene and Styrene-Butadiene are synthetical rubbers used widely for pneumatic tires manufacturing. In this research, the dosimeter characteristics of those rubbers were studied for application in high-dose dosimetry. The rubber samples were irradiated with doses of 10 Gy up to 10 kGy, using a {sup 60}Co Gamma Cell-220 system (dose rate of 1.089 kGy/h) and their readings were taken on a Fourier Transform Infrared Spectroscopy-FTIR system (model Frontier/Perkin Elmer). The ratios of two absorbance peaks were taken for each kind of rubber spectrum, Polybutadiene (1306/1130 cm{sup -1}) and Styrene-Butadiene (1449/1306 cm{sup -1}). The ratio calculated was used as the response to the irradiation, and is not uniform across the sample. From the results, it can be concluded for both rubbers: a) the dose-response curves may be useful for high-dose dosimetry (greater than 250 Gy); b) their response for reproducibility presented standard deviations lower than 2.5%; c) the relative sensitivity was higher for Styrene-Butadiene (1.86 kGy{sup -1}) than for Polybutadiene (1.81 kGy{sup -1}), d) for doses of 10 kGy to 200 kGy, there was no variation in the dosimetric response. Both types of rubber samples showed usefulness as high-dose dosimeters. (authors)

  13. Isolation and identification of some unknown substances in disposable nitrile-butadiene rubber gloves used for food handling.

    Science.gov (United States)

    Mutsuga, M; Wakui, C; Kawamura, Y; Maitani, T

    2002-11-01

    In Japan, disposable gloves made from nitrile-butadiene rubber (NBR) are frequently used in contact with foods. In a previous paper, we investigated substances migrating from various gloves made of polyvinyl chloride, polyethylene, natural rubber and NBR. Zinc di-n-butyldithiocarbamate (ZDBC), diethyldithiocarbamate (ZDEC) used as vulcanization accelerators, di(2-ethylhexyl)phthalate (DEHP) used as a plasticizer and many unknown compounds that migrated from NBR gloves into n-heptane were detected by GC/MS. In this paper, six unknown compounds were obtained from one kind of NBR glove by n-hexane extraction and each was isolated by silica gel chromatography. From the results of NMR and mass spectral analysis of the six unknown compounds, their structures are proposed as 1,4-dione-2,5-bis(1,1-dimethylpropyl)cyclohexadiene (1), 2-(1,1-dimethylethyl)-4-(1,1,3,3-tetra methylbutyl)phenol (2), 2,6-bis(1,1-dimethylethyl)-4-(1,1,3,3-tetramethylbutyl)phenol (3), 2,4-bis(1,1,3,3-tetramethylbutyl)phenol (4), 2-(1,1-dimethylethyl)4,6-bis(1,1,3,3-tetramethylbutyl)phenol (5) and 2,4,6-tris(1,1,3,3-tetramethylbutyl)phenol (6). Compound 1 was observed in five of the seven kinds of NBR gloves, and compounds 2-4 and 6, which are not listed in Chemical Abstract (CA), were present in four kinds of gloves.

  14. Pengaruh Penggunaan Nitril Butadiene Rubber Dan Pale Crepe Pada Pembuatan Sol Karet Untuk Sepatu Pengaman

    OpenAIRE

    Yuniari, Arum

    2010-01-01

    Rubber sole for safety shoes was different on physical specification with general sole, especially on abrasion resistance and oil resistance. The objective of the study was to determine the effect of nitril butadiene rubber and pale crepe on physical properties of vulcanized rubber sole for safety shoes. Rubber sole for safety shoes was produced by blending pale crepe and nitril butadiene rubber with ratio of : 50/50; 60/40; 70/30 and 80/20 phr, respectively. Carbon black as filler was also v...

  15. Pengaruh penggunaan nitril butadiene rubber dan pale crepe pada pembuatan sol karet untuk sepatu pengaman

    OpenAIRE

    Arum Yuniari

    2010-01-01

    Abstract Rubber sole for safety shoes was different on physical specification with general sole, especially on abrasion resistance and oil resistance. The objective of the study was to determine the effect of nitril butadiene rubber and pale crepe on physical properties of vulcanized rubber sole for safety shoes. Rubber sole for safety shoes was produced by blending pale crepe and nitril butadiene rubber with ratio of : 50/50; 60/40; 70/30 and 80/20 phr, respectively. Carbon black as fill...

  16. Blends of nitrile butadiene rubber/poly (vinyl chloride: The use of maleated anhydride castor oil based plasticizer

    Directory of Open Access Journals (Sweden)

    Indiah Ratna Dewi

    2016-06-01

    Full Text Available Recently, much attention has been focused on research to replace petroleum-based plasticizers, with biodegradable materials, such as biopolymer which offers competitive mechanical properties. In this study, castor oil was modified with maleic anhydride (MAH to produce bioplasticizer named maleated anhydride castor oil (MACO, and used in nitrile butadiene rubber (NBR/poly vinyl chloride (PVC blend. The effect of MACO on its cure characteristics and mechanical properties of NBR/PVC blend has been determined. The reactions were carried out at different castor oil (CO/xylene ratios, i.e. 1:0 and 1:1 by weight, and fixed CO/MAH ratio, 1:3 by mole. DOP, CO, and MACO were added into each NBR/PVC blend according to the formula. It was found that the viscosity and safe process level of NBR/PVC blend is similar from all plasticizer, however, MACO (1:0 showed the highest cure rate index (CRI. MACO-based plasticizer gave a higher value of the mechanical properties of the NBR/PVC blend as compared to DOP based plasticizer. MACO (1:1 based plasticizer showed a rather significance performance compared to another type of plasticizers both before and after aging. The value of hardness, elongation at break, tensile strength, and tear strength were 96 Shore A, 155.91 %, 19.15 MPa, and 74.47 MPa, respectively. From this result, NBR/PVC blends based on MACO plasticizer can potentially replace the DOP, and therefore, making the rubber blends eco-friendly.

  17. Polybenzoxazole-filled nitrile butadiene rubber compositions

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor); Guillot, David G. (Inventor)

    2008-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber (NBR) having an acrylonitrile content that ranges from approximately 26% by weight to approximately 35% by weight and polybenzoxazole (PBO) fibers. The NBR may be a copolymer of acrylonitrile and butadiene and may be present in the insulation composition in a range of from approximately 45% by weight to approximately 56% by weight of a total weight of the insulation composition. The PBO fibers may be present in a range of from approximately 3% by weight to approximately 10% by weight of a total weight of the insulation composition. A rocket motor including the insulation composition and a method of insulating a rocket motor are also disclosed.

  18. Electromechanical responses of poly(3-thiopheneacetic acid/acrylonitrile-butadiene rubbers

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Acrylonitrile-butadiene rubber (NBR and blends of poly(3-thiopheneacetic acid/ acrylonitrile-butadiene rubber, P3TAA/NBR, were fabricated, and the electrorheological properties, dielectric, and electrical conductivities were investigated . The electrorheological properties were determined under an oscillatory shear mode in a frequency range of 0.1 to 100 rad/s at various electric field strengths, from 0 to 2 kV/mm, at a fixed 27°C to observe the effects of acrylonitrile content (ACN in the rubber systems and the conductive particle concentration in the blends. For the pure rubber systems, the storage modulus response (ΔG′ is linearly dependent on its dielectric constant (ε′, and increases with the ACN content. For the NBR/P3TAA blends, the storage modulus response varies nonlinearly with the dielectric constant. The bending responses of the rubbers and the blends were investigated in a vertical cantilever fixture. For the pure rubber system, the bending angle and the dielectrophoresis force vary linearly with electric field strength. For the blend system, the bending angle and the dielectrophoresis force vary nonlinearly with electric field strength.

  19. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    International Nuclear Information System (INIS)

    Han, Jianjun; Lu, Haifeng; Zhang, Jie; Feng, Shengyu

    2012-01-01

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (–CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: ► Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. ► Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. ► These materials show good irradiation resistance and mechanical properties at same time.

  20. Particle reinforced composites from acrylamide modified blend of styrene-butadiene and natural rubber

    Science.gov (United States)

    Blends of styrene-butadiene rubber and natural rubber that provide balanced properties were modified with acrylamide and reinforced with soy protein particles. The rubber composites show improved mechanical properties. Both modified rubber and composites showed a faster curing rate. The crosslinking...

  1. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Science.gov (United States)

    2010-10-01

    ... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A... 46 Shipping 5 2010-10-01 2010-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154.1750 Section 154.1750 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK...

  2. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jianjun [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Lu, Haifeng, E-mail: lhf@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Jie [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Feng, Shengyu, E-mail: fsy@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2012-09-14

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (-CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: Black-Right-Pointing-Pointer Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. Black-Right-Pointing-Pointer Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. Black-Right-Pointing-Pointer These materials show good irradiation resistance and mechanical properties at same time.

  3. Preparation and characterization of zinc sulphide nanocomposites based on acrylonitrile butadiene rubber

    Science.gov (United States)

    Ramesan, M. T.; Nihmath, A.; Francis, Joseph

    2013-06-01

    Rubber composite based on acrylonitrile butadiene rubber (NBR) reinforced with nano zinc sulphide (ZnS) have been prepared via vulcanization process and characterized by several techniques. Processing characteristics such as scorch time, optimum cure time decreases with increase in concentration of nano filler in acrylonitrile butadiene rubber. Mechanical properties such as tensile and tear strength increases with increase in concentration of nano filler up to 7 phr of loading thereafter the value decreases, whereas hardness, and flame resistance increases with the dosage of fillers. These enhanced properties are due to the homogenous dispersion of nano fillers in NBR matrix, which is evidenced from the structure that evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  4. Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees

    Science.gov (United States)

    Xue, Xiaodong; Yin, Qing; Jia, Hongbing; Zhang, Xuming; Wen, Yanwei; Ji, Qingmin; Xu, Zhaodong

    2017-11-01

    Graphene oxide (GO) with various oxidation degrees were prepared through a modified Hummer's method by varying the dosage of oxidizing agent. Styrene-butadiene rubber (SBR)/carboxylated acrylonitrile butadiene rubber (XNBR)/GO nanocomposites were fabricated by aqueous-phase mixing of GO colloidal dispersion with SBR latex and a small loading of XNBR latex, followed by co-coagulation. Effects of GO oxidation degree on the morphology, structure, mechanical and thermal properties of nanocomposites were thoroughly investigated. The results showed that the mechanical strength of nanocomposites were enhanced with the increase of oxidation degree of GO. Especially, when the weight ratio of KMnO4 to graphite was 15/5, the tensile strength, tear strength and thermal conductivity of SBR/XNBR/GO filled with 3 phr (parts per hundred rubber) GO increased by 255.3%, 141.5% and 22.8%, respectively, compared to those of neat SBR/XNBR blend. In addition, the thermal stability and the solvent resistance of the nanocomposites were also improved significantly. This work suggested that GO with higher oxidation degree could effectively improve the properties of SBR/XNBR blend.

  5. Endocrine disruptive effects of chemicals eluted from nitrile-butadiene rubber gloves using reporter gene assay systems.

    Science.gov (United States)

    Satoh, Kanako; Nonaka, Ryouichi; Ohyama, Ken-ichi; Nagai, Fumiko; Ogata, Akio; Iida, Mitsuru

    2008-03-01

    Disposable gloves made of nitrile-butadiene rubber (NBR) are used for contact with foodstuffs rather than polyvinyl chloride gloves containing di(2-ethylhexyl)phthalate (DEHP), because endocrine-disruptive effects are suspected for phthalate diesters including DEHP. However, 4,4'-butylidenebis(6-t-butyl-m-cresol) (BBBC), 2,4-di-t-butylphenol, and 2,2,4-trimetyl-1,3-pentanediol diisobutyrate can be eluted from NBR gloves, and possibly also detected in food. In this study, we examined the endocrine-disrupting effects of these chemicals via androgen receptor (AR) and estrogen receptor (ER)-mediated pathways using stably transfected reporter gene cell lines expressing AR (AR-EcoScreen system) and ER (MVLN cells), respectively. We also examined the binding activities of these chemicals to AR and ER. The IC50 value of BBBC for antagonistic androgen was in the range of 10(-6)M. The strength of inhibition was about 5 times that of a known androgen antagonist, 1,1'-(2,2-dichloroethylidene)bis[4-chlorobenzene] (p,p'-DDE), and similar to that of bisphenol A. The IC50 value of BBBC for antagonistic estrogen was in the range of 10(-6)M. These results suggest that BBBC and its structural homologue, 4,4'-thiobis(6-t-butyl-m-cresol) are androgen and estrogen antagonists. It is therefore necessary to study these chemicals in vivo, and clarify their effect on the endocrine system.

  6. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride...

  7. Effects of interfacial interaction on the properties of poly(vinyl chloride)/styrene-butadiene rubber blends

    Science.gov (United States)

    Zhu, Shuihan

    PVC/SBR blends---new thermoplastic elastomer material---were developed. They have potential applications due to low costs and low-temperature elasticity. A unique compatibilization method was employed to enhance the mechanical properties of the materials a compatibilizer miscible with one of the blend components can react chemically with the other component(s). Improvements in tensile and impact behavior were observed as a result of the compatibilization. A novel characterization technique to study the interface of PVC/SBR blends was developed. This technique involves the observation of the unstained sample under electron beam irradiation by a transmission electron microscope (TEM). An enrichment of rubber at the interface between PVC and SBR was detected in the compatiblized PVC/SBR blends. Magnetic relaxation measurements show that the rubber concentration in the proximity of PVC increases with the degree of covulcanization between NBR and SBR. The interface development and the rheological effect during processing were investigated. The interfacial concentration profile and the interfacial thickness were obtained by grayscale measurements on TEM micrographs, evaluation of SIMS images, and measurements of micromechanical properties.

  8. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... chloride plants. 61.64 Section 61.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator of a polyvinyl chloride plant shall comply with the requirements of this section and § 61.65. (a...

  9. Effect of irradiation on poly(vinyl chloride)/epoxidized natural rubber blend in the presence of additives: FTIR analysis

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Dahlan; Baharin, A.; Nasir, M.

    2001-01-01

    The effect of irradiation on the structure of 50/50 poly(vinyl chloride)/epoxidized natural rubber blend (PVC/ENR) was studied using the Fourier Transform Spectroscopy (FTIR). The 50/50 PVC/ENR blend was irradiated by using 3.0 MeV electron beam machine at 0 and 200 kGy irradiation doses. The influence of several additives such as TMPTA, Irganox 1010, and tribasic lead sulfate on the irradiation induced changes of the blend was investigated. It was found that upon irradiation, ring opening of the epoxide groups, oxidation as well crosslinking at residual double bonds occurred, leading to decreases in the intensities of the epoxide and cis double bond bands and an increases in ether and furan bands. The addition of Irganox 1010 and tribasic lead sulfate were found to inhibit the irradiation-induced reaction in the blend to a considerable extent. The importance of TMPTA in preventing the intramolecular ring opening side chain reaction was also discussed. However, studies did not reveal the exact nature of the irradiation-induced reactions involved in the blend. (Author)

  10. Mechanical and Thermal Properties of Styrene Butadiene Rubber - Functionalized Carbon Nanotubes Nanocomposites

    KAUST Repository

    Laoui, Tahar

    2013-01-01

    The effect of reinforcing styrene butadiene rubber (SBR) with functionalized carbon nanotubes on the mechanical and thermal properties of the nanocomposite was investigated. Multi-walled carbon nanotubes (CNTs) were functionalized with phenol

  11. Effect of the Compatibilizer Upon the Properties of Styrene-butadiene Rubber Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Tavakoli

    2013-01-01

    Full Text Available Nanocomposite vulcunizates based on styrene-butadiene rubber (SBR, organoclay and a conventional sulfur curing system were prepared by melt blending process in an internal mixer. In order to study the effects of the type of interfacial compatibilizer on the properties of SBR and clay nanoparticles,three types of compatibilizers, maleic anhydride grafted ethylene-propylene diene rubber (EPDM-g-MAH, acrylonitrile-butadiene rubber (NBR and epoxidized natural rubber (ENR50 have been used. The nanocomposites have been compared together from view point of their curing behavior, rheological and mechanical properties. The developed microstructure and dynamics of the macromolecular chains in proximity of the clay nanolayers have been characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM, and melt rheo-mechanical spectroscopy (RMS. Curing behavior of the prepared nanocomposites has been evaluated using a rubber curing rheometer. EPDM-g-MAH and ENR50 showed to enhance the interactions between SBR chains into clay tactoids much stronger than NBR as a compatibilizer. These were consistent with the dynamic mechanical thermal analysis (DMTA data as well as macroscale mechanical properties tested on the samples.

  12. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2009-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  13. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2008-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  14. Process for the graft polymerization of polyvinyl chloride. [electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, E; Kusama, Y; Udagawa, A; Hashimoto, S

    1970-08-14

    The graft polymerization of acrylonitrile on polyvinyl chloride is effected by simultaneous irradiation with ionizing radiations in a reaction bath consisting of 30% acrylonitrile and 70% n-hexane. The acrylonitrile-hydrocarbon reaction bath increases the graft efficiency markedly when the content of acrylonitrile is 30%. In this case, the formation rate of acrylonitrile homopolymer decreases with a decrease in the content of acrylonitrile. The immersion time may be from a few minutes to a few hours, depending on the type, property and desired graft efficiency of the polyvinyl chloride resin. The polyvinyl chloride may be any available on the market. The acrylonitrile may contain a small quantity of copolymerizable monomer if it does not influence the thermal property of the polyvinyl chloride graft polymer. The ionizing radiations must have enough energy to form an ion pair by removing one electron from one atom of a gas. In examples, 10 g of polyvinyl chloride in powder form were immersed in 100 cc of a mixed solution consisting of 70% to 90% of n-hexane and 10% to 30% of acrylonitrile. The polyvinyl chloride in the solution was exposed to electron beams of 2 Mrad at a dose rate of 7.2 x 10/sup 7/ rad/hr. under a reduced pressure. The graft efficiency was 50% to 80% and the yield of acrylonitrile homopolymer was 0.42 g to 1.26 g.

  15. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR

    OpenAIRE

    Prochoń, Mirosława; Przepiórkowska, Anita

    2013-01-01

    The current investigations show the influence of keratin, recovered from the tanning industry, on the thermal and mechanical properties of vulcanizates with synthetic rubber acrylonitrile-butadiene rubber NBR. The addition of waste protein to NBR vulcanizates influences the improvement of resistance at high temperatures and mechanical properties like tensile strength and hardness. The introduction of keratin to the mixes of rubber previously blended with zinc oxide (ZnO) before vulcanization ...

  16. UTILISATION OF RUBBER SEED OL IN THE

    African Journals Online (AJOL)

    Thermal degradation studies on polyvinyl chloride in the presence of rubber seed oil, epoxidized rubber seed oil and metal ... Epoxidation of RSO was carried out at 29°C using peractic acid ..... impurities such as pigments, Vitamins, sterols ...

  17. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties

    Directory of Open Access Journals (Sweden)

    Xiuying Zhao

    2015-10-01

    Full Text Available New natural rubber (NR/nitrile butadiene rubber (NBR/hindered phenol (AO-80 composites with high-damping properties were prepared in this study. The morphological, structural, and mechanical properties were characterized by atomic force microscopy (AFM, polarized Fourier transform infrared spectrometer (FTIR, dynamic mechanical thermal analyzer (DMTA, and a tensile tester. Each composite consisted of two phases: the NR phase and the NBR/AO-80 phase. There was partial compatibility between the NR phase and the NBR/AO-80 phase, and the NR/NBR/AO-80 (50/50/20 composite exhibited a co-continuous morphology. Strain-induced crystallization occurred in the NR phase at strains higher than 200%, and strain-induced orientation appeared in the NBR/AO-80 phase with the increase of strain from 100% to 500%. The composites had a special stress–strain behavior and mechanical properties because of the simultaneous strain-induced orientation and strain-induced crystallization. In the working temperature range of a seismic isolation bearing, the composites (especially the NR/NBR/AO-80 (50/50/20 composite presented a high loss factor, high area of loss peak (TA, and high hysteresis energy. Therefore, the NR/NBR/AO-80 rubber composites are expected to have important application as a high-performance damping material for rubber bearing.

  18. Pengaruh penggunaan nitril butadiene rubber dan pale crepe pada pembuatan sol karet untuk sepatu pengaman

    Directory of Open Access Journals (Sweden)

    Arum Yuniari

    2010-06-01

    Full Text Available Abstract Rubber sole for safety shoes was different on physical specification with general sole, especially on abrasion resistance and oil resistance. The objective of the study was to determine the effect of nitril butadiene rubber and pale crepe on physical properties of vulcanized rubber sole for safety shoes. Rubber sole for safety shoes was produced by blending pale crepe and nitril butadiene rubber with ratio of : 50/50; 60/40; 70/30 and 80/20 phr, respectively. Carbon black as filler was also variated with, 40 ; 50 and 60 phr. Compounding processing used two roll mill machine and vulcanized rubber sole was by using pressed use hydraulic press machine. The results showed that vulcanized rubber sole for safety shoes with good quality consist of pale crepe and NBR 80/20 phr and carbon black 40 phr, which was characterized by tensile strength 16.81 N/mm2, tear strength 11.68 N/mm, density 1.12 g/cm3, abrasion resistance 58.51 mm3, hardness 71.60 shore A, resistance to cut growth 30.000 times was 1.15 mm and oil resistance 65.44%, respectively. The quality parameters was complied with standard quality of SNI 0111 : 2009, for safety shoes from leather and vulcanized rubber sole that fulfill oil reistance parameter.

  19. Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends

    Directory of Open Access Journals (Sweden)

    A.B. Moustafa

    2016-09-01

    Full Text Available Blends of natural rubber (NR with styrene butadiene rubber (SBR with varying ratios have been prepared. Vulcanization of the prepared blends has been induced by irradiation of gamma rays with varying doses up to 250 kGy. Mechanical properties, namely tensile strength, tensile modulus at 100% elongation, elongation at break have been followed up as a function of irradiation dose as well as blend composition. Physical properties, namely gel fraction and swelling number have been followed up using benzene as a solvent. Thermal measurements namely thermogravimetric analysis were carried out. The results indicated that the addition of NR has improved the properties of NR / SBR blends. Also NR/SBR blend is thermally stable than NR alone.

  20. Fast and robust method for the determination of microstructure and composition in butadiene, styrene-butadiene, and isoprene rubber by near-infrared spectroscopy.

    Science.gov (United States)

    Vilmin, Franck; Dussap, Claude; Coste, Nathalie

    2006-06-01

    In the tire industry, synthetic styrene-butadiene rubber (SBR), butadiene rubber (BR), and isoprene rubber (IR) elastomers are essential for conferring to the product its properties of grip and rolling resistance. Their physical properties depend on their chemical composition, i. e., their microstructure and styrene content, which must be accurately controlled. This paper describes a fast, robust, and highly reproducible near-infrared analytical method for the quantitative determination of the microstructure and styrene content. The quantitative models are calculated with the help of pure spectral profiles estimated from a partial least squares (PLS) regression, using (13)C nuclear magnetic resonance (NMR) as the reference method. This versatile approach allows the models to be applied over a large range of compositions, from a single BR to an SBR-IR blend. The resulting quantitative predictions are independent of the sample path length. As a consequence, the sample preparation is solvent free and simplified with a very fast (five minutes) hot filming step of a bulk polymer piece. No precise thickness control is required. Thus, the operator effect becomes negligible and the method is easily transferable. The root mean square error of prediction, depending on the rubber composition, is between 0.7% and 1.3%. The reproducibility standard error is less than 0.2% in every case.

  1. Research and application of fuzzy subtractive clustering model on tensile strength of radiation vulcanization for nitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Zuo Duwen; Wang Hong; Zhu Nankang

    2010-01-01

    By use of fuzzy subtractive clustering model, the relationship between tensile strength of radiation vulcanization of NBRL (Nitrile-butadiene rubber latex) and irradiation parameters have been investigated. The correlation coefficient was calculated to be 0.8222 in the comparison of experimental data to the predicted data. It was obvious that fuzzy model identification method is not only high precision with small computation, but also easy to be used. It can directly supply the evolution of tensile strength of NBR by fuzzy modeling method in radiation vulcanization process for nitrile-butadiene rubber. (authors)

  2. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    Science.gov (United States)

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  3. Degradation of acrylonitrile butadiene rubber and fluoroelastomers in rapeseed biodiesel and hydrogenated vegetable oil

    OpenAIRE

    Akhlaghi, Shahin

    2017-01-01

    Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen ...

  4. Tear energy and strain-induced crystallization of natural rubber/styrene-butadiene rubber blend

    International Nuclear Information System (INIS)

    Noguchi, F; Akabori, K; Yamamoto, Y; Kawahara, S; Kawazura, T

    2009-01-01

    Strain-induced crystallization of natural rubber (NR), dispersed in styrene-butadiene rubber (SBR), was investigated in relation to dimensional feature of a dispersoid and crosslink density of NR by measuring tear energy (G) of crosslinked NR/SBR blends. The crosslinked NR/SBR blends in ratios of 1/9 and 3/7 by weight were prepared by mixing masticated NR and SBR with an internal mixer at a rotor speed of 30 rpm, followed by crosslinking with dicumyl peroxide on a hot press at 444 K for 60 min. The G, measured in wide-ranges of temperature and tear rate, was superposed into a master curve with a Williams-Landel-Ferry shift factor. The G of the NR/SBR(3/7) blend abruptly decreased to a level comparable to that of SBR at about melting temperature of NR crystals formed on straining. The temperature, at which the dramatic decrease in the G occurred, was associated with the dimensional feature of the NR dispersoid and the crosslink density.

  5. Carbon nanotubes as reinforcement of styrene-butadiene rubber

    International Nuclear Information System (INIS)

    De Falco, Alejandro; Goyanes, Silvia; Rubiolo, Gerardo H.; Mondragon, Inaki; Marzocca, Angel

    2007-01-01

    This study reports an easy technique to produce cured styrene-butadiene rubber (SBR)/multi-walled carbon nanotubes (MWCNT) composites with a sulphur/accelerator system at 150 deg. C. Significant improvement in Young's modulus and tensile strength were achieved by incorporating 0.66 wt% of filler without sacrificing SBR elastomer high elongation at break. A comparison with carbon black filled SBR was also made. Field emission scanning electron microscopy was used to investigate dispersion and fracture surfaces. Results indicated that the homogeneous dispersion of MWCNT throughout SBR matrix and strong interfacial adhesion between oxidized MWCNT and the matrix are responsible for the considerable enhancement of mechanical properties of the composite

  6. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  7. Nanocomposites prepared from acrylonitrile butadiene rubber and organically modified montmorillonite with vinyl groups

    Science.gov (United States)

    Han, Mijeong; Kim, Hoonjung; Kim, Eunkyoung

    2006-01-01

    Nanocomposites were prepared from acrylonitrile-butadiene rubber (NBR), vinyl groups containing organically modified montmorillonite and additives, such as zinc oxide, stearic acid, and sulfur. The organically modified montmorillonites used in these nanocomposites were prepared by ion exchange reactions of N,N'-dimethylalkyl-(p-vinylbenzyl)-ammonium chlorides (DAVBAs, alkyl = octyl, dodecyl, and octadecyl) with sodium montmorillonite (Na+-MMT). NBR nanocomposites were obtained by controlling both the mixing and vulcanization conditions, by using a Brabender mixer and hot-press process. X-ray diffraction (XRD) analysis shows that, depending on the amount of montmorillonite that is added, both exfoliated and intercalated nanocomposite structures are formed. The NBR/DAVBA-MMT nanocomposites exhibit much higher mechanical properties (e.g., tensile strength, Young's modulus, 300% modulus, and hardness) as well as gas barrier properties as compared to NBR Na+-MMT or NBR composites generated from modified montmorillonites without vinyl groups. Consistent with the results of XRD, transmission electron microscopy (TEM) reveals that the intercalation and exfoliation structures of the nanocomposites coexist and that the DAVBA-MMT layers are well dispersed in NBR.

  8. Development of Polythiophene/Acrylonitrile-Butadiene Rubbers for Artificial Muscle

    Science.gov (United States)

    Thipdech, Pacharavalee; Sirivat, Anuvat

    2007-03-01

    Electroactive polymers (EAPs) can respond to the applied electrical field by an extension or a retraction. In this work, we are interested in using an elastomeric blend for electroactive applications, acrylonitirle-butadiene rubber (NBR) containing a conductive polymer (Poly(3-thiopheneacetic acid, PTAA); the latter can be synthesized via oxidative polymerization. FT-IR, Thermogravimetric analysis (TGA), ^1H-NMR, UV-visible spectroscopy, and SEM are used to characterize the conductive polymer. Electrorheological properties are measured and investigated in terms of acrylonitrile content, blending ratio, doping level, and temperature. Experiments are carried out under oscillatory shear mode and with applied electric field strength varying from 0 to 2 kV/mm. Dielectric properties, conductivities are measured and correlated with the storage modulus responses. The storage modulus sensitivity, δG'G'0of the pure rubbers increases with increasing electric field strength. They attain the maximum values of about 30% and become constant at electric strength at and above 1000 V/mm.

  9. Hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends

    Science.gov (United States)

    Ahmad, Hazwani Syaza; Ismail, Hanafi; Rashid, Azura A.

    2017-07-01

    This recent work is to investigate the hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. ENR 50/NBRr blends were prepared by two-roll mills with five different loading of NBRr from 5 to 35 phr. Results indicated that the hardness of ENR 50/NBRr blends increased as recycled NBR increased due to the improvement in crosslink density of the blends. Increasing NBRr content gives ENR 50/NBRr blends better resistance towards swelling. Higher degree of crosslinking will increase the swelling resistance and reduce the penetration of toluene into the blends. The presence of polar group in ENR 50 and NBRr give better hardness properties and swelling behaviour of the ENR 50/NBRr blends compared to the NR/NBRr blends.

  10. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    International Nuclear Information System (INIS)

    Mansilla, M.A.; Marzocca, A.J.

    2012-01-01

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  11. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla, M.A., E-mail: mmansilla@df.uba.ar [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina); Marzocca, A.J. [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina)

    2012-08-15

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  12. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    Directory of Open Access Journals (Sweden)

    Maryam Hadizadeh Harandi

    Full Text Available In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR/nanocopper (NC composites were prepared using two-roll mill method. Transmission electron microscope (TEM and scanning electron microscope (SEM images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA. Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites. Keywords: Nanocopper, Rubber, Curing behavior, Rheological properties, Thermal stability, Tensile characteristics

  13. Equivalent lifetime prediction of acrylonitrile butadiene rubber for thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Jang, H. K. [KAERI, Taejon (Korea, Republic of); Ryu, B. H. [Dongguk Universty, Gyeongju (Korea, Republic of); Lee, C. [Chungbuk University, Cheongju (Korea, Republic of)

    2003-07-01

    Thermal degradation of acrylonitrile butadiene rubber(NBR), which is used for O-ring material as elastomeric sealed diaphragm valve in the nuclear power plants, is examined. The thermal degradation is accelerated at 130 .deg. C by arrhenius exploit method using the activation energy calculated by thermogravimetric analysis. The weight loss temperature and glass transition temperature are verified for thermally aged NBR. The relationship between dynamic mechanical properties and elongation at break are also investigated. The threshold valued of thermally aged NBR is a ten year in the change of elongation at break.

  14. Equivalent lifetime prediction of acrylonitrile butadiene rubber for thermal aging

    International Nuclear Information System (INIS)

    Kim, K. Y.; Jang, H. K.; Ryu, B. H.; Lee, C.

    2003-01-01

    Thermal degradation of acrylonitrile butadiene rubber(NBR), which is used for O-ring material as elastomeric sealed diaphragm valve in the nuclear power plants, is examined. The thermal degradation is accelerated at 130 .deg. C by arrhenius exploit method using the activation energy calculated by thermogravimetric analysis. The weight loss temperature and glass transition temperature are verified for thermally aged NBR. The relationship between dynamic mechanical properties and elongation at break are also investigated. The threshold valued of thermally aged NBR is a ten year in the change of elongation at break

  15. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    Science.gov (United States)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  16. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  17. Surface decontamination studies using polyvinyl acetate based strippable polymer

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.

    2004-01-01

    Polyvinyl acetate based strippable polymer has been developed for surface decontamination. Stainless steel, mild steel, polyvinyl chloride and rubber have been selected as candidate materials for the radioactive decontamination studies. The ease of strippability and homogeneity of the polymer coating has been studied using infrared spectrophotometer. Decontamination of used radioactive respirator has been carried out and the peels obtained have been subjected to leaching and incineration studies. The infrared spectrophotometric studies also have been conducted to study the interaction between polyvinyl acetate and ions, like cesium, strontium and cobalt. (author)

  18. Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks

    Directory of Open Access Journals (Sweden)

    P. Yu

    2015-01-01

    Full Text Available In this study, lignin-novolac epoxy resin networks were fabricated in the styrene butadiene rubber (SBR matrix by combination of latex compounding and melt mixing. Firstly, SBR/lignin compounds were co-coagulated by SBR latex and lignin aqueous solution. Then the novolac epoxy resin (F51 was added in the SBR/lignin compounds by melt compounding method. F51 was directly cured by lignin via the ring-opening reaction of epoxy groups of F51 and OH groups (or COOH groups of lignin during the curing process of rubber compounds, as was particularly evident from Fourier transform infrared spectroscopy (FTIR studies and maximum torque of the curing analysis. The existence of lignin-F51 networks were also detected by scanning electron microscope (SEM and dynamic mechanical analysis (DMA. The structure of the SBR/lignin/F51 was also characterized by rubber process analyzer (RPA, thermogravimetric analysis (TGA and determination of crosslinking density. Due to rigid lignin-F51 networks achieved in SBR/lignin/F51 composites, it was found that the hardness, modulus, tear strength, crosslinking density, the temperature of 5 and 10% weight-loss were significantly enhanced with the loading of F51.

  19. Aging-Resistant Functionalized LDH⁻SAS/Nitrile-Butadiene Rubber Composites: Preparation and Study of Aging Kinetics/Anti-Aging Mechanism.

    Science.gov (United States)

    Li, Tianxiang; Shi, Zhengren; He, Xianru; Jiang, Ping; Lu, Xiaobin; Zhang, Rui; Wang, Xin

    2018-05-18

    With the aim of improving the anti-aging properties of nitrile-butadiene rubber (NBR), a functional organic filler, namely LDH⁻SAS, prepared by intercalating 4-amino-benzenesulfonic acid monosodium salt (SAS) into layered double hydroxides (LDHs) through anion exchange, was added to nitrile-butadiene rubber (NBR), giving the NBR/LDH⁻SAS composites. Successful preparation of LDH⁻SAS was confirmed by XRD, TGA and FTIR. LDH⁻SAS was well dispersed in the NBR matrix, owing to its strong interaction with the nitrile group of NBR. The obtained NBR/LDH⁻SAS composites exhibited excellent thermo-oxidative aging resistance as shown by TGA-DSC. Further investigation by ATR-FTIR indicated that SAS can capture the radical groups, even during the aging process, which largely accounts for the improved aging resistance.

  20. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    International Nuclear Information System (INIS)

    Guo Baochun; Lei Yanda; Chen Feng; Liu Xiaoliang; Du Mingliang; Jia Demin

    2008-01-01

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs

  1. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baochun [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)], E-mail: psbcguo@scut.edu.cn; Lei Yanda; Chen Feng; Liu Xiaoliang; Du Mingliang; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2008-12-30

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs.

  2. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    Science.gov (United States)

    Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza

    In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.

  3. Acrylonitrile-Butadiene Rubber (NBR) Prepared via Living/Controlled Radical Polymerization (RAFT).

    Science.gov (United States)

    Kaiser, Andreas; Brandau, Sven; Klimpel, Michael; Barner-Kowollik, Christopher

    2010-09-15

    In the current work we present results on the controlled/living radical copolymerization of acrylonitrile (AN) and 1,3-butadiene (BD) via reversible addition fragmentation chain transfer (RAFT) polymerization techniques. For the first time, a solution polymerization process for the synthesis of nitrile butadiene rubber (NBR) via the use of dithioacetate and trithiocarbonate RAFT agents is described. It is demonstrated that the number average molar mass, $\\overline M _{\\rm n} $, of the NBR can be varied between a few thousand and 60 000 g · mol(-1) with polydispersities between 1.2 and 2.0 (depending on the monomer to polymer conversion). Excellent agreement between the experimentally observed and the theoretically expected molar masses is found. Detailed information on the structure of the synthesized polymers is obtained by variable analytical techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and electrospray ionization-mass spectrometry (ESI-MS). Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aging-Resistant Functionalized LDH–SAS/Nitrile-Butadiene Rubber Composites: Preparation and Study of Aging Kinetics/Anti-Aging Mechanism

    Science.gov (United States)

    Li, Tianxiang; Shi, Zhengren; He, Xianru; Jiang, Ping; Lu, Xiaobin; Zhang, Rui

    2018-01-01

    With the aim of improving the anti-aging properties of nitrile-butadiene rubber (NBR), a functional organic filler, namely LDH–SAS, prepared by intercalating 4-amino-benzenesulfonic acid monosodium salt (SAS) into layered double hydroxides (LDHs) through anion exchange, was added to nitrile-butadiene rubber (NBR), giving the NBR/LDH–SAS composites. Successful preparation of LDH–SAS was confirmed by XRD, TGA and FTIR. LDH–SAS was well dispersed in the NBR matrix, owing to its strong interaction with the nitrile group of NBR. The obtained NBR/LDH–SAS composites exhibited excellent thermo-oxidative aging resistance as shown by TGA-DSC. Further investigation by ATR-FTIR indicated that SAS can capture the radical groups, even during the aging process, which largely accounts for the improved aging resistance. PMID:29783656

  5. Microstructural analysis of carbon nanotubes produced from pyrolysis/combustion of styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Joner O.; Zhuo, Chuanwei; Levendis, Yannis A. [Northeastern Univ., Boston, MA (United States). Coll. of Engineering. Dept. of Mechanical and Industrial Engineering; Tenorio, Jorge A.S. [University of Sao Paulo (USP), SP (Brazil). Polytechnic School. Dept. of Metallurgical and Materials Engineering

    2010-07-01

    Styrene-Butadiene-Rubber (SBR) is a synthetic rubber copolymer used to fabricate several products. This study aims to demonstrate the use of SBR as feedstock for carbon nanotubes (CNTs) growth, and therefore to establish a novel process for destination for wastes produced from SBR. Pellets of this rubber were controlled burned at temperature of 1000 deg C, and a catalyst system was used to synthesize the nanomaterials. CNTs are materials with a wide range of potential applications due to their extraordinary mechanical, thermal and electrical properties. Produced materials were characterized by SEM and TEM, and the hydrocarbons emissions were measured using GC. Results showed that materials with diameters of 30-100 nm and lengths of about 30 {mu}m were formed. That materials presented similar structures of multi-walled CNTs. Therefore, the use of SBR to produce carbon nanotubes showed quite satisfactory and an interesting field for future investments. (author)

  6. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    Science.gov (United States)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  7. The influence of polyvinyl chloride (P.V.C.) tubing on the isolated perfused rat heart

    NARCIS (Netherlands)

    Meijler, F.L.; Willebrands, A.F.; Durrer, D.

    1960-01-01

    Some brands of polyvinyl chlorides interfere with cardiac contraction, whereas other brands do not. Chemical investigation showed that the stabilizer is most probably responsibie for the cardiotoxic effect. It is suggested that all types of polyvinyl chloride used for medical and biological

  8. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR

    Directory of Open Access Journals (Sweden)

    Mirosława Prochoń

    2013-01-01

    Full Text Available The current investigations show the influence of keratin, recovered from the tanning industry, on the thermal and mechanical properties of vulcanizates with synthetic rubber acrylonitrile-butadiene rubber NBR. The addition of waste protein to NBR vulcanizates influences the improvement of resistance at high temperatures and mechanical properties like tensile strength and hardness. The introduction of keratin to the mixes of rubber previously blended with zinc oxide (ZnO before vulcanization process leads to an increase in the cross-linking density of vulcanizates. The polymer materials received including addition of proteins will undergo biodecomposition in natural conditions. After soil test, vulcanizates with keratin especially keratin with ZnO showed much more changes on the surface area than vulcanizates without protein. In that aerobic environment, microorganisms, bacteria, and fungus digested better polymer materials containing natural additives.

  9. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baochun, E-mail: psbcguo@scut.edu.cn [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Chen Feng; Lei Yanda; Liu Xiaoliang; Wan Jingjing; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2009-05-30

    Sorbic acid (SA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed mechanisms for the largely improved performance were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), porosity analysis and crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through SA intermediated linkages. SA bonds SBR and HNTs through grafting copolymerization/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and SA was achieved. Formation of zinc disorbate (ZDS) was revealed during the vulcanization of the composites. However, in the present systems, the contribution of ZDS to the reinforcement was limited. Effects of SA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of SA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and SA and the largely improved dispersion of HNTs.

  10. Effect of gamma radiation on the physical and chemical properties of some polymer blends

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    2000-01-01

    this work has been carried out to investigate the characterization of poly(vinyl alcohol) (PVA) / carboxymethyl cellulose (CMC) polymer blends exposed to various doses of gamma radiation has been investigated . the application of this blend after grafting with styrene monomer in absorbing waste dye from waste water was also studied . moreover, the effect of glycerol as a plasticizer on the structure property behavior of the same blend was reported. finally, the structure -property behavior of gamma and electron beam irradiated polyvinyl chloride (PVC) / nitrile butadiene rubber (NBR) was investigated

  11. Electrospinning of PVC with natural rubber

    Science.gov (United States)

    Othman, Muhammad Hariz; Mohamed, Mahathir; Abdullah, Ibrahim

    2013-11-01

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber's mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  12. Electrospinning of PVC with natural rubber

    International Nuclear Information System (INIS)

    Othman, Muhammad Hariz; Abdullah, Ibrahim; Mohamed, Mahathir

    2013-01-01

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber

  13. Electrospinning of PVC with natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Muhammad Hariz; Abdullah, Ibrahim [Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Mohamed, Mahathir [Radiation Processing Technology Division (BTS), Malaysian Nuclear Agency, Bangi, 43000, Kajang (Malaysia)

    2013-11-27

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  14. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion processes. 63.500 Section 63.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  15. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.

    Science.gov (United States)

    Chawla, Raj; Sharma, Sumit

    2018-03-18

    Styrene-butadiene rubber is a copolymer widely used in making car tires and has excellent abrasion resistance. The Young's modulus and tribology of pure styrene butadiene rubber (SBR) polymer and carbon nanotube reinforced polymer composites have been investigated using molecular dynamics simulations. The mechanism of enhanced tribology properties using carbon nanotube has been studied and discussed. The obtained Young's modulus shows the enhancement in mechanical properties of SBR polymer when carbon nanotubes are used as reinforcement. The concentration, temperature and velocity profiles, radial distribution function, frictional stresses, and cohesive energy density are calculated and analyzed in detail. The Young's modulus of SBR matrix increases about 29.16% in the presence of the 5% CNT. The atom movement velocity and average cohesive energy density in the friction area of pure SBR matrix was found to be more than that of the CNT/SBR composite. Graphical abstract Initial and final conditions of (a) pure SBR matrix and (b) CNT/SBR matrix subjected toshear loading and frictional stresses of top Fe layers of both pure SBR and CNT/SBR composite.

  16. A Model Approach for Finding Cleaning Solutions for Plasticized Poly(Vinyl Chloride) Surfaces of Collections Objects

    DEFF Research Database (Denmark)

    Sanz Landaluze, Jon; Egsgaard, Helge; Morales Munoz, Clara

    2014-01-01

    This study focused on developing a surface cleaning treatment for one type of commercially available plasticized poly(vinyl chloride). The effects of cleaning solutions on samples of plasticized poly(vinyl chloride) were examined by several methods. The sample surface, prior to and after artifici...

  17. Ultrasonic degradation of butadiene, styrene and their copolymers.

    Science.gov (United States)

    Sathiskumar, P S; Madras, Giridhar

    2012-05-01

    Ultrasonic degradation of commercially important polymers, styrene-butadiene (SBR) rubber, acrylonitrile-butadiene (NBR) rubber, styrene-acrylonitrile (SAN), polybutadiene rubber and polystyrene were investigated. The molecular weight distributions were measured using gel permeation chromatography (GPC). A model based on continuous distribution kinetics approach was used to study the time evolution of molecular weight distribution for these polymers during degradation. The effect of solvent properties and ultrasound intensity on the degradation of SBR rubber was investigated using different pure solvents and mixed solvents of varying volatility and different ultrasonic intensities. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The use of styrene-butadiene rubber waste as a potential filler in nitrile rubber: order of addition and size of waste particles

    Directory of Open Access Journals (Sweden)

    D. A. Baeta

    2009-03-01

    Full Text Available Styrene-butadiene rubber (SBR has large applications in the shoe industry, especially as expanded sheets used to produce insoles and inner soles. According to TG analysis, the rubber content in SBR residues (SBR-r was found to be around 26-wt%. Based on that data, a cost-effective technique for the reuse of SBR-r in Nitrile rubber (NBR was developed. Later, the effect of SBR-r on the cure behavior, mechanical performance, swelling, and crosslink density of reused rubber was investigated, with more emphasis placed on the effect of both particle size and loading of waste filler. Cure characteristics such as optimum cure time and scorch time were then reduced by the increasing amount of SBR-r filler. Owing to the reinforced nature of the largest particle size SBR-r, the best results for the mechanical properties of NBR were those in which SBR-r was added at the end of the cure process. The study has thus shown that SBR residue (SBR-r can be used as an economical alternative filler in NBR.

  19. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound

    Science.gov (United States)

    Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.

    2017-07-01

    This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.

  20. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    Science.gov (United States)

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  1. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2015-11-01

    Full Text Available Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE compatibilized by Chloroprene rubber (CR were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML and maximum torque (MH of blends increased with increasing weight ratio of HDPE while scorch time (ts2 cure time (tc90, compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  2. Devulcanization of styrene butadiene rubber by microwave energy: Effect of the presence of ionic liquid

    Directory of Open Access Journals (Sweden)

    S. Seghar

    2015-12-01

    Full Text Available In this study, styrene butadiene rubber (SBR was devulcanized using microwave irradiation. In particular, effect of ionic liquid (IL, pyrrolidinium hydrogen sulfate [Pyrr][HSO4], on the devulcanization performance was studied. It was observed that the evolution of the temperature reached by rubber powder exposed to microwave irradiation for different energy values was favored by the presence of ionic liquid [Pyrr][HSO4] significantly over the whole range of the microwave energy values. Beyond the threshold point of 220 Wh/kg, the soluble fraction after devulcanization sharply increased with increasing devulcanization microwave energy. For the powder mixed with [Pyrr][HSO4], the increase was more significant. Furthermore, the crosslink density was observed to decrease slowly with the microwave energy up to 220 Wh/kg, beyond which the crosslink density decreased significantly for the rubber impregnated with IL. For the rubber with IL, significant and continuous increase in Tg with microwave energy values was observed in comparison with the SBR where no change in transition temperature was observed. Mechanical shearing of rubber gums in the two-roll mill favored the devulcanization process, which indicated that the combination of mechanical loading with microwave energy and IL is an efficient procedure allowing an optimal devulcanization of rubbers.

  3. Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing

    Energy Technology Data Exchange (ETDEWEB)

    Saatchi, M.M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of); Shojaei, A., E-mail: akbar.shojaei@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {yields} We compare influence of carbon blacks and carbon nanotube on properties of SBR. {yields} We model mechanical behavior of SBR nanocomposites by the micromechanical model. {yields} Mechanical properties of carbon black/SBR is greatly dominated by bound rubber. {yields} Mechanical properties of SBR/nanotube is governed by big aspect ratio of nanotube. - Abstract: Reinforcement of styrene-butadiene-rubber (SBR) was investigated using two different carbon blacks (CBs) with similar particle sizes, including highly structured CB and conventional CB, as well as multi-walled carbon nanotube (MWCNT) prepared by mechanical mixing. The attempts were made to examine reinforcing mechanism of these two different classes of carbon nanoparticles. Scanning electron microscopy and electrical conductivity measurement were used to investigate morphology. Tensile, cyclic tensile and stress relaxation analyses were performed. A modified Halpin-Tsai model based on the concept of an equivalent composite particle, consisting of rubber bound, occluded rubber and nanoparticle, was proposed. It was found that properties of CB filled SBR are significantly dominated by rubber shell and occluded rubber in which molecular mobility is strictly restricted. At low strains, these rubber constituents can contribute in hydrodynamic effects, leading to higher elastic modulus. However, at higher strains, they contribute in stress hardening resulting in higher elongation at break and higher tensile strength. These elastomeric regions can also influence stress relaxation behaviors of CB filled rubber. For SBR/MWCNT, the extremely great inherent mechanical properties of nanotube along with its big aspect ratio were postulated to be responsible for the reinforcement while their interfacial interaction was not so efficient.

  4. Sorption of amiodarone to polyvinyl chloride infusion bags and administration sets.

    Science.gov (United States)

    Weir, S J; Myers, V A; Bengtson, K D; Ueda, C T

    1985-12-01

    The loss of amiodarone from i.v. admixtures to flexible polyvinyl chloride (PVC) infusion bags and i.v. administration sets was studied. Admixtures containing amiodarone hydrochloride 600 micrograms/mL and either 5% dextrose injection or 0.9% sodium chloride injection were stored at room temperature in glass bottles (both with and without contact of the drug solution with the rubber bottle closure), in flexible PVC bags, or in rigid PVC bottles. After 120 hours, the contents of each flexible PVC bag were emptied and replaced by methanol, which was allowed to remain in the bag for an additional 120 hours and was then analyzed for amiodarone content. To determine availability of amiodarone after infusion through a 1.8-m PVC i.v. administration set, solutions stored in glass containers were run through the set at 0.5 mL/min for 90 minutes. Samples of drug solutions were collected at appropriate intervals and analyzed by a stability-indicating high-performance liquid chromatography (HPLC) assay. Admixtures containing 0.9% sodium chloride injection were not stable; visual incompatibility was evident after 24 hours of storage in glass bottles, and no further testing was performed. In admixtures containing 5% dextrose injection that were stored in 50-mL flexible PVC bags, 60% of the initial amiodarone concentration remained after 120 hours; approximately half of the lost drug was recovered with the methanol. In effluent collected from the PVC administration set, 82% of the initial amiodarone concentration remained. Amiodarone concentrations did not decrease appreciably, after storage in glass or rigid PVC bottles, indicating that drug loss was probably affected by the plasticizer, di-2-ethylhexyl phthalate.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Bonding properties of acrylonitrile butadiene rubber with polyamide mediated by a functional layer of silane coupling agent

    International Nuclear Information System (INIS)

    Sang, J.; Aisawa, S.; Hirahara, H.; Mori, K.

    2017-01-01

    This study demonstrates that coating layers, expected to be formed as self-assembled monolayers, of silane coupling agents can act as adhesion layers as the hydrogenated acrylonitrile butadiene rubber (HNBR) and polyamide (PA6) plate interfaces. The resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure and the interfaces were jointed through chemical bonds, which were confirmed by swelling tests. The surfaces and bonding properties of rubber and PA6 were studied by means of peel tests, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (AFM-IR). (authors)

  6. Characteristics of styrene-butadiene rubber/silica/Nanoprene compounds for application in tire tread.

    Science.gov (United States)

    Seo, Byeongho; Kang, Jonghyub; Jang, Sukhee; Kang, Yonggu; Kim, Wonho

    2013-03-01

    Nanoprene is made from chemically cross-linked rubber particles, and has many hydroxyl groups on the surface of the particles. It is speculated that the Nanoprene could reduce the silica-silica network formation by introducing hydrogen bonding between the silanol group of silica and the hydroxyl group of Nanoprene. In this study, the styrene-butadiene rubber (SBR)/silica compounds with two types of the Nanoprene (BM75OH, BM15OH) were evaluated and it could be well explained by the concept of the volume fraction of filler or the volume fraction of rubber. If the Nanoprene applied to the compound is considered as a kind of filler, the minimum torque values and bound rubber contents of the un-vulcanized compounds, the swelling ratio and the stress-strain relationship of the vulcanized compounds could be well explained by the volume fraction of filler (phi(F)). If Nanoprene is considered as a kind of rubber such as SBR, the properties such as peak tan delta, Payne effect, tan delta at 0 degrees C and 60 degrees C, and abrasion resistance could be well explained by the volume fraction of rubber (phi'(R)). However, the improvement of silica dispersion by addition of the Nanoprene particles in the compounds was not significant. The application of BM75OH as a polymer to the tread compound will be suitable for winter tires. In addition, the compound with BM15OH as an additive will be suitable as a tread compound for summer tires.

  7. Study of the reinforcement of rubber styrene-butadiene with mesoporous silices by solid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Sierra, Ligia; Lopez, Betty; Pena, Bibiana; Rios, Juan Esteban; Castano, Nelson

    2001-01-01

    The knowledge about the interaction rubber/filler for the rubber reinforced with carbon black of silica is important to understand the physical properties, which determine the reinforcement. This paper presents a comparative study of the interactions between styrene butadiene rubber (SBR) and silica for a silica Ultrasil type and mesoporous silica MCM-41 type prepared by different procedures, based on solid state nuclear magnetic resonance: 1H MAS NMR; 13C MAS NMR, 13C CP/MAS, 29Si MAS and 29Si CP/MAS NMR. Mesoporous silica synthesized under certain specific conditions showed better interaction with the rubber than the ultrasil VN3 silica, commonly used as a reinforcement load. Mechanical tests for the SBR vulcanised with this silica indicate an important increase for values of elongation and tearing resistance, but an increase in the vulcanization time in it is compared with the SBR vulcanise with Ultrasil

  8. Studies for methods to improve thermostability of the functionalized butadiene styrene rubbers

    Directory of Open Access Journals (Sweden)

    A. L. Rumyantseva

    2018-01-01

    Full Text Available It is well known that the tire performance properties can deteriorate in the processes of production, processing, storage and operation. One of the reasons for that is a series of processes occurring in the polymer under the influence of different factors: thermal, mechanical or chemical. This problem is particularly relevant for functionalized polymers, as functional groups can interact with each other, causing side cross linking reactions that lead to a deterioration of consumer properties of the products. The main purpose of this work was to study influence of several key factors on the thermostability of functionalized rubbers in order to find a solution: different types of antioxidants, rubber polymerizate stripping conditions and rubber processing. In accordance with the problem, solutions were found and work was carried out in several directions: changing the pH of the medium in the rubber stripping and using antioxidants containing carbonyl groups located in ?-positions to methylene groups, namely Irganox 1520 and Irganox 1076. As an evaluation factor, thermal treatment was selected in two modes: at 100 °C for 48 hours and after extruder at 130 °C for 5 minutes + 100 °C for 48 hours. At the same time, the following parameters were determined: molecular weight characteristics and Mooney viscosity of the starting polymers and after thermal aging. During the experiments, it was found that the acidity of the medium in the water degasser does not affect the crosslinking of the functionalized rubber during storage. In addition, a study was made of the effect of the type of antioxidant and its quantity on the thermal stability of functionalized styrene butadiene rubbers, as well as the study of the effect of the content of the modifying agent on the thermal stability of the product. It has been found that the use, as antioxidants, of carbonyl compounds containing a methylene group at the ?-position, leads to inhibition of the cross

  9. Elastomer Nanocomposites Based on Butadiene Rubber, Nanoclay and Epoxy-Polyester Hybrid: Microstructure and Mechanical Properties

    OpenAIRE

    Sepideh Zoghi; Ghasem Naderi; Gholam Reza Bakhshandeh; Morteza Ehsani; Shirin Shokoohi

    2013-01-01

    Nanocomposites based on butadiene rubber (BR), (0, 3, 5 and 7 phr) organoclay (Cloisite 15A) and (0, 10, 20, 30, 40 phr) powder coating wastes, i.e., epoxypolyester hybrid (EPH) were prepared using a laboratory-scale internal mixer in order to study the effect of organoclay and EPH content on the mechanical and morphological properties of the nanocomposite samples. Cure characteristics of the prepared compounds including optimum cure time (t90) and scorch time (t5) depicted a decrease in both...

  10. Structure of chlorinated poly(vinyl chloride). III. Preparation of poly(vinyl chloride)-β,β-d2 as a model for the study of the mechanism of chlorination and of the chlorinated poly(vinyl chloride) structure

    International Nuclear Information System (INIS)

    Lukas, R.; Kolinsky, M.

    1976-01-01

    A method for the preparation of poly(vinyl chloride)-β,β-d 2 (PVC-β,β-d 2 ) as a model for the investigation of the mechanism of chlorination and of the CPVC structure has been suggested. The conditions of preparation of deuterated intermediates of a multistage synthesis of vinyl chloride-β,β-d 2 and of suspension-polymerized PVC-β,β-d 2 have been described including the mass balance. Malonic acid was used as the starting compound. Tacticity values of a sample of PVC-β,β-d 2 and its infrared and nuclear magnetic resonance (NMR) spectra are presented and compared with the data already published

  11. A novel process for separation of hazardous poly(vinyl chloride) from mixed plastic wastes by froth flotation.

    Science.gov (United States)

    Wang, Jianchao; Wang, Hui; Wang, Chongqing; Zhang, Lingling; Wang, Tao; Zheng, Long

    2017-11-01

    A novel method, calcium hypochlorite (CHC) treatment, was proposed for separation of hazardous poly(vinyl chloride) (PVC) plastic from mixed plastic wastes (MPWs) by froth flotation. Flotation behavior of single plastic indicates that PVC can be separated from poly(ethylene terephthalate) (PET), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) by froth flotation combined with CHC treatment. Mechanism of CHC treatment was examined by contact angle measurement, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Under the optimum conditions, separation of PVC from binary plastics with different particle sizes is achieved efficiently. The purity of PC, ABS, PMMA, PS and PET is greater than 96.8%, 98.5%, 98.8%, 97.4% and 96.3%, respectively. Separation of PVC from multi-plastics was further conducted by two-stage flotation. PVC can be separated efficiently from MPWs with residue content of 0.37%. Additionally, reusing CHC solution is practical. This work indicates that separation of hazardous PVC from MPWs is effective by froth flotation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Terpyridine modified poly(vinyl chloride) : possibilities for supramolecular grafting and crosslinking

    NARCIS (Netherlands)

    Meier, M.A.R.; Schubert, U.S.

    2003-01-01

    Commercially available poly(vinyl chloride) (PVC) was covalently modified with terpyridine supramolecular binding units in a two-step reaction. First, PVC was modified with aromatic thiols to introduce OH functionalities into the polymer backbone, which were subsequently reacted with an

  13. The influence of nano silica particles on gamma-irradiation ageing of elastomers based on chlorosulphonated polyethylene and acrylonitrile butadiene rubber

    Science.gov (United States)

    Marković, G.; Marinović-Cincović, M.; Tanasić, Lj.; Jovanović, V.; Samaržija-Jovanović, S.; Vukić, N.; Budinski-Simendić, J.

    2011-12-01

    The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0-100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.

  14. Radiation-induced copolymerization of styrene/n-butyl acrylate in the presence of ultra-fine powdered styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    Styrene (St)/n-butyl acrylate (BA) copolymers were prepared by two-stage polymerization: St/BA was pre-polymerized to a viscous state by bulk polymerization with initiation by benzoyl peroxide (BPO) followed by {sup 60}Co {gamma}-ray radiation curing. The resultant copolymers had higher molecular weight and narrower molecular weight distribution than conventional methods. After incorporation of ultra-fine powdered styrene-butadiene rubber (UFSBR) with a particle size of 100 nm in the monomer, the glass transition temperature (T{sub g}) of St-BA copolymer increased at low rubber content. Both the St-BA copolymer and the St-BA copolymer/UFSBR composites had good transparency at BA content below 40%.

  15. High performance light-colored nitrile-butadiene rubber nanocomposites.

    Science.gov (United States)

    Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin

    2011-12-01

    High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions.

  16. Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    Energy Technology Data Exchange (ETDEWEB)

    Shojaei, Akbar, E-mail: akbar.shojaei@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of); Faghihi, Morteza [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of)

    2010-02-15

    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed accelerating role on the cure rate of SBR and increased the crosslinking density of the rubber phase. Additionally, the mechanical and dynamic mechanical properties of SBR were influenced by incorporation of both PH and OC. TGA showed that the OC improves thermal stability of SBR vulcanizate, while it exhibits a catalytic role in presence of PH.

  17. Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    International Nuclear Information System (INIS)

    Shojaei, Akbar; Faghihi, Morteza

    2010-01-01

    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed accelerating role on the cure rate of SBR and increased the crosslinking density of the rubber phase. Additionally, the mechanical and dynamic mechanical properties of SBR were influenced by incorporation of both PH and OC. TGA showed that the OC improves thermal stability of SBR vulcanizate, while it exhibits a catalytic role in presence of PH.

  18. The Radiation Synthesis of Ultra-Fine Powdered Carboxylated Styrene-Butadiene Rubber (UFCSBR) and Property of Nylon 6/ UFCSBR Blends

    International Nuclear Information System (INIS)

    Xu, L.

    2006-01-01

    A serial of novel ultra-fine powdered carboxylated styrene-butadiene rubber (UFCSBR) were prepared by using radiation crosslinking and spray drying method. Thereafter, these powdered rubber particles were used as toughener of nylon 6.The radiation synthesis of ultra-fine powdered rubbers were studied, moreover, the mechanical and thermal property of nylon 6/UFCSBR blends were investigated. Finally, the toughening mechanism of nylon 6 modified with ultra-fine rubber particles was discussed. The UFCSBR could be dispersed well in nylon 6 as individual particles with a diameter of 150 nm by using melt blending. The Nylon 6/UFCSBR (80/20) blend possesses higher toughness and higher thermal stability than Nylon 6/POE-g-MAH (which is most often used elastomer in toughening nylon now). The deformation mechanism of nylon 6/UFCSBR blends includes shear deformation of nylon 6 and the formation of elongated rubber particles in matrix. In addition, the UFCSBR has good interfacial compatibility with nylon 6. Therefore, the nylon 6/UFCSBR blends with good mechanical performance could be prepared in this work

  19. Prediction of the lifetime of nitrile-butadiene rubber by FT-IR.

    Science.gov (United States)

    Kawashima, Tetsuya; Ogawa, Toshio

    2005-12-01

    A quantitative measurement method with FT-IR was proposed for a thermal degradation analysis of nitrile-butadiene rubber (NBR). An NBR film was prepared as a model sample on a barium fluoride (BaF2) crystal plate, which was subjected to a heat treatment. The absorbances of various functional groups were measured directly by FT-IR after thermal degradation at high temperatures. By measuring the absorbances, it was possible to readily determine quantitatively each of the functional groups after the degradation of NBR. By assuming that the NBR lifetime was the point at which the absorbance of a carbon-carbon double bond reaches 45% of that prior to thermal treatment, a method for predicting the lifetime of NBR heated below 150 degrees C was proposed, by using an Arrhenius plot of the heating time versus heating temperature.

  20. Recycling of Chrome Tanned Leather Dust in Acrylonitrile Butadiene Rubber

    Science.gov (United States)

    El-Sabbagh, Salwa H.; Mohamed, Ola A.

    2010-06-01

    Concerns on environmental waste problem caused by chrome tanned leather wastes in huge amount have caused an increasing interest in developing this wastes in many composite formation. This leather dust was used as filler in acrylonitrile butadiene rubber (NBR) before treatment and after treatment with ammonia solution and sod. formate. Different formulations of NBR/ leather dust (untreated-treated with ammonia solution—treated with sod. formate) composites are prepared. The formed composite exhibit a considerable improvement in some of their properties such as rheometric characteristics especially with composites loaded with treated leather dust. Tensile strength, modulus at 100% elongation, hardness and youngs modulus were improved then by further loading start to be steady or decrease. Cross linking density in toluene were increased by incorporation of leather dust treated or untreated resulting in decreases in equilibrium swelling. Distinct increase in the ageing coefficient of both treated and untreated leather with drop in NBR vulcanizates without leather dust. Addition of leather dust treated or untreated exhibit better thermal stability.

  1. Biodegradation behavior of styrene butadiene rubber (SBR) reinforced with modified coconut shell powder

    Science.gov (United States)

    Sreejith, M. P.; Balan, Aparna K.; Shaniba, V.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    Biodegradation behavior of styrene butadiene rubber composites reinforced with natural filler, coconut shell powder (CSP), with different filler loadings were carried out under soil burial conditions for three to six months. The extent of biodegradation of the composites was evaluated through weight loss, tensile strength and hardness measurements. It was observed that the permanence of the composites was remarkably dependent on filler modification, size of the filler particle and filler content. Composites containing silane modified filler were found to be more resistant to attack by the microbes present in the soil. Mechanical properties such as tensile strength, Young's modulus and hardness were decreased after soil burial testing due to the microbial attack onto the samples.

  2. Determination of the Mechanical Properties of Rubber by FT-NIR

    OpenAIRE

    Pornprasit, Rattapol; Pornprasit, Philaiwan; Boonma, Pruet; Natwichai, Juggapong

    2016-01-01

    Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), and ethylene propylene diene monomer (EPDM), were evaluated using a near infrared (NIR) spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-...

  3. Research of operational properties of compound based on high viscosity styrene-butadiene rubber SSBR-2560 TDAE HV

    Directory of Open Access Journals (Sweden)

    M. I. Falyakhov

    2016-01-01

    Full Text Available The article consider the influence of replacement of SSBR-2560 TDAE batch production on high viscosity SSBR-2560-TDAE HV in the tread recipe on the tire performance properties. Obtained samples were highly viscosity styrene butadiene rubber did not differ in the microstructure of the SSBR-2560 TDAE batch production. Increasing the molecular weight possible to increase the Mooney viscosity of the rubber, however, is known to one of adverse factors is the deterioration of processability of rubber compounds based on polymers. In this connection, investigated the behavior in the step mixing compound based on high viscosity SSBR rubber. We chose recipes tread of the tire with a high content of organic silicon filler. It is established that the equivalent replacement of the polymer in the tread recipe does not lead to significant changes in the basic parameters of rubber mixing. We observed a slight increase in the energy consumption for the preparation of the rubber compounds, as well as the discharge temperature at each stage. It was shown to improve the distribution of the filler in the polymer matrix for the compound based on SSBR-2560 TDAE HV. The results showed that compound based on high viscosity SSBR improves rolling resistance and traction characteristics, while maintaining abrasion in comparison with the SSBR-2560-M27 batch production. Recommended use this brand in the production of rubber car tires.

  4. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  5. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  6. Using heat-treated starch to modify the surface of biochar and improve the tensile properties of biochar-filled stryene-butadiene rubber composites

    Science.gov (United States)

    Heat-treated starch is a renewable material that can be used to modify the surface chemistry of small particles. In this work, heat-treated starch was used to coat hydrophilic biochar particles in order to make them more hydrophobic. Then when added as filler to hydrophobic styrene-butadiene rubber,...

  7. Erratum to: Study on Chloride Ion Penetration Resistance of Rubberized Concrete Under Steady State Condition

    Directory of Open Access Journals (Sweden)

    Md Noor Nurazuwa

    2016-01-01

    In this paper, the effect of crumb rubber, CR as fine aggregate in the concrete to enhance concrete durability against chloride ion diffusion was studied. Chloride ion diffusion in rubberized concrete was tested by migration test under steady state condition. Concrete specimen with water-to-cement ratio of 0.50 was prepared to study the CR effectiveness in comparison with lower water-to-cement ratio. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against chloride ion diffusion. Results showed that chloride transport characteristics were improved by the increasing amount of CR in all mixed due to the fact that CR has the ability to repel water. Meanwhile, rubberized concrete with w/c = 0.35 gave better resistance against chloride ion penetration compared to w/c = 0.50. This was much improved with combination of CR and SF.

  8. Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber

    Science.gov (United States)

    An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol

    2010-04-01

    Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).

  9. Effects of ageing conditions on degradation of acrylonitrile butadiene rubber filled with heat-treated ZnO star-shaped particles in rapeseed biodiesel

    OpenAIRE

    Akhlaghi, Shahin; Pourrahimi, A. M.; Christian, Sjöstedt; Martin, Bellander; Mikael S., Hedenqvist; Ulf W., Gedde

    2017-01-01

    The degradation of acrylonitrile butadiene rubber (NBR) after exposure to biodiesel at different oxygen partial pressures in an automated ageing equipment at 80 °C, and in a high-pressure autoclave at 150 °C was studied. The oxidation of biodiesel was promoted by an increase in oxygen concentration, resulting in a larger uptake of fuel in the rubber due to internal cavitation, a greater decrease in the strain-at-break of NBR due to the coalescence of cavity, and a faster increase in the cross...

  10. The Effect of Concentration of P-phenylenediamine Antioxidant on the Acrylonitrile-Butadiene Rubber Seals under High Gamma Irradiation

    International Nuclear Information System (INIS)

    Hegazi, E.M.; Abd El-megeed, A.A.

    2016-01-01

    Acrylonitrile- butadiene rubber (NBR) seals are one of the classified seals used in nuclear facilities. But at high irradiation doses the physical and mechanical properties of NBR are adversely affected due to the degradation induced by radiation and hence affect the sealing performance reducing their service life. The present work is focused on studying the effect of concentration of N-(1, 3-dimethylbutyl)-N’-phenyl-p-phenylene diamine (6PPD) on the physical and mechanical properties of the NBR rubber at high doses of γ-irradiation up to 2 MGy. The physical properties, mechanical properties, hardness, and abrasion of the NBR rubber under γ-radiation were investigated. The optimum amount of 6PPD required to resist deterioration is also estimated. The results showed a remarkable increase in the physical and mechanical properties as the concentration of 6PPD was increased from 1 phr (part per hundred) to 3 phr in NBR samples

  11. Mechanical and Morphological Properties of Short Nylon Fiber Reinforced Acrylonitrile-Butadiene Rubber Composites

    Directory of Open Access Journals (Sweden)

    S.H. Mohseniyan

    2010-12-01

    Full Text Available Acrylonitrile butadiene rubber (NBR composites are prepared from waste nylon 66 short fiber using a two-roll mill mixer. The effects of fiber content and bonding agent on the mechanical and morphological properties of the composites are studied. The curing characteristics of the composites have been studied by using cure rheometer. The cure and scorch time of the composites decrease while cure rate is increased when short fiber content is increased. The mechanical properties of the composites show improvement in both longitudinal and transverse directions with increase in short fiber content. The adhesion between the fiber and rubber is enhanced by using a dry bonding system consisting of resorcinol, xamethylenetetramine and hydrated silica (HRH. The swelling behavior of the composites in N,N-dimethylformamide is tested to find the effect of bonding agent on adhesion strength of the matrix and fibers. Fracture surface morphology of composites is studied by scanning electron microscopy. The restriction to swelling is higher for composites containing bonding agent, especially, in the longitudinal direction. The morphology of the fracture surface shows less fiber pull out when the bonding agent is introduced.

  12. Reversible addition-fragmentation chain transfer polymerization of 2-chloro-1,3-butadiene

    OpenAIRE

    Pullan, Nikki; Liu, Max; Topham, Paul D.

    2013-01-01

    Controlled polymerization of 2-chloro-1,3-butadiene using reversible addition–fragmentation chain transfer (RAFT) polymerization has been demonstrated for the first time. 2-Chloro-1,3-butadiene, more commonly known as chloroprene, has significant industrial relevance as a crosslinked rubber, with uses ranging from adhesives to integral automotive components. However, problems surrounding the inherent toxicity of the lifecycle of the thiourea-vulcanized rubber have led to the need for control ...

  13. Ultrastructural immunocytochemistry of particulate fractions using polyvinyl chloride microculture wells.

    Science.gov (United States)

    Wray, B E; Sealock, R

    1984-10-01

    A method is described for immunoelectron microscopy of particulate subcellular fractions using polyvinyl chloride (soft) microculture wells as mechanical supports and reaction vessels. Appropriate quantities of particles are centrifuged onto the well bottoms, fixed and permeabilized if necessary, then labeled by standard procedures, fixed in glutaraldehyde and tannic acid, and prepared for thin section electron microscopy. The centrifugation, the fixations, and the embedment in Epon are discussed in detail.

  14. Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development

    Science.gov (United States)

    Gentz, Steve; Taylor, Robert; Nettles, Mindy

    2015-01-01

    The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.

  15. Fracture behavior of rubber powder modified rubber blends applied for conveying belt top covers

    OpenAIRE

    Euchler, Eric; Stocek, Radek; Gehde, Michael; Bunzel, Jörg-Michael; Saal, Wolfgang; Kipscholl, Reinhold

    2016-01-01

    The aim of this study is concentrated on the experimental investigation of wear resistance of rubber powder modified rubber blends. Styrene-Butadiene-Rubber (SBR) blends applied for conveying belt top covers have been modified by ground rubber (rubber powder) based on SBR. We theoretically described the rubber wear mechanism due to loading conditions occurring at conveyor belts in the field, to simulate wear behavior of top cover rubber materials. An own developed testing equipment based on g...

  16. Tensile, swelling and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites

    Science.gov (United States)

    Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras

    2017-10-01

    Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.

  17. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile-butadiene rubber latex.

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-09-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile-butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves.

  18. Effect of rubber polarity on selective wetting of carbon nanotubes in ternary blends

    OpenAIRE

    Le, H.H.; Parsaker, M.; Sriharish, M.N.; Henning, S.; Menzel, M.; Wiessner, S.; Das, A.; Do, Q.K.; Heinrich, G.; Radusch, H.J.

    2015-01-01

    Based on atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) analysis of the rubber-filler gel (wetting concept) the kinetics of selective wetting of carbon nanotubes (CNTs) in ternary styrene butadiene rubber (SBR)/butadiene rubber (BR)/natural rubber (NR) blends was qualitatively and quantitatively characterized. Almost all CNTs are found to be wetted by the non-polar NR but not by the other non-polar rubber like BR or weakly polar SBR. It was proposed that phos...

  19. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    Science.gov (United States)

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  20. Fundamental studies on dynamic wear behavior of SBR rubber compounds modified by SBR rubber powder

    OpenAIRE

    Euchler, Eric; Heinrich, Gert; Michael, Hannes; Gehde, Michael; Stocek, Radek; Kratina, Ondrej; Kipscholl, Reinhold; Bunzel, Jörg-Michael; Saal, Wolfgang

    2016-01-01

    The aim of this study is focused on the experimental investigation of dynamic wear behavior of carbon black filled rubber compounds comprising pristine styrene butadiene rubber (SBR) together with incorporated SBR ground rubber (rubber powder). We also analyzed and described quantitatively the service conditions of some dynamically loaded rubber products, which are liable to wear (e.g. conveyor belts, tires). Beside the well-known standard test method to characterize wear resistance at steady...

  1. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    Science.gov (United States)

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.

  2. Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites.

    Science.gov (United States)

    Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun

    2013-01-30

    A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Modification of asphaltic concrete with a mineral polymeric additive based on butadiene-styrene rubber and chemically precipitated calcium carbonate

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2016-01-01

    Full Text Available Modification of asphaltic concrete with a mineral polymeric additive based on butadiene – styrene rubber and chemically precipitated calcium carbonate. This paper presents the results of the study of physical – mechanical and service properties of the asphaltic concrete modified with the mineral polymeric composition. Calcium carbonate is used both as a filler and a coagulant. The chalk was preliminarily ground and hydrophobizated by stearic acid. These operations contribute to even distribution of the filler and interfere with lump coagulation. As a result of the experiments, it was found that the best results were obtained by combining the operations of dispersion and hydrophobization. The optimal amount of stearic acid providing the finest grinding in a ball mill is a content from 3 to 5% by weight. The optimal grinding time of the filler was found (4–6 hours. With increasing dispersion time the particles form agglomerates. Filling the butadiene styrene latex with the hydrophobic fine-grained calcium carbonate was carried out in the laboratory mixer. As a result of the experimental works, it was found that the best distribution of the filler takes place with ratio of rubber: chalk – 100:400. The resulting modifier was subjected to the thermal analysis on the derivatograph to determine its application temperature interval. A marked reduction in weight of the mineral polymeric modifier begins at 350 °C. Thus, high temperature of the modifier destruction allows to use it at the temperature of the technological process of asphaltic concrete preparation (up to 170 °C. It was found that an increase in the amount of the carbonate filler in the rubber SKS 30АRК significantly increases its thermal resistance and connection of the polymer with the chalk in the composition.

  4. [Survey of plasticizers in polyvinyl chloride toys].

    Science.gov (United States)

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Hirahara, Yoshichika; Kawamura, Yoko

    2012-01-01

    Plasticizers in 101 samples of polyvinyl chloride (PVC) toys on the Japanese market were surveyed. No phthalates were detected in designated toys, though bis(2-ethylhexyl)phthalate, diisononyl phthalate, diisobutyl phthalate, dibutyl phthalate, diisodecyl phthalate and benzyl butyl phthalate were detected in more than half of other toys. 2,2,4-Tributyl-1,3-pentanediol diisobutylate, o-acetyl tributyl citrate, adipates and diacetyl lauroyl glycerol, which are alternative plasticizers to phthalates, were detected. The results of structural analysis confirmed the presence of di(2-ethylhexyl)terephthalate, tributyl citrate, diisononyl 1,2-cyclohexanedicarboxylate and neopentyl glycol esters; these have not previonsly been reported in Japan. There appears to be a shift in plasticizers used for designated toys from phthalates to new plasticizers, and the number of different plasticizers is increasing.

  5. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile–butadiene rubber latex

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M.; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-01-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile–butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves. PMID:26757889

  6. Modeling of the Migration of Glycerol Monoester Plasticizers in Highly Plasticized Poly(vinyl chloride)

    DEFF Research Database (Denmark)

    Lundsgaard, Rasmus; Kontogeorgis, Georgios; Kristiansen, Jørgen K.

    2009-01-01

    soybean oil (ESBO) with regard to their migration from three different types of poly(vinyl chloride) into isooctane at 20, 40, and 60 degrees C. Diffusion coefficients derived from the experimental migration data were evaluated against diffusion coefficients estimated from a model based solely...

  7. Lignocellulosic fiber reinforced rubber composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available Natural Rubber (NR) is a naturally occurring elastomeric polymer of isoprene (2-methyl-1,3-butadiene). It can be extracted from latex of only one kind of tree, the Hevea braziliensis. Hevea rubber is produced in many tropical regions of Southeast...

  8. Synthesis of styrene/isoprene/butadiene integrated rubber with wide glass transition temperature by reactive extrusion

    Science.gov (United States)

    Huang, Tianhua; Zheng, Anna; Zhan, Pengfei; Shi, Han; Li, Xiang; Guan, Yong; Wei, Dafu

    2018-05-01

    In this work, styrene/isoprene/butadiene integrated rubber (SIBR) was synthesized with n-butyllithium as the initiator and tetrahydrofuran as structure modifier in a co-rotating intermeshing twin-screw extruder. The content of diene in these terpolymers reached a surprising 70 wt% by feeding the monomers in two different sites of the twin-screw extruder. 1H-NMR, GPC and TEM results showed that the molecular structures of terpolymers changed with the variation of feeding site. Dynamic mechanical analysis of the vulcanized SIBR showed that the terpolymer had a wide glass transition region, which assured an excellent combination of high antiskid properties and low rolling resistance. Different from traditional solution polymerization, the present work provides a green approach to prepare the SIBR via bulk polymerization without solvent.

  9. Contribution made by multivariate curve resolution applied to gel permeation chromatography-Fourier transform infrared data for an in-depth characterization of styrene-butadiene rubber blends.

    Science.gov (United States)

    Ruckebusch, C; Vilmin, F; Coste, N; Huvenne, J P

    2008-07-01

    We evaluate the contribution made by multivariate curve resolution-alternating least squares (MCR-ALS) for resolving gel permeation chromatography-Fourier transform infrared (GPC-FT-IR) data collected on butadiene rubber (BR) and styrene butadiene rubber (SBR) blends in order to access in-depth knowledge of polymers along the molecular weight distribution (MWD). In the BR-SBR case, individual polymers differ in chemical composition but share almost the same MWD. Principal component analysis (PCA) gives a general overview of the data structure and attests to the feasibility of modeling blends as a binary system. MCR-ALS is then performed. It allows resolving the chromatographic coelution and validates the chosen methodology. For SBR-SBR blends, the problem is more challenging since the individual elastomers present the same chemical composition. Rank deficiency is detected from the PCA data structure analysis. MCR-ALS is thus performed on column-wise augmented matrices. It brings very useful insight into the composition of the analyzed blends. In particular, a weak change in the composition of individual SBR in the MWD's lowest mass region is revealed.

  10. Multilayer graphene rubber nanocomposites

    Science.gov (United States)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  11. Gender differences in the metabolism of 1,3-butadiene to butadiene diepoxide in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Thornton-Manning, J.R.; Dahl, A.R.; Bechtold, W.E. [and others

    1995-12-01

    1,3-Butadiene (BD), a gaseous compound used in the production of rubber, is a potent carcinogen in mice and a weak carcinogen in rats. The mechanism of BD-induced carcinogenicity is thought to involve genotoxic effects of its reactive epoxide metabolites butadiene monoepoxide (BDO) and butadiene diepoxide (BDO{sub 2}). Studies in our laboratory have shown that levels of the epoxides, particularly BDO{sub 2}, are greater in mice-the more sensitive species-than rats. While both epoxides are genotoxic in a number of assays, BDO{sub 2} is mutagenic in TK6 human lymphoblastoid cells at concentrations approximately 100-fold lower than BDO. Species differences in carcinogenicity of BD have posed a dilemma to investigators deciding which animal model is most appropriate for BD risk assessment.

  12. Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Bangchao; Jia, Zhixin, E-mail: zxjia@scut.edu.cn; Hu, Dechao; Luo, Yuanfang; Guo, Baochun; Jia, Demin

    2016-03-15

    Graphical abstract: - Highlights: • Vulcanization accelerant was used to modify halloysite nanotubes (HNTs). • The modified HNTs reduced the activation energy of vulcanization. • Strong filler–rubber interaction was achieved in rubber/modified HNTs composites. • The modified HNTs exhibited excellent reinforcement effect on rubber. - Abstract: Vulcanization accelerant N-cyclohexyl-2-benzothiazole sulfenamide (CZ) was used as a surface modifier and chemically grafted on the surface of halloysite nanotubes (HNTs) to obtain CZ-functionalized HNTs (HNTs-s-CZ). It was found that HNTs-s-CZ could be homogeneously dispersed into styrene-butadiene rubber (SBR). The grafted CZ molecules, exactly located at the filler-rubber interface, reduced the activation energy of vulcanization of SBR/HNTs-s-CZ compounds. Besides, the density of chain segments introduced by the interfacial phase of SBR/HNTs-s-CZ nanocomposites was higher than the other nanocomposites with silane-modified HNTs (m-HNTs) or pristine HNTs, manifesting an indication of enhanced filler-rubber interfacial interaction in SBR/HNTs-s-CZ nanocomposites. Consequently, SBR/HNTs-s-CZ nanocomposites showed excellent mechanical properties. The tensile strength could be enhanced by as much as 38.6% and 102.5% compared to those of SBR/m-HNTs and SBR/HNTs nanocomposites, respectively, though containing equivalent accelerant component. The value of this work lies in the fact that apparent properties improvement of elastomer composites has been achieved by the incorporation of vulcanization accelerant-functionalized HNTs, which may be fruitful for the rational design of filler surface treatment and offer new scientific and technological opportunities for the preparation of high performance elastomer composites.

  13. Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes

    International Nuclear Information System (INIS)

    Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Luo, Yuanfang; Guo, Baochun; Jia, Demin

    2016-01-01

    Graphical abstract: - Highlights: • Vulcanization accelerant was used to modify halloysite nanotubes (HNTs). • The modified HNTs reduced the activation energy of vulcanization. • Strong filler–rubber interaction was achieved in rubber/modified HNTs composites. • The modified HNTs exhibited excellent reinforcement effect on rubber. - Abstract: Vulcanization accelerant N-cyclohexyl-2-benzothiazole sulfenamide (CZ) was used as a surface modifier and chemically grafted on the surface of halloysite nanotubes (HNTs) to obtain CZ-functionalized HNTs (HNTs-s-CZ). It was found that HNTs-s-CZ could be homogeneously dispersed into styrene-butadiene rubber (SBR). The grafted CZ molecules, exactly located at the filler-rubber interface, reduced the activation energy of vulcanization of SBR/HNTs-s-CZ compounds. Besides, the density of chain segments introduced by the interfacial phase of SBR/HNTs-s-CZ nanocomposites was higher than the other nanocomposites with silane-modified HNTs (m-HNTs) or pristine HNTs, manifesting an indication of enhanced filler-rubber interfacial interaction in SBR/HNTs-s-CZ nanocomposites. Consequently, SBR/HNTs-s-CZ nanocomposites showed excellent mechanical properties. The tensile strength could be enhanced by as much as 38.6% and 102.5% compared to those of SBR/m-HNTs and SBR/HNTs nanocomposites, respectively, though containing equivalent accelerant component. The value of this work lies in the fact that apparent properties improvement of elastomer composites has been achieved by the incorporation of vulcanization accelerant-functionalized HNTs, which may be fruitful for the rational design of filler surface treatment and offer new scientific and technological opportunities for the preparation of high performance elastomer composites.

  14. Natural Rubber Modification For Upper Layer Of Rubberized Asphalt Paving Block AS Shock Absorber

    OpenAIRE

    Nasruddin, Nasruddin

    2017-01-01

    The research of rubber compounding modification for upper layer of rubberized asphalt paving block as shock absorber using natural rubber, styrene butadiene rubber (SBR) as synthetic rubber, fly ash as filler and also vegetable oil as plasticizer has been conducted. The research design was varying the filler Si-69, fly ash and palm oil. The five formulas A, B, C, D, and E designed by varying the amount of Si-69 (48.5; 50.75; 53.00; 55.25; and 57.50) phr; coal fly ash (4.75, 7.00, 9.25, 11.50 ...

  15. Hyundai plans rubber unit despite overcapacity

    International Nuclear Information System (INIS)

    Hyoungjin Kim.

    1993-01-01

    Despite the oversupply of synthetic rubber in South Korea, the government has granted approval to Hyundai Petrochemical (Seoul) to build the country's second synthetic rubber unit, to be located alongside its petrochemical complex at Daesan. The plant is due for startup during second-half 1995, when the local market is expected to be in better balance. Hyundai will use Goodyear Tire ampersand Rubber technology for the plant, which will have annual capacities for 40,000 m.t. of polybutadiene rubber (BR), 30,000 m.t. of styrene butadiene rubber (SBR) and 12,000 m.t. of nitrile rubber (NBR). Styrene and butadiene requirements will be met from Hyundai's own production at Daesan. The current local producer of synthetic rubber is Korea Kumho Petrochemicals (Seoul), which has annual capacities for 150,000 m.t. of SBR, 95,000 m.t. of BR, and 10,000 m.t. of NBR. Korean SBR demand is about 141,000 m.t./year but is expected to increase to 161,000 m.t./year by 1996 and reach 194,000 m.t./year by the end of the decade

  16. Electrical and spectroscopic characterization of polyaniline-polyvinyl chloride (PANI-PVC) blends doped with sodium thiosulphate

    International Nuclear Information System (INIS)

    Ameen, Sadia; Ali, Vazid; Zulfequar, M.; Mazharul Haq, M.; Husain, M.

    2008-01-01

    Polyaniline is doped with sodium thiosulphate in aqueous tetrahydrofuran (THF) and the blended films have been prepared by changing the amount of doped polyaniline (PANI) in the fixed amount of polyvinyl chloride (PVC). The electrical conductivity of various samples of polyaniline-polyvinyl chloride (PANI-PVC) blends has been studied to see the effect of dopant in the temperature range 300-400 K. Mott's parameters are used to explain the conduction mechanism. Different parameters such as pre-exponential factor (σ 0 ), activation energy (ΔE) and T 0 have also been calculated to see the effect of chemical doping. The crystallinity of the blends is explained on the basis of T 0 . The calculated values of T 0 show that crystallinity increases with an increase of doped PANI in PANI-PVC blends. Fourier transform-infrared (FTIR) spectroscopy is done to explore the nature and interaction of dopant into the polymeric chain

  17. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    OpenAIRE

    Hal?sz, Istv?n Zolt?n; B?r?ny, Tam?s

    2016-01-01

    In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity cha...

  18. Performance of asphaltic concrete incorporating styrene butadiene rubber subjected to varying aging condition

    Science.gov (United States)

    Salah, Faisal Mohammed; Jaya, Ramadhansyah Putra; Mohamed, Azman; Hassan, Norhidayah Abdul; Rosni, Nurul Najihah Mad; Mohamed, Abdullahi Ali; Agussabti

    2017-12-01

    The influence of styrene butadiene rubber (SBR) on asphaltic concrete properties at different aging conditions was presented in this study. These aging conditions were named as un-aged, short-term, and long-term aging. The conventional asphalt binder of penetration grade 60/70 was used in this work. Four different levels of SBR addition were employed (i.e., 0 %, 1 %, 3 %, and 5 % by binder weight). Asphalt concrete mixes were prepared at selected optimum asphalt content (5 %). The performance was evaluated based on Marshall Stability, resilient modulus, and dynamic creep tests. Results indicated the improving stability and permanent deformation characteristics that the mixes modified with SBR polymer have under aging conditions. The result also showed that the stability, resilient modulus, and dynamic creep tests have the highest rates compared to the short-term aging and un-aged samples. Thus, the use of 5 % SBR can produce more durable asphalt concrete mixtures with better serviceability.

  19. Stretchable Fluorescent Polyfluorene/Acrylonitrile Butadiene Rubber Blend Electrospun Fibers through Physical Interaction and Geometrical Confinement.

    Science.gov (United States)

    Hsieh, Hui-Ching; Chen, Jung-Yao; Lee, Wen-Ya; Bera, Debaditya; Chen, Wen-Chang

    2018-03-01

    Stretchable light-emitting polymers are important for wearable electronics; however, the development of intrinsic stretchable light-emitting materials with great performance under large applied strain is the most critical challenge. Herein, this study demonstrates the fabrication of stretchable fluorescent poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)]/acrylonitrile butadiene rubber (PFN/NBR) blend nanofibers using the uniaxial electrospinning technique. The physical interaction of PFN with NBR and the geometrical confinement of nanofibers are employed to reduce PFN aggregation, leading to the high photoluminescence quantum yield of 35.7%. Such fiber mat film shows stable blue emission at the 50% strain for 200 stretching/release cycles, which has potential applications in smart textiles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of Graphene Oxide on Anti-aging Property of Nitrile Butadiene Rubber

    Directory of Open Access Journals (Sweden)

    ZHANG Lin

    2017-03-01

    Full Text Available The blends with higher damping performance was prepared based on nitrile butadiene rubber(NBR with addition of graphene oxide(GO and modified graphene oxide(MGO prepared by improved Hammer method. Meanwhile, the damping property and the anti-aging property of the blends were investigated by DMA, AFM, SEM and so forth. The results show that after the addition of the GO and MGO, the tangent of loss angle(tanδ increases and also the anti-aging property is improved. When adding less amount of GO in the matrix, the anti-aging property is better; when adding MGO in the matrix, the amount of addition is not obviously related with the anti-aging property of the blends. The dispersion of GO and MGO has positive correlation with its anti-aging property. By microscopic analysis, the main reason for the decrease of anti-aging property of the blends is the agglomeration of the GO. The interface effect formed by the addition of MGO and GO is the main reason for its high damping property and anti-aging property.

  1. Effect of rubber polarity on selective wetting of carbon nanotubes in ternary blends

    Directory of Open Access Journals (Sweden)

    H. H. Le

    2015-11-01

    Full Text Available Based on atomic force microscopy (AFM and Fourier transform infrared spectroscopy (FTIR analysis of the rubber-filler gel (wetting concept the kinetics of selective wetting of carbon nanotubes (CNTs in ternary styrene butadiene rubber (SBR/butadiene rubber (BR/natural rubber (NR blends was qualitatively and quantitatively characterized. Almost all CNTs are found to be wetted by the non-polar NR but not by the other non-polar rubber like BR or weakly polar SBR. It was proposed that phospholipids, which are linked to the α-terminal of NR can interact with the CNT surface through cation-π interactions forming strong bonding between NR and CNTs. Using the corrected surface tension value of NR, which involves the effect of phospholipids found in our previous work the selective wetting of CNTs in ternary rubber blends can be well predicted using the Z-model for a thermodynamic equilibrium state. By replacing the non-polar BR by a polar rubber like nitrile butadiene rubber (NBR as a blend component CNTs are wetted by NBR slightly more than by NR thanks to the strong interaction between CNTs and nitrile groups of NBR. SBR remains unbound to CNTs in both blends.

  2. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    Energy Technology Data Exchange (ETDEWEB)

    Nadagouda, Mallikarjuna N., E-mail: Nadagouda.mallikarjuna@epa.gov [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States); Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L. [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States)

    2011-04-15

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO{sub 3} and/or BaCO{sub 3}-loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO{sub 3} dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO{sub 3} wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  3. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    International Nuclear Information System (INIS)

    Nadagouda, Mallikarjuna N.; Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L.

    2011-01-01

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO 3 and/or BaCO 3 -loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO 3 dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO 3 wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  4. Production of PVC/Abs/Nbr blend and the study of its physical and mechanical properties, thermal behaviour and its morphology

    International Nuclear Information System (INIS)

    Mehrabzadeh, M.; Honarkar, H.

    2001-01-01

    In this research a product of triplet blend of polyvinyl chloride, acrylonitrile-butadiene-styrene, acrylonitrile butadiene rubber (PVC/Abs/Nbr) is obtained. The physical, mechanical and thermal behaviour as well as morphology of the blend were studied. Results show that optimum properties in ratio PVC/Abs: 60/40 is obtained. For substituting the Nbr by a portion of Dop to modify the migration to surface, a triplet blend of PVC/Abs/Nbr was made. Experiments with constant amount of Nbr and variable Dop and vice versa were carried out. For preparation of triplet blend from PVC/Abs, a ratio of 60/40 was used. The best results were obtained for a blend with Nbr (10%) and PVC powder, 20% Nbr and PVC granules containing 34% Dop and the thermo formability of PVC/Abs/Nbr blend was examined as well

  5. Elastomers for Tracked Vehicles: 1980-1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles

    Science.gov (United States)

    2015-06-01

    elastomeric compound coded NBR -12 was developed. This compound was based on a highly saturated nitrile rubber or hydrogenated acrylonitrile-butadiene...at Fort Belvoir, VA, produced a patented rubber formulation ( NBR -12) based on hydrogenated nitrile rubber (HNBR)1,2 with a novel curing and filler...performance vehicles. • Acrylonitrile butadiene or nitrile rubber ( NBR )10: NBR is the generic name given to emulsion polymerized copolymers of

  6. A high dose dosimeter based polyvinyl chloride dyed with malachite green

    International Nuclear Information System (INIS)

    Kattan, M.; Daher, Y.; Alkassiri, H.

    2007-01-01

    Polyvinyl chloride film (PVC) dyed with malachite green has been studied for high dose radiation dosimetry using visible spectrophotometry. A linear relationship between the relative absorbance and the absorbed dose at the wavelength 628 nm in the range of 0-125 kGy was found. The effect of dose rate, irradiation temperature, film thickness and dye intensity were found not to influence the response. The effects of shelf-life and the post-irradiation storage in darkness and indirect daylight conditions on dosimetry performance were discussed. (author)

  7. Molecular Simulation of Gas Solubility in Nitrile Butadiene Rubber.

    Science.gov (United States)

    Khawaja, M; Sutton, A P; Mostofi, A A

    2017-01-12

    Molecular simulation is used to compute the solubility of small gases in nitrile butadiene rubber (NBR) with a Widom particle-insertion technique biased by local free volume. The convergence of the method is examined as a function of the number of snapshots upon which the insertions are performed and the number of insertions per snapshot and is compared to the convergence of the unbiased Widom insertion technique. The effect of varying the definition of local free volume is also investigated. The acrylonitrile content of the polymer is altered to examine its influence on the solubility of helium, CO 2 , and H 2 O, and the solubilities of polar gases are found to be enhanced relative to those of nonpolar gases, in qualitative agreement with experiment. To probe this phenomenon further, the solubilities are decomposed into contributions from the neighborhoods of different atoms, using a Voronoi cell construction, and a strong bias is found for CO 2 and H 2 O in particular to be situated near nitrogen sites in the elastomer. Temperature is shown to suppress the solubility of CO 2 and H 2 O but to increase that of helium. Increasing pressure is found to suppress the solubility of all gases but at different rates, according to a balance between their molecular sizes and electrostatic interactions with the polymer. These results are relevant to the use of NBR seals at elevated temperatures and pressures, such as in oil and gas wells.

  8. Determination of the Mechanical Properties of Rubber by FT-NIR

    Directory of Open Access Journals (Sweden)

    Rattapol Pornprasit

    2016-01-01

    Full Text Available Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR, styrene butadiene rubber (SBR, nitrile butadiene rubber (NBR, and ethylene propylene diene monomer (EPDM, were evaluated using a near infrared (NIR spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-NIR spectrometer and fitted with an integration sphere working in a diffused reflectance mode. The spectra were correlated with hardness and tensile properties. Partial least square (PLS calibration models were built from the spectra datasets with preprocessing techniques, that is, smoothing and second derivative. This indicated that reasonably accurate models, that is, with a coefficient of determination [R2] of the validation greater than 0.9, could be achieved for the hardness and tensile properties of rubber materials. This study demonstrated that FT-NIR analysis can be applied to determine hardness and tensile values in rubbers and rubber blends effectively.

  9. Poly(vinyl chloride-grafted multi-walled carbon nanotubes via Friedel-Crafts alkylation

    Directory of Open Access Journals (Sweden)

    2010-11-01

    Full Text Available A novel approach was developed for the surface modification of the multi-walled carbon nanotubes (MWCNTs with high percentage of grafting (PG% by the grafting of polymer via the Friedel-Crafts alkylation. The graft reaction conditions, such as the amount of catalyst added, the reaction temperature, and the reaction time were optimized for the Friedel-Crafts alkylation of the MWCNTs with poly(vinyl chloride (PVC with anhydrous aluminum chloride (AlCl3 as catalyst in chloroform (CHCl3. The Fourier Transform Infrared (FT-IR, Raman, and thermogravimetric (TGA analysis showed that PVC had been successfully grafted onto MWCNTs both at the ends and on the sidewalls by the proposed Friedel-Crafts alkylation. The PVC grafted MWCNTs (PVC-MWCNTs could be dispersed well in organic solvent and the dispersion was more stable.

  10. Rheological Properties of Rubber Compounds with Finely Divided Carbon Additives

    Science.gov (United States)

    Shashok, Zh. S.; Prokopchuk, N. R.; Vishnevskii, K. V.; Krauklis, A. V.; Borisevich, K. O.; Borisevich, I. O.

    2018-01-01

    A study has been made of the influence of three different nanomaterials: of the starting material, and also of those functionalized by amine and oxygen-containing groups, on the properties of elastomer compositions based on rubbers for special purposes. As the elastomer matrix, use was made in one case of a rubber compound based on BNKS-18 butadiene-nitrile rubber and in the other, of a combination of two grades of butadiene-nitrile rubber (BNKS-18 + BNKS-28 in a 50:50 ratio), which differed by the amount of the bound nitrile of acrylic acid. To determine the degree of interaction between the additives and the elastomer matrix, the authors carried out multiple tests of the rubber compounds. The indices of plastoelastic properties of the rubber compounds and the qualitative characteristics of distribution of the filler (elastic modulus at small deformation amplitudes and the shear modulus under large deformation) and the difference in these indices (complex dynamic modulus) alike have been determined.

  11. Mechanical and Thermal Properties of Styrene Butadiene Rubber - Functionalized Carbon Nanotubes Nanocomposites

    KAUST Repository

    Laoui, Tahar

    2013-01-01

    The effect of reinforcing styrene butadiene rubber (SBR) with functionalized carbon nanotubes on the mechanical and thermal properties of the nanocomposite was investigated. Multi-walled carbon nanotubes (CNTs) were functionalized with phenol functional group to enhance their dispersion in SBR matrix. Surface functionalization of the CNTs was carried out using acid treatment and FTIR technique was utilized so as to ascertain the presence of phenol functional group. This was followed with the dispersion of the functionalized CNTs into a polymer solution and a subsequent evaporation of the solvent. This study has demonstrated the inherent capability of CNTs as reinforcing filler as demonstrated by the substantial improvement in Young\\'s Modulus, tensile strength and energy of absorption of the nanocomposites. The tensile strength increased from 0.17 MPa (SBR) to 0.48 MPa while the Young\\'s Modulus increased from 0.25 MPa to 0.83 MPa when 10wt% functionalized CNTs was added. With the addition of 1wt% reinforcement-a peak value of 4.1 KJ energy absorption was obtained. The homogenous dispersion of CNT-Phenol is thought to be responsible for the considerable enhancement in the reported properties. Copyright © Taylor & Francis Group, LLC.

  12. The role of carbon nanotubes in promoting the properties of carbon black-filled natural rubber/butadiene rubber composites

    Directory of Open Access Journals (Sweden)

    Jiangshan Gao

    Full Text Available 80/20 natural rubber (NR/butadiene rubber (BR blends in which the carbon black (CB was replaced partially by multi-walled carbon nanotubes (MWCNTs according to the ratios m (CNTs: m (decreasing amount of CB = 1: X (X was varied from 1 to 6, was prepared by blending of internal mixer and the two-roll mill at the mill opening of 0.5 mm for 10 times. SEM and TEM were used to investigate the filler networks and the good dispersion of fillers. The compounds containing 5 phr CNTs/27.5 phr CB exhibited the best abrasion resistance which was increased by 12.69% compared that without CNTs. 3D morphology images of wear surfaces and tensile fracture surfaces being similar to the layered map of the geography, which match the abrasion resistance and tensile properties, were observed by 3D measuring laser microscope. The uncured blend with 5 phr CNTs/35 phr CB showed the shortest cure time, the highest modulus and level of crosslink density. Significant improvement in mechanical properties were achieved by incorporating 5 phr CNTs and 35 phr CB, and the tear strength, 100% and 300% modulus of the vulcanizate were enhanced by 36.36%, 61.29% and 31.63% compared with the composite with 0 phr CNTs/40 phr CB, respectively. Additionally, compared with the composite without CNTs, the thermal conductivity of the composites with 5 phr CNTs/35 phr CB is increased by an average of 6.15% at three different temperatures. These considerable reinforcements resulted from the synergistic effect of CNTs and CB. Keywords: Synergistic effect, Carbon nanotubes, DIN abrasion, Mechanical properties, Thermal conductivity, 3D measuring laser microscope

  13. Investigation of friction in rectangular Nitrile-Butadiene Rubber (NBR) hydraulic rod seals for defence applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Shankar; Guruprasad, S.; Bhandari, P. [R and DE , Dighi (India); Kumaraswamy, A. [Defence Institute of Advanced Technology, Girinagar (India)

    2015-11-15

    Contact based FE simulations have been carried out to estimate the contact pressure distribution at seal/rod interface at sealed oil pressures of 10, 20 and 30 MPa and constant rod velocity of 0.12 m/s. Oil film thickness at the interface was then computed analytically at various combinations of oil pressures and rod velocities. Seal contact pressure and oil film thickness data along with surface roughness, intermolecular interaction between seal/rod interfaces has been perused to estimate the friction in Nitrile-Butadiene Rubber (NBR) rectangular hydraulic rod seals using theoretical models such as Inverse hydrodynamic lubrication (IHL), Greenwood-Williamson (GW) and Wassink's models. The friction at seal/rod interface was also measured experimentally using a specially designed test rig. The comparison of theoretical and experimental data revealed that, friction computed from GW and Wassink's models had good agreement with the experimental results.

  14. Radiation-induced polymerization of 1, 3-butadiene in urea canal complex as studied by broad line NMR

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Hayakawa, Naohiro; Abe, Toshihiko

    1975-01-01

    Dependence of the NMR spectrum on the molar ratio of 1,3-butadiene to urea, temperature dependence of the spectrum and changes of the spectrum during polymerization were observed. The results were discussed in comparison with previously reported results for the canal polymerization of acrylonitrile and vinyl chloride. 1,3-butadiene formes a canal complex with the molar ratio of 1 to 4 for 1,3-butadiene to urea. The urea canal complex is decomposed at -15 0 C. The spectrum of 1,3-butadiene in urea canal complex shows existence of a remarkably mobile component which was not observed on the spectra of acrylonitrile - urea of vinyl chloride - urea canal complex. The line width of 1,3-butadiene in the urea canal complex except the very narrow component was broader than that for vinyl chloride in the urea canal complex over an observed temperature range. The line width of urea formed the canal decreases at lower temperature than those of urea in vinyl chloride - urea canal complex. The post-polymerization of 1,3-butadiene in the urea canal complex started clearly from -78 0 C and completes when the temperature was raised to 20 0 C. The polymerization will be proceeded by the such way that monomer molecules move to the active center in the canal, as considered in the case of the polymerization of acrylonitrile and vinyl chloride in the canal complex. The crystal structure of the urea canal was maintained during polymerization and than the polybutadiene - urea canal complex was necessarily formed after the polymerization. The formation of the polymer - urea canal complex has distinct difference between 1,3-butadiene and acrylonitrile or vinyl chloride. For acrylonitrile and vinyl chloride the canals around the polymer formed are destroyed. The structure of polybutadiene - urea canal complex was hexagonal having a=8.21, c=10.50 A. (auth.)

  15. Chemical leucoderma induced by ear-ring stoppers made of polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    Reena Sharma

    2012-01-01

    Full Text Available We report a case of chemical leucoderma (CL in a 15-year-old girl, who developed patterned depigmentation at the back of both ear lobules after contact with plastic ear-ring stoppers made of polyvinyl chloride (PVC after continuous use for 6-7 months. Patch test with Indian standard series and cosmetic series was negative after 48 h, but she refused patch testing for extended duration as the possibility of induced depigmentation at the test site was unacceptable to her. To the best of our knowledge, this is the first report of plastic ear-ring stopper induced CL.

  16. Transport properties of carboxylated nitrile butadiene rubber (XNBR)-nanoclay composites; a promising material for protective gloves in occupational exposures.

    Science.gov (United States)

    Mirzaei Aliabadi, Mostafa; Naderi, Ghasem; Shahtaheri, Seyed Jamaleddin; Forushani, Abbas Rahimi; Mohammadfam, Iraj; Jahangiri, Mehdi

    2014-02-28

    This study was conducted in response to one of the research needs of National Institute for Occupational Safety and Health (NIOSH), i.e. the application of nanomaterials and nanotechnology in the field of occupational safety and health. In order to fill this important knowledge gap, the equilibrium solubility and diffusion of carbon tetrachloride and ethyl acetate through carboxylated nitrile butadiene rubber (XNBR)-clay nanocomposite, as a promising new material for chemical protective gloves (or barrier against the transport of organic solvent contaminant), were examined by swelling procedure. Near Fickian diffusion was observed for XNBR based nanocomposites containing different amounts of nanoclay. Decontamination potential is a key factor in development of a new material for reusable chemical protective gloves applications, specifically for routine or highly toxic exposures. A thermal decontamination regime for nanocomposite was developed for the first time. Then, successive cycles of exposure/decontamination for nanocomposite were performed to the maximum 10 cycles for the first time. This result confirms that the two selected solvents cannot deteriorate the rubber-nanoclay interaction and, therefore, such gloves can be reusable after decontamination.

  17. Sifat fisika dan analisis gugus fungsi karet seal o-ring dari bahan termoplastik elastomer nitrile butadiene rubber (NBR dan polyvinyl chloride (PVC

    Directory of Open Access Journals (Sweden)

    Arum Yuniari

    2013-06-01

    Full Text Available The purpose of this research was to determine the physical properties and functional groups on O-ring rubber seals made of thermoplastic elastomers blend NBR and PVC. Composition of the NBR / PVC were successively varied : 90/10; 85/15; 80/20; 75/25; 70/30 and 65/35 phr. Mixing process between NBR/PVC with additive used a two roll mill within a temperature of 60º - 80 ºC, the vulcanization process used a hydraulic press at a temperature of 170 oC and pressure of 150 kg/cm2. The physical properties were evaluated including tensile strength, elongation at break, hardness, before and after aging, hardness after immersion in isooctane and swelling while analysis of functional groups was also carried out by method of Fourier Transform Infrared Spectrophotometer (FTIR. The result of the best vulcanized was characterized by tensile strength 188.93 kg/cm2, the change of tensile strength after aging 2.50%, elongation at break of 400%, the change of elongation at break after aging was 12.5%, hardness 75 shore A, the change of hardness after aging 0%, the change of hardness after immersion in isooctane 1.3%, swelling 0.8% and functional group of vulcanisate was indicated by new peak (OH at wave band of 3468 cm-1. Those formula met the requirements of the technical specifications of ASTM D 2000 seal O-ring.

  18. Histogenesis of mouse sarcomas induced by implantation of polyvinyl chloride film in radiation chimeras

    International Nuclear Information System (INIS)

    Mojzhess, T.G.; Prigozhina, E.L.

    1976-01-01

    Sarcomas were induced in CBA/CBA-T6T6 mouse radiation chimeras by implantation of polyvinyl chloride film subcutaneously 13 months after irradiation and injection of donor's bone marrow. Of the 12 tumors studied 11 had the recipient's karyotype and one the donor's. The formation of connective-tissue cells from bone-marrow precursors thus, evidently does not play an essential role in the histogenesis of sarcomas induced by plastics

  19. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    International Nuclear Information System (INIS)

    Yasin, T.; Ahmed, S.; Yoshii, F.; Makuuchi, K.

    2003-01-01

    The effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of electron-beam irradiated acrylonitrile-butadiene rubber (NBR) has been investigated. The PFMs used were diethylene glycol dimethacrylate (2G), tetraethylene glycol dimethacrylate (4G), trimethylol propane triacrylate (A-TMPT), trimethylol propane trimethacrylate (TMPT) and tetramethylol methane tetraacrylate (A-TMMT). The physical properties of EB irradiated NBR sheets were evaluated by measurement of tensile strength, elongation %, hardness and gel fraction etc. The results show a remarkable increase in all physical properties as the concentration of PFMs increases from 1 phr to 5 phr in the NBR samples. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by corresponding increase in gel content

  20. Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber

    Science.gov (United States)

    Lin, Jing; Luo, Yuanfang; Zhong, Bangchao; Hu, Dechao; Jia, Zhixin; Jia, Demin

    2018-05-01

    A novel antioxidant (HS-s-RT) to improve the mechanical properties and anti-aging performance of styrene-butadiene (SBR) composites was prepared by antioxidant intermediate p-aminodiphenylamine (RT) grafting on the surface of halloysite nanotubes/silica hybrid (HS) via the linkage of silane coupling agent. The analysis of SEM and rubber processing analyzer (RPA) demonstrated HS-s-RT was uniformly dispersed in SBR, and stronger interfacial interaction between HS-s-RT and SBR was formed. Consequently, SBR/HS-s-RT composites have improving mechanical properties. Furthermore, the test of the retention of mechanical properties, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), and oxidation induction time (OIT) showed HS-s-RT can effectively improve the anti-aging effect of SBR composites than corresponding low molecular-weight antioxidant N-isopropyl-N‧-phenyl-4-phenylenediamin (4010NA). Then, the mechanism of thermo-oxidative aging of SBR/HS composites was also investigated, and the superior antioxidative efficiency is attributed to the uniform dispersion and excellent migration resistance of HS-s-RT. Hence, this novel antioxidant might open up new opportunities for the fabrication of high-performance rubber composites due to its superior anti-aging effect and reinforcement.

  1. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Science.gov (United States)

    Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio

    2017-08-01

    A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  2. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber-Polyurethane Foam Composite with Multilayered Structure.

    Science.gov (United States)

    Jiang, Xueliang; Yang, Zhen; Wang, Zhijie; Zhang, Fuqing; You, Feng; Yao, Chu

    2018-03-22

    Barium titanate/nitrile butadiene rubber (BT/NBR) and polyurethane (PU) foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation.

  3. Elastomer Nanocomposites Based on Butadiene Rubber, Nanoclay and Epoxy-Polyester Hybrid: Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Sepideh Zoghi

    2013-08-01

    Full Text Available Nanocomposites based on butadiene rubber (BR, (0, 3, 5 and 7 phr organoclay (Cloisite 15A and (0, 10, 20, 30, 40 phr powder coating wastes, i.e., epoxypolyester hybrid (EPH were prepared using a laboratory-scale internal mixer in order to study the effect of organoclay and EPH content on the mechanical and morphological properties of the nanocomposite samples. Cure characteristics of the prepared compounds including optimum cure time (t90 and scorch time (t5 depicted a decrease in both mentioned factors with increasing nanoclay content and EPH loading.Intercalation of elastomer chains into the silicate layers was determined by d-spacing values calculated according to the results of X-ray diffraction (XRD patterns. X-ray diffraction (XRD results reveal the intercalation of elastomer chains into the clay galleries. This phenomenon was also confirmed according to the scanning electron microscopy (SEM micrographs and mechanical properties of the nanocomposite samples which were observed to be improved with addition of nanoclay and EPH content.

  4. Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks

    Directory of Open Access Journals (Sweden)

    X. P. Wang

    2012-07-01

    Full Text Available Novel blends of acrylonitrile butadiene rubber (NBR and polyurethane-silica (PU-SiO2 hybrid networks have been prepared by melt blending. The PU-SiO2 hybrid networks were formed via the reaction of NCO groups of NCO-terminated PU prepolymer and OH groups of SiO2 in the absence of an external crosslinking agent (i.e. alcohols and amines during the curing process of NBR. Both in the neat PU-SiO2 system and the NBR/(PU-SiO2 system, the NCO-terminated PU prepolymer could be crosslinked by SiO2 to form PU-SiO2 hybrid networks. The effects of PU-SiO2 introduction into the NBR, on the properties of the resulting blends were studied. It was found that the vulcanization was activated by the incorporation of PU-SiO2. Transmission electronic microscopy (TEM studies indicated that the interpenetration and entanglement structures between NBR and PU-SiO2 increased with increasing PU-SiO2 content and the quasi-interpenetrating polymer networks (quasi-IPN structures were formed when the PU-SiO2 was 50 wt% in the NBR/(PU-SiO2 systems. The microstructures formed in the blends led to good compatibility between NBR and PU-SiO2 and significantly improved the mechanical properties, abrasion resistance and flex-fatigue life of the blends.

  5. Mechanical and tribological properties of acrylonitrile–butadiene rubber filled with graphite and carbon black

    International Nuclear Information System (INIS)

    Wang, Lei Lei; Zhang, Li Qun; Tian, Ming

    2012-01-01

    Highlights: ► Graphite/carbon black/rubber micro- and nano-composites were prepared. ► Nanocomposites showed better mechanical properties and wear resistance. ► The effect of load and sliding speed on friction and wear is significant. ► Graphite lubricant film can reduce friction coefficient and wear rate. -- Abstract: In this work, acrylonitrile–butadiene rubber (NBR)/expanded graphite (EG)/carbon black (CB) micro- and nanocomposites were prepared by two different methods, and the resulting mechanical and tribological properties were compared with those of NBR/CB composites. Meanwhile, the effects of graphite dispersion and loading content, as well as the applied load and sliding velocity on the tribological behavior of the above composites under dry friction condition were also evaluated. The worn surfaces were analyzed by scanning electron microscopy (SEM) to disclose wear mechanism. As expected, the better the dispersion of graphite, the more remarkable enhancement on tensile and dynamic mechanical properties, and the greater reduction in the coefficient of friction (COF) and specific wear rate (W s ). It was found that a small amount of EG could effectively decrease COF and W s of NBR/CB composites because of the formation of graphite lubricant films. The COF and W s of NBR/CB/EG composites show a decreasing trend with a rise in applied load and sliding velocity. NBR/CB/EG nanocomposite always shows a stable wearing process with relatively low COF and W s . It is thought that well-dispersed graphite nano-sheets were beneficial to the formation of a fine and durable lubricant film.

  6. QENS investigation of filled rubbers

    CERN Document Server

    Triolo, A; Desmedt, A; Pieper, J K; Lo Celso, F; Triolo, R; Negroni, F; Arrighi, V; Qian, H; Frick, B

    2002-01-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  7. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, J.

    1995-01-01

    Fourier Transform (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  8. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, Joseph

    1995-01-01

    Fourier Transform Infrared (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  9. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Neha, E-mail: neha87bhu@gmail.com [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India); Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E. [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Gandhi, M. N.; Bhattacharyya, A. R. [Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India)

    2016-05-06

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS{sub 2}) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS{sub 2} and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS{sub 2} and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  10. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    International Nuclear Information System (INIS)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E.; Gandhi, M. N.; Bhattacharyya, A. R.

    2016-01-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS_2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS_2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS_2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  11. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Science.gov (United States)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Gandhi, M. N.; Bhattacharyya, A. R.; Mukhopadhyay, K.; Prasad, N. E.

    2016-05-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  12. Radiation vulcanization of rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-02-01

    An abstract of the radiation process of polymer materials and the polymer reaction by radiation is explained. Main radiation is 250 keV to 10 MeV of electron rays in the industry. Radiation cross-linked rubber has less the tensile strength than that by sulfur and organic peroxide crosslinking. The main origins of low tensile strength are caused by cut of backbone chain and ozone depend on radiation. Acceleration of crosslinking and short time of radiation are necessary to improve these defects. To accelerate crosslinking, we used crosslinking accelerators, for example, three poly-functional monomers (PFM). The maximum tensile strength of styrene-butadiene rubber (SBR) not added crosslinking accelerators showed 3 MPa at 110 kGy, but SBR added A-TMMT (tetramethylolmethane tetraacrylate) showed 5.5 MPa at 110 kGy. Radiation crosslinking of many kinds of rubber: isoprene (IR), SBR, CR, nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), butyl rubber (IIR), chlorinated butyl rubber (CIIR), EPM and TPE are explained. (S.Y.)

  13. Radiation vulcanization of rubbers

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2002-01-01

    An abstract of the radiation process of polymer materials and the polymer reaction by radiation is explained. Main radiation is 250 keV to 10 MeV of electron rays in the industry. Radiation cross-linked rubber has less the tensile strength than that by sulfur and organic peroxide crosslinking. The main origins of low tensile strength are caused by cut of backbone chain and ozone depend on radiation. Acceleration of crosslinking and short time of radiation are necessary to improve these defects. To accelerate crosslinking, we used crosslinking accelerators, for example, three poly-functional monomers (PFM). The maximum tensile strength of styrene-butadiene rubber (SBR) not added crosslinking accelerators showed 3 MPa at 110 kGy, but SBR added A-TMMT (tetramethylolmethane tetraacrylate) showed 5.5 MPa at 110 kGy. Radiation crosslinking of many kinds of rubber: isoprene (IR), SBR, CR, nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), butyl rubber (IIR), chlorinated butyl rubber (CIIR), EPM and TPE are explained. (S.Y.)

  14. US rubber markets recover

    International Nuclear Information System (INIS)

    Wood, A.

    1993-01-01

    Synthetic rubber markets in North America bounced back in no uncertain terms last year, with demand climbing an impressive 9.5%, to 2.97 million m.t.; and, according to the International Institute of Synthetic Rubber Producers (IIS-RP; Houston) latest five-year forecast, producers can look forward to a 3.3% increase in demand during 1993. This growth rate outpaced out 1992 forecast and demonstrates the resilience of the synthetic rubber industry, says William E. Tessemer, managing director of IISRP. We expect demand in 1993 to surpass 1992 and level off at a 2%/year growth rate for synthetic rubber - 2.5% including thermoplastic elastomers [TPEs]-over the 1993-97 period. The improvement reflects signs of a recovery in North America, especially the pickup in the auto and tire industry. The two major tire rubbers - styrene butadiene and polybutadiene rubber - notched up double-digit gains, and other materials that have autos uses, such as nitrile rubber and many of the specialty elastomers, also advanced strongly

  15. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile butadiene rubber under electron-beam irradiation

    Science.gov (United States)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  16. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Tariq [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)]. E-mail: yasintariq@yahoo.com; Ahmed, Shamshad [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Ahmed, Munir [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Yoshii, Fumio [Takasaki Radiation Chemistry Research Establishment, JAERI, Takasaki, Gunma-Ken 370-12 (Japan)

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  17. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    International Nuclear Information System (INIS)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-01-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content

  18. Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of Fourier transform Raman spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Fourier transform (FT) Raman spectroscopy is applied to a range of phthalate ester plasticizers in pure form as well as in poly(vinyl chloride) (PVC) samples. It is found that phthalate esters as a group can be identified by a set of six characteristic Raman bands. FT-Raman spectra of 22 phthalate...

  19. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  20. Design, Construction, and Evaluation of Rubber Friction Tester

    Directory of Open Access Journals (Sweden)

    Mehdi Razzaghi Kashani

    2012-12-01

    Full Text Available Coeffcient of  friction  (COF  for  rubber parts  is one of  the key parameters in their interaction with solid rough surfaces (micrometer to millimeter scales,  such  as  tire-road  interactions. COF  of  rubber  depends  on  viscoelastic properties of rubber, roughness characteristics of the counter-part surface, and process variables such as contact nominal pressure and sliding speed. Due to the need for measuring COF  for  rubber,  a  new  friction  tester, with  continuous  variation  of nominal pressure and sliding speed, was designed and constructed in order to assess the effect of above mentioned parameters. Tire tread compounds, as the most common rubber part  in  the feld of  rubber  tribology, was used  for  this purpose. Viscoelastic properties of compounds were varied by changing composition of styrene-butadiene rubber (SBR and butadiene rubber (BR in the blend. Effect of surface roughness was evaluated by using silicon-carbide papers with different roughness parameters. By statistical analysis it was shown that the designed friction tester has high accuracy in measuring the coeffcient of friction of rubber and differentiating the effective parameters. Increasing the nominal pressure led to reduction of COF and increase in sliding speed forced it through a maximum. In conclusion, the loss factor of the compound and asymmetry in roughness distribution of the counter-surface are considered as the most effective parameters on COF of rubber.

  1. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  2. Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications

    Directory of Open Access Journals (Sweden)

    N. G. Ozdemir

    2016-05-01

    Full Text Available This study investigates the effects of nano carboxylic acrylonitrile butadiene rubber (CNBR-NP and nano acrylonitrile butadiene rubber (NBR-NP on the interlaminar shear strength and fracture toughness of carbon fibre reinforced polymer composites (CFRP with dicyandiamide-cured epoxy matrix. The results show that nano-size dispersion of rubber significantly improved the Mode I delamination fracture toughness (GIC of the CFRP by 250% and its Mode II delamination fracture toughness (GIIC by 80% with the addition of 20 phr of CNBR-NP. For the NBR-NP system, the GIC and GIIC delamination fracture toughness of the CFRP were increased by 200 and 80% respectively with the addition of 20 phr (parts per hundred rubber of nano rubber to the matrix. Scanning electron microscopy (SEM images of the fracture surface revealed that the toughening was mainly achieved by debonding of the nano rubber, crack path deflection and fibre bridging.

  3. The use of polyvinyl chloride dyed with bromo cresol purple in radiation dosimetry

    International Nuclear Information System (INIS)

    Kattan, M.; Al-Kassiri, H.; Daher, Y.

    2010-09-01

    In this work,the use of polyvinyl chloride (PVC) dyed with Bromo cresol purple in high dose radiation dosimetry has been studied according to the radio chromic change using visible spectrophotometry. The results show linear relationship between the relative absorbance (response) and the absorbed dose at the wavelength 417 nm in the range of 0-50 kGy. Dose rate, irradiation temperature, dye intensity have been investigated and found to be independent of the response. The effects of post-irradiation storage in dark and indirect daylight conditions on dosimetry performance are discussed. (Author)

  4. Best Practice for the Devulcanization of Sulfur-cured SBR Rubber

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Blume, Anke

    2015-01-01

    In the present paper, special attention will be devoted to thermo-chemical devulcanization of sulfur-cured styrene butadiene rubber (SBR) using diphenyldisulfide (DPDS) as devulcanization aid. SBR is the main component in whole passenger car tire rubber and, at the same time, the most critical one

  5. Influence Of Gamma Irradiation On Mechanical And Thermal Properties Of Waste Polyethylene / Nitrile Butadiene Rubber Blend

    International Nuclear Information System (INIS)

    Aly, R.O.

    2012-01-01

    Gamma irradiation radical-radical interaction crosslinking of elastomers and thermoplastic is a special type of crosslinking technique that has gained importance over conventional chemical crosslinking method as process is fast, pollution free and simple. In this study, a blend polymer, based on waste polyethylene and nitrile butadiene rubber, has been irradiated with gamma rays then mechanically and thermally investigated at varying NBR content. FTIR and SEM techniques were used in addition to the swelling behaviour by toluene solvent to emphasize the blend formation. The mechanical properties like tensile strength, elongation at break and modulus at different elongations were studied and compared with those of non-irradiated ones. A relatively low radiation dose was found effective in improving the level of mechanical properties. Differential scanning calorimeter and thermogravimetric analysis were used to study the thermal characteristics of the irradiated polymer. Enhancement in thermal stability has been observed for higher NBR containing blends and via radiation-induced crosslinking up to ≅ 50 kGy

  6. Influence of gamma irradiation on mechanical and thermal properties of waste polyethylene/nitrile butadiene rubber blend

    Directory of Open Access Journals (Sweden)

    Raouf O. Aly

    2016-11-01

    Full Text Available Gamma irradiation radical–radical interaction crosslinking of elastomers and thermoplastic is a special type of crosslinking technique that has gained importance over conventional chemical crosslinking method as process is fast, pollution free, and simple. In this work a blend polymer, based on waste polyethylene and nitrile butadiene rubber, has been irradiated with gamma-rays, mechanically and thermally investigated at varying NBR content. FTIR and SEM techniques were used in addition to the swelling behavior to emphasize the blend formation. Mechanical properties like tensile strength, elongation at break and modulus at different elongations were studied and compared with those of unirradiated ones. A relatively low-radiation dose was found effective in improving the level of mechanical properties. Differential scanning calorimeter and thermogravimetric analysis were used to study the thermal characteristics of the irradiated polymer. Enhancement in thermal stability has been observed for higher NBR containing blends and via radiation-induced crosslinking up to ≈50 kGy.

  7. Tribological properties and morphology of bimodal elastomeric nitrile butadiene rubber networks

    International Nuclear Information System (INIS)

    Guo, Yin; Wang, Jiaxu; Li, Kang; Ding, Xingwu

    2013-01-01

    Highlights: • Bimodal elastomeric NBR as a new material was developed. • The structure of bimodal elastomeric NBR networks was determined. • The relationship between structure and mechanical properties was investigated. • The tribological properties and mechanisms of bimodal NBR were analyzed. • The benefits of bimodal NBR in the field of tribology were discussed. - Abstract: Bimodal nitrile butadiene rubber (NBR) was examined in this study. The molecular structure was determined by dynamic mechanical analysis and transmission electron microscopy. The relationship between the structure and the mechanical properties related to elastomeric tribological properties was investigated. The properties and the mechanisms of friction and wear of bimodal elastomeric NBR networks were also analyzed. The lubricating characteristics of bimodal NBR networks were revealed based on the mechanisms of friction and wear. Results show that bimodal NBR networks are similar to bimodal polydimethylsiloxane networks. The form and density of the network structure can be controlled from elastomeric networks to thermosetting resin networks. The mechanical properties of bimodal NBR networks, such as elasticity, elongation at break, fatigue characteristic, tensile strength, elastic modulus, and thermal stability can be precisely controlled following the variation in network structure. The friction, wear, and lubrication of bimodal NBR networks can be clearly described according to the principles of tribology. Common elastomers cannot simultaneously reduce friction and wear because of the different mechanisms of friction and wear; however, bimodal elastomer networks can efficiently address this problem

  8. Understanding interpenetrating-polymer-network-like porous nitrile butadiene rubber hybrids by their long-period miscibility

    International Nuclear Information System (INIS)

    Zhang, Jihua; Wang, Lifeng; Zhao, Yunfeng

    2013-01-01

    Highlights: • Hydrogen bonds are introduced into NBR to develop its IPN-like porous hybrids. • NBR is partly miscible with AO-60. • AO-60 possesses the viscoelastic behavior resembling that of polymers. • Phase separation aggravates and AO-60 crystallizes in the durations. • The porous hybrids may have potential damping applications. - Abstract: In this article, tetrakis [methylene-3-(3, 5-di-tert-butyl-4-hydroxy phenyl) propionyloxy] methane (AO-60) with hydrogen bonds was designed to interpenetrate into the chemical crosslinking bonds of nitrile butadiene rubber (NBR) and then porous materials were prepared. Scanning electron microscopy (SEM), atomic force microscopy (AFM) images and dynamic mechanical analyses (DMA) demonstrate that NBR is partly miscible with AO-60 which induces the micro-pores and interpenetrating-polymer-network (IPN)-like phase morphology in the hybrids. The wide double tan δ peak in DMA curve displays that AO-60 possesses similar viscoelastic behaviors to polymers which come from supramolecular interactions between polar groups of NBR chains and hydroxyl (OH) groups of AO-60. To further understand the supramolecular abilities of AO-60 in the rubber, the long-period observations for their miscibility are conducted. With the increase of durations, the hydrogen bond network from AO-60 is weakened. The phase separation between AO-60 and NBR is aggravated and even extremely few AO-60 crystallizes which develops multi-scale porous morphology in the hybrids. It is believed that these findings can serve as a guide for the designs of the IPN-like hybrids with small molecule substances and their applications of damping materials

  9. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Science.gov (United States)

    2010-04-01

    ... parts by weight of a grafted rubber consisting of (i) 8-12 parts of butadiene/styrene elastomer... limitations are determined by an infrared spectro-photo-metric method titled “Infrared Spectro-photo-metric...

  10. Electrical and mechanical investigations on polyvinyl chloride filled with haf black

    International Nuclear Information System (INIS)

    El- Nashar, D.E.; Eid, M.A.M.; Abou Aiad, T.H.; Abd-El-Messieh, S.L.

    2005-01-01

    Polyvinyl chloride (PVC) was chosen to be loaded with various amount of high abrasion furnace black (HAF). The mechanical as well as electrical properties of the prepared composites were investigated. The Dielectric properties of these composites were investigated in the frequency range 10 2 - 10 5 Hz at temperature range from 30 to 120 degree C . In addition to the conductivity term, the experimental data of the dielectric losses ε were analyzed using a computer program based on both Havriliak-Nagami and Frohlich equations into two relaxation processes. The first relaxation process in the lower frequency range could be attributed to Maxwell Wagner effect. The second relaxation could be attributed to the combination of the large scale mobilization of the chains i.e. the glass rubber relaxation process in addition to a contribution of the motion of the large aggregates caused by the movement of the main chain, which are expected to be formed by the addition of different ingredients to PVC such as plasticizer. The percolation threshold concentration, which is the concentration after which the conductivity increases many orders of magnitude with very little increase in the filler amount for PVC/HAF composites depends upon the measuring temperature, whether it is below or above the glass transition of the polymer matrix. Stress strain plot, hardness, and other mechanical properties such as stress at yield, stress at rupture, strain at yield, strain at rupture and Young's Modulus were investigated at room temperature. This investigation led to the conclusion that all the mechanical properties are improved by increasing HAF content and reaches its optimum values at about 30 p hr HAF loading. On the other hand. The addition of HAF black by concentration up to 40 p hr increase the electrical conductivity to be in the order of 10 -10 Sm -1 at 30 degree C and 10 -9 Sm -1 at 120 degree C which highly recommend such composites to be used in anti static applications as the

  11. Extended Stability of Epinephrine Hydrochloride Injection in Polyvinyl Chloride Bags Stored in Amber Ultraviolet Light-Blocking Bags.

    Science.gov (United States)

    Van Matre, Edward T; Ho, Kang C; Lyda, Clark; Fullmer, Beth A; Oldland, Alan R; Kiser, Tyree H

    2017-09-01

    Objective: The objective of this study was to evaluate the stability of epinephrine hydrochloride in 0.9% sodium chloride in polyvinyl chloride bags for up to 60 days. Methods: Dilutions of epinephrine hydrochloride to concentrations of 16 and 64 µg/mL were performed under aseptic conditions. The bags were then placed into ultraviolet light-blocking bags and stored at room temperature (23°C-25°C) or under refrigeration (3°C-5°C). Three samples of each preparation and storage environment were analyzed on days 0, 30, 45, and 60. Physical stability was performed by visual examination. The pH was assessed at baseline and upon final degradation evaluation. Sterility of the samples was not assessed. Chemical stability of epinephrine hydrochloride was evaluated using high-performance liquid chromatography. To determine the stability-indicating nature of the assay, degradation 12 months following preparation was evaluated. Samples were considered stable if there was less than 10% degradation of the initial concentration. Results: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection and stored in amber ultraviolet light-blocking bags was physically stable throughout the study. No precipitation was observed. At days 30 and 45, all bags had less than 10% degradation. At day 60, all refrigerated bags had less than 10% degradation. Overall, the mean concentration of all measurements demonstrated less than 10% degradation at 60 days at room temperature and under refrigeration. Conclusion: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection in polyvinyl chloride bags stored in amber ultraviolet light-blocking bags was stable up to 45 days at room temperature and up to 60 days under refrigeration.

  12. Effect of Silane Coupling Agent on the Creep Behavior and Mechanical Properties of Carbon Fibers/Acrylonitrile Butadiene Rubber Composites.

    Science.gov (United States)

    Choi, Woong-Ki; Park, Gil-Young; Kim, Byoung-Shuk; Seo, Min-Kang

    2018-09-01

    In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.

  13. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition

  14. Solid-phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier.

    Science.gov (United States)

    Kagaya, Shigehiro; Cattrall, Robert W; Kolev, Spas D

    2011-01-01

    The extraction of cobalt(II) from solutions containing various concentrations of lithium chloride, hydrochloric acid, and mixtures of lithium chloride plus hydrochloric acid is reported using a poly(vinyl chloride) (PVC)-based polymer inclusion membrane (PIM) containing 40% (w/w) Aliquat 336 as a carrier. The extraction from lithium chloride solutions and mixtures with hydrochloric acid is shown to be more effective than extraction from hydrochloric acid solutions alone. The solution concentrations giving the highest amounts of extraction are 7 mol L(-1) for lithium chloride and 8 mol L(-1) lithium chloride plus 1 mol L(-1) hydrochloric acid for mixed solutions. Cobalt(II) is easily stripped from the membrane using deionized water. The cobalt(II) species extracted into the membrane are CoCl(4)(2-) for lithium chloride solutions and HCoCl(4)(-) for mixed solutions; these form ion-pairs with Aliquat 336. It is also shown that both lithium chloride and hydrochloric acid are extracted by the PIM and suppress the extraction of cobalt(II) by forming ion-pairs in the membrane (i.e. R(3)MeN(+)·HCl(2)(-) for hydrochloric acid and R(3)MeN(+)·LiCl(2)(-) for lithium chloride). 2011 © The Japan Society for Analytical Chemistry

  15. FTIR spectra and mechanical strength analysis of some selected rubber derivatives

    Science.gov (United States)

    Gunasekaran, S.; Natarajan, R. K.; Kala, A.

    2007-10-01

    Rubber materials have wide range of commercial applications such as, infant diapers, famine hygiene products, drug delivery devices and incontinency products such as rubber tubes, tyres, etc. In the present work, studies on mechanical properties of some selected rubber materials viz., natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM) have been carried out in three states viz., raw, vulcanized and reinforced. To enhance the quality of rubber elastomers, an attempt is made to prepare new elastomers called polyblends. In the present study an attempt is made to blend NR with NBR and with EPDM. We here report, a novel approach for the evaluation of various physico-mechanical properties such as mechanical strength, tensile strength, elongation and hardness. The method is simple, direct and fast and involves infrared spectral measurements for the evaluation of these properties. With the applications of modern infrared spectroscopy, the mechanical strength of these rubber materials have been analyzed by calculating the internal standards among the methyl and methylene group vibrational frequencies obtained from FTIR spectroscopy. Also the tensile strength measurements carried out by universal testing machine. The results pertaining physico-mechanical properties of the rubber derivatives undertaken in the present study obtained by IR-based method are in good agreement with data resulted from the standard methods.

  16. The effect of plasticiser on the properties of radiation crosslinked poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Jamaliah Shariff; Roslin Abu Bakar

    1996-01-01

    A study on the effects of plasticizers in the crosslinking of poly(vinyl chloride), PVC, by an electron beam irradiation was carried out. Different types of plasticizers were used and these, with other additives, were blended with PVC in a Brabender mixer. The blended compound was the irradiated with high energy electron beam. Subsequent analysis of its properties showed that the efficiency of crosslinking was better in the presence of the adipate and trimellitate. The tensile and elongation properties were acceptable. The ageing properties of the compounds with adipate and trimellitate-type plasticizers showed encouraging results

  17. High Performance Graphene Oxide Based Rubber Composites

    Science.gov (United States)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  18. Synthesis and application of a novel environmental C26 diglycidyl ester plasticizer based on castor oil for poly(vinyl chloride)

    Science.gov (United States)

    In this work, for the first time, a castor oil derived diglycidyl ester plasticizer (C26-DGE) was prepared and incorporated into poly(vinyl chloride) (PVC). The chemical structure of the product was characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (...

  19. [Migrants from disposable gloves and residual acrylonitrile].

    Science.gov (United States)

    Wakui, C; Kawamura, Y; Maitani, T

    2001-10-01

    Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves.

  20. Evaluation of rubber composites as shielding materials against ionizing radiation

    International Nuclear Information System (INIS)

    Atia, M.K.

    2010-01-01

    Styrene-butadiene rubber/lead oxide composites were prepared as γ-radiation shields.The composites were prepared with different concentration of red lead oxide (Pb 3 O 4 ) .The assessment of the linear attenuation coefficient of the SBR/lead oxide composites for γ -rays from 137 Cs 137 γ-radiation point source was studied . The factors affecting the mechanical properties and shielding capacity of the composites were also studied. These factors include the lead oxide concentration, the type of monomers added and the irradiation dose. The styrene-butadiene rubber/lead oxide composites can attain up to about 43% of the shielding capacity of pure lead. The incorporation of high concentrations of lead oxide and the effect of accumulative irradiation doses up to 3000 kGy on the physico-mechanical properties of the composites were studied . These led to hardening of the SBR rubber/lead oxide composites.

  1. Study of the mechanism of radiation-chemical transformations in rubber-resinous materials

    International Nuclear Information System (INIS)

    Sharova, L.B.; Astakhova, L.G. Trufanova, N.D.; Persinen, A.A.; Vasil'ev, I.A.

    1993-01-01

    Materials based on butadiene-nitrile rubbers reinforced by phenol-formaldehyde resins presently find wide application as reliable heat-insulating coatings for various metallic constructions and are utilized under exposure to ionizing radiation. In this connection, when estimating the assured lifetime of heat-insulating coatings, it is necessary to take into account the character and degree of their radiation-chemical transformations. The aim of the present work was to study the radiation-chemical transformations of materials based on a composite of butadiene-nitrile rubber and phenol-formaldehyde resin. The investigations were carried out on model materials S-O, S-25, S-100, S-130, and S-150 based on the SKN-40M rubber with a varied content of SF-010A brand phenol-formaldehyde resin, the content of which in parts by weight per 100 parts by weight of rubber is indicated in the specifications of the materials. The possible directions of the radiation-chemical transformations in the rubber-resinous vulcanizates were studied by the method of disrupted total internal reflection (MDTIR) IR spectroscopy

  2. Enhancement of Compatibility between Ultrahigh-Molecular-Weight Polyethylene Particles and Butadiene.Nitrile Rubber Matrix with Nanoscale Ceramic Particles and Characterization of Evolving Layer

    International Nuclear Information System (INIS)

    Shadrinov, Nikolay V.; Sokolova, Marina D.; Cho, Jinho; Okhlopkova, A. A.; Lee, Jungkeun; Jeong, Daeyong

    2013-01-01

    This article examines the modification of surface properties of ultrahigh-molecular-weight polyethylene (UHMWPE) with nanoscale ceramic particles to fabricate an improved composite with butadiene.nitrile rubber (BNR). Adhesion force data showed that ceramic zeolite particles on the surface of UHMWPE modulated the surface state of the polymer and increased its compatibility with BNR. Atomic force microscopy phase images showed that UHMWPE made up the microphase around the zeolite particles and formed the evolving layer with a complex interface. The complex interface resulted in improvements in the mechanical properties of the composite, especially its low-temperature resistance coefficients, thereby improving its performance in low-temperature applications

  3. Polyvinyl Chloride / Attapulgite / Micro-crystalline Cellulose (MCC Composites Preparation and Analysis of the Role of MCC as a Compatibilizer

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-09-01

    Full Text Available To improve the performance of polyvinyl chloride (PVC, composites incorporating polyvinyl chloride (PVC, attapulgite nanoparticles (ANPs, and microcrystalline cellulose (MCC were successfully prepared. The composites had higher vicat softening temperatures (VSTs and the MCC had a great influence on mechanical properties of the composites. When MCC was added from 0 to 5 per hundred parts of PVC (phr, the mechanical properties of the composites increased, but the mechanical properties of the composites decreased when the MCC was more than 5 phr. The tensile breaking stress, tensile strength, and impact strength were maximized with increases of 19.76 N (4.1%, 29.66 MPa (15.5%, and 13.8 MPa (7% when 5 phr MCC was added. Infrared spectral analysis indicated that MCC and ANPs were present in the composites. Scanning electron microscopy showed that the composites system was distributed into two phases, which indicated that MCC in composites was dissolved in the PVC matrix, and some of MCC coated the surface of ANPs as a compatibilizer. Overall, this study provided a promising method for PVC modification to improve its performance.

  4. Predicting the solubility of gases in Nitrile Butadiene Rubber in extreme conditions using molecular simulation

    Science.gov (United States)

    Khawaja, Musab; Molinari, Nicola; Sutton, Adrian; Mostofi, Arash

    In the oil and gas industry, elastomer seals play an important role in protecting sensitive monitoring equipment from contamination by gases - a problem that is exacerbated by the high pressures and temperatures found down-hole. The ability to predict and prevent such permeative failure has proved elusive to-date. Nitrile butadiene rubber (NBR) is a common choice of elastomer for seals due to its resistance to heat and fuels. In the conditions found in the well it readily absorbs small molecular weight gases. How this behaviour changes quantitatively for different gases as a function of temperature and pressure is not well-understood. In this work a series of fully atomistic simulations are performed to understand the effect of extreme conditions on gas solubility in NBR. Widom particle insertion is used to compute solubilities. The importance of sampling and allowing structural relaxation upon compression are highlighted, and qualitatively reasonable trends reproduced. Finally, while at STP it has previously been shown that the solubility of CO2 is higher than that of He in NBR, we observe that under the right circumstances it is possible to reverse this trend.

  5. Plane-interface-induced lignin-based nanosheets and its reinforcing effect on styrene-butadiene rubber

    Directory of Open Access Journals (Sweden)

    C. Jiang

    2014-09-01

    Full Text Available Lignin was viewed as a spherical microgel in aqueous alkali. While spread out in a monolayer or adsorbed on a surface, lignin was made up of flexible, disk-like molecules with approximately the same thickness of 2 nm. According to this principle, we employed the lamina of montmorillonite (MMT as a plane template to anchor cationic lignin (CL on its two sides, resulting in the formation of CL-MMT hybrid materials (CLM. The isotherm adsorption behavior and structure characteristics of CLM were studied. The results showed that CLM was individually dispersed nanosheets with a thickness of about 5 nm when the mass ratio of CL to MMT is more than 2:1 and prepared at acidic or neutral pH. Compared to the cocoagulation of lignin and styrene-butadiene rubber (SBR, CLM obviously accelerated the coagulation rate, due to the reduction of surface activity of CL restricted by MMT. The nanoscale dispersion of CLM in SBR matrix significantly improved the tensile strength of CLM/SBR nanocomposites to 14.1 MPa by adding only 10 phr CLM and cardanol glycidyl ether (CGE as compatibilizer. Dynamic mechanical analysis (DMA showed that the glass transition temperature of SBR/CLM nanocomposites decreased with increasing CLM loading. Correspondingly, a special interfacial structure was proposed.

  6. Study of radiation induced structural changes in nitrile rubber

    International Nuclear Information System (INIS)

    Cardona, F.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Copolymers of butadiene (BD) and acrylonitrile (AN) (NBR rubber), have become important commercial material. NBR rubbers are part of a larger classification of products often referred to as special-purpose rubbers. Oil resistance is the most important property of nitrile rubbers, and refer to the ability of the vulcanised product to retain its original physical properties such as modulus, tensile strength, abrasion resistance and dimensions, while in contact with oils and fuels. Despite these reported advantages very few studies have been conducted on the radiation yields and structural changes in nitrile rubbers during exposure to high energy radiation. In this study we are investigating the stability against gamma and UV radiation, to different doses in vacuum, of butadiene, acrylonitrile and NBR copolymers with different composition ratio BD/AN. The mechanism of radiation induced structural changes is being investigated using experimental techniques such as ESR, NMR (Solid-state), FT-IR, RAMAN and UV spectroscopy. Also is being investigated the effect of irradiation on the mechanical properties of stressed and unstressed samples by TGA, DSC, DMA, Instron and Creep Test measurements. So far the main effect have been a marked radiation-induced loss of unsaturation in the butadiene units, cis to trans isomerization and formation of crosslink structures (intermolecular and intramolecular). One of the main challenges in the studies of NBR polymers is to observe directly the crosslinks produces by the radiation induced chemical reactions. IR spectroscopy is unsuitable because of the low molar absorbity of the peaks related to intermolecular crosslinking and the overlapping of the peaks (1630-1670 cm-1) related to intramolecular crosslinking (cyclization), with conjugated and nonconjugated (-C=C-; -C=N-) double bonds. A. K. Whittaker has shown that crosslink structures in PBD can be detected and measured directly using solid-state 13 C NMR. This technique

  7. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Department of Physics, Lampung University, Bandar Lampung (Indonesia); Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Triyana, Kuwat, E-mail: triyana@ugm.ac.id; Harsojo,, E-mail: harsojougm@ugm.ac.id; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia)

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  8. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  9. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    International Nuclear Information System (INIS)

    Junaidi; Yunus, Muhammad; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  10. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    Science.gov (United States)

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  11. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.

    Science.gov (United States)

    Wang, Meng-Meng; Zhang, Cong-Cong; Zhang, Fu-Shen

    2017-09-01

    In the present study, cathode materials (C/LiCoO 2 ) of spent lithium-ion batteries (LIBs) and waste polyvinyl chloride (PVC) were co-processed via an innovative mechanochemical method, i.e. LiCoO 2 /PVC/Fe was co-grinded followed by water-leaching. This procedure generated recoverable LiCl from Li by the dechlorination of PVC and also generated magnetic CoFe 4 O 6 from Co. The effects of different additives (e.g. alkali metals, non-metal oxides, and zero-valent metals) on (i) the conversion rates of Li and Co and (ii) the dechlorination rate of PVC were investigated, and the reaction mechanisms were explored. It was found that the chlorine atoms in PVC were mechanochemically transformed into chloride ions that bound to the Li in LiCoO 2 to form LiCl. This resulted in reorganization of the Co and Fe crystals to form the magnetic material CoFe 4 O 6 . This study provides a more environmentally-friendly, economical, and straightforward approach for the recycling of spent LIBs and waste PVC compared to traditional processes. Copyright © 2017. Published by Elsevier Ltd.

  12. Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride

    International Nuclear Information System (INIS)

    Park, Kye-Sung; Sato, Wakao; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2009-01-01

    Indium (In) was recovered from indium oxide (In 2 O 3 ) and liquid crystal display (LCD) powder via a chloride volatilization process using polyvinyl chloride (PVC) as the chlorination agent. The recovery of In from In 2 O 3 increased with an increasing molar Cl/In ratio in N 2 and air atmospheres. The degree of In recovery at a Cl/In molar ratio of 11 and a temperature of 350 o C was 98.7% and 96.6%, for N 2 and air, respectively. The In recovery also increased notably with increasing temperature in N 2 atmosphere. In both atmospheres, the In recovery increased with an increasing degradation temperature of PVC. However, the In recovery from LCD powder was lower than that from In 2 O 3 . For LCD powder, the degree of In recovery at a Cl/In molar ratio of 11 and a temperature of 350 o C was 66.7% and 54.1%, for N 2 and air, respectively.

  13. Pemanfaatan Silika Abu Sekam Padi sebagai Bahan Pengisi Rubber Membrane Filter Press untuk Memisahkan Minyak Inti Sawit

    OpenAIRE

    Nasruddin

    2012-01-01

    This research was aimed to obtain rubber membrane filter press (RMFP) from natural rubber (NR) as well as synthetic rubber (chloroprene rubber and nytrike butadiene rubber). The research method was done my vulcanizing natural rubber, synthetic rubber, and filler to shape RMFP. Research formulation was done with 8 units of experiments using variations of mixers that have been pre-determined. The examination to the RMFP was done with ASTM test methods that cover parameters such as viscometer mo...

  14. Quantitative analysis of styrene butadiene copolymers using S-SIMS and LA-FTICRMS

    International Nuclear Information System (INIS)

    Ruch, D.; Boes, C.; Zimmer, R.; Muller, J.F.; Migeon, H.-N.

    2003-01-01

    Styrene butadiene copolymers (SBR) have been analyzed by static secondary ion mass spectrometry (S-SIMS) and laser ablation Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS) to obtain quantitative information based on specific peaks knowing that the complication of this system is that there are no characteristic SIMS peaks unique to each styrene and butadiene monomer. So, to overcome this problem, a silver deposition has been applied into polystyrene (PS), butadiene rubber (BR) and SBR. By this way, new secondary ions are detected in particular silver cationized butadiene and styrene monomers at m/z 161/163 and 211/213, respectively. The LA-FTICRMS experiments do not require pre-treatment. At high laser power density, UV photons (193, 266 and 355 nm) allow to detect directly the styrene and butadiene ions at m/z 104 and 54, respectively. Using these SIMS and LA-FTICRMS peaks, it is possible to obtain quantitative results. However, the silver coating in the SIMS experiment seems to have a great influence on the obtention of quantitative information. For LA-FTICRMS experiments, the best results seem to be obtained at the 355 nm wavelength

  15. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature.

    Science.gov (United States)

    Halász, István Zoltán; Bárány, Tamás

    2016-08-24

    In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  16. Utilization of Agrowaste Polymers in PVC/NBR Alloys: Tensile, Thermal, and Morphological Properties

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-01-01

    Full Text Available Poly(vinyl chloride/nitrile butadiene rubber (PVC/NBR alloys were melt-mixed using a Brabender Plasticorder at 180∘C and 50 rpm rotor speed. Alloys obtained by melt mixing from PVC and NBR were formulated with wood-flour- (WF- based olive residue, a natural byproduct from olive oil extraction industry. WF was progressively increased from 0 to 30 phr. The effects of WF loadings on the tensile properties of the fabricated samples were inspected. The torque rheometry, which is an indirect indication of the melt strength, is reported. The pattern of water uptake for the composites was checked as a function WF loading. The fracture mode and the quality of bonding of the alloy with and without filler are studied using electron scanning microscope (SEM.

  17. Performance characteristics of rubber seed oil biodiesel

    Science.gov (United States)

    Liu, P.; Qin, M.; Wu, J.; Chen, B. S.

    2018-01-01

    The lubricity, ignition quality, oxidative stability, low temperature flow property and elastomeric compatibility of rubber seed oil biodiesel(RSM) were evaluated and compared with conventional petro-diesel. The results indicated that RSM and its blends with petro-diesel possessed outstanding lubricity manifested by sharp decrease in wear scar diameters in the high-frequency reciprocating rig(HFRR) testing. They also provided acceptable flammability and cold flow property,although the cetane numbers (CN) and cold filter plugging points(CFPP) of biodiesel blends slightly decreased with increasing contents of petro-diesel. However, RSM proved to be very susceptible to oxidation at elevated temperatures during prolonged oxidation durations, characterized by increased peroxide values, viscosity, acid values and isooctane insolubles. The oxidation stability of RSM could be significantly improved by antioxidants such as BD100, a phenol antioxidant produced by Ciba corporation. Furthermore, RSM provided poor compatibility with some elastomeric rubbers such as polyacrylate, nitrile-butadiene and chloroprene, but was well compatible with the hydrogenated nitrile-butadiene elastomer.

  18. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  19. The effect of γ-irradiation on acrylonitrile–butadiene rubber NBR seal materials with different antioxidants

    International Nuclear Information System (INIS)

    Ahmed, Farida S.; Shafy, Mahmoud; Abd El-megeed, A.A.; Hegazi, Elham M.

    2012-01-01

    Seals made of acrylonitrile–butadiene rubber (NBR) are one of the classified seals used in nuclear facilities. But at high irradiation doses the physical and mechanical properties of NBR are adversely affected due to the degradation induced by radiation and hence affect the sealing performance reducing their service life. In order to improve the NBR sealing performance, antioxidants can be added to the NBR compounds. N-N-substituted p-phenylene diamines (PPDs) antioxidants are selected to improve the resistance of NBR seals against gamma irradiation up to 5 MGy. The effect of addition of different PPDs on the mechanical and physical properties of the NBR seals is investigated. Three types of antioxidants which are N-isopropyl-N′-phenyl-p-phenylene diamine (IPPD), phenyl B-naphthylamine (PBN), and N-(1,3-dimethylbutyl)-N-phenyl-p-phenylene diamine (6PPD) are chosen. The physical and mechanical properties of these NBR compounds were evaluated by measuring crosslinking density, the tensile strength, and the percentage of elongation as well as hardness and abrasion resistance. The results of the present study show that the addition of 6PPD as a candidate antioxidant to NBR seal material gives the best physical and mechanical performance compared to the other studied antioxidants.

  20. Positron annihilation studies on proton irradiated nitrile rubber

    International Nuclear Information System (INIS)

    Ravi Chandran, T.S.G.; Lobo, Blaise; Ranganath, M.R.; Gopal, S.; Sreeramalu, V.

    1996-01-01

    NBR (Nitrile Butadiene Rubber) was irradiated with 4 MeV proton beam from a variable energy cyclotron (VEC) at VEC Centre, Calcutta, to a flux of 10 16 ions/cm 2 , in a vacuum of 10 -9 Torr and was studied through positron lifetime measurements

  1. Synergistic effect of plasma-modified halloysite nanotubes and carbon black in natural rubber-butadiene rubber blend

    NARCIS (Netherlands)

    Poikelispaa, Minna; Das, Amit; Dierkes, Wilma K.; Vuorinen, Jyrki

    2013-01-01

    Halloysite nanotubes (HNTs) were investigated concerning their suitability for rubber reinforcement. As they have geometrical similarity with carbon nanotubes, they were expected to impart a significant reinforcement effect on the rubber compounds but the dispersion of the nanofillers is difficult.

  2. Degradation of poly(vinyl chloride) films by X-rays radiation

    International Nuclear Information System (INIS)

    Sbampato, M.E.; Kawano, Y.

    1984-01-01

    The degradation of pure poly(vinyl chloride) (PVC) films has been studied by X-rays radiation in vacuum. The films are transparent and become yellow with the exposure of radiation and this colour is enhanced with the time of irradiation. The infrared, ultraviolet and visible spectra changed in the irradiated material. The IR spectra show changes in itensities and band shifting, particularly in the region of C-Cl stretching vibrations indicating the occurrence of dehydrochlorination and a change in the conformation of the degraded PVC. The ultraviolet and visible spectra of irradiated films show a strong absorption band at 240 nm and many shoulders which are associated to dyenes, carbonyl and polyenes with few double bonds formed. The shoulder numbers increase in the spectra of samples kept for three months. This effect indicates that with irradiation, HCl is evolved resulting in the formation of polyenyl radicals, which propagate after irradiation. At the same time, should occur the reaction of these radicals with the atmospheric oxygen with formation of C=0 bonds. (Author) [pt

  3. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing; Sato, Riku [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2017-08-01

    Highlights: • We modify PA6 surface using silane coupling agent layer of APTMS to link HNBR. • APTMS greatly improved heat resistance of PA6 from 153 °C up to 325 °C. • A PA6/HNBR joined body was obtained, and it exhibits high adhesion strength with cohesive failure. • Chemical structures of the adhesion interfaces of PA6/HNBR were confirmed by Nano-IR. - Abstract: A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  4. Preparation and characterization of high performance NBR/cobalt (II) chloride coordination composites

    Science.gov (United States)

    Shang, Peng; Shao, Chengli; Li, Qiqing; Wu, Chifei

    2018-02-01

    Acrylonitrile-butadiene rubber (NBR) composites filled with Cobalt (II) Chloride (CoCl2) particles were prepared by a solvent dispersion method. Acetone was selected as solvent for NBR and CoCl2. To directly enhance the interaction between NBR and CoCl2, a coordination reaction was generated by hot pressing at 200 °C. Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and x-ray photoelectron spectroscopy (XPS) were employed to investigate the coordination reaction. Results showed that the coordination reaction occurred between the nitrile groups (-CN) of NBR and cobalt ions (Co2+) of CoCl2. Compared with the properties of pure NBR, the tensile strength of NBR/CoCl2 composites filled with 10 parts per hundreds of rubber (phr) CoCl2 increased 2200%. Scanning electron microscopy (SEM) indicated that the CoCl2 particles were dispersed in the NBR matrix homogeneously. The indistinguishable interface between CoCl2 particles and NBR matrix indicated good compatibility. Additionally, thermogravimetric analysis (TGA) showed that coordination reaction improved heat resistance of NBR matrix.

  5. Magnetron reactively sputtered Ti-DLC coatings on HNBR rubber : The influence of substrate bias

    NARCIS (Netherlands)

    Bui, X.L.; Pei, Y.T.; Hosson, J.Th.M. De

    2008-01-01

    In this study, Ti-containing diamond-like carbon (Ti-DLC) coatings have been deposited on HNBR (hydrogenated nitrile butadiene) rubber and also on Si wafer as reference via unbalanced magnetroli reactive sputtering from a Ti target in C2H2/Ar plasma. The deposition rates of coatings on rubber and Si

  6. Understanding the viscoelastic behavior of silica filled rubber

    NARCIS (Netherlands)

    de Castro, J.G.

    2014-01-01

    This thesis focuses on the understanding the viscoelastic behavior of silica filled Nitrile Butadiene Rubber (NBR) using different sizes/surface areas in three different regions of deformation that will be developed in 3 chapters. The characterization of the samples used in this work is described in

  7. Tribological behavior of W-DLC coated rubber seals

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Zhou, X.B.; Hosson, J.Th.M. De

    2008-01-01

    Tungsten-containing diamond-like carbon (W-DLC) coatings have been deposited on FKM (fluorocarbon) and HNBR (hydrogenated nitrile butadiene) rubbers via unbalanced magnetron reactive sputtering from a WC target in a C2H2/Ar plasma. The surface morphology and fracture cross sections of uncoated and

  8. Case report of occupational asthma induced by polyvinyl chloride and nickel.

    Science.gov (United States)

    Song, Ga-Won; Ban, Ga-Young; Nam, Young-Hee; Park, Hae-Sim; Ye, Young-Min

    2013-10-01

    Polyvinyl chloride (PVC) is a widely used chemical for production of plastics. However occupational asthma (OA) caused by PVC has been reported only rarely. We report a 34-yr-old male wallpaper factory worker with OA due to PVC and nickel (Ni) whose job was mixing PVC with plasticizers. He visited the emergency room due to an asthma attack with moderate airflow obstruction and markedly increased sputum eosinophil numbers. A methacholine challenge test was positive (PC20 2.5 mg/mL). Bronchoprovocation tests with both PVC and Ni showed early and late asthmatic responses, respectively. Moreover, the fractional concentration of exhaled nitric oxide (FeNO) was increased after challenge with PVC. To our knowledge, this is the first case of OA in Korea induced by exposure to both PVC and Ni. We suggest that eosinophilic inflammation may be involved in the pathogenesis of PVC-induced OA and that FeNO monitoring can be used for its diagnosis.

  9. Improving the Healthiness of Sustainable Construction: Example of Polyvinyl Chloride (PVC

    Directory of Open Access Journals (Sweden)

    Emina Kristina Petrović

    2018-02-01

    Full Text Available With the increasing emphasis on sustainable construction, it has become important to better understand the impacts of common materials. This is especially paramount with the introduction of the United Nations (UN Sustainable Development Goals (SDGs which call for more comprehensive evaluations, adding many aspects of social consideration to the issues of environmental sustainability, including human health. Polyvinyl chloride (PVC/vinyl can be seen as a material with potential for significant adverse effects on a multiplicity of levels, and the construction industry is its single most significant consumer. This article presents a transdisciplinary review of adverse health impacts associated with PVC showing a number of issues: some that could be eliminated through design, but also some which appear inherent to the material itself and therefore unavoidable. The totality of issues revealed in relation to PVC presents a compelling case for a call for complete elimination of use of this material in sustainable construction.

  10. Mechanical properties of styrene-butadiene rubber cured by ionizing radiation in the presence of sulfur and polyfunctional agent

    International Nuclear Information System (INIS)

    Basfar, A.A.; Al-Harithy, F.A.; Abdel-Aziz, M.M.

    1997-01-01

    The mechanical Properties of Styrene-Butadiene Rubber (SBR) samples cured by a combination of sulfur and ionizing radiation in the presence of polyfunctional crosslinking agent were studied. SBR formulations containing various concentrations of trimethyl propane triacrylate (TMPTA) were irradiated at absorbed doses in the range of 35-200 kGy. The influence of TMPTA on the mechanical properties, solubility % and swelling % were investigated. The various formulations were compared at the same crosslink density as determined by 200% modulus (i.e. tensile strength at 200% elongation). The increase in TMPTA concentration has led to the decrease in the absorbed dose required to achieve full-cure conditions. Another set of SBR formulations containing partial levels of sulfur in the presence of the same TMPTA concentrations as the earlier formulations were irradiated at the same absorbed dose range. The presence of sulfur has further decreased the absorbed dose required to achieve full-cure conditions. Thermal stability of the two sets of SBR formulations as studied by Thermogravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC) remained unchanged over the entire range of absorbed dose

  11. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    Directory of Open Access Journals (Sweden)

    István Zoltán Halász

    2016-08-01

    Full Text Available In this work, the effect of mixing temperature (Tmix on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR and polar (acrylonitrile butadiene rubber, NBR rubbers were modified by CBT (20 phr for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM. CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state, which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5–10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  12. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-04-20

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.

  13. Latex stage blending of multiwalled carbon nanotube in carboxylated acrylonitrile butadiene rubber: Mechanical and electrical properties

    International Nuclear Information System (INIS)

    Preetha Nair, K.; Thomas, Paulbert; Joseph, Rani

    2012-01-01

    Highlights: ► MWCNT can act as a reinforcing filler in XNBR at very low concentration. ► SEM and XRD analysis confirm uniform distribution of nanotube in the matrix. ► Mechanical properties showed considerable improvement. ► Thermal stability of the composite is marginally improved. -- Abstract: Multiwalled carbon nanotube (MWCNT) was dispersed in sodium dodecyl benzene sulphonate (SDBS) by sonication. The dispersed MWCNT (0.05–0.3 gm) was incorporated in carboxylated acrylonitrile butadiene rubber (XNBR) latex. Mechanical, electrical and thermal properties of these composites were studied. Mechanical properties of the composites increased up to an optimum concentration and then decreased. Dielectric properties of the composites were studied in the S band (frequency range 2–4 GHz) by Cavity Perturbation method. Direct current (DC) electrical conductivity shows a percolation behaviour and conductivity increased by about 10 orders of magnitude. Thermal studies were conducted using Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). As expected with the very small concentration of multiwalled carbon nanotube, glass transition temperature (T g ) and thermal stability of the composite showed a marginal increase. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscope (SEM) analysis.

  14. The cross linking of EPDM and NBR rubber

    Directory of Open Access Journals (Sweden)

    Samardžija-Jovanović Suzana

    2005-01-01

    Full Text Available In the process of macromolecule cross linking, the choice of type and quantity of the components and the experimental conditions are important to obtain the new cross linked materials with better mechanical and chemical characteristics. The cross linking method depends on the rubber type and structure. Intermolecular cross linking results in the formation elastomer network. The basis of the cross linking process, between ethylene propylene diene rubber (EPDM and acrylonitrile butadiene rubber (NBR, is a chemical reaction. Fillers and other additives are present in different mass ratios in the material. The exploitation properties of the cross linked materials depend on the quantity of additive in the cross linked systems.

  15. Facile Preparation of Chloride-Conducting Membranes : First Step towards a Room-Temperature Solid-State Chloride-Ion Battery

    NARCIS (Netherlands)

    Gschwind, Fabienne; Steinle, Dominik; Sandbeck, Daniel; Schmidt, Celine; von Hauff, Elizabeth

    2016-01-01

    Three types of chloride-conducting membranes based on polyvinyl chloride, commercial gelatin, and polyvinyldifluoride-hexafluoropolymer are introduced in this report. The polymers are mixed with chloride-containing salts, such as tetrabutylammonium chloride, and cast to form membranes. We studied

  16. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride).

    Science.gov (United States)

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2013-01-02

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively.

  17. Reinforcing effect of plasma modified halloysite nanotubes in a carbon black filled natural rubber-butadien rubber matrix

    NARCIS (Netherlands)

    Poikelispaa, Minna; Das, Amit; Dierkes, Wilma K.; Vuorinen, Jyrki

    2011-01-01

    Rubber composites are generally produced by the direct incorporation of fillers like carbon black and/or silica into the rubber matrix. The incorporation of different types of nanofillers is the subject of recent research with the aim of preparing composites with special compositions and properties.

  18. Mechanical properties of irradiated rubber-blends

    International Nuclear Information System (INIS)

    Nasr, G.M.; Madani, M.

    2005-01-01

    A study has been made on blend ratios of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) that are loaded with general purpose furnace (GPE) carbon black and irradiated at different gamma radiation doses. It was fount that the mechanical properties of such blend are highly affected by γ- irradiation dose and the composition ratios of its constituents. The elongation at break for blends was found to increase slightly with increasing NBR loafing which is mainly due to the stiffness of blending matrix formation between NR and GPF carbon black particles. The hysteresis loss, extension ratio and shape factor have been calculated for the different un-irradiated and irradiated samples

  19. Radiation vulcanization of natural rubber latex sensitized with commercial gases

    International Nuclear Information System (INIS)

    Chirinos, H.; Lugao, A.

    2002-01-01

    The industrial activities using natural rubber latex are fully compatible with rural areas in Amazon and other places in Brazil, as well as in other tropical countries. However the classical sulfur vulcanization presents many occupational problems for the workers in rural areas. Radiation vulcanization of natural rubber latex is a much more friendly process as sulfur compounds are not needed for crosslinking, although chemicals as acrylate monomers, particularly multifunctional acrylates are still used as sensitizers for radiation processes. Two commercial gases, acetylene and butadiene, were selected as sensitizers for the radiation vulcanization of natural rubber latex instead of acrylates. These gases accelerate the crosslinking rates of the cure process and lower the radiation dose required to achieve vulcanization of natural rubber latex and improve the mechanical properties to reduce the tackiness of rubber goods. (author)

  20. Radiation vulcanization of natural rubber latex sensitized with commercial gases

    Energy Technology Data Exchange (ETDEWEB)

    Chirinos, H.; Lugao, A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    The industrial activities using natural rubber latex are fully compatible with rural areas in Amazon and other places in Brazil, as well as in other tropical countries. However the classical sulfur vulcanization presents many occupational problems for the workers in rural areas. Radiation vulcanization of natural rubber latex is a much more friendly process as sulfur compounds are not needed for crosslinking, although chemicals as acrylate monomers, particularly multifunctional acrylates are still used as sensitizers for radiation processes. Two commercial gases, acetylene and butadiene, were selected as sensitizers for the radiation vulcanization of natural rubber latex instead of acrylates. These gases accelerate the crosslinking rates of the cure process and lower the radiation dose required to achieve vulcanization of natural rubber latex and improve the mechanical properties to reduce the tackiness of rubber goods. (author)

  1. Influence of granular strontium chloride as additives on some ...

    Indian Academy of Sciences (India)

    Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol. A B Elaydy M Hafez ... Keywords. Polyvinyl-alcohol (PVA); granular strontium chloride, SrCl2; a.c. electrical conductivity; dielectric constant; dielectric loss; Young's modulus; creep relaxation curve.

  2. Zinc chelates as new activators for sulphur vulcanization of acrylonitrile-butadiene elastomer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available The goal of this work was to apply several zinc chelates as activators for sulphur vulcanization of acrylonitrilebutadiene elastomer (NBR, in order to find alternatives for the conventionally used zinc oxide. In this article, we discuss the effects of different zinc complexes on the cure characteristics, crosslinks distribution in the elastomer network and mechanical properties of acrylonitrile-butadiene rubber. Zinc chelates seem to be good substitutes for zinc oxide as activators for sulphur vulcanization of NBR rubber, without detrimental effects on the crosslinking process and physical properties of the obtained vulcanizates. Moreover, application of zinc complexes allows to reduce the amount of zinc ions in rubber compounds by 40% compared to conventionally crosslinked vulcanizates with zinc oxide. It is a very important ecological goal since zinc oxide is classified as toxic to aquatic species and its amount in rubber products must be reduced below 2.5% at least. From a technological point of view it is a very important challenge.

  3. Application of gamma irradiation for incorporation of rubber powder in the formulations of acrylonitrile-butadiene rubber (NBR)

    International Nuclear Information System (INIS)

    Kiyan, Ludmila Y.P.; Parra, Duclerc Fernandes

    2013-01-01

    Full text: Polymeric materials do not decompose easily, disposal of waste polymers is a major environmental problem of global character. Recycling is an economical alternative and environmentally recommended for polymers consumed and discarded by society. As regards the rubber in object, its natural decomposition is much slower due to their highly crosslinked, in three-dimensional networks, structures which makes it an infusible and insoluble material. Moreover, these three dimensional structures entails several problems for their recovery and reprocessing. The aim of this paper was to study the behavior of NBR rubber recycle. It was used rubber powder from industry. The powder was irradiated in master-batch composition and used directly in classical formulations for rubber vulcanization. The master-batch processed was irradiated at doses of 50, 100 and 150kGy in 60 Co source at 5 kGy s -1 rate, at room temperature. Gamma radiation created active sites during devulcanization that promoted further integration of the rubber powder in formulations for commercial use. The processes were compared and their products were characterized by analytical methods of the physical properties such as tensile strength and elongation. The greatest change in the properties of polymeric materials by exposure to ionizing radiation resulted mainly of two main reactions occurring in the polymer molecule: chains scission (degradation) and crosslinking. Although these two processes occur simultaneously in all the polymers, the predominance of one or other effect depends mainly of the chemical structure of each polymer, and the irradiation conditions. In the results was observed the behavior of nitrile rubber under different doses and radiation improvement of the mechanical properties. (author)

  4. Application of gamma irradiation for incorporation of rubber powder in the formulations of acrylonitrile-butadiene rubber (NBR)

    Energy Technology Data Exchange (ETDEWEB)

    Kiyan, Ludmila Y.P.; Parra, Duclerc Fernandes, E-mail: ludmilapozzo@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA)

    2013-07-01

    Full text: Polymeric materials do not decompose easily, disposal of waste polymers is a major environmental problem of global character. Recycling is an economical alternative and environmentally recommended for polymers consumed and discarded by society. As regards the rubber in object, its natural decomposition is much slower due to their highly crosslinked, in three-dimensional networks, structures which makes it an infusible and insoluble material. Moreover, these three dimensional structures entails several problems for their recovery and reprocessing. The aim of this paper was to study the behavior of NBR rubber recycle. It was used rubber powder from industry. The powder was irradiated in master-batch composition and used directly in classical formulations for rubber vulcanization. The master-batch processed was irradiated at doses of 50, 100 and 150kGy in {sup 60}Co source at 5 kGy s{sup -1} rate, at room temperature. Gamma radiation created active sites during devulcanization that promoted further integration of the rubber powder in formulations for commercial use. The processes were compared and their products were characterized by analytical methods of the physical properties such as tensile strength and elongation. The greatest change in the properties of polymeric materials by exposure to ionizing radiation resulted mainly of two main reactions occurring in the polymer molecule: chains scission (degradation) and crosslinking. Although these two processes occur simultaneously in all the polymers, the predominance of one or other effect depends mainly of the chemical structure of each polymer, and the irradiation conditions. In the results was observed the behavior of nitrile rubber under different doses and radiation improvement of the mechanical properties. (author)

  5. A new mechanism for selective adsorption of rubber on carbon black surface caused by nano-confinement in SBR/NBR solution

    Science.gov (United States)

    Kawazoe, Masayuki

    A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.

  6. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  7. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Abou Taleb, W.M. [Alexandria Univ. (Egypt); Madi, N.K.; Kassem, M.E.; El-Khatib, A.M. [Alexandria Univ. (Egypt). Dept. of Physics

    1996-05-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 x 10{sup 9} n/cm{sup 2}. The optical energy gap E{sub op} exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure C{sub p} showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected. (author).

  8. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    International Nuclear Information System (INIS)

    Abou Taleb, W.M.; Madi, N.K.; Kassem, M.E.; El-Khatib, A.M.

    1996-01-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 x 10 9 n/cm 2 . The optical energy gap E op exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure C p showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected. (author)

  9. Effects of simulant mixed waste on EPDM and butyl rubber

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1997-11-01

    The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F trademark), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste

  10. Biological Reclaiming of Recycled Rubber and Its Effect on Mechanical Properties of New Rubber Vulcanizates

    Directory of Open Access Journals (Sweden)

    Maryam Mansourirad

    2014-12-01

    Full Text Available Nowadays, due to environmental concerns, there has been great attention to recycling and reclaiming of tires. Different methods have been used for reclaiming or desulfurization of rubber. One of these methods, in which desulfurization of rubber happens with no damage to the polymer structure, is desulfurization by biological microorganisms. In this research the application and performance of thermophilic and sulfur oxidizing bacteria, Acidianus brierleyi for this purpose was investigated. Ground tire rubber was detoxified with organic solvents, and the optimum conditions for growing microorganisms in the existence of rubber powder in the shaker flasks were determined. In order to accelerate the process, the suitable conditions for growth of bacteria and desulfurization in the bioreactor were adopted. Fourier transfer infrared spectroscopy and scanning electron microscopy were employed to characterize desulfurization of bio-treated powder from bioreactor. The results indicated that morphological changes on powder surface and reduction of sulfur bonds have occurred. Samples from bioreactors, with and without bacteria and also untreated rubber powder were compounded with virgin styrene butadiene rubber. Tensile and dynamic properties were investigated using uni-direction tensile test and dynamic-mechanical-thermal analysis, respectively. Although some differences in dynamic-mechanical-thermal properties of samples pointed to stronger interaction between rubber matrix and treated rubber powder, no significant improvements in the mechanical properties of vulcanizates containing A.brierleyi-treated powder were observed. Low concentration of sulfur in rubber vulcanizates, chemical bonds of sulfur, and low efficiency of A. brierleyi in breaking sulfur bonds and reclaiming rubber were considered as the reasons for low efficiency of this treatment process.

  11. Effect of gamma radiation on the spectroscopic properties of Bromocresol green-polyvinyl chloride film

    International Nuclear Information System (INIS)

    Bera, Anuradha; Ram, Surendra; Singh, Shailendra K.; Vaijapurkar, S.G.

    2009-01-01

    Bromocresol Green (BCG) - Polyvinyl chloride (PVC) film was prepared by dispersing the dye in the polymer matrix in a suitable solvent medium in the presence of an organic base and then solvent casting the formulation in the form of transparent colored film. Preliminary studies through UV-Vis Spectroscopic measurements show that the prepared PVC - dye films was sensitive to gamma radiation almost linearly in the dose range upto 8 kGy range. This spectroscopic change becomes visually distinguishable from 4 kGy onwards until 8 kGy where it finally changes color from green to yellow, beyond which no significant optical change was observed. The gamma response of the film could be tailored by varying the concentration of the pH sensitive dye and the organic base. (author)

  12. A comparison between the effects of gamma radiation and sulfur cure system on the microstructure and crosslink network of (styrene butadiene rubber/ethylene propylene diene monomer) blends in presence of nanoclay

    Science.gov (United States)

    Shoushtari Zadeh Naseri, Aida; Jalali-Arani, Azam

    2015-10-01

    Rubber blends based on (styrene-butadiene rubber (SBR)/ethylene-propylene-diene monomer (EPDM)) with and without organoclay (OC) were prepared through a melt mixing process. The concentration ratio of the rubber phases (EPDM/SBR; 50/50 wt%) and the amount of the OC were kept constant. The samples were then vulcanized by means of gamma radiation using a Co-60 gamma source as well as sulfur cure system. The effect of absorbed dose on the formation of the crosslinks was confirmed by the Fourier transform infrared spectroscopy (FTIR). The effects of absorbed dose, sulfur cure system and OC on the gel content, and crosslink density were evaluated by the chemical tests. Applying the Charlesby-Pinner equation to estimate the radiation chemical yield, revealed that the use of OC in the blend caused 20% reduction in the degradation/crosslinking ratio. Employing the swelling test data, some thermodynamic parameters were determined. Using field emission scanning electron microscopy (FE-SEM) to investigate microstructure of the samples revealed a more homogeneous structure and also an increase in compatibility of the blend components in the sample cured by the irradiation in comparison to that cured by the sulfur curing system.

  13. Modeling of continuous free-radical butadiene-styrene copolymerization process by the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    T. A. Mikhailova

    2016-01-01

    Full Text Available In the paper the algorithm of modeling of continuous low-temperature free-radical butadiene-styrene copolymerization process in emulsion based on the Monte-Carlo method is offered. This process is the cornerstone of industrial production butadiene – styrene synthetic rubber which is the most widespread large-capacity rubber of general purpose. Imitation of growth of each macromolecule of the formed copolymer and tracking of the processes happening to it is the basis of algorithm of modeling. Modeling is carried out taking into account residence-time distribution of particles in system that gives the chance to research the process proceeding in the battery of consistently connected polymerization reactors. At the same time each polymerization reactor represents the continuous stirred tank reactor. Since the process is continuous, it is considered continuous addition of portions to the reaction mixture in the first reactor of battery. The constructed model allows to research molecular-weight and viscous characteristics of the formed copolymerization product, to predict the mass content of butadiene and styrene in copolymer, to carry out calculation of molecular-weight distribution of the received product at any moment of conducting process. According to the results of computational experiments analyzed the influence of mode of the process of the regulator introduced during the maintaining on change of characteristics of the formed butadiene-styrene copolymer. As the considered process takes place with participation of monomers of two types, besides listed the model allows to research compositional heterogeneity of the received product that is to carry out calculation of composite distribution and distribution of macromolecules for the size and structure. On the basis of the proposed algorithm created the software tool that allows you to keep track of changes in the characteristics of the resulting product in the dynamics.

  14. Microstructure and tribological behavior of tungsten-containing diamondlike carbon coated rubbers

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Zhou, Xiao; Hosson, J.Th.M. De

    2008-01-01

    Tungsten-containing diamondlike carbon (W-DLC) coatings have been deposited on FKM (fluorocarbon), ACM (acrylate), and HNBR (hydrogenated nitrile butadiene) rubbers via unbalanced magnetron reactive sputtering from a WC target in C2H2/Ar plasma. The surface morphology and, fracture cross sections of

  15. In situ cyclization modification in polymerization of butadiene by rare earth coordination catalyst

    International Nuclear Information System (INIS)

    Wang Chaoyang

    2005-01-01

    Butadiene was polymerized to a certain extent in the presence of a rare earth coordination catalyst, neodymium compound of neodymium chloride and i-propyl alcohol and triethyl aluminum (NdCl 3 ·3i-PrOH-AlEt 3 ) in toluene and the allyl chloride was then added to the reactive solution in order to in situ cyclize the formed polybutadiene and cyclopolymerize the unreacted butadiene monomers. Effects of molar ratio of allylchloride to AlEt 3 (Cl/Al), cyclization reaction time and temperature, butadiene and NdCl 3 ·3i-PrOH concentrations on the cyclization reaction have been investigated. The cyclization reaction is very quick, only several minutes. The cyclization reaction temperature has few effects on the properties of the cyclized product. Cl/Al is a very important condition for this reaction system. Cyclized polybutadiene has a low value of intrinsic viscosity, free gelling and high yield at high Cl/Al. The microstructures and properties of the cyclized products have been characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gel permeation chromatography. The cyclization mechanism is put forward

  16. Palladium Nanoparticles Immobilized on Poly(vinyl chloride-Supported Pyridinium as an Efficient and Recyclable Catalyst for Suzuki-Miyaura Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2011-01-01

    Full Text Available The palladium nanoparticles immobilized on the polymeric surface of poly(vinyl chloride-supported pyridinium (PVC-Py-Pd0 were achieved by a simple procedure by applying the corresponding functionalized polymer and palladium chloride in ethanol solution. The as-prepared catalyst (PVC-Py-Pd0 was found to be air and moisture stable and exhibits significant catalytic activity for Suzuki-Miyaura cross-coupling reaction of various aryl halides and phenylboronic acid under milder operating conditions. The procedure presented here showed several merits such as short reaction time, simple experimental and isolated procedure and excellent yields of products. Furthermore, the catalyst can be easily recovered and reused for at least six times with consistent activities.

  17. Effect of gamma irradiation on properties of ultrafine rubbers as toughening filler in polybenzoxazine

    Science.gov (United States)

    Taewattana, Rapiphan; Jubsilp, Chanchira; Suwanmala, Phiriyatorn; Rimdusit, Sarawut

    2018-04-01

    Three types of ultrafine fully vulcanized powdered rubbers (UFRs), i.e. natural rubber (NR), carboxylated nitrile-butadiene rubber (XNBR), and carboxylated styrene-butadiene rubber (XSBR) were prepared by combined technology between gamma irradiation for crosslinking and spray drying. The effects of doses in a range of 0-250 kGy on swelling ratio, crosslink density, and thermal stability of UFRs were investigated. Smaller particle size of UFRs was obtained at higher dose. A decrease in the swelling ratio and an increase in crosslink density were well corresponded to crosslinking effect related with absorbed dose. The increase in dose was also found to improve thermal performance of URFs. The influence of irradiated UFRs on impact resistance and glass transition temperature (Tg) of polybenzoxazine composites was also evaluated. The highest impact resistance of the composites belonged to the composite filled with irradiated UFXNBR at 200 kGy. While the significantly enhanced Tg of the composite was obtained by an addition of irradiated UFRs with higher doses, i.e. Tg = 173 °C for the composite filled with irradiated UFXNBR at 250 kGy. As a consequence, the UFRs can be used to effectively modify thermal and mechanical properties, especially impact resistance of polybenzoxazine composites.

  18. Application of gamma irradiation for incorporation of rubber powder in the formulations EPDM and NBR rubber

    International Nuclear Information System (INIS)

    Kiyan, Ludmila de Ysasa Pozzo

    2014-01-01

    The natural decomposition of rubber is a very slow process due to its three-dimensional network formed by vulcanized crosslinked structures becoming extremely difficult to reprocess this material. The present work aims to study the application of gamma irradiation as devulcanization process for material reuse/recycling. The interactions of elastomers with ionizing radiation of a gamma source were investigated and the changes in physicochemical properties of the materials were evaluated. Formulations of NBR (acrylonitrile - butadiene) and EPDM (ethylene - propylene - diene terpolymer) from the rubber industry were crosslinked by conventional sulfur-based mixing. Master - batch was processed with rubber powder (industrial waste) and virgin rubber. The raw material (master batch) was irradiated in 60 Co source at doses of 50, 100, 150 kGy and dose rate of 5 kGy h -1 at room temperature. The irradiated material was incorporated in classical sulfur-based formulations. The formulations were characterized by: infrared spectroscopy (FTIR), thermal analysis (TG and DTG), tensile strength, elongation at break, hardness, abrasion resistance, rheometry and swelling. The results showed a predominance of chain scission at a dose of 50 kGy for EPDM rubber. For nitrile predominance of chain scission was observed at a dose of 100 kGy. These results show the possibility of the use of gamma radiation for the reuse/recycling of EPDM and nitrile rubbers. (author)

  19. Occupational injuries and illnesses in rubber factory: Profile, Potential Hazards and possible prevention

    Directory of Open Access Journals (Sweden)

    Tri Hari Irfani

    2015-12-01

    Full Text Available Rubber is one of the important commodities in the world. Globally, workers are facing so many problems of hazards that produce by rubber process. In Indonesia, there are several data of occupational problems such as respiratory diseases, muscle and skeletal diseases, gastrointestinal diseases, diseases of the teeth and oral cavity, skin diseases and skin tissue. In Iranian rubber factory, Iran, workers had suffered from some kind of musculoskeletal symptoms. Stomach and liver cancers in workers are having in Shanghai tire factory. In addition, Germany has cancer problem of their workers who work in rubber factory. Most of the rubber process in the factory can cause some hazards of the workers. In unloading area and area that operator is taking the dirt manually, workers are facing ergonomic problems. The possible control is reduce weight of load, team lift the object with two or more workers and Use mechanical assist. Machine safeguarding is essential for protecting from Cutting process that can make workers amputation organs such as hands, and fingers. In bale process, the workers need to cut raw rubber into bale in bale cutting. Furthermore, workers are facing with amputation problem. To manage that, It must be designed as a standard which has interlocking guards to prevent access to the cutting area. When wrapped using plastic, workers use a heated iron and sticked in plastic so that it blends neatly. The risks are fingers can cut accidently and then the workers also get contamination from polyvinyl chloride (PVC. The possible preventions are use an automatic plastic wrapping machine with palletized product sitting on a turntable and respirator. Another problem is contact dermatitis that has been reported frequently among rubber workers. The prevention for that problem is using Gloves. The aim of researcher is to provide the profile of occupational injuries and illnesses, potential hazards in rubber factory to prevent the workers.

  20. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents

    Science.gov (United States)

    Zuñiga-Zamorano, Ivette; Meléndez-Ortiz, H. Iván; Costoya, Alejandro; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2018-01-01

    Radiation-grafting of pH-responsive methacrylic acid (MAA) onto poly(vinyl chloride) (PVC) was carried out by the pre-irradiation method using gamma rays, which demonstrated to be an efficient and fast procedure for obtaining PVC-g-MAA copolymers. The influence of preparation conditions, such as absorbed dose, monomer concentration, reaction time, and reaction temperature on the grafting yield was studied. The grafting of MAA onto PVC catheters was confirmed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and differential scanning calorimetry (DSC). The pH-responsiveness of the grafted copolymers (critical point 8.5) was measured by swelling under cyclic changes in the pH of the medium. Interestingly, PVC-g-MAA showed enhanced capability to immobilize benzalkonium chloride and, particularly, ciprofloxacin and to sustain the release this antimicrobial agent at both acid and alkaline pH. Tests carried out with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus point out that the developed functionalized catheters may play a role in the prevention/management of urinary tract infections.

  1. [Simultaneous determination of ten organotin compounds in polyvinyl chloride plastics using gas chromatography-mass spectrometry].

    Science.gov (United States)

    Li, Ying; Li, Bin; Liu, Li; Zhang, Chen; Wu, Jingwu; Liu, Zhihong; Li, Xintian

    2009-01-01

    A rapid and effective gas chromatography coupled with mass spectrometry method has been developed systematically and studied for the simultaneous determination of 10 organotin compounds, dibutyltin-dichloride (DBT), n-butyltin-trichloride (MBT), triethyltinchloride (TET), fentin-chloride (TPhT), chlorotributylstannane (TBT), tri-n-propyltinchloride (TPrT), diphenyltin-dichloride (DPhT), tetrabutyltin (TeBT), di-n-octyltin-dichloride (DOT), phenyltin trichloride (MPhT)), in polyvinyl chloride (PVC) plastics. The PVC sample was dissolved with tetrahydrofuran and the polymer in the sample was precipitated with methanol, and then the target compounds were derivatized with sodium tetraethylborate and extracted with hexane under ultrasonication. The qualitative and quantitative analysis were carried out by GC-MS and the total ion chromatogram and selected ion chromatogram were obtained. The derivatization and extraction conditions, such as the derivatization time, derivatization pH value, dosages of derivatization reagent and precipitation reagent were optimized. The good linearities, recoveries and precisions were obtained. The linearity ranges were 0.5 - 50 mg/L. The linearity correlation coefficients of 10 organotin compounds were between 0.997 8 and 0.999 7. The average recoveries were 84.23% - 109.1% with relative standard deviations of 4.24% - 10.75%. The established method has been successfully applied to the determination of organotin compounds in PVC plastics.

  2. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    Science.gov (United States)

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging

    International Nuclear Information System (INIS)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio

    2015-01-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm"-"1 and 1165 cm"-"1 bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  4. Effect of Modified Natural Rubber on PVC-ENR Electrospun Membrane: Thermal and Morphological Studies

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd; Ratnam, C.T.; Pairu Ibrahim

    2016-01-01

    Electrospun fibers membrane (EFM) based on modified epoxidized natural rubber (ENR) and polyvinyl chloride (PVC) was successfully prepared by electro spinning technique. Epoxidized natural rubber was firstly prepared in solution by using 5 L flask and exposed to high intensity UV lamp for degradation. The PVC/ ENR mixture solution concentration were about 16 wt% and blended for 5 hours for homogeneity. The PVC/ ENR mixture were electro spun to form fibers membrane. The sample of electro spun fibers membrane were cured by electron beam. The resulting membranes were characterized for thermal and morphological studies. Thermal decomposition behavior of EFM was analyzed by thermogravimetric analysis (TGA). Thermo gram from TGA showed two stages of degradation for all formulation (90:10, 80:20, 70:30 PVC/ ENR) from 240 to 265 degree Celsius and 400 to 410 degree Celsius, respectively. From the DSC thermo gram of PVC/ ENR electro spun fibers showed that the addition of ENR resulted in the shifting of glass transition temperature (Tg) towards lower temperatures. The morphology of electro spun fibers was examined using scanning electron microscopy and it showed a variety of fiber morphologies. (author)

  5. Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

    Science.gov (United States)

    Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein

    2006-09-01

    Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.

  6. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  7. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet

    Directory of Open Access Journals (Sweden)

    Helena Ma A. M. M. S. Ali

    2017-11-01

    Full Text Available The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1. Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer.

  8. Copolymerization of 1-hexene and 1-dodecene with 1,3-butadiene by a versatate/diisobutylaluminum hydride/t-butyl chloride catalyst system

    Directory of Open Access Journals (Sweden)

    Gustavo Monteiro da Silva

    2014-01-01

    Full Text Available The aim of this study was to incorporate an alpha-olefin (1-hexene or 1-dodecene in a high cis polybutadiene chain, using a neodymium versatate/diisobutylaluminum hydride/t-butyl chloride catalyst system. The influence of alpha-olefin on polymerization reaction and polymer characteristics, using different weight ratios of butadiene/α-olefin, was evaluated. The copolymers were characterized by SEC, FTIR, NMR, TGA and viscosimetric analysis. The thermal stability of the polymer tended to increase with incorporation of alpha-olefins, while its microstructure was not affected. The weight average molecular mass (Mw tended to increase and the polymerization conversion tended to decrease with increasing alpha-olefins content. The copolymers showed a lower intrinsic viscosity than for the homopolymer. The results indicated that the alpha-olefins were incorporated in the polybutadiene chain.

  9. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer

    Science.gov (United States)

    Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.

    2018-01-01

    A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).

  10. Continuous microcellular foaming of polyvinyl chloride and compatibilization of polyvinyl chloride and polylactide composites

    Science.gov (United States)

    Shah, Bhavesh

    This dissertation focuses on overcoming existing limitations of WPCs which prevent them from realizing their full market potential. These limitations include: (i) lack of a continuous extrusion process for microcellular foaming of polyvinyl chloride (PVC) and its composites using supercritical fluids to reduce the high density of the WPCs, (ii) need for an efficient coupling agent for WPCs to overcome the poor compatibility between wood and plastic, and (iii) unproven use of wood as a filler for the biopolymer polylactide (PLA) to make "green" composites. These limitations were addressed through experimentation to develop a continuous extrusion process for microcellular foaming, and through surface modification of wood flour using natural coupling agents. The effects of wood flour, acrylic modifier and plasticizer content on the rheological properties of PVC based WPCs were studied using an extrusion capillary rheometer and a two-level factorial design. Wood flour content and acrylic modifier content were the major factors affecting the die swell ratio. Addition of plasticizer decreased the true viscosity of unfilled and filled PVC, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC but decreased the composite viscosity. Results of the rheological study were used to set baseline conditions for the continuous extrusion foaming of PVC WPCs using supercritical CO 2. Effects of material composition and processing conditions on the morphology of foamed samples were investigated. Foamed samples were produced using various material compositions and processing conditions, but steady-state conditions could not be obtained for PVC. Thus the relationships could not be determined. Incompatibility between wood flour and PVC was the focus of another study. The natural polymers chitin and chitosan were used as novel coupling agents to improve interfacial adhesion between the polymer matrix

  11. Fatigue Performance and Multiscale Mechanisms of Concrete Toughened by Polymers and Waste Rubber

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2014-01-01

    Full Text Available For improving bending toughness and fatigue performance of brittle cement-based composites, two types of water-soluble polymers (such as dispersible latex powder and polyvinyl alcohol powder and waste tire-rubber powders are added to concrete as admixtures. Multiscale toughening mechanisms of these additions in concretes were comprehensively investigated. Four-point bending fatigue performance of four series concretes is conducted under a stress level of 0.70. The results show that the effects of dispersible latex powder on bending toughness and fatigue life of concrete are better than those of polyvinyl alcohol powder. Furthermore, the bending fatigue lives of concrete simultaneously containing polymers and waste rubber powders are larger than those of concrete with only one type of admixtures. The multiscale physics-chemical mechanisms show that high bonding effect and high elastic modulus of polymer films as well as good elastic property and crack-resistance of waste tire-rubber powders are beneficial for improving bending toughness and fatigue life of cementitious composites.

  12. Effect of magnetic and thermal properties of iron oxide nanoparticles (IONs) in nitrile butadiene rubber (NBR) latex

    Science.gov (United States)

    Ong, Hun Tiar; Julkapli, Nurhidayatullaili Muhd; Hamid, Sharifah Bee Abd; Boondamnoen, O.; Tai, Mun Foong

    2015-12-01

    Nitrile butadiene rubber (NBR) gloves are one of the most important personal protective equipments but they are possible to tear off and contaminate food or pharmaceutical and healthcare products during manufacturing and packaging process. High tendency of torn glove remaining in food or products due to white or light flesh-coloured glove is not easy to be detected by naked eyes. In this paper, iron oxide nanoparticles (IONs) selected as additive for NBR to improve its detectability by mean of magnetic properties. IONs synthesized via precipitation method and compounded with NBR latex before casting on petri dish. The properties of IONs were investigated by X-ray Diffractometry (XRD), Transmission Electron Microscope (TEM), Raman Spectroscopy and Vibrating Sample Magnetometer (VSM). Meanwhile NBR/IONs composites were studied by Thermogravimetry Analysis (TGA), Differential Scanning Calorimetry (DSC) and Vibrating Sample Magnetometer (VSM). It observed that, synthesized IONs shows of 25.28 nm crystallite with 25.86 nm semipherical (changed as) shape. Meanwhile, Magnetite and maghemite phase are found in range of 670 cm-1 and 700 cm-1 respectively, which it contributes magnetization saturation of 73.96 emu/g at 10,000 G by VSM. Thermal stability and magnetic properties were increased with incorporating IONs into NBR latex up to 20 phr. NBR/IONs 5 phr has the optimum thermal stability, lowest glass transition temperature (-14.83 °C) and acceptable range of magnetization saturation (3.83 emu/g at 10,000 G) to form NBR gloves with magnetic detectability.

  13. Comparison of prophylactic effects of polyurethane cylindrical or tapered cuff and polyvinyl chloride cuff endotracheal tubes on ventilator-associated pneumonia.

    Directory of Open Access Journals (Sweden)

    Ata Mahmoodpoor

    2013-07-01

    Full Text Available Because microaspiration of contaminated supraglottic secretions past the endotracheal tube cuff is considered to be central in the pathogenesis of pneumonia, improved design of tracheal tubes with new cuff material and shape have reduced the size and number of folds, which together with the addition of suction ports above the cuff to drain pooled subglottic secretions leads to reduced aspiration of oropharyngeal secretions. So we conducted a study to compare the prophylactic effects of polyurethane-cylindrical or tapered cuff and polyvinyl chloride cuff endotracheal tubes (ETT on ventilator-associated pneumonia. This randomized clinical trial was carried out in a 12 bed surgical intensive care unit. 96 patients expected to require mechanical ventilation more than 96 hours were randomly allocated to one of three following groups: Polyvinyl chloride cuff (PCV ETT, Polyurethane (PU cylindrical Sealguard ETT and PU Taperguard ETT. Cuff pressure monitored every three hours 3 days in all patients. Mean cuff pressure didn't have significant difference between three groups during 72 hours. Pneumonia was seen in 11 patients (34% in group PVC, 8 (25% in Sealguard and 7 (21% in Taperguard group. Changes in mean cuff pressure between Sealguard and PVC tubes and also between Taperguard and PVC tubes did not show any significant difference. There was no significant difference in overinflation between three groups. The use of ETT with PU material results in reducing ventilator-associated pneumonia compared to ETT with PVC cuff. In PU tubes Taperguard has less incidence of ventilator-associated pneumonia compared to Sealguard tubes.

  14. Effects of simulant mixed waste on EPDM and butyl rubber

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1998-01-01

    We have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, we have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epi-chloro-hydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F), poly-tetrafluoroethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to ∼3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 deg. C. The rubber materials or elastomers were tested using VTR measurements while the liner materials were tested using specific gravity as a metric. For these tests, screening criteria of ∼1 g/hr/m 2 for VTR and specific gravity change of 10% were used. Those materials that failed to meet these criteria were judged to have failed the screening tests and were excluded from the next phase of this experimental program. We have completed the comprehensive testing phase of liner materials in a simulant Hanford Tank waste consisting of an aqueous alkaline mixture of sodium nitrate and sodium nitrite. From the data analyses performed, we have identified the chloro-fluorocarbon Kel-F as having the greatest chemical durability after having been exposed to gamma radiation followed by exposure to the aqueous alkaline simulant mixed waste. The most striking observation from this study was the extremely poor performance of Teflon under these conditions. We have also completed the comprehensive

  15. Method of modifying a vinyl chloride resin by utilizing radiation cross-linking polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kagiya, T; Fujimoto, T; Hosoi, F; Tsuneta, K; Atogawa, M

    1970-08-26

    The polyvinyl chloride is improved in its mechanical, thermal and chemical properties, with particular advantages gained in dimensional stability at temperatures higher than the plasticizing temperature. The process comprises irradiating a vinyl chloride resin with ionizing radiations in the presence of a vinyl acetate monomer. In this process, the irradiation of vinyl acetate effects cross-linking and the polymerization of the monomer simultaneously. The vinyl chloride resin may be a copolymer along with another monomer, a polyvinyl chloride derivative, a graft polymer of polyvinyl chloride, a mixture of vinyl chloride with another resin and a graft copolymer of vinyl chloride on another resin in any form. The addition of the vinyl acetate monomer to the vinyl chloride is not limited to any particular procedure. The vinyl acetate monomer may be added to the polyvinyl chloride in a quantity ranging from a trace to 200% by weight. The radiation dose may be 10/sup 2/ to 10/sup 9/, but preferably 10/sup 3/ roentgen. In one example, 36 parts by weight of market available vinyl acetate monomer immersed in 100 parts by weight of hard vinyl tube were placed in a stainless reacting vessel. After the replacement of inner air with nitrogen, the vessel was exposed to ..gamma.. beams of 4.8 x 10 roentgen from a Co-60 source. After dipping the exposed samples in boiled tetrahydrofuran for 48 hours, the insoluble substance in the samjle was 78.9% by weight. In addition, after heating at 180/sup 0/C for 30 minutes, the sample did not show any deformation.

  16. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  18. Surface improvement of EPDM rubber by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, J H [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Silva Sobrinho, A S da [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Maciel, H S [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Dutra, J C N [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Massi, M [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Mello, S A C [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Schreiner, W H [Physics Department, UFPR, Centro Politecnico, 80060-000 Curitiba, P.R. (Brazil)

    2007-12-21

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N{sub 2}/Ar and N{sub 2}/H{sub 2}/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  19. Surface improvement of EPDM rubber by plasma treatment

    International Nuclear Information System (INIS)

    Moraes, J H; Silva Sobrinho, A S da; Maciel, H S; Dutra, J C N; Massi, M; Mello, S A C; Schreiner, W H

    2007-01-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N 2 /Ar and N 2 /H 2 /Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber

  20. Surface improvement of EPDM rubber by plasma treatment

    Science.gov (United States)

    Moraes, J. H.; da Silva Sobrinho, A. S.; Maciel, H. S.; Dutra, J. C. N.; Massi, M.; Mello, S. A. C.; Schreiner, W. H.

    2007-12-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N2/Ar and N2/H2/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  1. The Effect of Uncertainty in Exposure Estimation on the Exposure-Response Relation between 1,3-Butadiene and Leukemia

    Directory of Open Access Journals (Sweden)

    George Maldonado

    2009-09-01

    Full Text Available Abstract: In a follow-up study of mortality among North American synthetic rubber industry workers, cumulative exposure to 1,3-butadiene was positively associated with leukemia. Problems with historical exposure estimation, however, may have distorted the association. To evaluate the impact of potential inaccuracies in exposure estimation, we conducted uncertainty analyses of the relation between cumulative exposure to butadiene and leukemia. We created the 1,000 sets of butadiene estimates using job-exposure matrices consisting of exposure values that corresponded to randomly selected percentiles of the approximate probability distribution of plant-, work area/job group-, and year specific butadiene ppm. We then analyzed the relation between cumulative exposure to butadiene and leukemia for each of the 1,000 sets of butadiene estimates. In the uncertainty analysis, the point estimate of the RR for the first non zero exposure category (>0–<37.5 ppm-years was most likely to be about 1.5. The rate ratio for the second exposure category (37.5–<184.7 ppm-years was most likely to range from 1.5 to 1.8. The RR for category 3 of exposure (184.7–<425.0 ppm-years was most likely between 2.1 and 3.0. The RR for the highest exposure category (425.0+ ppm-years was likely to be between 2.9 and 3.7. This range off RR point estimates can best be interpreted as a probability distribution that describes our uncertainty in RR point estimates due to uncertainty in exposure estimation. After considering the complete probability distributions of butadiene exposure estimates, the exposure-response association of butadiene and leukemia was maintained. This exercise was a unique example of how uncertainty analyses can be used to investigate and support an observed measure of effect when occupational exposure estimates are employed in the absence of direct exposure measurements.

  2. Development of SBR-Nano clay Composites with Epoxidized Natural Rubber as Compatibilizer

    International Nuclear Information System (INIS)

    Rajasekar, R.; Das, Ch.K.; Gert Heinrich, G.; Das, A.

    2009-01-01

    The significant factor that determines the improvement of properties in rubber by the incorporation of nano clay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nano clay will not contribute for the good dispersion of nano filler in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nano clay in the matrix polymer. Epoxidized natural rubber and organically modified nano clay composites (EC) were prepared by solution mixing. The nano clay employed in this study is Cloisite 20A. The obtained nano composites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nano clay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nano clay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.

  3. Degradation of polyvinyl chloride (PVC) / hydrolyzed collagen (HC) blends active sludge test.

    Science.gov (United States)

    Agafiţei, Gabriela-Elena; Pascu, Mihaela; Cazacu, Georgeta; Vasile, Cornelia

    2008-01-01

    Biodegradable polymers represent a solution for the environment protection: they decrease the landfill space, by declining the petrochemical sources, and offer also an alternative solution for the recycling. The behavior during degradation in the presence of active sludge of some polyvinyl chloride (PVC) based blends with variable content of hydrolyzed collagen (HC) has been followed. Some samples were subjected to UV irradiation, for 30 hours. The modifications induced in the environment by the polymer systems (pH variation, bacterial composition), as well as the changes of the properties of the blends (weight losses, aspect etc.) were studied. During the first moments of degradation in active sludge, all the samples absorbed water, behavior which favored the biodegradation. The bacteriological analysis of the sludge indicates the presence of some microbiological species. Generally, the populations of microorganisms decrease, excepting the sulphito-reducing anaerobic bacteria, the actinomycetes and other anaerobic bacteria. PVC/HC blends are degraded with a significant rate in active sewage sludge. More susceptible for the degradation are the UV irradiated blends. After the migration of the components with a small molecular mass in the environment, the natural polymer is degraded. The degradation effect increases with the content in the natural polymer.

  4. Positron Annihilation Lifetime Study of Pure and Doped Polyvinyl Chloride with Al2O3

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Hamdy, F. M. M.; Alaa, H.B.

    2005-01-01

    Positron annihilation lifetime of pure and doped polyvinyl chloride (PVC) with Al 2 O 3 reflect the effect of concentration as well as temperature on free volume. Therefore, variations of the ortho-positronium (o-Ps) lifetime and its intensity have been correlated with changes in the dielectric properties of the pure and doped PVC. The o-Ps lifetime and its intensity show a linear dependence with a discontinuity at 20 % concentration of Al 2 O 3 . The size and the fractional of the o-Ps hole volume were estimated from the positron annihilation parameters. Therefore, the temperature dependence of the electrical conductivity and the positron annihilation parameters on pure and doped PVC with 20 % Al 2 O 3 were studied in the range from 20 to 140 degree C. The shift of the glass transition temperature to lower temperature for the 20 % Al 2 O 3 doped PVC might explain the increase in the electrical conductivity with the concentration of the additive

  5. Effect of montmorillonite on carboxylated styrene butadiene rubber/hindered phenol damping material with improved extraction resistance

    International Nuclear Information System (INIS)

    Gao, Yuan; Wang, Xiaoping; Liu, Meijun; Xi, Xue; Zhang, Xin; Jia, Demin

    2014-01-01

    Highlights: • MMT and XSBR display synergic effect on protecting HP1098 from being extracted. • A new hindered phenol HP1098 was used to prepare damping material. • Effects of three preparation methods on the material properties were studied. - Abstract: Three methods of blending, including direct blending, melt blending and latex blending, were introduced to disperse sodium based montmorillonite (Na-MMT) and N,N′-hexane-1,6-diylbis{3-(5-di-tert-butyl-4-hydroxyphenyl-propionamide)} (HP1098) into the carboxylated styrene butadiene (XSBR) matrix. Small angle X-ray Diffraction testing indicated that melting Na-MMT with HP1098 enlarged the d-spacing of Na-MMT, which was further enlarged by mechanical blending with XSBR, and this led to homogeneous dispersion of Na-MMT and HP1098, which was indicated by Transmission Electronic Microscopy; latex blending was found most advantageous in dispersing HP1098 which was essential for improved damping performance. Dynamic Mechanical Analysis was utilized to characterize damping properties, and enhanced static mechanical properties were presumably originated from molecule chains being intercalated into the enlarged galleries of Na-MMT by mechanical blending. Formation of hydrogen bonds was observed by Fourier Transformation Infrared Spectrum and was supposed to be responsible for exceptional damping performance at elevated temperature. Extraction measurement of XSBR/Na-MMT/HP1098 composite indicated that XSBR and Na-MMT showed synergic effect in protecting HP1098 molecules from being extracted, which is a promising method in preparing rubber/hindered phenol damping materials with improved extraction resistance, whereby increasing the performance stability and lifespan of the composite materials. Additional advantage of this type of materials is better processability and shortened vulcanization process

  6. Investigation of Ageing Behaviour of Nitrile-Butadiene Rubber with Added Graphene in an Accelerated Thermal Ageing Environment

    Directory of Open Access Journals (Sweden)

    Fei-Zhou Li

    2018-01-01

    Full Text Available In this paper, the thermal ageing of nitrile-butadiene rubber (NBR reinforced with different graphene (GE concentrations has been investigated. NBR and NBR-GE composites were exposed to an accelerated thermal ageing environment produced by an air-circulating oven for seven days. The mechanical properties, chemical changes, and thermal stability of ageing samples and neat samples were evaluated. The results showed that the surface damage of NBR was severe and inhomogeneous, and the degree of ageing was most serious on the edge region of the voids, but NBR-GE composites were changed slightly before and after ageing. The tensile strength increased with the increase of GE concentration, up to a maximum value, and decreased with further increases in GE concentration. The GE embedded crosslinked network limited the segment movement of chains in the stretch direction and played a role in the composites properties, and the GE sheets (contained the functional groups of −OH, −C=O and C=C after ageing. This behaviour may indicate greater interface adhesion between the GE and NBR. In addition, results obtained by thermogravimetric analysis (TGA indicated that the thermal stability of NBR significantly changed with accelerated thermal ageing environment, but with addition of a certain amount of GE to NBR, the thermal stability of NBR could be improved. The NBR/GE composites exhibited good comprehensive performance with a mass fraction of GE of 10 %. Before and after the thermal ageing, the failure mechanism of NBR-GE composites appeared intergranular and ductile fracture, respectively.

  7. Probing α-relaxation with nuclear magnetic resonance echo decay and relaxation: a study on nitrile butadiene rubber.

    Science.gov (United States)

    Sturniolo, Simone; Pieruccini, Marco; Corti, Maurizio; Rigamonti, Attilio

    2013-01-01

    One dimensional (1)H NMR measurements have been performed to probe slow molecular motions in nitrile butadiene rubber (NBR) around its calorimetric glass transition temperature Tg. The purpose is to show how software aided data analysis can extract meaningful dynamical data from these measurements. Spin-lattice relaxation time, free induction decay (FID) and magic sandwich echo (MSE) measurements have been carried out at different values of the static field, as a function of temperature. It has been evidenced how the efficiency of the MSE signal in reconstructing the original FID exhibits a sudden minimum at a given temperature, with a slight dependence from the measuring frequency. Computer simulations performed with the software SPINEVOLUTION have shown that the minimum in the efficiency reconstruction of the MSE signal corresponds to the average motional frequency taking a value around the inter-proton coupling. The FID signals have been fitted with a truncated form of a newly derived exact correlation function for the transverse magnetization of a dipolar interacting spin pair, which allows one to avoid the restriction of the stationary and Gaussian approximations. A direct estimate of the conformational dynamics on approaching the Tg is obtained, and the results are in agreement with the analysis performed via the MSE reconstruction efficiency. The occurrence of a wide distribution of correlation frequencies for the chains motion, with a Vogel-Fulcher type temperature dependence, is addressed. A route for a fruitful study of the dynamics accompanying the glass transition by a variety of NMR measurements is thus proposed. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  9. Properties of tire rubber with zinc-containing technological additives

    Directory of Open Access Journals (Sweden)

    S. N. Kayushnikov

    2017-01-01

    Full Text Available In this paper, we studied the influence of zinc-containing technological additives on partial replacement of zinc oxide and stearic acid on deformation-strength and performance properties of tire elastomeric compositions based on polyisoprene rubber and combination of oil-filled butadiene-styrene and polybutadiene rubbers. It was revealed that partial replacement of zinc oxide and stearic acid with zinc-containing technological additives does not significantly affect the basic physico-mechanical properties of rubbers based on synthetic rubbers of general use. It was determined that the introduction of zinc-containing technological additives SCC2 in combination with zinc oxide in all the studied ratios and SCC3 in combination with zinc oxide in 4: 1 and 3: 1 ratios leads to increase (up to 10.4% of the resistance of these rubbers under the action of temperature-force fields, which is probably due to a more even distribution of polar components of curing system in non-polar elastomeric matrix, as well as the type of cross-links formed during vulcanization under the action of surface-active additives. It has been found that the introduction of zinc-containing additives into the elastomeric compositions based on SRMS-30 ARKM-15 + SRD in combination with zinc oxide leads to increase to 6.3% of wear resistance of rubbers, which may be due to a lower defectiveness of vulcanization structure of these rubbers, concentration of stress centers in the material. For rubbers based on SRI-3, preservation of bond strength of rubber with a textile cord at a sufficiently high level is shown.

  10. Photostabilizing Efficiency of Poly(vinyl chloride in the Presence of Organotin(IV Complexes as Photostabilizers

    Directory of Open Access Journals (Sweden)

    Mustafa M. Ali

    2016-08-01

    Full Text Available Three organotin complexes containing furosemide as a ligand (L, Ph3SnL, Me2SnL2 and Bu2SnL2, were synthesized and characterized. Octahedral geometry was proposed for the Me2SnL2 and Bu2SnL2, while the Ph3SnL complex has trigonal bipyramid geometry. The synthesized organotin complexes (0.5% by weight were used as additives to improve the photostability of poly(vinyl chloride, PVC, (40 μm thickness upon irradiation. The changes imposed on functional groups, weight loss and viscosity average molecular weight of PVC films were monitored. The experimental results show that the rate of photodegradation was reduced in the presence of the organotin additives. The quantum yield of the chain scission was found to be low (9.8 × 10−7 when Ph3SnL was used as a PVC photostabilizer compared to controlled PVC (5.18 × 10−6. In addition, the atomic force microscope images for the PVC films containing Ph3SnL2 after irradiation shows a smooth surface compared to the controlled films. The rate of PVC photostabilization was found to be highest for Ph3SnL followed by Bu2SnL2 and Me2SnL2. It has been suggested that the organotin complexes could act as hydrogen chloride scavengers, ultraviolet absorbers, peroxide decomposers and/or radical scavengers.

  11. Effect of Modified Rubber Particles Mixing Amount on Properties of Cement Mortar

    Directory of Open Access Journals (Sweden)

    Gang Xue

    2017-01-01

    Full Text Available The crumb rubber cement mortar is prepared by the crumb rubber aggregates in 60 mesh which are modified by 1% polyvinyl alcohol (PVA solution. Some mechanical properties of cement mortar with different crumb rubber aggregate amounts are researched including compressive strength, flexural strength, the ratio of compressive strength to flexural strength, impact resistance, and dry contraction percentage. In our tests, we consider six kinds of the rubber contents, 0%, 7.5%, 15%, 19%, 22.5%, and 30%, respectively. The optimal mixing amount of crumb rubber is determined by measuring three indices, the ratio of compressive strength to flexural strength, impact resistance, and dry contraction percentage. It is shown by test that the ratio of compressive strength to flexural strength is the smallest when the mixing amount of rubber is 19%; meanwhile high impact resistance and rational drying shrinkage are observed. The optimal mixing amount of the rubber particles is 19% determined by this test.

  12. Stability of penicillin G sodium diluted with 0.9% sodium chloride injection or 5% dextrose injection and stored in polyvinyl chloride bag containers and elastomeric pump containers.

    Science.gov (United States)

    Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire

    2014-04-15

    The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.

  13. Performance of maleated castor oil based plasticizer on rubber: rheology and curing characteristic studies

    Science.gov (United States)

    Indrajati, I. N.; Dewi, I. R.

    2017-07-01

    The objective of this study was to evaluate the performance of maleated castor oil (MACO) as plasticizer on natural rubber (NR), ethylene propylene diene monomer (EPDM), and nitrile butadiene rubber (NBR). The parameter studied were involving rheological, curing and swelling properties. The MACOs were prepared by an esterification reaction between castor oil (CO) and maleic anhydride (MAH) with the help of xylene as water entrainer to improve water removal. Resulting oils then applied as a plasticizer in each of those rubbers within a fixed loading of 5 phr. Comparison has been made to evaluate the performance of MACO and conventional plasticizer (paraffinic oil for NR and EPDM, DOP for NBR) on each rubber. Rheology, curing characteristic and swelling of each rubber were studied. The results showed that rubber (NR/EPDM/NBR) plasticized with MACO had given similar flow characteristic to conventional plasticizers. MACO exhibited slow curing, confirmed by higher t90, but the scorch safety was of the same magnitude. MAH loading tended to decrease the flow properties and curing rate, while scorch time (ts2) was independent.

  14. The Cyclization of natural rubber

    International Nuclear Information System (INIS)

    Mirzataheri, M.

    2000-01-01

    The effect of solvent, temperature, time, weight percent of catalyst on the rate and mechanism of cyclization of natural rubber was studied in toluene and xylene solutions having tin tetra chloride catalyst (SnCl 4 ). Iodo metric titration show, with 8% SnCl 4 (based on polymer weight) cyclization occurs, leaving 27.4% of the total unsaturation. Infrared spectra of cyclized natural rubber show decreased absorption intensity at 840 and 780 cm -1 which are characteristic bands of the linear polymer and the appearance of absorption band at 890 cm -1 as cycles were formed. By using this chemical modification, natural rubber is transformed into a resinous thermoplastic, hard, non rubbery cyclized material with much less unsaturation than the original rubber, which could find commercial applications ad adhesives, printing inks, industrial and ship paints

  15. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Islas, Luisa [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico); Ruiz, Juan-Carlos [División de Ciencias Básicas e Ingeniería, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 México D.F. (Mexico); Muñoz-Muñoz, Franklin [Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, B.C. C.P 22860 (Mexico); Isoshima, Takashi [Nano Medical Engineering Laboratory, RIKEN, 2-1Hirosawa, Wako, Saitama 351-0198 (Japan); Burillo, Guillermina, E-mail: burillo@nucleares.unam.mx [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico)

    2016-10-30

    Highlights: • Polymer grafting using gamma-radiation allowed for acrylic acid and poly(ethylene glycol) methacrylate to graft on the inner and outer surface of poly(vinyl chloride) urinary catheters. • HR-XPS revealed the different compositional percentages of the compounds present on the surface of the catheter. • Catheters that were grafted with PEGMA had the roughest surface as observed using scanning electron microscopy (SEM) and confocal laser microscopy (CLM). - Abstract: Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from {sup 60}Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C{sub 1s} and O{sub 1s} content at the catheter’s surface, revealed that the catheter’s surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC’s Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  16. Influence of potassium fluoride on the syntheses of methylpiperazine-modified poly(vinyl chloride)s for use as fixed-site proton carrier membranes.

    Science.gov (United States)

    Roudman, A R; Kusy, R P

    1998-03-15

    Aminated poly(vinyl chloride) (PVC) membranes were prepared that had a Nernstian response over a wide range of pH. The reaction between PVC and methyl-piperazine (MePIP) in dimethylformamide (DMF) was studied over a wide range of time and temperature, and in the presence of the catalyst, potassium fluoride (KF). Time, temperature, and KF increased the nitrogen (N) content of the resulting polymers, but sometimes at the expense of decreasing their specific viscosities (molecular weights). Activation energies of processes that occurred in different temperature ranges were estimated assuming an Arrhenius relationship. A Nernstian response occurred once the N content approached to about 0.3 w/w %, and was accelerated by the presence of KF at elevated temperatures. Increasing the N content above about 3% led to a loss of the Nernstian response either because of an increase in the double bond content and a subsequent decrease in polymer mobility, or because of a decrease in the molecular weight of the copolymer and concomitant difficulties in film preparation.

  17. Effects of Running Shoes with Abrasion Resistant Rubber Sole on the Exercise Capacity of the Human Body

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-10-01

    Full Text Available With the development of industrialization, rubber has been gradually used in the manufacture of sports equipment for its favourable properties. This study involved the addition of C5 petroleum resin into brominated isobutylene-isoprene rubber (BIIR and butadiene rubber (BR while manufacturing the sole of running shoes. The effects of running shoes with abrasion resistant rubber sole on the exercise capacity of the human body were investigated by analysing the skid resistance and abrasion resistance of the running shoes, and conducting biomechanical study on naked feet and feet wearing the shoes. The results demonstrated that the rubber sole had favourable slip resistance property and mechanical properties such as stretching, abrasion resistance, and hardness. Compared to naked feet, the peak pressure intensity of the whole step of feet wearing the newly developed shoes, was significantly lower than that of feet wearing ordinary shoes. In the future, rubber can bring more comfortable experience because of its favourable properties.

  18. Preparation and mechanical properties of rubber composites reinforced with carbon nanohorns.

    Science.gov (United States)

    Isshiki, Tetsuya; Hashimoto, Mikiko; Morii, Masato; Ota, Yuki; Kaneda, Kazuo; Takahashi, Hidetaka; Yudasaka, Masako; Iijima, Sumio; Okino, Fujio

    2010-06-01

    Nitrile butadiene rubber (NBR) composites with single-wall carbon nanohorns (SWNHs, or simply NHs), hole-opened NHs (h-NHs), and carbon black (CB), the most commonly used nanocarbon rubber filler, were prepared, and their mechanical properties were compared. The NBR composites with h-NHs (NBR/h-NH) showed higher tensile strength than those with NHs (NBR/NH), and the tensile strength of NBR/h-NH or NBR/NH was much greater than those of the NBR composites with CB (NBR/CB). At 5 parts per hundred of rubber (phr), the tensile stresses at break of NBR/h-NH was about 1.8 times larger than those of NBR/CB, and the strain at the break, 1.2 times larger. Similarly, at 20 phr, both the tensile strength and strain at the break of NBR/h-NH were 1.4 times larger than those of NBR/CB. NBR/NH showed the highest hardness while having the smallest specific gravity. The present results indicate that NHs and h-NHs have much superior reinforcement effects to CB for NBR rubber matrix.

  19. The production of hydrotalcite from magnesite ore as non-toxic heat stabiliser for polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    J. van der Laan

    2005-09-01

    Full Text Available In recent years polyvinyl chloride (PVC processors had to submit to worldwide pressure to convert to environmentally friendly stabilisers such as hydrotalcite (HT, since most of the heat stabilisers currently in use contain heavy metals such as lead, cadmium or barium – these being highly toxic. The presently used HT production process is, however, very expensive as it involves the recovering of magnesium from seawater magnesia. The purpose of this study was to prove that it is indeed possible to produce cost effective and non-toxic HT from an alternative source. During this study the costing and heat stabilising ability of the hydrotalcite produced from magnesite was compared to that of commercially available heat stabilisers. The effect of the pre-mixing process, as well as the influence of particle size distribution was also investigated. A cost comparative and stabilising efficiency study indicated the cost effectiveness of HT produced from magnesite ore, in comparison with other commercially available stabilisers. The use of HT as produced from magnesite ore would indeed assist in the worldwide changeover to environmentally friendly stabilisers.

  20. High damping properties of magnetic particles doped rubber composites at wide frequency

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye, E-mail: schtiany@163.com [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Liu, Yaqing, E-mail: lyq@nuc.edu.cn [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China); He, Minhong; Zhao, Guizhe; Sun, Youyi [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China)

    2013-05-15

    Highlights: ► A new kind of permanent magnetic rubber was prepared. ► The microstructure and magnetic properties were investigated. ► The mechanical and damping properties were discussed. ► The new material is expected to be an isolator material to a changed frequency. - Abstract: A new kind of rubber composite was prepared by doping SrFe{sub 12}O{sub 19} nanoparticles coated with silane coupling agents (Si-69) into nitrile butadiene rubber (NBR) matrix, which was characterized by the scanning electron microscopy and X-ray spectroscopy. The results showed that the SrFe{sub 12}O{sub 19} nanoparticles were well dispersed in rubber matrix. Furthermore, the mechanical and magnetic properties of the rubber composites were investigated, in which the high tensile strength (15.8 MPa) and high saturation magnetization (22.9 emu/g) were observed. What is more, the high loss factor of the rubber composites was also obtained in a wide frequency range (0–100 Hz) at high loading (80 phr). The result is attributed to that the permanent magnetic field in rubber nanocomposites can absorb shock energy. These results indicate that the new kind of permanent magnetic rubber is expected to be a smart isolator material, in which the isolator will be able to adapt to a changed frequency.

  1. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    Science.gov (United States)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  2. Analysis of acrylonitrile, 1,3-butadiene, and related compounds in acrylonitrile-butadiene-styrene copolymers for kitchen utensils and children's toys by headspace gas chromatography/mass spectrometry.

    Science.gov (United States)

    Ohno, Hiroyuki; Kawamura, Yoko

    2010-01-01

    A headspace gas chromatography/mass spectrometry method was developed for the simultaneous determination of the residual levels of acrylonitrile (AN), 1,3-butadiene (1,3-BD), and their related compounds containing propionitrile (PN) and 4-vinyl-1-cyclohexene (4-VC) in acrylonitrile-butadiene-styrene (ABS) copolymers for kitchen utensils and children's toys. A sample was cut into small pieces, then N,N-dimethylacetamide and an internal standard were added in a sealed headspace vial. The vial was incubated for 1 h at 90 degrees C and the headspace gas was analyzed by gas chromatography/mass spectrometry. The recovery rates of the analytes were 93.3-101.8% and the coefficients of variation were 0.3-6.5%. In ABS copolymers, the levels were 0.3-50.4 microg/g for AN, ND-4.5 microg/g for PN, 0.06-1.58 microg/g for 1,3-BD, and 1.1-295 microg/g for 4-VC. The highest level was found for 4-VC, which is a dimer of 1,3-BD, and the next highest was for AN, which is one of the monomers of the ABS copolymer. Furthermore, the method was also applied to acrylonitrile-styrene (AS) copolymers and polystyrenes (PS) for kitchen utensils, and nitrile-butadiene rubber (NBR) gloves. In AS copolymers, AN and PN were detected at 16.8-54.5 and 0.8-6.9 microg/g, respectively. On the other hand, the levels in PS and NBR samples were all low.

  3. Devulcanization of ground tire rubber: Physical and chemical changes after different microwave exposure times

    Directory of Open Access Journals (Sweden)

    P. S. Garcia

    2015-11-01

    Full Text Available Microwave devulcanization is known to be a promising and an efficient rubber recycling method which makes possible for the rubber to regain its fluidity, and makes it capable of being remolded and revulcanized. The focus of this work is to understand the physical and chemical changes that occur in the ground tire rubber after different microwave exposure periods. For this purpose chemical, thermal, rheological and morphological analyses were performed on the tire rubber, which contains natural rubber (NR and styrene-butadiene rubber (SBR as polymeric material. The results showed that the microwave treatment promoted the breaking of sulfur cross-links and consequently increased the rubber fluidity. However, long periods of exposure led to degradation and modification of some properties. At nanoscale, the deformation of the devulcanized NR domain under stress was observed, and the morphology obtained appears to be a droplet dispersion morphology. The most exposed samples presented only one glass transition temperature, and from this it was concluded that the treatment may have played an important role in the compatibilization of the elastomeric blend. Based on the results, it is required to control the microwave exposure time and polymeric degradation in order to achieve a regenerated rubber with satisfactory properties.

  4. Comparative scanning electron microscope study of the degradation of a plasticized polyvinyl chloride waterproofing membrane in different conditions

    International Nuclear Information System (INIS)

    Pedrosa, A.; Del Río, M.

    2017-01-01

    This paper discusses the analysis of several samples of a plasticized polyvinyl chloride (PVC-P) waterproofing membrane. The samples were extracted from different areas of the same flat roof, which was in service for over 12 years. An original sample of an identical PVC-P membrane that was not installed on the roof was also analyzed. The analysis of the materials was carried out using a scanning electron microscope (SEM). An elemental analysis of every sample was also performed by energy dispersive X-ray spectroscopy (EDS). Micrographs and the elemental composition of the samples were compared with the data obtained in the analysis of the original sample. The results show dehydrochlorination of the polymer in two of the samples studied and great deterioration that was not visible to the naked eye in the sample that was totally exposed to the weather. [es

  5. Infrared Spectroscopic Study on Structural Change and Interfacial Interaction in Rubber Composites Filled with Silica-Kaolin Hybrid Fillers

    Science.gov (United States)

    Chen, Y.; Guan, J.; Hu, H.; Gao, H.; Zhang, L.

    2016-07-01

    A series of natural rubber/styrene butadiene rubber/polybutadiene rubber composites was prepared with nanometer silica and micron kaolin by a dry modification process, mechanical compounding, and mold vulcanization. Fourier transform infrared spectroscopy and a scanning electron microscope were used to investigate the structural changes and interfacial interactions in composites. The results showed that the "seesaw" structure was formed particularly with the incorporation of silica particles in the preparation process, which would be beneficial to the dispersibility of fillers in the rubber matrix. The kaolinite platelets were generally arranged in directional alignment. Kaolinite with smaller particle size and low-defect structure was more stable in preparation, but kaolinite with larger particle size and high defect structure tended to change the crystal structure. The composite prepared in this research exhibited excellent mechanical and thermal properties.

  6. Microwave and ultrasound-assisted synthesis of poly(vinyl chloride)/riboflavin modified MWCNTs: Examination of thermal, mechanical and morphology properties.

    Science.gov (United States)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Azimi, Faezeh

    2018-03-01

    This study focused on the preparation and investigation of physicochemical features of new poly(vinyl chloride) (PVC) nanocomposites (NCs) including different amounts of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) functionalized with riboflavin (RIB). Firstly, to increase the hydrophilicity of MWCNTs, the surface of them was functionalized by incorporating and formation of ester groups with RIB as a low cost and environmentally friendly biomolecule through ultrasound and microwave irradiations. Afterwards, PVC/RIB-MWCNTs NCs were fabricated via the solution casting and ultrasonic dispersion methods. Prepared NCs were examined by X-ray diffraction, thermogravimetric analysis, field emission scanning electron microscopy, transmission electron micrograph, and Raman spectroscopy. The PVC/RIB-MWCNTs NCs (12wt%) showed the higher mechanical and thermal behavior as compared to other concentration of MWCNTs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Study of the Effect of Grafted Antioxidant on the Acrylonitrile-Butadiene Copolymer Properties

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available The grafting of ADPEA onto natural rubber was executed with UV radiation. Benzoyl peroxide was used to initiate the free-radical grafting copolymerization. Natural rubber-graft-N-(4-aminodiphenylether acrylamide (NR-g-ADPEA was characterized with an IR technique. The paper aims interested to determine the crosslinking density by using the ultrasonic technique. The ultrasonic velocities of both longitudinal and shear waves were measured in thermoplastic discs of NBR vulcanizates as a function of aging time. Ultrasonic velocity measurements were taken at 2 MHz ultrasonic frequency using the pulse echo method. We studied the effect of aging on the mechanical properties, crosslinking density, and the swelling and extraction phenomena for acrylonitrile-butadiene copolymer (NBR vulcanizates, which contained the prepared NR-g-ADPEA and a commercial antioxidant, N-isopropyl-−-phenyl-p-phenylenediamine. The prepared antioxidant enhanced both the mechanical properties of the NBR vulcanizates and the permanence of the ingredients in these vulcanizates.

  8. A comparison between the effects of gamma radiation and sulfur cure system on the microstructure and crosslink network of (styrene butadiene rubber/ethylene propylene diene monomer) blends in presence of nanoclay

    International Nuclear Information System (INIS)

    Shoushtari Zadeh Naseri, Aida; Jalali-Arani, Azam

    2015-01-01

    Rubber blends based on (styrene–butadiene rubber (SBR)/ethylene–propylene-diene monomer (EPDM)) with and without organoclay (OC) were prepared through a melt mixing process. The concentration ratio of the rubber phases (EPDM/SBR; 50/50 wt%) and the amount of the OC were kept constant. The samples were then vulcanized by means of gamma radiation using a Co-60 gamma source as well as sulfur cure system. The effect of absorbed dose on the formation of the crosslinks was confirmed by the Fourier transform infrared spectroscopy (FTIR). The effects of absorbed dose, sulfur cure system and OC on the gel content, and crosslink density were evaluated by the chemical tests. Applying the Charlesby–Pinner equation to estimate the radiation chemical yield, revealed that the use of OC in the blend caused 20% reduction in the degradation/crosslinking ratio. Employing the swelling test data, some thermodynamic parameters were determined. Using field emission scanning electron microscopy (FE-SEM) to investigate microstructure of the samples revealed a more homogeneous structure and also an increase in compatibility of the blend components in the sample cured by the irradiation in comparison to that cured by the sulfur curing system. - Highlights: • SBR/EPDM and SBR/EPDM/OC samples were prepared and irradiated by gamma radiation. • Increasing the absorbed dose and using OC enhanced gel content and crosslink density. • The increase in the absorbed dose resulted in an increase in ΔS and decrease in ΔG. • The use of OC in the blend caused 20% reduction in the degradation/crosslinking ratio. • In compare to sulfur cure sample the irradiated one showed more homogeneous structure

  9. Influence of different curing systems on the physico-mechanical properties and stability of SBR and NR rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Basfar, A.A. E-mail: abasfar@kacst.edu.sa; Abdel-Aziz, M.M.; Mofti, S

    2002-01-01

    The physical properties of radiation, sulfur and peroxide-cured styrene-butadiene rubber (SBR) and natural rubber (NR) were compared. The dependence of the mechanical properties of the radiation-vulcanized SBR and NR on the coagent concentration and radiation dose was studied. The effect of thermal aging on the mechanical properties of the different rubber formulations was discussed. The radiation-cured formulations of SBR have superior mechanical properties and thermal stability compared with those of the chemically vulcanized compounds. Whereas, the radiation-cured formulations of NR have similar mechanical properties but superior thermal stability (based on the % change in E after thermal aging), when compared with those of the sulfur-vulcanized compounds and slightly better than those of the peroxide-vulcanized compounds.

  10. Electron Beam Damage in Poly(Vinyl Chloride) and Poly(Acrylonitrile) as Observed by Auger Electron Spectroscopy

    International Nuclear Information System (INIS)

    Lea, Alan S.; Engelhard, Mark H.; Baer, Donald R.

    2003-01-01

    AES spectra of spun-cast films of poly(vinyl chloride) (PVC) and poly(acrylonitrile) (PAN) were collected over a period of time to determine specimen damage during exposure to a 10kV electron beam. For the PVC, loss of chlorine was observed over a period of 203 minutes to the extent that the final chlorine concentration was only 20% of its original value. PAN exhibited a loss in nitrogen content over a period of 120 minutes, but the rate of damage to the polymer was significantly less than PVC. Figure 1 shows the atomic concentration in the PVC film as a function of dose (time). It takes a dose of approximately 7.0x10-5 Ccm-5 for the chlorine concentration to fall from its original value by 10% (one definition of critical dose). Figure 2 shows a similar drop in nitrogen concentration in the PAN film as a function of dose. For this polymer, it takes a dose of 1.3x10-3 Ccm-2 for the nitrogen concentration to fall by 10%

  11. Stability of levothyroxine injection in glass, polyvinyl chloride, and polyolefin containers.

    Science.gov (United States)

    Frenette, Anne Julie; MacLean, Robert D; Williamson, David; Marsolais, Pierre; Donnelly, Ronald F

    2011-09-15

    The 24-hour stability of a levothyroxine solution admixed and stored in three common infusion containers and infused through polyvinyl chloride (PVC) tubing was evaluated. Levothyroxine sodium 1-μg/mL injection prepared in glass bottles and PVC and polyolefin bags were assayed using high-performance liquid chromatography at 0, 1, 3, 6, 12, and 24 hours; samples drawn directly from the containers, as well as from the distal end of attached PVC tubing, were assayed. The area under the time-versus-concentration curve (AUC) for predicted and delivered doses was calculated; analysis of variance was used for comparison of the percentages of predicted and actual AUC values. The levothyroxine concentration was stable in glass bottles and polyolefin bags through 24 hours (mean ± S.D. percentage of initial concentration remaining, 103.5% ± 2.5% and 100.0% ± 2.9%, respectively). In the PVC infusion bags, the amount of drug decreased to 90% of the initial concentration within 1 hour and then rose and remained within acceptability limits. The levothyroxine concentration of the samples infused through PVC line from glass and polyolefin containers decreased after 1 hour by about 13%; the loss of the drug from the samples infused from PVC bags was higher (18%), presumably due to additive adsorptive effects. In all samples tested, the drug concentration rebounded and remained above 90% to the end of the study. Levothyroxine sodium 1-μg/mL solution was stable for 24 hours in glass bottles and polyolefin bags but when stored in PVC bags, the concentration decreased by 10% after 1 hour.

  12. Precursor effect on the property and catalytic behavior of Fe-TS-1 in butadiene epoxidation

    Science.gov (United States)

    Wu, Mei; Zhao, Huahua; Yang, Jian; Zhao, Jun; Song, Huanling; Chou, Lingjun

    2017-11-01

    The effect of iron precursor on the property and catalytic behavior of iron modified titanium silicalite molecular sieve (Fe-TS-1) catalysts in butadiene selective epoxidation has been studied. Three Fe-TS-1 catalysts were prepared, using iron nitrate, iron chloride and iron sulfate as precursors, which played an important role in adjusting the textural properties and chemical states of TS-1. Of the prepared Fe-TS-1 catalysts, those modified by iron nitrate (FN-TS-1) exhibited a significant enhanced performance in butadiene selective epoxidation compared to those derived from iron sulfate (FS-TS-1) or iron chloride (FC-TS-1) precursors. To obtain a deep understanding of their structure-performance relationship, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature programmed desorption of NH3 (NH3-TPD), Diffuse reflectance UV-Vis spectra (DR UV-Vis), Fourier transformed infrared spectra (FT-IR) and thermal gravimetric analysis (TGA) were conducted to characterize Fe-TS-1 catalysts. Experimental results indicated that textural structures and acid sites of modified catalysts as well as the type of Fe species influenced by the precursors were all responsible for the activity and product distribution.

  13. Radiation grafting of hydrophilic monomers on to plasticized poly(vinyl chloride) sheets: Pt. 1

    International Nuclear Information System (INIS)

    Kalliyana Krishnan, V.; Jayakrishnan, A.; Francis, J.D.

    1990-01-01

    Medical-grade plasticized polyvinyl chloride (PVC) sheets were surface modified using gamma-radiation grafting of a combination of hydrophilic monomers based on 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP). The properties of the modified surfaces were evaluated using contact angle measurements, phase-contrast photomicroscopy and scanning electron microscopy. Surface energy calculations indicated that the surfaces became highly hydrophilic when grafted with even a 1% (v/v) solution of HEMA-NVP combination in the presence of 0.005 M CuSO 4 . Migration of the plasticizer di(2-ethylhexyl phthalate) from the grafted sheets was examined in hydrocarbon solvents such as n-hexane, n-heptane and n-octane and in extractant media such as cotton seed oil and polyethylene glycol-400 (PEG-400). The migration was found to be 0 C over a period of 5 h. Accelerated leaching studies in cotton seed oil and PEG-400 demonstrated that virtually no plasticizer migrated out in the former over a period of 96 h whereas the rate of migration in the latter medium showed only a mild reduction. The migration behaviour was Fickian in nature for grafted sheets. The method described may be useful as a simple, versatile technique for preventing plasticizer migration from plasticized PVC for medical applications. (author)

  14. Thermal stabilization and plasticization of poly(vinyl chloride) by ester thiols: Update and current status

    International Nuclear Information System (INIS)

    Starnes, William H.; Du, Bin; Kim, Soungkyoo; Zaikov, Vadim G.; Ge, Xianlong; Culyba, Elizabeth K.

    2006-01-01

    Poly(vinyl chloride) (PVC) is one of the most important medical plastics. Recently, however, the safety of flexible PVC containing the common plasticizer, di(2-ethylhexyl) phthalate, has been called into question. Widely used heat stabilizers for PVC that incorporate toxic heavy metals also have fallen into disfavor. In order to address these problems, we have synthesized and tested, as potential replacements, several organic thiols that contain one or more carboxylate ester functions and thus are highly compatible with the polymer. When introduced into PVC at high loading levels (e.g., 30-35 parts by weight), the ester thiols are extremely effective as heat stabilizers and also useful as primary plasticizers. When used at a low loading level (e.g., 3 parts by weight), they still are excellent heat stabilizers for both plasticized and rigid PVC. Importantly, their high potency is achieved in the absence of any costabilizers that incorporate heavy metals. Their syntheses are simple and straightforward, and their odors are not offensive, because their volatilities are low. Described here are some typical results obtained with this new additive technology, which was licensed for commercialization in 2005

  15. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    Science.gov (United States)

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.

  16. Investigation on pretreatment of centrifugal mother liquid produced in the production of polyvinyl chloride by air-Fenton technique.

    Science.gov (United States)

    Sun, Yingying; Hua, Xiuyi; Ge, Rui; Guo, Aitong; Guo, Zhiyong; Dong, Deming; Sun, Wentian

    2013-08-01

    Centrifugal mother liquid (CML) is one of the main sources of wastewater produced during the production of polyvinyl chloride in chlor-alkali industry. CML is a typical poorly biodegradable organic wastewater, containing many kinds of refractory pollutants. Specifically, it contains dissolved refractory polymers, especially polyvinyl alcohol (PVA), which can pass though the biotreatment processes and clog the membranes used for further treatment. In this study, to ensure the CML applicable to biotreatment and membrane treatment, a novel efficient and mild technique, air-Fenton treatment, was employed as a pretreatment technique to improve biodegradability of the CML and to break down the polymers in the CML. Firstly, the technique was optimized for the CML treatment by optimizing the main parameters, including the dosage of ferrous sulfate, initial pH of the wastewater, [H2O2]/[Fe(2+)], aeration rate, reaction time, and temperature, based on removal efficiency of COD and PVA from the CML. Then, the optimized technique was tested and evaluated. The results indicated that under the optimized conditions, the air-Fenton treatment could remove 66, 98, and 55 % of the COD, PVA, and TOC, respectively, from the CML. After the treatment, biodegradability of the wastewater increased significantly (BOD/COD increased from 0.31 to 0.68), and almost all of the PVA polymers were removed or broken down. Meanwhile, concentration of the remaining iron ions, which were added during the treatment, was also quite low (only 2.9 mg/L). Furthermore, most of the suspended materials and ammonia nitrogen, and some of the phosphorus in the wastewater were removed simultaneously.

  17. Rubber-like poly(vinyl alcohol) gel

    Energy Technology Data Exchange (ETDEWEB)

    Nambu, Masao (Nippon Oil Co. Ltd., Yokohama (Japan). Central Technical Research Lab.)

    1990-09-01

    Anomalous poly (vinyl alcohol) gel has been found in our laboratory since 1980. The gel is prepared by repeated freezing (or freeze-dehydration) of aqueous poly (vinyl alcohol). Experiments establish the fact that anomalous gel is never produced in the course of freezing, but during sustained thawing the gelation does occur. Moreover, it was found that the softening point of the gel increases at 37degC. It is assumed that crystal nuclei are generated on freezing, then on thawing, some of them grow to very fine crystals which act as polymer network-knots (cross-linking). Additional freezing provide other seeds, which grow similarly, and these are accumulated until rubber-like gel is produced. The gel was always water-resistant at 37degC, and the potassium permanganate consumption of the extracted water layer remained far below the official restricted value for medical materials. The gel can be sterilized with gamma-rays or chlorhexidine. Moreover, it satisfies the official standards of acute toxicity, pyrogen, intracutaneous reaction, hemolyzation, and intracorporeal implantation, respectively. Applications to adhesion-preventing membrane (for joint or pericardium), tamponade (for jaw defects), electrode (for electroretinogram or artificial inner ear), artificial denture base and phantoms for magnetic resonance imaging were examined. (author) 54 refs.

  18. Stability of 2 mg/mL Adenosine Solution in Polyvinyl Chloride and Polyolefin Infusion Bags.

    Science.gov (United States)

    DeAngelis, Michael; Ferrara, Alexander; Gregory, Kaleigh; Zammit, Kimberly; Zhao, Fang

    2018-04-01

    Adenosine is a potent endogenous mediator of vasodilation. Compounded sterile solutions of adenosine are used in cardiac catheterization lab to perform stress tests on the heart. These tests are used to determine the fractional flow reserve (FFR) and are commonly used in the management and diagnosis of cardiovascular conditions. The purpose of this study was to assess the physical and chemical stability of 2 mg/mL adenosine in 0.9% Sodium Chloride Injection, USP in polyvinyl chloride [PVC]) and polyolefin infusion bags stored at room temperature (20°C-25°C) and under refrigeration (2°C-8°C). The compounding and analytical methods used in this study were very similar to those described in the prior publications from the authors' laboratory. To ensure a uniform starting concentration of all stability samples, a batch of 2 mg/mL adenosine solution was prepared and then packaged into empty PVC and polyolefin infusion bags. These stability samples were prepared in triplicate for each bag type and storage temperature (a total of 12 samples). The infusion bag samples were assessed for stability immediately after preparation and after 1 day, 3 days, 7 days, and 14 days. At each time point, the infusion bags were first visually inspected against a light background for color change, clarity, and particulates. Aliquots were drawn from each sample at each time point for pH analysis and high-performance liquid chromatography (HPLC) analysis. Over 14 days of storage at room temperature or refrigeration, no considerable change in visual appearance or pH was observed in any bags. All samples retained 90% to 110% of the initial drug concentration. No significant degradation peaks were observed in the HPLC chromatograms.

  19. Evaluation of susceptibility of polymer and rubber materials intended into contact with drinking water on biofilm formation

    Science.gov (United States)

    Szczotko, Maciej; Stankiewicz, Agnieszka; Jamsheer-Bratkowska, Małgorzata

    Plumbing materials in water distribution networks and indoor installations are constantly evolving. The application of new, more economical solutions with plastic materials eliminates the corrosion problems, however, do not fully protect the consumer against secondary microbial contamination of water intended for human consumption caused by the presence of a biofilm on the inner surface of materials applied. National Institute of Public Health - National Institute of Hygiene conducts research aimed at a comprehensive assessment of this type of materials, resulting their further marketing authorization in Poland. Evaluation and comparison of polymer and rubber materials intended to contact with water for the susceptibility to biofilm formation. Plastic materials (polyethylene, polypropylene, polyvinyl chloride) and rubber compounds (EPDM, NBR), from different manufacturers were evaluated. The study was carried out on 37 samples, which were divided into groups according to the material of which they were made. The testing was conducted according to the method based on conditions of dynamic flow of tap water. The level of bioluminescence in swabs taken from the surface of the tested materials was investigated with a luminometer. Evaluation of plastic materials does not show major objections in terms of hygienic assessment. All materials met the evaluation criteria established for methodology used. In case of rubber compounds, a substantial part clearly exceeded the limit values, which resulted in their negative assessment and elimination of these materials from domestic market. High susceptibility to the formation of biofilm in the group of products made of rubber compounds has been demonstrated. Examined plastic materials, except for several cases, do not revealed susceptibility to biofilm formation, but application of plastics for distribution of water intended for human consumption does not fully protect water from secondary, microbiological contamination. Complete

  20. 40 CFR Table 5 to Subpart U of... - Known Organic HAP Emitted From the Production of Elastomer Products

    Science.gov (United States)

    2010-07-01

    ... Rubber. EPI = Epichlorohydrin Rubber. EPR = Ethylene Propylene Rubber. HBR = Halobutyl Rubber. HYP = Hypalon TM. NEO = Neoprene. NBL = Nitrile Butadiene Latex. NBR = Nitrile Butadiene Rubber. PBR/SBRS... products] Organic HAP/chemical name (CAS No.) Elastomer product/subcategory BR EPI EPR HBR HYP NEO NBL NBR...

  1. Effect of Palm Oil Bio-Based Plasticizer on the Morphological, Thermal and Mechanical Properties of Poly(Vinyl Chloride

    Directory of Open Access Journals (Sweden)

    Kar Min Lim

    2015-10-01

    Full Text Available Flexible poly(vinyl chloride (PVC was fabricated using a palm oil-based alkyd as a co-plasticizer to di-octyl phthalate (DOP and di-isononyl phthalate (DiNP. The effects of the incorporation of the palm oil-based alkyd on morphological, thermal and mechanical properties of PVC compounds were studied. Results showed the incorporation of the alkyd enhanced the mechanical and thermal properties of the PVC compounds. Fourier transform infrared spectroscopy (FTIR results showed that the polar –OH and –C=O groups of alkyd have good interaction with the –C–Cl group in PVC via polar interaction. The morphological results showed good incorporation of the plasticizers with PVC. Improved tensile strength, elastic modulus, and elongation at break were observed with increasing amount of the alkyd, presumably due to chain entanglement of the alkyd with the PVC molecules. Thermogravimetric analysis results confirmed that the alkyd has improved the thermostability of the PVC compounds.

  2. The influence of carbon black on curing kinetics and thermal aging of acrylonitrile–butadiene rubber

    OpenAIRE

    Jaroslava Budinski-Simendić; Gordana Marković; Milena Marinović-Cincović; Vojislav Jovanović; Suzana Samardžija-Jovanović

    2009-01-01

    Elastomers based on a copolymer of butadiene and acrylonitrile (NBR) have excellent oil resistance but are very sensitive for degradation at very high temperatures. The aim of this applicative contribution was to determine the effect of high abrasion furnace carbon black with primary particle size 46 nm on aging properties of elastomeric materials based on NBR as network precursor. The curing kinetics was determined using the rheometer with an oscillating disk, in which the network formation ...

  3. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  4. Fabrication and characterization of a novel hydrophobic CaCO{sub 3} grafted by hydroxylated poly(vinyl chloride) chains

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Lixia [State Key Laboratory of Polymer Materials Engineering, Sichuan University (China); School of Chemical Science and Technology, Yunnan University (China); Yang, Simei; Luo, Xin [School of Chemical Science and Technology, Yunnan University (China); Lei, Jingxin [State Key Laboratory of Polymer Materials Engineering, Sichuan University (China); Cao, Qiue [School of Chemical Science and Technology, Yunnan University (China); Wang, Jiliang, E-mail: jlwang@ynu.edu.cn [School of Chemical Science and Technology, Yunnan University (China)

    2015-12-01

    Highlights: • Hydroxylated poly(vinyl chloride) (PVC-OH) with different molecular weight and hydroxyl value was successfully prepared by the suspension copolymerization. • PVC-OH was grafted onto the surface of CaCO{sub 3} particles by the urethane formation reaction. • The modified CaCO{sub 3} particles show excellent hydrophobicity. - Abstract: The hydroxylated PVC (PVC-OH) was successfully synthesized by a suspension polymerization of vinyl chloride (VC), butyl acrylate (BA) and hydroxyethyl acrylate (HEA). Novel hydrophobic CaCO{sub 3} was then prepared by a urethane formation reaction between methylene diphenyl diisocyanate (MDI) and the −OH groups both in the PVC-OH chains and on the surface of pristine CaCO{sub 3} particles. The effect of the PVC-OH content on the grafting ratio of treated CaCO{sub 3} particles was extensively investigated. Combining the result of Fourier transform infrared (FTIR) with that of water contact angle, it can be concluded that the hydrophobicity of CaCO{sub 3} had been efficiently improved by the PVC-OH segments grafted on the surface of CaCO{sub 3} particles. X-ray diffraction (XRD), thermal gravity analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM) were also used to study crystalline behaviors, thermal stability and surface morphology of the modified CaCO{sub 3} particles, respectively. The change of specific surface area implying surface modification was investigated as well.

  5. Rubber/clay nanocomposites by combined latex compounding and melt mixing: A masterbatch process

    International Nuclear Information System (INIS)

    Tan, Jinghua; Wang, Xiaoping; Luo, Yuanfang; Jia, Demin

    2012-01-01

    Highlights: → Rubber/Ca-montmorillonite nanocomposites were prepared by the masterbatch process. → Latex compounding method is efficient to improve the Ca-montmorillonite dispersion. → Exfoliated structure was obtained in the masterbatch by latex compounding method. → Intercalated and exfoliated structures were achieved in the vulcanizate. → The properties of vulcanizate are improved by the addition of Ca-montmorillonite. -- Abstract: Rubber/Ca-montmorillonite (Ca-MMT) nanocomposites with well exfoliated Ca-MMT layers were prepared by combination of latex compounding and melt mixing. Firstly, a high Ca-MMT content masterbatch was co-coagulated by natural rubber (NR) latex and modified Ca-MMT aqueous suspension through latex compounding. The masterbatch was added in the system of styrene butadiene rubber (SBR) and epoxidized natural rubber (ENR) by melt mixing subsequently. The X-ray diffraction (XRD) and transmission electronic microscopy (TEM) results showed that intercalated and exfoliated nanocomposites were obtained by the masterbatch technique. The effects of modified Ca-MMT introduction into the rubber matrix, via the masterbatch technique, on the properties of the resulting composites were studied. It was found that the vulcanization was hindered by the incorporation of modified Ca-MMT, while mechanical performances, thermal stability and aging resistance were improved. The increasingly glass transition temperature and the storage modulus with the loading of modified Ca-MMT were measured by dynamic mechanical analysis (DMA).

  6. Viscoelastic, Spectroscopic, and Microscopic Characterization of Novel Bio-Based Plasticized Poly(vinyl chloride Compound

    Directory of Open Access Journals (Sweden)

    Mei Chan Sin

    2014-01-01

    Full Text Available Plasticized poly(vinyl chloride (PVC is one of the most widely consumed commodity plastics. Nevertheless, the commonly used plasticizers, particularly phthalates, are found to be detrimental to the environment and human health. This study aimed to investigate the ability of an alternative greener material, medium-chain-length polyhydroxyalkanoates (mcl-PHA, a kind of biopolyester and its thermally degraded oligoesters, to act as a compatible bioplasticizer for PVC. In this study, mcl-PHA were synthesized by Pseudomonas putida PGA1 in shake flask fermentation using saponified palm kernel oil (SPKO and subsequently moderately thermodegraded to low molecular weight oligoesters (degPHA. SEM, ATR-FTIR, 1H-NMR, and DMA were conducted to study the film morphology, microstructure, miscibility, and viscoelastic properties of the PVC-PHA and PVC/degPHA binary blends. Increased height and sharpness of tan δmax⁡ peak for all binary blends reveal an increase in chain mobility in the PVC matrix and high miscibility within the system. The PVC-PHA miscibility is possibly due to the presence of specific interactions between chlorines of PVC with the C=O group of PHA as evidenced by spectroscopic analyses. Dynamic viscoelastic measurements also showed that mcl-PHA and their oligoesters could reduce the Tg of PVC, imparting elasticity to the PVC compounds and decreasing the stiffness of PVC.

  7. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The evaluation of tetrabutylamonium bis(4-ethylphenylsulphonyldithiocarbimate)zincate(II) (ZNIBU) efficiency as a reclaiming agent for styrene-butadiene rubber (SBR)

    International Nuclear Information System (INIS)

    Moreno, Pedro H.H.; Visconte, Leila L.Y.; Pacheco, Elen B.A.V.; Tavares, Eder C.

    2015-01-01

    In recent years, the production of rubber waste has been reported as a serious environmental problem. The chemical structure of rubbers (crosslinked, insoluble and infusible polymers) makes its reprocessing very difficult, unlike thermoplastics. The most common methods to treat rubber waste are of thermal, mechanical and chemical nature, wherein the chemical methods the purpose is to regenerate the rubber. Early studies with tetrabutylamonium bis(4-methylphenylsulphonyldithiocarbimate)zincate(II) (ZNIBU) point to its ability as an accelerator in the rubber curing process. In this work, this zinc complex was evaluated as a chemical regeneration agent. ZNIBU was synthesized and characterized by Nuclear Magnetic Resonance ("1"3C NMR) and Fourier Transform Infrared Spectroscopy (FTIR). The mixture of virgin SBR with vulcanization ingredients was performed in a two-roll mill, and the composition was then vulcanized and molded on a hydraulic press. The synthesized ZNIBU was then mixed with the vulcanized rubber and devulcanization was observed. Finally, the devulcanized elastomeric composition was revulcanized. The revulcanization of SBR regenerated with ZNIBU led to the formation of a rubber with maximum torque near the maximum torque of the virgin vulcanized rubber. After adjusting the optimal conditions of regeneration, mechanical tests will be carried out (tensile strength, tear strength and hardness) for the specimens of both vulcanized and revulcanized rubbers in order to compare their mechanical properties. (author)

  9. Introduction to radiation chemistry of polymer

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Dahlan, Khairul Zaman [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    The topics briefly discussed are 1. What are radiation chemistry 2. Type of ionising radiation 3. gamma rays versus electron beam 4. Interaction of radiation with matters 5. What is polymers 6. Techniques of crosslinking 7. Crosslinking of polymers i.e. polyethylene, ethylene copolymer, polypropylene, polyamides, polyvinyl chloride, natural rubber.

  10. Introduction to radiation chemistry of polymer

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan

    1994-01-01

    The topics briefly discussed are 1. What are radiation chemistry 2. Type of ionising radiation 3. gamma rays versus electron beam 4. Interaction of radiation with matters 5. What is polymers 6. Techniques of crosslinking 7. Crosslinking of polymers i.e. polyethylene, ethylene copolymer, polypropylene, polyamides, polyvinyl chloride, natural rubber

  11. Evaluation of the Utility of Recycling Used Products made of Polyvinyl Chloride

    Science.gov (United States)

    Matsuda, Satoshi; Kubota, Hiroshi

    This study intends to propose a new approach to evaluate the utility of recycling used products made of Polyvinyl Chloride (PVC) . In order to determine whether or not these used products can be recycled, there must be some indicators that appropriately and quantitatively show the degree that the contribution of recycling these targeted used products has on society. It was indicated that the rights and wrongs of incineration and/or heat recovery using a material such as wallpaper or floor cover made of PVC could be judged by the concept of "Social Energy Consumption" originally proposed by the authors (Chap. 3 in the text) . On the other hand, in the case where the used products such as PVC pipes and joints are dug out from underground and recycled, this research shows the estimation of its utility should be accomplished by extending the concept: Specifically, the manpower converted to the value of the social energy consumption was added, because labor costs for digging out these used products occupy a large portion of the total recycling cost, although manpower is not taken into account in the usual energy balance calculation, which leads to the contradiction of the estimation results from the standpoint of energy balance and economy. In this study, the marginal cost for digging out PVC pipes and joints evaluated by this method was shown as an example of a trial calculation (Chap. 2 in the text) . As a whole, this research quantitatively demonstrated an example trial calculation showing whether or not these used products should be recycled disregarding if the economic efficiency should be evaluated as a result of the analysis based upon the concept of "Social Energy Consumption".

  12. Chemical modification of poly(vinyl alcohol): evaluation of hydrophilic/lipophilic balance

    International Nuclear Information System (INIS)

    Aranha, Isabele B.; Lucas, Elizabete F.

    2001-01-01

    Poly(vinyl alcohol) terpolymers have been obtained by reaction of partially hydrolized poly(vinyl alcohol) with different acid chlorides. The objective is the preparation of polymers with slight differences in their hydrophilic/lipophilic balance and in the interfacial activities of their solutions. The chemical modifications were characterized by means of 1 H NMR and the polymer properties were evaluated in terms of changes in solubility and surface tension. By chemical modification, polymers with low percentage of hydrophobic group were obtained. The water-soluble polymers obtained did not have the surface tension of their solutions altered. The solubility of the modified polymers decreased markedly, even with low contents of hydrophobic groups. (author)

  13. Effect of gamma irradiation on sulfur-cured chlorobutyl rubber

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Ono, Lilian S.; Lugao, Ademar B.

    2011-01-01

    Chlorobutyl rubber (CIIR) is similarly manufactured to butyl rubber (IIR). The insertion of chlorine atom in isoprene group represents an improvement in its properties, such as: high vulcanizing speed, low permanent stress and compatibility with other types of rubber. The presence of reactive chlorine in butyl chlorate allows a variety of vulcanizing techniques, being the cure via sulfur, the most conventional. In these compounds carbon-halogen bonds are weaker than carbon-carbon and carbon-hydrogen bonds, and the main effect of radiation is to break the carbon-halogen bond to give an organic free radical. Irradiations of certain alkyl chlorides can bring about isomerism in which the location of the halogen atom is changed, the carbon skeleton of molecule remaining unaltered. Irradiation of n-butyl chlorides gives high yields of tertiary carbon. The major effect of high energy photon, such as gamma rays, in organic polymers is the generation of free radicals, along changes in mechanical properties. This work aims to the study of irradiation effect on mechanical properties of a sulfur cured chlorobutyl rubber compound, gamma irradiated within 25, 50, 100, 150 e 200 kGy doses range. The techniques used in their characterization were: strength - stress analysis and elasticity modulus. Results obtained were investigated, demonstrated and discussed. (author)

  14. Effect of gamma irradiation on sulfur-cured chlorobutyl rubber

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Ono, Lilian S.; Lugao, Ademar B., E-mail: srscagliusi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Chlorobutyl rubber (CIIR) is similarly manufactured to butyl rubber (IIR). The insertion of chlorine atom in isoprene group represents an improvement in its properties, such as: high vulcanizing speed, low permanent stress and compatibility with other types of rubber. The presence of reactive chlorine in butyl chlorate allows a variety of vulcanizing techniques, being the cure via sulfur, the most conventional. In these compounds carbon-halogen bonds are weaker than carbon-carbon and carbon-hydrogen bonds, and the main effect of radiation is to break the carbon-halogen bond to give an organic free radical. Irradiations of certain alkyl chlorides can bring about isomerism in which the location of the halogen atom is changed, the carbon skeleton of molecule remaining unaltered. Irradiation of n-butyl chlorides gives high yields of tertiary carbon. The major effect of high energy photon, such as gamma rays, in organic polymers is the generation of free radicals, along changes in mechanical properties. This work aims to the study of irradiation effect on mechanical properties of a sulfur cured chlorobutyl rubber compound, gamma irradiated within 25, 50, 100, 150 e 200 kGy doses range. The techniques used in their characterization were: strength - stress analysis and elasticity modulus. Results obtained were investigated, demonstrated and discussed. (author)

  15. Effect of magnetic and thermal properties of iron oxide nanoparticles (IONs) in nitrile butadiene rubber (NBR) latex

    International Nuclear Information System (INIS)

    Ong, Hun Tiar; Julkapli, Nurhidayatullaili Muhd; Hamid, Sharifah Bee Abd; Boondamnoen, O.; Tai, Mun Foong

    2015-01-01

    Nitrile butadiene rubber (NBR) gloves are one of the most important personal protective equipments but they are possible to tear off and contaminate food or pharmaceutical and healthcare products during manufacturing and packaging process. High tendency of torn glove remaining in food or products due to white or light flesh-coloured glove is not easy to be detected by naked eyes. In this paper, iron oxide nanoparticles (IONs) selected as additive for NBR to improve its detectability by mean of magnetic properties. IONs synthesized via precipitation method and compounded with NBR latex before casting on petri dish. The properties of IONs were investigated by X-ray Diffractometry (XRD), Transmission Electron Microscope (TEM), Raman Spectroscopy and Vibrating Sample Magnetometer (VSM). Meanwhile NBR/IONs composites were studied by Thermogravimetry Analysis (TGA), Differential Scanning Calorimetry (DSC) and Vibrating Sample Magnetometer (VSM). It observed that, synthesized IONs shows of 25.28 nm crystallite with 25.86 nm semipherical (changed as) shape. Meanwhile, Magnetite and maghemite phase are found in range of 670 cm −1 and 700 cm −1 respectively, which it contributes magnetization saturation of 73.96 emu/g at 10,000 G by VSM. Thermal stability and magnetic properties were increased with incorporating IONs into NBR latex up to 20 phr. NBR/IONs 5 phr has the optimum thermal stability, lowest glass transition temperature (−14.83 °C) and acceptable range of magnetization saturation (3.83 emu/g at 10,000 G) to form NBR gloves with magnetic detectability. - Highlights: • We synthesized IONs with high magnetization saturation (M s ). • High M s of IONs were incorporated into NBR latex in order to induce magnetic properties in the NBR composite. • Introduction of IONs into NBR latex would improve thermal properties. • The produced NBR/IONs 5 phr composite exceeded the minimum magnetic moment sensor of the detector. • They have high potential for the

  16. Effect of magnetic and thermal properties of iron oxide nanoparticles (IONs) in nitrile butadiene rubber (NBR) latex

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Hun Tiar; Julkapli, Nurhidayatullaili Muhd; Hamid, Sharifah Bee Abd, E-mail: sharifahbee@um.edu.my; Boondamnoen, O.; Tai, Mun Foong

    2015-12-01

    Nitrile butadiene rubber (NBR) gloves are one of the most important personal protective equipments but they are possible to tear off and contaminate food or pharmaceutical and healthcare products during manufacturing and packaging process. High tendency of torn glove remaining in food or products due to white or light flesh-coloured glove is not easy to be detected by naked eyes. In this paper, iron oxide nanoparticles (IONs) selected as additive for NBR to improve its detectability by mean of magnetic properties. IONs synthesized via precipitation method and compounded with NBR latex before casting on petri dish. The properties of IONs were investigated by X-ray Diffractometry (XRD), Transmission Electron Microscope (TEM), Raman Spectroscopy and Vibrating Sample Magnetometer (VSM). Meanwhile NBR/IONs composites were studied by Thermogravimetry Analysis (TGA), Differential Scanning Calorimetry (DSC) and Vibrating Sample Magnetometer (VSM). It observed that, synthesized IONs shows of 25.28 nm crystallite with 25.86 nm semipherical (changed as) shape. Meanwhile, Magnetite and maghemite phase are found in range of 670 cm{sup −1} and 700 cm{sup −1} respectively, which it contributes magnetization saturation of 73.96 emu/g at 10,000 G by VSM. Thermal stability and magnetic properties were increased with incorporating IONs into NBR latex up to 20 phr. NBR/IONs 5 phr has the optimum thermal stability, lowest glass transition temperature (−14.83 °C) and acceptable range of magnetization saturation (3.83 emu/g at 10,000 G) to form NBR gloves with magnetic detectability. - Highlights: • We synthesized IONs with high magnetization saturation (M{sub s}). • High M{sub s} of IONs were incorporated into NBR latex in order to induce magnetic properties in the NBR composite. • Introduction of IONs into NBR latex would improve thermal properties. • The produced NBR/IONs 5 phr composite exceeded the minimum magnetic moment sensor of the detector. • They have high

  17. Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments

    Science.gov (United States)

    Zhang, Yanjuan; Gan, Tao; Li, Qian; Su, Jianmei; Lin, Ye; Wei, Yongzuo; Huang, Zuqiang; Yang, Mei

    2014-09-01

    Cassava stillage residue (CSR), a kind of agro-industrial plant fiber, was modified by coupling agent (CA), mechanical activation (MA), and MA-assisted CA (MACA) surface treatments, respectively. The untreated and different surface treated CSRs were used to prepare plant fibers/polymer composites (PFPC) with poly(vinyl chloride) (PVC) as polymer matrix, and the properties of these CSR/PVC composites were compared. Surface treated CSR/PVC composites possessed better mechanical properties, water resistance and dimensional stability compared with the untreated CSR/PVC composite, attributing to the improvement of interfacial properties between CSR and PVC matrix. MACA-treated CSR was the best reinforcement among four types of CSRs (untreated, MA-treated, CA-treated, and MACA-treated CSRs) because MACA treatment led to the significant improvement of dispersion, interfacial adhesion and compatibility between CSR and PVC. MACA treatment could be considered as an effective and green method for enhancing reinforcement efficiency of plant fibers and the properties of PFPC.

  18. Wear testing and finite element analysis of nitrile rubber (NBR) hand pump seals

    OpenAIRE

    Alkadhimi, Fadel

    2015-01-01

    The use of Nitrile Butadiene Rubber NBR as seal in machines has increased in recent years. NBR is considered as the standard material for sealing and NBR owes its many applications to a range of special mechanical properties. However, the non-linear mechanical properties and incompressible behaviour of NBR make the analysis of NBR very difficult. The literature review highlighted the fact that the most common technical cause of hand pump failures was the wear of the piston seals. The contact ...

  19. Application of gamma irradiation for incorporation of rubber powder in the formulations EPDM and NBR rubber; Aplicacao da radiacao gama para incorporacao do po de borracha em formulacoes de borracha EPDM e nitrilica

    Energy Technology Data Exchange (ETDEWEB)

    Kiyan, Ludmila de Ysasa Pozzo

    2014-07-01

    The natural decomposition of rubber is a very slow process due to its three-dimensional network formed by vulcanized crosslinked structures becoming extremely difficult to reprocess this material. The present work aims to study the application of gamma irradiation as devulcanization process for material reuse/recycling. The interactions of elastomers with ionizing radiation of a gamma source were investigated and the changes in physicochemical properties of the materials were evaluated. Formulations of NBR (acrylonitrile - butadiene) and EPDM (ethylene - propylene - diene terpolymer) from the rubber industry were crosslinked by conventional sulfur-based mixing. Master - batch was processed with rubber powder (industrial waste) and virgin rubber. The raw material (master batch) was irradiated in {sup 60}Co source at doses of 50, 100, 150 kGy and dose rate of 5 kGy h{sup -1} at room temperature. The irradiated material was incorporated in classical sulfur-based formulations. The formulations were characterized by: infrared spectroscopy (FTIR), thermal analysis (TG and DTG), tensile strength, elongation at break, hardness, abrasion resistance, rheometry and swelling. The results showed a predominance of chain scission at a dose of 50 kGy for EPDM rubber. For nitrile predominance of chain scission was observed at a dose of 100 kGy. These results show the possibility of the use of gamma radiation for the reuse/recycling of EPDM and nitrile rubbers. (author)

  20. Colloidal titration of aqueous zirconium solutions with poly(vinyl sulfate) by potentiometric endpoint detection using a toluidine blue selective electrode.

    Science.gov (United States)

    Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru

    2004-02-01

    Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).

  1. Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR Ceramifiable Composites

    Directory of Open Access Journals (Sweden)

    Rafał Anyszka

    2016-07-01

    Full Text Available Ceramifiable styrene-butadiene (SBR-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite.

  2. Rubber contact mechanics: adhesion, friction and leakage of seals.

    Science.gov (United States)

    Tiwari, A; Dorogin, L; Tahir, M; Stöckelhuber, K W; Heinrich, G; Espallargas, N; Persson, B N J

    2017-12-13

    We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.

  3. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film

    International Nuclear Information System (INIS)

    Yang Changjun; Gong Chuqing; Peng Tianyou; Deng Kejian; Zan Ling

    2010-01-01

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO 2 nano-composite film was prepared by embedding VC modified nano-TiO 2 photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO 2 nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO 2 film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO 2 nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO 2 film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO 2 is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti IV -VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  4. [Determination of short chain chlorinated paraffins in polyvinyl chloride plastics by gas chromatography-negative chemical ion/mass spectrometry].

    Science.gov (United States)

    Xing, Yuanna; Lin, Zhihui; Feng, Anhong; Wang, Xin; Gong, Yemeng; Chen, Zeyong

    2015-02-01

    A novel method was established to determine short chain chlorinated paraffins (SC-CPs) in polyvinyl chloride (PVC) plastics by gas chromatography-negative chemical ion/mass spectrometry (GC-NCI/MS). Ultrasonic extraction was used to extract SCCPs from PVC plastics. The optimal extraction time was 1.5 h, and concentrated sulfuric acid was adopted to purify the extracted solution. Finally, SCCPs in a sample were detected by GC-NCI/MS at 160 C and with methane reagent gas at 1. 5 mL/min. This method was not influenced by medium chain chlorinated paraffins (MCCPs) in the sample, and accurate quantitation was made for SCCPs. Twelve batches of samples were analyzed and SCCPs were detected in each batch with the contents from 0. 3 x 10(2)mg/kg to 3. 5 x 10(4)mg/kg. With respect to European limitation of SC-CPs (1%), four batches of samples did not comply with the European regulation, and they accounted for 33. 3%. Obviously, high SCCPs risk was presented in PVC plastics.

  5. Consequences of poly(vinyl chloride) presence on the thermochemical process of lignocellulosic biomass in CO₂ by thermogravimetric analysis.

    Science.gov (United States)

    He, Yao; Ma, Xiaoqian; Zeng, Guangbo

    2015-02-01

    The thermochemical processes of lignocellulosic biomass and its mixtures with poly(vinyl chloride) (PVC) fractions were investigated by thermogravimetric analysis in CO2 atmosphere. Superposition property was assumed to examine whether and/or to what extent interactions occurred during the mixture decomposition. Results showed that interactions existed, of which the intensities changed with reaction stage, heating rate and PVC quantity, and they actively behaved toward the decomposition in most cases. With PVC presence, lignocellulosic biomass turned from three-stage to four-stage decomposition process where the reactions occurred at lower temperatures with heightened intensity, especially in the first stage. The measured activation energies calculated by Ozawa-Flynn-Wall and Vyazovkin methods were of minor difference <5 kJ/mol, and comparing them between materials in each stage confirmed the results of interaction impact. This work provides a theoretical basis bringing about the possibilities of recycling CO2 into a reaction medium of thermo-treatment of lignocellulosic material with PVC contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A.M. Hezma

    2017-06-01

    Full Text Available Structural, thermal, and mechanical properties of pure blend and nanocomposites based on polyurethane (PU and polyvinyl chloride (PVC doped with low different content of single walled-carbon nanotubes (SWCNTs were studied. The nanocomposites at different concentration were prepared via casting technique. The interaction between PU/PVC and CNTs were examined via FT-IR studies. The changes in the structures of the nanocomposites were examined using X- Ray Diffraction (XRD, and the results indicated that the amorphous domains of nanocomposites increased with increasing SWCNTs content. Transmission electron microscope (TEM observation indicated that SWCNTs surface was wrapped with the polymer with the thermal properties of nanocomposites improved. The mechanical behavior of the nanocomposites was evaluated as a function of SWCNTs content. The main enhancement in tensile properties was observed, e.g., the tensile strength and elastic modulus increased compared with the pure blend, which may be attributed to the interaction and adhesion between CNTs and the polymer matrices due to the hydrogen bonding between carbonyl groups (C=O of polymer blend chains and carboxylic acid (COOH groups of CNTs.

  7. Effect of polypropylene maleic anhydride (PPMAH) on mechanical and morphological properties of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/empty fruit bunch (EFB) composites

    Science.gov (United States)

    Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi

    2017-07-01

    The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.

  8. Stability of Procainamide Injection in Clear Glass Vials and Polyvinyl Chloride Bags.

    Science.gov (United States)

    Donnelly, Ronald F

    2017-11-01

    The objective of this study was to evaluate the chemical stability of procainamide hydrochloride, 100 mg/mL, when repackaged in clear glass vials or diluted to 3 mg/mL with normal saline and packaged in polyvinyl chloride (PVC) bags when stored at either 23°C and exposed to light (ETL) or 5°C and protected from light (PFL). Solutions were assayed using a stability-indicating high-performance liquid chromatography method. Samples (5 mL) were collected from triplicate containers on days 0, 7, 14, 21, 28, 56, 91, and 193. Color/clarity and pH changes were also monitored at each time interval. During the study, all samples remained clear and there was only a slight pH change. The color of the solutions stored at 23°C intensified but did not correlate with a significant decrease in concentration, while solutions stored at 5°C remained unchanged. Solutions repackaged in glass vials were stable for 193 days when stored at 23ºC and ETL or 5ºC and PFL. When further diluted to 3 mg/mL with normal saline and packaged in PVC bags, procainamide was also stable for 193 days at either 23ºC and ETL or 5°C and PFL. The stability of procainamide, 100 mg/mL, repackaged in clear glass vials was 193 days when stored at either 23ºC and ETL or 5ºC or PFL. If diluted further to 3 mg/mL with normal saline and packaged in PVC bags, the drug was also stable for 193 days at either 23ºC and ETL or 5°C and PFL.

  9. Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride.

    Science.gov (United States)

    Webb, J S; Van der Mei, H C; Nixon, M; Eastwood, I M; Greenhalgh, M; Read, S J; Robson, G D; Handley, P S

    1999-08-01

    Initial adhesion of fungi to plasticized polyvinyl chloride (pPVC) may determine subsequent colonization and biodeterioration processes. The deteriogenic fungus Aureobasidium pullulans was used to investigate the physicochemical nature of adhesion to both unplasticized PVC (uPVC) and pPVC containing the plasticizers dioctyl phthalate (DOP) and dioctyl adipate (DOA). A quantitative adhesion assay using image analysis identified fundamental differences in the mechanism of adhesion of A. pullulans blastospores to these substrata. Adhesion to pPVC was greater than that to uPVC by a maximum of 280% after a 4-h incubation with 10(8) blastospores ml(-1). That plasticizers enhance adhesion to PVC was confirmed by incorporating a dispersion of both DOA and DOP into the blastospore suspension. Adhesion to uPVC was increased by up to 308% in the presence of the dispersed plasticizers. Hydrophobic interactions were found to dominate adhesion to uPVC because (i) a strong positive correlation was observed between substratum hydrophobicity (measured by using a dynamic contact angle analyzer) and adhesion to a range of unplasticized polymers including uPVC, and (ii) neither the pH nor the electrolyte concentration of the suspension buffer, both of which influence electrostatic interactions, affected adhesion to uPVC. In contrast, adhesion to pPVC is principally controlled by electrostatic interactions. Enhanced adhesion to pPVC occurred despite a relative reduction of 13 degrees in the water contact angle of pPVC compared to that of uPVC. Furthermore, adhesion to pPVC was strongly dependent on both the pH and electrolyte concentration of the suspension medium, reaching maximum levels at pH 8 and with an electrolyte concentration of 10 mM NaCl. Plasticization with DOP and DOA therefore increases adhesion of A. pullulans blastospores to pPVC through an interaction mediated by electrostatic forces.

  10. Sonochemical synthesis of cooper II sulfide nanoparticles and their use as radiolytic stabilizer in polyvinyl chloride matrix

    International Nuclear Information System (INIS)

    Freitas, Danubia Maria da Silva; Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S.

    2013-01-01

    Cooper (II) sulfide (CuS) was synthesized by sonochemical method. CuS crystals with hexagonal structure exhibit irregular aggregates of particles with an average size in the range of 250-900 nm. Commercial Polyvinyl chloride (PVC) containing CuS nanoparticles (PVC/CuS) at concentrations of 0.10; 0.30; 0.50 and 0.70 wt% were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature and air atmosphere. The viscosity-average molar mass (M v ) was measured for PVC systems without nanoparticles and with nanoparticles. Decrease in viscosity molar mass was observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of CuS nanoparticles at 0.5 wt% into PVC matrix decreased the number of main chain scissions at dose of 25 kGy and was calculated a protection of 84% in PVC matrix. CuS nanoparticles act as free radical scavenger into gamma-irradiated PVC systems. The interactions between CuS and PVC favor action of nanoparticles as a good plasticizer in the PVC molecule. (author)

  11. Effect of electron beam irradiation on the structural properties of poly(vinyl alcohol) formulations with triphenyl tetrazolium chloride dye (TTC)

    Science.gov (United States)

    Ali, Z. I.; Said, Hossam M.; Ali, H. E.

    2006-01-01

    Films of poly(vinyl alcohol) (PVA) composites with triphenyl tetrazolium chloride (TTC) dye were prepared and exposed to various radiation doses delivered by accelerated electrons. The results showed that at a low dose of 50 kGy, the colour difference (Δ E*) of PVA/TTC films was increased by ˜10 times of the initial value. However, the change in colour differences did not go systematically with increasing the TTC content, in which the composite with 1.5 wt% displayed higher value than that with 3.5 wt%. The differential scanning calorimetry (DSC) showed that the presence of the TTC dye caused a depression in the melting point ( Tm) and heat of fusion (Δ Hf) of the PVA bulk polymer. However, the thermogravimetric analysis (TGA) showed that the presence of the TTC dye improved the thermal stability of PVA. Also, the tensile strength at break of PVA/TTC composites was improved after electron beam irradiation.

  12. Studies on nitrile rubber degradation in zinc bromide completion fluid and its prevention by surface fluorination

    Science.gov (United States)

    Vega-Cantu, Yadira Itzel

    Poly(acrylonitrile-co-butadiene) or nitrile-butadiene rubber (NBR) is frequently used as an O-ring material in the oil extraction industry due to its excellent chemical properties and resistance to oil. However, degradation of NBR gaskets is known to occur during the well completion and oil extraction process where packers are exposed to completion fluids such as ZnBr2 brine. Under these conditions NBR exhibits accelerated chemical degradation resulting in embrittlement and cracking. Samples of NBR, poly(acrylonitrile) (PAN) and poly(butadiene) (PB) have been exposed to ZnBr2 based completion fluid, and analyzed by ATR and diffuse reflectance IR. Analysis shows the ZnBr2 based completion fluid promotes hydrolysis of the nitrile group to form amides and carboxylic groups. Analysis also shows that carbon-carbon double bonds in NBR are unaffected after short exposure to zinc bromide based completion fluid, but are quickly hydrolyzed in acidic bromide mixtures. Although fluoropolymers have excellent chemical resistance, their strength is less than nitrile rubber and replacing the usual gasket materials with fluoroelastomers is expensive. However, a fluoropolymer surface on a nitrile elastomer can provide the needed chemical resistance while retaining their strength. In this study, we have shown that this can be achieved by direct fluorination, a rather easy and inexpensive process. Samples of NBR O-rings have been fluorinated by exposure to F2 and F2/HF mixtures at various temperatures. Fluorination with F 2 produces the desired fluoropolymer layer; however, fluorination by F2/HF mixtures gave a smoother fluorinated layer at lower temperatures and shorter times. Fluorinated samples were exposed to ZnBr2 drilling fluid and solvents. Elemental analysis shows that the fluorinated layer eliminates ZnBr2 diffusion into the NBR polymeric matrix. It was also found that surface fluorination significantly retards the loss of mechanical properties such as elasticity, tensile

  13. Feasibility of using microencapsulated phase change materials as filler for improving low temperature performance of rubber sealing materials.

    Science.gov (United States)

    Tiwari, Avinash; Shubin, Sergey N; Alcock, Ben; Freidin, Alexander B; Thorkildsen, Brede; Echtermeyer, Andreas T

    2017-11-01

    The feasibility of a novel composite rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here. A composite of hydrogenated nitrile butadiene rubber (HNBR) filled with Micro Encapsulated Phase Change Materials (MEPCM) is described. The fillers contain phase change materials that release heat during the phase transformation from liquid to solid while cooling. This exotherm locally heats the rubber and may improve the function of the seal during a blowdown event. A representative HNBR-MEPCM composite was made and the critical thermal and mechanical properties were obtained by simulating the temperature distribution during a blowdown event. Simulations predict that the MEPCM composites can delay the temperature decrease in a region of the seal during the transient blowdown. A sensitivity analysis of material properties is also presented which highlights possible avenues of improvement of the MEPCMs for sealing applications.

  14. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  15. Stability of methadone hydrochloride in 0.9% sodium chloride injection in single-dose plastic containers.

    Science.gov (United States)

    Denson, D D; Crews, J C; Grummich, K W; Stirm, E J; Sue, C A

    1991-03-01

    The stability of methadone hydrochloride in 0.9% sodium chloride injection in flexible polyvinyl chloride containers was studied. Commercially available methadone hydrochloride 20 mg/mL and 25-mL single-dose bags of 0.9% sodium chloride injection were used. Six samples each were prepared at methadone hydrochloride concentrations of 1, 2, and 5 mg/mL. The solutions were stored at room temperature and were not protected from light. Immediately after preparation and after two, three, and four weeks of storage, each of the 18 samples was divided into three aliquots, each of which was analyzed in duplicate for methadone hydrochloride concentration by gas chromatography. There was less than 10% change in methadone hydrochloride concentration in any sample throughout the four-week study period. Methadone hydrochloride at concentrations of 1, 2, and 5 mg/mL prepared in commercially available flexible polyvinyl chloride containers of 0.9% sodium chloride injection and stored at room temperature without deliberate protection from light is stable for at least four weeks.

  16. SYNTHESIS OF STYRENE-BUTADIENE STATISTIC COPOLYMERS CONTAINING MAGNESIUM INITIATOR

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2015-01-01

    Full Text Available The article discusses the use of organomagnesium initiators in the synthesis of styrene-butadiene random copolymer (SBR obtained solution polymerization and their influence on the properties of rubber. Selected organic magnesium dialkyl initiator is combined with a modifier, which is a mixed alkoxide of an alkali and alkaline earth metals, which allows to control the micr ostructure of the diene polymer and its molecular weight characteristics. Alcohol derivatives selected high-boiling alcohols tetra (hydroxypropyl ethylenediamine (lapromol 294 and tetrahydrofurfuryl alcohol (TGFS. Selection of high-boiling alcohols due to the fact that the destruction of alkoxide with aqueous polymer degassing they do not fall into the return solvent and almost fall into the exact water. The metal components of alkoxides are lithium, sodium, potassium, magnesium and calcium. The resulting solutions are stable when stored modifier t hroughout the year even at -40 °C. The scheme of obtaining the new catalyst systems based organomagnesium and alcoxide of alkali and alkaline earth metals, which yields as functionalized SBR with a statistical and a distribution block of butadiene and styrene was developed. The process of copolymerization with styrene to butadiene organomagnesium initiators as using an organolithium compound (n-butyllithium was carried out, and without it. Found that the addition of n-butyllithium in the reaction mixture leads to a sharp increase in the rate of reaction. The results of studies of the effect of composition of the initiator system on the structure of diene polymers. It was revealed that a mixed initiator system affords a high conversion of monomers (to 90 % in 1 hour 1,2-polybutadiene content increased to 60 %. The process of polymerization of only a mixture of organomagnesium initiators and alcoxide of alkali and alkaline earth metals are not actively proceeds, conversion of the monomers reaches to 90 % in 4 hours, the microstructure

  17. Alternative Fuels Compatibility with Army Equipment Testing - Alternative Fuels Material Compatibility Analysis

    Science.gov (United States)

    2012-02-21

    96906) 5330-00-182-3170 O-ring Butadiene-acrylonitrile class NBR AAFARS 13217E5363 (97403) 5330-00-235-4716 Gasket, Sight Gauge Rubber synthetic...Butadiene-acrylonitrile class NBR FSSP 13216E8238 (97403) 5330-00-647-2072 Gasket Rubber synthetic AAFARS MS28774-017 (96906) 5330-00-833-4210 Back...ring Butadiene-acrylonitrile class NBR AAFARS 5331-00-641-1119 O-ring Rubber synthetic AAFARS M25988/1-017 (81349) 5331-00-759-2121 O-ring

  18. Electroless nickel plating on abs plastics from nickel chloride and nickel sulfate baths

    International Nuclear Information System (INIS)

    Inam-ul-haque; Ahmad, S.; Khan, A.

    2005-01-01

    Aqueous acid nickel chloride and alkaline nickel sulphate bath were studied for electroless nickel planting on acrylonitrile-butadiene-styrene (ABS) plastic. Before electroless nickel plating, specimens were etched, sensitized and activated. Effects of sodium hypophosphite and sodium citrate concentration on the electroless nickel plating thickness were discussed. Aqueous acid nickel chloride bath comprising, nickel chloride 10 g/L, sodium hypophosphite 40 g/L, sodium citrate 40g/L at pH 5.5, temperature 85 deg. C and density of 1 Be/ for thirty minutes gave best coating thickness in micrometer. It was found that acid nickel chloride bath had a greater stability, wide operating range and better coating thickness results than alkaline nickel sulphate bath. Acid nickel chloride bath gave better coating thickness than alkaline nickel sulfate bath

  19. The effect of gamma radiation on the ageing of sulfur cured nr/csm and nbr/csm rubber blends reinforced by carbon black

    Directory of Open Access Journals (Sweden)

    Gordana Marković

    2009-10-01

    Full Text Available In this work the effect of the γ-radiation dose on ageing of carbon black reinforced elastomeric materials was studied. The compounds based on natural rubber/chlorosulfonated rubber blend (NR/CSM and butadiene acrylonitrile rubber/chlorosulfonated rubber blend (NBR/CSM (50:50, w/w with different loadings (0, 20, 40, 50, 60, 80 and 100 phr of the filler with the average particle size of 40 nm were cured by sulfur. The obtained elastomeric composites were subjected to radiation doses (100, 200, 300 and 400 kGy in the presence of oxygen. The changes of material mechanical properties were estimated after radiation accelerated ageing. By using Fourier transform infrared measurements (ATR-FTIR it was assessed that after exposure to doses of 100 kGy alcohols, ethers, lactones, anhydrides, esters and carboxylic acids are formed in materials. The formation of shorter polyene sequences and aromatic rings in aged samples are assumed on the basis of the obtained spectra.

  20. Radiation luminescence of polymers - emission behaviour of aromatic compounds incorporated in synthetic rubbers

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Hagiwara, Miyuki

    1986-01-01

    For a deep understanding of a radiation protection mechanism of some aromatic compounds on synthetic polymers, their optical emission behavior under electron irradiation was studied. The fluorescence light was led out of an irradiation room through a wave guide and detected by a photomultiplier so that less noisy spectrum was obtained. Acenaphthene or acenaphthylene was added to the synthetic rubbers such as ethylene propylene diene terpolymer, styrene butadiene rubber and cis-1,4-polybutadiene. The intensities of optical emission induced by electron beams changed from polymer to polymer, while those by ultraviolet lights were independent of the kind of polymers. The dependence of emission intensity on polymers under electron irradiation was estimated to show the fact that the radiation excited energy transfers occur from the polymer matrix to the additives and that an efficiency of the energy transfer is dependent on kinds of polymers. (author)

  1. Development of a conservation strategy for a collection of military uniforms

    DEFF Research Database (Denmark)

    Shashoua, Yvonne; Skals, Irene

    2004-01-01

    infrared spectroscopy, as: drying oils from plant and fish sources, bitumen, natural rubber and plasticised polyvinyl chloride (PVC). Despite the fact that most uniforms had never been worn, many exhibited extensive deterioration: oiltreated uniforms were tacky due to incomplete oxidation either because......-based films; suitable covering materials were polyethylene and Cryovac® BDF-200® . Uniforms treated with bitumen could be supported by polyethylene film and covered by polyethylene, Melinex® or Cryovac BDF-200. Natural rubber-treated uniforms had oxidised, developing cracks and crazes: oxygen-free storage...

  2. Influence of inorganic salts mixture and a commercial additive on the degradation of poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Silva, Williams B. da; Vasconcelos, Henrique M. de; Aquino, Katia Aparecida da S.; Araujo, Elmo S. de

    2009-01-01

    Samples of commercial poly(vinyl chloride) (PVC) containing a Hindered Amine Stabilizer (HAS) and samples containing a salt mixture of CuCl 2 /KI both in 0.1, 0.3, 0.5 and 0.7wt% concentration of HAS or salt mixture were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature in air at 25 kGy, sterilization dose of PVC medical supplies. The viscosity-average molecular weight (Mv) was analyzed by viscosity technique. Comparison of viscosity results obtained before and after irradiation ( at 25 kGy) of PVC showed crosslinking effect is predominant. On the other hand the PVC-HAS systems and PVC-salt systems showed a decrease in Mv values on irradiated samples reflecting the main chain random scissions effect. However the PVC-salt at 0.5wt% concentration showed no significant degradation index value. This result suggests that salt keeps the good radiolytic stabilization behavior of gamma-irradiated PVC and the HAS additive is not efficient on radiolytic stabilization of PVC. The CuCl 2 /KI mixture at 0.5wt% in the PVC matrix influenced the thermal behavior of the polymer increasing of 42 deg C in maximum thermal degradation temperature. In addition, the salt mixture influences significantly the Young's Modulus of PVC increasing the rigidity of polymer. (author)

  3. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  4. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    Science.gov (United States)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  5. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    Directory of Open Access Journals (Sweden)

    Valeria Vignali

    2016-10-01

    Full Text Available In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures.

  6. Effect of γ-aminopropyltriethoxy silane (γ-APS) coupling agent on mechanical and morphological properties of high density polyethylene (HDPE)/acrylonitrile butadiene rubber (NBR)/palm pressed fibre (PPF) composites

    Science.gov (United States)

    Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi

    2017-07-01

    The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.

  7. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-01-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100–300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating–cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase. - Highlights: • Binary blends of HDPE/NBR have been irradiated with 5 MeV accelerated electrons. • Increase of NBR content and irradiation dose improves cross-linking efficiency. • Thermo-shrinkage and residual stresses are investigated for oriented specimens. • Cross-linked HDPE/NBR composites can be successfully used as thermos-shrinkable materials.

  8. Stability of diclofenac sodium oral suspensions packaged in amber polyvinyl chloride bottles.

    Science.gov (United States)

    Donnelly, Ronald F; Pascuet, Elena; Ma, Carmen; Vaillancourt, Régis

    2010-01-01

    Prescribing of diclofenac for children usually involves a dose different from commercially available strengths. This drug is available only as tablets, which can be divided only so many times before the dose obtained becomes inaccurate. In addition, children may have difficulty swallowing tablets. For these reasons, a compounding formula for a liquid dosage form is essential to ensure effective delivery of the drug to pediatric patients. To develop a compounding formula for diclofenac sodium and to determine the extended physical and chemical stability of this compound when stored in amber polyvinyl chloride (PVC) prescription bottles under refrigeration and at room temperature. A suspension of diclofenac sodium (10 mg/mL) was prepared from commercially available diclofenac sodium tablets, with Ora-Blend as the suspending and flavouring agent. The suspension was packaged in 60-mL amber PVC prescription bottles and stored at either room temperature (23°C) or under refrigeration (5°C). Samples were collected on days 0, 7, 14, 21, 27, 56, and 93. Chemical stability was determined using a validated stability-indicating high-performance liquid chromatography method. At each sampling time, the suspensions were checked for changes in appearance (i.e., colour, layering, caking, ease of resuspension), odour, and pH. The diclofenac sodium suspensions were very stable, retaining at least 99.5% of the original concentration for up to 93 days, regardless of storage temperature. There were no apparent changes in the physical appearance of the suspensions, nor were there any substantial changes in odour or pH. Suspensions of diclofenac sodium (10 mg/mL) were quantitatively stable but difficult to prepare because of the enteric coating of the tablets. Therefore, it is recommended that diclofenac powder be used for the preparation of suspensions. For pediatric use, palatability is a consideration, and a masking agent should be added before administration. An expiry date of up to

  9. Properties of rubber blends based on natural rubber loaded with different fillers and cured by gamma radiation

    International Nuclear Information System (INIS)

    Mohamed, R.M.

    2011-01-01

    In this investigation system styrene butadiene rubber (1502 type) and natural rubber were blended in different ratios namely, NR/SBR (0/100), NR/SBR (25/75), NR/SBR (50/50), NR/SBR (75/25) and NR/SBR (100/0). All the samples were subjected to gamma irradiation dose up to 250 kGy. The improvement in the mechanical properties, physico-mechanical properties and thermal properties was followed as a function of irradiation dose and blend ratio. The SBR /NR (50/50) blend with reasonable properties were filled with 40 p hr of Hisil (highly fined silicon), HAF carbon black (high abrasion furnace), TiO 2 titanium dioxide and clay; the reinforcing ability of these fillers was found to follow the order: Hisil > HAF carbon black > Clay > TiO 2 The effect of different kinds of enhancing agents (coagent) namely: N, N- methylene di acrylamide (MDA), trimethylol propane tri methacrylate (TMPTMA) and tetramethylol - methane tetraacrylate (TMMT) on the properties of the obtained composites as a function of irradiation dose was studied. The data obtained showed that the enhancement character of the co agents follow the order: TMMT >TMPTMA > MDA >unenhanced composites. This investigation showed also the effect of gamma irradiation on improving the above mentioned properties in the presence of filler and co agents. Moreover, radiation dose at 100 kGy is sufficient enough for obtained the desired properties. The obtaining composites can be used in many industrial applications such as radio controlled model race car tires to footwear applications; the SBR component adds the toughness while the natural rubber provides superior resilience and energy return when used in footwear.

  10. New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber.

    Science.gov (United States)

    Lee, Sangyool; Lee, Youngkwan; Cho, Mi-Suk; Nam, Jae-Do

    2008-09-01

    Solid state redox supercapacitors were fabricated using a solid polymer electrolyte, nitrile butadiene rubber (NBR)-KCI and chemically deposited polypyrrole (PPy) as the conducting polymer electrodes on both surfaces of a NBR film. The optimal conditions for the preparation of the PPy/NBR electrode were confirmed as functions of the uptake of pyrrole monomer into the NBR matrix as well as the immersion time in an oxidant solution. The morphology of the PPy-NBR-KCI capacitor was observed using scanning electron microscopy. The performance of the capacitors was characterized using a galvanostatic charge-discharge technique.

  11. Studies of chemical interactions between chlorosulphonated polyethylene and nit rile rubber

    Directory of Open Access Journals (Sweden)

    Marković Gordana

    2005-01-01

    Full Text Available Highly polar rubbers interact with each other through their active functional groups via condensation or substitution reactions at high temperature. Chlorosulphonated polyethylene (CSM rubber is a highly reactive rubber, the reactivity of with is due to the -SO2CI groups. When CSM reacts with nit rile rubber (NBR, a chemical reaction takes place between the two rubbers at high temperature. Fourier transform infrared (FTIR studies support that CSM/NBR (50/50 w/w isothermally induces a self cross-linking blend, when cross-linking takes place via the acrylonitrile groups of NBR and the SO2CI groups or the insitu generated allyl chloride moieties of CSM. There is a loss of some -CN groups during cross-linking. This may be due to an attack on the -CN groups by HCI (produced during the heating of CSM in the presence of inherent moisture in the polymers. Amid type of linkage is formed due to cross-linking.

  12. Water Fastness of Screen Printed Pearl Luster Pigments based on Synthetic and Natural Mica on Polyvinyl Chloride Foil and Rich Mineral Paper

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2013-01-01

    Full Text Available The present study attempts to examine water fastness of screen printed pearl luster pigments based on synthetic and natural mica on polyvinyl chloride foil and Rich Mineral Paper. Three types of pearl luster pigments were used, each different from the other in composition, interference colour and particle size: one pigment based on synthetic mica (Pigment 1 and two pigments based on natural mica (Pigment 2 and Pigment 3. Pearl luster pigments were applied to the printing base (PVC transparent base in 15wt.% concentration and printed by means of screen printing technique. The test of water fastness was made on prints, where the samples were soaked in distilled water for 6 and 12 days. It was established that this water treatment did not have any significant impact on the durability of screen printed pearl luster pigments. The pigments could demonstrate slightly better water fastness after being printed on Rich Mineral Paper.

  13. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    Science.gov (United States)

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  14. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yang Changjun; Gong Chuqing; Peng Tianyou [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2010-06-15

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film was prepared by embedding VC modified nano-TiO{sub 2} photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO{sub 2} nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO{sub 2} film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO{sub 2} nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO{sub 2} film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO{sub 2} is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti{sup IV}-VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  15. Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors.

    Science.gov (United States)

    Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng

    2017-11-15

    The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Performance evaluation of CFRP-rubber shock absorbers

    Science.gov (United States)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  17. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  18. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables

    Directory of Open Access Journals (Sweden)

    Noe T. Alvarez

    2014-11-01

    Full Text Available Carbon nanotubes (CNTs are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC, it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core.

  19. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables

    Science.gov (United States)

    Alvarez, Noe T.; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R.; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J.; Shanov, Vesselin

    2014-01-01

    Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. PMID:28344254

  20. Effect of cellulose nanocrystals from corn cob with dispersion agent polyvinyl pyrrolidone in natural rubber latex film after aging treatment

    Science.gov (United States)

    Harahap, H.; Ridha, M.; Halimatuddahliana; Taslim; Iriany

    2018-02-01

    This study about the resistance of natural rubber latex films using nanocrystals cellulose filler from corn cob waste by aging treatment. Corn cob used as organic filler composed of cellulose, hemicellulose, and lignin. Each component has a potential for reuse, such as cellulose. Cellulose from corn cob has potential application as a filler prepared by hydrolysis process using a strong acid. The producing of natural rubber latex films through coagulant dowsing process. This research started with the pre-vulcanization process of natural rubber latex at 70 °C and followed by process of vulcanization at 110 °C for 20 minutes. Natural rubber latex films that have been produced continued with the aging treatment at 70 °C for 168 hours. The mechanical properties of natural rubber latex films after aging treatment are the tensile strength, elongation at break, M100 and M300 have performed.

  1. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...

  2. The influence of carbon black on curing kinetics and thermal aging of acrylonitrile–butadiene rubber

    Directory of Open Access Journals (Sweden)

    Jaroslava Budinski-Simendić

    2009-10-01

    Full Text Available Elastomers based on a copolymer of butadiene and acrylonitrile (NBR have excellent oil resistance but are very sensitive for degradation at very high temperatures. The aim of this applicative contribution was to determine the effect of high abrasion furnace carbon black with primary particle size 46 nm on aging properties of elastomeric materials based on NBR as network precursor. The curing kinetics was determined using the rheometer with an oscillating disk, in which the network formation process is registered by the torque variation during time. The vulcanizates were obtained in a hydraulic press at 150 °C. The mechanical properties of elastomeric composites were determined before and after thermal aging in an air circulating oven. The reinforcing effect of the filler particles was assessed according to mechanical properties before and after aging.

  3. Preparation and electrical-property characterization of poly(vinyl chloride)-derived carbon nanosheet by ion beam irradiation-induced carbon clustering and carbonization

    Science.gov (United States)

    Jung, Chan-Hee; Sohn, Joon-Yong; Kim, Hyo-Sub; Hwang, In-Tae; Lee, Hong-Joon; Shin, Junhwa; Choi, Jae-Hak

    2018-05-01

    In this work, we demonstrated that carbon nanosheet (CNS) can easily be produced by a room-temperature, solid-state proton irradiation-induced clustering of poly(vinyl chloride) (PVC) films followed by carbonization. The results of the optical, chemical, and structural analyses revealed that oxidized and sp2-hybridized carbon clusters were effectively created in the PVC thin film by combined dehydrochlorination and inter-coupling reactions during proton irradiation. This was further converted to pseudo-hexagonally-structured nano-crystalline CNS with 2-D symmetry and metallic transporting character by high-temperature treatment. As a result, the CNS exhibited a very high electrical conductivity (587 S/cm) without a significant change in their thickness, a low surface roughness (0.36 nm), and a high work function (5.11 eV). These findings demonstrate that the radiation-based approach opens new avenues for the design and development of 2-D CNS as a graphene allotrope for the application of electronic devices, including field-effect transistors, electric heating devices, biosensors, supercapacitors, and fuel cells.

  4. Electrical and optical properties of nitrile rubber modified by ion implantation

    Science.gov (United States)

    S, Najidha; Predeep, P.

    2014-10-01

    Implantation of N+ ion beams are performed on to a non-conjugated elastomer, acrylonirtle butadiene rubber (NBR) with energy 60 keV in the fluence range of 1014 to 1016 ions/cm2. A decrease in the resistivity of the sample by about eight orders of magnitude is observed in the implanted samples along with color changes. The ion exposed specimens were characterized by means of UV/Vis spectroscopy which shows a shift in the absorption edge value for the as deposited polymer towards higher wavelengths. The band gap is evaluated from the absorption spectra and is found to decrease with increasing fluence. This study can possibly throw light on ion induced changes in the polymer surface.

  5. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Solomon, H.M.; Taguchi, M.; Kojima, T.

    2008-01-01

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection

  6. Mechanical and Morphological Properties of Waste Short Nylon Fibers and Nanoclay Reinforced NR/SBR Rubber Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohammad Andideh

    2013-02-01

    Full Text Available Natural rubber and styrene butadiene rubber (NR/SBR reinforced with short nylon fibers along with nanoclay (Cloisite 15A hybrid composites were prepared in an internal and a two roll-mill mixer by a three-step mixingprocess. The effects of fiber content at a constant loading of 3 wt% nanoclay were studied on the microstructure, mechanical and morphological properties of the prepared nanocomposites. The adhesion between the fiber and the rubber was enhanced by the addition of a dry bonding system consisting of resorcinol, hexamethylene tetramine and hydrated silica (HRH. The curing characteristics of the composites were determined and subsequently vulcanized at 150°C using a hot press. It was observed that the cure time and swelling index of the composites decreased while maximum torque, and cure rate increased with increasing of short fiber and nanoclay contents. Thestructure and fracture surface morphology of the nanocomposites were characterized using X-ray diffraction, scanning electron microscopy. X-ray diffraction results of nanocomposites indicated that the interlayer distance of silicate layers increased. The mechanical properties (tensile, tear strength, elongation-at-break and hardness ofnanocomposites containing virgin and waste fibers in the longitudinal direction are compared.

  7. Recent Breakthroughs in the Conversion of Ethanol to Butadiene

    Directory of Open Access Journals (Sweden)

    Guillaume Pomalaza

    2016-12-01

    Full Text Available 1,3-Butadiene is traditionally produced as a byproduct of ethylene production from steam crackers. What is unusual is that the alternative production route for this important commodity chemical via ethanol was developed a long time ago, before World War II. Currently, there is a renewed interest in the production of butadiene from biomass due to the general trend to replace oil in the chemical industry. This review describes the recent progress in the production of butadiene from ethanol (ETB by one or two-step process through intermediate production of acetaldehyde with an emphasis on the new catalytic systems. The different catalysts for butadiene production are compared in terms of structure-catalytic performance relationship, highlighting the key issues and requirements for future developments. The main difficulty in this process is that basic, acid and redox properties have to be combined in one single catalyst for the reactions of condensation, dehydration and hydrogenation. Magnesium and zirconium-based catalysts in the form of oxides or recently proposed silicates and zeolites promoted by metals are prevailing for butadiene synthesis with the highest selectivity of 70% at high ethanol conversion. The major challenge for further application of the process is to increase the butadiene productivity and to enhance the catalyst lifetime by suppression of coke deposition with preservation of active sites.

  8. Stability assessment of lyophilized intravenous immunoglobulin after reconstitution in glass containers and poly(vinyl chloride) bags.

    Science.gov (United States)

    Parti, R; Mankarious, S

    1997-02-01

    Human intravenous immunoglobulin (IGIV) has been in use for the past 20 years. This biological product is commonly provided in liquid or lyophilized dosage form. When the lyophilized product is rehydrated, it is usually administered within 2-3 h from time of complete dissolution. While this practice is advisable whenever possible, occasionally the patient or care-giver may need to delay the infusion. Hence, a study of the stability of lyophilized IGIV after reconstitution with water for injection was conducted. The reconstituted product was stored either in its original glass container or pooled into poly(vinyl chloride) (PVC) bags. The effect of extended storage on the active ingredient (IgG), excipients (glucose, albumin) and extractables [sodium from glass vials, and di-(2-ethyl-hexyl) phthalate and cyclohexanone from PVC bags] was evaluated. The stability of the active ingredient was evaluated by physico-chemical tests (molecularsize distribution, pH, appearance, total protein), monitoring titres of a specific antibody (hepatitis B surface antigen) and an antibody functional test (bacterial opsonization). To evaluate the risk of microbial contamination during reconstitution and pooling procedures, sterility, pyrogen and animal-safety tests were included in the protocol. The potential of IgG polymerizing in solution during storage and subsequent complement activation was evaluated by assaying for non-specific binding of complement (anti-complement activity). Results show that aseptically reconstituted IGIV is stable and remains sterile up to 48 h at 5 degrees C. The reconstituted product was also found to be stable at room temperature (25 degrees C) up to 12 h.

  9. Use of macroporous plastics in extraction chromatography

    International Nuclear Information System (INIS)

    Braun, T.; Farac, A.B.

    1978-01-01

    Possibilities are analysed which the use of porous plastics (polyvinyl chloride, siloxane rubber, polyurethane, polystyrene and etc.) as carriers presents in extraction chromatography. Short characteristics of chemical and physical properties of macroporous carriers is given. The importance of correct chromatographic column packing is noted to obtain columns with good hydrodynamic characteristics and operational properties. Examples of using columns with macroporous carriers in radiochemistry and inorganic chemistry for element separation are given

  10. Antimicrobial and Anti-biofilm Activities of Betacyanin Fractions from Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius)

    OpenAIRE

    YI YI YONG

    2018-01-01

    This thesis examines the ability of betacyanin, a natural red-violet pigment from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius)in inhibiting the growth of bacteria that cause diseases and bacteria attached to surfaces such as glass, polystyrene, polyvinyl chloride, polyethylene, polypropylene, and silicone rubber. Extraction was optimized to produce a betacyanin fraction and various assays were carried out to identify the best betacyanin formulation against a polymi...

  11. Protein valves prepared by click reaction grafting of poly(N-isopropylacrylamide) to electrospun poly(vinyl chloride) fibrous membranes

    Science.gov (United States)

    Guo, Jian-Wei; Lin, Zhen-Yu; Chang, Chi-Jung; Lu, Chien-Hsing; Chen, Jem-Kun

    2018-05-01

    In this study, poly(vinyl chloride) (PVC) was electrospun into fibrous membranes and then reacted with NaN3 to generate azido-terminated PVC fibrous membranes. A propargyl-terminated poly(N-isopropylacrylamide) (PNIPAAm) was also synthesized and then grafted, through click reactions, onto the azido-terminated PVC fiber surface. Protrusion-, scale-, and joint-like structures of the PNIPAAm grafts on the PVC fibers were formed upon increasing the molecular weight of the PNIPAAm grafts. The PNIPAAm-grafted PVC fibrous mats exhibited completely wetted surfaces at 25 °C because of their high roughness. The static water contact angle of the PNIPAAm-grafted PVC fibrous mats reached 140° when the temperature was increased to 45 °C. This thermoresponsive behavior was significantly greater than that of the PNIPAAm grafted on a flat surface. Temperature-responsive membranes were constructed having a pore size of 1.38 μm and applied as protein valves to block and release an antibody (fluorescein-conjugated AffiniPure goat anti-rabbit IgG). At 25 °C, the collection efficiency remained at 94% for antibody concentrations up to 60 ng/L. As the temperature increased to 45 °C, the collection efficiency decreased abruptly, to 4%, when the antibody concentration was greater than 20 ng/L. Accordingly, this system of PNIPAAm-grafted PVC fibers functioned as a protein valve allowing the capture and concentration of proteins.

  12. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly(vinyl chloride)-based sensor for acetate.

    Science.gov (United States)

    Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A

    2008-08-15

    A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.

  13. A novel process for separation of polycarbonate, polyvinyl chloride and polymethyl methacrylate waste plastics by froth flotation.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Huang, Luo-Luo

    2017-07-01

    A novel process was proposed for separation of ternary waste plastics by froth flotation. Pretreatment of plastics with potassium permanganate (KMnO 4 ) solution was conducted to aid flotation separation of polycarbonate (PC), polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA) plastics. The effect of pretreatment parameters including KMnO 4 concentration, treatment time, temperature and stirring rate on flotation recovery were investigated by single factor experiments. Surface treatment with KMnO 4 changes selectively the flotation behavior of PC, PVC and PMMA, enabling separation of the plastics by froth flotation. Mechanism of surface treatment was studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). Effect of frother concentration and flotation time on flotation behavior of plastic mixtures was further studied for flotation separation. The optimized conditions for separation of PC are KMnO 4 concentration 2mmolL -1 , treatment time 10min, temperature 60°C, stirring rate 300rpm, flotation time 1min and frother concentration 17.5mgL -1 . Under optimum conditions, PVC and PMMA mixtures are also separated efficiently by froth flotation associated with KMnO 4 treatment. The purity of PC, PVC and PMMA is up to 100%, 98.41% and 98.68%, while the recovery reaches 96.82%, 98.71% and 98.38%, respectively. Economic analysis manifests remarkable profits of the developed process. Reusing KMnO 4 solution is feasible, enabling the process greener. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of Polyethylene Grafted Maleic Anhydride on the Mechanical, Morphological, and Swelling Properties of Poly (Vinyl Chloride / Epoxidized Natural Rubber / Kenaf Core Powder Composites

    Directory of Open Access Journals (Sweden)

    Rohani Abdul Majid

    2014-10-01

    Full Text Available The effects of polyethylene grafted maleic anhydride (PE-g-MA on the properties of poly (vinyl chloride/epoxidized natural rubber (PVC/ENR kenaf core powder composites were studied, with four different loadings of kenaf core powder (5, 10, 15, and 20 phr. The tensile properties indicated that the strength and elongation at break of the composites exhibited an increase for samples with PE-g-MA. Morphological analysis using a scanning electron microscope (SEM showed better dispersion of kenaf fiber with the addition of PE-g-MA and less kenaf powder agglomeration. Furthermore, the swelling index indicated that composites with PE-g-MA showed lower toluene absorption than composites without PE-g-MA.

  15. Pengaruh suhu vulkanisasi terhadap sifat mekanis vulkanisat karet alam dan karet akrilonitril-butadiena

    OpenAIRE

    Norma Arisanti Kinasih; Muhammad Irfan Fathurrohman; Dadang Suparto

    2015-01-01

    Natural and acrylonitrile-butadiene rubbers possess different vulcanization characteristics. Selection of the vulcanization system and temperature affects the mechanical properties of vulcanized natural rubber (NR) and acrylonitrile-butadiene rubber (NBR). In the present work, the effect of vulcanization temperature (150, 160, 170 and 180oC) on the mechanical properties of NR and NBR vulcanizates was studied. The effect of different vulcanization system (semi efficient, efficient and sulfur d...

  16. Study of the Influence of adding styrene-ethylene/butadiene-styrene in acrylonitrile-butadiene-styrene and polyethylene blends

    OpenAIRE

    Peydro, M. A.; Parres, F.; Navarro Vidal, Raúl; Sanchez-Caballero, Samuel

    2014-01-01

    This work studies the recovery of two grades of acrylonitrile butadiene styrene (ABS) contaminated with low-density polyethylene (LDPE), by adding styrene ethylene/butadiene styrene (SEBS). To simulate contaminated ABS, virgin ABS was mixed with 1, 2, 4, and 8% of LDPE and then extruded at 220°C. After this, the ABS with the highest percentage of LDPE (8%) was mixed with 1, 2, 4, and 8% of SEBS and then extruded. Different blends were mechanically, rheologically, optically, and dimensionally ...

  17. Electrical and optical properties of nitrile rubber modified by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    S, Najidha [Department of Physics, B.J.M Govt: college, Chavara, Kollam, Kerala (India); Predeep, P. [Laboratory for molecular Photonics and Electronics, Department of Physics, National Institute of Technology, Calicut (India)

    2014-10-15

    Implantation of N{sup +} ion beams are performed on to a non-conjugated elastomer, acrylonirtle butadiene rubber (NBR) with energy 60 keV in the fluence range of 10{sup 14} to 10{sup 16} ions/cm{sup 2}. A decrease in the resistivity of the sample by about eight orders of magnitude is observed in the implanted samples along with color changes. The ion exposed specimens were characterized by means of UV/Vis spectroscopy which shows a shift in the absorption edge value for the as deposited polymer towards higher wavelengths. The band gap is evaluated from the absorption spectra and is found to decrease with increasing fluence. This study can possibly throw light on ion induced changes in the polymer surface.

  18. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber–Polyurethane Foam Composite with Multilayered Structure

    Science.gov (United States)

    Jiang, Xueliang; Yang, Zhen; Wang, Zhijie; Zhang, Fuqing; You, Feng

    2018-01-01

    Barium titanate/nitrile butadiene rubber (BT/NBR) and polyurethane (PU) foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation. PMID:29565321

  19. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber–Polyurethane Foam Composite with Multilayered Structure

    Directory of Open Access Journals (Sweden)

    Xueliang Jiang

    2018-03-01

    Full Text Available Barium titanate/nitrile butadiene rubber (BT/NBR and polyurethane (PU foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation.

  20. ANALYSIS OF ADIPATE ESTER CONTENTS IN POLY(VINYL CHLORIDE) PLASTICS

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Otero, Amalia Dopazo

    2006-01-01

    Fourier transform (FT-) Raman spectroscopy excited with a 1064 nm laser can be used to determine the content of plasticizers in commercial flexible poly vinyl chloride (PVC) products. Our previous study [T. Nørbygaard, R.W. Berg, Analysis of phthalate ester content in PVC plastics by means of FT......-Raman Spectroscopy, Appl. Spectrosc. 58 (4) (2004) 410–413]—on detection of the presence of phthalate esters in PVC by FT-Raman spectroscopy — is here extended to the similar case of adipate esters (AEs) in samples of soft poly vinyl chloride plastics. Spectra of a range of adipate ester plasticizers (11 AEs......) in pure form are reported. We studied if qualitative and quantitative determination of the adipate ester content would be possible based on the use of proper reference samples. It was found that AEs as a group cannot be definitively identified by their characteristic Raman bands because other aliphatic...

  1. Biological monitoring to determine worker dose in a butadiene processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Hayes, R.B. [National Cancer Inst., Bethesda, MD (United States)

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  2. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    Science.gov (United States)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with

  3. Proceedings of Damping 󈨡 Held in San Francisco, California on 24-26 February 1993. Volume 3.

    Science.gov (United States)

    1993-06-01

    initial test of the new approach was carried out with the data obtained by testing a nitrile butadiene rubber ( NBR ). A novel technique, the Fourier...Figure 6 shows G’ versus frequency for NBR (nitrile butadiene rubber ) at various temperatures. The data was determined using FTMA apparatus [5,6]. Data...Temperature Behavior of DCB Polyisobutylene Dr. David I. G. Jones Estimation of Dynamic Properties of Rubber Materials and their DCC Applications to

  4. A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, W E [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Hassan, H H [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2006-02-07

    Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain.

  5. A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor

    International Nuclear Information System (INIS)

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain

  6. A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor

    Science.gov (United States)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-02-01

    Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain.

  7. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Junichiro; Nishimura, Shin [Department of Mechanical Science Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    Ethylene-propylene rubber (EPDM) and nitrile-butadiene rubber (NBR) composites having carbon black, silica, and no fillers were exposed to hydrogen gas at a maximum pressure of 10 MPa; then, blister tests and the measurement of hydrogen content were conducted. The hydrogen contents of the composites were proportional to the hydrogen pressure, i.e., the behavior of their hydrogen contents follows Henry's law. This implies that hydrogen penetrates into the composite as a hydrogen molecule. The addition of carbon black raised the hydrogen content of the composite, while the addition of silica did not. Based on observations, the blister damages of composites with silica were less pronounced, irrespective of the hydrogen pressures. This may be attributed to their lower hydrogen content and relatively better tensile properties than the others. (author)

  8. Stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride and polyolefin bags.

    Science.gov (United States)

    Karlage, Kelly; Earhart, Zachary; Green-Boesen, Kelly; Myrdal, Paul B

    2011-08-15

    The stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride (PVC) and polyolefin bags under varying conditions was evaluated. Triplicate solutions of midazolam hydrochloride 1-mg/mL were prepared in polyolefin and PVC i.v. bags by diluting midazolam hydrochloride injection 5 mg/mL with 5% dextrose injection. Bags were then stored under refrigeration (3-4 °C), exposed to light at room temperature (20-25 °C), or protected from light in amber bags at room temperature. Samples were taken immediately after preparation (day 0) and on days 1, 2, 3, 6, 13, 20, and 27 for analysis with a stability-indicating high-performance liquid chromatography assay in order to determine solution concentration. Stability was defined as retention of at least 90% of the initial drug concentration. The pH of each solution was also measured weekly. Sterility of the i.v. bags was determined at the end of the study by microbiological testing with culture in growth media. Differences in concentrations under the various storage conditions and bags used were analyzed using analysis of variance. All solutions retained over 98% of the initial midazolam hydrochloride concentration, with no statistically significant (p ≥ 0.05) change in concentration over the four-week period. Stability was not affected by temperature, exposure to light, or bag type. The pH of all solutions remained between 3.2 and 3.4 throughout the study. Sterility after 28 days was retained. Midazolam hydrochloride 1-mg/mL solutions diluted in 5% dextrose injection remained stable over 27 days in both polyolefin and PVC i.v. bags, regardless of storage condition.

  9. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    Science.gov (United States)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  10. Radiation Curing of Rubber/Thermoplastic Composites Containing Different Inorganic Fillers

    International Nuclear Information System (INIS)

    EL-Zayat, M.M.M.

    2012-01-01

    Blending of polymeric materials has proved to be a successful method for preparing new polymeric materials having not only the main properties of the blends components but also new modification as well as specific ones. High density polyethylene (HDPE) and acrylonitrile butadiene rubber (NBR) are both soild and constitute the blend components to be investigated in present study and hence the method of mechanical blending is the most suitable one for its preparation . HDPE thermoplastic is a semi – crystalline polymer ; on the other hand , NBR elastomer is totally amorphous polymer. Both polymers are categorized as crosslinking polymers with respect to ionizing gamma rays with different extents. In order to increase the efficiency of irradiation curing of such NBR/HDPE blend , it may be required to add suitable additives such as reinforcing fillers that may increase the extent of crosslinking at the same irradiation dose . Thus synthetic fillers are used commercially in industrial processing of rubber formulation due to its specific characteristics and hence its high reinforcing capacity and suitable price . To follow property changes occurred to the blend as well as its composites , measurements have been done to monitor the changes that happened to mechanical, physical and thermal properties as a function of irradiation dose and composition of blends and composites.

  11. Inclusion polymerization of vinyl chloride monomer in deoxycholic acid host via {gamma}-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chirachanchai, S.; Kumkrong, A. [The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok (Thailand); Ishida, Hatsuo [Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH (United States)

    2000-03-01

    Inclusion polymerization of vinyl chloride monomer (VCM) was studied in the system of 3{alpha}, 12{alpha} -dihydroxy-5{beta}-cholan-24-oic acid (deoxycholic acid, DCA). DCA-VCM inclusion compound system was originally prepared by guest intercalation technique in DCA guest free crystal. The inclusion polymerization of DCA-VCM by {gamma}-irradiation at total dose 2 Mrad, gives a syndiotactic rich polyvinyl chloride (PVC) as can be confirmed by FT-IR and FT-NMR. (author)

  12. Inclusion polymerization of vinyl chloride monomer in deoxycholic acid host via γ-ray irradiation

    International Nuclear Information System (INIS)

    Chirachanchai, S.; Kumkrong, A.; Ishida, Hatsuo

    2000-01-01

    Inclusion polymerization of vinyl chloride monomer (VCM) was studied in the system of 3α, 12α -dihydroxy-5β-cholan-24-oic acid (deoxycholic acid, DCA). DCA-VCM inclusion compound system was originally prepared by guest intercalation technique in DCA guest free crystal. The inclusion polymerization of DCA-VCM by γ-irradiation at total dose 2 Mrad, gives a syndiotactic rich polyvinyl chloride (PVC) as can be confirmed by FT-IR and FT-NMR. (author)

  13. A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N'-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Singh, A.K.; Gupta, Barkha

    2006-01-01

    A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N'-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 x 10 -7 to 1.0 x 10 -2 M) with a limit of detection as low as 8.91 x 10 -8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures

  14. Lead removal from cathode ray tube glass by the action of calcium hydroxide and poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Grause, Guido; Takahashi, Kenshi; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-01-01

    Highlights: • About 99.9% of lead is removed from CRT glass by PbCl 2 volatilization. • PVC is used as chlorination agent with the aid of Ca(OH) 2 as HCl absorbing material. • The residual calcium silicate has a lead content as low as 140 mg kg −1 . • Lead leaching from the residue was below the detection limit. - Abstract: With the development of flat screen technology, the cathode ray tubes (CRTs) used in TV sets became obsolete, leaving huge amounts of lead-containing CRT glass for disposal. We developed a novel lead volatilization process in which PbCl 2 was generated in the presence of poly(vinyl chloride) (PVC) as a chlorination agent and Ca(OH) 2 as an HCl absorber. PVC was incinerated in air atmosphere and the resulting HCl was captured by Ca(OH) 2 before exiting the reactor with the air flow. CaCl 2 and Ca(OH) 2 reacted with the lead glass forming volatile PbCl 2 and crystalline Ca-silicates. Since the reactivity of lead glass with gaseous HCl is negligible, the presence of Ca(OH) 2 was essential for the success of this method. At a temperature of 1000 °C, a molar Cl/Pb ratio of 16, and a molar Ca/Si ratio of about 2, approximately 99.9% of the lead was volatilized, leaving a residue with a lead content of 140 mg kg −1 . The residual calcium silicate, with its low lead level, has the potential to be repurposed for other uses

  15. Dielectric study of Poly(styrene- co -butadiene) Composites with Carbon Black, Silica, and Nanoclay

    KAUST Repository

    Vo, Loan T.

    2011-08-09

    Dielectric spectroscopy is used to measure polymer relaxation in styrene-butadiene rubber (SBR) composites. In addition to the bulk polymer relaxation, the SBR nanocomposites also exhibit a slower relaxation attributed to polymer relaxation at the polymer-nanoparticle interface. The glass transition temperature associated with the slower relaxation is used as a way to quantify the interaction strength between the polymer and the surface. Comparisons were made among composites containing nanoclay, silica, and carbon black. The interfacial relaxation glass transition temperature of SBR-clay nanocomposites is more than 80 °C higher than the SBR bulk glass transition temperature. An interfacial mode was also observed for SBR-silica nanocomposites, but the interfacial glass transition temperature of SBR-silica nanocomposite is somewhat lower than that of clay nanocomposites. An interfacial mode is also seen in the carbon black filled system, but the signal is too weak to analyze quantitatively. The interfacial polymer relaxation in SBR-clay nanocomposites is stronger compared to both SBR-carbon black and SBR-silica composites indicating a stronger interfacial interaction in the nanocomposites containing clay. These results are consistent with dynamic shear rheology and dynamic mechanical analysis measurements showing a more pronounced reinforcement for the clay nanocomposites. Comparisons were also made among clay nanocomposites using different SBRs of varying styrene concentration and architecture. The interfacial glass transition temperature of SBR-clay nanocomposites increases as the amount of styrene in SBR increases indicating that styrene interacts more strongly than butadiene with clay. © 2011 American Chemical Society.

  16. 76 FR 22565 - National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins...

    Science.gov (United States)

    2011-04-21

    ... Production, Nitrile Butadiene Rubber (NBR) Production, Polybutadiene Rubber Production, Polysulfide Rubber..., Epichlorohydrin Elastomers, Neoprene Rubber, and NBR source categories will not require additional control to meet... Emissions Standards for Group I Polymers and Resins (Butyl Rubber Production, Epichlorohydrin Elastomers...

  17. 77 FR 22847 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Science.gov (United States)

    2012-04-17

    ... abbreviations are used in this document. CAA Clean Air Act CDD/CDF chlorinated dibenzo-dioxins and furans CDX... chloride and chlorinated dibenzo-dioxins and furans (CDD/CDF)) and hydrogen chloride (HCl). We did not... chloride leak action level because if either of these pollutants is detected in the cooling water or in the...

  18. Electron beam modification and crosslinking: Influence of nitrile and carboxyl contents and level of unsaturation on structure and properties of nitrile rubber

    International Nuclear Information System (INIS)

    Vijayabaskar, V.; Tikku, V.K.; Bhowmick, Anil K.

    2006-01-01

    The structural changes of nitrile rubber with varying nitrile contents, hydrogenated nitrile rubber and carboxylated nitrile rubber in the presence and absence of a polyfunctional monomer, namely trimethylolpropane triacrylate, at different doses of electron beam irradiation, were investigated with the help of FTIR spectroscopy (in the attenuated total reflectance mode), dynamic mechanical thermal analysis and sol-gel analysis. Solid-state NMR with gated high power decoupling technique was used to understand the mechanism of crosslinking of the irradiated samples. The allylic radicals generated in the butadiene chains react to form intermolecular crosslinkages. There was a significant decrease in the concentration of olefinic groups for the nitrile rubber on irradiation. This was also affirmed by the increase in the carbon resonances due to C-C linkages from the NMR technique, indicating more crosslinkages. The spectroscopic crosslink densities were determined and the results were compared with the swelling measurements. The variation in the crosslink clustering for rubbers with different acrylonitrile contents was explained using the NMR technique. The increase in crosslinking was also revealed by the increase in the percent gel content and dynamic storage moduli with radiation doses. The lifetime of spurs formed and the critical dose, an important criterion for overlapping of spurs, were determined for both the grafted and the ungrafted nitrile rubbers of different grades and compared using a mathematical model. The ratio of scissioning to crosslinking for nitrile rubber was determined using Charlesby-Pinner equation. The mechanical properties had also been studied for both the modified and the unmodified systems

  19. Synthesis and Molecular Structures of Two [1,4-bis(3-pyridyl)-2,3-diazo-1,3-butadiene]-dichloro-Zn(II) Coordination Polymers

    OpenAIRE

    Lee, Gene-Hsiang; Wang, Hsin-Ta

    2006-01-01

    Two novel coordination polymers with 3D metal-organic frameworks (MOFs) have been synthesized by reacting 1,4-bis(3-pyridyl)-2,3-diazo-1,3-butadiene (L) with zinc dichloride. Both compounds have the same repeating unit consisting of a distorted tetrahedral Zn(II) center coordinated by two chlorides and two pyridyl nitrogen atoms of two bridging bismonodentate L ligands, however, different structural conformations have been found, one forming a helical chain and the other producing a square-wa...

  20. Stability of Dexmedetomidine in 0.9% Sodium Chloride in Two Types of Intravenous Infusion Bags.

    Science.gov (United States)

    Marquis, Kathleen; Hohlfelder, Benjamin; Szumita, Paul M

    2017-01-01

    Dexmedetomidine is a frequently used sedative in the critical care setting. It is commercially available as a 4-mg/mL premixed compound or as 200-mcg/2-mL vials that must be further diluted prior to administration. However, limited data exist regarding the stability of dexmedetomidine admixtures compounded from the 200-mcg/2-mL vials, particularly for durations greater than 48 hours. Therefore, we performed stability testing on compounded dexmedetomidine prepared in two types of intravenous infusion bags for 14 days. Dexmedetomidine is available as 200-mcg/2-mL vials for dilution, 80-mcg/20-mL single-dose vials, and as 200-mcg/50-mL and 400-mcg/100-mL glass bottles. The stability of dexmedetomidine admixtures has previously been tested for 48 hours. The purpose of this analysis was to test the stability of dexmedetomidine admixtures for 14 days. Six dexmedetomidine admixtures of 200 mcg/50 mL were compounded in polyvinyl chloride and non-polyvinyl chloride bags, three of which were stored under refrigeration and three of which were kept at room temperature. High-performance liquid chromatography testing was performed to determine the concentration at Days 1 through 14. Stability was determined by taking the mean concentration of samples taken from each bag. All samples were tested in duplicate. A sample was considered stable if the concentration was greater than 90% of the original concentration. All samples retained over 90% of the drug under their respective storage conditions for the duration of the study. At time 0, the concentration of dexmedetomidine was between 3.99 mcg/mL and 4.01 mcg/mL. On Day 14, the mean concentration was between 95.8% and 98.9%, depending on the bag type and storage condition. The pH remained between 4.7 and 5.8 during the study period as has previously been reported in the literature. Dexmedetomidine admixtures of 200 mcg/50 mL were stable in both polyvinyl chloride bags and non-polyvinyl chloride bags for 14 days under refrigeration

  1. Electron beam crosslinked gels-Preparation, characterization and their effect on the mechanical, dynamic mechanical and rheological properties of rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Suman; Chattopadhyay, Santanu [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India); Sabharwal, Sunil [Radiation Technology Development Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Bhowmick, Anil K., E-mail: anilkb@rtc.iitkgp.ernet.i [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-03-15

    Electron beam (EB) crosslinked natural rubber (NR) gels were prepared by curing NR latex with EB irradiation over a range of doses from 2.5 to 20 kGy using butyl acrylate as sensitizer. The NR gels were systematically characterized by solvent swelling, dynamic light scattering, mechanical and dynamic mechanical properties. These gels were introduced in virgin NR and styrene butadiene rubber (SBR) matrices at 2, 4, 8 and 16 phr concentration. Addition of the gels improved the mechanical and dynamic mechanical properties of NR and SBR considerably. For example, 16 phr of 20 kGy EB-irradiated gel-filled NR showed a tensile strength of 3.53 MPa compared to 1.85 MPa of virgin NR. Introduction of gels in NR shifted the glass transition temperature to a higher temperature. A similar effect was observed in the case of NR gel-filled SBR systems. Morphology of the gel-filled systems was studied with atomic force microscopy. The NR gels also improved the processability of the virgin rubbers greatly. Both the shear viscosity and the die swell values of EB-irradiated gel-filled NR and SBR were lower than their virgin counterparts as investigated by capillary rheometer.

  2. Electron beam crosslinked gels-Preparation, characterization and their effect on the mechanical, dynamic mechanical and rheological properties of rubbers

    International Nuclear Information System (INIS)

    Mitra, Suman; Chattopadhyay, Santanu; Sabharwal, Sunil; Bhowmick, Anil K.

    2010-01-01

    Electron beam (EB) crosslinked natural rubber (NR) gels were prepared by curing NR latex with EB irradiation over a range of doses from 2.5 to 20 kGy using butyl acrylate as sensitizer. The NR gels were systematically characterized by solvent swelling, dynamic light scattering, mechanical and dynamic mechanical properties. These gels were introduced in virgin NR and styrene butadiene rubber (SBR) matrices at 2, 4, 8 and 16 phr concentration. Addition of the gels improved the mechanical and dynamic mechanical properties of NR and SBR considerably. For example, 16 phr of 20 kGy EB-irradiated gel-filled NR showed a tensile strength of 3.53 MPa compared to 1.85 MPa of virgin NR. Introduction of gels in NR shifted the glass transition temperature to a higher temperature. A similar effect was observed in the case of NR gel-filled SBR systems. Morphology of the gel-filled systems was studied with atomic force microscopy. The NR gels also improved the processability of the virgin rubbers greatly. Both the shear viscosity and the die swell values of EB-irradiated gel-filled NR and SBR were lower than their virgin counterparts as investigated by capillary rheometer.

  3. Isolation rubber latex binary composites consisting of cotton and poly-N, N-dimethyl-N, N-diallilammony chloride

    Directory of Open Access Journals (Sweden)

    J. Cornejo Tueros

    2012-01-01

    Full Text Available The paper discusses the application of rubber from latex binary coagulating agent consisting of cotton - textile waste and polymeric quaternary ammonium salts. The influence on the process of extracting rubber from latex flow coagulating agent temsperatury and concentration of the dispersed phase.

  4. Rubber industry

    Science.gov (United States)

    Staszak, Maciej

    2018-03-01

    Following chapter presents short introductory description of rubber and rubber industry. The main problem of rubber industry is the way of the usage of spent tires. Furthermore very important group of problems arise considering the metal and nonmetal additives which are significant component of the vulcanized rubber. The key attention is dedicated to typical ways of rubber usage in utilization and recovery of metals from spent rubber materials concentrating specifically on used tires processing. The method of recovery of rare metals from rubber tires was described. The rubber debris finds widest use in the field of waste metal solutions processing. The environmental pollution caused by metals poses serious threat to humans. Several applications of the use of waste rubber debris to remove metals from environmental waters were described. Moreover, the agriculture usage of waste tire rubber debris is described, presenting systems where the rubber material can be useful as a soil replacement.

  5. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  6. Study on the properties of blend rubber prepared with grafted rubber and irradiated rubber by Gamma Rays

    International Nuclear Information System (INIS)

    Dafader, N. C.; Haque, M. E.; Islam, K. A.

    2004-05-01

    The blend rubbers were prepared by mixing γ-rays irradiated and monomer grafted rubbers. The monomers, methyl methacrylate (MMA) and styrene were used separately to prepare grafted rubber by exposure to radiation. The physico-chemical properties of the blend rubbers were evaluated. The tensile strength and elongation at break of the blend rubbers decrease whereas modulus at 500% elongation, swelling ratio and permanent set increase with the increased proportion of grafted rubber in the blend. The tear strength of the blend between irradiated and styrene grafted rubbers increases with the increased proportion of grafted rubber but that of the blend of irradiated and MMA grafted rubbers remains almost constant. The blend rubber could be used for special type of application like rubber thread, tube, catheter etc

  7. Preparation of butadiene D{sub 6} -1-1-2-3-4-4; Preparation du butadiene D{sub 6} -1-1-2-3-4-4

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L; Chatelain, G [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A description of the preparation of butadiene D{sub 6} by dehalogenation of perchlorobutadiene by zinc and heavy water in dioxane. (author) [French] Description de la preparation du butadiene D{sub 6} par reduction deshalogenante du perchlorobutadiene par le zinc et l'eau lourde dans le dioxane. (auteur)

  8. Automobile parts by radiation crosslinking

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2008-01-01

    Radiation crosslinking, graft polymerization and degradation are useful technologies to improve polymer materials. The crosslinking causes improvement in strength, heat stability and processability to gives network structure for polymer materials and hence crosslinked materials are used in various fields, especially car parts. Electron beam (EB) of short time irradiation is used for these modifications. Irradiated (pre-vulcanized) before sulfur vulcanization rubber tires, heat resistant wires/cables, shrinkable tubes and foams of car parts are achieved by EB crosslinking. Polyethylene and polyvinyl chloride are used in cables and wires, polypropylene in plastic foams and natural rubber etc. In this paper radiation processing of tire, wire/cables, foams, shrinkable tubes and circuit protection devices (CPT) are explained. (author)

  9. Physicochemical stability of oxaliplatin in 5% dextrose injection stored in polyvinyl chloride, polyethylene, and polypropylene infusion bags.

    Science.gov (United States)

    Eiden, Céline; Philibert, Laurent; Bekhtari, Khedidja; Poujol, Sylvain; Malosse, Francoise; Pinguet, Frédéric

    2009-11-01

    The physicochemical stability of extemporaneous dilutions of oxaliplatin in 5% dextrose injection stored in polyvinyl chloride (PVC), polypropylene, and polyethylene infusion bags was studied. Oxaliplatin 100 mg/20 mL concentrated solution was diluted in 100 mL of 5% dextrose injection in PVC, polypropylene, and polyethylene infusion bags to produce nominal oxaliplatin concentrations of 0.2 and 1.3 mg/mL. The filled bags were stored for 14 days at 20 degrees C and protected from light, at 20 degrees C under normal fluorescent light, and at 4 degrees C. A 1-mL sample was removed from each bag at time 0 and at 24, 48, 72, 120, 168, and 336 hours. The samples were visually inspected for color and clarity, and the pH values of the solutions were measured. High-performance liquid chromatography was used to assay oxaliplatin concentration. Bacterial contamination was assessed on study day 14 after incubation in trypticase soy solution for three days at 37 degrees C. Solutions of oxaliplatin 0.2 and 1.3 mg/mL in 5% dextrose injection were stable in the three container types for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure. No color change was detected during the storage period, and pH values remained stable. No microbial contamination was detected in any samples over the study period. Oxaliplatin solutions diluted in 5% dextrose injection to 0.2 and 1.3 mg/mL were stable in PVC and PVC-free infusion bags for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure.

  10. Developments in rubber technology 2 synthetic rubbers

    CERN Document Server

    Lee, K

    1981-01-01

    This book is intended for those people who have a knowledge or understanding of rubber materials and processes but who wish to update their knowledge. It should be read in conjunction with Developments in Rubber Technology-l as that volume discussed developments in natural rubber and selected special purpose synthetic rubbers as well as additives. The authors have been selected for their expertise in each particular field and we, as editors, would like to express our appreciation to the individual authors and also to their companies. Such a book would be impossible to produce without such active cooperation as we have received. Volumes 1 and 2 of Developments in Rubber Technology cover rubbers which are processed and vulcanised in the traditional manner. It is appreciated that the omission of non-vulcanised rubber materials (the so­ called thermoplastic elastomers) will be unwelcome to many readers but it is intended, because of the size of the subject, to cover these materials in a subsequent volume. A.W. K...

  11. Improved permeation performance and fouling-resistance of Poly(vinyl chloride/Polycarbonate blend membrane with added Pluronic F127

    Directory of Open Access Journals (Sweden)

    Supateekan Pacharasakoolchai

    2014-04-01

    Full Text Available The aim of this work was to prepare and characterize poly(vinyl chloride (PVC/polycarbonate (PC blend membranes for use in ultrafiltration. Pluronic F127 was used as an additive to modify the membrane surface of the PVC/PC blended membranes. The PVC/PC blend membrane was first prepared using the phase inversion method from a casting solution of PVC with small amount of PC in N-methylpyrrolidone (NMP and water as the non-solvent. The morphologies structure and properties, such as tensile strength, water flux, and bovine serum albumin (BSA rejection of the blend membrane were studied. Increased amounts of PC resulted in an increase in the water flux and ability to reject protein. A concentration of 0.75 wt% PC provided the best improvement in tensile strength of blend membrane. Addition of different amounts of pluronic F127 to the casting solution of PVC/PC with a PC concentration of 0.75 wt% resulted in a decrease in the water contact angle that demonstrated the improvement of hydrophilicity of blend membrane. Scanning electron microscopy photographs showed that the modified PVC/PC membranes had a bigger pore volume in the porous sub-layer compared to the PVC/PC control membrane. The PVC/PC membrane with added Pluronic F127 exhibited a much higher flux and rejection of BSA in a protein filtration experiment than the PVC/PC membrane. An increase in flux recovery ratio of PVC/PC/pluronic 127 blend membrane indicated that the modified membranes could reduce membrane fouling useful for ultrafiltration.

  12. Energy recycling of plastic and rubber wastes

    International Nuclear Information System (INIS)

    Hussain, R.

    2003-01-01

    Major areas for applications of plastics and rubbers are building and construction, packaging, transportation, automobiles, furniture, house wares, appliances, electrical and electronics. Approximately 20% of all the plastics produced are utilized by the building and construction industry/sup (1-3)/. Categories of polymers mostly used in the above industries include poly (vinyl chloride), polypropylene, polyethylene, polystyrene phenolics, acrylics and urethanes. Tyres and tubes are almost exclusively made up of rubbers. One third of total consumption of plastics finds applications, like films, bottles and packaging, in food-products that have a maximum life-span of two years, after which these find way to waste dumps. As the polymer industry in Pakistan is set to grow very rapidly in the near future the increase in utilization of plastic products in synchronous with the advent of computers and information technology. About 0.60 Kg per capita of waste generated daily in Lahore /(7.14)/ contains considerable quantity of plastics. (AB)

  13. Effect of Low-Pressure Nitrogen DC Plasma Treatment on the Surface Properties of Biaxially Oriented Polypropylene, Poly (Methyl Methacrylate) and Polyvinyl Chloride Films

    International Nuclear Information System (INIS)

    Mortazavi, S. Hamideh; Ghoranneviss, Mahmood; Pilehvar, Soheil; Esmaeili, Sina; Zargham, Shamim; Hashemi, S. Ebrahim; Jodat, Hamzeh

    2013-01-01

    In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemical changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT-IR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy after treatment for 2 min, 4 min and 6 min in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times. (plasma technology)

  14. Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: Optical, thermal, mechanical and morphological properties.

    Science.gov (United States)

    Mallakpour, Shadpour; Darvishzadeh, Marzieh

    2018-03-01

    In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Thermostability and surface morphology of nano- and micro-filled NBR/CSM and CR/CSM rubber blends

    Directory of Open Access Journals (Sweden)

    M. MARINOVIC-CINCOVIC

    2004-02-01

    Full Text Available Acrylonitrile-butadiene rubber (NBR, polychloroprene rubber (CR, chlorosulphonated polyethylene rubber (CSM and their blends were cross-linked with sulphur, ethylene-thiourea, magnesium oxide or their combination. The effect of nano- and micro- particle sized of 35 pphr SiO2 on the thermostability and surface morphology of all the crosslinked systems was investigated. Identification of the structure of nano- and micro- particle sized SiO2 filled NBR/CSM and CR/CSM crosslinked systems was carried out by Fourier transform infrared spectroscopy (FTIR with an attenuated total reflectance (ATR extension. The thermal stability of the nano- and micro- particle sized SiO2 filled NBR/CSM and CR/CSM crosslinked systems were carried out by thermogravimetric analysis (TGA. The glass transition temperature (Tg of the samples was determined by differential scanning calorimetry (DSC. The morphology of the fracture surface of the crosslinked systems was carried out by scanning electron microscope (SEM. The results show when filled with nano-particle sized of SiO2 NBR/CSM and CR/CSM polymer matrix have a strong peak from SiO–C at 1079 cm-1. This suggests the an interaction between the SiO2, which should lead to an increased thermal stability, higher values of Tg, better dispersion the nano-SiO2 and more polish, without cracks than micro-filled NBR/CSM and CR/CSM crosslinked systems.

  16. Pyrolysis of poly(vinyl chloride) and-electric arc furnacedust mixtures.

    Science.gov (United States)

    Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Makhadmah, Leema; Hamilton, Ian E; Kingman, Sam; Al-Asheh, Sameer; Hararah, Muhanned

    2015-12-15

    An investigation into the pyrolysis kinetics of PVC mixed with electric arc furnace dust (EAFD) was performed. Mixtures of both materials with varying PVC ratios (1:1, 1:2, 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at different heating rates (5, 10, 30 and 50 °C/min). The pyrolysis process proceeded through two main decomposition steps; the first step involved the release of HCl which reacted with the metal oxides present in the dust, subsequently forming metal chlorides and water vapor. Benzene was also found to release as detected by TGA-MS. The remaining hydrocarbons in the polymer backbone decomposed further in the second step releasing further volatile hydrocarbons. Different models were used to fit the kinetic data namely the integral, the Van Krevelen, and Coats and Red fern methods. The presence of EAFD during PVC decomposition resulted in a considerable decrease in the activation energy of the reaction occurring during the first decomposition region. Furthermore, iron oxides were retained in the pyrolysis residue, whilst other valuable metals, including Zn and Pb, were converted to chlorides that are recoverable by leaching in water. It is believed that EAFD can be utilized as an active catalyst to produce energy gases such as propyneas evident from the TGA-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna.

    Science.gov (United States)

    Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran

    2012-06-01

    The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.

  18. Nano-reinforcement of tire rubbers: silica-technology for natural rubber : exploring the infuence of non-rubber constituents on the natural rubber-silica system

    NARCIS (Netherlands)

    Sarkawi, S.S.

    2013-01-01

    Natural rubber is a renewable resource material with outstanding properties which offers significant advantages over its counterparts, the fossil-resource synthetic rubbers. In fact, a natural rubber tree is an efficient carbon dioxide sequester. Since natural rubber is a natural product, it is

  19. Elastomers for Service as Seals for Engine Lubricants and Hydraulic Fluids

    Science.gov (United States)

    1976-02-01

    mm NBR PNF psi - fluorocarbon rubber - hour per degrees Fahrenheit - inch-pound per cubic inch - minute per degrees Fahrenheit - milliliter...millimeter - nitrile-butadiene rubber - polyffluoroalkoxy)phosphazene - pounds per square inch t I (1 MAT-75-78 <V ■ >«..*, njf:~-. I...I I I I I I r i. L I I 1 ! «WJBDXNB PA« BUNUfOT FIIMID BACKGROUND Nitrile-butadiene robber ( NBR ) O-nngs have had an accept

  20. Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene

    Science.gov (United States)

    Liu, Xiaoyu; Jeffries, Harvey E.; Sexton, Kenneth G.

    1,3-Butadiene, classified as hazardous in the 1990 Clean Air Act Amendments, is an important ambient air pollutant. Understanding its atmospheric transformation is useful for its own sake, and is also helpful for eliciting isoprene's fate in the atmosphere (isoprene dominates the biogenic emissions in US). In this paper, samples from both hydroxyl- and ozone-initiated photooxidation of 1,3-butadiene were analyzed by derivatization with O- (2,3,4,5,6-pentafluorobenzyl)-hydroxylamine followed by separation and detection by gas chromatography/ion trap mass spectrometry to detect and identify carbonyl compounds. The following carbonyls were observed: formaldehyde, acrolein, glycolaldehyde, glycidaldehyde, 3-hydroxy-propanaldehyde, hydroxy acetone, and malonaldehyde, which can be classified into three categories: epoxy carbonyls, hydroxyl carbonyls, and di-carbonyls. Three non-carbonyls, furan, 1,3-buatdiene monoxide, and 1,3-butadiene diepoxide, were also found. To confirm their identities, both commercially available and synthesized standards were used. To investigate the mechanism of 1,3-butadiene, separate batch reactor experiments for acrolein and 1,3-butadiene monoxide were carried out. Time series samples for several products were also taken. When necessary, computational chemistry methods were also employed. Based on these results, various schemes for the reaction mechanism are proposed.

  1. Synthesis and characterization of foldable and magnetic field-sensitive, freestanding poly(vinyl acetate)/poly(vinyl chloride)/polyfuran composite and nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Sarıtaş, Sevilay; Eşsiz, Serpil; Sarı, Bekir, E-mail: bsari@gazi.edu.tr

    2017-07-01

    Highlights: • In this study, ternary composite/nanocomposite films were synthesized. • Magnetic field-sensitive folding films were prepared without any elastomer. • Morphological studies show that all composite films have a smooth surface. • The ternary composites/nanocomposite show improved thermal stability compared to the pure PF. - Abstract: In this study, polyfuran and poly(vinyl acetate)/poly(vinyl chloride)/polyfuran ternary composites were synthesized via the chemical polymerization method. The temperature and magnetic field–sensitive novel composites and the nanocomposite were obtained in the form of powders and films. It was observed that the prepared novel conductive films have superior properties at a certain temperature range (25–50 °C) such as bending and folding. The structural properties, thermal behavior, surface morphology, internal structure, and surface roughness of the prepared samples were investigated by various characterization techniques. The conductivities of the samples were measured at room temperature and different temperatures by the four-point technique. X-ray Diffraction analysis results demonstrated that the PF and composites have an amorphous structure, whereas the nanocomposite is in crystalline form. The saturation magnetization (Ms) values of the magnetite and nanocomposite were found to be 58.9 and 5.3 emu g{sup −1}, respectively. It was found that magnetite-doped nanocomposite has superparamagnetic properties at room temperature.

  2. Influence of SEBS-MA and SBS compatibilizers on properties and morphology of blends of polystyrene/rubber residue (SBRr from the footwear industry

    Directory of Open Access Journals (Sweden)

    Carlos Bruno Barreto Luna

    Full Text Available Abstract The reuse of rubber waste is very important today, both to reduce the harmful effects on the environment, and to reduce the cost of new material development. Considering that most of the studies reported in literature refer to the reuse of tire waste, this article aims to evaluate the influence of styrene-butadiene-styrene (SBS and styrene-(ethylene-butylene-styrene grafted with maleic anhydride (SEBS-MA compatibilizers on the blend performance of polystyrene (PS/styrene-butadiene rubber residue (SBRr, which come from the footwear industry. The blends were prepared in a co-rotating twin screw extruder and then were molded by injection. They were analyzed by impact and tensile tests, heat deflection temperature (HDT, ductile-brittle transition temperature, dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. The results evidenced that the use of any of the compatibilizers on the PS/SBRr blend significantly increased the impact strength, while the tensile properties and HDT were lower when compared to the polymer matrix. The ductile-brittle transition temperature remains at approximately 25°C range for all the blends. In general, it has been proved that the SBS was the most effective compatibilization process in the PS/SBRr system. The DMTA test shows the presence of two distinct temperature peaks. The morphologies obtained by TEM of binary and ternary blends were quite different and typical of immiscible blend. The results show a good perspective regarding the use of industrial waste (SBRr, since it may enhance a material that would be discarded.

  3. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  4. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    Science.gov (United States)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  5. Investigation of physico-mechanical properties of flexible poly (vinyl chloride) filled with antimony trioxide using ionizing radiation.

    Science.gov (United States)

    Elnaggar, Mona Y; Fathy, E S; Hassan, Medhat M

    2018-04-12

    Composites of polyvinyl chloride (PVC) with 2% calcium carbonate, 2% diethyl phthalate, 2% paraffin wax and 2% lead sulphate and different contents of antimony trioxide (Sb 2 O 3 ) prepared by melting and irradiated with gamma ray have been considered. Assessment of the mechanical and thermal properties of the unirradiated and irradiated flexible polyvinyl chloride (FPVC) were completed utilizing elasticity (TS), Elongation at break (Eb) and thermogravimetric analysis measurements. TS and thermal stability of FPVC displayed advanced improvement after addition of additives and this approach highlighted the efficiency of those ingredients on PVC. The compounding of FPVC with Sb 2 O 3 in various extents was examined by FTIR, X-ray diffraction and scanning electron microscope methods. It is obvious that the presence of Sb 2 O 3 begins impacting oxidative degradation, leading to a decrease in mechanical properties up to 10%. Moreover, a slight increase in the thermal stability of composites by exposure to ionizing radiation is apparently due to cross-linking of FPVC chains.

  6. Effect of grafting cellulose acetate and methylmethacrylate as compatibilizer onto NBR/SBR blends

    International Nuclear Information System (INIS)

    Khalf, A.I.; Nashar, D.E.El.; Maziad, N.A.

    2010-01-01

    Compatibilizer is used for improving of processability, interfacial interaction and mechanical properties of polymer blends. In this study acrylonitrile butadiene rubber (NBR) and styrene-butadiene rubber (SBR) blends were compatibilized by a graft copolymer of acrylonitrile butadiene rubber (NBR) grafted with cellulose acetate (CA) i.e. (NBR-g-CA) and acrylonitrile butadiene rubber (NBR) grafted with methylmethacrylate i.e. (NBR-g-MMA). Compatibilizers were prepared by gamma radiation induced grafting of NBR with cellulose acetate (CA) and methylmethacrylate (MMA) were added with different ratios to NBR/SBR (50/50) blend. The compatibilized blends were evaluated by rheometric characteristics, physico-mechanical properties, swelling behavior, scanning electron microscope (SEM) and thermal analysis. The results showed that, the blends with graft copolymer effect greatly on the rheological characteristics [optimum cure time (Tc 90 ), scorch time (Ts 2 ), and the cure rate index (CRI)]. The physico-mechanical properties of the investigated blends were enhanced by the incorporation of these graft copolymers, while the resistance to swelling in toluene became higher. SEM photographs confirm that, these compatibilizers improve the interfacial adhesion between NBR/SBR (50/50) blend which induce compatibilization in the immiscible blends. The efficiency of the compatibilizer was also evaluated by studying the thermogravimetric analysis.

  7. Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve their potentiometric response.

    Science.gov (United States)

    Shishkanova, T V; Matejka, P; Král, V; Sedenková, I; Trchová, M; Stejskal, J

    2008-08-29

    Repeated depositions of polyaniline (PANI) have been used to control the thickness of the polymeric film deposited on poly(vinyl chloride) (PVC) membrane surface. The oxidation of aniline was carried out in a dispersion mode, i.e. in the presence of poly(N-vinylpyrrolidone) (PVP). Two kinds of PVC were used for this purpose: a non-plasticized PVC for the study of PANI deposition and PVC, plasticized with nitrophenyl octyl ether (NPOE), as a prototype of a liquid membrane electrode. The results of UV-visible and FTIR spectroscopies and electron microscopy showed that (1) the film thickness increased by about equal increments of approximately 40 nm after each polymerization, and (2) the interface with PVC was constituted by PANI film and adhering PANI-PVP colloidal particles. The various thicknesses of the deposited PANI films affected the potentiometric response of the NPOE/PVC membrane with and without an anion-exchanger. The potentiometric anionic response was observed with a minimal thickness of PANI film on the blank NPOE/PVC membrane. Sensitivity of the PANI film to pH occurred only with a blank NPOE/PVC membrane coated with a thick polymeric film, while it was strongly suppressed by the presence of a lipophilic anion-exchanger, tridodecylmethylammonium chloride (TDDMACl), in the membrane, regardless of the thickness of the polymer film. The thickness of the PANI film did not affect the anionic selectivity pattern of TDDMACl-based membranes to any great extent, but its presence improved and stabilized their potentiometric characteristics (sensitivity, linear-response range).

  8. Prediction of heat generation in rubber or rubber-metal springs

    Directory of Open Access Journals (Sweden)

    Banić Milan S.

    2012-01-01

    Full Text Available The temperature of rubber or rubber-metal springs increases under cyclic loading, due to hysteresis losses and low rubber thermal conductivity. Hysteresis losses correspond to energy dissipation from the rubber, which is primarily converted into heat. This well-known phenomenon, called heat build-up, is the primary reason for rubber aging. Increase in temperature within the rubber compound leads to degradation of its physical and chemical properties, increase in stiffness and loss of damping capability. This paper presents a novel procedure of heat generation prediction in rubber or rubber-metal springs. The procedure encompasses the prediction of hysteresis loss, i. e. dissipated energy within the rubber, by finite element analysis and application of a modern visco-plastic rubber constitutive model. The obtained dissipated energy was used as an input for transient thermal analysis. Verification of the proposed procedure was performed by comparison of simulation results with experimentally obtained data during the dynamic loading of the rubber specimen. The proposed procedure is highly computationally efficient and it enables time integration, which can be problematic in coupled mechanical thermal analysis. [Projekat Ministarstva nauke Republike Srbije, br. TR35005: Research and Development of New Generation of Wind Turbines of High Energy Efficiency

  9. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium research and development of energy (High-quality low-cost metal dies for molding rubber and plastic - 2nd year); 1999 nendo gomu plastic yo kohin'i tei cost kanagata no kenkyu kaihatsu seika hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Metal die surfaces are improved in their resistance to abrasion and corrosion and, in particular, in their release from rubber materials and resistance to contamination. In an effort to develop techniques for optimum metal die surface modification, a PBII (plasma based ion implantation) unit is operated to implant ions into various kinds of metal die surfaces by means of nitrogen or fluorine gas plasma, and optimum conditions are studied by analyzing and evaluating the surface layers after treatment. In an effort to develop a novel ion implantation device to work on 3-dimensional shapes, conditions for stable ion implantation are determined, for which PBII gas concentration, arc plasma power, pulse frequency, application voltage, processing time, etc., are allowed to vary. In the quest for suitable conditions for metal die treatment by the PBII unit, tests are conducted involving natural rubber, butadiene rubber, nitrile rubber, chloroprene rubber, and ethylene propylene rubber and studies are conducted about their release from and contamination of metal dies and 3-dimensional metal dies into which ions have been implanted using fluorine plasma. (NEDO)

  10. Radiation cured acrylonitrile--butadiene elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1976-01-01

    In accordance with a preferred embodiment of this invention, the ultimate elongation of an electron beam radiation cured acrylonitrile-butadiene elastomer is significantly increased by the incorporation of a preferred noncrosslinking monomer, glycidyl methacrylate, in combination with the conventional crosslinking monomer, trimethylolpropanetrimethacrylate, prior to the radiation curing process

  11. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging; Filme ativo de poli(cloreto de vinila)/prata: sintese, caracterizacao e avaliacao como embalagem ativa antimicrobiana

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio, E-mail: lilianrodribraga@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF, (Brazil)

    2015-07-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm{sup -1} and 1165 cm{sup -1} bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  12. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films

    Science.gov (United States)

    Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi

    2018-01-01

    The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.

  13. Rubber mixing process and its relationship with bound rubber and crosslink density

    Science.gov (United States)

    Hasan, A.; Rochmadi; Sulistyo, H.; Honggokusumo, S.

    2017-06-01

    This research studied the relationship between bound rubber and crosslink density based on rubber mixing process. Bound rubber was obtained after natural rubber was masticated and mixed with rubber chemicals and filler while crosslink density was collected after rubber compound was vulcanized. Four methods are used and each method refers to four ways of incorporating carbon black during mixing. The first method, after rubber was masticated for 5 minutes, the addition of rubber chemicals and filler was done simultaneously. Rubber was masticated for 1 minute and continued mixing of rubber chemicals and filler where mixing was different from first method. This was the second method. The third method was the same as the second method but the filler used N 660 while in the second method N 330. The last method is not the same as the first and second, the rubber is only masticated for 3 minutes and then mixed with filler and followed by rubber chemicals sequentially. The results showed that bound rubber and crosslink density were influenced by mixing and mastication process. Bound rubber dropped and crosslink density was relatively stable in the first three mixing methods for increasing carbon black at the beginning of the mixing process. Bound rubber and crosslink density stated opposite results in the fourth mixing method. The higher the bound rubber the lower the crosslink density. Without regard to mixing methods, there is a non-linear relationship between bound rubber formation and crosslink density determination

  14. Effect of plasticiser on properties of styrene-butadiene-styrene thermoplastic elastomers

    International Nuclear Information System (INIS)

    Norzalia, S.; Farid, A.S.; O'Brien, M.G.

    1999-01-01

    This study investigates the properties of plasticised styrene-butadiene-styrene thermoplastic elastomers for possible applications in pharmaceutical, medical and food industries. Unplasticised styrene-butadiene-styrene (USBS) materials: vector 8550-D and vector 4461-D, which are developmental materials introduced by Exxon, and blends of vector 8550-D with vector 4461-D were plasticised paraffinic type plasticisers plastol 172 and plastol 352. Shore A hardness, tensile stress at break, modulus at 100% strain, elongation at break and density values showed a decrease whereas flow properties such as melt flow index (MFI) increased considerably with increasing plasticiser concentration. The properties of the plasticised styrene-butadiene-styrene thermoplastic elastomers were compared to the USBS materials. (author)

  15. Stereodynamic insight into the thermal history effects on poly(vinyl chloride) calorimetric sub-glass and glass transitions as a fragile glass model.

    Science.gov (United States)

    Pin, Jean-Mathieu; Behazin, Ehsan; Misra, Manjusri; Mohanty, Amar

    2018-05-02

    The dynamic thermal history impact of poly(vinyl chloride) (PVC) has been explored for a wide range of pre-cooling rates, from 1 to 30 °C min-1. A first macroscopic insight into the dynamic thermal history influence has been highlighted through a decrease in the apparent activation energy (Eapp) in the first stage of the glass transition. The overall glass transition Eapp surface was successfully modeled in a polynomial fashion regarding the pre-cooling range. Raman scattering was used to associate the Eapp variations along the glass transition conversion with the stereochemistry evolution during the polymeric relaxation. Herein, the selection of atactic PVC as the polymer model permits us to monitor the glassy polymer segment stereodynamics during the heating ramp through the C-Cl stretching. The intermolecular H-Cl dipole interactions, as well as intramolecular conformational reorganizations among syndiotactic, isotactic and heterotactic polymer sequences, have been associated with non-cooperative and cooperative motions, i.e. the β- and α-process, respectively. The fruitful comparison of the two extreme values of the pre-cooling rates permits us to propose a thermokinetic scenario that explains the occurrence, intensity, and inter-dependence of β- and α-processes in the glassy state and during the glass transition. This scenario could potentially be generalized to all the other polymeric glass-formers.

  16. Fabrication of 3D interconnected porous TiO{sub 2} nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Joo Hwan; Koh, Jong Kwan; Seo, Jin Ah; Kim, Jong Hak [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Jong-Shik, E-mail: jonghak@yonsei.ac.kr [Department of Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2011-09-07

    Porous TiO{sub 2} nanotube arrays with three-dimensional (3D) interconnectivity were prepared using a sol-gel process assisted by poly(vinyl chloride-graft-4-vinyl pyridine), PVC-g-P4VP graft copolymer and a ZnO nanorod template. A 7 {mu}m long ZnO nanorod array was grown from the fluorine-doped tin oxide (FTO) glass via a liquid phase deposition method. The TiO{sub 2} sol-gel solution templated by the PVC-g-P4VP graft copolymer produced a random 3D interconnection between the adjacent ZnO nanorods during spin coating. Upon etching of ZnO, TiO{sub 2} nanotubes consisting of 10-15 nm nanoparticles were generated, as confirmed by wide-angle x-ray scattering (WAXS), energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (FE-SEM). The ordered and interconnected nanotube architecture showed an enhanced light scattering effect and increased penetration of polymer electrolytes in dye-sensitized solar cells (DSSC). The energy conversion efficiency reached 1.82% for liquid electrolyte, and 1.46% for low molecular weight (M{sub w}) and 0.74% for high M{sub w} polymer electrolytes.

  17. Thermal stabilisation of pvc with jatropha seed, khaya seed and rubber seed oils. Effect of barium and cadmium soaps of the seed oils on the thermal degradation of pvc

    International Nuclear Information System (INIS)

    Okieimen, F.E.

    2003-01-01

    Polyvinyl chloride was mixed with barium and cadmium soaps of Jatropha seed, Khaya seed and rubber seed oils and mixtures of the metal soaps and degraded at 190 deg. C under oxidative and non oxidative conditions. The effectiveness of the additives in stabilizing PVC against thermal degradation was evaluated by comparing (a) the kinetic data measured at 1% conversion for the degradation of PVC in the presence of the additives with the corresponding values obtained in the absence of the additives (b) the intrinsic viscosity and level of unsaturation in the polymer samples degraded for the under graded polymer and (c) the thermogravimetric data obtained for the degradation of PVC in the presence of the additives at a constant heating rate of 10 degree C min/sup -1/ up to 500 degree C. It was found that the additives retarded the rate of dehydro chlorination of PVC (by up to about 50% and 1% conversion) and reduced the extent of decomposition of the polymer by as much as 60%. The mixtures of the metal soaps containing more than 70% (wt) cadmium soap showed marked synergistic stabilizing effect on the degradation of PVC. (author)

  18. USED IN THE MANUFACTURE OF EMULSION RUBBER WASTE OF SUGAR MANUFACTURE – MOLASSES

    Directory of Open Access Journals (Sweden)

    S. S. Nikulin

    2015-01-01

    Full Text Available Currently, much attention is paid to development, allowing use of waste and by-products formed during certain manufacturing processes. This allows you to either reduce or completely eliminate the use of valuable and expensive raw materials. The use of this raw material in the production of synthetic rubber will not only reduce the cost of coagulation and acidifying agents, but also to improve the environmental situation. Featured in some cases effective coalescing agents based on polymeric quaternary ammonium salts (PCHSA have a high coagulating power, and hence low consumption of the allocation of the rubber latex (3-5 kg0t-1 rubber. Scarcity and high cost of these drugs leads to higher prices resulting rubber. Furthermore it is known that the application requires keeping PCHSA sufficiently precise dosage administered substances by the action of a latex, owing to the high capacity of the antiseptic may lead to discharge into natural waters polluted waters. However, using as the coagulating agent departing sugar production molasses solves a number of problematic steps in the production of synthetic rubber. First, a well-studied effective coagulation effect of different nitrogen derivatives relating to cationic surfactants. In freshly prepared solutions of molasses contained about 9 wt%, and this value increases significantly during enzymatic fermentation. Secondly, highly acidic environment of aqueous solutions of molasses after storage can allow their use in addition to or instead of the sulfuric acid used in large amounts (up to 15 kg m-1 rubber technology selection tests carried found that vulcanizates derived from rubber samples isolated molasses, consistent with the requirements and were similar to control samples prepared from the latex using sodium chloride.

  19. Determinations of phase transitions in nylon 6-12, nylon-6, polyvinyl chloride and polyethylene terephthalate by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Camacho Reyes, M.J.

    1993-01-01

    Positron annihilation lifetime spectroscopy (PALS) was used to investigate the phase transitions, mainly the glass transition, of poly(vinyl chloride) (PVC), Nylon-6,12, Nylon-6, poly(ethylene terephthalate) during the thermal treatment of these polymers. The longest lived component lifetime and intensity, indicative of ortho-Positronium pick-off exhibit thermal dependencies that can be attributed to the anticipated free volume changes associated with structural transitions. Positron lifetime measurements were performed using an E G and G Ortec standard fast-fast coincidence system. Three spectra were collected at each temperature, each consisting of a peak height of approximately 25000 counts. The resulting spectra were consistently modeled with a three component fit using the computer program PATFIT. For nylon-6,12, nylon-6, PVC systems three transitions were obtained in both tau-3 and I-3 as a function of temperature. Changes in the slope of the curves appear for both parameters, these could be attributed to T g1 , T g2 and T c , respectively. In the case of PET analysis two transitions were obtained as is shown by the variations of tau-3 as a function of the heating temperature. These transitions can be attributed to T g1 and T g2 . Similar changes can be observed for I-3 in relation with temperature. Glass transition behavior was evident in the lifetime behavior of polymers. Increases in slope of the lifetime temperature plots were interpreted free-volume cavity expansion as temperature is increased. The intensity responses in the vicinity of the upper glass transition were consistent with the association of this transition with the reduction of crystalline constraint of segmental mobility in the amorphous phase. (Author)

  20. Vinyl Chloride Emulsion Polymerization Reaction: Effect of Various Formulations

    Directory of Open Access Journals (Sweden)

    Seyed Mehrdad Jalilian

    2013-01-01

    Full Text Available A mixture  of  sodium  lauryl  sulfate  (SLS  as  ionic  emulsifer  and  stearyl alcohol as non-ionic emulsifer was employed in a vinyl chloride emulsion polymerization  reaction  to  study  the  infuence  of  various  interactive parameters involved in the reaction system. It was found that the particle size was dependent on the amount and type of emulsifer. The average particle size of polyvinyl chloride was dropped by higher amount of emulsifying agents.  At the gel point, more heat was generated by higher amount of vinyl chloride fed into the reaction system. The molecular weight of the polymer was decreased by increases in reaction temperature while,  it  increased by augmenting  the amount of emulsifer. According to the 13C NMR and FTIR spectroscopic data no defect was detected in the chain structure of synthetic polyvinylchloride product. An optimization of polymerization reaction condition was reached based on ultimate particle size desired for its favorable distribution in plastisols.

  1. Studies of PVC/ENR blends: blend compositions

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2002-01-01

    Blends of poly(vinyl chloride/epoxidized natural rubber (PVC/ENR) were prepared by using Bra bender Plasticorder at compositions ranging from 0-100% PVC. They were blended at 150 degree C mixing temperature, 50 rpm rotor speed and 10 minutes mixing time. The blends were characterized for tensile strength , elongation at break, glass transition temperatures and Fourier transform infra red spectroscopy (FTIR). Results revealed that as the PVC content increases the blend behaviour changes from elastomeric to glassy. However the blends found to be compatible at all compositions. (Author)

  2. Optical and Scanning electron Microscopy as advanced analysis methods to determine the condition of synthetic geo membranes

    International Nuclear Information System (INIS)

    Soriano Carrillo, J.; Blanco Fernandez, M.; Garcia Calleja, M. A.; Leiro Lopez, A.; Mateo Sanz, B.; Aguilar Gonzalez, E.; Rubin de Celix, M.

    2014-01-01

    Microscopic techniques have been widely used for years in the study of inorganic materials however their use in organic materials and specifically, in synthetic geo membranes, is very limited. In this study, this innovative technology has been used with the different geo synthetic polymeric barriers with which this research team is experienced: plasticized polyvinyl chloride, polyethylenes, rubbers such as ethenyltriphenyl-diene monomer terpolymer and butyl, polyolefins, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene and polypropylene. the influence of the extraction area and the time since their application is tested. (Author)

  3. Optical and Scanning electron Microscopy as advanced analysis methods to determine the condition of synthetic geo membranes; Las microscopias optica de reflexion y electronica de barrido como metodos avanzados de analisis para conocer el estado de las geomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Soriano Carrillo, J.; Blanco Fernandez, M.; Garcia Calleja, M. A.; Leiro Lopez, A.; Mateo Sanz, B.; Aguilar Gonzalez, E.; Rubin de Celix, M.

    2014-02-01

    Microscopic techniques have been widely used for years in the study of inorganic materials however their use in organic materials and specifically, in synthetic geo membranes, is very limited. In this study, this innovative technology has been used with the different geo synthetic polymeric barriers with which this research team is experienced: plasticized polyvinyl chloride, polyethylenes, rubbers such as ethenyltriphenyl-diene monomer terpolymer and butyl, polyolefins, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene and polypropylene. the influence of the extraction area and the time since their application is tested. (Author)

  4. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of this...

  5. Rubber glove wearing device

    International Nuclear Information System (INIS)

    Nozaki, Tatsuo; Takada, Kaoru.

    1994-01-01

    Rubber groves are attached each to an upper end of a glove putting vessel having an air-sucking hole on the bottom by enlarging an opening end of the rubber glove and turning back the inside to the outside. When the sucking device is operated, air in the glove putting device is sucked and the rubber glove is expanded by an atmospheric pressure. After expansion of the rubber glove to some extent, the sucking device is stopped, and presence or absence of failures of the rubber glove is confirmed by shrinkage of the rubber glove and by an indication value of a pressure gauge for detecting the pressure change in the vessel. Then, a hand is inserted to the expanded rubber glove, and a detaching switch in the vessel is pushed by a finger tip. A detaching piece at the upper end of the vessel is protruded outwardly to enlarge the turned-back portion of the rubber glove to easily release the rubber glove from the putting vessel, and the rubber glove is put on. This enables to wear the rubber glove and conduct failure test simultaneously. Further, a user can put on the rubber glove without touching the outside of the rubber glove. (I.N.)

  6. Delayed reactions to reusable protective gloves.

    Science.gov (United States)

    Pontén, Ann; Dubnika, Inese

    2009-04-01

    The materials in plastic protective gloves are thought to cause less contact allergy than rubber gloves. Our aim was to estimate the frequency of delayed reactions to different types of reusable protective gloves among dermatitis patients. 2 x 2 cm pieces of polyvinyl chloride (PVC) gloves, nitrile gloves, and natural rubber latex (NRL) gloves were tested as is in consecutive dermatitis patients tested with the baseline series. Among 658 patients, 6 patients reacted to PVC gloves and 6 patients to the NRL gloves. None reacted to both these types of gloves. Five of six patients with reactions to rubber gloves reacted to thiuram mix in the baseline series. Delayed reactions to reusable PVC gloves may be as common as to reusable NRL gloves. In contrast to most reactions to the NRL glove, the reactions to the PVC glove had no obvious association with reactions to any allergen(s) in the baseline series.

  7. Migration of plasticizers from poly(vinyl chloride) and multilayer infusion bags using selective extraction and GC-MS.

    Science.gov (United States)

    Haned, Zohra; Moulay, Saad; Lacorte, Silvia

    2018-04-12

    Flexible poly(vinyl chloride) (PVC) is widely used in the pharmaceutical industry for the manufacture of medical devices (tubes, probes, bags, primary packaging, etc.). The objective of the present study was to develop a procedure to evaluate the migration potential of nine plastic additives in aqueous infusion bags (NaCl 0.9% and glucose 5%): five phthalates, one adipate, two alkylphenols, and benzophenone. Two types of materials were analyzed: (i) new and outdated plasticized PVC (containing 40% of diethylhexyl phthalate DEHP); and (ii) tri-laminate polyethylene-polyamide-polypropylene, a multilayer material presumably exempt from DEHP. In addition, we evaluated the migration of plasticizers from PVC raw materials (film and grain) under controlled conditions to compare the migration levels according to Regulation 2011/10. Solid phase extraction and liquid-liquid extraction with gas-chromatography coupled to mass spectrometry were used in all tests. The migration of DEHP in PVC grain exceeded the maximum regulated level of 5000 μg/kg, whereas the levels were much lower in films. In new PVC bags, DEHP was the only compound detected at 4.31 ± 0.5 μg/L in NaCl 0.9% and 4.29 ± 0.25 μg/L in glucose 5% serums, whereas the levels increased 10 times in three-year shelf-life bags. In multilayer bags, DEHP was not found but instead, two plasticizers were detected namely dibuthylphthalate (DBP) and diethylphthalate (DEP) at 0.7 ± 0.1 μg/L and 4.14 ± 0.6 μg/L, respectively. These plasticizers are not mentioned as additives allowed in materials intended for parenteral use (European Pharmacopoeia 8.0, 3.1.5. and 3.1.6.). Caprolactam was tentatively identified and could have stemmed from the polyamide of the multilayer composite. The levels of phthalates remained low but not negligible and might constitute a risk to public health in the case of reiterative infusions. Copyright © 2018. Published by Elsevier B.V.

  8. Fuel and Fuel System Materials Compatibility Test Program for A JP-8+100 Fuel Additive. Volume 1: Thermal Stability Additive Package BetzDearborn Spec Aid(Registered) 8Q462

    Science.gov (United States)

    2001-10-01

    SAE Rings, Sealing, Butadiene-Acrylonitrile ( NBR ), Rubber Fuel and Low Temperature Resistant 60 - 70 MIL-R-83248C Rubber , Fluorocarbon...KAPTON/TEFLON (COMPOSITE) WIRE I.I.10 34 VI. REFERENCE DOCUMENTS Non-Metallics MIL-HDBK-149B Military Standardization Hand Book Rubber ...ASTM D-1414 Standard Test Methods for Rubber O-Rings ASTM D-412 Type II Standard Test Methods for Vulcanized Rubber and Thermoplastic

  9. PROPERTIES TYRE TREAD RUBBERS DEPENDING ON PARTICULARITY OF RUBBER COMPOUND

    Directory of Open Access Journals (Sweden)

    Z. S. Shashok

    2014-01-01

    Full Text Available Summary. The results of studies of the elastomeric compositions based on natural rubber containing curatives different ratio "curing agent : vulcanization accelerator" listed in this article. Influence of the composition of the vulcanizing group on stress-strain and elastic- deformation properties of tire tread rubber was installed. It has been shown that a significant effect on thermo-oxidative aging of vulcanizates was the composition of the vulcanizing group. Results of studies resistance tread rubber to exposure to elevated temperatures were presented . Vulcanizates differing type and density by varying the cross-linking ratio of "curing agent : vulcanization accelerator" were obtained . Research results in the formation of rubber resistance and crack growth at different temperatures were presented. Revealed that the best education and resistance to tear propagation under normal conditions characterized by rubber ratio "curing agent : vulcanization accelerator" equal to 1.5:1. It has been established that a dynamic endurance study rubbers depends largely on the nature and concentration of the cross-linking cross-links and movable promote increase efficiency due to the grid and reduce the sulfidity rearrangement. During loading mode alternating deformations at elevated temperatures lability of polysulfide bonds negatively affects the performance of rubber, and the decisive role of providing strength and thermal cross-linking. It is shown that the performance of the spatial grid rubbers allow indirectly judge the dynamic vulcanizates endurance and predict performance rubbers at elevated temperatures under conditions of repeated cyclic deformation. Revealed that the vulcanizing system containing sulfur and vulcanization accelerator TBBS 1:2, promotes the formation of the optimal structure of vulcanized rubber , which provides the best resistance to repeated cyclic deformations in the operating temperatures of the tire.

  10. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Science.gov (United States)

    2010-07-01

    ... accomplished by bag sampling as used for total hydrocarbons determination. This procedure is detailed in 40 CFR 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for benzene and 1,3-butadiene in bag samples for the baseline fuel are 4.0 ppm and 0.30 ppm respectively. At...

  11. The effect of iatrogenic Staphylococcus epidermidis intercellar adhesion operon on the formation of bacterial biofilm on polyvinyl chloride surfaces.

    Science.gov (United States)

    Lianhua, Ye; Yunchao, Huang; Guangqiang, Zhao; Kun, Yang; Xing, Liu; Fengli, Guo

    2014-12-01

    The intercellular adhesion gene (ica) of Staphylococcus epidermidis is a key factor for bacterial aggregation. This study explored the effect of ica on the formation of bacterial biofilm on polyvinyl chloride (PVC) surfaces. Genes related to bacterial biofilm formation, including 16S rRNA, autolysin (atlE), fibrinogen binding protein gene (fbe), and ica were identified and sequenced from 112 clinical isolates of iatrogenic S. epidermidis by polymerase chain reaction (PCR) and gene sequencing. Based on the sequencing result, ica operon-positive (icaADB+/atlE+/fbe+) and ica operon-negative (icaADB-/atlE+/fbe+) strains were separated and co-cultivated with PVC material. After 6, 12, 18, 24, and 30 h of co-culture, the thickness of the bacterial biofilm and quantity of bacterial colony on the PVC surface were measured under the confocal laser scanning microscope and scanning electron microscope. The positive rate of S. epidermidis-specific 16SrRNA in 112 iatrogenic strains was 100% (112/112). The genotype of ica-positive (icaADB+/atlE+/fbe+) strains accounted for 57.1% (64/112), and genotype of ica-negative (icaADB-/atlE+/fbe+) strains accounted for 37.5% (42/112). During 30 h of co-culture, no obvious bacterial biofilm formed on the surface of PVC in the ica-positive group, however, mature bacterial biofilm structure formed after 24 h. For all time points, thickness of bacterial biofilm and quantity of bacterial colony on PVC surfaces in the ica operon-positive group were significantly higher than those in ica operon-negative group (poperon-negative and ica operon-positive strains. The ica operon plays an important role in bacterial biofilm formation and bacterial multiplication on PVC material.

  12. Contribution of garbage burning to chloride and PM2.5 in Mexico City

    Directory of Open Access Journals (Sweden)

    N. Bei

    2012-09-01

    Full Text Available The contribution of garbage burning (GB emissions to chloride and PM2.5 in the Mexico City Metropolitan Area (MCMA has been investigated for the period of 24 to 29 March during the MILAGRO-2006 campaign using the WRF-CHEM model. When the MCMA 2006 official emission inventory without biomass burning is used in the simulations, the WRF-CHEM model significantly underestimates the observed particulate chloride in the urban and the suburban areas. The inclusion of GB emissions substantially improves the simulations of particulate chloride; GB contributes more than 60% of the observation, indicating that it is a major source of particulate chloride in Mexico City. GB yields up to 3 pbb HCl at the ground level in the city, which is mainly caused by the burning of polyvinyl chloride (PVC in the garbage. GB is also an important source of PM2.5, contributing about 3–30% simulated PM2.5 mass on average. More modeling work is needed to evaluate the GB contribution to hazardous air toxics, such as dioxin, which is found to be released at high level from PVC burning in laboratory experiments.

  13. Butanol / Gasoline Mercury CRADA Report

    Science.gov (United States)

    2015-03-01

    synthetic rubber ) was replaced on 2 August 2013 with a Flexdraw hose (constructed of NBR - Nitrile Butadiene Rubber ). The manufacturer of the Flexdraw hose...likely contributed to the failure in combination with the swelling of the rubber . It is also noted that the parts are about 20 durometer points softer

  14. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang; Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn

    2016-10-05

    Highlights: • A co-treatment process for recovery of Co and Li and simultaneous detoxification of PVC in subcritical water was proposed. • PVC was used as a hydrochloric acid source. • More than 95% Co and nearly 98% Li were leached under the optimum conditions. • Neither corrosive acid nor reducing agent was used. • The co-treatment process has technical, economic and environmental benefits over the traditional recovery processes. - Abstract: In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO{sub 2}) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 °C, PVC/LiCoO{sub 2} ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 °C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO{sub 2} subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water.

  15. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree).

    Science.gov (United States)

    Dai, Longjun; Kang, Guijuan; Li, Yu; Nie, Zhiyi; Duan, Cuifang; Zeng, Rizhong

    2013-05-01

    The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches-resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9-194.2 kDa and in isoelectric point values of 4.0-11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species.

  16. Nitrile rubber and carboxylated nitrile rubber resistance to soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Felipe Nunes Linhares

    2018-03-01

    Full Text Available Abstract Biodiesel has been considered a suitable substitute for petroleum diesel, but their chemical composition differs greatly. For this reason, biodiesel interacts differently than petroleum diesel with various materials, including rubbers. Therefore, the resistance of some elastomers should be thoroughly evaluated, specifically those which are commonly used in automotive industry. Nitrile rubber (NBR is widely used to produce vehicular parts that are constantly in contact with fuels. This paper aimed to assess the resistance of carboxylated nitrile rubber (XNBR with 28% of acrylonitrile content to soybean biodiesel in comparison with non-carboxylated nitrile rubber samples, with high and medium acrylonitrile content (33 and 45%. NBR with medium acrylonitrile content showed little resistance to biodiesel. However, carboxylated nitrile rubber even with low acrylonitrile content had similar performance to NBR with high acrylonitrile content.

  17. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan; Nida, Aqdas; Ng, Kim  Choon; Chua, Kian  Jon

    2015-01-01

    were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor

  18. Exposure to rubber fume and rubber process dust in the general rubber goods, tyre manufacturing and retread industries.

    Science.gov (United States)

    Dost, A A; Redman, D; Cox, G

    2000-08-01

    This study assesses the current patterns and levels of exposure to rubber fume and rubber process dust in the British rubber industry and compares and contrasts the data obtained from the general rubber goods (GRG), retread tire (RT) and new tire (NT) sectors. A total of 179 rubber companies were visited and data were obtained from 52 general rubber goods, 29 retread tire and 7 new tire manufacturers. The survey was conducted using a questionnaire and included a walk-through inspection of the workplace to assess the extent of use of control measures and the nature of work practices being employed. The most recent (predominantly 1995-97) exposure monitoring data for rubber fume and rubber process dust were obtained from these companies; no additional sampling was conducted for the purpose of this study. In addition to the assessment of exposure data, evaluation of occupational hygiene reports for the quality of information and advice was also carried out.A comparison of the median exposures for processes showed that the order of exposure to rubber fume (E, in mg m(-3)) is: E(moulding) (0.40) approximately E(extrusion) (0.33)>E(milling) (0.18) for GRG; E(press) (0. 32)>E(extrusion) (0.19)>E(autoclave) (0.10) for RT; and E(press) (0. 22) approximately E(all other) (0.22) for NT. The order of exposure to rubber fume between sectors was E(GRG) (0.40)>E(RT) (0.32)>E(NT) (0.22). Median exposures to rubber process dust in the GRG was E(weighing) (4.2)>E(mixing) (1.2) approximately E(milling) (0.8) approximately E(extrusion) (0.8) and no significant difference (P=0. 31) between GRG and NT sectors. The findings compare well with the study carried out in the Netherlands [Kromhout et al. (1994), Annals of Occupational Hygiene 38(1), 3-22], and it is suggested that the factors governing the significant differences noted between the three sectors relate principally to the production and task functions and also to the extent of controls employed. Evaluation of occupational

  19. Thermolysis of scrap tire and rubber in sub/super-critical water.

    Science.gov (United States)

    Li, Qinghai; Li, Fuxin; Meng, Aihong; Tan, Zhongchao; Zhang, Yanguo

    2018-01-01

    The rapid growth of waste tires has become a serious environmental issue. Energy and material recovery is regarded as a promising use for waste tires. Thermolysis of scrap tire (ST), natural rubber (NR), and styrene-butadiene rubber (SBR) was carried out in subcritical and supercritical water using a temperature-pressure independent adjustable batch tubular reactor. As a result, oil yields increased as temperature and pressure increased, and they reached maximum values as the state of water was near the critical point. However, further increases in water temperature and pressure reduced the oil yields. The maximum oil yield of 21.21% was obtained at 420 °C and 18 MPa with a reaction time of 40 min. The relative molecular weights of the chemicals in the oil products were in the range of 70-140 g/mole. The oil produced from ST, NR, and SBR contained similar chemical compounds, but the oil yield of SR was between those of NR and SBR. The oil yield from thermolysis of subcritical or supercritical water should be further improved. The main gaseous products, including CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , and C 3 H 8 , increased with reaction time, temperature, and pressure, whereas the solid residues, including carbon black and impurities, decreased. These results provide useful information to develop a sub/super-critical water thermolysis process for energy and material regeneration from waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of clay hybrid nanocomposites of different chain length as reinforcing agent for natural and synthetic rubbers

    International Nuclear Information System (INIS)

    Yehia, A.A.; Akelah, A.M.; Rehab, A.; El-Sabbagh, S.H.; El Nashar, D.E.; Koriem, A.A.

    2012-01-01

    Highlights: → The modified organo-clay (MMT-ATBN) markedly reinforce natural and synthetic rubbers. → The reinforcing efficiency of the organo-clay is much higher than HAF carbon black. → The reinforcing efficiency of MMT modified with different alkylamines greatly depend on the chain length. → The good compatibility of modified organo-clay with NBR can be attributed to the chemical nature. -- Abstract: Polymer nanocomposites are one of the highly discussed research topics in recent time. It has been reported in the present paper the preparation and the properties of different nanoclays based on sodium montmorillonite (bentonite) and some organic amines of varying chain lengths (dodecylamine, hexadecylamine and octadecylamine) beside amine-terminated butadiene-acrylonitrile copolymer (ATBN). The hybrid clays have been characterized with the help of Fourier Transform Infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Wide angle X-ray diffractions (WXRD), and Thermogravimetric analysis (TGA). X-ray results showed that the intergallery distance of the clay is increased as a result of the intercalation of the amines and ATBN. The nanocomposite clays were incorporated in natural and synthetic rubbers (NR, SBR and NBR). The physico-mechanical properties are greatly improved with loading low concentrations of the nanocomposite clays compared with carbon black.

  1. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene.

    Science.gov (United States)

    Makshina, Ekaterina V; Dusselier, Michiel; Janssens, Wout; Degrève, Jan; Jacobs, Pierre A; Sels, Bert F

    2014-11-21

    Increasing demand for renewable feedstock-based chemicals is driving the interest of both academic and industrial research to substitute petrochemicals with renewable chemicals from biomass-derived resources. The search towards novel platform chemicals is challenging and rewarding, but the main research activities are concentrated on finding efficient pathways to produce familiar drop-in chemicals and polymer building blocks. A diversity of industrially important monomers like alkenes, conjugated dienes, unsaturated carboxylic acids and aromatic compounds are thus targeted from renewable feedstock. In this context, on-purpose production of 1,3-butadiene from biomass-derived feedstock is an interesting example as its production is under pressure by uncertainty of the conventional fossil feedstock. Ethanol, obtained via fermentation or (biomass-generated) syngas, can be converted to butadiene, although there is no large commercial activity today. Though practised on a large scale in the beginning of the 20th century, there is a growing worldwide renewed interest in the butadiene-from-ethanol route. An alternative route to produce butadiene from biomass is through direct carbohydrate and gas fermentation or indirectly via the dehydration of butanediols. This review starts with a brief discussion on the different feedstock possibilities to produce butadiene, followed by a comprehensive summary of the current state of knowledge regarding advances and achievements in the field of the chemocatalytic conversion of ethanol and butanediols to butadiene, including thermodynamics and kinetic aspects of the reactions with discussions on the reaction pathways and the type of catalysts developed.

  2. On the catalytic gas phase oxidation of butadiene to furan

    Energy Technology Data Exchange (ETDEWEB)

    Kubias, B.; Rodemerck, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Ritschl, F.; Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    Applying the thermochemical selectivity criterion of Hadnett et al. It is shown that the selectivity of the furan formation is not limited by a too low strength of the C-H bonds in furan when compared with the C-H bond dissociation energy in the educt molecule butadiene. In the oxidation of butadiene on a CsH{sub 2}PMo{sub 12}O{sub 40} catalyst a maximum yield of 22 mol% furan has been obtained. To improve this comparatively low furan yield oxidation activity of the catalyst must be lowered to prevent the consecutive reaction to maleic anhydride. (orig.)

  3. Poly(vinyl chloride)-g-poly(2-(dimethylamino)ethyl methacrylate) graft copolymers templated synthesis of mesoporous TiO{sub 2} thin films for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Ahn, Sung Hoon; Seo, Jin Ah; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of)

    2012-07-15

    A poly(vinyl chloride) (PVC) main chain was grafted with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) containing a quaternary amine group using atom transfer radical polymerization. The successful synthesis of a PVC-g-PDMAEMA graft copolymer was confirmed by Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, and transmission electron microscopy. The PVC-g-PDMAEMA graft copolymer was used as a structure-directing agent (SDA) for the fabrication of a mesoporous thin film containing a titanium dioxide (TiO{sub 2}) layer. To control the porosity of the resultant inorganic layer, the ratio of SDA to TTIP as well as the concentration of the sol-gel was varied. The structure and porosity of the mesoporous film were characterized by XRD and SEM analysis. The mesoporous TiO{sub 2} film fabricated on the FTO surface was used as a photoanode for the dye-sensitized solar cell (DSSC). DSSC performance was the greatest when using TiO{sub 2} film with a higher porosity and lower interfacial resistance. The highest energy conversion efficiency reached 3.2 % at 100 mW/cm{sup 2}, which was one of the highest reported values for a quasi-solid-state DSSC with 600-nm-thick TiO{sub 2} film.

  4. Effects of Diatomite and SBS on Freeze-Thaw Resistance of Crumb Rubber Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Haibin Wei

    2017-01-01

    Full Text Available Asphalt mixture is susceptible to moisture damage under the effect of freeze-thaw (F-T cycles. In this paper, crumb rubber (CR was used to modify stone mastic asphalt (SMA and the effects of diatomite and styrene butadiene styrene (SBS on antifreezing performances of crumb rubber modified SMA (CRSMA were investigated. Regression analysis and modified grey model (MGM were used to construct the prediction models for properties of modified mixtures. CRSMA, CR and diatomite modified SMA (CRDSMA, and CR and SBS modified SMA (CRSSMA were prepared in laboratory, respectively. Process of F-T cycles was designed. Air void, indirect tensile strength (ITS, and indirect tensile stiffness modulus (ITSM were measured to evaluate the antifreezing performances of CRSMA, CRDSMA, and CRSSMA. Results indicate that air voids increase with the increasing of F-T cycles. ITS and ITSM all decrease with the increasing of F-T cycles. The addition of diatomite and SBS can reduce the air void and improve the ITS and ITSM of CRSMA. CRSSMA presents the lowest air void, highest tensile strength, and largest stiffness modulus, which reveals that CRSSMA has the best F-T resistance among three different kinds of mixtures. Moreover, MGM (1, 2 models present more favorable accuracy in prediction of air void and ITS compared with regression ones.

  5. Preparation and characterization of ABS/anhydrous cobalt chloride composites

    Science.gov (United States)

    Shao, Chengli; Shang, Peng; Mao, Yapeng; Li, Qiuying; Wu, Chifei

    2018-01-01

    Anhydrous cobalt chloride (CoCl2) particles filled acrylonitrile-butadiene-styrene (ABS) composites were successfully prepared and investigated. A strong interfacial interaction between CoCl2 particles and ABS matrix was generated by heat pressing at 190 °C for 15 min. SEM results demonstrated that the particles were dispersed uniformly in the matrix. Fourier transform infrared, x-ray photoelectron spectroscopy and electron spin resonance were used for the investigation of the coordination reaction. The interfacial interaction resulted from a solid-state coordination reaction between nitrile groups (-CN) and cobalt ions (Co2+), leading to an increase in mechanical properties and glass transition temperature. Moreover, heat deflection temperatures were measured and proved to achieve an improvement of 30.6 °C when the CoCl2 content was 7 wt%.

  6. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    Science.gov (United States)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  7. Evaluation of active sampling strategies for the determination of 1,3-butadiene in air

    Science.gov (United States)

    Vallecillos, Laura; Maceira, Alba; Marcé, Rosa Maria; Borrull, Francesc

    2018-03-01

    Two analytical methods for determining levels of 1,3-butadiene in urban and industrial atmospheres were evaluated in this study. Both methods are extensively used for determining the concentration of volatile organic compounds in the atmosphere and involve collecting samples by active adsorptive enrichment on solid sorbents. The first method uses activated charcoal as the sorbent and involves liquid desorption with carbon disulfide. The second involves the use of a multi-sorbent bed with two graphitised carbons and a carbon molecular sieve as the sorbent, with thermal desorption. Special attention was paid to the optimization of the sampling procedure through the study of sample volume, the stability of 1,3-butadiene once inside the sampling tube and the humidity effect. In the end, the thermal desorption method showed better repeatability and limits of detection and quantification for 1,3-butadiene than the liquid desorption method, which makes the thermal desorption method more suitable for analysing air samples from both industrial and urban atmospheres. However, sampling must be performed with a pre-tube filled with a drying agent to prevent the loss of the adsorption capacity of the solid adsorbent caused by water vapour. The thermal desorption method has successfully been applied to determine of 1,3-butadiene inside a 1,3-butadiene production plant and at three locations in the vicinity of the same plant.

  8. Radiation Vulcanization of Polymeric Blends Based on Ethylene Propylene Diene Monomer Rubber/ Waste Materials in Presence of Different Additives

    International Nuclear Information System (INIS)

    MOHAMED, R.M.

    2015-01-01

    In this investigation, the mechanical blending technique was applied for preparation of elastomeric blend of ethylene propylene diene monomer rubber (EPDM)and nitrile butadiene rubber (NBR) having a fixed ratio of (50/50) by weight. The prepared blend of EPDM/NBR (50/50) was used as a rubber matrix to be loaded with waste materials, namely rice husk (RH) as a natural waste filler and then with ground tire rubber (GTR) as an artificial one. The degree of loading varied from 5 p hr to 20 p hr. Ionizing radiation, namely ,gamma rays were applied for inducing vulcanization of prepared and loaded rubber blends, in the range from 5 kGy to 250 kGy. Different properties of prepared composites were followed up as a function of degree of loading with the waste material and dose of irradiation. The mechanical properties, namely tensile strength and elongation at break percent of the composites slightly decreased as the filler loading increased over the whole range of irradiation .Tensile modulus and hardness, on the other hand, showed an opposite trend, i.e. the increased. Other properties, namely physical, thermal and morphological confirmed the mechanical ones. Obtained results were affiliated with lack of interface adhesion between the waste materials and the rubber matrix elastomers. The lack of interface adhesion was improved by filling the composite with a limited content, up to 7 p hr, of the compatibilizer, namely, maleic anhydride (MAH). Measurements of different properties was carried out for composite loaded with 10 p hr of waste material. It has been found that the tensile properties were significantly improved with addition of the compatibilizing agent Further and significant improvement was attained in properties of prepared later composite by its loading with 40 p hr of either HAF- carbon black or Hisil as reinforcing fillers that participates in chemical as well as physical bonding. Similarly and lastly 8 p hr of N, N- methylene di acrylamide (MDA) were loaded

  9. The Effect of Rubber Mixing Process on The Curing Characteristics of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Abu Hasan

    2013-04-01

    Full Text Available This research is aimed at studying the relationship between rubber mixing processes and curing characteristics of natural rubber. The curing characteristic analysis was carried out through a natural rubber formula having been masticated and mixed, followed by curing. As many as four mastication methods were finely applied; each respected four sequences of rubber mixing process. In the first method, rubber was masticated for 5 minutes and then rubber chemicals and carbon black N 330 were  simultaneously added. In the second and the third methods, rubber was masticated for 1 minute and then carbon blacks and rubber chemicals were also simultaneously added but using different type of fillers. In the fourth method, rubber was masticated for 3 minutes and then rubber chemicals and carbon black were subsequently added. The additions of rubber chemicals and carbon blacks to the masticated rubber were distinguished by the sequence and time allocated for each mixing process. The carbon blacks were added in two stages by which 10 phr was added first and the remaining 40 phr was added later along with oil. In another method, ratios of the carbon blacks addition (as done in the first  and the second stages were 20:30, 30:20, and 40:10. The examination results showed that rubber mixing process gave an impact on the changes of curing characteristics. They were much affected by the method of carbon black addition. The mixing temperature also had an effect on both curing time and curing rate in which the higher the mixing temperature, the lower the curing time and curing rate. Vulcanization temperature also affected the curing time and curing rate in which the higher the vulcanization temperature, the lower the curing time and the higher the curing rate. Lastly, particle size of carbon black also gave an impact on the curing time and curing rate in which the smaller the particle size, the lower the curing time and the higher the curing rate.

  10. Suitability of Polyvinyl Waste Powder as Partial Replacement for ...

    African Journals Online (AJOL)

    B Up to 50% by weight of cement was replaced with PWP at interval of 10%. The parameters investigated are: the chemical composition of polyvinyl waste powder (PWP) and the setting times of cement-polyvinyl paste. Also investigated in concrete containing polyvinyl powder were: workability, density, compressive strength ...

  11. Method of burning petrochemical products

    Energy Technology Data Exchange (ETDEWEB)

    Sado, I

    1973-01-12

    This invention concerns a method of burning wastes such as polyvinyl chloride or other synthetic resin products and rubbers, in which wastes are burned in a nearly smokeless and odorless state. The method is characterized by a process by which petrochemical waste products are subjected to a spontaneous combustion in a casserole state in a closed combustion room in such a way that no air is supplied whatever, and subsequently the gas so generated is sent successively in an adequate amount into a separately installed second combustion room where it is reburnt at a high temperature of more than 1000 C by a jet flame from the oil burners mounted inside the combustion room. Usually, petrochemical products emanate black smoke of Ringelmann concentration of more than five and a strong odor, but in this method, particularly in the case of polyvinyl chloride the exhaust smoke has a Ringelmann smoke concentration of less than one and is almost odorless because the plastic is completely gasified by the spontaneous combustion and completely burned at 1300 to 1400/sup 0/C with oil and air in the second combustion room. When the exhaust smoke is passed through a neutralization tank to remove the chloride compounds in the smoke, the damaging contribution of the exhaust gas or smoke to the secondary pollution can be completely eliminated.

  12. Polyvinyl chloride as a multimodal tissue-mimicking material with tuned mechanical and medical imaging properties.

    Science.gov (United States)

    Li, Weisi; Belmont, Barry; Greve, Joan M; Manders, Adam B; Downey, Brian C; Zhang, Xi; Xu, Zhen; Guo, Dongming; Shih, Albert

    2016-10-01

    The mechanical and imaging properties of polyvinyl chloride (PVC) can be adjusted to meet the needs of researchers as a tissue-mimicking material. For instance, the hardness can be adjusted by changing the ratio of softener to PVC polymer, mineral oil can be added for lubrication in needle insertion, and glass beads can be added to scatter acoustic energy similar to biological tissue. Through this research, the authors sought to develop a regression model to design formulations of PVC with targeted mechanical and multimodal medical imaging properties. The design of experiment was conducted by varying three factors-(1) the ratio of softener to PVC polymer, (2) the mass fraction of mineral oil, and (3) the mass fraction of glass beads-and measuring the mechanical properties (elastic modulus, hardness, viscoelastic relaxation time constant, and needle insertion friction force) and the medical imaging properties [speed of sound, acoustic attenuation coefficient, magnetic resonance imaging time constants T 1 and T 2 , and the transmittance of the visible light at wavelengths of 695 nm (T λ695 ) and 532 nm (T λ532 )] on twelve soft PVC samples. A regression model was built to describe the relationship between the mechanical and medical imaging properties and the values of the three composition factors of PVC. The model was validated by testing the properties of a PVC sample with a formulation distinct from the twelve samples. The tested soft PVC had elastic moduli from 6 to 45 kPa, hardnesses from 5 to 50 Shore OOO-S, viscoelastic stress relaxation time constants from 114.1 to 191.9 s, friction forces of 18 gauge needle insertion from 0.005 to 0.086 N/mm, speeds of sound from 1393 to 1407 m/s, acoustic attenuation coefficients from 0.38 to 0.61 (dB/cm)/MHz, T 1 relaxation times from 426.3 to 450.2 ms, T 2 relaxation times from 21.5 to 28.4 ms, T λ695 from 46.8% to 92.6%, and T λ532 from 41.1% to 86.3%. Statistically significant factors of each property were

  13. Rubber molds for investment casting

    International Nuclear Information System (INIS)

    Sibtain, S.N.

    2011-01-01

    The main objective of the project is to investigate different types of molding rubbers used for investment casting. The level of shape complexity which can be achieved by using these rubber molds is also studied. It was almost impossible to make complex shapes molds using metal molds, in that cases rubber molds are very important because they arc flexible and give accurate and precise part dimensions. Turbine blades are hi-tech components with air-foil geometries that have close dimensional tolerances. They are made of super-alloys and manufactured by investment casting. The final blade profile depends upon the dimensional accuracy in each of the processing steps. In the present work experimental study for the production of high quality low cost castings of turbine blades using rubber molds and injected wax patterns is presented. Natural Rubber molds and wax patterns from these molds were made. Different types of molding rubbers were studied including natural rubber, silicone rubber and liquid silicone rubber. It was found that by using rubber molds we can make most complex shape with very less finishing required. The shrinkage was 12% as compared to original master pattern. Rubber molds were made using laboratory hot press. Three layers of rubber above and below the master pattern. After that vulcanization was done by giving temperature and pressure. (author)

  14. High throughput HPLC-ESI(-)-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation.

    Science.gov (United States)

    Kotapati, Srikanth; Esades, Amanda; Matter, Brock; Le, Chap; Tretyakova, Natalia

    2015-11-05

    1,3-Butadiene (BD) is an important industrial and environmental carcinogen present in cigarette smoke, automobile exhaust, and urban air. The major urinary metabolites of BD in humans are 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 4-(N-acetyl-L-cystein-S-yl)-1,2,3-trihydroxybutyl mercapturic acid (THBMA), which are formed from the electrophilic metabolites of BD, 3,4-epoxy-1-butene (EB), hydroxymethyl vinyl ketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), respectively. In the present work, a sensitive high-throughput HPLC-ESI(-)-MS/MS method was developed for simultaneous quantification of MHBMA and DHBMA in small volumes of human urine (200 μl). The method employs a 96 well Oasis HLB SPE enrichment step, followed by isotope dilution HPLC-ESI(-)-MS/MS analysis on a triple quadrupole mass spectrometer. The validated method was used to quantify MHBMA and DHBMA in urine of workers from a BD monomer and styrene-butadiene rubber production facility (40 controls and 32 occupationally exposed to BD). Urinary THBMA concentrations were also determined in the same samples. The concentrations of all three BD-mercapturic acids and the metabolic ratio (MHBMA/(MHBMA+DHBMA+THBMA)) were significantly higher in the occupationally exposed group as compared to controls and correlated with BD exposure, with each other, and with BD-hemoglobin biomarkers. This improved high throughput methodology for MHBMA and DHBMA will be useful for future epidemiological studies in smokers and occupationally exposed workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Polyvinyl alcohol/starch composite nanofibers by bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2014-01-01

    Full Text Available Bubble electrospinning exhibits profound prospect of industrialization of macro/ nano materials. Starch is the most abundant and inexpensive biopolymer. With the drawbacks of poor strength, water resistibility, thermal stability and processability of pure starch, some biodegradable synthetic polymers such as poly (lactic acid, polyvinyl alcohol were composited to electrospinning. To the best of our knowledge, composite nanofibers of polyvinyl alcohol/starch from bubble electrospinning have never been investigated. In the present study, nanofibers of polyvinyl alcohol/starch were prepared from bubble electrospinning. The processability and the morphology were affected by the weight ratio of polyvinyl alcohol and starchy. The rheological studies were in agreement with the spinnability of the electrospinning solutions.

  16. Pengaruh suhu vulkanisasi terhadap sifat mekanis vulkanisat karet alam dan karet akrilonitril-butadiena

    Directory of Open Access Journals (Sweden)

    Norma Arisanti Kinasih

    2015-12-01

    Full Text Available Natural and acrylonitrile-butadiene rubbers possess different vulcanization characteristics. Selection of the vulcanization system and temperature affects the mechanical properties of vulcanized natural rubber (NR and acrylonitrile-butadiene rubber (NBR. In the present work, the effect of vulcanization temperature (150, 160, 170 and 180oC on the mechanical properties of NR and NBR vulcanizates was studied. The effect of different vulcanization system (semi efficient, efficient and sulfur donor was studied in NR blends, while the effect of different acrylonitrile content (26, 28 and 33 wt % was studied in NBR blends. The NBR curing characteristics and mechanical properties data showed that vulcanization at low temperature (150oC was suitable for low acrylonitrile-NBR, whereas that at high temperature (170oC was suitable for high acrylonitrile-NBR. In addition, the semi efficient system at low temperature vulcanization (150oC was suitable for natural rubber.

  17. Analysis of Systems Hardware Flown on LDEF-Results of the Systems Special Investigation Group

    Science.gov (United States)

    1992-04-01

    EXPERIMENT TRAY Butyl O-ring P0004 F2 Butyl rubber seal A0138 B3 EP O-ring S0069 A9 EPDM rubber P0005 CENTER RING NBR rubber P0005 CENTER RING...and acrylonitrile butadiene rubber ( NBR ) were tested in experiment P0005, Space Aging of Solid Rocket Materials. The elastomers were not exposed to...Parker Seal B-612-70 EECC P0004 Metal "V" Seal EECC EPDM rubber , 053A, Kirkhill P0005 NBR rubber , V-45, Kirkhill P0005 Silicon rubber gaskets

  18. Towards quantification of butadiene content in styrene-butadiene block copolymers and their blends with general purpose polystyrene (GPPS) and the relation between mechanical properties and NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Nikolaus [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)], E-mail: nikolaus.nestle@basf.com; Heckmann, Walter; Steininger, Helmut; Knoll, Konrad [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)

    2007-11-26

    The properties of styrene-butadiene-styrene (SBS) block copolymers do not only depend on the butadiene content and the degree of polymerisation but also on their chain architecture. In this contribution we present the results of a low-field time domain (TD) NMR study in which the transverse relaxation behaviour of different SBS block copolymers was analysed and correlated with findings from mechanical testing on pure and blended materials and transmission electron microscopy data which provide information on the microphase separation. The results indicate that while a straightforward determination of the butadiene content as in blended materials like ABS is not possible for these materials, the TD-NMR results correlate quite well with the mechanical performance of blends from SBS block copolymers with general purpose polystyrene (GPPS), i.e. industrial grade homopolymer polystyrene. Temperature-dependent experiments on pure and blended materials revealed a slight reduction in the softening temperature of the GPPS fraction in the blends.

  19. Ketahanan N-pentana Dan Sifat Mekanis Vulkanisat Karet Perapat Dari Campuran Karet Alam/akrilonitril-butadiena Dengan Kompatibiliser

    OpenAIRE

    Kinasih, Norma Arisanti; Fathurrohman, Muhammad Irfan

    2016-01-01

    The improvement of the compatibility of natural rubber (NR)/acrilonitrile-butadiene rubber (NBR) blend on rubber seal vulcanizate has been done by the addition of chloroprene rubber (CR) or epoxidized natural rubber (ENR) as compatibilizer. Rubber seal compound was made of NR and NBR blend (BN) with CR (BCR), and ENR with epoxy content of 10% (BENR10), 20% (BENR20), 30% (BENR30), 40% (BENR40), and 50% (BENR50). The composition in each formula was homogenized, with comparison of NR:NBR at 40:6...

  20. Controlled-air incineration of alpha-bearing solid wastes

    International Nuclear Information System (INIS)

    Koenig, R.A.; Draper, W.E.; Neuls, A.S.; Newmyer, J.M.

    1980-01-01

    The Los Alamos Scientific Laboratory is completing a study of controlled-air incineration (CAI) as a technique for volume reduction and stabilization of combustible transuranic-contaminated solid wastes. To demonstrate feasibility, a process has been assembled and operated on synthetic and contaminated combustibles. This paper summarizes the CAI project history, process design, provisions for radioactive operation, experimental results to date, and future plans. Achievements include operation at the design feed rate as well as combustion of separate feed compositions including cellulosics, polyethylene, polyvinyl chloride (PVC) and latex rubber. Refractory life has been satisfactory to date, with studies continuing. The offgas cleanup system has proven to be extremely effective; the final high-efficiency filters showing virtually no pressure drop increase. The ability of the system to process high concentrations of PVC has been demonstrated with no chloride-induced degradation detected. Chloride and sulfate removal from the offgas has been excellent with concentrations reaching 8 and 10 ppM maximum, respectively, in the process condensate