WorldWideScience

Sample records for business workbook geothermal

  1. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  2. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  3. Business partners a lower intermediate business English course : workbook

    CERN Document Server

    Brown, Pearson

    1993-01-01

    This is the workbook in a stimulating course which integrates presentation of language with exercises and activities. There are 15 ten-age unies, each incorporating wide grammar coverage, systematic vocabulary presentation, listening and reading skills, and pair-work role plays. The workbook is a self-study practice book with 15 varied units of supplementary material for class use, homework and private study.

  4. Financing Your Small Business: A Workbook for Financing Small Business.

    Science.gov (United States)

    Compton, Clark W.

    Designed to assist established businesspeople with the development of a loan proposal, this workbook offers information on sources of financing and step-by-step guidance on applying for a loan. After chapter I discusses borrowers' and lenders' attitudes towards money, chapter II offers suggestions for determining financial needs. Chapter III lists…

  5. Your Business Plan: A Workbook for Small Businesses in Oregon = Su Plan de Negocio: Un Libro de Trabajo Para Empresas Pequenas en Oregon.

    Science.gov (United States)

    Sargent, Dennis J.; Chambers, Maynard N.

    Designed as an aid for those investigating the possibility of opening their first business, as well as business owners with many years experience who have never prepared a written business plan, this workbook guides the reader through the steps involved in the preparation of a business plan or feasibility study. After a general discussion of the…

  6. StartUp Workbook : Your quest for a scalable and repeatable business model

    NARCIS (Netherlands)

    Coelman, B. (Berrie)

    2014-01-01

    This is the second edition of the Startup Workbook. This workbook is different from the first version. The first version, which was made with a so called touch-grant from Saxion, was primarily a digital version. In addition, the book was printed as a deluxe edition in a limited number of copies. The

  7. ESP BUSINESS ENGLISH: THE PROPOSED OF STUDENTS� WORKBOOK USED FORTEACHING MK BAHASA INGGRIS BISNISAT D3 ACCOUNTING OF ECONOMICS & BUSINESS FACULTY AT UNMER MALANG

    Directory of Open Access Journals (Sweden)

    Yasmin Farani

    2017-06-01

    Full Text Available This paper was written concerning with the needs of teaching materials for MK Bahasa Inggris Bisnis (2 credits subject taught once a week and in 100 minutes in each meeting taught at D3 Accounting of Economics and Business Faculty.� It is an Educational Research and Development since it is a qualitative research that aims to develop teaching materials.� The writers use materials development procedure adapted from the framework of components of course development processes proposed by Graves (1996.� The primary instruments are the researchers themselves and the secondary ones are questionnaires and interview.� The findings of the research are in the form of a workbook.

  8. Financial Workbook

    International Development Research Centre (IDRC) Digital Library (Canada)

    jmcdonald

    Financial Workbook. External User Guide. Grant Administration Division .... Financial Reporting cycle. The Workbook passes back and forth between the recipient and IDRC throughout the project life cycle. Proposed Budget Preparation. Financial Reporting ... The system will automatically calculate the indirect cost per year.

  9. Tilesetting Workbook.

    Science.gov (United States)

    Strazicich, Mirko, Ed.

    This workbook is designed for classroom use by apprentices in four-year union tilesetting programs in California. The workbook is composed of five units covering all aspects of the tilesetting process. Unit 1 introduces the tilesetting trade, including history and scope of the trade, safe working practices, and trade organizations. Unit 2…

  10. Radon Measurement in Schools: Self-Paced Training Workbook.

    Science.gov (United States)

    Institute for Disability Research and Training, Inc., Silver Spring, MD.

    This workbook is designed to educate school personnel in randon detection. The workbook is intended for an audience of school officials, including administrators, business officers, facility managers, and maintenance and operations staff. It is meant to provide trainees with experience in planning a radon test, interpreting test results,…

  11. Modern French Grammar Workbook

    CERN Document Server

    Lang, Margaret

    2012-01-01

    An innovative new workbook of exercises and language tasks for intermediate and advanced learners of French. This Workbook can be used independently or alongside Modern French Grammar.This Workbook provides exercises in:* Essential grammatical structures* Everyday functions such as agreeing and disagreeing* Role-plays set in a wide range of different contextsIt is suitable for group or pair work and for private study.A comprehensive answer key at the back of the Workbook enables you to check on your progress.This Workbook is ideal for all learners who have a basic knowledge of French, includin

  12. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  13. Meatcutting Workbook, Part I.

    Science.gov (United States)

    Strazicich, Mirko, Ed.

    This document is a workbook for apprentices learning the meatcutting trade in California. The workbook is divided into eight units covering the following areas: the apprentice meatcutter; applied arithmetic; tools and equipment; weighing, packaging, and labeling; meat and fish as foods; meat from farm to table; inspection, classification, and…

  14. EKG Student Workbook.

    Science.gov (United States)

    Webb, Sandra M.

    This student workbook is designed to assist advanced medical-surgical nursing students in understanding and making electrocardiographic (EKG) interpretations. Addressed in the seven units of the workbook are the following topics: EKG indicators, EKG ruled paper divisions, the normal cardiac cycle and pathophysiology, abnormal cardiac waves, atrial…

  15. Basic Cake Decorating Workbook.

    Science.gov (United States)

    Bogdany, Mel

    Included in this student workbook for basic cake decorating are the following: (1) Drawings of steps in a basic way to ice a layer cake, how to make a paper cone, various sizes of flower nails, various sizes and types of tin pastry tubes, and special rose tubes; (2) recipes for basic decorating icings (buttercream, rose paste, and royal icing);…

  16. Marketing II Workbook.

    Science.gov (United States)

    Reeves, Cheryl

    This combination curriculum and workbook, which was originally developed for use in a training workshop, is intended to assist adult educators in learning to market their adult literacy programs. The first chapter reviews basic marketing concepts (the definition of marketing, 10 truths about marketing, marketing versus promotion, steps in…

  17. Quality Assurance Program. QAP Workbook.

    Science.gov (United States)

    Pelavin Research Inst., Washington, DC.

    The Quality Assurance Program (QAP) workbook is intended to assist institutions of higher education conduct qualitative and quantitative evaluations of their financial aid operations in relation to requirements of Title IV of the Higher Education Act. The workbook provides a structured approach for incorporating a cyclical Title IV QA system into…

  18. Business Writing.

    Science.gov (United States)

    Burt, Lorna; Lewandowski, Carol

    This workbook, designed for workplace literacy courses, contains materials for a business writing course. The course presents the fundamentals of effective business letter writing, focusing on logical organization, word choice, style, tone, and clarity. The course uses students' own examples as well as practice exercises for reinforcement.…

  19. AutoCAD workbook

    CERN Document Server

    Metherell, Phil

    1989-01-01

    AutoCAD Workbook helps new users learn the basics of AutoCad, providing guidance on most of the commonly used functions in which the program operates.This book discusses loading AutoCad and starting a drawing; drawing and erasing lines, circles, and arcs; and setting up the drawing environment. The topics on drawing and editing polylines; entering text and text styles; and layers, linetype, and color are also considered. This publication likewise covers creating and using blocks, hatching and extracting information, dimensioning drawings, 3D visualization, and plotting a drawing. Other

  20. Excel 2010 Workbook for Dummies

    CERN Document Server

    Harvey, Greg

    2010-01-01

    Reinforce your understanding of Excel with these Workbook exercises. Boost your knowledge of important Excel tasks by putting your skills to work in real-world situations. The For Dummies Workbook format provides more than 100 exercises that help you create actual results with Excel so you can gain proficiency. Perfect for students, people learning Excel on their own, and financial professionals who must plan and execute complex projects in Excel, Excel 2010 Workbook For Dummies helps you discover all the ways this program can work for you.: Excel is the world's most popular number-crunching p

  1. Fermilab research program workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1983-05-01

    The Fermilab Research Program Workbook has been produced annually for the past several years, with the original motivation of assisting the Physics Advisory Committee in its yearly program review conducted during its summer meeting. While this is still the primary goal, the Workbook is increasingly used by others needing information on the current status of Fermilab experiments, properties of beams, and short summaries of approved experiments. At the present time, considerable changes are taking place in the facilities at Fermilab. We have come to the end of the physics program using the 400 GeV Main Ring, which is now relegated to be just an injector for the soon-to-be commissioned Tevatron. In addition, the experimental areas are in the midst of a several-year program of upgrading to 1000 GeV capability. Several new beam lines will be built in the next few years; some indications can be given of their properties, although with the caveat that designs for some are by no means final. Already there is considerable activity leading to experiments studying anti p p collisions at √s = 2000 GeV

  2. Workbook on data analysis

    International Nuclear Information System (INIS)

    Hopke, P.K.

    2000-01-01

    As a consequence of various IAEA programmes to sample airborne particulate matter and determine its elemental composition, the participating research groups are accumulating data on the composition of the atmospheric aerosol. It is necessary to consider ways in which these data can be utilized in order to be certain that the data obtained are correct and that the information then being transmitted to others who may make decisions based on such information is as representative and correct as possible. In order to both examine the validity of those data and extract appropriate information from them, it is necessary to utilize a variety of data analysis methods. The objective of this workbook is to provide a guide with examples of utilizing data analysis on airborne particle composition data using a spreadsheet program (EXCEL) and a personal computer based statistical package (StatGraphics)

  3. Foundry energy conservation workbook

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The foundry industry is a significant user of energy, and therefore, a natural candidate for efforts to save energy and improve efficiency by both governmental agencies and technical/trade associations. These efforts are designed to both improve the national energy position and improve the industry's efficiency and profitability. Increased energy cost and the reduced availability of fossil fuels at certain times have provided the incentive to curb waste and to utilize purchased energy wisely. Energy costs now approach and sometimes exceed 10% of the sales dollar of many foundries. Although energy use by foundries has gradually decreased on a per/ton basis in recent years, the foundry industry must continue to find ways to utilize energy more efficiently. This workbook provides ways to achieve this goal.

  4. Solar Design Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  5. Future Scenario Development from Disruptive Exploration Technologies and Business Models in the U.S. Geothermal Industry

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Anna

    2017-05-01

    With recent trends toward intermittent renewable energy sources in the U.S., the geothermal industry in its current form faces a crossroad: adapt, disrupt, or be left behind. Strategic planning with scenario analysis offers a framework to characterize plausible views of the future given current trends - as well as disruptions to the status quo. To inform strategic planning in the Department of Energy's (DOE) Geothermal Technology Office (GTO), the Geothermal Vision Study is tasked with offering data-driven pathways for future geothermal development. Scenario analysis is a commonly used tool in private industry corporate strategic planning as a way to prioritize and manage large investments in light of uncertainty and risk. Since much of the uncertainty and risk in a geothermal project is believed to occur within early stage exploration and drilling, this paper focuses on the levers (technical and financial) within the exploration process that can be pulled to affect change. Given these potential changes, this work first qualitatively explores potential shifts to the geothermal industry. Future work within the Geothermal Vision Study will incorporate these qualitative scenarios quantitatively, in competition with other renewable and conventional energy industries.

  6. English Grammar Workbook For Dummies

    CERN Document Server

    O'Sullivan, Nuala

    2010-01-01

    English Grammar Workbook For Dummies, UK Edition is grammar First Aid for anyone wanting to perfect their English and develop the practical skills needed to write and speak correctly. Each chapter focuses on key grammatical principles, with easy-to-follow theory and examples as well as practice questions and explanations. From verbs, prepositions and tenses, to style, expressions and tricky word traps, this hands-on workbook is essential for both beginners looking to learn and practise the basics of English grammar, and those who want to brush up skills they already have - quickly, easily, and

  7. Language Workbook for Power Sewing.

    Science.gov (United States)

    Mankoski, Linda

    Based on the student workbook entitled "Power Sewing", this manual is intended to aid aurally handicapped vocational students who are being trained in power sewing. The sequence of lessons closely follows the progression of sewing skills taught by the shop text, but covers the material from the standpoint of reading and communication skills. The…

  8. Geothermal energy program overview

    Science.gov (United States)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  9. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  11. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  12. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  13. Sketching user experiences the workbook

    CERN Document Server

    Greenberg, Saul; Marquardt, Nicolai; Buxton, Bill

    2012-01-01

    In Sketching User Experiences: The Workbook, you will learn, through step-by-step instructions and exercises, various sketching methods that will let you express your design ideas about user experiences across time. Collectively, these methods will be your sketching repertoire: a toolkit where you can choose the method most appropriate for developing your ideas, which will help you cultivate a culture of experience-based design and critique in your workplace. Features standalone modules detailing methods and exercises for practitioners who want to learn and develop their sketching skills E

  14. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  15. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  16. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  17. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  18. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  19. Pre-calculus workbook for dummies

    CERN Document Server

    Kuang, Yang

    2011-01-01

    Get the confidence and math skills you need to get started with calculus Are you preparing for calculus? This hands-on workbook helps you master basic pre-calculus concepts and practice the types of problems you'll encounter in the course. You'll get hundreds of valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every problem. You'll also memorize the most frequently used equations, see how to avoid common mistakes, understand tricky trig proofs, and much more. Pre-Calculus Workbook For Dummies is the perfect tool for anyone who wa

  20. CERCLA site assessment workbook, Volume 1

    International Nuclear Information System (INIS)

    1994-08-01

    This workbook provides instructions for planning, implementing, and reporting site assessments under CERCLA, commonly referred to as Superfund. Site assessment consists of two information-gathering steps: the remedial preliminary assessment (PA) and the site inspection (SI). The information obtained is then used to estimate, or score, a site's relative risk to public health and the environment. The score is derived via the hazard ranking system (HRS). Although the workbook and its exercises can be adapted to group study, it is designed primarily for use by an individual

  1. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  2. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  3. Geothermal Energy.

    Science.gov (United States)

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  4. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  5. Working Smart Workbook. An Interactive Learning Experience.

    Science.gov (United States)

    Los Angeles Unified School District, CA. Div. of Adult and Occupational Education.

    This workbook accompanies an interactive videodisc used in the Working Smart workplace literacy project prepared for the hotel and food services industry in the Los Angeles, California area. The first instructional unit addresses preparing the work area, including stocking supplies and cleaning the work area. The second instructional unit covers…

  6. Cosmetology Core. Teacher Workbook. Cosmetology Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher workbook, which is part of a series of publications designed to support instruction in Oklahoma vocational cosmetology programs, consists of 13 units of information and skills that are basic to all major instructional divisions of a cosmetology course of study. The unit topics are as follows: identifying cosmetology careers/displaying…

  7. Arapahos on the Great Plains. Student Workbook.

    Science.gov (United States)

    Spoonhunter, Bob; Woodenlegs, Martha

    The student workbook is derived from "An Ethnological Report on Cheyenne and Arapaho: Aboriginal Occupation," by Zachary Gussow and "Northern Snows to Southern Summers--An Arapaho Odyssey," by Bob Spoonhunter. The first section discusses the Arapaho origins by recounting many different legends that explain how they arrived on…

  8. Geothermal energy for American Samoa

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  9. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  10. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  11. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  12. Calculator. Owning a Small Business.

    Science.gov (United States)

    Parma City School District, OH.

    Seven activities are presented in this student workbook designed for an exploration of small business ownership and the use of the calculator in this career. Included are simulated situations in which students must use a calculator to compute property taxes; estimate payroll taxes and franchise taxes; compute pricing, approximate salaries,…

  13. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  14. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  15. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  16. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  17. Title I: African-American Studies Program. Student Workbook.

    Science.gov (United States)

    Wilson, Linda

    This is a student workbook in African American studies used in the Detroit, Michigan public schools in 1978-79. The workbook contains student exercises in African history, culture, geography, languages, architecture, folktales, food, and artifacts. The continent of Africa is covered in units on Egypt, North Africa, West Africa, Central Africa, and…

  18. Roofing: Workbook and Tests. First-Aid Training.

    Science.gov (United States)

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook on first aid is one of a series of nine individual units of instruction for roofing apprenticeship classes in California. The workbook covers 12 topics: introduction to first-aid practices; burns; skeletal injuries; spinal injuries; wounds, bleeding, and bruises; emergencies of the heart and blood circulation system; breathing and…

  19. La ciudad: Libro de actividades, 1 (The City: Workbook 1).

    Science.gov (United States)

    Martinez, Emiliano; And Others

    This workbook, designed to be used with a textbook of the same title, contains exercises, riddles, puzzles, coloring activities, and reinforcement of various word-perception skills and sentences. Included is a step-by-step procedure of phonetic analysis. The intention of the workbook is to enable students to apply their ability to get meaning from…

  20. A Workbook for Designing, Building, and Sustaining Learning Communities

    Science.gov (United States)

    Graziano, Janine; Schlesinger, Marissa R.; Kahn, Gabrielle; Singer, Rachel

    2016-01-01

    To address the professional development needs of learning community instructors at Kingsborough Community College, faculty coordinators and program directors developed a workbook for instructional teams. This workbook walks instructors through the collaborative process of creating and sustaining successful links and focuses on what we believe is…

  1. Applying a workbook at Aikido lessons when teaching younger pupils

    Directory of Open Access Journals (Sweden)

    Vlasova O. P.

    2016-07-01

    Full Text Available the article is devoted to creating the structure and the contents of a workbook for the first year children learning Aikido. The results prove the effectiveness of using the workbook: children learn the material successfully, younger pupils get enough theoretical and practical Aikido skills during the course of this martial art.

  2. Geothermal heating saves energy

    International Nuclear Information System (INIS)

    Romsaas, Tor

    2003-01-01

    The article reviews briefly a pioneer project for a construction area of 200000 m''2 with residences, business complexes, a hotel and conference centre and a commercial college in Oslo. The energy conservation potential is estimated to be about 60-70 % compared to direct heating with oil, gas or electricity as sources. There will also be substantial reduction in environmentally damaging emissions. The proposed energy central combines geothermal energy sources with heat pump technology, utilises water as energy carrier and uses terrestrial wells for energy storage. A cost approximation is presented

  3. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  4. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  5. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  6. Pre-calculus workbook for dummies

    CERN Document Server

    Gilman, Michelle Rose; Neal, Karina

    2009-01-01

    Get the confidence and the math skills you need to get started with calculus! Are you preparing for calculus? This easy-to-follow, hands-on workbook helps you master basic pre-calculus concepts and practice the types of problems you'll encounter in your cour sework. You get valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every problem. You'll also memorize the most frequently used equations, see how to avoid common mistakes, understand tricky trig proofs, and much more. 100s of Problems! Detailed, fully worked-out solutions to problem

  7. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  8. Geothermal energy

    CERN Document Server

    Mangor, Jodie

    2016-01-01

    Vast amounts of heat exist below the planet's surface. Geothermal Energy shows how scientists are tapping into this source of energy to heat homes and generate electricity. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  9. Geothermal Energy

    Science.gov (United States)

    1975-11-15

    important from the geothermal point of view. These are known as La Tacita, Hacienda de Agua Fria, Banos del Chino, Laguna Verde, El Nopal...Institute for the Electrical Industry has begun to study surface geo- logy, photointerpretation, and gas and water sampling. La Primavera . - La ... Primavera is situated close to and west of the city of Guadalajara, capital of the State of Jalisco . It is described as a volcanic caldera, and the

  10. Geothermal Heat Pump Benchmarking Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  11. Federal Geothermal Research Program Update Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  12. Federal Geothermal Research Program Update Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  13. 2015 Annual Report - Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-01

    Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.

  14. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  15. Alaska geothermal bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  16. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  17. Energy conservation for housing: A workbook

    Science.gov (United States)

    1982-05-01

    Multifamily housing project managers can reduce their energy costs from 30 to 60 percent by capitalizing on a variety of energy conservation opportunities (ECO's) identified in HUD research on the physical condition of public housing stock. This workbook prepares managers for this planning and for making individualized energy audits. It provides all the materials they need to proceed, including analysis sheets for calculating costs - benefit and payback periods for each of the 50 ECO's described. The ECO's listed all into four general categories: architectural improvements to the energy design of the building envelope; heating system ECO's to increase energy efficiency; secondary ECO's related to the domestic water supply, air conditioning systems, and central laundry equipment; and electric system ECO's reducing utility surcharges and increasing light bulb efficiency.

  18. An analysis of the Grade 3 Department of Basic Education workbooks as curriculum tools

    Directory of Open Access Journals (Sweden)

    Ursula Hoadley

    2016-12-01

    Full Text Available Since 2011, the Department of Basic Education (DBE, has provided all Grade 1 to 6 learners in public schools with literacy/language, numeracy/mathematics and life skills workbooks. This study provides an assessment of the purpose to which the workbooks are best suited by analysing the Grade 3 Mathematics and Home Language English workbooks for 2015 in the light of the DBE’s intentions for the workbooks. The study considers alignment of the workbooks with the official national curriculum, the Curriculum and Assessment Policy (CAPS, as well as ‘conceptual signalling’ and progression in the content of the workbooks. We then evaluate the kind of ‘curriculum tool’ the workbooks in their current format conform to. We explore three possibilities in the light of the DBE’s proposals for the workbook use: a practice tool; an assessment tool; and a monitoring tool. We also reflect on the workbooks as a teaching tool. Our analysis suggests that, in line with the DBE’s intended purpose for the workbooks, that the workbooks best represent a practice curriculum tool. We highlight the significance of the high level of curriculum compliance of the workbook, and indicate that this would render them an effective monitoring tool for assessing the quantitative coverage of the curriculum at a systemic level.

  19. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  20. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  1. Guidelines and workbook for assessment of organization and administration of utilities seeking operating license for Nuclear Power Plant. Workbook for assessment of organization and management. Volume 2

    International Nuclear Information System (INIS)

    Thurber, J.A.; Olson, J.; Osborn, R.N.; Sommers, P.; Widrig, R.D.

    1985-08-01

    Purpose of the Workbook is to guide the NRC reviewer through a systematic review and assessment of a proposed organization and administration. The Workbook outlines criteria for evaluating a written organization/administration plan and ensures consistent and comprehensive review of organization plans and site visit materials. The Workbook is designed to assist the NRC reviewer in assembling and analyzing objective information deemed necessary for judging acceptability of the plan, but it does not itself make the judgment

  2. Estimating summary measures of health: a structured workbook approach

    Directory of Open Access Journals (Sweden)

    Le Petit Christel

    2005-05-01

    Full Text Available Abstract Background Summary measures of health that combine mortality and morbidity into a single indicator are being estimated in the Canadian context for approximately 200 diseases and conditions. To manage the large amount of data and calculations for this many diseases, we have developed a structured workbook system with easy to use tools. We expect this system will be attractive to researchers from other countries or regions of Canada who are interested in estimating the health-adjusted life years (HALYs lost to premature mortality and year-equivalents lost to reduced functioning, as well as population attributable fractions (PAFs associated with risk factors. This paper describes the workbook system using cancers as an example, and includes the entire system as a free, downloadable package. Methods The workbook system was developed in Excel and runs on a personal computer. It is a database system that stores data on population structure, mortality, incidence, distributions of cases entering a multitude of health states, durations of time spent in health states, preference scores that weight for severity, life table estimates of life expectancies, and risk factor prevalence and relative risks. The tools are Excel files with embedded macro programs. The main tool generates workbooks that estimate HALY, one per disease, by copying data from the database into a pre-defined template. Other tools summarize the HALY results across diseases for easy analysis. Results The downloadable zip file contains the database files initialized with Canadian data for cancers, the tools, templates and workbooks that estimate PAF and a user guide. The workbooks that estimate HALY are generated from the system at a rate of approximately one minute per disease. The resulting workbooks are self-contained and can be used directly to explore the details of a particular disease. Results can be discounted at different rates through simple parameter modification

  3. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  4. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  5. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  6. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  7. A Bookstore for Bailey: A Novel Approach to Teaching a Small-Business Management Course

    Science.gov (United States)

    Bergquist, Timothy M.; Maggs, Anne

    2011-01-01

    This article presents the development of an online, student-centered, introductory small-business management course that uses an educational business novel, hypertext graphic-design features, an interactive workbook, and a student-authored final chapter. Student learning was assessed through the use of a pre- and posttest survey. Student…

  8. Colorado geothermal commercialization program: community development of geothermal energy in Pagosa Springs, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.

    1980-01-01

    A district heating system for the Pagosa Springs central business district is in the planning stage. A detailed analysis of the project is presented. It comprises area and site specific studies and describes in detail the recent, current, anticipated, and postulated geothermal development activities. (MHR)

  9. Microsoft SQL Server 6.0{reg_sign} Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Augustenborg, E.C.

    1996-09-01

    This workbook was prepared for introductory training in the use of Microsoft SQL Server Version 6.0. The examples are all taken from the PUBS database that Microsoft distributes for training purposes or from the Microsoft Online Documentation. The merits of the relational database are presented.

  10. Asphalt and Wood Shingling. Roofing Workbook and Tests.

    Science.gov (United States)

    Brown, Arthur

    This combination workbook and set of tests contains materials on asphalt and wood shingling that have been designed to be used by those studying to enter the roofing and waterproofing trade. It consists of seven instructional units and seven accompanying objective tests. Covered in the individual units are the following topics: shingling…

  11. AppleWorks for Educators. A Beginner's Workbook.

    Science.gov (United States)

    Rathje, Linda

    This self-paced workbook presents basic information about features of the "AppleWorks" software package, provides practice materials for beginners, discusses features available in an integrated three-application package, and provides guided hands-on activities. The applications include the spreadsheet, the word processor, printer options…

  12. Sound. Physical Science in Action. Teacher's Manual and Workbook.

    Science.gov (United States)

    Chan, Janis Fisher; Friedland, Mary

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of physical science. Six separate units…

  13. Hunger, A Scientists' Institute for Public Information Workbook.

    Science.gov (United States)

    Mead, Margaret

    The first section of this workbook gives data on hunger and malnutrition in the United States, and outlines immediate community and national action needed to meet the emergency and provide against its recurrence. The second section discusses problems of world food supply, spreading technology, the population explosion, and the handling of…

  14. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    Science.gov (United States)

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  15. Developing Critical Thinking Skills: Assessing the Effectiveness of Workbook Exercises

    Science.gov (United States)

    Wallace, Elise D.; Jefferson, Renee N.

    2015-01-01

    To address the challenge of developing critical thinking skills in college students, this empirical study examines the effectiveness of cognitive exercises in developing those skills. The study uses Critical Thinking: Building the Basics by Walter, Knudsvig, and Smith (2003). This workbook is specifically designed to exercise and develop critical…

  16. La Familia: Student Workbook. Latino Family Life Education Curriculum Series.

    Science.gov (United States)

    Matiella, Ana Consuelo

    This workbook comprises eight lessons designed to enhance the self-esteem of Latino students, grades 5 through 8, through the exploration of family, family traditions and values, and the affirmation of family strengths. Each lesson begins with an illustration that reflects the content of the lesson and an introductory page. Each introductory page…

  17. Functions of Cities. Student Text and Student Workbook.

    Science.gov (United States)

    Jones, F. Geoffrey

    A student text and student workbook on the economic base and functions of cities comprise a self-paced unit for intermediate grade level students of geography. The text discusses the meaning of economic base and function, and categorizes eight cities for further study in succeeding chapters--Durban, Frankfurt, Pittsburgh, Brasilia, Surfers…

  18. Lengua Nacional: Fichas de trabajo 2 (National Language: Workbook 2).

    Science.gov (United States)

    Peniche Leger, Maria Elena, Ed.

    This consumable, graded workbook can be used for exercises, tests, and individualized learning. Each level contains 30 units divided into four groups of exercises: reading analysis, grammar, composition, and spelling. Ten general tests are also included. For the accompanying reader, see FL 004 048. (Author/SK)

  19. Lengua nacional: Fichas de trabajo 5 (National Language: Workbook 5).

    Science.gov (United States)

    Peniche Leger, Maria Elena, Ed.

    This consumable, graded workbook can be used for exercises, tests, and individualized learning. Each level contains 30 units divided into four groups of exercises: reading analysis, grammar, composition, and spelling. Ten general tests are also included. For the accompanying reader, see FL 004 051. (Author/SK)

  20. La Gramatica Ingles: Libro de Trabajo (English Grammar: Workbook).

    Science.gov (United States)

    Rogers, Paul

    This student workbook is designed for native Spanish-speaking learners of English as a second language, and presents instruction in basic English grammatical constructions and usage, as well as some vocabulary development. Lessons include basic descriptions of the constructions and rules in applying them, and a brief exercise reinforcing the…

  1. Lengua nacional: Fichas de trabajo 3 (National Language: Workbook 3).

    Science.gov (United States)

    Peniche Leger, Maria Elena, Ed.

    This consumable, graded workbook can be used for exercises, tests, and individualized learning. Each level contains 30 units divided into four groups of exercises: reading analysis, grammar, composition, and spelling. Ten general tests are also included. For the accompanying reader, see FL 004 049. (Author/SK)

  2. Lengua nacional: Fichas de trabajo 6 (National Language: Workbook 6).

    Science.gov (United States)

    Peniche Leger, Maria Elena, Ed.

    This consumable, graded workbook can be used for exercises, tests, and individualized learning. Each level contains 30 units divided into four groups of exercises: reading analysis, grammar, composition, and spelling. Ten general tests are also included. For the accompanying reader, see FL 004 052. (Author/SK)

  3. Lengua nacional: Fichas de trabajo 4 (National Language: Workbook 4).

    Science.gov (United States)

    Peniche Leger, Maria Elena, Ed.

    This consumable, graded workbook can be used for exercises, tests, and individualized learning. Each level contains 30 units divided into four groups of exercises: reading analysis, grammar, composition, and spelling. Ten general tests are also included. For the accompanying reader, see FL 004 050. (Author/SK)

  4. Albanian Basic Course: Workbook for Exercises in Grammar.

    Science.gov (United States)

    Defense Language Inst., Washington, DC.

    This workbook in Albanian grammar requires students to fill in missing words following a particular grammatical pattern, selected from Exercises in Grammar used in the "Albanian Basic Course," prepared by the Defense Language Institute. Drills include: (1) interrogative pronouns, (2) demonstrative adjectives; (3) declension of nouns, possessive…

  5. Course in Carpentry: Interior Finish. Workbook and Tests.

    Science.gov (United States)

    Strazicich, Mirko, Ed.

    Designed for use in carpentry apprenticeship classes, this workbook contains nine units on carpentry skills in the area of interior finish, lists of recommended and required instructional materials, and nine unit tests. Each instructional unit includes a listing of performance statements and text covering skills addressed in individual performance…

  6. Potluck: Exploring American Foods and Meals. Vocabureader Workbook 2.

    Science.gov (United States)

    Clark, Raymond C.

    The workbook is an English vocabulary development text that focuses on words associated with preparing, serving, and eating food. The special vocabulary is presented in twelve readings. The reading passages are written in repetitive style so the student can learn each word's definition through context. Each selection describes a typical North…

  7. Evaluation of Back to Basics mathematics workbooks: a randomised ...

    African Journals Online (AJOL)

    Can providing learner support materials, particularly custom-designed workbooks, improve primary mathematics achievement more cost effectively than providing conventional textbooks? To contribute to this debate, this paper reports on the findings of a study conducted in 2010 by a consortium of educational researchers ...

  8. Ciencias 3. Caderno de Exercicios. (Science 3. Workbook).

    Science.gov (United States)

    Raposo, Lucilia

    This workbook contains 47 activities and exercises which reinforce lesson topics found in the grade 3 science textbook. These lesson topics, presented in nine sections in the textbook, focus on such areas as: (1) solar energy, electricity, and light; (2) solar system, planets, earth motions, and phases of the moon; (3) gravity, rocks, and erosion;…

  9. American Holidays: Exploring Traditions, Customs and Backgrounds. Vocabureader Workbook 3.

    Science.gov (United States)

    Klebanow, Barbara; Fischer, Sara

    The workbook is an English vocabulary development text focusing on words associated with traditions, customs, and background of holidays celebrated in the United States, and in some cases also in Canada and elsewhere. The special vocabulary is presented in seventeen readings, written in repetitive style so the student can learn the definitions of…

  10. Fundamentals of Library Automation and Technology. Participant Workbook.

    Science.gov (United States)

    Bridge, Frank; Walton, Robert

    This workbook presents outlines of topics to be covered during a two-day workshop on the fundamentals for library automation. Topics for the first day include: (1) Introduction; (2) Computer Technology--A Historical Overview; (3) Evolution of Library Automation; (4) Computer Hardware Technology--An Introduction; (5) Computer Software…

  11. Utilization of geothermal energy in Slovakia

    Directory of Open Access Journals (Sweden)

    Henrieta Pavolová

    2015-12-01

    Full Text Available Higher demand for energy consumption and the importance of environmental issues has encouraged researchers and policy makers to consider renewable energies more seriously. Energetic projects, resulting from orientation to energetic effectiveness are contributing to the increase of energetic safety and reduction of economic dependence on unstable prices of gas and petroleum during their import. The contribution studies possible ways of utilization of individual types of renewable energies by the analysis of utilization of geothermal energy through characteristics of individual areas of geothermal energy in Slovakia according to the intensity of heat flow. The results of the analysis prove that Slovakia has the vast potential of geothermal energy. There is, therefore, necessary to support business activities, orientated to the energy saving projects.

  12. Reference book on geothermal direct use

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  13. Basic Wiring. Fourth Edition. Teacher Edition [and] Student Guide [and] Student Workbook 1 [and] Student Workbook 2.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary; Blasingame, Don

    Basic Wiring, first in a series of three wiring publications, serves as the foundation for students enrolled in a wiring program. It is a prerequisite to Commercial and Industrial Wiring or Residential Wiring. Instructional materials include a teacher edition, student guide, and two student workbooks. The teacher edition begins with introductory…

  14. Commercial and Industrial Wiring. Fourth Edition. Teacher Edition [and] Student Guide [and] Student Workbook 1 [and] Student Workbook 2.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    Commercial and Industrial Wiring, third in a series of three wiring publications, includes the additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. Instructional materials include a teacher edition, student guide, and two student workbooks. The teacher edition begins with…

  15. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  16. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  17. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  18. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  19. Geothermal Today - 2001

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  20. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  1. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...

  2. Warning of excessiveness. Subsurface geothermal heat; Warnung vor Wildwuchs. Oberflaechennahe Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W.

    2007-07-15

    The geothermal industry is booming. Experts already view a state of chaos in the drilling sector, where hairdressers, caretakers and bakers are trained in geothermal drilling because of a lack of expert labour. Many producers of heat pumps therefore founded their own drilling business or entered cooperations. The contribution outlines the situation as viewed at the Bauma 2007, Munich. (orig.)

  3. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  4. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  5. Prospects of geothermal energy

    International Nuclear Information System (INIS)

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  6. Fundamentals of passive nondestructive assay of fissionable material: laboratory workbook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, T.D.; Augustson, R.H.; Parker, J.L. Walton, R.B.; Atwell, T.L.; Umbarger, C.J.; Burns, C.E.

    1975-02-01

    This workbook is a supplement to LA-5651-M, ''Fundamentals of Passive Nondestructive Assay of Fissionable Material'' which is the text used during the Nondestructive Assay Training Session given by Group A-1 of the Los Alamos Scientific Laboratory. It contains the writeups used during the six laboratory sessions covering basic gamma-ray principles, quantitative gamma-ray measurements, uranium enrichment measurements, equipment holdup measurements, basic neutron principles, and quantitative neutron assay.

  7. Idaho Geothermal Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

    1979-07-01

    Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

  8. Geothermal Greenhouse Development Update

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1997-01-01

    Greenhouse heating is one of the popular applications of low-to moderated-temperature geothermal resources. Using geothermal energy is both an economical and efficient way to heat greenhouses. Greenhouse heating systems can be designed to utilize low-temperature (>50oC or 122oF) resources, which makes the greenhouse an attractive application. These resources are widespread throughout the western states providing a significant potential for expansion of the geothermal greenhouse industry. This article summarizes the development of geothermal heated greenhouses, which mainly began about the mid-1970's. Based on a survey (Lienau, 1988) conducted in 1988 and updated in 1997, there are 37 operators of commercial greenhouses. Table 1 is a listing of known commercial geothermal greenhouses, we estimate that there may be an additional 25% on which data is not available.

  9. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  10. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  11. The educational theory underpinning a clinical workbook for VERT

    International Nuclear Information System (INIS)

    Nisbet, Heather; Matthews, Sara

    2011-01-01

    The introduction of VERT (Virtual Environment for Radiotherapy Training) into radiotherapy departments across England was in response to the National Radiotherapy Advisory Group's (NRAG) recommendation to the Department of Health that it may assist in enhancing the clinical learning experience of student radiotherapy radiographers. It was suggested that this may help to reduce the high attrition rate of students currently experienced, particularly in the first year of training. This paper investigates how VERT may be used in the clinical setting to develop the skills of students, in order to meet this vision. We argue that using an epistemological approach, i.e. using the theory of knowledge, to support the design of the learning resource, is key to enabling the educator to fulfil these expectations. We describe the design of a generic VERT workbook for use in the clinical departments that train students for the University of Hertfordshire. The use of educational theory to underpin the aims and inform the development of the workbook is examined. We then discuss the alignment of the workbook with the curriculum in order to enhance the students' learning experience and nurture their clinical competence. Finally, we will consider the teaching strategies used during the delivered sessions and discuss how we believe they will allow us to achieve these aims.

  12. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  13. Development of the Geothermal Heat Pump Market in China; Renewable Energy in China

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    This case study is one in a series of Success Stories on developing renewable energy technologies in China for a business audience. It focuses on the development of the geothermal heat pump market in China.

  14. Evaluation of the Geothermal Public Power Utility Workshops in California

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B. C.

    2004-10-01

    The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

  15. Evaluating an Active Learning Approach to Teaching Introductory Statistics: A Classroom Workbook Approach

    Science.gov (United States)

    Carlson, Kieth A.; Winquist, Jennifer R.

    2011-01-01

    The study evaluates a semester-long workbook curriculum approach to teaching a college level introductory statistics course. The workbook curriculum required students to read content before and during class and then work in groups to complete problems and answer conceptual questions pertaining to the material they read. Instructors spent class…

  16. Aprendamos juntos: Cuaderno de trabajo. Primera parte (Let's Learn Together: Workbook. Part One).

    Science.gov (United States)

    Instituto Nacional para la Educacion de los Adultos, Mexico City (Mexico).

    This workbook is part of a Mexican series of instructional materials designed for Spanish speaking adults who are in the process of becoming literate or have recently become literate in their native language. This workbook focuses on teaching initial sounds and letters and moves on to simple words and sentences. The unit on mathematics goes over…

  17. Aprendamos juntos: Cuaderno de trabajo. Segunda parte (Let's Learn Together: Workbook. Part Two).

    Science.gov (United States)

    Instituto Nacional para la Educacion de los Adultos, Mexico City (Mexico).

    This workbook is part of a Mexican series of instructional materials designed for Spanish speaking adults who are in the process of becoming literate or have recently become literate in their native language. This workbook provides an introduction to grammar. It is designed to help students learn to write words, complete sentences, and paragraphs.…

  18. Mira y lee: Libro de actividades, 1 (Look and Read: Workbook 1).

    Science.gov (United States)

    Martinez, Emiliano; And Others

    This workbook, designed to be used with the textbook of the same title (FL 004 271), contains exercises, riddles, puzzles, coloring activities, and reinforcement of various word-perception skills and sentences. Included is a step-by-step procedure of phonetic analysis. The intention of the workbook is to enable students to increase their ability…

  19. Trabaja y aprende: Libro de actividades, 3 (Work and Learn: Workbook 3).

    Science.gov (United States)

    Martinez, Emiliano; And Others

    This workbook, designed to be used with the textbook of the same title (FL 004 273), contains exercises, riddles, puzzles, coloring activities, and reinforcement of various word-perception skills and sentences. Included is a step-by-step procedure of phonetic analysis. The intention of the workbook is to enable students to increase their ability…

  20. Lee y trabaja: Libro de actividades, 2 (Read and Work: Workbook 2).

    Science.gov (United States)

    Martinez, Emiliano; And Others

    This workbook, designed to be used with the textbook of the same title (FL 004 272), contains exercises, riddles, puzzles, coloring activities, and reinforcement of various word-perception skills and sentences. Included is a step-by-step procedure of phonetic analysis. The intention of the workbook is to enable students to increase their ability…

  1. Basic CNC Operation. Training Workbook [and] Assessment and Training Guide [and] Hands-on Assessment.

    Science.gov (United States)

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This workbook is intended for students taking a course in basic computer numerical control (CNC) operation that was developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry. The workbook contains daily training guides for each of the course's 13 sessions. Among…

  2. eWorkbooks for Mathematics: Mapping the Independent Learning Experiences of Elementary Students with Learning Disabilities

    Science.gov (United States)

    Kaczorowski, Tara; Raimondi, Sharon

    2014-01-01

    In this paper, we describe a small case study exploring how four elementary students with mathematics learning disabilities utilized mobile technology (the eWorkbook) during core math instruction in a general education setting. The lead author designed the eWorkbook intervention to provide a flexible learning experience optimized for diverse…

  3. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  4. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  5. Worldwide installed geothermal power

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    Worldwide electric energy production data are easy to compile, according to the informations given by individual countries. On the contrary, thermal applications of geothermics are difficult to quantify due to the variety of applications and the number of countries concerned. Exhaustive informations sometimes cannot be obtained from huge countries (China, Russia..) because of data centralization problems or not exploitable data transmission. Therefore, installed power data for geothermal heat production are given for 26 countries over the 57 that have answered the International Geothermal Association questionnaire. (J.S.). 1 fig., 2 tabs., 1 photo

  6. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  7. Review of international geothermal activities and assessment of US industry opportunities: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This study was initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  8. Review of international geothermal activities and assessment of US industry opportunities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report summarizes a study initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  9. New Zealand geothermal: Wairakei -- 40 years

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  10. NGDC Geothermal Data Bases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geothermics is the study of heat generated in Earth's interior and its manifestation at the surface. The National Geophysical Data Center (NGDC) has a variety of...

  11. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  12. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  13. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  14. Geothermal Orientation Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-07-01

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  15. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  16. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  17. Geothermal environmental impact

    International Nuclear Information System (INIS)

    Armannsson, H.; Kristmannsdottir, H.

    1992-01-01

    Geothermal utilization can cause surface disturbances, physical effects due to fluid withdrawal noise, thermal effects and emission of chemicals as well as affect the communities concerned socially and economically. The environmental impact can be minimized by multiple use of the energy source and the reinjection of spent fluids. The emission of greenhouse gases to the atmosphere can be substantially reduced by substituting geothermal energy for fossil fuels as an industrial energy source wherever possible

  18. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  19. Crossing the Barriers: An Analysis of Permitting Barriers to Geothermal Development and Potential Improvement Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing categorical

  20. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  1. Geothermal resources in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Saibi, Hakim [Laboratory of Geothermics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-12-15

    The geothermal resources in Algeria are of low-enthalpy type. Most of these geothermal resources are located in the northeastern of the country. There are more than 240 thermal springs in Algeria. Three geothermal zones have been delineated according to some geological and thermal considerations: (1) The Tlemcenian dolomites in the northwestern part of Algeria, (2) carbonate formations in the northeastern part of Algeria and (3) the sandstone Albian reservoir in the Sahara (south of Algeria). The northeastern part of Algeria is geothermally very interesting. Two conceptual geothermal models are presented, concerning the northern and southern part of Algeria. Application of gas geothermometry to northeastern Algerian gases suggests that the reservoir temperature is around 198 C. The quartz geothermometer when applied to thermal springs gave reservoir temperature estimates of about 120 C. The thermal waters are currently used in balneology and in a few experimental direct uses (greenhouses and space heating). The total heat discharge from the main springs and existing wells is approximately 642 MW. The total installed capacity from producing wells and thermal springs is around 900 MW. (author)

  2. Geothermal energy program summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  3. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  4. Geothermal Plant Capacity Factors

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  5. Australian methodology for the estimation of greenhouse gas emissions and sinks: Agriculture: Workbook for livestock: Workbook 6.0

    Energy Technology Data Exchange (ETDEWEB)

    Bureau of Resource Sciences, Canberra, ACT (Australia)

    1994-12-31

    This workbook details a methodology for estimating methane emissions from Australian livestock. The workbook is designed to be consistent with international guidelines and takes into account special Australian conditions. While regarded as a significant source of anthropogenic methane emissions, it is also acknowledged in this document that livestock do not provide sinks for methane or any other greenhouse gas. Methane can originate from both fermentation processes in the digestive tracts of all livestock and from manure under certain management conditions. Methane emissions were estimated from beef cattle, dairy cattle, sheep, pigs, poultry, goats, horses, deer, buffalo, camels, emus and ostriches, alpacas and donkeys and mules. Two methodologies were used to estimate emissions. One is the standard Intergovernmental Panel on Climate Change (IPCC) Tier 1 methodology that is needed to provide inter-country comparisons of emissions. The other has been developed by the Inventory Methodology Working Group. It represents the best current Australian method for estimating greenhouse gas emissions from Australian livestock. (author). 6 tabs., 22 refs.

  6. Business planning for scientists and engineers

    Energy Technology Data Exchange (ETDEWEB)

    Servo, J.C.; Hauler, P.D.

    1992-03-01

    Business Planning for Scientists and Engineers is a combination text/workbook intended for use by individuals and firms having received Phase II SBIR funding (Small Business Innovation Research). It is used to best advantage in combination with other aspects of the Commercialization Assistance Project developed by Dawnbreaker for the US Department of Energy. Although there are many books on the market which indicate the desired contents of a business plan, there are none which clearly indicate how to find the needed information. This book focuses on the how of business planning: how to find the needed information; how to keep yourself honest about the market potential; how to develop the plan; how to sell and use the plan.

  7. Talking about Complementary and Alternative Medicine with your Health Care Provider: A workbook and tips

    Science.gov (United States)

    A workbook to help patients and doctors talk about the use of complementary and alternative medicine(CAM) during and after cancer care. Worksheets, tips, and resources are provided for patients and doctors to help track CAM use.

  8. Talking about Complementary and Alternative Medicine with Health Care Providers: A Workbook and Tips

    Science.gov (United States)

    A workbook to help patients and doctors talk about the use of complementary and alternative medicine(CAM) during and after cancer care. Worksheets, tips, and resources are provided for patients and doctors to help track CAM use.

  9. Talking about Complementary and Alternative Medicine with Your Health Care Providers: A Workbook and Tips

    Science.gov (United States)

    ... everyone involved in your care, including conventional and complementary therapy providers. Other resources included in this workbook are: • ... care providers are concerned about your use of complementary therapies. • Ask your health care providers to direct you ...

  10. Talking about Complementary and Alternative Medicine with Health Care Provider: A Workbook and Tips

    Science.gov (United States)

    A workbook to help patients and doctors talk about the use of complementary and alternative medicine(CAM) during and after cancer care. Worksheets, tips, and resources are provided for patients and doctors to help track CAM use.

  11. Victorian first for geothermal

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    AGL Limited (AGL) will assist Maroondah Sports Club to save hundreds of thousands of dollars on its energy bills over the next decade by commencing work to install Victoria's first GeoAir geothermal cooling and heating system. Utilising the earth's constant temperature, the new GeoAir geothermal system provides a renewable source of energy that will save the club up to $12,000 in the first year and up to $150,000 over the next 10 years

  12. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  13. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  14. Modern geothermal power: GeoPP with geothermal steam turbines

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  15. Geothermal injection monitoring project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.

    1981-04-01

    Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

  16. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  17. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  18. Simulation of geothermal subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

    1980-03-01

    The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

  19. Review of geothermal subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.; Fair, J.A.; Henderson, F.B. III; Schwartz, S.R.

    1975-09-01

    Forty-nine citations are included most of which deal with geothermal subsidence. Other citations deal with subsidence caused by groundwater overdraft and oil and gas exploitation. Most of the entries have abstracts. A subject index, an author index, a list of references, and a glossary are included. (MHR)

  20. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  1. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  2. Geothermal Greenhouse Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K. [P.E.; Boyd, T. [ed.

    1997-01-01

    This package of information is intended to provide a foundation of background information for developers of geothermal greenhouses. The material is divided into seven sections covering such issues as crop culture and prices, operating costs for greenhouses, heating system design, vendors and a list of other sources of information.

  3. Crossing the Barriers: An Analysis of Land Access Barriers to Geothermal Development and Potential Improvement Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources. We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply

  4. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  5. Geothermal system 'Toplec' and geothermal potential of Dojran Region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2004-01-01

    The Toplec geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well cis the prosperity of the region. Water temperature in Lake Dojran amounts from 15 to 28 o C during the year that is much higher compared with the temperatures of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  6. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  7. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  8. Geothermal emissions data base, Wairakei geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.R. (comp.)

    1978-04-01

    A database subset on the gaseous emissions from the Wairakei geothermal field is presented. Properties and states of the reservoir fluid such as flow rates, wellhead pressure, and enthalpy are included in the file along with the well name and constituent measurement. This subset is the result of an initial screening of the data covering 1965 to 1971, and new additions will be appended periodically to the file. The data is accessed by a database management system as are all other subsets in the file. Thereby, one may search the database for specific data requirements and print selective output. For example, one may wish to locate reservoir conditions for cases only when the level of the constituent exceeded a designated value. Data output is available in the form of numerical compilations such as the attached, or graphical displays disposed to paper, film or magnetic tape.

  9. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  10. Wetlands may clean geothermal water

    Science.gov (United States)

    Development of geothermal resources may help to ease energy problems, but water quality problems could result from the disposal of spent geothermal brines. Research by EG&G Idaho shows that man-made wetlands may provide a more economic disposal system than do conventional treatment and disposal methods.Most geothermal water contains high concentrations of dissolved solids and trace elements, including fluoride and boron, which can be harmful to water quality and organisms. Because of these high concentrations, only a limited number of methods can be used to dispose of used geothermal water. These include injection wells, evaporation ponds, and disposal into surface waterways.

  11. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  12. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  13. Water Desalination Using Geothermal Energy

    Directory of Open Access Journals (Sweden)

    Noreddine Ghaffour

    2010-08-01

    Full Text Available The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting.

  14. Geothermal Progress Monitor 12

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  15. The geothermal KWh cost

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Numerous factors can influence the cost of geothermal electricity production: the size and power of production units, the conversion technology used (Rankine cycle or water steam), the resource quality (dry vapor or water-vapor mixing), the resource depth, the drilling activity in the country and the work people costs. In the United States of America the geothermal kWh cost ranges from 2.5 to 8.5 US cents, while in Italy and Nicaragua it ranges from 3 and 10 cents and from 5.7 to 6 cents, respectively. Results of a comparative study of the kWh production cost from different energy sources is also summarized. (J.S.). 1 tab

  16. Geothermal Ultrasonic Fracture Imager

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Doug [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States); Leggett, Jim [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States)

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  17. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  18. Federal Interagency Geothermal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Prencipe, Loretta [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Todaro, Richard M. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Cuyler, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eide, Elizabeth [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  19. Geothermal resources of Montana

    Energy Technology Data Exchange (ETDEWEB)

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  20. Colorado Geothermal Commercialization Program

    Energy Technology Data Exchange (ETDEWEB)

    Healy, F.C.

    1980-04-01

    Chaffee County, located in central Colorado, has immense potential for geothermal development. This report has been prepared to assist residents and developers in and outside the area to develop the hydrothermal resources of the county. Data has been collected and interpreted from numerous sources in order to introduce a general description of the area, estimate energy requirements, describe the resources and postulate a development plan. Electric power generation and direct heat application potential for the region are described.

  1. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  2. UWC geothermal resource exploration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

  3. ELECTRONIC BUSINESS IN BUSINESS

    OpenAIRE

    Lucian Constantin Gabriel Budacia; Elisabeta Andreea Budacia

    2008-01-01

    The management of a business in the digital economy is based on a management process called digital management. Business in the digital economy integrates information technologies and communications within its activities and may be partially or totally electronic. Management of the business is carried out using information systems that support for the substantiation and decisions. Business electronic involve a complete change in how the customer is viewed in relation to the organization; requ...

  4. Investigation of geothermal resources in Korea (Geothermal Resources Maps)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jeong Ung; Lee, Seung Gu; Yum, Byoung Woo; Kim, Hyoung Chan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The Korean Peninsula forms a part of the stable foreland of Far East Asia and is a part of Sino-Korean Craton, where, hence, is not associated with high potential geothermal resources. Nevertheless, there are several geothermal springs, of which water temperature ranges from 23 to 76 deg. C. This study was aimed to draw various geothermal base maps in the Korean Peninsula, such as thermal conductivity map, heat flow map, geothermal gradient map, depth contour map of 25 deg. C and various geochemical figures of geothermal waters. In this study, the thermal springs was surveyed for well inventory, the determination of thermal conductivities of rocks, and chemical analyses of geothermal waters. Hydrogen and oxygen isotope values ({delta}D and {delta}{sup 18}O) of geothermal waters were also calculated, which would be useful to evaluate the origin of water. Map of geothermal gradient distribution illustrates geothermally anomalous areas - such as Deoksan, Dogo, Onyang and Yusong areas in ChungNam district, Jungwon area in Chungbuk district, Pocheon area in Gyeonggi district, Gosung area in Gwangwon district, Deokgu, Baekam, and Pohang areas in Gyeongbuk district and Busan, Mageumsan and Bugok area in Gyeongnam district. Heat flow map also shows similar features to geothermal anomalies. Most of thermal waters form the Korean Peninsula are alkaline and belongs to Na-HCO{sub 3} type. Their contents are characterized of low total dissolved solids and high contents of fluoride and sodium, of which results are same as those of the researches which was conducted before. (author). 21 refs., tabs., figs.

  5. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  6. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  7. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  8. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  9. Multipurpose Use of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.; Lund, John W. (eds.)

    1974-10-09

    The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

  10. Compilation of geothermal information: exploration

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

  11. World Geothermal Congress WGC-2015

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  12. Geopressured geothermal bibliography (Geopressure Thesaurus)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  13. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  14. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  15. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  16. Status of geothermal energy in Ethiopia

    International Nuclear Information System (INIS)

    Endeshaw, A.; Belaineh, M.

    1990-01-01

    This paper reports that there are several identified geothermal localities in Ethiopia. Ten geothermal localities have been studied with regional assessments, while three localities have had pre-feasibility studies. In one area, the Aluto-Langano geothermal field, the feasibility studies have been completed. However, the geothermal resources have not been utilized yet except in the traditional baths

  17. Abbreviated RD and D program portfolio selection workbook

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, D.W.; Cohan, D.; Regulinski, S.G.

    1979-12-01

    A workbook for implementing an abbreviated version of the RD and D portfolio selection methodology described in A Resource Allocation Methodology for Establishing RD and D Budgetary Priorities is presented. The purpose of the abbreviated methodology is to allow a fast, first-cut analysis of a set of programs and to provide a means of discovering important issues that deserve more detailed analysis. The use of the abbreviated methodology in the overall process of evaluating RD and D programs is outlined. The effect of the program on a process is represented by the process model. Those process cost and performance characteristics that are important to the market for an energy product are described. The product cost model takes the cost and performance characteristics and the feedstock price and calculates the cost of producing a unit of energy using the technology in question. The market model takes this cost, the demand for the energy product, and the characteristics of alternative sources of the same product, and specifies the market share captured by the new technology. From this point it is relatively straightforward to infer the impacts of the new technology on the energy system. The benefit model evaluates the impacts in a consistent way, given the cost of the Federal support.

  18. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  19. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  20. Geothermal reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, C.R.; Golabi, K.

    1978-02-01

    The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

  1. Geothermal energy. Pt.2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Geothermal energy has certain features that make it highly recommendable as a source of power production. It is noted by its high load factor; it may be used as a basic or peak source; its versatility and high availability among others. In spite of these advantages, geothermal energy has not attained a significant development up to now. There are several reasons for this to happen, while the main one is that it requires an important initial investment. Assessing if an area is potentially profitable for the obtention of a given type of energy implies performing a complex set of analyses and prospective work, but it is not so significant as that associated with petroleum. The strategy for the exploration of geothermal resources is based on the execution of consecutive stages ranging from a surveillance at a regional scale to a project feasibility study, with growing investments and using more and more complex techniques. Many Latin American countries are located in areas considered as promisory concerning the development of this type of exploitation. Another factor supporting this view is a special demographic feature, showing a very irregular distribution of the population, with extense isolated areas with a minimun number of inhabitants that does not justify the extension of the electric power network. There are plants operating in four countries producing, as a whole, 881 MW. In Argentina the activities are aimed to intensifying the knowledge about the availability of this resource within the local territory and to estimating the feasibility of its usage in areas where exploration is more advanced [es

  2. Geothermal Energy and its Prospects in Lithuania

    International Nuclear Information System (INIS)

    Radeckas, B.

    1995-01-01

    Data on the geothermal resources in lithuania and on their prospective usage are presented. The analysis covers water horizons of the geothermal anomaly in West Lithuania and their hydrogeology. The energy of the 3 km thick geothermal source was evaluated. Technical and economical possibilities of using geothermal energy in West Lithuania are described. Some aspects of the investment and of the project of a geothermal power plant in Klaipeda are considered. (author). 6 refs., 6 tabs., 2 figs

  3. Outline of geothermal activity in Czechoslovakia

    International Nuclear Information System (INIS)

    Franko, O.; Bodis, D.; Dendek, M.; Remsik, A.

    1990-01-01

    This paper reports that in respect of different geothermal conditions in the Bohemian Massif (unfavorable) and in the West Carpathians (favorable), the development and utilization of geothermal energy are concentrated in Slovakia. THe utilization of geothermal energy for the heating of buildings in spas commenced in 1958. Thermal energy of geothermal waters was used for direct heating through heat exchangers, and in one case by a heat pump. Concentrated continuous development and utilization of geothermal energy started in 1971

  4. New Mexico low-temperature geothermal resources and economic development programs

    International Nuclear Information System (INIS)

    Whittier, J.; Schoenmackers, R.

    1990-01-01

    This paper reports on New Mexico's low-temperature geothermal resources which have been utilized to promote economic development initiatives within the state. Public funds have been leveraged to foster exploration activities which have led to the establishment of several direct-use projects at various sites within New Mexico. State policies have focused on attracting one business sector, the commercial greenhouse industry, to expand and/or relocate in New Mexico. Geothermal-related promotional activities have begun to show success in achieving economic growth. New Mexico now has almost half of the geothermally-heated greenhouse space in the nation. It is anticipated that the greenhouse sector will continue to grow within the state. Future economic development activities, also relying upon the geothermal resource base, will include vegetable dehydration and aquaculture with a focus on the microalgae sector

  5. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  6. Geothermal energy. Pt. 1

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    As most of the alternative power sources, geothermal energy started being considered as a tentative one during the early 1970s. At that time the world's demand for energy was mostly fed by means of petroleum, coal, gas and other primary materials. The low prices of these raw materials at that time and the lack of general consciousness on the environmental contamination problems caused by the combustion processes did not forecast any significant changes for the coming years. However, as from 1973, a constant raise in prices, specially for liquid fuels, started to take place. A few years later, in the early 1980s, a growing interest for nature and for the delicate equilibrium of the ecological and for systems started to awaken. These facts led several countries to re-evaluate their power resources and to reconsider those showing less negative incidence upon the environment. Among such alternatives, geothermal energy introduces certain features that make it highly advisable for developing countries, in addition to the fact that the mean heat reservoirs are located within this group of nations [es

  7. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  8. Geothermal Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1998-01-03

    Man has utilized the natural heat of the earth for centuries. Worldwide direct use of geothermal currently amounts to about 7,000 MWt, as compared to 1,500 MWe, now being used for the generation of electricity. Since the early 1970s, dwindling domestic reservoirs of oil and gas, continued price escalation of oil on the world market and environmental concerns associated with coal and nuclear energy have created a growing interest in the use of geothermal energy in the United States. The Department of Energy goals for hydrothermal resources utilization in the United States, expressed in barrels of oil equivalent, is 50 to 90 million bbl/yr by 1985 and 350 to 900 million bbl/yr by the year 2000. This relatively clean and highly versatile resource is now being used in a multitude of diverse applications (e.g., space heating and cooling, vegetable dehydration, agriculture, aquaculture, light manufacturing), and other applications requiring a reliable and economic source of heat.

  9. Geothermal Energy in Ecuador

    International Nuclear Information System (INIS)

    Aguilera, Eduardo; Villalba, Fabio

    1999-11-01

    Energy represents an essential element for economy, and for any sustainable development strategy, assuming it is a basic input for all production activities. It is a fundamental contra int for country's competitivity and also a main component of population's standard of life. The Agenda 21 and the General Agreement on Climatic Changes emphasize that the development and sustainable use of energy should promote economy, but taking care of the environment. Under these basic concepts, for the particular case of energy, the sustain ability of development requires the adoption of a strategy which guarantee an energy supply in terms of quality, opportunity, continuity and afford ability and, in addition, without production of negative environmental impacts. Geothermal energy is a serious energetic option for sustainable development, since presents technical and economic advantages for production of electricity at medium and large scale. Furthermore, geothermal energy allows a wide spectrum of direct applications of heat in profitable projects of high social impact as green houses, drying of seeds and wood products, fish farming, recreation and others. All of them can help the increase of communal production activities in rural areas affected by poverty

  10. Environmental impact in geothermal fields

    International Nuclear Information System (INIS)

    Birkle, P.; Torres R, V.; Gonzalez P, E.; Guevara G, M.

    1996-01-01

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author)

  11. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  12. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, Allen [GeoTek Energy, LLC, Frisco, TX (United States); Darlow, Rick [GeoTek Energy, LLC, Frisco, TX (United States); Sanchez, Angel [GeoTek Energy, LLC, Frisco, TX (United States); Pierce, Michael [GeoTek Energy, LLC, Frisco, TX (United States); Sellers, Blake [GeoTek Energy, LLC, Frisco, TX (United States)

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  13. World status of geothermal energy use: past and potential

    International Nuclear Information System (INIS)

    Lund, John

    2000-01-01

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  14. Evaluation of state taxes and tax incentives and their impact on the development of geothermal energy in western states

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, L.D.; Meyer, R.T.

    1981-01-01

    The economic impact of existing and prospective state taxes and tax incentives on direct thermal applications of geothermal energy are evaluated. Study area is twelve western states which have existing and potential geothermal activities. Economic models representing the geothermal producer and business enterprise phases of four industrial/commercial uses of geothermal energy are synthesized and then placed in the existing tax structures of each state for evaluation. The four enterprises are a commercial greenhouse (low temperature process heat), apartment complex (low temperature space heat), food processor (moderate temperature process heat), and small scale energy system (electrical and direct thermal energy for a small industrial park). The effects of the state taxations on net profits and tax revenues are determined. Tax incentives to accelerate geothermal development are also examined. The magnitudes of total state and local tax collections vary considerably from state to state, which implies that geothermal producers and energy-using businesses may be selective in expanding or locating their geothermal operations.

  15. Instruction Workbook for Tracheostomy Suctioning and Misting in a School Setting.

    Science.gov (United States)

    Wolf, Karen McKinney; Roach, Antionette Andolfatto

    The handbook presents California guidelines for training school personnel to provide skilled nursing procedures such as tracheostomy suctioning and misting for students with special health needs. The workbook begins with an overview of the anatomy and function of the respiratory system, specifically breathing mechanics. Part 2 considers the…

  16. Sanitary Landfill. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Sharman, Ronald M.

    This lesson is an introduction to disposal of sludge by landfill. A brief explanation of the complete process is provided, including discussions of sludge suitability, site selection, method selection and operation, site closure, and ultimate reuse. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a…

  17. Residential Wiring. Fourth Edition. Teacher Edition [and] Student Guide [and] Student Workbook.

    Science.gov (United States)

    Taylor, Mark

    Residential Wiring, the second publication in a series of three wiring publications, prepares students for entry-level employment in the residential wiring trade. Instructional materials include a teacher edition, student guide, and student workbook. The teacher edition begins with introductory pages, including a training and competency profile,…

  18. Fundamentals of Welding. Teacher Edition [and] Student Edition [and] Student Workbook. Second Edition.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike; New, Larry

    Teacher and student editions and a student workbook for fundamentals of welding comprise the first of six in a series of competency-based instructional materials for welding programs. Introductory pages in the teacher edition are training and competency profile, instructional/task analysis, basic skills icons and classifications, basic skills…

  19. Oxyacetylene Welding and Oxyfuel Cutting. Third Edition. Teacher Edition [and] Student Edition [and] Student Workbook.

    Science.gov (United States)

    Knapp, John; Harper, Eddie

    This Oklahoma curriculum guide, which includes a teacher edition, a student edition, and a student workbook, provides three units for a course on oxyacetylene welding, oxyfuel cutting, and cutting done with alternative fuels such as MAPP, propane, and natural gas. The three units are: "Oxyacetylene Welding"; "Oxyfuel Cutting";…

  20. Linguistic Gender Sensitivity Strategies in Current South African Intermediate Phase English Workbooks: Feminisation or Degenderisation?

    Science.gov (United States)

    Sibanda, Jabulani; Sibanda, Lucy

    2016-01-01

    This study extends research on manifestations of gender insensitivity in learners' reading materials by shifting attention to the linguistic strategies that authors of current texts employ for the realisation of gender sensitivity. We analysed the content of 12 current (2014) English workbooks (Grade 4-6) used in South African government and…

  1. Mapping Community Assets Workbook. Strengthening Community Education: The Basis for Sustainable Renewal.

    Science.gov (United States)

    Dorfman, Diane

    Asset mapping--drawing a map of what is valuable in a community--is an exercise in community development. A process for determining assets in the individual and in the community is provided in this workbook. It begins by asking the reader to perform a self-assessment to determine personal assets. Knowledge of each asset enhances self-awareness,…

  2. Barbering/Cosmetology, Module 6-10: Bilingual Vocational Language Development Workbook.

    Science.gov (United States)

    Northern New Mexico Community Coll., El Rito.

    This vocabulary language development workbook accompanies modules 6-10 in the barbering/cosmetology course of the Bilingual Skills Training Program (CE 028 314-318). For each module the trade-related vocabulary to be learned and practiced is first presented in both English and Spanish. Various types of activities and exercises using both the…

  3. Otros amigos, otras culturas: Libro de actividades, 2 (Other Friends, Other Cultures: Workbook 2).

    Science.gov (United States)

    Martinez, Emiliano; And Others

    This workbook was designed for use with the textbook of the same name. It contains exercises for the recognition of sounds and letters, reading comprehension, oral expression, and the use of diphthongs, compound words, idioms, synonyms and antonyms, word families, and dictionaries. The presentation includes drawings, puzzles, and games with color…

  4. Mi Libro: Initial Reading in Spanish--Pre-Reading Workbook, Teacher's Edition.

    Science.gov (United States)

    Sancho, Anthony R.; Bean, Shirley

    This workbook was designed to be used during the pre-reading stage of the "Initial Reading in Spanish" program. It may serve as a practice book, an initial primer, and a coloring book. The lessons emphasize two main areas of development: motor skills and the understanding of concepts such as color, size, shapes, numbers, and emotions. Muscular…

  5. Nuclear power reactor security personnel training and qualification plan reviewer workbook

    International Nuclear Information System (INIS)

    1979-06-01

    The Training and Qualification Plan Reviewer Workbook has been developed to provide the information required for evaluating the adequacy of the Training and Qualification (T and Q) Plans developed to meet the requirements of 10 CFR 73.55(b)(4) and 10 CFR 73, Appendix B

  6. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  7. Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

  8. Good Planets Are Hard To Find! Ecology Action Workbook and Dictionary.

    Science.gov (United States)

    Bazar, Ronald M.; Dehr, Roma

    Even though the condition of the planet is a serious subject, becoming ecologically aware and active can be fun. This workbook provides ecologically conscious-raising activities that children can do at home or with others. A series of worksheets guides students through eight activities including: (1) assessing community resources and environmental…

  9. Aerobic Digestion. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Klopping, Paul H.

    This lesson is a basic description of aerobic digestion. Topics presented include a general process overview discussion of a typical digester's components, factors influencing performance, operational controls, and biological considerations for successful operation. The lesson includes an instructor's guide and student workbook. The instructor's…

  10. Centrifugation. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Best, Richard A.

    An introductory description of the use of centrifuges in the process of volume reduction is provided in this lesson. Three basic centrifuges, their theory of operation, quality of cake and centrate, and operational control testing are discussed. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a…

  11. Radiographic Film Processing Quality Assurance: A Self-Teaching Workbook. Quality Assurance Series.

    Science.gov (United States)

    Goldman, Lee W.

    This workbook has been designed for use in conjunction with the manual, "Photographic Quality Assurance in Diagnostic Radiology, Nuclear Medicine and Radiation Therapy." Presented are several typical problems arising from the existence of variability and fluctuations in the automatic processing of radiographs, which unless corrected, can…

  12. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  13. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  14. Geothermal energy - availability - economy - prospects

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1992-01-01

    The heat contained in the earth's crust represents an inexhaustible reservoir of energy on the technical scale, which is available at all times of day and at all seasons. In the volcanically active zones, the earth's heat is used industrially: Worldwide, the electrical power of geothermal powerstations is about 5000 MW; in addition, about 10,000 MW are used for direct thermal applications (heating) in regions with normal geothermal conditions. The geothermal power plants have been expanded at an annual rate of 12.2% since 1970. In many developing countries, the geothermal energy is the most important home source of energy for electricity generation. In Europe, in the Paris Basin, hot groundwater is pumped from a depth of about 2 km and is used for heating blocks of flats. In France as a whole, about 170,000 flats have been supplied with heat and hot water from underground for more than a decade. (orig./DG) [de

  15. Issues related to geothermal development

    International Nuclear Information System (INIS)

    Lesperance, G.O.

    1990-01-01

    This paper reports on a number of potential barriers to geothermal development in Hawaii which have been overcome but some remain. Efforts continue to address issues relating to transmission, project economics, the regulatory process, resource verification, and public acceptance

  16. Geothermal Technologies Program: Direct Use

    Energy Technology Data Exchange (ETDEWEB)

    2004-08-01

    This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

  17. Geothermal Program Review IV: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  18. Geothermal energy development in Turkey

    International Nuclear Information System (INIS)

    Simsek, S.; Okandan, E.

    1990-01-01

    Geothermal fields in Turkey are related to rather complex zones of collision between the Eurasian and African continents, and penetration of the Arabian plate into the Anatolian continental mass. These processes gave rise to fracturing of the lithosphere and eruption of magmas. Geothermal regional assessment studies have proven several low enthalpy sources and some high enthalpy fields suitable for electricity generation. This paper summarizes developments in exploration-drilling and give examples of direct utilization implemented in recent years

  19. Optimizing Sustainable Geothermal Heat Extraction

    Science.gov (United States)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  20. Geothermal energy applications in China

    International Nuclear Information System (INIS)

    Ren, X.; Tang, N.; Zhang, Z.; Wang, J.

    1990-01-01

    This paper updates geothermal energy applications in China. To total energy consumption for electricity is 20.38 MWe, and for direct use is 41,222 TJ/yr, even though the beneficial heat was estimated to be 7,198 TJ/yr. The attached tables are the basic geothermal information mainly the years 1985-1989. Some of the tables are additions to the report or preceeding years

  1. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  2. Geothermal brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Van Note, N.R.

    1981-11-24

    A process is provided for treating spent geothermal brine to remove silica. The process includes introducing the brine into the reaction zone of a reactor-clarifier and allowing the brine to flow therefrom into the clarification zone of the reactorclarifier. In the clarification zone, particles settle from the brine and are urged to the center of the tank beneath the reaction zone, and the settled particles are drawn upwardly into the reaction zone by an impeller. The particles mix with the brine in the reaction zone to form a substantially uniform distribution therein to provide nuclei for silica precipitation from the brine. A stream of sludge is removed from the bottom of the reactor-clarifier and disposed of.

  3. Geothermal brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-08

    A system is provided for treating spent geothermal brine to remove silica. The process includes introducing the brine into the reaction zone of a reactor-clarifier and allowing the brine to flow therefrom into the clarification zone of the reactor clarifier. In the clarification zone, particles settle from the brine and are urged to the center of the tank beneath the reaction zone, and the settled particles are drawn upwardly into the reaction zone by an impeller. The particles mix with the brine in the reaction zone to form a substantially uniform distribution therein to provide nuclei for silica precipitation from the brine. A stream of sludge is removed from the bottom of the reactor-clarifier and disposed of.

  4. Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeanloz, R. [The MITRE Corporation, McLean, VA (United States); Stone, H. [The MITRE Corporation, McLean, VA (United States); et al.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  5. Geothermal energy geopressure subprogram

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  6. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  7. Geothermal development plan: Maricopa County

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

  8. PSS Case Book: A workbook in the PROTEUS series

    DEFF Research Database (Denmark)

    Neugebauer, Line Maria; Mougaard, Krestine; Andersen, Jakob Axel Bejbro

    The transformation process towards a PSS-oriented company is describes, through the presentation of the best pracice cases. Each case describes motivations, challenges, business models and PSS offerings....

  9. Trustee workbook 3. Effective governance after Enron and AHERF.

    Science.gov (United States)

    Orlikoff, James E; Totten, Mary K

    2002-01-01

    High profile business failures such as Enron and AHERF have raised the public's consciousness about the governing board's crucial role in ensuring sound, ethical business practices. AHERF (the Allegheny Health, Education, and Research Foundation in Philadelphia) was the largest not-for-profit health care bankruptcy in history and has generated many lawsuits against the AHERF boards and individual trustees. The Enron bankruptcy will certainly result in lawsuits against its board and directors and has embarrassed board members profoundly.

  10. Business ethics

    OpenAIRE

    Csillag,Paula

    1998-01-01

    The goal of this paper is to present examples of business ethics issues. What is business ethics, things concerned in this field are and why it is needed and important when doing business? The concept of business ethics has connotations to provision, rules and standards in directing the behavior of actors in the business. Business ethics involves compliance with the law, the implementation of ethical responsibilities of a business, the protection of the rights of those who are related to the ...

  11. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  12. Modern geothermal power: Binary cycle geothermal power plants

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-04-01

    In the second part of the review of modern geothermal power plant technologies and equipment, a role, a usage scale, and features of application of binary cycle plants in the geothermal economy are considered. Data on the use of low-boiling fluids, their impact on thermal parameters and performance of geothermal binary power units are presented. A retrospective of the use of various low-boiling fluids in industrial binary power units in the world since 1965 is shown. It is noted that the current generating capacity of binary power units running on hydrocarbons is equal to approximately 82.7% of the total installed capacity of all the binary power units in the world. At the same time over the past 5 years, the total installed capacity of geothermal binary power units in 25 countries increased by more than 50%, reaching nearly 1800 MW (hereinafter electric power is indicated), by 2015. A vast majority of the existing binary power plants recovers heat of geothermal fluid in the range of 100-200°C. Binary cycle power plants have an average unit capacity of 6.3 MW, 30.4 MW at single-flash power plants, 37.4 MW at double-flash plants, and 45.4 MW at power plants working on superheated steam. The largest binary cycle geothermal power plants (GeoPP) with an installed capacity of over 60 MW are in operation in the United States and the Philippines. In most cases, binary plants are involved in the production process together with a steam cycle. Requirements to the fluid ensuring safety, reliability, and efficiency of binary power plants using heat of geothermal fluid are determined, and differences and features of their technological processes are shown. Application of binary cycle plants in the technological process of combined GeoPPs makes it possible to recover geothermal fluid more efficiently. Features and advantages of binary cycle plants using multiple fluids, including a Kalina Cycle, are analyzed. Technical characteristics of binary cycle plants produced by various

  13. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  14. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  15. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  16. An Evaluation of Enhanced Geothermal Systems Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jelacic, Allan [U.S. Dept. of Energy, Washington, DC (United States); Fortuna, Raymond [U.S. Dept. of Energy, Washington, DC (United States); LaSala, Raymond [U.S. Dept. of Energy, Washington, DC (United States); Nathwani, Jay [U.S. Dept. of Energy, Washington, DC (United States); Nix, Gerald [U.S. Dept. of Energy, Washington, DC (United States); Visser, Charles [National Renewable Energy Lab. (NREL), Golden, CO (United States); Green, Bruce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Renner, Joel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kennedy, Mack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bruton, Carol [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2008-04-01

    This 2008 document presents the results of an eight-month study by the Department of Energy (DOE) and its support staff at the national laboratories concerning the technological requirements to commercialize a new geothermal technology, Enhanced Geothermal Systems (EGS).

  17. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  18. Mutnovo geothermal power complex at Kamchatka

    International Nuclear Information System (INIS)

    Britvin, O.V.; Povarov, O.A.; Klochkov, E.F.; Tomarov, G.V.; Koshkin, N.L.; Luzin, V.E.

    2001-01-01

    The data on geothermal resources at Kamchatka and experience in their application are presented. The description of the geothermal power complex objects at the Mutnovo deposit is given. The basic trends and stages of the prospective geothermal power development in this region are indicated. It is specified for unique huge geothermal heat reserves, which by different estimates may provide for the total electrical and thermal capacity, exceeding 2000 MW [ru

  19. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  20. Research status of geothermal resources in China

    Science.gov (United States)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  1. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  2. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  3. Geothermal progress monitor. Progress report No. 7

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

  4. Prospects of geothermal resource exploitation

    International Nuclear Information System (INIS)

    Bourrelier, P.H.; Cornet, F.; Fouillac, C.

    1994-01-01

    The use of geothermal energy to generate electricity has only occurred during the past 50 years by drilling wells in aquifers close to magmas and producing either dry steam or hot water. The world's production of electricity from geothermal energy is over 6000 MWe and is still growing. The direct use of geothermal energy for major urban communities has been developed recently by exploitation of aquifers in sedimentary basins under large towns. Scaling up the extraction of heat implies the exploitation of larger and better located fields requiring an appropriate method of extraction; the objective of present attempts in USA, Japan and Europe is to create heat exchangers by the circulation of water between several deep wells. Two field categories are considered: the extension of classical geothermal fields beyond the aquifer areas, and areas favoured by both a high geothermal gradient, fractures inducing a natural permeability at large scale, and good commercial prospects (such as in the Rhenan Graben). Hot dry rocks concept has gained a large interest. 1 fig., 5 tabs., 11 refs

  5. State policies for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  6. Geothermal resource of Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Hochstein, M.P. (Univ. of Auckland (New Zealand). Geothermal Inst.); Sudarman, Sayogi (Pertamina, Jakarta (Indonesia). Geothermal Section)

    1993-06-01

    There are at least 30 high temperatures systems (with inferred reservoir temperatures > 200 C) along the active Sumatra Arc that transfer heat from crustal intrusions to the surface. These systems, together with eleven active volcanoes, five degassing volcanoes and one caldera volcano (Lake Toba), are controlled by the Sumatra Fault Zone, an active mega shear zone that follows the median axis of the arc. At least half of the active and degassing volcanoes are associated with volcanic geothermal reservoirs containing magmatic gases and acid fluids. Large, low temperature resources exist in the Tertiary sedimentary basins of east Sumatra (back-arc region), where anomalously higher thermal gradients (up to 8 C/100 m) have been measured. Volcanic activity was not continuous during the Cenozoic; subduction and arc volcanism probably decreased after the Eocene as a result of a clockwise rotation of Sumatra. In the Late Miocene, subduction started again, and andesitic volcanism reached a new peak of intensity in the Pliocene and has been continuous ever since. Rhyolitic volcanism, which has produced voluminous ignimbrite flows, began later (Pliocene/Pleistocene). All known rhyolitic centers associated with ignimbrite flows appear to lie along the Sumatra Fault Zone.

  7. Thermodynamics of geothermal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  8. Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

    1982-10-01

    The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

  9. Maritime Branch Analysis: A workbook in the PROTEUS series

    DEFF Research Database (Denmark)

    Mougaard, Krestine; Neugebauer, Line Maria; Garcia i Mateu, Adrià

    - and after-sales service and have therefore embarked on business development activities that tightly combine product and service offerings in their portfolios. Closer customer contact, commoditisation of goods, total cost of ownership, and product liability are just some of the reasons for this transition...

  10. Geothermal resources of the UK

    International Nuclear Information System (INIS)

    Batchelor, A.S.

    1990-01-01

    This paper reports that geothermal energy applications and research are being actively pursued in the United Kingdom despite the relatively normal heat flow regime. The cumulative expenditure on geothermal activity from 1975 to 1989 has been approximately Brit-pounds 46 million of 32% of the Renewable Energy Research Budget to date. The first practical application is a 2 MWt scheme at Southampton as part of a district heating scheme. Commercial operation started in February 1988 and further expansion is planned. The UK's enthusiasm for Hot Dry Rock has dimmed slightly as the entire program is reappraised and the long heralded deep exploration hole has yet to materialize. Future activity looks likely to focus on geothermal opportunities that have multiple uses or applications for the fluids in small scale schemes and Hot Dry Rock research will probably be linked to a pan-European program based in France

  11. French know-how in the field of geothermal energy. District heating and electricity generation systems

    International Nuclear Information System (INIS)

    2012-08-01

    This brochure is aimed at presenting the French expertise, public and private, at international level in the field of geothermal energy (district heating and electricity generation systems). It presents a summary of the French public policy framework, measures to support Research and Development, innovation and training and offers from private companies. It has been designed by the ADEME in cooperation with the French ministry for Ecology and Sustainable Development, the French association of geothermal energy professionals, Ubifrance (the French Agency for international business development) and the French renewable energies union

  12. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  13. Geothermal progress monitor report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  14. Geothermal Progress Monitor: Report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  15. Mexico's Geothermal Market Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Sarah [Booth Clean Energy LLC, Denver, CO (United States); Graves, Andrew [Dept. of Energy (DOE), Washington DC (United States)

    2017-03-29

    This report is intended to help U.S. companies in the geothermal sector understand potential business opportunities created by recent changes in the Mexican energy market and regulatory environment. can also provide a variety of technology products and services for export into the Mexican market. This report will help U.S. companies identify the many public and private sector stakeholders in the United States and Mexico, which can help U.S. companies navigate the new regulatory and permitting environment, build new partnerships, and identify vehicles for financial assistance and risk mitigation.

  16. Geothermal country report of Hungary

    International Nuclear Information System (INIS)

    Ottlik, P.

    1990-01-01

    There is a slow but steady increase in the number of geothermal wells in Hungary. The rate of increase is 3-5 new wells/year. In the last years technical development and the raising of efficiency came to the front in utilization of geothermal energy. Technical development is supported by the state. This paper reports that the main directions were: developing a pump suitable for Hungarian conditions, working out the model of sandy and karstic aquifers for simulation and prediction, and developing new chemicals and methods for treating thermal water

  17. New Mexico Geothermal Data Base

    International Nuclear Information System (INIS)

    Witcher, J.C.; Whittier, J.; Morgan, R.

    1990-01-01

    This paper reports on the New Mexico Geothermal Data Base (NMGDB) which is a comprehensive public-domain data base of low-temperature geothermal resource information for New Mexico that is designed to assist researchers and developers. A broad range of geoscience, engineering, climatic, economic, and land status information are complied in the dBASE III PLUS data base management system for use on an IBM or IBM-compatible personal computer. A user friendly menu format with on-screen prompts allows easy and convenient use

  18. Workbook for prioritizing petroleum industry exploration and production sites for remediation

    International Nuclear Information System (INIS)

    White, G.J.

    1998-01-01

    The purpose of this Workbook is to provide a screening-level method for prioritizing petroleum exploration and production sites for remediation that is based on readily available information, but which does not require a full characterization of the sites being evaluated. The process draws heavily from the Canadian National Classification System for Contaminated Sites, and fits into the framework for ecological risk assessment provided in guidance from the US Environmental Protection Agency. Using this approach, scoring guidelines are provided for a number of Evaluation Factors relating to: (1) the contaminants present at the site; (2) the potential exposure pathways for these contaminants; and (3) the potential receptors of those contaminants. The process therefore incorporates a risk-based corrective action (RBCA) framework to estimate the relative threat posed by a site to human health and to ecological systems. Physical (non-toxic) disturbance factors have also been incorporated into the process. It should also be noted that the process described in this Workbook has not yet been field tested at petroleum E and P sites. The first logical step in the field testing of this process is to apply the method at a small number of sites to assess the availability of the information that is needed to score each evaluation factor. Following this evaluation, the Workbook process should be applied at a series of sites to determine the effectiveness of the process at ranking sites according to their relative need for remediation. Upon completion of these tests, the Workbook should be revised to reflect the findings of the field tests

  19. Data Quality Objectives Workbook for Assessing Chemical Vulnerability Potential in REDOX and U Plants

    International Nuclear Information System (INIS)

    Bauer, R. G.

    1999-01-01

    The purpose of this data quality objective workbook is to present the rationale for selecting the sampling and characterization strategy that supports the assessment of the chemical vulnerabilities of the five tanks. Since characterization of the tanks' contents is likely to be expensive, a secondary goal was established to characterize the tank contents for proper waste designation and disposal at the same time the tanks are characterized for chemical vulnerability

  20. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  1. Geothermal district heating system feasibility analysis, Thermopolis, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

    1982-04-26

    The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

  2. Business plan

    OpenAIRE

    Monakov, Victor

    2011-01-01

    The aim of this bachelor's thesis is to prepare a business plan for web design courses in Prague and feasibility & efficiency evaluation of this type of business. In the theoretical part of my bachelor's thesis, I focus on important terms, structure and aspects of a business plan. In the practical part, I apply theoretical knowledge and create a real business plan.

  3. A comparison of online versus workbook delivery of a self-help positive parenting program.

    Science.gov (United States)

    Sanders, Matthew R; Dittman, Cassandra K; Farruggia, Susan P; Keown, Louise J

    2014-06-01

    A noninferiority randomized trial design compared the efficacy of two self-help variants of the Triple P-Positive Parenting Program: an online version and a self-help workbook. We randomly assigned families of 193 children displaying early onset disruptive behavior difficulties to the online (N = 97) or workbook (N = 96) interventions. Parents completed questionnaire measures of child behavior, parenting, child maltreatment risk, personal adjustment and relationship quality at pre- and post-intervention and again at 6-month follow up. The short-term intervention effects of the Triple P Online program were not inferior to the workbook on the primary outcomes of disruptive child behavior and dysfunctional parenting as reported by both mothers and fathers. Both interventions were associated with significant and clinically meaningful declines from pre- to post-intervention in levels of disruptive child behavior, dysfunctional parenting styles, risk of child maltreatment, and inter-parental conflict on both mother and father report measures. Intervention effects were largely maintained at 6-month follow up, thus supporting the use of self-help parenting programs within a comprehensive population-based system of parenting support to reduce child maltreatment and behavioral problems in children.

  4. E Business

    OpenAIRE

    Temjanovski, Riste

    2012-01-01

    In contemporary economic science study of е-business becomes necessary and imperative in contemporary work. The purpose of the program is available in a clear and acceptable way to meet the needs, models, application and protection of electronic business. Here are the basic models of electronic commerce, electronic banking, e-business infrastructure and so on. Electronic business or short e-business aims to expand the powers of an organizational unit in the development of innovative inform...

  5. Playful Business

    DEFF Research Database (Denmark)

    Lund, Morten; Hansen, Poul H. Kyvsgård; Nielsen, Louise Møller

    2011-01-01

    ” The term business model can be defined as a business concept that has been put into practice. The increase in dynamics in markets, technology, economies etc. challenge the requirements to make consistent and synchronized decisions on which business models to develop and implement. Complexity...... efficiently. This paper describes initial experiences of facilitating business model mapping or business model innovation by game-like setups.”...

  6. BUSINESS ETHICS ON BUSINESS

    OpenAIRE

    Çetin Bektaş

    2016-01-01

    Certain rules are established in order to temper the behaviours, rights and responsibilities of individuals who constitute the society and every individual has to respect those rules. The right of every individual to live makes it necessary to limit their behaviour. Activities in business life has become complicated with the industrialisation and violation of rights appear occasionally. Alongside the law, it is possible to prevent these violations by addressing the conscience and morality ...

  7. Geothermal GW cogeneration system GEOCOGEN

    Energy Technology Data Exchange (ETDEWEB)

    Grob, Gustav R.

    2010-09-15

    GEOCOGEN is the GW zero pollution, no risk solution to replace nuclear and fossil fuelled power plants. It can be built near the energy consumption centers, is invisible and produces electricity and heat at a fraction of the cost of any other the energy mix options. It is a break through deep well geothermal energy technology lasting forever driving also millions of electric vehicles.

  8. Experiments Demonstrate Geothermal Heating Process

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  9. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  10. Using Geothermal Electric Power to Reduce Carbon Footprint

    Science.gov (United States)

    Crombie, George W.

    Human activities, including the burning of fossil fuels, increase carbon dioxide levels, which contributes to global warming. The research problem of the current study examined if geothermal electric power could adequately replace fossil fuel by 2050, thus reducing the emissions of carbon dioxide while avoiding potential problems with expanding nuclear generation. The purpose of this experimental research was to explore under what funding and business conditions geothermal power could be exploited to replace fossil fuels, chiefly coal. Complex systems theory, along with network theory, provided the theoretical foundation for the study. Research hypotheses focused on parameters, such as funding level, exploration type, and interfaces with the existing power grid that will bring the United States closest to the goal of phasing out fossil based power by 2050. The research was conducted by means of computer simulations, using agent-based modeling, wherein data were generated and analyzed. The simulations incorporated key information about the location of geothermal resources, exploitation methods, transmission grid limits and enhancements, and demand centers and growth. The simulation suggested that rapid and aggressive deployment of geothermal power plants in high potential areas, combined with a phase out of coal and nuclear plants, would produce minimal disruptions in the supply of electrical power in the United States. The implications for social change include reduced risk of global warming for all humans on the planet, reduced pollution due to reduction or elimination of coal and nuclear power, increased stability in energy supply and prices in the United States, and increased employment of United States citizens in jobs related to domestic energy production.

  11. Microbiological Monitoring in Geothermal Plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  12. Hombres y Lugares. Que Bonito Es Leer, II. Libro IV. Cuaderno de Ejercicios (Men and Places. How Nice Reading Is, II. Book IV. Workbook).

    Science.gov (United States)

    Dissemination and Assessment Center for Bilingual Education, Austin, TX.

    The exercises in the Spanish language workbook are intended to teach comprehension, interpretation, vocabulary, pronunciation, and study skills. The workbook provides one to five pages of reinforcement and follow-up work for each of the stories in the reader of the same title. Exercises stress sentence completion and construction, phonology,…

  13. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  14. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  15. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Troppe, W. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  16. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  17. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  18. Geothermal training at the International Institute of Geothermal Research in Pisa, Italy

    International Nuclear Information System (INIS)

    Dickson, M.H.; Fanelli, M.

    1990-01-01

    Between 1985 and 1990 the International School of Geothermics of Pisa has held 5 long-term courses, attended by 93 trainees. This paper reports that since 1970, when it began its activity, the Italian geothermal training center has prepared a total of 293 goethermists from 64 countries. Under its present structure the International School of Geothermics organizes short courses and seminars, along with the long-term courses directed mainly at geothermal exploration

  19. Geothermal demonstration: Zunil food dehydration facility

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, O. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer, G.R. (Los Alamos National Lab., NM (United States)); Cooper, L. (Energy Associates International, Albuquerque, NM (United States)); Caicedo, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion)

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

  20. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  1. Geothermal development and policy in the Philippines

    International Nuclear Information System (INIS)

    Datuin, R.; Roxas, F.

    1990-01-01

    The Philippines is the second largest geothermal energy producer in the world although its geothermal energy potential has barely been utilized. Out of an estimated total reserves of 8,000 MW, only about 11 percent or 894 MW are currently on stream for power generation. The electricity production from geothermal steam registered a growth of 8.9 percent from 1988 to 1989, one of the highest among local energy sources. During that same period, geothermal energy rated the highest capacity utilization of 67 percent compared to the average system capacity utilization of 43 percent. This paper describes both the use of geothermal energy and government policies concerning geothermal energy in the Philippines

  2. Business continuity

    International Nuclear Information System (INIS)

    Breunhoelder, Gert

    2002-01-01

    This presentation deals with the following keypoints: Information Technology (IT) Business Continuity and Recovery essential for any business; lessons learned after Sept. 11 event; Detailed planning, redundancy and testing being the key elements for probability estimation of disasters

  3. Business Center

    Science.gov (United States)

    Learn how to do business with EPA's Clean Air Markets, including registering to use the Emissions Collection and Monitoring Plan System (ECMPS), the CAMD Business System (CBS), and learn how to submit monitored emissions data.

  4. Study deep geothermal energy; Studie dypgeotermisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Havellen, Vidar; Eri, Lars Sigurd; Andersen, Andreas; Tuttle, Kevin J.; Ruden, Dorottya Bartucz; Ruden, Fridtjof; Rigler, Balazs; Pascal, Christophe; Larsen, Bjoern Tore

    2012-07-01

    The study aims to analyze the potential energy with current technology, challenges, issues and opportunities for deep geothermal energy using quantitative analysis. It should especially be made to identify and investigate critical connections between geothermal potential, the size of the heating requirements and technical solutions. Examples of critical relationships may be acceptable cost of technology in relation to heating, local geothermal gradient / drilling depth / temperature levels and profitability. (eb)

  5. Geothermal energy in Italy and abroad

    International Nuclear Information System (INIS)

    Caputo di Calvisi, C.

    2001-01-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term [it

  6. Pollution Control Guidance for Geothermal Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Robert P.

    1978-06-01

    This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pollution control technologies that may be applicable are described along with preliminary cost estimates for their application. Finally discharge and emission limitations are suggested that may serve as interim guidance for pollution control during early geothermal development.

  7. 1978 annual report, INEL geothermal environmental program

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Sullivan, J.F.; Stanley, N.E.

    1979-04-01

    The objective of the Raft River Geothermal Environmental Program, in its fifth year, is to characterize the beneficial and detrimental impacts resulting from the development of moderate-temperature geothermal resources in the valley. This report summarizes the monitoring and research efforts conducted as part of this program in 1978. The results of these monitoring programs will be used to determine the mitigation efforts required to reduce long-term impacts resulting from geothermal development.

  8. Electronic business

    OpenAIRE

    Kuna-Marszałek, Anetta

    2016-01-01

    Running a business on an international scale requires not only a substantial body of knowledge but also the ability to apply it in practice. That is why our textbook, with a vast collection of practical examples, discusses a wide variety of pertinent issues connected with business operations in international markets, from international market analysis, drafting business plans, concluding business transactions and the insurance of goods through to customs clearance procedures and professional ...

  9. Progressive Business

    DEFF Research Database (Denmark)

    Christiansen, Christian O.

    2016-01-01

    Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015.......Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015....

  10. An Economic Evaluation of Binary Cycle Geothermal Electricity Production

    National Research Council Canada - National Science Library

    Fitzgerald, Crissie

    2003-01-01

    .... Variables such as well flow rate, geothermal gradient and electricity prices were varied to study their influence on the economic payback period for binary cycle geothermal electricity production...

  11. E-Business: The Business Officer's Business.

    Science.gov (United States)

    Olson, Mark A.

    2001-01-01

    Contends e-business is particularly the domain of college and university business officers, with today's officers facing an unprecedented opportunity to exercise a critical leadership role in the deployment of advanced information technology solutions on campus. Describes relevant issues and advances, and presents ten initiatives that business…

  12. Business Law

    DEFF Research Database (Denmark)

    Föh, Kennet Fischer; Mandøe, Lene; Tinten, Bjarke

    Business Law is a translation of the 2nd edition of Erhvervsjura - videregående uddannelser. It is an educational textbook for the subject of business law. The textbook covers all important topic?s within business law such as the Legal System, Private International Law, Insolvency Law, Contract law...

  13. Geothermal progress monitor. Progress report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Progress is reported on the following: electrical uses, direct-heat uses, drilling activities, leases, geothermal loan guarantee program, general activities, and legal, institutional, and regulatory activites. (MHR)

  14. Geothermal energy, what technologies for what purposes?

    International Nuclear Information System (INIS)

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  15. Corrosion reference for geothermal downhole materials selection

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  16. Uncertainty analysis of geothermal energy economics

    Science.gov (United States)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  17. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  18. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  19. Deformation study of Kamojang geothermal field

    Science.gov (United States)

    Ramdhani, B. D.; Meilano, I.; Sarsito, D. A.

    2017-07-01

    GPS has proven to be an indispensable tool in the effort to understand crust deformation before, during, and after the big earthquake events through data analysis and numerical simulation. The development of GPS technology has been able to prove as a method for the detection of geothermal activity that related to deformation. Furthermore, the correlation of deformation and geothermal activity are related to the analysis of potential hazards in the geothermal field itself. But unfortunately, only few GPS observations established to see the relationship of tectonic and geothermal activity around geothermal energy area in Indonesia. This research will observe the interaction between deformation and geothermal sources around the geothermal field Kamojang using geodetic GPS. There are 4 campaign observed points displacement direction to north-east, and 2 others heading to south-east. The displacement of the observed points may have not able proven cause by deformation of geothermal activity due to duration of observation. Since our research considered as pioneer for such investigation in Indonesia, we expect our methodology and our findings could become a starter for other geothermal field cases in Indonesia.

  20. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  1. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  2. Models of Geothermal Brine Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Moller Weare; John H. Weare

    2002-03-29

    Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.

  3. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  4. Aqueous systems and geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Significant unpublished results reported include: osmotic coefficients of KCl solutions vs. molality at 109 to 201 0 C; cadmium ion diffusivities in CaCl 2 hydrous melts; a x-ray diffraction study of the uranyl complex in water; solubility of amorphous silica in aqueous NaNO 3 solutions at 100 to 300 0 C; and corrosion of carbon steel by geothermal brine

  5. Annotated geothermal bibliography of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Budding, K.E.; Bugden, M.H. (comps.)

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  6. BUSINESS ETHICS

    OpenAIRE

    Nelu BURCEA; Ion CROITORU

    2014-01-01

    Through this study we seek to explore the concept of business ethics, in those aspects that we consider to be essential and concrete. We started from a few questions: Could the two concepts be compatible? If not, why not? If yes, could they be complementary? How real is the use of ethics in the profits of a business? How can be business ethics be exemplified and what principles are essential in doing business? How does the business environment react to the concept? These are some of the eleme...

  7. Shaping a Geothermal Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bouma, John

    1980-12-01

    The design comprises a ''grassroots'' geothermal steam electric generating plant located approximately 34 miles west of the city of Los Alamos. The plant is located on the Baca Ranch in the Redondo Creek area some 4-1/2 miles north of the southwest entrance of the ranch. This plant will utilize the geothermal brine well system that has been explored by the Union Geothermal Company of New Mexico. The gross plant capacity will be approximately 50,000 kW and will not be expanded since well gathering beyond a 50 MW generating capacity is considered uneconomical. The plant is generally comprised of four major building blocks, namely the power building, the cooling tower and intake structure, the switchyard and the H{sub 2}S abatement system. Some twelve (12) alternatives were studied for economic and technical feasibility. In addition some innovative design concepts were applied to arrive at a functional and cost effective design. The plant incorporates a hydrogen sulfide emission abatement system, the design of which has been guaranteed by the equipment manufacturer to meet the specified emission limits.

  8. The geopressured-geothermal resource

    International Nuclear Information System (INIS)

    Wys, J.N.; Dorfman, M.

    1990-01-01

    This paper reports that the Geopressured-Geothermal resource has an estimated 5,700 recoverable quad of gas and 11,000 recoverable quad of thermal energy in the onshore Texas and Louisiana Gulf Coasts area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured-geothermal wells in Texas and Louisiana. The Pleasant Bayou Well has a 1 MWe hybrid power system converting some gas and the thermal energy to electricity. The Gladys McCall Well produced over 23 MM bbls brine with 23 scf per bbl over 4 1/2 years. It is now shut-in building up pressure. The deep Hulin Well has been cleaned out and short term flow tested. It is on standby awaiting funds for long-term flow testing. In January 1990 an Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource was convened at Rice University, Houston, TX. Sixty-five participants heard industry cost-shared proposals for using the hot geopressured brine. Proposals ranged from thermal enhanced oil recovery to aquaculture, conversion, and environmental clean up processes. By the September meeting at UTA-Balcones Research Center, industry approved charters will have been received, an Advisory Board will be appointed, and election of officers from industry will he held

  9. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  10. Business support within business incubators

    NARCIS (Netherlands)

    Ratinho, Tiago; Harms, Rainer; Groen, Arend J.

    2009-01-01

    Business incubators (BI) have been established worldwide as tools for company creation and small businesses support. BIs claim to help their tenants by providing them with the optimal conditions for increasing early stage survival. Practitioners and researchers agree that business support is a

  11. Business model for business rules

    NARCIS (Netherlands)

    Koen Smit; Eline Haan; Martin Zoet

    2014-01-01

    Business rule models are widely applied, standalone and embedded in smart objects. They have become segregated from information technology and they are now a valuable asset in their own right. As more business rule models are becoming assets, business models to monetize these assets are designed.

  12. Business support within business incubators.

    NARCIS (Netherlands)

    Ratinho, Tiago; Harms, Rainer; Groen, Arend J.

    2009-01-01

    Business incubators (BI) have been established worldwide as tools for company creation and small businesses support. BIs claim to help their tenants by providing them with the optimal conditions for increasing early stage survival. Practitioners and researchers agree that business support is a

  13. BUSINESS ETHICS

    Directory of Open Access Journals (Sweden)

    Nelu BURCEA

    2014-12-01

    Full Text Available Through this study we seek to explore the concept of business ethics, in those aspects that we consider to be essential and concrete. We started from a few questions: Could the two concepts be compatible? If not, why not? If yes, could they be complementary? How real is the use of ethics in the profits of a business? How can be business ethics be exemplified and what principles are essential in doing business? How does the business environment react to the concept? These are some of the elements that will form the basis of this scientific study. Lately, business ethics has been becoming an increasingly popular topic. Set against the global economic crisis, the companies’ credibility could become a major concern. Business ethics also becomes a challenge for training and informing employees and employers, in order to make not only economical, but also ethical decisions regarding their profits. In the study we shall also address the ethical standards required in a business world interested in fundamental values that can make the difference in 21st century business. Also, according to a study conducted by the authors, we shall address the two most important ethical values that prove to be essential to a business.

  14. Missing a trick in geothermal exploration

    Science.gov (United States)

    Younger, Paul L.

    2014-07-01

    Expansion of geothermal energy use across the globe is restricted by out-of-date prejudices. It is time for geothermal exploration to be extended to a broader range of environments and rejuvenated with the latest insights from relevant geoscience disciplines.

  15. Environmental overview of geothermal development: northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  16. Update of geothermal energy development in Greece

    International Nuclear Information System (INIS)

    Koutroupis, N.

    1992-01-01

    Following the completion of the Geothermal Reconnaissance Study in Greece and the successful drilling of seven deep geothermal wells in the Aegean islands of Milos and Nisyros, PPC started the first step towards geothermal development for electricity production as follows: A geothermal electric pilot plant of 2 MW e nominal capacity was installed on the Zephyria plain in Milos island (1985). During a nine month operation of the plant, problems connected with its long term operation were solved (hot reinjection of the high salinity brine, turbine washing etc). A feasibility study regarding exploitation of the Nisyros geothermal resources was completed and PPC connected Nisyros island electrically to Kos island via submarine cables. As consequence of the reaction against geothermal development by the people of Milos in early 1989, the power plant is still out of operation and the feasibility study planned for Milos has been postponed. For similar reasons the Nisyros drilling contract for five new geothermal deep wells has not come into force as yet. This paper summarizes the main PPC geothermal activities to date, the problems caused by the reactions of the Milos and Nisyros population and the relevant PPC countermeasures, as well as outlining the PPC development program for the near future

  17. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  18. Careers in Geothermal Energy: Power from below

    Science.gov (United States)

    Liming, Drew

    2013-01-01

    In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…

  19. Seismic characterisation for geothermal energy prospecting

    NARCIS (Netherlands)

    Huck, A.; Groot, P. de; Simmelink, E.; Vandeweijer, V.P.; Willemsen, A.

    2009-01-01

    The city of The Hague intends to use geothermal energy to heat approx. 4000 houses in a planned urban development area called The Hague South-West. This paper describes the application of advanced seismic interpretation workflows to help positioning a geothermal doublet consisting of one injector -

  20. Groundwater and geothermal: urban district heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  1. Geothermal progress monitor: Report Number 19

    International Nuclear Information System (INIS)

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included

  2. Geothermal Progress Monitor report No. 11

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  3. Geothermal progress monitor. Progress report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The following are included: geothermal power plants proposed and on-line; direct heat applications proposed and operational; trends in drilling activities; exploration; leases; outreach and technical assistance; feasibility studies and application demonstrations; geothermal loan guaranty program; research and development activities; legal, institutional, and regulatory activities; environmental activities; reports and publications; and a directory. (MHR)

  4. Geothermal resources development project: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-30

    Generic and site specific issues and problems are identified that relate directly to geothermal development in California, including changes in the state permitting process, land use issues, coordination between state entities, and geothermal revenues from BLM leased lands. Also discussed are the formation of working groups, preparation of a newsletter, the economic incentives workshops, and recommendations for future actions. (MHR)

  5. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  6. Geothermal progress monitor: Report Number 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included.

  7. Assessment of Geothermal Data Resources and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-09-01

    This paper is a review of Geothermal Technologies Program activities and archives related to data collection and analysis. It includes an assessment of the current state of geothermal data, future program and stakeholder data needs, existence of and access to critical data, and high-level direction and prioritization of next steps to meet the Program’s data needs.

  8. Fault permeability models for geothermal doublet designs

    NARCIS (Netherlands)

    Heege, J.H. ter

    2016-01-01

    The occurrence and properties of natural faults and fractures in geothermal reservoirs are key in determining reservoir flow properties, and thereby the performance of geothermal doublets placed in fractured reservoirs or in the vicinity of fault zones. In this paper, an analytical model is

  9. Geothermal rice drying unit in Kotchany, Macedonia

    International Nuclear Information System (INIS)

    Popovski, K.; Dimitrov, K.; Andrejevski, B.; Popovska, S.

    1992-01-01

    A geothermal field in Kotchany (Macedonia) has very advantageous characteristics for direct application purposes. Low content of minerals, moderate temperature (78C) and substantial available geothermal water flow (up to 300 1/s) enabled the establishment of a district heating scheme comprising mainly agricultural and industrial uses. A rice drying unit of 10 t/h capacity was installed 8 years ago, using the geothermal water as the primary heat source. A temperature drop of 75/50C enables the adaptation of conventional drying technology, already proven in practice in the surrounding rice growing region. Water to air heat exchanger and all necessary equipment and materials are of local production, made of copper and carbon steel. The use of such drying units is strongly recommended for the concrete district heating scheme because it offers a very simple geothermal application and enables improvement in the annual heating load factor without high investments in geothermal water distribution lines

  10. Electric utility companies and geothermal power

    Science.gov (United States)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  11. Status of geothermal resources in Mexico

    International Nuclear Information System (INIS)

    Le-Bert, G.

    1990-01-01

    Except for some isolated instances with tourist or therapeutic objectives and some attempts in the Cerro Prieto geothermal field, there are no projects for direct heat utilization of geothermal resources in Mexico. Therefore, all places that are studied are studied with geothermal-electric objectives. It is convenient to keep in mind that in Mexico, by law, the Comision Federal de Electricidad (CFE) is the public utility in charge of electrical energy service. This institution is directly responsible for the exploration, development and commercial use of geothermal energy for electrical generation. Therefore, this paper includes the present and planned exploration and utilization of geothermal resources only for electricity generation for the period 1985 to the present. Likewise, starting 5 years ago, the CFE efforts have been directed toward the development of high enthalpy fields

  12. Geothermal energy: the earth, source of heat and electric power

    International Nuclear Information System (INIS)

    Lenoir, D.

    2005-01-01

    This document provides information on the geothermal energy. It presents the different types of geothermal deposits (very low, low and medium energy geothermal energy), the french deposits and the heat production. The electric power production from the geothermal energy is also discussed with the example of Soultz-sous-Forets. The last part deals with the heat pumps. (A.L.B.)

  13. Support research for development of improved geothermal drill bits

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, R.R.; Barker, L.M.; Green, S.J.; Winzenried, R.W.

    1977-06-01

    Progress in background research needed to develop drill bits for the geothermal environment is reported. Construction of a full-scale geothermal wellbore simulator and geothermal seal testing machine was completed. Simulated tests were conducted on full-scale bits. Screening tests on elastometric seals under geothermal conditions are reported. (JGB)

  14. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Materials is evaluating other products with greater commercial value. Potassium Silicotitanates, zeolites and other sorbents were evaluated as potential reagents for the extraction of potassium from geothermal brines and production of potassium chloride (potash). It was found that zeolites were effective at removing potassium but the capacity of the zeolites and the form that the potassium is in does not have economic potential. Iron-silica by-product The conversion of iron-silica by-product produced during silica management operations into more valuable materials was studied at the laboratory scale. Results indicate that it is technically feasible to convert the iron-silica by-product into ferric chloride and ferric sulfate solutions which are precursors to a ferric phosphate product. However, additional work to purify the solutions is required to determine the commercial viability of this process. Conclusion Simbol Materials is in the process of designing its first commercial plant based on the technology developed to the pilot scale during this project. The investment in the commercial plant is hundreds of millions of dollars, and construction of the commercial plant will generate hundreds of jobs. Plant construction will be completed in 2016 and the first lithium products will be shipped in 2017. The plant will have a lithium carbonate equivalent production capacity of 15,000 tonnes per year. The gross revenues from the project are expected to be approximately $ 80 to 100 million annually. During this development program Simbol grew from a company of about 10 people to over 60 people today. Simbol is expected to employ more than 100 people once the plant is constructed. Simbol Materials’ business is scalable in the Imperial Valley region because there are eleven geothermal power plants already in operation, which allows Simbol to expand its business from one plant to multiple plants. Additionally, the scope of the resource is vast in terms of potential products such

  15. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  16. Disrupting Business

    DEFF Research Database (Denmark)

    Cox, Geoff; Bazzichelli, Tatiana

    Disruptive Business explores some of the interconnections between art, activism and the business concept of disruptive innovation. With a backdrop of the crisis of financial capitalism, austerity cuts in the cultural sphere, the idea is to focus on potential art strategies in relation to a broken...... economy. In a perverse way, we ask whether this presents new opportunities for cultural producers to achieve more autonomy over their production process. If it is indeed possible, or desirable, what alternative business models emerge? The book is concerned broadly with business as material for reinvention...

  17. Liv and Lucky in Liverland. . . Color Us Healthy! A Workbook about Your Liver = Un Cuaderno de trabajo sobre tu higado.

    Science.gov (United States)

    1995

    This workbook/coloring book, on the liver and good health is designed for primary school students. The 21 line drawings illustrate different aspects of liver function, maintaining a healthy liver, and preventing liver disease. Each page is captioned in both English and Spanish. (ND)

  18. Boats 'n Kids, Part I. Instructor Guide and Children's Workbook. Boating Safety Program for Children and Youth.

    Science.gov (United States)

    Coast Guard Auxiliary, St. Louis, MO. Dept. of Education.

    This packet contains a children's workbook on boating safety and a guide for Coast Guard Auxiliary members making brief safety presentations to elementary school students, aged 5-10. Section I of the guide covers school arrangements (district approval requirements and relationships with teachers and administrators), recordkeeping, equipment to…

  19. An Analysis of Writing Activities in the Student Workbooks of a Secondary-Level Turkish Language Course

    Science.gov (United States)

    Çerçi, Arif

    2016-01-01

    The purpose of this study is to analyze writing activities in the student workbooks of a secondary-level Turkish language course (grades 5 to 8) according to the principles of progressive writing. The study is descriptive and employs content analysis as a qualitative research paradigm. The writing activities of the books in this study all…

  20. The Story of California. Student Workbook. Teacher's Edition = Libro de Trabajo de La Historia de California. Edicion del Maestro.

    Science.gov (United States)

    Gray (Naomi) Associates, Inc., San Francisco, CA.

    The workbook is designed to accompany a textbook, "The Story of California," a Spanish-English bilingual history and geography of the state intended for classroom use by limited-English-proficient, native Spanish-speaking students in California's urban middle schools. The teacher's edition, presented here, consists of reproductions of 51…

  1. Shielded Metal Arc Welding and Carbon Arc Cutting--Air. Teacher Edition [and] Student Edition [and] Student Workbook. Third Edition.

    Science.gov (United States)

    Harper, Eddie; Knapp, John

    This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…

  2. Anger Management for Substance Abuse and Mental Health Clients: A Cognitive Behavioral Therapy Manual [and] Participant Workbook.

    Science.gov (United States)

    Reilly, Patrick M.; Shopshire, Michael S.; Durazzo, Timothy C.; Campbell, Torri A.

    This manual and workbook set focuses on anger management. The manual was designed for use by qualified substance abuse and mental health clinicians who work with substance abuse and mental health clients with concurrent anger programs. The manual describes a 12-week cognitive behavioral anger management group treatment. Each of the 12 90-minute…

  3. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition [and] Student Edition [and] Student Workbook. Second Edition.

    Science.gov (United States)

    Harper, Eddie; Knapp, John

    This packet of instructional materials for a gas tungsten arc welding (GTAW) and plasma arc cutting course is comprised of a teacher edition, student edition, and student workbook. The teacher edition consists of introductory pages and teacher pages. Introductory pages include training and competency profile, state duty/task crosswalk,…

  4. Gas Metal Arc Welding and Flux-Cored Arc Welding. Third Edition. Teacher Edition [and] Student Edition [and] Student Workbook.

    Science.gov (United States)

    Knapp, John; Harper, Eddie

    This packet, containing a teacher's edition, a student edition, and a student workbook, introduces students to high deposition welding and processes for "shielding" a weld. In addition to general information, the teacher edition consists of introductory pages and teacher pages, as well as unit information that corresponds to the…

  5. Classic articles and workbook: EPRI monographs on simulation of electric power production

    International Nuclear Information System (INIS)

    Stremel, J.P.

    1991-12-01

    This monograph republishes several articles including a seminal one on probabilistic production costing for electric power generation. That article is given in the original French along with a English translation. Another article, written by R. Booth, gives a popular explanation of the theory, and a workbook by B. Manhire is included that carries through a simple example step by step. The classical analysis of non-probabilistic generator dispatch by L.K. Kirchmayer is republished along with an introductory essay by J.P. Stremel that puts in perspective the monograph material. The article in French was written by H. Baleriaux, E. Jamoulle, and Fr. Linard de Guertechin and first published in Brussels in 1967. It derived a method for calculating the expected value of production costs by modifying a load duration curve through the use of probability factors that account for unplanned random generator outages. Although the paper showed how pump storage plants could be included and how linear programming could be applied, the convolution technique used in the probabilistic calculations is the part most widely applied. The tutorial paper by Booth was written in a light style, and its lucidity helped popularize the method. The workbook by Manhire also shows how the calculation can be shortened significantly using cumulants to approximate the load duration curve

  6. Geothermal : Economic Impacts of Geothermal Development in Skamania County, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Skamania County, Washington, near Mt. Adams, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Skamania County was chosen due to both identified geothermal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Skamania County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  7. Colorado State Capitol Geothermal project

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Lance [Colorado Department of Personnel and Adminstration, Denver, CO (United States)

    2016-04-29

    Colorado State Capitol Geothermal Project - Final report is redacted due to space constraints. This project was an innovative large-scale ground-source heat pump (GSHP) project at the Colorado State Capitol in Denver, Colorado. The project employed two large wells on the property. One for pulling water from the aquifer, and another for returning the water to the aquifer, after performing the heat exchange. The two wells can work in either direction. Heat extracted/added to the water via a heat exchanger is used to perform space conditioning in the building.

  8. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  9. Federal Geothermal Research Program Update - Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  10. Selective Recovery of Critical Materials from Geothermal Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Halstenberg, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Karamalidis, Athanasios [Anactisis, LLC, Pittsburgh, PA (United States); Noack, Clint [Anactisis, LLC, Pittsburgh, PA (United States)

    2018-03-08

    This project, funded by the DOE Small Business Voucher program, assisted the partner with the development of ion-imprinted adsorbents for the selective extraction of rare earth elements (REE) from geothermal brines. This effort seeks to utilize a currently untapped resource thus diversifying the U. S. REE market. The initial stage of the program focused on the adsorbent developed by partner and optimization of the adsorbent. The adsorbent was based upon an ion imprinted ligand that was copolymerized with a crosslinker to generate the REE selectivity. During this task, the adsorbents were irradiated via electron beam at the NEO Beam Electron Beam Crosslinking Facility (Mercury Plastics, Middlefield, OH) to induce further crosslinking. The irradiation crosslinked adsorbents exhibited no difference in the Fourier transform infrared spectroscopic (FTIR) analysis suggesting inefficiency in the crosslinking. In the later stage of the effort, a new method was proposed and studied at ORNL involving a new partnership between the partner and a commercial polymer vender. This resulted in a new material being developed which allows the partner to utilize a commercial support and integrate the synthesis into a production-ready product stream. This will enhance the route to commercialization for the partner resulting in a quicker market penetration for the product. The new adsorbent exhibits selectivity for REE over transition metals commonly found within geothermal brines. Further optimization is required for enhanced selectivity, capacity, and intra-lanthanide separations.

  11. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  12. Geothermal resources in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Micevski, Eftim; Georgieva, Mirjana; Petrovski, Kiro; Lonchar, Ilija

    1995-01-01

    The Republic of Macedonia is situated in the central part of the Balcan Peninsula and covers a surface of 25. 713 km 2 Its territory is found in one of the most significant geothermal zones in this part of Balkans. The earths crust in this region suffers poli phase structural deformations, which as a result gives different structural features. The geothermal explorations in the Republic of Macedonia intensively started to conduct after 1970, after the first effects of the energy crisis. As a result of these explorations, more than 50 springs of mineral and thermo mineral waters with a total yield of more than 1.400 I./sec. And proved exploitation reservoirs of more than 1.000 I./sec. with temperatures higher than the medium year seasons hesitations for this part of the Earth in the boundaries of 20-75 o C with significant quantities of geothermal energy. This paper will shortly present the available geothermal resources and classification, according the type of geothermal energy, hydro geothermal, lithogeothermal and according the way of transport of the geothermal energy, convective and conductive systems. The next will present short descriptions of the resources, the degree of exploitation and the prognosis dimensions of the reservoirs. (Original)

  13. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  14. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  15. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  16. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2007-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  17. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2008-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  18. THE FUTURE OF GEOTHERMAL ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  19. Geothermal Field Development in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Hector Alonso

    1983-12-15

    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  20. SPP retains interest in geothermal project

    International Nuclear Information System (INIS)

    Sobinkovic, B.

    2008-01-01

    Slovensky plynarensky priemysel (SPP) officially indicated that it intended to drop its project of using geothermal energy in the Kosicka kotlina. This spring it published an advert that it was looking for a company that wished to acquire a majority stake in the company, Geoterm Kosice. The company was established to commercially develop this geothermal source. But it seems SPP does not want to drop the project completely. It has kept some important cards, such as control over the land where the boreholes are located. Any company that wants to use geothermal energy needs a ruling issued by the Ministry of Environment defining the exploration area. Geothermal sources were found in the villages of Durkov, Svinica, Bidovce and Olsovany. Not so long ago the area was assigned to Geoterm but from May 9 2008 the area can be explored by Slovgeoterm. Both companies have the same majority shareholder - SPP. It controls 96% of Geoterm shares and 50% of Slovgeoterm. So far it has only officially announced its intention to sell the Geoterm shares. But as far as the use of the geothermal resource is concerned since May Slovgeoterm has played a key role.The company focuses on the utilization of geothermal energy. In addition to the project in the Kosice region, it has also participated in a project to heat more than a thousand flats using geothermal water in Galanta and a project to heat greenhouses in Podhajske. There are also other geothermal projects running in Presov and Michalovce. Icelandic company, Enex, with the same specialisation controls 28% of the company and a further 20% is owned by the investment group, NEFCO based in Helsinki. Two percent of the company is owned by its general director and the general proxy of Geoterm, Otto Halas. And so without the agreement of this company no-one can start any activities related to the utilization of geothermal energy. (authors)

  1. Geothermal technology in Australia: Investigating social acceptance

    International Nuclear Information System (INIS)

    Dowd, Anne-Maree; Boughen, Naomi; Ashworth, Peta; Carr-Cornish, Simone

    2011-01-01

    Issues of social acceptance, such as lack of awareness and negative community perceptions and reactions, can affect low emission energy technology development, despite general support observed for reducing carbon emissions and mitigating climate change. Negative community reactions and lack of understanding have affected geothermal developments, as demonstrated by the fearful community reactions and negative media experienced in response to seismic disturbances caused by 'hot rock' geothermal energy generation in Switzerland and Germany. Focusing on geothermal energy, this paper presents the results of using a participatory action research methodology to engage diverse groups within the Australian public. A key finding is that the majority of the Australian public report limited the knowledge or understanding of geothermal technology and have various concerns including water usage and seismic activity instigated by geothermal drilling. However, geothermal energy receives general support due to a common trend to champion renewable energy sources in preference to traditional forms of energy generation and controversial technologies. This paper also demonstrates the effectiveness of using an engagement process to explore public understanding of energy technologies in the context of climate change, and suggests a way forward for governments and industry to allocate resources for greatest impact when communicating about geothermal technology. - Highlights: → Majority of Australians have limited knowledge or understanding of geothermal technology. → Various concerns, including water usage and seismic activity instigated by drilling, were raised. → Geothermal energy has general support due to a common trend to champion renewable energy sources. → Methodology shows the effectiveness of an engagement process to explore public understanding. → Participants expressed intention to change behaviours, which can be a catalyst for change.

  2. Sign of Radon for locate geothermic sources

    International Nuclear Information System (INIS)

    Gonzalez Teran, D.

    1991-01-01

    Evaluation of a geothermic field is based upon geological, geophysical and geochemical studies that enable the evaluation of the deposit potential, that is to say, the amount of energy per unit mass, the volume of the trapped fluid, vapor fraction and fluid chemistry. This thesis has as its objective the evaluation of radon gas emanation in high potential geothermic zones in order to utilize the results as a low cost and easy to manage complimentary tool in geothermic source prospection. In chapter I the importance and evaluation of a geothermic deposit is discussed. In chapter II the general characteristics of radon are discussed: its radioactivity and behavior upon diffusion over the earth's surface> Chapter III establishes the approach used in the geothermic field of Los Azufres, Michoacan, to carry out samplings of radon and the laboratory techniques that were used to evaluate the concentration of radon in the subsoil. Finally in chapter IV measurements of radon in the field are compared to geological faults in the area under study. The sampling zones were: low geothermic potential zone of the northern and the southern zone having a greater geothermic potential than that in the north. The study was carried out at different sampling times using plastics detectors of from 30 to 46 days from February to July. From the results obtained we concluded that the emission of radon was greater in the zones of greatest geothermic potential than in the low geothermic potential zones it was also affected by the fault structure and the time of year in which sampling was done. (Author)

  3. SPP retains interest in geothermal project

    International Nuclear Information System (INIS)

    Anon

    2007-01-01

    Slovensky plynarensky priemysel (SPP) officially indicated that it intended to drop its project of using geothermal energy in the Kosicka kotlina. This spring it published an advert that it was looking for a company that wished to acquire a majority stake in the company, Geoterm Kosice. The company was established to commercially develop this geothermal source. But it seems SPP does not want to drop the project completely. It has kept some important cards, such as control over the land where the boreholes are located Any company that wants to use geothermal energy needs a ruling issued by the Ministry of Environment defining the exploration area. Geothermal sources were found in the villages of Durkov, Svinica, Bidovce and Olsovany. Not so long ago the area was assigned to Geoterm but from May 9 the area can be explored by Slovgeoterm. Both companies have the same majority shareholder - SPP. It controls 96% of Geoterm shares and 50% of Slovgeoterm. So far it has only officially announced its intention to sell the Geoterm shares. But as far as the use of the geothermal resource is concerned since May Slovgeoterm has played a key role.The company focuses on the utilization of geothermal energy. In addition to the project in the Kosice region, it has also participated in a project to heat more than a thousand flats using geothermal water in Galanta and a project to heat greenhouses in Podhajske. There are also other geothermal projects running in Presov and Michalovce. Icelandic company, Enex, with the same specialisation controls 28% of the company and a further 20% is owned by the investment group, NEFCO based in Helsinki. Two percent of the company is owned by its general director and the general proxy of Geoterm, Otto Halas. And so without the agreement of this company no-one can start any activities related to the utilization of geothermal energy. (authors)

  4. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  5. Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Lynn; Entingh, Daniel

    2000-09-29

    This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

  6. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  7. Environmental impact of geothermal power plants in Aydın, Turkey

    Science.gov (United States)

    Yilmaz, Ersel; Ali Kaptan, Mustafa

    2017-10-01

    Geothermal energy is classified as a clean and sustainable energy source, like all industrial activities, geothermal energy power plants (GEPP) technology has also some positive and negative effects on the environment. In this paper are presented by attent not only on environmental impacts of GEPP onto Büyük Menderes River and fresh water sources, which ere used for irrigation of agricultural fields from tousands of years in basin, but also on water quality contents like heavy metals and gases emition due to drilling and electricity producing technology of GEPP's. Aydın province is located in the southwestern part of the region and its city center has around 300000 population. The high geothermal potential of this region became from geographical location, which is held on active tectonic Alpine-Himalaya Orogen belt with active volcanoes and young faults. Since 1980's to 2016 there is about 70.97% (662.75 MW) of installed capacity by according to the Mineral Research and Exploration General Directorate, there are totally 290 well licensed (540 explore licenses and 76 business licenses), and 31 geothermal powerplants purposely installed. Topic is important because of number of GEPP increased rapidly after 2012 to now a days to 36 in whole basin.

  8. Oregon: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  9. Raft River Geothermal Aquaculture Experiment. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

    1979-08-01

    Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

  10. Computational modeling of shallow geothermal systems

    CERN Document Server

    Al-Khoury, Rafid

    2011-01-01

    A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with

  11. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  12. The Bonneville Power Administration's geothermal program

    International Nuclear Information System (INIS)

    Darr, G.D.

    1990-01-01

    Despite being a power source with many desirable characteristics, geothermal has not been developed in the Pacific Northwest because of high costs, high risks, and the lack of a market for power. The region will require new power sources in the 1990s, and will need to know to what extent it can rely on geothermal. The Bonneville Power Administration has developed a geothermal RD and D program which includes a proposal to award power contracts to three pilot projects in the Northwest. Public outreach efforts, environmental base line studies, and economic and land use impact studies will also be undertaken. In this paper two projects already under way are discussed

  13. Alaska: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  14. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  15. Application of low enthalpy geothermal energy

    International Nuclear Information System (INIS)

    Stancher, B.; Giannone, G.

    2007-01-01

    Geothermal energy comes from the superficial layers of the Earth's crust; it can be exploited in several ways, depending on its temperature. Many systems have been developed to use this clean and renewable energy resource. This paper deals with a particular application of low enthalpy geothermal energy in Latisana (district of Udine NE, Italy). The Latisana's indoor stadium is equipped with geothermal plant that uses low temperature water (29-30 0 ) to provide heating. Economic analysis shows that the cost of its plant is comparable to the cost powered by other kinds of renewable energy resources

  16. INEL Geothermal Environmental Program. 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  17. National Geothermal Data System: an Exemplar of Open Access to Data

    Science.gov (United States)

    Allison, M. L.; Richard, S. M.; Blackman, H.; Anderson, A.

    2013-12-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production. With information from all of the Department of Energy's sponsored development and research projects and geologic data from all 50 states, this free, interactive tool is opening new exploration opportunities and shortening project development by making data easily discoverable and accessible. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Companion projects run by Boise State University, Southern Methodist University, and USGS are adding millions of additional data records. The National Renewable Energy Laboratory is managing the Geothermal Data Repository which will serve as a system node and clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational

  18. Geothermal research at Oklahoma State University: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.

    1997-12-31

    Oklahoma State University and the International Ground Source Heat Pump Association (IGSHPA) are active in providing technical support to government and industry through technology transfer, technology development, technical assistance, and business development support. Technology transfer includes geothermal heat pump (GHP) system training for installers and architects and engineers, national teleconferences, brochures, and other publications. Technology development encompasses design software development, GLHEPRO, in-situ thermal conductivity testing methods and verification of data reduction techniques, and specifications and standards for GHP systems. Examples of technical assistance projects are a Navy officers quarters and a NASA Visitors Center which required design assistance and supporting information in reducing the life cycle cost to make them viable projects.

  19. BUSINESS-TO-BUSINESS CORRUPTION

    Directory of Open Access Journals (Sweden)

    Natasha Georgieva Hadzi Krsteski

    2016-04-01

    Full Text Available The business corruption is established and active in the circle of the businesses partners that express a gratitude, return a service or bribes (apart from ordinary price for a business transfer to be provided. Those prohibited transfers differs from the usual business transfers, such as activities related to marketing and public relations where they have a specific goal to use illegal means in order to infringe the recipients` identity of prohibited value in an interchange for a inducement. That is a procedure of enticement, which prevents the useful instruments in the permitted bazaar and not solitary that it is harmful for the businesses whose representatives accept bribe, however it is also harmful for the civilisation as an entire. The occurrence of business corruption is intended as a amount of companies that presented cash, a gratitude or a service in return, in adding to every usual deal of any person who is working for a business entity from the private sector in any capacity, including the one through a mediator, happening to at minimum single juncture in the past 12 months previous to this research. The usual commonness of the business-to-corruption in the Republic of Macedonia is 3% compared to 4% at a regional level. While it is fewer than the regular pervasiveness of salaried briberies by enterprises to civic bureaucrats, this discovery designates that bribery in the secluded segment is a difficult in the Republic of Macedonia.

  20. Geoelectromagnetic and geothermic investigations in the Ihlara Valley geothermal field

    Science.gov (United States)

    İlkişik, O. Metin; Gürer, Aysan; Tokgöz, Tuǧrul; Kaya, Cemal

    1997-09-01

    The Ihlara Valley is situated within a volcanic arc that is formed by the collision of the eastern Mediterranean plate system with the Anatolian plate. In this study we will present data from a reservoir monitoring project over the Ihlara-Ziga geothermal field, located 22 km east of Aksaray, in central Anatolia. Although identified geothermal resources in the Ihlara Valley are modest, substantial undiscovered fields have been inferred primarily from the volcanic and tectonic setting but also from the high regional heat flow (150-200 mWm -2) on the Kirşehir Massif. In 1988 and 1990, geoelectromagnetic surveys were undertaken by MTA-Ankara to confirm the presence of a relatively shallow (≈ 0.5-1 km), hydrothermally caused conductive layer or zone. CSAMT and Schlumberger resistivity data show good correspondence with each other, and 2-D geoelectric models are also in harmony with geologic data and gravity anomalies. The depth of the resistive basement, which is interpreted as Paleozoic limestone, is 200-250 m in the western part and increases eastward (≈ 600-750 m). This may imply N-S-oriented normal faulting within the survey area. The parameters of the top layer are a resistivity of 25 to 95 ohm m and a thickness of between 100 and 250 m. The thickness of the conductive tuffs between the top layer and the basement, whose resistivity is about 4-5 o hmm, also increases eastward (from 100 to 450 m). The apparent resistivity maps for the frequencies between 32 and 2 Hz reveal a localized low resistivity anomaly to the east of Belisirma.

  1. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  2. Business Anthropology

    DEFF Research Database (Denmark)

    Moeran, Brian

    2015-01-01

    This essay outlines the overall scope and location of business anthropology within the overall field of the discipline. It outlines its foundations as an applied form of anthropology in early developments in the United States (in particular, in Western Electric’s Hawthorne Project and the Human...... Relations School at Harvard University), as well as in the United Kingdom and elsewhere, before turning to five areas of research and practice: academic ethnographies of business practices, regional studies, case studies developed by practitioners, theoretical applications, and methods. The essay then asks...... what a future program for business anthropology might look like and suggests four areas for theoretical development against a background of education, engagement, and comparative work. These are an examination of structures of power in, between, and dependent on business organizations of all kinds...

  3. Swiss geothermal energy update 1985 - 1990

    International Nuclear Information System (INIS)

    Rybach, L.; Hauber, L.

    1990-01-01

    Since 1985, geothermal R and D has evolved steadily in Switzerland. REgional low-enthalphy exploration and resource assessment are largely complete; emphasis is now on drilling and development. Vertical earth-heat exchangers (small-scale, decentralized, heat pump-coupled heating facilities) increase rapidly in number; the governmental system of risk coverage for geothermal drilling, established in 1987, gives rise to several drilling projects. Of these, a single well and a doublet have been successfully completed so far. Numerical modeling of coupled thermohydraulic processes in fracture-dominate Hot Dry Rock systems including rock-mechanics aspects, is in progress. In this paper some further efforts such as contributions to general geothermics, exploration and resource assessment activities in Switzerland, and financing of geothermal development abroad by Swiss banks are described

  4. Regulation of geothermal energy development in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Forman, N.A.

    1980-01-01

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  5. Geothermal energy in Turkey. 2008 update

    Energy Technology Data Exchange (ETDEWEB)

    Serpen, Umran; Korkmaz, E. Didem [Istanbul Technical University, Petroleum and Natural Gas Engineering Department, 34469 Maslak-istanbul (Turkey); Aksoy, Niyazi [Dokuz Eyluel University, Torbali Technical Vocational School of Higher Education, 35120 Torbali-Izmir (Turkey); Oenguer, Tahir [Geosan Co. Inc., Buyukdere Str 27/7, 3438 Sisli-Istanbul (Turkey)

    2009-06-15

    Geological studies indicate that the most important geothermal systems of western Turkey are located in the major grabens of the Menderes Metamorphic Massif, while those that are associated with local volcanism are more common in the central and eastern parts of the country. The present (2008) installed geothermal power generation capacity in Turkey is about 32.65 MWe, while that of direct use projects is around 795 MWt. Eleven major, high-to-medium enthalpy fields in western part of the country have 570 MWe of proven, 905 MWe of probable and 1389 MWe of possible geothermal reserves for power generation. In spite of the complex legal issues related to the development of Turkey's geothermal resources, their use is expected to increase in the future, particularly for electricity generation and for greenhouse heating. (author)

  6. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  7. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  8. Geothermal Brief: Market and Policy Impacts Update

    Energy Technology Data Exchange (ETDEWEB)

    Speer, B.

    2012-10-01

    Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

  9. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  10. Geothermal resource and utilization in Bulgaria

    International Nuclear Information System (INIS)

    Bojadgieva, K.; Benderev, A.

    2011-01-01

    Bulgarian territory is rich in thermal water of temperature in the range of 20 - 100 o C. The highest water temperature (98 o C) is measured in Sapareva banya geothermal reservoir. Electricity generation from geothermal water is not currently available in the country. The major direct thermal water use nowadays covers: balneology, space heating and air-conditioning, domestic hot water supply, greenhouses, swimming pools, bottling of potable water and geothermal ground source heat pumps (GSHP). The total installed capacity amounts to about 77.67 MW (excl. GSHP) and the produced energy is 1083.89 TJ/year. Two applications - balneology and geothermal ground source heat pumps show more stable development during the period of 2005 - 2010. The update information on the state-owned hydrothermal fields is based on issued permits and concessions by the state.

  11. Database on the geothermal resources of Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Kedaid, Fatima Zohra [Centre de Developpement des Energies Renouvelables, B.P. 62, route de l' Observatoire, Bouzareah, Alger (Algeria)

    2007-06-15

    The paper describes a database on the low-temperature geothermal resources of Algeria that includes information on thermal springs and wells, a description of hot water resources, and thematic maps. (author)

  12. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  13. Geothermal Energy Research Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  14. Geothermal direct use engineering and design guidebook

    International Nuclear Information System (INIS)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States

  15. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  16. 2013 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    For the Geothermal Technologies Office (GTO), 2013 was a year of major achievements and repositioning to introduce major initiatives. Read all about our progress and successes this year, and as we look ahead, our new opportunities and initiatives.

  17. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  18. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  19. Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing

    Energy Technology Data Exchange (ETDEWEB)

    Kolo, Daniel [Johnson Controls, Inc., Glendale, WI (United States)

    2016-08-15

    The activities funded by this grant helped educate and inform approximately six thousand individuals who participated in guided tours of the geothermal chiller plant at Johnson Controls Corporate Headquarters in Glendale, Wisconsin over the three year term of the project. In addition to those who took the formal tour, thousands more were exposed to hands-on learning at the self-service video kiosks located in the headquarters building and augmented reality tablet app that allowed for self-guided tours. The tours, video, and app focused on the advantages of geothermal heat pump chillers, including energy savings and environmental impact. The overall tour and collateral also demonstrated the practical application of this technology and how it can be designed into a system that includes many other sustainable technologies without sacrificing comfort or health of building occupants Among tour participants were nearly 1,000 individuals, representing 130 organizations identified as potential purchasers of geothermal heat pump chillers. In addition to these commercial clients, tours were well attended by engineering, facilities, and business trade groups. This has also been a popular tour for groups from Universities around the Midwest and K-12 schools from Wisconsin and Northern Illinois A sequence of operations was put into place to control the chillers and they have been tuned and maintained to optimize the benefit from the geothermal water loop. Data on incoming and outgoing water temperature and flow from the geothermal field was logged and sent to DOE monthly during the grant period to demonstrate energy savings.

  20. EU and worldwide geothermal energy inventory

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Based on the world geothermal congress of April 2005, this document puts the different applications of this sector into perspective. At the end of 2004, the installed electrical capacity in European Union countries amounted to 822,1 MWe and thermal capacity to 6589,8 MWth (including 4531 MWth of heat pumps). Statistics on the geothermal energy situation and distribution are presented and analyzed. A comparison between current trend and white paper objectives is also provided. (A.L.B.)

  1. INEL geothermal environmental program. 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, L.S.; Thurow, T.L.; Martinez, J.A.

    1981-04-01

    An overview of continuing environmental research and monitoring programs conducted at the Raft River Geothermal Site is provided. The monitoring programs are designed to collect data on the physical, biological and human environments of the development area. Primary research during 1980 emphasized completing baseline studies on terrestrial fauna, establishing an air quality monitoring network, investigating potential sources of fluoride in the Raft River Valley, and studying water level changes in the shallow monitor wells in response to development of the geothermal resource.

  2. Geothermal overviews of the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N.; Axtell, L.H. (comps.)

    1972-01-01

    This compendium presents data on geothermal resources for all those western states with geothermal potential. Individual sections, which have been processed separately for inclusion in the EDB data base, are devoted to each of the following states: Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. A separate section is also devoted to the U.S. Bureau of Reclamation Imperial Valley Project. Maps and references are included for each section. (JGB)

  3. Geothermal resources Frio Formation, South Texas

    Energy Technology Data Exchange (ETDEWEB)

    Bebout, D.G.; Dorfman, M.H.; Agagu, O.K.

    1975-01-01

    A preliminary study of the Frio sand distribution and formation temperatures and pressures was undertaken in order to define prospective areas in which a more detailed reservoir analysis is necessary prior to the selection of a site for a geothermal well. As a result two potential geothermal fairways were identified--one in the south part of the area in Hidalgo, Willacy, and Cameron Counties, and the other in the north part in north-central Nueces County.

  4. Technical databook for geothermal energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.; Igbene, A.; Fair, J.A.; Ozbek, H.; Tavana, M.

    1981-06-01

    A critical survey is made of selected basic data on those aqueous solutions needed to model geothermal energy utilization. The data are useful in the design and construction of power plants and for direct use. The result of the survey is given as a current status of data. More emphasis is placed on the viscosity, thermal conductivity and density of sodium chloride solutions up to 350/sup 0/C and 50 MPa. An ideal data book for geothermal energy is described.

  5. Handbook of Best Practices for Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Finger, John Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  6. Application of dating for searching geothermic sources

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Negrin, L.; Balcazar-Garcia, M.; Lopez-Martinez, A.

    1984-01-01

    A Geothermal field is usually associated with a volcanic region and, therefore, with an abundance of volcanic glasses such as obsidians. The magmatic chambers constitute an excellent source of heat for a geothermical system. These chambers can be geologically identified from the surface by its recent volcanic products. Therefore, the geological age of the volcanic units is of great interest for a location of a worthwile thermal energy field. This paper presents some preliminary results of the ages obtained by dating obsidians.

  7. Economic analysis of geothermal projects

    International Nuclear Information System (INIS)

    Allegrini, G.; Cappetti, G.

    1990-01-01

    This paper reports on the high investment costs typical of geothermal energy which necessitate careful verification of the resource before embarking on a development project. Moreover, they require the adoption of all strategies aimed at limiting investment costs and times as much as possible in order to contain the tie-up of capital in the construction activities. For this purpose a series of choices has been made regarding the constructional standardization of plants and the adoption of organizational criteria that allow cost reduction and better management of the various phases of a development project. A computer program has also been developed which makes it possible to examine the bearing the various parameters relating to the reservoir characteristics have on the cost of the kWh and to optimize resource utilization for the various activities of a development project

  8. Geothermal investigations in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, R.; Hilfiker, K.; Hodge, D.; Morgan, P.; Swanberg, C.; Shannon, S.S. Jr.

    1982-11-01

    Deep sedimentary basins and warm-spring systems in West Virginia are potential geothermal resources. A temperature gradient map based on 800 bottom-hole temperatures for West Virginia shows that variations of temperature gradient trend northeasterly, parallel to regional structure. Highest temperature gradient values of about 28/sup 0/C/km occur in east-central West Virginia, and the lowest gradients (18/sup 0/C/km) are found over the Rome Trough. Results from ground-water geochemistry indicate that the warm waters circulate in very shallow aquifers and are subject to seasonal temperature fluctuations. Silica heat-flow data in West Virginia vary from about 0.89 to 1.4 HFU and generally increase towards the west. Bouguer, magnetic, and temperature gradient profiles suggest that an ancient rift transects the state and is the site of several deep sedimentary basins.

  9. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  10. Geothermal well log interpretation state of the art. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  11. Environmental Assessment -- Hydrothermal Geothermal Subprogram

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    This environmental impact assessment addresses the design, construction, and operation of an electric generating plant (3 to 4 MWe) and research station (Hawaii Geothermal Research Station (HGRS)) in the Puna district on the Island of Hawaii. The facility will include control and support buildings, parking lots, cooling towers, settling and seepage ponds, the generating plant, and a visitors center. Research activities at the facility will evaluate the ability of a successfully flow-tested well (42-day flow test) to provide steam for power generation over an extended period of time (two years). In future expansion, research activities may include direct heat applications such as aquaculture and the effects of geothermal fluids on various plant components and specially designed equipment on test modules. Construction-related impacts would be relatively minor. Construction of the facility will require the distance of about 1.7 ha (4.1 acres). No further disturbance is anticipated, unless it becomes necessary to replace the seepage pond with an injection well, because the production well is in service and adjacent roads and transmission lines are adequate. Disruption of competing land uses will be minimal, and loss of wildlife habitat will be acceptable. Noise should not significantly affect wildlife and local residents; the most noise activities (well drilling and flow testing) have been completed. Water use during construction will not be large, and impacts on competing uses are unlikely. Socio-economic impacts will be small because the project will not employ a large number of local residents and few construction workers will need to find local housing.

  12. Geothermal resources of southern Idaho

    Science.gov (United States)

    Mabey, Don R.

    1983-01-01

    The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150?C. Water from many of these systems is valuable for direct heat applications, but is lower than the temperature of interest for commercial generation of electricity at the present time. Most of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. By far the largest hydrothermal system in Idaho is in the Bruneau-Grand View area of the western Snake River Plain with a calculated reservoir temperature of 107?C and an energy of 4.5? 10 20 joules. No evidence of higher temperature water associated with this system has been found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures has not been found. Large volumes of water at temperatures between 90? and 150?C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain. Areas that appear particularly promising for the occurrence of large high-temperature hydrothermal systems are: the area north of the Snake River Plain and west of the Idaho batholith, the Island Park area, segments of the margins of the eastern Snake River Plain, and the Blackfoot lava field.

  13. Geothermal studies of seven interior salt domes

    International Nuclear Information System (INIS)

    1983-06-01

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1 0 F to 25 0 F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes

  14. Geothermal energy in California: Status report

    Energy Technology Data Exchange (ETDEWEB)

    Citron, O.; Davis, C.; Fredrickson, C.; Granit, R.; Kerrisk, D.; Leibowitz, L.; Schulkin, B.; Wornack, J.

    1976-06-30

    The potential for electric energy from geothermal resources in California is currently estimated to be equivalent to the output from 14 to 21 large (1000 MW) central station power plants. In addition, since over 30 California cities are located near potential geothermal resources, the non-electric applications of geothermal heat (industrial, agriculture, space heating, etc.) could be enormous. Therefore, the full-scale utilization of geothermal resources would have a major impact upon the energy picture of the state. This report presents a summary of the existing status of geothermal energy development in the state of California as of the early part of 1976. The report provides data on the extent of the resource base of the state and the present outlook for its utilization. It identifies the existing local, state, and federal laws, rules and regulations governing geothermal energy development and the responsibilities of each of the regulatory agencies involved. It also presents the differences in the development requirements among several counties and between California and its neighboring states. Finally, it describes on-going and planned activities in resource assessment and exploration, utilization, and research and development. Separate abstracts are prepared for ERDA Energy Research Abstracts (ERA) for Sections II--VI and the three Appendixes.

  15. FIJI geothermal resource assessment and development programme

    Energy Technology Data Exchange (ETDEWEB)

    Autar, Rohit K.

    1996-01-24

    The Fiji Department of Energy (DOE) has a comprehensive resource assessment programme which assesses and promotes the use of local renewable energy resources where they are economically viable. DOE is currently involved in the investigation of the extent of geothermal resources for future energy planning and supply purposes. The aim is to determine (a) whether exploitable geothermal fields exist in the Savusavu or Labasa areas. the two geothermal fields with the greatest potential, (b) the cost of exploiting these fields for electricity generation/process heat on Vanua Levu. (c) the comparative cost per mega-watt-hour (MWh) of geothermal electricity generation with other generating options on Vanua Levu, and. (d) to promote the development of the geothermal resource by inviting BOO/BOOT schemes. Results to date have indicated that prospects for using geothermal resource for generating electricity lies in Savusavu only - whereas the Labasa resource can only provide process heat. All geophysical surveys have been completed and the next stage is deep drilling to verify the theoretical findings and subsequent development.

  16. A geothermal resource data base: New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1995-07-01

    This report provides a compilation of geothermal well and spring information in New Mexico up to 1993. Economically important geothermal direct-use development in New Mexico and the widespread use of personal computers (PC) in recent years attest to the need for an easily used and accessible data base of geothermal data in a digital format suitable for the PC. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction.

  17. Is the Philippine geothermal resource sustainable?

    International Nuclear Information System (INIS)

    Lalo, J.; Raymundo, E.

    2005-01-01

    This paper aims to illustrate the scenario in the Geothermal Energy Development Projects in the Philippines, to make the Filipino population aware that there is an existing cleaner technology available that is being utilized in Europe; for the Philippine geothermal energy project operators to adapt a cleaner production technology that has no harmful emission, hence, no pollution technology; to help end the conflict between stake holders and geothermal players through the introduction of cleaner production technology intervention. While it is a fact that the Philippines' Geothermal resource is second to U.S. or around the globe, the unwise utilization of geothermal energy may lead to depletion, hence, becomes non-renewable. It should be understood that the geothermal energy is a renewable resource only if the development process is sustainable. There is a need to educate the Filipino populace regarding a cleaner production technology as well as our government and political leaders. This cleaner production technology is a solution to the stake holders. It is of great importance to inform the Filipino people that there is an existing cleaner new technology from Europe and U.S. that is not pollutive in nature and is essentially sustainable development scheme since underground reservoirs are not depleted in the process. (author)

  18. Thermal Enhanced Oil Recovery Using Geopressured-Geothermal Brine

    Energy Technology Data Exchange (ETDEWEB)

    none

    1989-12-01

    This white paper presents a unique plan for an Oil Industry-DOE cost sharing research project for Thermal Enhanced Oil Recovery (TEOR) of medium and heavy oil using geopressured-geothermal brine. This technology would provide an environmentally clean method of recovery as opposed to the burning of crude oil or natural gas used widely by the industry, but presently under scrutiny by federal and state air quality agencies, as well as provide an alternative to the very expensive operational and mechanical problems associated with heating water on the surface for injection. An example test reservoir is a shallow, small structural reservoir about 1-l/2 miles long by 1/2 mile wide. It is presently producing heavy oil (18.6 API gravity) from 5 wells, and is marginally economic. One of three nearby geopressured-geothermal wells could be re-entered and recompleted to supply about 400 F brine from 13-16,000 feet. This brine can be used to heat and drive the heavy oil. It is anticipated that about one million barrels of oil may be recovered by this project. Over 3 million barrels are estimated to be in place; only 2.7% of the oil in place has been produced. The suggested teaming arrangement includes: (1) EG&G Idaho, Inc., which presently provides technical and management support to DOE in the Gulf EG&G would supply coordination, management and Coast Geopressured-Geothermal Program. technical support to DOE for the Thermal Enhanced Oil Recovery Project. (2) A small business which would supply the field, geologic and well data, production wells, and production operation. They would cost-share the project and provide revenue from increased production (5% of increased production) to help offset DOE costs. Though DOE would cost-share brine supply and injection system, they would not assume well ownership. The small business would supply engineering and operations for brine supply, injection system, and collection of field producing and injection data. Phase 1--Geologic, reservoir

  19. Classification of public lands valuable for geothermal steam and associated geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  20. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  1. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  2. Update on Geothermal Direct-Use Installations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snyder, Diana M. [Georgia State University

    2017-02-15

    Direct-use of geothermal energy currently has limited penetration in the United States, with an estimated installed capacity of about 500 MWth, supplying on the order of 0.01% of the total annual U.S. heat demand (about 30 EJ). We see higher penetration levels in other countries such as Iceland (about 90%) and Hungary (2.5%). An updated database of geothermal direct-use systems in the U.S. has been compiled and analyzed, building upon the Oregon Institute of Technology (OIT) Geo-Heat Center direct-use database. Types of directuse applications examined include hot springs resorts and pools, aquaculture farms, greenhouses, and district heating systems, among others; power-generating facilities and ground-source heat pumps were excluded. Where possible, the current operation status, open and close dates, well data, and other technical data were obtained for each entry. The database contains 545 installations, of which 407 are open, 108 are closed, and 30 have an unknown status. Spas are the most common type of installation, accounting for 50% of installations by number. Aquaculture installations (46 out of 407 open installations) account for the largest percentage (26%) of installed capacity in operation (129 MWth out of 501 MWth). Historical deployment curves show the installed capacity significantly increased in the 1970s and 1980s mainly due to development of geothermal district heating, aquaculture, and greenhouse systems. Since the 2000s, geothermal direct-use development appears to have slowed, and the number of sites in operation decreased due to closures. Case studies reveal multiple barriers to geothermal direct-use implementation and operation, including 1) existence of an information gap among stakeholders, developers, and the general public, 2) competition from cheap natural gas, and 3) the family-owned, small-scale nature of businesses might result in discontinuation among generations.

  3. Direct utilization of geothermal energy for Haakon School District, South Dakota. Final report, January 1977-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Hengel, R.J.

    1985-03-01

    This report is a summary of a project which demonstrates the successful use of geothermal energy for service water and space heating of school, business and commercial buildings in the city of Philip, South Dakota. The project included a new well into the Madison limestone formation, a pipe line to the school and through the central business district to a treatment plant, the treatment plant and settling ponds, conversion of the existing space heating systems of the buildings to equipment suitable for heating with the geothermal energy and monitoring the system to determine operating characteristics and efficiency. The treated water is discharged into the north fork of the Bad River for use by down stream irrigators. 24 figs., 19 tabs.

  4. A business case method for business models

    OpenAIRE

    Meertens, Lucas Onno; Starreveld, E.; Iacob, Maria Eugenia; Nieuwenhuis, Lambertus Johannes Maria; Shishkov, Boris

    2013-01-01

    Intuitively, business cases and business models are closely connected. However, a thorough literature review revealed no research on the combination of them. Besides that, little is written on the evaluation of business models at all. This makes it difficult to compare different business model alternatives and choose the best one. In this article, we develop a business case method to objectively compare business models. It is an eight-step method, starting with business drivers and ending wit...

  5. National Geothermal Data System (USA): an Exemplar of Open Access to Data

    Science.gov (United States)

    Allison, M. Lee; Richard, Stephen; Blackman, Harold; Anderson, Arlene; Patten, Kim

    2014-05-01

    Department of Energy, Geothermal Technologies Office. To keep this system operational after the original implementation will require four core elements: continued serving of data and applications by providers; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges currently under consideration.

  6. The drama of Puna: For and against the Hawai'i geothermal project

    Science.gov (United States)

    Keyser, William Henry

    The geothermal project was conceived in the context of the international oil business and the economic growth of Hawai'i. From the point of view of the State, the geothermal project is necessary because imported petroleum provides Hawai'i with 911/2 percent of its total energy. That petroleum consists of 140,000 b/d of crude (1990) and it comes from Alaska, Indonesia and a few other suppliers. However, the Alaskan North Slope is beginning to run dry and the Southeast Asian suppliers of crude will be exporting less petroleum as time goes on. Increasingly, Hawai'i will become dependent on "unstable Middle Eastern" suppliers of crude. From this worry about the Middle East, the State seeks indigenous energy to reduce its dependence on petroleum and to support economic growth. Hence, the geothermal project was born after the 1973 oil embargo. The major source of geothermal energy is the Kilauea Volcano on the Big Island. Kilauea is characterized by the Kilauea caldera and a crack in the Island which extends easterly from the caldera to Cape Kumukahi in Puna and southwest to Pahala in Ka'u. The eastern part of the crack is approximately 55 kilometers long and 5 kilometers wide. The geothermal plants will sit on this crack. While the State has promoted the geothermal project with the argument of reducing "dependence" on imported petroleum, it hardly mentions its goal of economic growth. The opponents have resisted the project on the grounds of protecting Pele and Hawaiian gathering rights, protecting the rain forest, and stopping the pollution in the geothermal steam. What the opponents do not mention is their support for economic growth. The opposition to the project suggests a new environmental politics is forming in Hawai'i. Is this true? The dissertation will show that the participants in this drama are involved in a strange dance where each side avoids any recognition of their fundamental agreement on economic growth. Hence the creation of a new environmental

  7. Direct utilization of geothermal energy: a technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N; Lund, J.W. (eds.)

    1979-01-01

    This technical handbook includes comprehensive discussions on nature and occurrence of the geothermal resource, its development, utilization, economics, financing, and regulation. Information on pricing parameters for the direct use of geothermal energy is included as an appendix. (MRH)

  8. Financing geothermal resource development in the Pacific Region states

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-15

    State and federal tax treatment as an incentive to development and non-tax financial incentives such as: the federal geothermal loan guarantee program, the federal geothermal reservoir insurance, and state financial incentives are discussed. (MHR)

  9. Overview of Resources for Geothermal Absorption Cooling for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  10. Status on high enthalpy geothermal resources in Greece

    International Nuclear Information System (INIS)

    Koutinas, G.A.

    1990-01-01

    Greece is privileged to have many high and medium enthalpy geothermal resources. Related activities during the last 5 years were conducted mainly on the previously discovered geothermal fields of Milos, Nisyros and Lesvos islands, without any deep geothermal drilling. Most efforts were focused on the demonstration of a high enthalpy geothermal reservoir on Milos, by generating electricity from high salinity fluid, with a 2 MW pilot plant. Significant experience has been gained there, by solving technical problems, but still site specific constraints have to be overcome in order to arrive at a comprehensive feasibility study, leading to the development phase. A pre-feasibility study has been carried out in the Nisyros geothermal field. Moreover, a detailed geoscientific exploration program has been completed on Lesvos island, where very promising geothermal areas have been identified. In this paper, reference is made to the most important data concerning high enthalpy geothermal resources by emphasizing the Milos geothermal field

  11. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  12. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  13. Governance Obstacles to Geothermal Energy Development in Indonesia

    Directory of Open Access Journals (Sweden)

    Matthew S. Winters

    2015-01-01

    Full Text Available Despite having 40 per cent of the world’s potential for geothermal power production, Indonesia exploits less than five per cent of its own geothermal resources. We explore the reasons behind this lagging development of geothermal power and highlight four obstacles: (1 delays caused by the suboptimal decentralisation of permitting procedures to local governments that have few incentives to support geothermal exploitation; (2 rent-seeking behaviour originating in the point-source nature of geothermal resources; (3 the opacity of central government decision making; and (4 a historically deleterious national fuel subsidy policy that disincentivised geothermal investment. We situate our arguments against the existing literature and three shadow case studies from other Pacific countries that have substantial geothermal resources. We conclude by arguing for a more centralised geothermal governance structure.

  14. Geothermal policy project. Quarterly report, August 1-October 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1979-11-01

    The NCSL geothermal policy project continued with initiating geothermal studies in new project states and furthering policy development in existing states. Activities of the project staff are reviewed. (MHR)

  15. Doubling Geothermal Generation Capacity by 2020. A Strategic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Anna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-01

    This report identifies the potential of U.S. geothermal resource and the current market to add an additional 3 GW of geothermal by 2020, in order to meet the goal set forth in the Climate Action Plan.

  16. Hydrogeologic and geothermal investigation of Pagosa Springs, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, M.J.

    1980-01-01

    The following topics are covered: geology; geophysical surveys; geothermal wells, springs, and heat flow; hydrology; drilling program, well testing, and mineralogical and petrographic studies of samples from geothermal wells. (MHR)

  17. The economics of Plowshare geothermal power

    International Nuclear Information System (INIS)

    Burnham, J.B.; Stewart, D.H.

    1970-01-01

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application

  18. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  19. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  20. Regional geothermal 3D modelling in Denmark

    Science.gov (United States)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  1. Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  2. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    McClain, James S. [Univ. of California, Davis, CA (United States). Dept. of; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glassley, William [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Schiffman, Peter [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zierenberg, Robert [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  3. Geothermal program overview: Fiscal years 1993--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

  4. Department of Energy--Office of Energy Efficiency and Renewable Energy Geothermal Program: Geothermal Risk Mitigation Strategies Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-02-15

    An overview of general financial issues for renewable energy investments; geothermal energy investment barriers and risks; and recommendations for incentives and instruments to be considered to stimulate investment in geothermal energy development.

  5. Twelfth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting

  6. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  7. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  8. Geothermal Program Overview: Fiscal Years 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-11-01

    Geothermal energy represents the largest U.S. energy resource base and already provides an important contribution to our nation's energy needs. This overview looks at the basic science behind the various geothermal technologies and provides information on DOE Geothermal Energy Program activities and accomplishments.

  9. Innovation versus monopoly: geothermal energy in the West. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, S.L.; Stover, D.F.; Nelson, P.A.; Lamont, W.J.

    1977-07-01

    The following subjects are covered: geothermal energy and its use, electric utilities and the climate for geothermal development, the raw fuels industry and geothermal energy, and government and energy. The role of large petroleum companies and large public utilities is emphasized. (MHR)

  10. Stanford geothermal program. Final report, July 1990--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

  11. FY97 Geothermal R&D Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-09-01

    This is the Sandia National Laboratories Geothermal program plan. This is a DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This one is of special interest for historical work because it contains what seems to be a complete list of Sandia geothermal program publications (citations / references) from about 1975 to late 1996. (DJE 2005)

  12. Market Analysis of Geothermal Energy for California and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-10-01

    This is one of the earlier market analyses for geothermal electric power and direct heat. The market for geothermal power was found to be large enough to absorb anticipated developments in California. For direct use, geothermal resources and urban markets in CA and HI are not well collocated.

  13. Proceedings and findings of the geothermal commercialization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Dhillon, H.

    1979-04-01

    The proceedings are presented of a Geothermal Commercialization Workshop conducted by the Division of Geothermal Resource Management, Department of Energy. The workshop was held in January-February 1979 at The MITRE Corporation facility in McLean, Virginia. The workshop addressed geothermal hydrothermal commercialization achievements and needs in the areas of Marketing and Outreach, Economics, Scenarios, and Progress Monitoring.

  14. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  15. Business Law

    OpenAIRE

    Marson, James; Ferris, Katy

    2016-01-01

    Marson & Ferris provide a thorough account of the subject for students. Essential topics are introduced by exploring current and pertinent examples and the relevance of the law in a business environment is considered throughout. This pack includes a supplement which considers the effects of the Consumer Rights Act 2015.

  16. Unfinished Business

    Science.gov (United States)

    Tuckett, Alan

    2011-01-01

    Adult learning is not a tidy business: adults fit learning into the spaces left by the other demands on complex lives, and into the spaces left in administrative structures overwhelmingly designed for other people. No simple metric can capture adults' diverse purposes and achievements, and no single programme can capture the full range of things…

  17. Business Intelligence

    OpenAIRE

    Petersen, Anders

    2001-01-01

    Cílem této bakalářské práce je seznámení s Business Intelligence a zpracování vývojového trendu, který ovlivňuje podobu řešení Business Intelligence v podniku ? Business Activity Monitoring. Pro zpracování tohoto tématu byla použita metoda studia odborných pramenů, a to jak v českém, tak v anglickém jazyce. Hlavním přínosem práce je ucelený, v českém jazyce zpracovaný materiál pojednávající o Business Activity Monitoring. Práce je rozdělena do šesti hlavních kapitol. Prvních pět je věnováno p...

  18. Business History

    DEFF Research Database (Denmark)

    Hansen, Per H.

    2012-01-01

    This article argues that a cultural and narrative perspective can enrich the business history field, encourage new and different questions and answers, and provide new ways of thinking about methods and empirical material. It discusses what culture is and how it relates to narratives. Taking...

  19. Business Leksikon

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2002-01-01

    This review article deals with a specialised dictionary recently introduced to the Danish market. It covers traditional business subjects and is designed for semi-experts and laypeople. Through Danish definitions and English, French and German equivalents, it aims at fulfilling the functions text...

  20. Scary Business

    DEFF Research Database (Denmark)

    Platts, Todd; Clasen, Mathias

    2017-01-01

    Despite horror films representing business ventures intended to turn profit, box office analyses of the genre have remained rare in scholarly literature. Our study fills that gap through an examination of 117 horror films that reached the top 100 in domestic grosses in the North American film...