WorldWideScience

Sample records for burtoni structure localization

  1. Endogenous Gibbon Ape Leukemia Virus Identified in a Rodent (Melomys burtoni subsp.) from Wallacea (Indonesia)

    Science.gov (United States)

    Alfano, Niccolò; Michaux, Johan; Morand, Serge; Aplin, Ken; Tsangaras, Kyriakos; Löber, Ulrike; Fabre, Pierre-Henri; Fitriana, Yuli; Semiadi, Gono; Ishida, Yasuko; Helgen, Kristofer M.; Roca, Alfred L.; Eiden, Maribeth V.

    2016-01-01

    ABSTRACT Gibbon ape leukemia virus (GALV) and koala retrovirus (KoRV) most likely originated from a cross-species transmission of an ancestral retrovirus into koalas and gibbons via one or more intermediate as-yet-unknown hosts. A virus highly similar to GALV has been identified in an Australian native rodent (Melomys burtoni) after extensive screening of Australian wildlife. GALV-like viruses have also been discovered in several Southeast Asian species, although screening has not been extensive and viruses discovered to date are only distantly related to GALV. We therefore screened 26 Southeast Asian rodent species for KoRV- and GALV-like sequences, using hybridization capture and high-throughput sequencing, in the attempt to identify potential GALV and KoRV hosts. Only the individuals belonging to a newly discovered subspecies of Melomys burtoni from Indonesia were positive, yielding an endogenous provirus very closely related to a strain of GALV. The sequence of the critical receptor domain for GALV infection in the Indonesian M. burtoni subsp. was consistent with the susceptibility of the species to GALV infection. The second record of a GALV in M. burtoni provides further evidence that M. burtoni, and potentially other lineages within the widespread subfamily Murinae, may play a role in the spread of GALV-like viruses. The discovery of a GALV in the most western part of the Australo-Papuan distribution of M. burtoni, specifically in a transitional zone between Asia and Australia (Wallacea), may be relevant to the cross-species transmission to gibbons in Southeast Asia and broadens the known distribution of GALVs in wild rodents. IMPORTANCE Gibbon ape leukemia virus (GALV) and the koala retrovirus (KoRV) are very closely related, yet their hosts neither are closely related nor overlap geographically. Direct cross-species infection between koalas and gibbons is unlikely. Therefore, GALV and KoRV may have arisen via a cross-species transfer from an intermediate

  2. Tol2-mediated generation of a transgenic haplochromine cichlid, Astatotilapia burtoni.

    Directory of Open Access Journals (Sweden)

    Scott A Juntti

    Full Text Available Cichlid fishes represent one of the most species-rich and rapid radiations of a vertebrate family. These ~2200 species, predominantly found in the East African Great Lakes, exhibit dramatic differences in anatomy, physiology, and behavior. However, the genetic bases for this radiation, and for the control of their divergent traits, are unknown. A flood of genomic and transcriptomic data promises to suggest mechanisms underlying the diversity, but transgenic technology will be needed to rigorously test the hypotheses generated. Here we demonstrate the successful use of the Tol2 transposon system to generate transgenic Astatotilapia burtoni, a haplochromine cichlid from Lake Tanganyika, carrying the GFP transgene under the control of the ubiquitous EF1α promoter. The transgene integrates into the genome, is successfully passed through the germline, and the widespread GFP expression pattern is stable across siblings and multiple generations. The stable inheritance and expression patterns indicate that the Tol2 system can be applied to generate A. burtoni transgenic lines. Transgenesis has proven to be a powerful technology for manipulating genes and cells in other model organisms and we anticipate that transgenic A. burtoni and other cichlids will be used to test the mechanisms underlying behavior and speciation.

  3. Lifting locally homogeneous geometric structures

    CERN Document Server

    McKay, Benjamin

    2011-01-01

    We prove that under some purely algebraic conditions every locally homogeneous structure modelled on some homogeneous space is induced by a locally homogeneous structure modelled on a different homogeneous space.

  4. Local measurement for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    G.Z.Qi; Guo Xun; Qi Xiaozhai; W. Dong; P.Chang

    2005-01-01

    Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure.Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.

  5. Protein structure search and local structure characterization

    Directory of Open Access Journals (Sweden)

    Ku Shih-Yen

    2008-08-01

    Full Text Available Abstract Background Structural similarities among proteins can provide valuable insight into their functional mechanisms and relationships. As the number of available three-dimensional (3D protein structures increases, a greater variety of studies can be conducted with increasing efficiency, among which is the design of protein structural alphabets. Structural alphabets allow us to characterize local structures of proteins and describe the global folding structure of a protein using a one-dimensional (1D sequence. Thus, 1D sequences can be used to identify structural similarities among proteins using standard sequence alignment tools such as BLAST or FASTA. Results We used self-organizing maps in combination with a minimum spanning tree algorithm to determine the optimum size of a structural alphabet and applied the k-means algorithm to group protein fragnts into clusters. The centroids of these clusters defined the structural alphabet. We also developed a flexible matrix training system to build a substitution matrix (TRISUM-169 for our alphabet. Based on FASTA and using TRISUM-169 as the substitution matrix, we developed the SA-FAST alignment tool. We compared the performance of SA-FAST with that of various search tools in database-scale search tasks and found that SA-FAST was highly competitive in all tests conducted. Further, we evaluated the performance of our structural alphabet in recognizing specific structural domains of EGF and EGF-like proteins. Our method successfully recovered more EGF sub-domains using our structural alphabet than when using other structural alphabets. SA-FAST can be found at http://140.113.166.178/safast/. Conclusion The goal of this project was two-fold. First, we wanted to introduce a modular design pipeline to those who have been working with structural alphabets. Secondly, we wanted to open the door to researchers who have done substantial work in biological sequences but have yet to enter the field of protein

  6. Eggspot number and sexual selection in the cichlid fish Astatotilapia burtoni.

    Science.gov (United States)

    Henning, Frederico; Meyer, Axel

    2012-01-01

    Sexual selection on male coloration is one of the main mechanisms proposed to explain the explosive speciation rates in East African cichlid fish. True eggspots are color patterns characteristic of the most species-rich lineage of cichlids, the Haplochromini, and have been suggested to be causally related to the speciation processes. Eggspots are thought to have originated by sensory exploitation and subsequently gained several roles in sexual advertisement. However, for most of these functions the evidence is equivocal. In addition, the genetic architecture of this trait still is largely unknown. We conducted bidirectional selective breeding experiments for eggspot numbers in the model cichlid, Astatotilapia burtoni. After two generations, low lines responded significantly, whereas the high lines did not. Body size was both phenotypically and genotypically correlated with eggspot number and showed correlated response to selection. Males with higher numbers of eggspots were found to sire larger offspring. Despite the potential to act as honest indicators of fitness, the behavioral experiments showed no evidence of a role in either intra- or inter-sexual selection. Visual-based female preference was instead explained by courtship intensity. The evolution of this trait has been interpreted in light of adaptive theories of sexual selection, however the present and published results suggest the influence of non-adaptive factors such as sensory exploitation, environmental constraints and sexual antagonism.

  7. Eggspot number and sexual selection in the cichlid fish Astatotilapia burtoni.

    Directory of Open Access Journals (Sweden)

    Frederico Henning

    Full Text Available Sexual selection on male coloration is one of the main mechanisms proposed to explain the explosive speciation rates in East African cichlid fish. True eggspots are color patterns characteristic of the most species-rich lineage of cichlids, the Haplochromini, and have been suggested to be causally related to the speciation processes. Eggspots are thought to have originated by sensory exploitation and subsequently gained several roles in sexual advertisement. However, for most of these functions the evidence is equivocal. In addition, the genetic architecture of this trait still is largely unknown. We conducted bidirectional selective breeding experiments for eggspot numbers in the model cichlid, Astatotilapia burtoni. After two generations, low lines responded significantly, whereas the high lines did not. Body size was both phenotypically and genotypically correlated with eggspot number and showed correlated response to selection. Males with higher numbers of eggspots were found to sire larger offspring. Despite the potential to act as honest indicators of fitness, the behavioral experiments showed no evidence of a role in either intra- or inter-sexual selection. Visual-based female preference was instead explained by courtship intensity. The evolution of this trait has been interpreted in light of adaptive theories of sexual selection, however the present and published results suggest the influence of non-adaptive factors such as sensory exploitation, environmental constraints and sexual antagonism.

  8. Eggspot Number and Sexual Selection in the Cichlid Fish Astatotilapia burtoni

    Science.gov (United States)

    Henning, Frederico; Meyer, Axel

    2012-01-01

    Sexual selection on male coloration is one of the main mechanisms proposed to explain the explosive speciation rates in East African cichlid fish. True eggspots are color patterns characteristic of the most species-rich lineage of cichlids, the Haplochromini, and have been suggested to be causally related to the speciation processes. Eggspots are thought to have originated by sensory exploitation and subsequently gained several roles in sexual advertisement. However, for most of these functions the evidence is equivocal. In addition, the genetic architecture of this trait still is largely unknown. We conducted bidirectional selective breeding experiments for eggspot numbers in the model cichlid, Astatotilapia burtoni. After two generations, low lines responded significantly, whereas the high lines did not. Body size was both phenotypically and genotypically correlated with eggspot number and showed correlated response to selection. Males with higher numbers of eggspots were found to sire larger offspring. Despite the potential to act as honest indicators of fitness, the behavioral experiments showed no evidence of a role in either intra- or inter-sexual selection. Visual-based female preference was instead explained by courtship intensity. The evolution of this trait has been interpreted in light of adaptive theories of sexual selection, however the present and published results suggest the influence of non-adaptive factors such as sensory exploitation, environmental constraints and sexual antagonism. PMID:22937082

  9. Localized structure of Euglena bioconvection

    Science.gov (United States)

    Iima, Makoto; Shoji, Erika; Awazu, Akinori; Nishimori, Hiraku; Izumi, Shunsuke; Hiroshima University Collaboration

    2013-11-01

    Bioconvection of a suspension of Euglena gracilis, a photosensitive flagellate whose body length is approximately 50 micrometers, was experimentally studied. Under strong light intensity, Euglena has a negative phototaxis; they tend to go away from the light source. When the bright illumination is given from the bottom, a large scale spatio-temporal pattern is generated as a result of interaction between Euglena and surrounding flow. Recently, localized convection pattern had been reported, however, the generation process and interaction of the localized convection cells has not been analyzed. We performed experimental study to understand the localization mechanism, in particular, the onset of bioconvection and lateral localization behavior due to phototaxis. Experiments started from different initial condition suggests a bistability near the onset of the convection as binary fluid convection that also shows localized convection cells. Dynamics of localized convections cells, which is similar to the binary fluid convection case although the basic equations are not the same, is also reported.

  10. The function of anal fin egg-spots in the cichlid fish Astatotilapia burtoni.

    Directory of Open Access Journals (Sweden)

    Anya Theis

    Full Text Available Color and pigmentation patterns of animals are often targets of sexual selection because of their role in communication. Although conspicuous male traits are typically implicated with intersexual selection, there are examples where sex-specific displays play a role in an intrasexual context, e.g. when they serve as signals for aggression level and/or status. Here, we focus on the function of a conspicuous male ornament in the most species-rich tribe of cichlid fishes, the haplochromines. A characteristic feature of these ca. 1500 species are so-called egg-spots in form of ovoid markings on the anal fins of males, which are made up of carotenoid based pigment cells. It has long been assumed that these yellow, orange or reddish egg-spots play an important role in the courtship and spawning behavior of these maternal mouth-brooding fishes by mimicking the eggs of a conspecific female. The exact function of egg-spots remains unknown, however, and there are several hypotheses about their mode of action. To uncover the function of this cichlid-specific male ornament, we used female mate choice experiments and a male aggression test in the haplochromine species Astatotilapia burtoni. We manipulated the number and arrangement of egg-spots on the anal fins of males, or removed them entirely, and tested (1 female preference with visual contact only using egg-traps, (2 female preference with free contact using paternity testing with microsatellites and (3 male aggression. We found that females did not prefer males with many egg-spots over males with fewer egg-spots and that females tended to prefer males without egg-spots over males with egg-spots. Importantly, males without egg-spots sired clutches with the same fertilization rate as males with egg-spots. In male aggression trials, however, males with fewer egg-spots received significantly more attacks, suggesting that egg-spots are an important signal in intrasexual communication.

  11. Enhancing community detection by local structural information

    CERN Document Server

    Xiang, Ju; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-01-01

    Many real-world networks such as the gene networks, protein-protein interaction networks and metabolic networks exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have positive effect on community detection in the networks. Here, various local similarity measures are used to extract the local structural information and then are applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial to the improvement for the community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and the applied community detection methods.

  12. Combinatorics of locally optimal RNA secondary structures.

    Science.gov (United States)

    Fusy, Eric; Clote, Peter

    2014-01-01

    It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366∙n-3/2∙2.618034n. Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are 1.07427∙n-3/2∙2.35467n many saturated structures for a sequence of length n. In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles).

  13. Locally homogeneous structures on Hopf surfaces

    CERN Document Server

    McKay, Benjamin

    2009-01-01

    We study holomorphic locally homogeneous geometric structures modelled on line bundles over the projective line. We classify these structures on primary Hopf surfaces. We write out the developing map and holonomy morphism of each of these structures explicitly on each primary Hopf surface.

  14. Combinatorics of locally optimal RNA secondary structures

    CERN Document Server

    Clote, Peter

    2011-01-01

    It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is $1.104366 \\cdot n^{-3/2} \\cdot 2.618034^n$. To provide a better understanding of the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are {\\em locally optimal}, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the {\\em saturated} structures, for which we have previously shown that asymptotically, there are $1.07427\\cdot n^{-3/2} \\cdot 2.35467^n$ many saturated structures for a sequence of length $n$. In this paper, we consider the {\\em base stacking energy model}, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, ...

  15. Introduction: Dissipative localized structures in extended systems

    Science.gov (United States)

    Tlidi, Mustapha; Taki, Majid; Kolokolnikov, Theodore

    2007-09-01

    Localized structures belong to the class of dissipative structures found far from equilibrium. Contributions from the most representative groups working on a various fields of natural science such as biology, chemistry, plant ecology, mathematics, optics, and laser physics are presented. The aim of this issue is to gather specialists from these fields towards a cross-fertilization among these active areas of research and thereby to present an overview of the state of art in the formation and the characterization of dissipative localized structures. Nonlinear optics and laser physics have an important part in this issue because of potential applications in information technology. In particular, localized structures could be used as "bits" for parallel information storage and processing.

  16. Polarization properties of localized structures in VCSELs

    Science.gov (United States)

    Averlant, Etienne; Tlidi, Mustapha; Ackemann, Thorsten; Thienpont, Hugo; Panajotov, Krassimir

    2016-04-01

    Broad area Vertical-Cavity Surface-Emitting Lasers (VCSELs) have peculiar polarization properties which are a field of study by itself.1-3 These properties have already been used for localized structure generation, in a simple configuration, where only one polarization component was used.4 Here, we present new experimental and theoretical results on the complex polarization behavior of localized structures generated in an optically-injected broad area VCSEL. A linear stability analysis of the spin-flip VCSEL model is performed for the case of broad area devices, in a restrained and experimentally relevant parameter set. Numerical simulations are performed, in one and two dimensions. They reveal existence of vector localized structures. These structures have a complex polarization state, which is not simply a linear polarization following the one of the optical injection. Experimental results confirm theoretical predictions. Applications of this work can lead to the encoding of small color images in the polarization state of an ensemble of localized structures at the surface of a broad area VCSEL.

  17. Local atomic structure in cubic stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Villella, P.; Conradson, S. D.; Espinosa-Faller, F. J.; Foltyn, S. R.; Sickafus, K. E.; Valdez, J. A.; Degueldre, C. A.

    2001-09-01

    X-ray-absorption fine structure measurements have been used to elucidate the local atomic structure of quaternary Zr, Y, Er, Ce/U cubic stabilized zirconia. These compounds display more complicated local environments than those reported for simpler binary systems. While the shortest cation-O distances are similar to those found in the binary cubic stabilized compounds, responding to the different sizes of the cations, we have identified large distortions in the first-shell oxygen distribution involving long, 2.8--3.2 {angstrom} cation-O distances that are similar to those found in the amorphous phase of zirconium. The cation-cation distributions are also found to be quite complicated (non-Gaussian) and element specific. The U-near neighbor distances are expanded relative to the Ce ions for which it substitutes, consistent with the larger size of the actinide, and the U-cation distribution is also more complicated. In terms of the effects of this substitution on the other cation sites, the local environment around Y is altered while the Zr and Er local environments remain unchanged. These results point out the importance of collective and correlated interactions between the different pairs of cations and the host lattice that are mediated by the local strain fields generated by the different cations. The presence of pair-specific couplings has not been commonly included in previous analyses and may have implications for the stabilization mechanisms of cubic zirconia.

  18. Automatic Tool for Local Assembly Structures

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-11

    Whole community shotgun sequencing of total DNA (i.e. metagenomics) and total RNA (i.e. metatranscriptomics) has provided a wealth of information in the microbial community structure, predicted functions, metabolic networks, and is even able to reconstruct complete genomes directly. Here we present ATLAS (Automatic Tool for Local Assembly Structures) a comprehensive pipeline for assembly, annotation, genomic binning of metagenomic and metatranscriptomic data with an integrated framework for Multi-Omics. This will provide an open source tool for the Multi-Omic community at large.

  19. Simulating Structure Formation of the Local Universe

    CERN Document Server

    Heß, Steffen; Gottloeber, Stefan

    2013-01-01

    In this work we present cosmological N-body simulations of the Local Universe with initial conditions constrained by the Two-Micron Redshift Survey (2MRS) within a cubic volume of 180 Mpc/h side-length centred at the Local Group. We use a self-consistent Bayesian based approach to explore the joint parameter space of primordial density fluctuations and peculiar velocity fields, which are compatible with the 2MRS galaxy distribution after cosmic evolution. This method (the KIGEN-code) includes the novel ALPT (Augmented Lagrangian Perturbation Theory) structure formation model which combines second order LPT (2LPT) on large scales with the spherical collapse model on small scales. Furthermore we describe coherent flows with 2LPT and include a dispersion term to model fingers-of-god (fogs) arising from virialised structures. These implementations are crucial to avoid artificial filamentary structures, which appear when using a structure formation model with 2LPT and data with compressed fogs. We assume LCDM cosm...

  20. Annotation of expressed sequence tags for the East African cichlid fish Astatotilapia burtoni and evolutionary analyses of cichlid ORFs

    Directory of Open Access Journals (Sweden)

    Braasch Ingo

    2008-02-01

    Full Text Available Abstract Background The cichlid fishes in general, and the exceptionally diverse East African haplochromine cichlids in particular, are famous examples of adaptive radiation and explosive speciation. Here we report the collection and annotation of more than 12,000 expressed sequence tags (ESTs generated from three different cDNA libraries obtained from the East African haplochromine cichlid species Astatotilapia burtoni and Metriaclima zebra. Results We first annotated more than 12,000 newly generated cichlid ESTs using the Gene Ontology classification system. For evolutionary analyses, we combined these ESTs with all available sequence data for haplochromine cichlids, which resulted in a total of more than 45,000 ESTs. The ESTs represent a broad range of molecular functions and biological processes. We compared the haplochromine ESTs to sequence data from those available for other fish model systems such as pufferfish (Takifugu rubripes and Tetraodon nigroviridis, trout, and zebrafish. We characterized genes that show a faster or slower rate of base substitutions in haplochromine cichlids compared to other fish species, as this is indicative of a relaxed or reinforced selection regime. Four of these genes showed the signature of positive selection as revealed by calculating Ka/Ks ratios. Conclusion About 22% of the surveyed ESTs were found to have cichlid specific rate differences suggesting that these genes might play a role in lineage specific characteristics of cichlids. We also conclude that the four genes with a Ka/Ks ratio greater than one appear as good candidate genes for further work on the genetic basis of evolutionary success of haplochromine cichlid fishes.

  1. The African cichlid fish Astatotilapia burtoni uses acoustic communication for reproduction: sound production, hearing, and behavioral significance.

    Science.gov (United States)

    Maruska, Karen P; Ung, Uyhun S; Fernald, Russell D

    2012-01-01

    Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2-5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the

  2. The Structure of the Local Hot Bubble

    CERN Document Server

    Liu, W; Collier, M R; Cravens, T; Galeazzi, M; Koutroumpa, D; Kuntz, K D; Lallement, R; Lepri, S T; McCammon, D; Morgan, K; Porter, F S; Snowden, S L; Thomas, N E; Uprety, Y; Ursino, E; Walsh, B M

    2016-01-01

    DXL (Diffuse X-rays from the Local Galaxy) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey (RASS). The "cleaned" maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT=0.097 keV+/-0.013 keV (FWHM)+/-0.006 keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB which we found to be in good agreement with the structure of the local cavity measured from dust and gas.

  3. The Structure of the Local Hot Bubble

    Science.gov (United States)

    Liu, W.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, D.; Morgan, K.; Porter, F. S.; Snowden, S. L.; Thomas, N. E.; Uprety, Y.; Ursino, E.; Walsh, B. M.

    2017-01-01

    Diffuse X-rays from the Local Galaxy (DXL) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The “cleaned” maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT = 0.097 keV ± 0.013 keV (FWHM) ± 0.006 keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas.

  4. Community detection using global and local structural information

    Indian Academy of Sciences (India)

    Hai-Long Yan; Ju Xiang; Xiao-Yu Zhang; Jun-Feng Fan; Fang Chane; Gen-Yi Fu; Er-Min Guo; Xin-Guang Hu; Ke Hu; Ru-Min Wang

    2013-01-01

    Community detection is of considerable importance for understanding both the structure and function of complex networks. In this paper, we introduced the general procedure of the community detection algorithms using global and local structural information, where the edge betweenness and the local similarity measures respectively based on local random walk dynamics and local cyclic structures were used. The algorithms were tested on artificial and real-world networks. The results clearly show that all the algorithms have excellent performance in the tests and the local similarity measure based on local random walk dynamics is superior to that based on local cyclic structures.

  5. NMR and the local structure of relaxors

    Directory of Open Access Journals (Sweden)

    Blinc R.

    2002-01-01

    Full Text Available The relaxor transition in cubic perovskite relaxors (PMN, PSN and PST and tungsten bronze relaxor (SBN has been studied by NMR. The observed spectra are composed of a narrow -1/2 « 1/2 central transition superimposed on a broad background due to satellite transitions. The chemical heterogeneity, responsible for relaxor properties, is reflected here in the structure of the central transition part. The latter is composed of two components, one due to ordered and the other due to disordered regions. Despite of the fact that the macroscopic symmetry does not change when relaxor transition occurs, a non-zero quadruple coupling constant determined from NMR clearly demonstrates the broken local symmetry.

  6. Local Government Structure and Capacities in Europe

    NARCIS (Netherlands)

    Nemec, J.; Vries, M.S. de

    2015-01-01

    This article argues that the local government capacities and local government performance in Europe clearly rank this continent to the most developed world areas from the point of local democracy. The background factors explaining this situation have a multidimensional character and one can identify

  7. Importance of Local Structural Variations on Recrystallization

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Lin, Fengxiang; Zhang, Yubin

    2013-01-01

    Effects of local variations in the deformation microstructure on subsequent recrystallization are discussed and illustrated by three examples. The three examples consider local variations on different length scales and are: 1. Effects of local variations in the deformation microstructure on the f...... on the formation of protrusions on migrating boundaries. 2. Effects of an inhomogeneous spatial distribution of second phase particles on growth. 3. Effects of stored energy and orientation variations on recrystallization kinetics. © (2013) Trans Tech Publications, Switzerland....

  8. Local Government Structure and Capacities in Europe

    OpenAIRE

    Nemec, J.; Vries, M.S. de

    2015-01-01

    This article argues that the local government capacities and local government performance in Europe clearly rank this continent to the most developed world areas from the point of local democracy. The background factors explaining this situation have a multidimensional character and one can identify as core positive factors the relative economic wealth, high human development, the long historical tradition of the subsidiarity principle in most parts of Europe, and the regulatory function of t...

  9. Towards structural controllability of local-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shiwen, E-mail: sunsw80@126.com [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China); Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China)

    2016-05-20

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.

  10. The Local Product Theorem for bihamiltonian structures

    CERN Document Server

    Turiel, Francisco-Javier

    2011-01-01

    In this work one proves that, around each point of a dense open set (regular points), a real analytic or holomorphic bihamiltonian structure decomposes into a product of a Kronecker bihamiltonian structure and a symplectic one if a necessary condition on the characteristic polynomial of the symplectic factor holds. Moreover we give an example of bihamiltonian structure for showing that this result does not extend to the $C^\\infty$-category. Thus a classical problem on the geometric theory of bihamiltonian structures is solved at almost every point.

  11. Enhancing community detection by using local structural information

    Science.gov (United States)

    Xiang, Ju; Hu, Ke; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-03-01

    Many real-world networks, such as gene networks, protein-protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods.

  12. Wave localization in randomly disordered periodic layered piezoelectric structures

    Institute of Scientific and Technical Information of China (English)

    Fengming Li; Yuesheng Wang; Chao Hu; Wenhu Huang

    2006-01-01

    Considering the mechnoelectrical coupling,the localization of SH-waves in disordered periodic layered piezoelectric structures is studied.The waves propagating in directions normal and tangential to the layers are considered.The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions.The expressions of localization factor and localization length in the disordered periodic structures are presented.For the disordered periodic piezoelectric structures,the numerical results of localization factor and localization length are presented and discussed.It can be seen from the results that the fequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones,and the larger the coefficient of variation is,the greater the degree of wave localization is.The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes.For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency,but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.

  13. Local structure of self-affine sets

    CERN Document Server

    Bandt, Christoph

    2011-01-01

    The structure of a self-similar set with open set condition does not change under magnification. For self-affine sets the situation is completely different. We consider planar self-affine Cantor sets E of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that within small square neighborhoods of almost each point x in E, with respect to many product measures on address space, E is well approximated by product sets of an interval and a Cantor set. Even though E is totally disconnected, the limit sets have the product structure with interval fibres, reminiscent to the view of attractors of chaotic differentiable dynamical systems.

  14. Dynamics of localized structures in vector waves

    CERN Document Server

    Hernández-García, E; Colet, P; San Miguel, M; Hernandez-Garcia, Emilio; Hoyuelos, Miguel; Colet, Pere; Miguel, Maxi San

    1999-01-01

    Dynamical properties of topological defects in a twodimensional complex vector field are considered. These objects naturally arise in the study of polarized transverse light waves. Dynamics is modeled by a Vector Complex Ginzburg-Landau Equation with parameter values appropriate for linearly polarized laser emission. Creation and annihilation processes, and selforganization of defects in lattice structures, are described. We find "glassy" configurations dominated by vectorial defects and a melting process associated to topological-charge unbinding.

  15. Local Atomic Structure of Piperidyl Nd Dithiocarbamate

    Institute of Scientific and Technical Information of China (English)

    吴忠华; 李前树; 等

    1999-01-01

    The atomic structure of a novel rare earth complex consisting of Nd and the sulfur-containing ligand pipdtc (C5H10NCS2-) has been studied with extended x-ray absortpiton fine structure(EXAFS) and x-ray diffraction techniques.The complex of formula Nd(pipdtc)4N(CH3)4 crystallizaes in the monoclinic space group P21/n with the following lattice parameters,a=22.685(2),b=20.332(2),c=17.1270(10)A,β=100.570(10)°.Z=8,the calculated density is 1.47g/cm3,A new derivative method is used to remove the piost-edge absorption background including the multielectron excitation effect.The EXAFS results demonstrate that there are about eight S and four O atoms around Nd with the Nd-S bond length of 2.916A and the Nd-O bond length of 2.415A,respectively.This implies that the powder of this complex is not stable and is easy to oxidize in air.The possible change of structure before and after oxidation is discussed.

  16. A Novel Local Structure Descriptor for Color Image Retrieval

    Directory of Open Access Journals (Sweden)

    Zhiyong Zeng

    2016-02-01

    Full Text Available A novel local structure descriptor (LSD for color image retrieval is proposed in this paper. Local structures are defined based on a similarity of edge orientation, and LSD is constructed using the underlying colors in local structures with similar edge direction. LSD can effectively combine color, texture and shape as a whole for image retrieval. LSH integrates the advantages of both statistical and structural texture description methods, and it possesses high indexing capability and low dimensionality. In addition, the proposed feature extraction algorithm does not need to train on a large scale training datasets, and it can extract local structure histogram based on LSD. The experimental results on the Corel image databases show that the descriptor has a better image retrieval performance than other descriptors.

  17. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  18. Band structures and localization properties of aperiodic layered phononic crystals

    Science.gov (United States)

    Yan, Zhi-Zhong; Zhang, Chuanzeng

    2012-03-01

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  19. Strain localization and percolation of stable structure in amorphous solids

    OpenAIRE

    Shi, Yunfeng; Falk, Michael L.

    2005-01-01

    Spontaneous strain localization occurs during mechanical tests of a model amorphous solid simulated using molecular dynamics. The degree of localization depends upon the extent of structural relaxation prior to mechanical testing. In the most rapidly quenched samples higher strain rates lead to increased localization, while the more gradually quenched samples exhibit the opposite strain rate dependence. This transition coincides with the k-core percolation of atoms with quasi-crystal-like sho...

  20. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  1. Local structural modeling for implementation of optimal active damping

    Science.gov (United States)

    Blaurock, Carl A.; Miller, David W.

    1993-09-01

    Local controllers are good candidates for active control of flexible structures. Local control generally consists of low order, frequency benign compensators using collocated hardware. Positive real compensators and plant transfer functions ensure that stability margins and performance robustness are high. The typical design consists of an experimentally chosen gain on a fixed form controller such as rate feedback. The resulting compensator performs some combination of damping (dissipating energy) and structural modification (changing the energy flow paths). Recent research into structural impedance matching has shown how to optimize dissipation based on the local behavior of the structure. This paper investigates the possibility of improving performance by influencing global energy flow, using local controllers designed using a global performance metric.

  2. Semifolded Localized Structures in Three-Dimensional Soliton Systems

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Ping; ZHENG Chun-Long; CHEN Li-Qun

    2004-01-01

    By means ora Painlevé-Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer-Kaup-Kupershmidt system with variable coefficients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.

  3. Semifolded Localized Structures in Three-Dimensional Soliton Systems

    Institute of Scientific and Technical Information of China (English)

    FANGJian-Ping; ZHENGChun-Long; CHENLi-Qun

    2004-01-01

    By means ofa Painlev6 Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer Kaup Kupershmidt system with variable coeft~cients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.

  4. Local Influence Analysis of Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  5. Mapping chemical performance on molecular structures using locally interpretable explanations

    CERN Document Server

    Whitmore, Leanne S; Hudson, Corey M

    2016-01-01

    In this work, we present an application of Locally Interpretable Machine-Agnostic Explanations to 2-D chemical structures. Using this framework we are able to provide a structural interpretation for an existing black-box model for classifying biologically produced fuel compounds with regard to Research Octane Number. This method of "painting" locally interpretable explanations onto 2-D chemical structures replicates the chemical intuition of synthetic chemists, allowing researchers in the field to directly accept, reject, inform and evaluate decisions underlying inscrutably complex quantitative structure-activity relationship models.

  6. A generative, probabilistic model of local protein structure

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Mardia, Kanti V.; Taylor, Charles C.;

    2008-01-01

    Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative...... conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state...

  7. Localized Structures Embedded in the Eigenfunctions of Chaotic Hamiltonian Systems

    CERN Document Server

    Vergini, E G

    1998-01-01

    We study quantum localization phenomena in chaotic systems with a parameter. The parametric motion of energy levels proceeds without crossing any other and the defined avoided crossings quantify the interaction between states. We propose the elimination of avoided crossings as the natural mechanism to uncover localized structures. We describe an efficient method for the elimination of avoided crossings in chaotic billiards and apply it to the stadium billiard. We find many scars of short periodic orbits revealing the skeleton on which quantum mechanics is built. Moreover, we have observed strong interaction between similar localized structures.

  8. Local structure-preserving algorithms for partial differential equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we discuss the concept of local structure-preserving algorithms (SPAs) for partial differential equations, which are the natural generalization of the corresponding global SPAs. Local SPAs for the problems with proper boundary conditions are global SPAs, but the inverse is not necessarily valid. The concept of the local SPAs can explain the difference between different SPAs and provide a basic theory for analyzing and constructing high performance SPAs. Furthermore, it enlarges the applicable scopes of SPAs. We also discuss the application and the construction of local SPAs and derive several new SPAs for the nonlinear Klein-Gordon equation.

  9. Two-dimensional localized structures in harmonically forced oscillatory systems

    Science.gov (United States)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  10. Measurement of local relative displacements in large structures

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Eder, Martin Alexander; Nielsen, Magda

    2014-01-01

    This paper presents a novel measurement technique to measure local relative displacements between parts of large-scale structures. The measured deformations can be of significant importance for fracture analyses in many different types of structures in general, and for adhesive connections...... in particular. The measurement of small local relative displacements in structures subjected to large global deformations is complex and hardly feasible with conventional measurement methods. Therefore, a Small Displacement Measurement System (SDMS) has been devised. The SDMS is based on stereo photogrammetry...... and capable of measuring 3D local displacements with a high degree of accuracy. In this article, the technique is used to measure local deformations in the vicinity of the adhesive trailing edge joint of a wind turbine rotor blade. The SDMS results correspond well with another independent measurement method....

  11. Local structure studies using the pair distribution function

    Directory of Open Access Journals (Sweden)

    Bordet Pierre

    2015-01-01

    Full Text Available The pair distribution analysis method is a fast spreading structural analysis method allowing to go beyond classical crystallographic analysis by providing quantitative information about local as well as meso-structure. It based on powder diffraction data fourier transformed to direct space. We will present here the main characteristics of the method, and its domain of application.

  12. Local interaction of light with periodic photonic structures

    NARCIS (Netherlands)

    Flück, Eliane

    2003-01-01

    Photonic crystals are structures with a strong relation between geometry and op- tical properties. The application of near-field methods is a new and challenging approach to investigate the local optical properties of photonic crystals. The op- tical signals obtained in crystal structures of various

  13. Deriving quantum theory from its local structure and reversibility.

    Science.gov (United States)

    de la Torre, Gonzalo; Masanes, Lluís; Short, Anthony J; Müller, Markus P

    2012-08-31

    We investigate the class of physical theories with the same local structure as quantum theory but potentially different global structure. It has previously been shown that any bipartite correlations generated by such a theory can be simulated in quantum theory but that this does not hold for tripartite correlations. Here we explore whether imposing an additional constraint on this space of theories-that of dynamical reversibility-will allow us to recover the global quantum structure. In the particular case in which the local systems are identical qubits, we show that any theory admitting at least one continuous reversible interaction must be identical to quantum theory.

  14. An online substructure identification method for local structural health monitoring

    Science.gov (United States)

    Hou, Jilin; Jankowski, Łukasz; Ou, Jinping

    2013-09-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

  15. Reconstruction of biofilm images: combining local and global structural parameters

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-10-20

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  16. New Fractal Localized Structures in Boiti-Leon-Pempinelli System

    Institute of Scientific and Technical Information of China (English)

    MAZheng-Yi; ZHUJia-Min; ZHENGChun-Long

    2004-01-01

    A novel phenomenon that the localized coherent structures of a (2+1)-dimensional physical model possess fractal behaviors is revealed. To clarify the interesting phenomenon, we take the (2+1)-dimensional Boiti Leon-Pempinelli system as a concrete example. Starting from an extended homogeneous balance approach, a general solution of the system is derived. From which some special localized excitations with fractal behaviors are obtained by introducin gsome types of lower-dimensional fractal patterns.

  17. Sampling Realistic Protein Conformations Using Local Structural Bias

    DEFF Research Database (Denmark)

    Hamelryck, Thomas Wim; Kent, John T.; Krogh, A.

    2006-01-01

    The prediction of protein structure from sequence remains a major unsolved problem in biology. The most successful protein structure prediction methods make use of a divide-and-conquer strategy to attack the problem: a conformational sampling method generates plausible candidate structures, which...... are subsequently accepted or rejected using an energy function. Conceptually, this often corresponds to separating local structural bias from the long-range interactions that stabilize the compact, native state. However, sampling protein conformations that are compatible with the local structural bias encoded...... in a given protein sequence is a long-standing open problem, especially in continuous space. We describe an elegant and mathematically rigorous method to do this, and show that it readily generates native-like protein conformations simply by enforcing compactness. Our results have far-reaching implications...

  18. Influences of consolidation processes on local paper structure

    Science.gov (United States)

    Sung, Yongjoo

    The accurate measurement of the structural parameters such as thickness, grammage, apparent density and surface topography, and the proper evaluation of the variation of each parameter, are very important not only for predicting the end use properties of the paper, but also for diagnosing the pa permaking processes. The difficulty of the measurement of thickness at fine scale ˜1 mm has been an impediment to the understanding of local paper structure. To address this problem, a twin laser profilometer instrument (TLP) for non-contacting measurement of local thickness and surface topography was developed, characterized and calibrated in this work. The fundamental relationships between structural parameters were reexamined with various handsheet samples. The effects of wet pressing on the local paper structure were evaluated using laboratory static press and commercial press felts. The different press pressure had no significant influence on the local density variation of the handsheet samples. The influences of felts on the surface topography were also successfully observed. The different densification effects of soft nip and hard nip calendering processes were evaluated by direct comparison of structural parameters before and after processing. The much higher selective reduction in local thickness (larger reduction for the thicker area) by the hard nip calendering process resulted in different relationships between structural parameters. The various periodic variations in the paper structure were also detected, analyzed and identified. The effects of different forming elements such as the conventional foil system and the velocity induced drainage (VID) system on the paper structure and end use properties were evaluated with pilot machine trials and commercial product produced using different forming elements. Generally, the VID samples showed better formation, less two sidedness in the fine distribution through thickness direction, and less densification during

  19. Local Linearizability for Concurrent Container-Type Data Structures

    OpenAIRE

    Haas, Andreas; Henzinger, Thomas A.; Holzer, Andreas; Kirsch, Christoph M.; Lippautz, Michael; Payer, Hannes; Sezgin, Ali; Sokolova, Ana; Veith, Helmut

    2016-01-01

    The semantics of concurrent data structures is usually given by a sequential specification and a consistency condition. Linearizability is the most popular consistency condition due to its simplicity and general applicability. Nevertheless, for applications that do not require all guarantees offered by linearizability, recent research has focused on improving performance and scalability of concurrent data structures by relaxing their semantics. In this paper, we present local linearizabi...

  20. Local structure of numerically generated worm hole spacetime.

    Science.gov (United States)

    Siino, M.

    The author investigates the evolution of the apparent horizons in a numerically gererated worm hole spacetime. The behavior of the apparent horizons is affected by the dynamics of the matter field. By using the local mass of the system, he interprets the evolution of the worm hole structure.

  1. Local Structure of Numerically Generated Worm Hole Spacetime

    CERN Document Server

    Nambu, Y; Nambu, Yasusada; Siino, Masaru

    1993-01-01

    We investigate the evolution of the apparent horizons in a numerically gererated worm hole spacetime. The behavior of the apparent horizons is affected by the dynamics of the matter field. By using the local mass of the system, we interpret the evolution of the worm hole structure. Figures are available by mail to author.

  2. Local magnetic structure determination using polarized neutron holography

    Energy Technology Data Exchange (ETDEWEB)

    Szakál, Alex, E-mail: szakal.alex@wigner.mta.hu; Markó, Márton, E-mail: marko.marton@wigner.mta.hu; Cser, László, E-mail: cser.laszlo@wigner.mta.hu [Wigner Research Centre for Physics, Konkoly Thege M. út 29-33, H-1121 Budapest (Hungary)

    2015-05-07

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  3. Local Exact Pattern Matching for Non-Fixed RNA Structures.

    Science.gov (United States)

    Amit, Mika; Backofen, Rolf; Heyne, Steffen; Landau, Gad M; Möhl, Mathias; Otto, Christina; Will, Sebastian

    2014-01-01

    Detecting local common sequence-structure regions of RNAs is a biologically important problem. Detecting such regions allows biologists to identify functionally relevant similarities between the inspected molecules. We developed dynamic programming algorithms for finding common structure-sequence patterns between two RNAs. The RNAs are given by their sequence and a set of potential base pairs with associated probabilities. In contrast to prior work on local pattern matching of RNAs, we support the breaking of arcs. This allows us to add flexibility over matching only fixed structures; potentially matching only a similar subset of specified base pairs. We present an O(n(3)) algorithm for local exact pattern matching between two nested RNAs, and an O(n(3) log n) algorithm for one nested RNA and one bounded-unlimited RNA. In addition, an algorithm for approximate pattern matching is introduced that for two given nested RNAs and a number k, finds the maximal local pattern matching score between the two RNAs with at most k mismatches in O(n(3)k(2)) time. Finally, we present an O(n(3)) algorithm for finding the most similar subforest between two nested RNAs.

  4. Recognition of Local DNA Structures by p53 Protein.

    Science.gov (United States)

    Brázda, Václav; Coufal, Jan

    2017-02-10

    p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.

  5. Parametric localized modes in quadratic nonlinear photonic structures

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole;

    2001-01-01

    We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi2) nonlinear interfaces embedded in a linear layered structure-a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear...... interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi2 equations) and find, numerically and analytically, the spatially localized solutions-discrete gap solitons. For a single nonlinear interface...... in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media....

  6. Local Structure and Magnetism of (Ga,Mn)As

    CERN Document Server

    AUTHOR|(CDS)2093111; Temst, Kristiaan

    Throughout the years, dilute magnetic semiconductors (DMS) have emerged as promising materials for semiconductor-based spintronics. In particular, (Ga,Mn)As has become the model system in which to explore the physics of carrier-mediated ferromagnetism in semiconductors and the associated spintronic phenomena, with a number of interesting functionalities and demonstrated proof-of-concept devices. It constitutes the perfect example of how the magnetic behavior of DMS materials is strongly influenced by local structure. In this thesis, we address key aspects of the interplay between local structure and ferromagnetism of (Ga,Mn)As. We unambiguously identify the lattice site occupied by interstitial Mn as the tetrahedral interstitial site with As nearest neighbors T(As). We show, furthermore, that the T(As) is the most energetically favorable site regardless of the interstitial atom forming or not complexes with substitutional Mn. We also evaluate the thermal stability of both interstitial and substitutional Mn si...

  7. Local structure co-occurrence pattern for image retrieval

    Science.gov (United States)

    Zhang, Ke; Zhang, Fan; Lu, Jia; Lu, Yinghua; Kong, Jun; Zhang, Ming

    2016-03-01

    Image description and annotation is an active research topic in content-based image retrieval. How to utilize human visual perception is a key approach to intelligent image feature extraction and representation. This paper has proposed an image feature descriptor called the local structure co-occurrence pattern (LSCP). LSCP extracts the whole visual perception for an image by building a local binary structure, and it is represented by a color-shape co-occurrence matrix which explores the relationship of multivisual feature spaces according to visual attention mechanism. As a result, LSCP not only describes low-level visual features integrated with texture feature, color feature, and shape feature but also bridges high-level semantic comprehension. Extensive experimental results on an image retrieval task on the benchmark datasets, corel-10,000, MIT VisTex, and INRIA Holidays, have demonstrated the usefulness, effectiveness, and robustness of the proposed LSCP.

  8. Alfvénic localized structures in partially ionized plasmas

    Science.gov (United States)

    Borhanian, Jafar; Rezaei, Arash

    2017-02-01

    The existence and dynamics of Alfvénic localized structures are investigated in partially ionized plasmas. We have employed the Hall magnetohydrodynamics model for partially ionized plasmas and shown that the evolution of a weakly nonlinear and weakly dispersive Alfvén wave is governed by a derivative nonlinear Schrödinger (DNLS) type equation. In the Hall effect domination limit, this equation reduces to a standard DNLS equation that possesses localized solutions in the form of solitons and rogue waves. The dependence of the profile of these structures on the Hall parameter is addressed. When the ohmic and ambipolar effects are small but finite in comparison to the Hall effect, the evolution equation takes the form of a perturbed DNLS equation. In this limit, the dynamics of envelope soliton solution is examined by means of the soliton perturbation method, the moment method, to be precise.

  9. Dynamics of Localized Structures in Systems with Broken Parity Symmetry

    CERN Document Server

    Javaloyes, J; Marconi, M; Giudici, M

    2016-01-01

    A great variety of nonlinear dissipative systems are known to host structures having a correlation range much shorter than the size of the system. The dynamics of these Localized Structures (LSs) have been investigated so far in situations featuring parity symmetry. In this letter we extend this analysis to systems lacking of this property. We show that the LS drifting speed in a parameter varying landscape is not simply proportional to the parameter gradient, as found in parity preserving situations. The symmetry breaking implies a new contribution to the velocity field which is a function of the parameter value, thus leading to a new paradigm for LSs manipulation. We illustrate this general concept by studying the trajectories of the LSs found in a passively mode-locked laser operated in the localization regime. Moreover, the lack of parity affects significantly LSs interactions which are governed by asymmetrical repulsive forces.

  10. Cosmic structure and dynamics of the local Universe

    Science.gov (United States)

    Kitaura, Francisco-Shu; Erdoǧdu, Pirin; Nuza, Sebastián. E.; Khalatyan, Arman; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-11-01

    We present a cosmography analysis of the local Universe based on the recently released Two-Micron All-Sky Redshift Survey catalogue. Our method is based on a Bayesian Networks Machine Learning algorithm (the KIGEN-code) which self-consistently samples the initial density fluctuations compatible with the observed galaxy distribution and a structure formation model given by second-order Lagrangian perturbation theory (2LPT). From the initial conditions we obtain an ensemble of reconstructed density and peculiar velocity fields which characterize the local cosmic structure with high accuracy unveiling non-linear structures like filaments and voids in detail. Coherent redshift-space distortions are consistently corrected within 2LPT. From the ensemble of cross-correlations between the reconstructions and the galaxy field and the variance of the recovered density fields, we find that our method is extremely accurate up to k˜ 1 h Mpc-1 and still yields reliable results down to scales of about 3-4 h-1 Mpc. The motion of the Local Group we obtain within ˜80 h-1 Mpc (vLG = 522 ± 86 km s-1, lLG = 291° ± 16°, bLG = 34° ± 8°) is in good agreement with measurements derived from the cosmic microwave background and from direct observations of peculiar motions and is consistent with the predictions of ΛCDM.

  11. Cosmic Structure and Dynamics of the Local Universe

    CERN Document Server

    Kitaura, Francisco-Shu; Nuza, Sebastian E; Khalatyan, Arman; Angulo, Raul E; Hoffman, Yehuda; Gottloeber, Stefan

    2012-01-01

    We present a cosmography analysis of the Local Universe based on the recently released Two-Micron All-Sky Redshift Survey (2MRS). Our method is based on a Bayesian Networks Machine Learning algorithm (the Kigen-code) which self-consistently samples the initial density fluctuations compatible with the observed galaxy distribution and a structure formation model given by second order Lagrangian perturbation theory (2LPT). From the initial conditions we obtain an ensemble of reconstructed density and peculiar velocity fields which characterize the local cosmic structure with high accuracy unveiling nonlinear structures like filaments and voids in detail. Coherent redshift space distortions are consistently corrected within 2LPT. From the ensemble of cross-correlations between the reconstructions and the galaxy field and the variance of the recovered density fields we find that our method is extremely accurate up to k ~ 1 h Mpc^-1 and still yields reliable results up to k ~ 2 h Mpc^-1. The motion of the local gro...

  12. Hypo-analytic structures local theory (PMS-40)

    CERN Document Server

    Treves, François

    2014-01-01

    In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations and delimits their supports. The contents of this book consist of many results accumulated in the last decade by the author and his collaborators, but also include classical results, such as the Newlander-Nirenberg theorem. The reader will find an elementary description of the FBI transform, as well as examples of its use. Treves extends the main approximation and uniqueness results to first-order nonlinear equations by means of ...

  13. Persistent Near-Surface Flow Structures from Local Helioseismology

    CERN Document Server

    Howe, R; Baker, D; Harra, L; van Driel-Gesztelyi, L; Bogart, R S

    2015-01-01

    Near-surface flows measured by the ring-diagram technique of local helioseismology show structures that persist over multiple rotations. We examine these phenomena using data from the {\\em Global Oscillation Network Group} (GONG) and the {\\em Helioseismic and Magnetic Imager} (HMI) and show that a correlation analysis of the structures can be used to estimate the rotation rate as a function of latitude, giving a result consistent with the near-surface rate from global helioseismology and slightly slower than that obtained from a similar analysis of the surface magnetic field strength. At latitudes of 60$^{\\circ}$ and above the HMI flow data reveal a strong signature of a two-sided zonal flow structure. This signature may be related to recent reports of "giant cells" in solar convection.

  14. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  15. Role of nonlinear localized structures and turbulence in magnetized plasma

    Science.gov (United States)

    Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.

    2016-09-01

    In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.

  16. The local spiral structure of the Milky Way

    CERN Document Server

    Xu, Ye; Dame, Thomas; Menten, Karl; Sakai, Nobuyuki; Li, Jingjing; Brunthaler, Andreas; Moscadelli, Luca; Zhang, Bo; Zheng, Xingwu

    2016-01-01

    The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral structure in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxy's major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branche...

  17. Structural eigenfrequency optimization based on local sub-domain "frequencies"

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2013-01-01

    The engineering approach of fully stressed design is a practical tool with a theoretical foundation. The analog approach to structural eigenfrequency optimization is presented here with its theoretical foundation. A numerical redesign procedure is proposed and illustrated with examples.......For the ideal case, an optimality criterion is fulfilled if the design have the same sub-domain ”frequency” (local Rayleigh quotient). Sensitivity analysis shows an important relation between squared system eigenfrequency and squared local sub-domain frequency for a given eigenmode. Higher order...... eigenfrequencies may also be controlled in this manner.The presented examples are based on 2D finite element models with the use of subspace iteration for analysis and a recursive design procedure based on the derived optimality condition. The design that maximize a frequency depend on the total amount...

  18. Characterizing structural transitions using localized free energy landscape analysis.

    Directory of Open Access Journals (Sweden)

    Nilesh K Banavali

    Full Text Available BACKGROUND: Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes. METHODOLOGY/PRINCIPAL FINDINGS: Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom. CONCLUSIONS/SIGNIFICANCE: The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  19. The local structure theorem for real spherical varieties

    DEFF Research Database (Denmark)

    Knop, Friedrich; Krötz, Bernhard; Schlichtkrull, Henrik

    2015-01-01

    Let G be an algebraic real reductive group and Z a real spherical G -variety, that is, it admits an open orbit for a minimal parabolic subgroup P . We prove a local structure theorem for Z . In the simplest case where Z is homogeneous, the theorem provides an isomorphism of the open P -orbit...... with a bundle Q×LS . Here Q is a parabolic subgroup with Levi decomposition L⋉U , and S is a homogeneous space for a quotient D=L/Ln of L , where Ln⊆L is normal, such that D is compact modulo center....

  20. Structure and chromosomal localization of the human thrombospondin gene.

    Science.gov (United States)

    Wolf, F W; Eddy, R L; Shows, T B; Dixit, V M

    1990-04-01

    Thrombospondin (THBS1) is a large modular glycoprotein component of the extracellular matrix and contains a variety of distinct domains, including three repeating subunits (types I, II, and III) that share homology to an assortment of other proteins. Determination of THBS1 gene structure has revealed that the type I repeat modules are encoded by symmetrical exons and that the heparin-binding domain is encoded by a single exon. To further elucidate the higher level organization of THBS1, the gene was localized to the q11-qter region of chromosome 15.

  1. Local structure of Eu3+ ions in fluorophosphate laser glass

    Indian Academy of Sciences (India)

    P Babu; R Vijaya; Kyoung Hyuk Jang; Hyo Jin Seo; V Lavin; C K Jayasankar

    2010-11-01

    A fluorophosphate laser glass doped with 1.0 mol% of Eu3+ ions has been prepared and studied by site-selective spectroscopy to explore the local structure of Eu3+ ions. Site-selective 50 → 71,2 emission spectra have been measured under resonant excitation to the 50 level at different wavelengths within the 70 → 50 band at 16 K. Using the Stark level positions of the 71 and 72 levels, crystal-field analysis has been carried out. The results suggest the existence of a unique kind of site for all the environments of Eu3+ ions in this glass.

  2. Investigation of nanogap localized field enhancement in gold plasmonic structures

    Science.gov (United States)

    Debu, Desalegn Tadesse; Bauman, Stephen; Saylor, Cameron; Novak, Eric; French, David; Herzog, Joseph

    2015-03-01

    Nanogaps between plasmonic structures allow confining the localized electric field with moreenhancements. Based on previously implemented two-step lithography process, we introducea nano-masking technique to fabricate nanostructrues and nanogaps for various geometrical patterns. This new method can fabricate gold nanostructures as well as nanogaps that are less than 10nm, below the limiting scale of lithography. Simulation from finite element method (FEM) shows strong gap dependence of optical properties and peak enhancement of these devices. The fabricated plasmonic nanostructure provides wide range of potential future application including highly sensitive optical antenna, surface enhanced Raman spectroscopy and biosensing.

  3. Local structure probes of nanoscale heterogeneity in crystalline materials.

    Science.gov (United States)

    Conradson, S; Espinosa, F; Villella, P

    2001-03-01

    In the conventional model of condensed matter increasing numbers of defects break down the order and ultimately convert perfect periodic crystals into aperiodic glasses. Local structure probes of a variety of materials with non-stoichiometric compositions, multiple degenerate ordering modes, or other symmetry breaking factors identify multiple ordered arrangements of atoms that render the materials heterogeneous on the nanometer scale. While exerting apparently negligible effects on bulk properties, this heterogeneity or phase separation does influence correlated or collective properties such as magnetism and phase stability.

  4. Local structure of nanosized tungstates revealed by evolutionary algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Timoshenko, Janis; Anspoks, Andris; Kuzmin, Alexei [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Kalinko, Alexandr [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Synchrotron SOLEIL, l' Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France)

    2015-02-01

    Nanostructured tungstates, such as CoWO{sub 4} and CuWO{sub 4}, are very promising catalytic materials, particularly for photocatalytic oxidation of water. The high catalytic activity of tungstate nanoparticles partially is a result of their extremely small sizes, and, consequently, high surface-to-volume ratio. Therefore their properties depend strongly on the atomic structure, which differ significantly from that of the bulk material. X-ray absorption spectroscopy is a powerful technique to address the challenging problem of the local structure determination in nanomaterials. In order to fully exploit the structural information contained in X-ray absorption spectra, in this study we employ a novel evolutionary algorithm (EA) for the interpretation of the Co and Cu K-edges as well as the W L{sub 3}-edge extended X-ray absorption fine structure (EXAFS) of nanosized CoWO{sub 4} and CuWO{sub 4}. The combined EA-EXAFS approach and simultaneous analysis of the W L{sub 3} and Co(Cu) K-edge EXAFS spectra allowed us for the first time to obtain a 3D structure model of the tungstate nanoparticles and to explore in details the effect of size, temperature and transition metal type. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  6. Local structure and local conduction paths in amorphous (In,Ga,Hf)-ZnO semiconductor thin films

    Science.gov (United States)

    Yang, Dong-Seok; Cheol Lee, Jae; Chung, JaeGwan; Lee, Eunha; Anass, Benayad; Sung, Nark-Eon; Min Lee, Jay; Jae Kang, Hee

    2012-10-01

    The local structure and local conduction paths of Ga-In-Zn-O (GIZO) and Hf-In-Zn-O (HIZO) amorphous thin films were investigated by the extended X-ray absorption fine structure (EXAFS). We found that the local hindrance paths of In-Ga and In-Hf exist in the conduction paths of amorphous GIZO and HIZO semiconductor thin films, respectively.

  7. A local immunization strategy for networks with overlapping community structure

    Science.gov (United States)

    Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi

    2017-02-01

    Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.

  8. Embrittlement and Flow Localization in Reactor Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of necking is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.

  9. Structure and local charging of electromigrated Au nanocontacts

    Science.gov (United States)

    Arnold, D.; Marz, M.; Schneider, S.; Hoffmann-Vogel, R.

    2017-02-01

    We study the structure and the electronic properties of Au nanocontacts created by controlled electromigration of thin film devices, a method frequently used to contact molecules. In contrast to electromigration testing, a current is applied in a cyclic fashion and during each cycle the resistance increase of the metal upon heating is used to avoid thermal runaway. In this way, nanometer sized-gaps are obtained. The thin film devices with an optimized structure at the origin of the electromigration process are made by shadow evaporation without contamination by organic materials. Defining rounded edges and a thinner area in the center of the device allow to pre-determine the location where the electromigration takes place. Scanning force microscopy images of the pristine Au film and electromigrated contact show its grainy structure. Through electromigration, a 1.5 μm-wide slit is formed, with extensions only on the anode side that had previously not been observed in narrower structures. It is discussed whether this could be explained by asymmetric heating of both electrodes. New grains are formed in the slit and on the extensions on both, the anode and the cathode side. The smaller structures inside the slit lead to an electrode distance below 150 nm. Kelvin probe force microscopy images show a local work function difference with fluctuations of 70 mV on the metal before electromigration. Between the electrodes, disconnected through electromigration, a work function difference of 3.2 V is observed due to charging. Some of the grains newly formed by electromigration are electrically disconnected from the electrodes.

  10. Local causal structures, Hadamard states and the principle of local covariance in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio [Erwin Schroedinger Institut fuer Mathematische Physik, Wien (Austria); Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Porrmann, Martin [KwaZulu-Natal Univ. (South Africa). Quantum Research Group, School of Physics; National Institute for Theoretical Physics, Durban (South Africa)

    2010-01-15

    In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M{sup '} and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M{sup '}. (orig.)

  11. Local structure of solid Rb at megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    De Panfilis, S. [Centre for Life Nano Science IIT@Sapienza, Istituto Italiano di Tecnologia, I-00161 Roma (Italy); Gorelli, F.; Santoro, M. [INO-CNR and LENS, I-50019 Sesto Fiorentino, Firenze (Italy); Ulivi, L. [ISC-CNR, I-50019 Sesto Fiorentino, Firenze (Italy); Gregoryanz, E. [School of Physics and Astronomy, Centre for Science Under Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Irifune, T.; Shinmei, T. [Geodynamics Research Center, Ehime University, Matsuyama 790-8577 (Japan); Kantor, I.; Mathon, O.; Pascarelli, S. [European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2015-06-07

    We have investigated the local and electronic structure of solid rubidium by means of x-ray absorption spectroscopy up to 101.0 GPa, thus doubling the maximum investigated experimental pressure. This study confirms the predicted stability of phase VI and was completed by the combination of two pivotal instrumental solutions. On one side, we made use of nanocrystalline diamond anvils, which, contrary to the more commonly used single crystal diamond anvils, do not generate sharp Bragg peaks (glitches) at specific energies that spoil the weak fine structure oscillations in the x-ray absorption cross section. Second, we exploited the performance of a state-of-the-art x-ray focussing device yielding a beam spot size of 5 × 5 μm{sup 2}, spatially stable over the entire energy scan. An advanced data analysis protocol was implemented to extract the pressure dependence of the structural parameters in phase VI of solid Rb from 51.2 GPa up to the highest pressure. A continuous reduction of the nearest neighbour distances was observed, reaching about 6% over the probed pressure range. We also discuss a phenomenological model based on the Einstein approximation to describe the pressure behaviour of the mean-square relative displacement. Within this simplified scheme, we estimate the Grüneisen parameter for this high pressure Rb phase to be in the 1.3–1.5 interval.

  12. Local atomic structures of single-component metallic glasses

    Science.gov (United States)

    Trady, Salma; Hasnaoui, Abdellatif; Mazroui, M.'hammed; Saadouni, Khalid

    2016-10-01

    In this study we examine the structural properties of single-component metallic glasses of aluminum. We use a molecular dynamics simulation based on semi-empirical many-body potential, derived from the embedded atom method (EAM). The radial distribution function (RDF), common neighbors analysis method (CNA), coordination number analysis (CN) and Voronoi tessellation are used to characterize the metal's local structure during the heating and cooling (quenching). The simulation results reveal that the melting temperature depends on the heating rate. In addition, atomic visualization shows that the structure of aluminum after fast quenching is in a glassy state, confirmed quantitatively by the splitting of the second peak of the radial distribution function, and by the appearance of icosahedral clusters observed via CNA technique. On the other hand, the Wendt-Abraham parameters are calculated to determine the glass transition temperature (Tg), which depends strongly on the cooling rate; it increases while the cooling rate increases. On the basis of CN analysis and Voronoi tessellation, we demonstrate that the transition from the Al liquid to glassy state is mainly due to the formation of distorted and perfect icosahedral clusters.

  13. Cosmological parameter dependence in local string theories of structure formation

    CERN Document Server

    Copeland, E J; Steer, D A; Magueijo, Joao

    2000-01-01

    We perform the most accurate study to date of the dependence on cosmological parameters of structure formation with local cosmic strings. The crucial new ingredients are the inclusion of the effects of gravitational backreaction on the evolution of the network, and the accurate evolution of the network through the radiation to matter transition. Our work re-iterates the fact that expanding Universe numerical simulations only probe a transient regime, and we incorporate our results into the unequal time correlators recently measured. We then compute the CMB and CDM fluctuations' power spectra for various values of the Hubble constant $H_0$ and baryon fraction $\\Omega_b$. We find that, whereas the dependence on $\\Omega_b$ is negligible, there is still a strong dependence on $H_0$.

  14. Quantum correlations and light localization in disordered nanophotonic structures

    DEFF Research Database (Denmark)

    Smolka, Stephan

    This thesis reports results on quantum properties of light in multiple-scattering nano-structured materials. Spatial quantum correlations of photons are demonstrated experimentally that are induced by multiple scattering of squeezed light and of purely quantum origin. By varying the quantum state...... of the light source, positive and negative spatial quantum correlations are observed. Angular-resolved measurements of multiply scattered photons show the innite range of the correlation function in the diusive regime. The multiply scattered light is characterized in frequency-resolved quantum noise...... photon uctuations that is larger than the predicted enhancement of the backscattered light intensity. Characterizing the quantum properties of multiply scattered light forms the basis for studies of quantum interference and quantum entanglement in disordered media. Anderson localization of light...

  15. Local structure of the magnetotail current sheet: 2001 Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Runov

    2006-03-01

    Full Text Available Thirty rapid crossings of the magnetotail current sheet by the Cluster spacecraft during July-October 2001 at a geocentric distance of 19 RE are examined in detail to address the structure of the current sheet. We use four-point magnetic field measurements to estimate electric current density; the current sheet spatial scale is estimated by integration of the translation velocity calculated from the magnetic field temporal and spatial derivatives. The local normal-related coordinate system for each case is defined by the combining Minimum Variance Analysis (MVA and the curlometer technique. Numerical parameters characterizing the plasma sheet conditions for these crossings are provided to facilitate future comparisons with theoretical models. Three types of current sheet distributions are distinguished: center-peaked (type I, bifurcated (type II and asymmetric (type III sheets. Comparison to plasma parameter distributions show that practically all cases display non-Harris-type behavior, i.e. interior current peaks are embedded into a thicker plasma sheet. The asymmetric sheets with an off-equatorial current density peak most likely have a transient nature. The ion contribution to the electric current rarely agrees with the current computed using the curlometer technique, indicating that either the electron contribution to the current is strong and variable, or the current density is spatially or temporally structured.

  16. Human estrogen sulfotransferase gene (STE): Cloning, structure, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, Chengtao; Aksoy, I.A.; Weinshilboum, M. [Mayo Foundation, Rochester, MI (United States)] [and others

    1995-09-01

    Sulfation is an important pathway in the metabolism of estrogens. We recently cloned a human liver estrogen sulfotransferase (EST) cDNA. We have now determined the structure and chromosomal localization of the EST gene, STE, as a step toward molecular genetic studies of the regulation of EST in humans. STE spans approximately 20 kb and consists of 8 exons, ranging in length from 95 to 181 bp. The locations of most exon-intron splice junctions within STE are identical to those found in a human phenol ST (PST) gene, STM, and in a rat PST gene. In addition, the locations of five STE introns are also conserved in the human dehydroepiandrosterone (DBEA) ST gene, STD. The 5{prime} flanking region of STE contains one CCAAT and two TATA sequences. The location of one of the TATA box elements is in excellent agreement with the site of transcription initiation as determined by 5{prime}-rapid amplification of cDNA ends. STE was mapped to human chromosome 4q13.1 by fluorescence in situ hybridization. Cloning and structural characterization of STE will now make it possible to study potential molecular genetic mechanisms involved in the regulation of EST in human tissues. 50 refs., 6 figs., 1 tab.

  17. Compare local pocket and global protein structure models by small structure patterns

    KAUST Repository

    Cui, Xuefeng

    2015-09-09

    Researchers proposed several criteria to assess the quality of predicted protein structures because it is one of the essential tasks in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions. Popular criteria include root mean squared deviation (RMSD), MaxSub score, TM-score, GDT-TS and GDT-HA scores. All these criteria require calculation of rigid transformations to superimpose the the predicted protein structure to the native protein structure. Yet, how to obtain the rigid transformations is unknown or with high time complexity, and, hence, heuristic algorithms were proposed. In this work, we carefully design various small structure patterns, including the ones specifically tuned for local pockets. Such structure patterns are biologically meaningful, and address the issue of relying on a sufficient number of backbone residue fragments for existing methods. We sample the rigid transformations from these small structure patterns; and the optimal superpositions yield by these small structures are refined and reported. As a result, among 11; 669 pairs of predicted and native local protein pocket models from the CASP10 dataset, the GDT-TS scores calculated by our method are significantly higher than those calculated by LGA. Moreover, our program is computationally much more efficient. Source codes and executables are publicly available at http://www.cbrc.kaust.edu.sa/prosta/

  18. Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth.

    Science.gov (United States)

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-11-01

    The corrugated layer structure bismuth has been successfully tailored into negative thermal expansion along c axis by size effect. Pair distribution function and extended X-ray absorption fine structure are combined to reveal the local structural distortion for nanosized bismuth. The comprehensive method to identify the local structure of nanomaterials can benefit the regulating and controlling of thermal expansion in nanodivices.

  19. Historic timber skeleton structures and the local seismic culture

    Science.gov (United States)

    Bostenaru, M.

    2009-04-01

    This presentation deals with the employment of timber skeleton structure and the local seismic culture. After the 1755 earthquake in the reconstruction of Lisbon a type of building with timber skeleton and masonry infill called "gaiola pombalina" was promoted, since this was designed to better resists earthquakes. "Gaiola" means cage, and it was also named after the Marques de Pombal who introduced it in the reconstruction following the earthquake. The „gaiola pombalina" presents a timber skeleton with Saint Andrew crosses in the interior walls with masonry infill and thick masonry load bearing walls loosing in thickness to the upper floors in the exterior walls. The masonry can fall out during earthquakes but the building remains staying given the interior timber skeleton. The type of buildings with timber structure and (masonry) infill behaved well in earthquakes in various parts of the earth, like Nepal (the dhaji dewary type), Pakistan, Turkey (the himiş type after the 1999 earthquake) [both latter types were researched by Langenbach, www.conservationtech.com and www.traditional-is-modern.net] and also in Germany after the 1356 earthquake (the Southern German subtype of Fachwerk). Also in Italy a subtype called "casa baraccata" was promoted in a construction code to a similar time (following the 1783 earthquake in Southern Italy, see Tobriner 1983) as that of the "gaiola pombalina", the time of the Baroque, when town planning acquired another status. Unlike at the "gaiola pombalina" the "casa baraccata" the timber skeleton is at the exterior walls. For this reason this type of buildings is considered to be an expression of the local seismic culture. However, this type of buildings is common also for areas where seismic risk is not an issue, like half-timbered in England and the northern subtype of Fachwerk in Northern Germany, and in some high seismic risk regions with mountains and timber resources like Romania is not spread. Given these premises the author

  20. Local genetic structure in a white-bearded manakin population.

    Science.gov (United States)

    Höglund, Jacob; Shorey, Lisa

    2003-09-01

    Local genetic structure was studied in lekking white-bearded manakins in a study area on northern Trinidad, West Indies. The study population consisted of nine leks, at which a total of 238 birds were caught. By genotyping the individuals at eight polymorphic microsatellite loci we inferred some males on leks to be related (r = 0.25) as we found an average number of 14.8 half-sib relationships and two full-sib relationships per lek. We found that the sampled birds belonged to one genetic population that was slightly inbred (FIS and FIT = 0.02). Kinship coefficients decreased with increasing geographical distance, indicating that related birds displayed at the same or nearby leks. However, leks did not consist of only one family group because the average genetic distance (aij) between males within leks was higher than when comparing males on leks within close proximity. These patterns suggest limited male dispersal, that some type of kin recognition process between individuals may exist in this species and that males on leks may be more likely to establish themselves as territory-holding birds if a relative is already present.

  1. Crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, Kwang-Hee; Park, Jung-Ho; Park, Yongcheol; Hao, Tian-Yao; Kim, Han-Joon

    2017-02-01

    The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  2. Expectation and Locality Effects in German Verb-final Structures.

    Science.gov (United States)

    Levy, Roger P; Keller, Frank

    2013-02-01

    Probabilistic expectations and memory limitations are central factors governing the real-time comprehension of natural language, but how the two factors interact remains poorly understood. One respect in which the two factors have come into theoretical conflict is the documentation of both locality effects, in which more dependents preceding a governing verb increase processing difficulty at the verb, and anti-locality effects, in which more preceding dependents facilitate processing at the verb. However, no controlled study has previously demonstrated both locality and anti-locality effects in the same type of dependency relation within the same language. Additionally, many previous demonstrations of anti-locality effects have been potentially confounded with lexical identity, plausibility, and sentence position. Here, we provide new evidence of both locality and anti-locality effects in the same type of dependency relation in a single language-verb-final constructions in German-while controlling for lexical identity, plausibility, and sentence position. In main clauses, we find clear anti-locality effects, with the presence of a preceding dative argument facilitating processing at the final verb; in subject-extracted relative clauses with identical linear ordering of verbal dependents, we find both anti-locality and locality effects, with processing facilitated when the verb is preceded by a dative argument alone, but hindered when the verb is preceded by both the dative argument and an adjunct. These results indicate that both expectations and memory limitations need to be accounted for in any complete theory of online syntactic comprehension.

  3. Strength through structure: visualization and local assessment of the trabecular bone structure

    Energy Technology Data Exchange (ETDEWEB)

    Raeth, C; Monetti, R; Bauer, J; Sidorenko, I [Max-Planck Institut fuer Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Mueller, D [Department of Radiology, Technische Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich (Germany); Matsuura, M [Institute of Anatomy, Ludwig Maximilians Universitaet Muenchen, Pettenkoferstrasse 11, 80336 Muenchen (Germany); Lochmueller, E-M [Department of Gynaecology I, Ludwig Maximilians Universitaet Muenchen, Maistrasse 11, 80337 Muenchen (Germany); Zysset, P [Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology (TU-Wien), Gusshausstrasse 27-29, 1040 Wien (Austria); Eckstein, F [Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg (Austria)], E-mail: cwr@mpe.mpg.de

    2008-12-15

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using {mu}CT imaging techniques at an isotropic resolution of 26 {mu}m. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  4. The emergence of a coherent structure for coherent structures: localized states in nonlinear systems

    OpenAIRE

    Dawes, Jonathan

    2010-01-01

    Coherent structures emerge from the dynamics of many kinds of dissipative, externally driven, nonlinear systems, and continue to provoke new questions that challenge our physical and mathematical understanding. In one specific sub-class of such problems, where a pattern-forming, or `Turing', instability occurs, rapid progress has been made recently in our understanding of the formation of localized states: patches of regular pattern surrounded by the unpatterned homogeneous background state. ...

  5. Alignment-free local structural search by writhe decomposition

    OpenAIRE

    2010-01-01

    Motivation: Rapid methods for protein structure search enable biological discoveries based on flexibly defined structural similarity, unleashing the power of the ever greater number of solved protein structures. Projection methods show promise for the development of fast structural database search solutions. Projection methods map a structure to a point in a high-dimensional space and compare two structures by measuring distance between their projected points. These methods offer a tremendous...

  6. Alternative Measured-Service Rate Structures for Local Telephone Service,

    Science.gov (United States)

    1980-06-01

    Pricing," American Economic Review , Vol. 60, 1970, pp. 265-283. Cosgrove, J. G. and P. G. Linhart, "Customer Choices Under Local Measured Telephone...November 1976. "Optimal Pricing of Local Telephone Service," American Economic Review , Vol. 68, September 1978, pp. 517-537. , "Economic Issues in

  7. A special kind of local structure in the CMB intensity maps: duel peak structure

    Institute of Scientific and Technical Information of China (English)

    Hao Liu; Ti-Pei Li

    2009-01-01

    We study the local structure of Cosmic Microwave Background (CMB) tem-perature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less "similar spots", and the temperature peaks or valleys will be less significant. The presented "sim-ilar spots" have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.

  8. Average and local structure of selected metal deuterides

    Energy Technology Data Exchange (ETDEWEB)

    Soerby, Magnus H.

    2005-07-01

    at ambient and low temperatures. The Switendick criterion is always fulfilled. The local deuterium arrangement in the disordered cubic phase at 298 K resemble that of the ordered monoclinic low-temperature phase at 150 K for length scales up to 4 Aa or three coordination spheres. The nearest and next-nearest deuterium neighbours are statically displaced from their average positions to adapt interatomic distances in better agreement with those in the ordered structure. There are no significant differences in the short-range order around the onset temperature for ordering (252 K and 248 K) as compared to that observed at 298 K. (Author)

  9. Rich Localized Coherent Structures of the (2+1)-Dimensional Broer-Kaup-Kupershmidt Equation

    Institute of Scientific and Technical Information of China (English)

    LI Hua-Mei

    2003-01-01

    Using a Backlund transformation and the variable separation approach, we find there exist abundant localized coherent structures for the (2 + 1)-dimensional Broer-Kaup-Kupershmidt (BKK) system. The abundance of the localized structures for the model is introduced by the entrance of an arbitrary function of the seed solution. For some specialselections of the arbitrary function, it is shown that the localized structures of the BKK equation may be dromions, lumps, ring solitons, peakons, or fractal solitons etc.

  10. Local Large-Scale Structure and the Assumption of Homogeneity

    Science.gov (United States)

    Keenan, Ryan C.; Barger, Amy J.; Cowie, Lennox L.

    2016-10-01

    Our recent estimates of galaxy counts and the luminosity density in the near-infrared (Keenan et al. 2010, 2012) indicated that the local universe may be under-dense on radial scales of several hundred megaparsecs. Such a large-scale local under-density could introduce significant biases in the measurement and interpretation of cosmological observables, such as the inferred effects of dark energy on the rate of expansion. In Keenan et al. (2013), we measured the K-band luminosity density as a function of distance from us to test for such a local under-density. We made this measurement over the redshift range 0.01 0.07, we measure an increasing luminosity density that by z ~ 0.1 rises to a value of ~ 1.5 times higher than that measured locally. This implies that the stellar mass density follows a similar trend. Assuming that the underlying dark matter distribution is traced by this luminous matter, this suggests that the local mass density may be lower than the global mass density of the universe at an amplitude and on a scale that is sufficient to introduce significant biases into the measurement of basic cosmological observables. At least one study has shown that an under-density of roughly this amplitude and scale could resolve the apparent tension between direct local measurements of the Hubble constant and those inferred by Planck team. Other theoretical studies have concluded that such an under-density could account for what looks like an accelerating expansion, even when no dark energy is present.

  11. Long term structural dynamics of mechanical systems with local nonlinearities

    NARCIS (Netherlands)

    Fey, R.H.B.; Campen, D.H. van; Kraker, A. de

    1996-01-01

    This paper deals with the long term behavior of periodically excited mechanical systems consisting of linear components and local nonlinearities. The number of degrees of freedom of the linear components is reduced by applying a component mode synthesis technique. Lyapunov exponents are used to iden

  12. Global Local Structural Optimization of Transportation Aircraft Wings

    NARCIS (Netherlands)

    Ciampa, P.D.; Nagel, B.; Van Tooren, M.J.L.

    2010-01-01

    The study presents a multilevel optimization methodology for the preliminary structural design of transportation aircraft wings. A global level is defined by taking into account the primary wing structural components (i.e., ribs, spars and skin) which are explicitly modeled by shell layered finite e

  13. DELORES - A System for Detection and Localization of Structural Damages

    DEFF Research Database (Denmark)

    Johansen, Rasmus Johan; Ulriksen, Martin Dalgaard; Damkilde, Lars

    2016-01-01

    Today, structural inspections of large structures, like wind turbines, bridges, etc., are often performed manually by highly trained personnel. Obviously, this inspection approach is both extremely costly and tedious, for which reason this paper provides a presentation of an alternative approach ...

  14. Global/local methods research using a common structural analysis framework

    Science.gov (United States)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  15. Oscillation structure of localized perturbations in modulationally unstable media

    Science.gov (United States)

    Biondini, Gino; Li, Sitai; Mantzavinos, Dionyssios

    2016-12-01

    We characterize the properties of the asymptotic stage of modulational instability arising from localized perturbations of a constant background, including the number and location of the individual peaks in the oscillation region. We show that, for long times, the solution tends to an ensemble of classical (i.e., sech-shaped) solitons of the focusing nonlinear Schrödinger equation (as opposed to the various breatherlike solutions of the same equation with a nonzero background). We also confirm the robustness of the theoretical results by comparing the analytical predictions with careful numerical simulations with a variety of initial conditions, which confirm that the evolution of modulationally unstable media in the presence of localized initial perturbations is indeed described by the same asymptotic state.

  16. Local chiral potentials and the structure of light nuclei

    CERN Document Server

    Piarulli, Maria; Schiavilla, Rocco; Kievsky, Alejandro; Lovato, Alessandro; Marcucci, Laura E; Pieper, Steven C; Viviani, Michele; Wiringa, Robert B

    2016-01-01

    We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M.\\ Piarulli {\\it et al.}, Phys.\\ Rev.\\ C {\\bf 91}, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $\\Delta$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0--125 MeV or 0--200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutof...

  17. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    Science.gov (United States)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  18. Local structure of oxygen-deficient Yttrium oxide

    Institute of Scientific and Technical Information of China (English)

    CHENG Xue-Rui; DAI Hai-Yang; QI Ze-Ming; WANG Yu-Yin; ZHANG Guo-Bin

    2013-01-01

    Yttrium oxide thin films have been deposited on Si (100) substrate by using pulsed laser deposition (PLD) method.X-ray diffraction (XRD),hard and soft X-ray absorption spectroscopy (XAFS) are employed to investigate the origin of oxygen vacancies and their influence on the structure and atomic distributions.The XRD results indicate that the Y2O3 thin films strongly orient the (111) axis of the cubic structure.Analyses on the Y K-edge extended X-ray absorption fine structures reveal that the coordination number of Y atoms decreases and the bond length of Y-O contracts due to the loss of oxygen atoms.The X-ray absorption near edge structure analysis together with a theoretical approach further confirms the oxygen vacancies formation and their possible location.

  19. Local Crystalline Structure in an Amorphous Protein Dense Phase.

    Science.gov (United States)

    Greene, Daniel G; Modla, Shannon; Wagner, Norman J; Sandler, Stanley I; Lenhoff, Abraham M

    2015-10-20

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein.

  20. Magnetic polaritons in metamagnet layered structures: Spectra and localization properties

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, C.A.A. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Albuquerque, E.L. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil)], E-mail: eudenilson@dfte.ufrn.br; Anselmo, D.H.A.L. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S. [Departamento de Ciencias Exatas, Centro Federal de Educacao Tecnologica do Maranhao, 65025-001 Sao Luis-MA (Brazil)

    2008-02-11

    The magnetic polariton propagation in metamagnet layered structures is theoretically studied by using a transfer matrix approach. The layered structures considered here are made up by the stacking of two different layers (also known as building blocks, named A and B), where one of them is a metamagnetic thin film (A), while the other is a non-magnetic insulator thin layer (B). We take into account both the antiferromagnetic (AFM) and ferromagnetic (FM) phases of the metamagnetic material. For the periodic arrangement, the bulk modes are characterized by two large symmetric bands, with non-reciprocal surface modes between them. The quasiperiodic metamagnetic structure is then built up by following the Fibonacci sequence, whose long-range order effect is then investigated, giving rise to an interesting self-similar spectra and a power-law profile.

  1. SEISMIC RANDOM VIBRATION ANALYSIS OF LOCALLY NONLINEAR STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    ZhaoYan; LinJiahao; ZhangYahui; AnWei

    2003-01-01

    A nonlinear seismic analysis method for complex frame structures subjected to stationary random ground excitations is proposed. The nonlinear elasto-plastic behaviors may take place only on a small part of the structure. The Bouc-Wen differential equation model is used to model the hysteretic characteristics of the nonlinear components. The Pseudo Excitation Method (PEM) is used in solving the linearized random differential equations to replace the solution of the less efficient Lyapunov equation. Numerical results of a real bridge show that .the method proposed is effective for practical engineering analysis.

  2. Improving hybrid statistical and physical forcefields through local structure enumeration.

    Science.gov (United States)

    Conway, Patrick; DiMaio, Frank

    2016-08-01

    Forcefields used in biomolecular simulations are comprised of energetic terms that are physical in nature, based on parameter fitting to quantum mechanical simulation or experimental data, or statistical, drawing off high-resolution structural data to describe distributions of molecular features. Combining the two in a single forcefield is challenging, since physical terms describe some, but not all, of the observed statistics, leading to double counting. In this manuscript, we develop a general scheme for correcting statistical potentials used in combination with physical terms. We apply these corrections to the sidechain torsional potential used in the Rosetta all-atom forcefield. We show the approach identifies instances of double-counted interactions, including electrostatic interactions between sidechain and nearby backbone, and steric interactions between neighboring Cβ atoms within secondary structural elements. Moreover, this scheme allows for the inclusion of intraresidue physical terms, previously turned off to avoid overlap with the statistical potential. Combined, these corrections lead to a forcefield with improved performance on several structure prediction tasks, including rotamer prediction and native structure discrimination.

  3. Local Reasoning about Programs that Alter Data Structures

    DEFF Research Database (Denmark)

    O'Hearn, Peter W.; Reynolds, John Clifton; Yang, Hongseok

    2001-01-01

    We describe an extension of Hoare's logic for reasoning about programs that alter data structures. We consider a low-level storage model based on a heap with associated lookup, update, allocation and deallocation operations, and unrestricted address arithmetic. The assertion language is based...

  4. Finding local structural similarities among families of unrelated protein structures: a generic non-linear alignment algorithm.

    Science.gov (United States)

    Lehtonen, J V; Denessiouk, K; May, A C; Johnson, M S

    1999-02-15

    We have developed a generic tool for the automatic identification of regions of local structural similarity in unrelated proteins having different folds, as well as for defining more global similarities that result from homologous protein structures. The computer program GENFIT has evolved from the genetic algorithm-based three-dimensional protein structure comparison program GA_FIT. GENFIT, however, can locate and superimpose regions of local structural homology regardless of their position in a pair of structures, the fold topology, or the chain direction. Furthermore, it is possible to restrict the search to a volume centered about a region of interest (e.g., catalytic site, ligand-binding site) in two protein structures. We present a number of examples to illustrate the function of the program, which is a parallel processing implementation designed for distribution to multiple machines over a local network or to run on a single multiprocessor computer.

  5. The local structure of europium-lead-borate glass ceramics

    Science.gov (United States)

    Rada, S.; Pascuta, P.; Culea, M.; Maties, V.; Rada, M.; Barlea, M.; Culea, E.

    2009-04-01

    Glass ceramics in the xEu 2O 3(100 - x)[3B 2O 3·PbO] system with 0 ⩽ x ⩽ 50 mol% have been prepared using the melt quenching method, succeeded by heat treatment applied at 625 °C and 675 °C, respectively, for 48 h. The influence of europium ions on structural behavior of the lead-borate glass ceramics has been investigated using infrared spectroscopy and DFT calculations. The addition of europium ions into the host glass ceramics matrix leads to an increase of the glass network polymerization due to the replacement of B sbnd O sbnd B bonds by the more resistant B sbnd O sbnd Pb bonds. The structural evolution of the studied glass ceramics with the gradual increase of the europium oxide content up to 50 mol% could be explained by considering that the excess of oxygen may be accommodated by the formation of [PbO 4] structural units. Then, the formation of different ionic complexes of the lead ions will decrease the rate of crystal growth and the conversion of the glass into crystalline material becomes more difficult, in agreement to the X-ray data.

  6. Study of local structure and magnetism in high-T(sub c) copper oxide superconductors

    Science.gov (United States)

    Budnick, J. I.; Tan, Z.; Filipkowski, M.; Niedermayer, CH.; Glueckler, H.; Simon, R.; Golnik, A.; Rauer, M.; Recknagel, E.; Weidinger, A.

    1990-01-01

    The muon spin rotation (MUSR) study of local magnetism of Sr-doped La2CuO4 is reviewed. Emphasis is placed on magnetic order as detected by local and bulk probes with local atomic environments studied by x ray absorption fine structure (XAFS). Correlations between the MUSR study of local magnetic ordering and the bulk magnetization study are presented along with a discussion of the dependence upon oxygen stoichiometry. Results are presented for both superconducting phases and magnetic phases. Recent data which reveals the existence of local magnetic ordering in the hydrogen-doped YBa2Cu3O7 system are also discussed.

  7. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure.

    Science.gov (United States)

    Timoshenko, Janis; Shivhare, Atal; Scott, Robert W J; Lu, Deyu; Frenkel, Anatoly I

    2016-07-20

    We adopted ab initio X-ray absorption near edge structure (XANES) modeling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modeling, where the candidate structures are known, and the inverse modeling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by revealing the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  8. Topology optimization of fail-safe structures using a simplified local damage model

    DEFF Research Database (Denmark)

    Jansen, Miche; Lombaert, Geert; Schevenels, Mattias;

    2014-01-01

    Topology optimization of mechanical structures often leads to efficient designs which resemble statically determinate structures. These economical structures are especially vulnerable to local loss of stiffness due to material failure. This paper therefore addresses local failure of continuum...... with a fixed shape. The damage scenarios are taken into account by means of a minimax formulation of the optimization problem which minimizes the worst case performance.The detrimental influence of local failure on the nominal design is demonstrated in two representative examples: a cantilever beam optimized...

  9. Sea urchin vault structure, composition, and differential localization during development

    Directory of Open Access Journals (Sweden)

    Dickey-Sims Carrie

    2005-02-01

    Full Text Available Abstract Background Vaults are intriguing ribonucleoprotein assemblies with an unknown function that are conserved among higher eukaryotes. The Pacific coast sea urchin, Strongylocentrotus purpuratus, is an invertebrate model organism that is evolutionarily closer to humans than Drosophila and C. elegans, neither of which possesses vaults. Here we compare the structures of sea urchin and mammalian vaults and analyze the subcellular distribution of vaults during sea urchin embryogenesis. Results The sequence of the sea urchin major vault protein (MVP was assembled from expressed sequence tags and genome traces, and the predicted protein was found to have 64% identity and 81% similarity to rat MVP. Sea urchin MVP includes seven ~50 residue repeats in the N-terminal half of the protein and a predicted coiled coil domain in the C-terminus, as does rat MVP. A cryoelectron microscopy (cryoEM reconstruction of isolated sea urchin vaults reveals the assembly to have a barrel-shaped external structure that is nearly identical to the rat vault structure. Analysis of the molecular composition of the sea urchin vault indicates that it contains components that may be homologs of the mammalian vault RNA component (vRNA and protein components (VPARP and TEP1. The sea urchin vault appears to have additional protein components in the molecular weight range of 14–55 kDa that might correspond to molecular contents. Confocal experiments indicate a dramatic relocalization of MVP from the cytoplasm to the nucleus during sea urchin embryogenesis. Conclusions These results are suggestive of a role for the vault in delivering macromolecules to the nucleus during development.

  10. The Structure of the Local Interstellar Medium V: Electron Densities

    CERN Document Server

    Redfield, Seth

    2008-01-01

    We present a comprehensive survey of CII* absorption detections toward stars within 100 pc in order to measure the distribution of electron densities present in the local interstellar medium (LISM). Using high spectral resolution observations of nearby stars obtained by GHRS and STIS onboard the Hubble Space Telescope, we identify 13 sight lines with 23 individual CII* absorption components, which provide electron density measurements, the vast majority of which are new. We employ several strategies to determine more accurate CII column densities from the saturated CII resonance line, including, constraints of the line width from the optically thin CII* line, constraints from independent temperature measurements of the LISM gas based on line widths of other ions, and third, using measured SII column densities as a proxy for CII column densities. The sample of electron densities appears consistent with a log-normal distribution and an unweighted mean value of n_e(CII_SII) = 0.11^+0.10_-0.05 cm^-3. Seven indivi...

  11. Prosodic realizations of global and local structure and rhetorical relations in read aloud news reports

    NARCIS (Netherlands)

    Ouden, J.N. den; Noordman, L.G.M.; Terken, J.M.B.

    2009-01-01

    The aim of this research is to study effects of global and local structure of texts and of rhetorical relations between sentences on the prosodic realization of sentences in read aloud text. Twenty texts were analyzed using Rhetorical Structure Theory. Based on these analyses, the global structure i

  12. Study on the local atomic structure of germanium in organic germanium compounds by EXAFS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic germanium compounds have been extensively applied in medicine as tonics,In this paper,the local structures of two organic germanium compounds,carboxyethylgermanium sesquioxide and polymeric germanium glutamate,were determined by EXAFS.The structure parameters including coordination numbers and bond lengths were reported,and possible structure patterns were discussed.

  13. Structural Damage Detection Using Frequency Domain Error Localization.

    Science.gov (United States)

    1994-12-01

    113 rn ~l-,I T X ~oy Ul C 114 APPENDIX D. FE MODEL / COMPUTER CODES The following is a brief description of MATLAB routines employed in this thesis...R.R., Structural Dynamics, An Introduction to Computer Methods , pp. 383-387, John Wiley and Sons, Inc., 1981. 8. Guyan , R.J., "Reduction of Stiffness...official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

  14. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier;

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... (loops and domains) to comprehend the molecular mechanisms of PPIs. A paradox in protein-protein binding is to explain how the unbound proteins of a binary complex recognize each other among a large population within a cell and how they find their best docking interface in a short timescale. We use...

  15. Theoretical model for assessing properties of local structures in metalloprotein

    Science.gov (United States)

    Koyimatu, M.; Shimahara, H.; Iwayama, M.; Sugimori, K.; Kawaguchi, K.; Saito, H.; Nagao, H.

    2013-02-01

    For model structures containing two aromatic rings such as the indole of Trp5 and the imidazole of His64 in human carbonic anhydrase (hCAII), the location and orientation of the rings with regard to each other contribute to the magnitude of the entire interaction energy. Here the energetic contribution of the indole ring of Trp5 on the imidazole ring of the "out" conformation of His64 were calculated to compare with that of the alternative "in" conformation of His64 by using the MP2/6-311++G(d,p)//B3LYP/6-31G(d,p) method. We suggest that 1) Trp5 and the "out" conformation of His64 are predicted to form a stack of planar parallel rings via π-stacking interaction and 2) the energy is 1.73-1.83 kcal/mol to stabilize the "out" conformation, compared with the "in" conformation.

  16. The local structure of mixed-ion perovskites

    CERN Document Server

    Shuvaeva, V A; Azuma, Y; Yagi, K; Sakaue, K; Terauchi, H; Raevski, I P; Zhuchkov, K; Antipin, M Y

    2003-01-01

    The temperature-dependent Nb K-edge absorption spectra of several mixed-ion Pb-containing perovskite compounds were analysed to determine the Nb displacement and to trace its changes through the phase transitions. Both extended x-ray absorption fine structure (EXAFS) and the pre-edge region of the spectra were involved in the analysis. The results show that, in the compounds studied, Nb occupies an off-centre position with symmetry lower than that implied by macroscopic symmetry. The magnitude and direction of the Nb off-centre displacement do not display any noticeable temperature change and are not affected by the change in macroscopic symmetry. The Nb-O distribution and its temperature evolution do not show any distinct dependence on the degree of compositional ordering and properties of the samples.

  17. From local pixel structure to global image super-resolution: a new face hallucination framework.

    Science.gov (United States)

    Hu, Yu; Lam, Kin-Man; Qiu, Guoping; Shen, Tingzhi

    2011-02-01

    We have developed a new face hallucination framework termed from local pixel structure to global image super-resolution (LPS-GIS). Based on the assumption that two similar face images should have similar local pixel structures, the new framework first uses the input low-resolution (LR) face image to search a face database for similar example high-resolution (HR) faces in order to learn the local pixel structures for the target HR face. It then uses the input LR face and the learned pixel structures as priors to estimate the target HR face. We present a three-step implementation procedure for the framework. Step 1 searches the database for K example faces that are the most similar to the input, and then warps the K example images to the input using optical flow. Step 2 uses the warped HR version of the K example faces to learn the local pixel structures for the target HR face. An effective method for learning local pixel structures from an individual face, and an adaptive procedure for fusing the local pixel structures of different example faces to reduce the influence of warping errors, have been developed. Step 3 estimates the target HR face by solving a constrained optimization problem by means of an iterative procedure. Experimental results show that our new method can provide good performances for face hallucination, both in terms of reconstruction error and visual quality; and that it is competitive with existing state-of-the-art methods.

  18. The averaging of non-local Hamiltonian structures in Whitham's method

    CERN Document Server

    Maltsev, A Y

    1999-01-01

    We consider the m-phase Whitham's averaging method and propose the procedure of "averaging" of non-local Hamiltonian structures. The procedure is based on the existence of sufficient number of local commuting integrals of the system and gives the Poisson bracket of Ferapontov type for the Whitham system. The method can be considered as the generalization of the Dubrovin-Novikov procedure for the local field-theoretical brackets.

  19. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    Science.gov (United States)

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-19

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  20. Local reversibility and entanglement structure of many-body ground states

    CERN Document Server

    Kuwahara, Tomotaka; Amico, Luigi; Vedral, Vlatko

    2015-01-01

    The low-temperature physics of quantum many-body systems is largely governed by the structure of their ground states. Minimizing the energy of local interactions, ground states often reflect strong properties of locality such as the area law for entanglement entropy and the exponential decay of correlations between spatially separated observables. In this letter we present a novel characterization of locality in quantum states, which we call `local reversibility'. It characterizes the type of operations that are needed to reverse the action of a general disturbance on the state. We prove that unique ground states of gapped local Hamiltonian are locally reversible. This way, we identify new fundamental features of many-body ground states, which cannot be derived from the aforementioned properties. We use local reversibility to distinguish between states enjoying microscopic and macroscopic quantum phenomena. To demonstrate the potential of our approach, we prove specific properties of ground states, which are ...

  1. Origin of heterogeneous dynamics in local molecular structures of ionic liquids.

    Science.gov (United States)

    Sha, Maolin; Liu, Yusheng; Dong, Huaze; Luo, Fabao; Jiang, Fangling; Tang, Zhongfeng; Zhu, Guanglai; Wu, Guozhong

    2016-11-04

    Room-temperature ionic liquids (ILs) are generally considered as structurally heterogeneous with inherent polar/apolar phase separation. However, even after a decade of research, local dynamics in the heterogeneous structures of ILs remain neglected. Such local dynamics may influence the ion transport of electrolytes, as well as the reaction rate of solvents. In this study, we performed molecular dynamics simulation to analyze the local dynamics for the structural heterogeneity of ILs. Calculations of the diffusion, reorientation, and association dynamics showed a distinct heterogeneous dynamics between the polar and apolar regions of ILs. Further studies demonstrated that such local dynamic differences originate from local structural heterogeneity. Different energy barriers determine a predominant fast reorientation dynamics in apolar regions and a locally vibrating behavior in polar regions. Additionally, we suggested a new jumping mechanism to clarify the dynamic heterogeneity of ions in the polar regions. The results will help determine the origin of the heterogeneous dynamics in IL local structures and provide a theoretical basis for tuning the dynamic properties of ILs used as electrolytes or reaction solvents.

  2. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    OpenAIRE

    Levin, Igor; Vanderah, Terrell

    2008-01-01

    The functional responses (e. g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure-a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale-the so-called "nanostructure problem...

  3. Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure

    Directory of Open Access Journals (Sweden)

    Knut E. Aasmundtveit

    2013-07-01

    Full Text Available Local synthesis and direct integration of carbon nanotubes (CNTs into microsystems is a promising method for producing CNT-based devices in a single step, low-cost, and wafer-level, CMOS/MEMS-compatible process. In this report, the structure of the locally grown CNTs are studied by transmission imaging in scanning electron microscopy—S(TEM. The characterization is performed directly on the microsystem, without any post-synthesis processing required. The results show an effect of temperature on the structure of CNTs: high temperature favors thin and regular structures, whereas low temperature favors “bamboo-like” structures.

  4. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  5. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Levin, Igor

    2008-11-01

    Full Text Available The functional responses (e. g., dielectric, magnetic, catalytic, etc. of many industrially-relevant materials are controlled by their local structure-a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale-the so-called "nanostructure problem"-at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem-an ultimate frontier in materials characterization-necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed "institute" would provide an intellectual infrastructure for local structure determination by (1 developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2, (2 connecting industrial and academic users with experts in measurement techniques, (3

  6. Local structure of the Ce3+ ion the yellow emitting phosphor YAG:Ce

    NARCIS (Netherlands)

    Ghigna, P.; Pin, S.; Ronda, C.; Speghini, A.; Piccinelli, F.; Bettinelli, M.

    2011-01-01

    The local structure of the Ce3+ ion in the yellow emitting YAG:Ce phosphor has been studied by Extended X-ray Absorption Fine Structurespectroscopy in the 300−20 K temperature range. It has evidenced that the dopant Ce3+ replaces Y3+ in the garnet structure, giving rise to a significant expan

  7. Ultrahigh resolution imaging of local structural distortions in intergrowth tungsten bronzes.

    Science.gov (United States)

    Kirkland, A I; Sloan, J; Haigh, S

    2007-01-01

    Details of the local structure of a complex tungsten bronze, K(x)WO(3) have been determined using focal series exit wave reconstruction. Octahedral rotations in different structural regions of the same crystal have been directly measured from the exit wave phase and correlated with variations in cation occupancy determined from the exit wave modulus.

  8. Local structure information by EXAFS analysis using two algorithms for Fourier transform calculation

    Energy Technology Data Exchange (ETDEWEB)

    Aldea, N; Pintea, S; Rednic, V [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Matei, F [University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca (Romania); Hu Tiandou; Xie Yaning, E-mail: nicolae.aldea@itim-cj.r [Beijing Synchrotron Radiation Facilities of Beijing Electron Positron Collider National Laboratory (China)

    2009-08-01

    The present work is a comparison study between different algorithms of Fourier transform for obtaining very accurate local structure results using Extended X-ray Absorption Fine Structure technique. In this paper we focus on the local structural characteristics of supported nickel catalysts and Fe{sub 3}O{sub 4} core-shell nanocomposites. The radial distribution function could be efficiently calculated by the fast Fourier transform when the coordination shells are well separated while the Filon quadrature gave remarkable results for close-shell coordination.

  9. Temperature influence on the global and local structure of the chromia supported nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pintea, Stelian; Rednic, Vasile; Marginean, Petru; Aldea, Nicolae [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Xie Yaning, E-mail: stelian.pintea@itim-cj.r [Beijing Synchrotron Radiation Facilities of Beijing Electron Positron Collider National Laboratory (China)

    2009-08-01

    The changes induced by the heat treatment on the global and the local structures of the supported nickel catalysts are investigated. The global structure parameters were obtained by processing the X-ray diffraction patterns of the samples using the Scherrer formula. The local structure parameters were determined by X-ray absorption spectra processing. Both types of measurements were carried out using synchrotron radiation. The nickel catalysts supported on chromia were prepared by coprecipitation method. The nickel/chromium atomic percent was 70/30. After preparation, the samples were thermally treated for three hours at 350, 650 and 950{sup 0}C. A strong correlation between previous catalytic activity information and the global and local structure is evidenced. Also the correlation between the nickel crystallite size and the active metal-oxide support interaction is discussed.

  10. The analysis of space time structure in QCD vacuum, I: localization vs global behavior in local observables and Dirac eigenmodes

    Science.gov (United States)

    Horváth, Ivan

    2005-03-01

    The structure of QCD vacuum can be studied from first principles using lattice-regularized theory. This line of research entered a qualitatively new phase recently, wherein the space-time structure (at least for some quantities) can be directly observed in configurations dominating the QCD path integral, i.e., without any subjective processing of typical configurations. This approach to QCD vacuum structure does not rely on any proposed picture of QCD vacuum but rather attempts to characterize this structure in a model-independent manner, so that a coherent physical picture of the vacuum can emerge when such unbiased numerical information accumulates to a sufficient degree. An important part of this program is to develop a set of suitable quantitative characteristics describing the space-time structure in a meaningful and physically relevant manner. One of the basic pertinent issues here is whether QCD vacuum dynamics can be understood in terms of localized vacuum objects, or whether such objects behave as inherently global entities. The first direct studies of vacuum structure strongly support the latter. In this paper, we develop a formal framework which allows to answer this question in a quantitative manner. We discuss in detail how to apply this approach to Dirac eigenmodes and to basic scalar and pseudoscalar composites of gauge fields (action density and topological charge density). The approach is illustrated numerically on overlap Dirac zero modes and near-zero modes. This illustrative data provides direct quantitative evidence supporting our earlier arguments for the global nature of QCD Dirac eigenmodes.

  11. PLACE AND ROLE OF THE STRUCTURAL FUNDS IN THE LOCAL BUDGET REVENUES

    Directory of Open Access Journals (Sweden)

    CRISTINEL ICHIM

    2016-06-01

    Full Text Available In this study we aim to analyse the place and role manifested within local budgets of Romania by a new category of revenues available to local authorities namely those from the Structural and Cohesion Funds of the EU. At the beginning of our scientific approach we have outlined the scope of local government revenues highlighting that in the section development of local budgets are also set off funds from the European Union. The research continues with a characterization of the structural funds in which, on the one hand, we have emphasized their importance to the development of territorial administrative units in Romania and on the other hand we showed some difficulties arising in the process of absorption of European funds. The analysis of financial resources from the EU funds within the local budgets from Romania is the last part of the article and is based on the quantitative analysis of the budget indicator, "amounts of the EU in the payments made and pre-financing" from existing data in the Statistical Yearbook of Romania, and highlights the place occupied by such income within local public revenues. This analysis shows that local public authorities from Romania have made significant progress in terms of accessing European funds, their share in total revenues of local budgets increased during 2008-2014.

  12. CheShift-2 resolves a local inconsistency between two X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Jorge A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Sue, Shih-Che [Scripps Research Institute, Department of Molecular Biology (United States); Fraser, James S. [University of California, California Institute of Quantitative Biosciences (QB3) and Department of Cellular and Molecular Pharmacology (United States); Scheraga, Harold A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Dyson, H. Jane, E-mail: dyson@scripps.edu [Scripps Research Institute, Department of Molecular Biology (United States)

    2012-10-15

    Since chemical shifts provide important and relatively accessible information about protein structure in solution, a Web server, CheShift-2, was developed for structure interrogation, based on a quantum mechanics database of {sup 13}C{sup {alpha}} chemical shifts. We report the application of CheShift-2 to a local inconsistency between two X-ray crystal structures (PDB IDs 1IKN and 1NFI) of the complex between the p65/p50 heterodimer of NF{kappa}B and its inhibitor I{kappa}B{alpha}. The availability of NMR resonance assignments that included the region of the inconsistency provided an opportunity for independent validation of the CheShift-2 server. Application of the server showed that the {sup 13}C{sup {alpha}} chemical shifts measured for the Gly270-Pro281 sequence close to the C-terminus of I{kappa}B{alpha} were unequivocally consistent with the backbone structure modeled in the 1IKN structure, and were inconsistent with the 1NFI structure. Previous NOE measurements had demonstrated that the position of a tryptophan ring in the region immediately N-terminal in this region was not consistent with either structure. Subsequent recalculation of the local structure in this region, based on the electron density of the deposited structure factors for 1IKN, confirmed that the local backbone structure was best modeled by 1IKN, but that the rotamer of Trp258 is consistent with the 1NFI structure, including the presence of a hydrogen bond between the ring N{epsilon}H of Trp258 and the backbone carbonyl group of Gln278. The consensus between all of these measures suggests that the CheShift-2 server operates well under circumstances in which backbone chemical shifts are available but where local plasticity may render X-ray structural data ambiguous.

  13. Protein Classification Based on Analysis of Local Sequence-Structure Correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Zemla, A T

    2006-02-13

    The goal of this project was to develop an algorithm to detect and calculate common structural motifs in compared structures, and define a set of numerical criteria to be used for fully automated motif based protein structure classification. The Protein Data Bank (PDB) contains more than 33,000 experimentally solved protein structures, and the Structural Classification of Proteins (SCOP) database, a manual classification of these structures, cannot keep pace with the rapid growth of the PDB. In our approach called STRALCP (STRucture Alignment based Clustering of Proteins), we generate detailed information about global and local similarities between given set of structures, identify similar fragments that are conserved within analyzed proteins, and use these conserved regions (detected structural motifs) to classify proteins.

  14. Local structure studies of Fe2TeO6 using x-ray absorption spectroscopy

    Science.gov (United States)

    Singh, Harishchandra; Yadav, A. K.

    2016-05-01

    In the present study, we have performed EXAFS measurements on powder samples of Fe2TeO6 (FTO) to probe the local structure surrounding at the Fe site. The structural parameters (atomic coordination and lattice parameters) of FTO used for simulation of theoretical EXAFS spectra of the samples have been obtained from Rietveld refined structure on synchrotron X-ray Diffraction (SXRD) data. Quite similar and satisfactory structural parameters have been obtained from both the study, indicating goodness of synchrotron structural analysis over EXAFS analysis. SXRD and EXAFS results shows absence of any secondary phase proves current synthesis superior over reported techniques.

  15. INTERCONNECTIONS BETWEEN THE ECONOMIC STRUCTURE OF LOCAL SPENDING AND ECONOMIC GROWTH IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Bilan Irina

    2015-07-01

    Full Text Available The issue of the effects of government interventions, explicitly of the taxes and expenditures of local public authorities, has generated substantial debate over time, and still gives rise to numerous controversies in theory and practice. Following the Keynesian path of reasoning, it is, at least theoretically, admitted that it is possible to influence the socio-economic activities and support for economic growth by means of government spending, but different other factors act towards enhancing or, on the contrary, impeding the achievement of the desired effects. From this point of view, the delimitation of competences and public expenditure responsibilities between different levels of government raises the issue of some possible different effects of the central and local governments’ interventions. As the macroeconomic stabilization function is usually associated with central governments, and the contribution of local governments often is of lesser importance, less attention is paid to the effectiveness of local administrative actions. In such a context, the paper aims to empirically evaluate the effects of the economic structure of local public expenditures on the local (territorial economic growth in Romania, over the period 2007 to 2012. The analysis has been conducted at the level of the 42 Romanian counties and on annual data collected from both international and national sources (World Bank, INSSE, The Romanian Ministry of Regional Development and Public Administration.The general method of estimation is the fixed effects estimation technique for panel data models. Our empirical approach is of absolute novelty, especially for Romania, where previous empirical studies have been focusing on the assessment of the overall effects of general government spending. The main findings of our study are that local public expenditures have a negative impact on territorial economic growth, confirmed both for overall expenditures and for various

  16. Mining Local Specialties for Travelers by Leveraging Structured and Unstructured Data

    Directory of Open Access Journals (Sweden)

    Kai Jiang

    2012-01-01

    Full Text Available Recently, many local review websites such as Yelp are emerging, which have greatly facilitated people's daily life such as cuisine hunting. However they failed to meet travelers' demands because travelers are more concerned about a city's local specialties instead of the city's high ranked restaurants. To solve this problem, this paper presents a local specialty mining algorithm, which utilizes both the structured data from local review websites and the unstructured user-generated content (UGC from community Q&A websites, and travelogues. The proposed algorithm extracts dish names from local review data to build a document for each city, and applies tfidf weighting algorithm on these documents to rank dishes. Dish-city correlations are calculated from unstructured UGC, and combined with the tfidf ranking score to discover local specialties. Finally, duplicates in the local specialty mining results are merged. A recommendation service is built to present local specialties to travelers, along with specialties' associated restaurants, Q&A threads, and travelogues. Experiments on a large data set show that the proposed algorithm can achieve a good performance, and compared to using local review data alone, leveraging unstructured UGC can boost the mining performance a lot, especially in large cities.

  17. Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation

    CERN Document Server

    Domitrz, Wojciech

    2008-01-01

    We propose a produre of reduction a locally conformal symplectic structure. This procedure of reduction can be applied to wide class of submanifolds. There are no local obstructions for this procedure. But there are global obstructions. We find a necessary and sufficient condition when this reduction holds in terms of the special kind of de Rham cohomology class (tangent to the characteristic foliation) of the Lee form.

  18. Relations between structural properties and synchronizability on local world dynamical networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the effects of various structural properties on the synchronization of coupled oscillators with local-world coupling configurations are investigated. It is found that for local world networks, the larger heterogeneity of the degree distribution, the enhanced interconnection of nodes, and the increased clustering do not improve the synchronizability of dynamical systems. On the contrary, the increase of the maximum betweenness centrality appears to be responsible for the decrease of the synchronizability.

  19. Analysis of transverse Anderson localization in refractive index structures with customized random potential

    CERN Document Server

    Boguslawski, Martin; Armijo, Julien; Diebel, Falko; Rose, Patrick; Denz, Cornelia

    2013-01-01

    We present a method to demonstrate Anderson localization in an optically induced randomized potential. By usage of computer controlled spatial light modulators, we are able to implement fully randomized nondiffracting beams of variable structural size in order to control the modulation length (photonic grain size) as well as the depth (disorder strength) of a random potential induced in a photorefractive crystal. In particular, we quantitatively analyze the localization length of light depending on these two parameters and find that they are crucial influencing factors on the propagation behavior leading to variably strong localization. Thus, we corroborate that transverse light localization in a random refractive index landscape strongly depends on the character of the potential, allowing for a flexible regulation of the localization strength by adapting the optical induction configuration.

  20. Identification, characterization and evolution of non-local quasi-Lagrangian structures in turbulence

    Institute of Scientific and Technical Information of China (English)

    Yue Yang

    2016-01-01

    The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed. The quasi-Lagrangian structures, e.g., vortex surfaces in vis-cous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition, they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution. The improving understanding of the quasi-Lagrangian struc-tures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.

  1. Prediction of Local Quality of Protein Structure Models Considering Spatial Neighbors in Graphical Models

    Science.gov (United States)

    Shin, Woong-Hee; Kang, Xuejiao; Zhang, Jian; Kihara, Daisuke

    2017-01-01

    Protein tertiary structure prediction methods have matured in recent years. However, some proteins defy accurate prediction due to factors such as inadequate template structures. While existing model quality assessment methods predict global model quality relatively well, there is substantial room for improvement in local quality assessment, i.e. assessment of the error at each residue position in a model. Local quality is a very important information for practical applications of structure models such as interpreting/designing site-directed mutagenesis of proteins. We have developed a novel local quality assessment method for protein tertiary structure models. The method, named Graph-based Model Quality assessment method (GMQ), explicitly considers the predicted quality of spatially neighboring residues using a graph representation of a query protein structure model. GMQ uses conditional random field as its core of the algorithm, and performs a binary prediction of the quality of each residue in a model, indicating if a residue position is likely to be within an error cutoff or not. The accuracy of GMQ was improved by considering larger graphs to include quality information of more surrounding residues. Moreover, we found that using different edge weights in graphs reflecting different secondary structures further improves the accuracy. GMQ showed competitive performance on a benchmark for quality assessment of structure models from the Critical Assessment of Techniques for Protein Structure Prediction (CASP). PMID:28074879

  2. Study on near-wall turbulence structures with local Reynolds stress

    Institute of Scientific and Technical Information of China (English)

    LiLI; ChunxiaoXU; GuixiangCUI; ZhaoshunZHANG

    2000-01-01

    The direct-numerical-simulated channel turbulence is analyzed with twodimensional wavelet transform. Considering the relation between turbulence coherent structure and Reynolds stress in near wall region, the local Reynolds stress (LRS) is defined.A new method for extracting coherent signals from turbulence based on the LRS is developed. Velocity fluctuations are decomposed to coherent signals and background signals. It is found that the scaling exponents of coherent signals have a considerable deviation from the Kolmogorov scaling law q/3 (K41 theory), while that, of background signals is very close to q/3. It is confirmed that coherent signals are mainly responsible for the anomalous scalings.Locally characterized by the positive peaks of LRS, the typical structures in near wall regionare obtained by conditional statistical averaging. It is shown that the local character of near-wall turbulence structures can be effectively described with LRS.

  3. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Science.gov (United States)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  4. Local structure of multiferroic RMn 2O 5: Important role of the R site

    Science.gov (United States)

    Tyson, T. A.; Chen, Z.; DeLeon, M. A.; Yoong, S.; Cheong, S.-W.

    2009-06-01

    The temperature and magnetic field dependent local structure of RMn 2O 5 systems was examined. While no significant displacements of the Mn ions are observed, it is found that the R-O distribution exhibits changes at low temperature which are possibly related to the changes in the electric polarization. Density functional computations are used to explore the system dynamics and to link the local structural measurements with anomalous changes in the infrared absorption spectra. The anomalous R-O distribution and observed coupling to magnetic fields point to the need to properly treat the 4f electrons on the R sites in these systems.

  5. Acoustic emission localization on ship hull structures using a deep learning approach

    DEFF Research Database (Denmark)

    Georgoulas, George; Kappatos, Vassilios; Nikolakopoulos, George

    2016-01-01

    In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high dimension......In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high...

  6. Crystal structures of bacterial lipoprotein localization factors, LolA and LolB

    OpenAIRE

    Takeda, Kazuki; Miyatake, Hideyuki; Yokota, Naoko; Matsuyama, Shin-ichi; Tokuda, Hajime; Miki, Kunio

    2003-01-01

    Lipoproteins having a lipid-modified cysteine at the N-terminus are localized on either the inner or the outer membrane of Escherichia coli depending on the residue at position 2. Five Lol proteins involved in the sorting and membrane localization of lipoprotein are highly conserved in Gram-negative bacteria. We determined the crystal structures of a periplasmic chaperone, LolA, and an outer membrane lipoprotein receptor, LolB. Despite their dissimilar amino acid sequences, the structures of ...

  7. Pose Estimation using Local Structure-Specific Shape and Appearance Context

    DEFF Research Database (Denmark)

    Buch, Anders Glent; Kraft, Dirk; Kämäräinen, Joni-Kristian

    2013-01-01

    We address the problem of estimating the alignment pose between two models using structure-specific local descriptors. Our descriptors are generated using a combination of 2D image data and 3D contextual shape data, resulting in a set of semi-local descriptors containing rich appearance and shape...... information for both edge and texture structures. This is achieved by defining feature space relations which describe the neighborhood of a descriptor. By quantitative evaluations, we show that our descriptors provide high discriminative power compared to state of the art approaches. In addition, we show how...

  8. Exotic Localized Coherent Structures of the (2+1)-Dimensional Dispersive Long-Wave Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG JieFang

    2002-01-01

    This article is concerned with the extended homogeneous balance method for studying thc abundantlocalized solution structures in the (2-k1)-dimensional dispersive long-wave equations uty + xx + (u2)xy/2 = 0, ηt +(u + u + uxy)x = 0. Starting from the homogeneous balance method, we find that the richness of the localized coherentstructures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selectionsof the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers,instantons and ring solitons.

  9. Discussions on equivalent solutions and localized structures via the mapping method based on Riccati equation

    Science.gov (United States)

    Xu, Ling; Cheng, Xuan; Dai, Chao-Qing

    2015-12-01

    Although the mapping method based on Riccati equation was proposed to obtain variable separation solutions many years ago, two important problems have not been studied: i) the equivalence of variable separation solutions by means of the mapping method based on Riccati equation with the radical sign combined ansatz; and ii) lack of physical meanings for some localized structures constructed by variable separation solutions. In this paper, we re-study the (2+1)-dimensional Boiti-Leon-Pempinelli equation via the mapping method based on Riccati equation and prove that nine types of variable separation solutions are actually equivalent to each other. Moreover, we also re-study localized structures constructed by variable separation solutions. Results indicate that some localized structures reported in the literature are lacking real values due to the appearance of the divergent and un-physical phenomenon for the initial field. Therefore, we must be careful with the initial field to avoid the appearance of some un-physical or even divergent structures in it when we construct localized structures for the potential field.

  10. Modular localization and the holistic structure of causal quantum theory, a historical perspective

    Science.gov (United States)

    Schroer, Bert

    2015-02-01

    Recent insights into the conceptual structure of localization in QFT (modular localization) led to clarifications of old unsolved problems. The oldest one is the Einstein-Jordan conundrum which led Jordan in 1925 to the discovery of quantum field theory. This comparison of fluctuations in subsystems of heat bath systems (Einstein) with those resulting from the restriction of the QFT vacuum state to an open subvolume (Jordan) leads to a perfect analogy; the globally pure vacuum state becomes upon local restriction a strongly impure KMS state. This phenomenon of localization-caused thermal behavior as well as the vacuum-polarization clouds at the causal boundary of the localization region places localization in QFT into a sharp contrast with quantum mechanics and justifies the attribute "holstic". In fact it positions the E-J Gedankenexperiment into the same conceptual category as the cosmological constant problem and the Unruh Gedankenexperiment. The holistic structure of QFT resulting from "modular localization" also leads to a revision of the conceptual origin of the crucial crossing property which entered particle theory at the time of the bootstrap S-matrix approach but suffered from incorrect use in the S-matrix settings of the dual model and string theory. The new holistic point of view, which strengthens the autonomous aspect of QFT, also comes with new messages for gauge theory by exposing the clash between Hilbert space structure and localization and presenting alternative solutions based on the use of stringlocal fields in Hilbert space. Among other things this leads to a reformulation of the Englert-Higgs symmetry breaking mechanism.

  11. Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals.

    Science.gov (United States)

    Trevino, Jacob; Liew, Seng Fatt; Noh, Heeso; Cao, Hui; Dal Negro, Luca

    2012-01-30

    We present a numerical study of the structural properties, photonic density of states and bandedge modes of Vogel spiral arrays of dielectric cylinders in air. Specifically, we systematically investigate different types of Vogel spirals obtained by the modulation of the divergence angle parameter above and below the golden angle value (≈137.507°). We found that these arrays exhibit large fluctuations in the distribution of neighboring particles characterized by multifractal singularity spectra and pair correlation functions that can be tuned between amorphous and random structures. We also show that the rich structural complexity of Vogel spirals results in a multifractal photonic mode density and isotropic bandedge modes with distinctive spatial localization character. Vogel spiral structures offer the opportunity to create novel photonic devices that leverage radially localized and isotropic bandedge modes to enhance light-matter coupling, such as optical sensors, light sources, concentrators, and broadband optical couplers.

  12. Structure in the 3D Galaxy Distribution: II. Voids and Watersheds of Local Maxima and Minima

    CERN Document Server

    Way, M J; Scargle, Jeffrey D

    2014-01-01

    The major uncertainties in studies of the multi-scale structure of the Universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian Blocks and self organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium Simulation and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. The resulting sizes follow continuous multi-scale distributions with no indication of the presence of a discrete hierarchy. We also int...

  13. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  14. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria.

    Science.gov (United States)

    Castleton, C W M; Kullgren, J; Hermansson, K

    2007-12-28

    We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U approximately 3 eV and that the degree of localization reaches a maximum at approximately 6 eV for LDA+U or at approximately 5.5 eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80-90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2-0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3-4 eV, while the experimental band structure is obtained with U=7-8 eV. (For GGA+U the lattice parameters worsen for U>0 eV, but the band structure is similar to LDA+U.) The best overall choice is U approximately 6 eV with LDA+U and approximately 5.5 eV for GGA+U, since the localization is most important, but a consistent choice for both CeO(2) and Ce(2)O(3), with and without vacancies, is hard to find.

  15. Study on the Analytical Behaviour of Concrete Structure Against Local Impact of Hard Missile

    Directory of Open Access Journals (Sweden)

    Ahmad Mujahid Ahmad Zaidi

    2011-07-01

    Full Text Available Concrete is basic construction material used for almost all kind of structure. However, in the majority essential structures such as nuclear plants, Power plants, Weapon Industries, weapons storage places, water retaining structures like dams, highways barriers, bridges, & etc., concrete structures have to be designed as self-protective structure which can afford any disaster or consciously engendered unpleasant incidents such as incident occurs in nuclear plants, incident in any essential industry, terrorist attack, Natural disasters like tsunami and etc missile attack, and local impact damage generated by kinetic missiles dynamic loading (steel rods, steel pipes, turbine blades, etc.. This paper inquisitively is paying attention on verdict of the recent development in formulating analytical behavior of concrete and reinforced concrete structures against local impact effect generated by hard missile with and without the influence of dimensional analysis based on dominant non-dimensional parameters, various nose shape factors at normal and certain inclined oblique angles. The paper comprises the analytical models and methods for predicting penetration, and perforation of concrete and reinforced concrete. The fallout conquer from this study can be used for making design counsel and design procedures for seminal the dynamic retort of the concrete targets to foil local impact damage.

  16. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-09-01

    This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin-Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.

  17. Exciton Localization in Extended {\\pi}-electron Systems: Comparison of Linear and Cyclic Structures

    CERN Document Server

    Thiessen, Alexander; Jester, Stefan-S; Aggarwal, A Vikas; Idelson, Alissa; Bange, Sebastian; Vogelsang, Jan; Höger, Sigurd; Lupton, John M

    2015-01-01

    We employ five {\\pi}-conjugated model materials of different molecular shape --- oligomers and cyclic structures --- to investigate the extent of exciton self-trapping and torsional motion of the molecular framework following optical excitation. Our studies combine steady-state and transient fluorescence spectroscopy in the ensemble with measurements of polarization anisotropy on single molecules, supported by Monte Carlo simulations. The dimer exhibits a significant spectral red-shift within $\\sim$ 100 ps after photoexcitation which is attributed to torsional relaxation. This relaxation mechanism is inhibited in the structurally rigid macrocyclic analogue. However, both systems show a high degree of exciton localization but with very different consequences: while in the macrocycle the exciton localizes randomly on different parts of the ring, scrambling polarization memory, in the dimer, localization leads to a deterministic exciton position with luminescence characteristics of a dipole. Monte Carlo simulati...

  18. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2012-01-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has revealed the presence of unexpected small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticisied by Stift et al. (2012), who claimed that magnetic inversions are not robust and are undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and neglected some of the most fundamental principles behind magnetic mapping. We demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalised local Stokes profiles. For the disk-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere ...

  19. Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics.

    Science.gov (United States)

    Fernandez-Oto, C; Clerc, M G; Escaff, D; Tlidi, M

    2013-04-26

    We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.

  20. Heterogeneity of Global and Local Connectivity in Spatial Network Structures of World Migration

    CERN Document Server

    Danchev, Valentin

    2016-01-01

    We examine world migration as a social-spatial network of countries connected via movements of people. We assess how multilateral migratory relationships at global, regional, and local scales coexist ("glocalization"), divide ("polarization"), or form an interconnected global system ("globalization"). To do this, we decompose the world migration network (WMN) into communities---sets of countries with denser than expected migration connections---and characterize their pattern of local (i.e., intracommunity) and global (i.e., intercommunity) connectivity. We distinguish community signatures---"cave", "biregional", and "bridging"---with distinct migration patterns, spatial network structures, temporal dynamics, and underlying antecedents. Cave communities are tightly-knit, enduring structures that tend to channel local migration between contiguous countries; biregional communities are likely to merge migration between two distinct geographic regions (e.g., North Africa and Europe); and bridging communities have ...

  1. The organization of mineral exploitation and the relationship to urban structures and local business development

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte; Jørgensen, Ulrik

    2013-01-01

    The paper explores relations between mining and urban structures as these are decisive for involving the local workforce and developing local businesses. A major challenge for Greenland is the on-going decoupling between existing settlements and the main export industry based on marine living...... resources. Because Greenland, as other Arctic regions, are structured in relatively isolated island economies with only modest trade between the settlements and no possibility of commuting, a number of settlements are left without substantial industrial base. Administration of the settlement becomes...... of the resources using immigrant and migrant labour, working intensively over a period of time, while living in shantytowns. Both local and international experiences show that such an organization of work life is not attractive for the population, and that it often provides significant human and social challenges...

  2. Localized Polymerization Using Single Photon Photoinitiators in Two-photon process for Fabricating Subwavelength Structures

    CERN Document Server

    Ummethala, Govind; Chaudhary, Raghvendra P; Hawal, Suyog; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    Localized polymerization in subwavelength volumes using two photon dyes has now become a well-established method for fabrication of subwavelength structures. Unfortunately, the two photon absorption dyes used in such process are not only expensive but also proprietary. LTPO-L is an inexpensive, easily available single photon photoinitiator and has been used extensively for single photon absorption of UV light for polymerization. These polymerization volumes however are not localized and extend to micron size resolution having limited applications. We have exploited high quantum yield of radicals of LTPO-Lfor absorption of two photons to achieve localized polymerization in subwavelength volumes, much below the diffraction limit. Critical concentration (10wt%) of LTPO-Lin acrylate (Sartomer) was found optimal to achieve subwavelength localized polymerization and has been demonstrated by fabricating 2D/3D complex nanostructures and functional devices such as variable polymeric gratings with nanoscaled subwavelen...

  3. New Exact Solutions and Localized Structures for (3+1)-Dimensional Burgers System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Shang; LI Jiang-Bo; MA Song-Hua; REN Qing-Bao; FANG Jian-Ping; ZHENG Chun-Long

    2008-01-01

    With an extended mapping approach and a linear variable separation method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (3+1)-dimensional Burgers system is derived. Based on the derived excitations, we obtain some novel localized coherent structures and study the interactions between solitons.

  4. Locally self-consistent Green’s function approach to the electronic structure problem

    DEFF Research Database (Denmark)

    Abrikosov, I.A.; Simak, S.I.; Johansson, B.;

    1997-01-01

    The locally self-consistent Green's function (LSGF) method is an order-N method for calculation of the electronic structure of systems with an arbitrary distribution of atoms of different kinds on an underlying crystal lattice. For each atom Dyson's equation is used to solve the electronic multiple...

  5. Design Optimization of Laminated Composite Structures with Many Local Strength Criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    This paper presents different strategies for handling very many local strength criteria in structural optimization of laminated composites. Global strength measures using Kreisselmeier-Steinhauser or p-norm functions are introduced for patch-wise parameterizations, and the efficiency of the methods...

  6. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures

    Science.gov (United States)

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-05-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous-crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature.

  7. Localization to Chromosomes of Structural Genes for the Major Protease Inhibitors of Barley Grains

    DEFF Research Database (Denmark)

    Hejgaard, Jørn; Bjørn, S.E.; Nielsen, Gunnar Gissel

    1984-01-01

    Wheat-barley chromosome addition lines were compared by isoelectric focusing of protein extracts to identify chromosomes carrying loci for the major immunochemically distinct protease inhibitors of barley grains. Structural genes for the following inhibitors were localized: an inhibitor of both...

  8. Observation of electro-activated localized structures in broad area VCSELs

    CERN Document Server

    Parravicini, J; Columbo, L; Prati, F; Rizza, C; Tissoni, G; Agranat, A J; DelRe, E

    2014-01-01

    We demonstrate experimentally the electro-activation of a localized optical structure in a coherently driven broad-area vertical-cavity surface-emitting laser (VCSEL) operated below threshold. Control is achieved by electro-optically steering a writing beam through a pre-programmable switch based on a photorefractive funnel waveguide.

  9. Assessment of the local SAR Distortion by Major Anatomical Structures in a Cylindrical Neck Phantom

    NARCIS (Netherlands)

    M.M. Paulides (Maarten); D.H.M. Wielheesen (Dennis); J. van der Zee (Jill); G.C. van Rhoon (Gerard)

    2005-01-01

    textabstractThe objective of this work is to gain insight in the distortions on the local SAR distribution by various major anatomical structures in the neck. High resolution 3D FDTD calculations based on a variable grid are made for a semi-3D generic phantom based on average dimensions obtained fro

  10. Types and concentrations of metal ions affect local structure and dynamics of RNA

    Science.gov (United States)

    Wang, Jun; Xiao, Yi

    2016-10-01

    The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the pre Q1 riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.

  11. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2.

    Science.gov (United States)

    Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley

    2013-11-13

    Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current.

  12. Impacts of Information Subsidies and Community Structure on Local Press Coverage of Environmental Contamination.

    Science.gov (United States)

    Griffin, Robert J.; Dunwoody, Sharon

    1995-01-01

    Finds that a press kit sent by an environmental group to midwestern newspapers influenced them to delegate local staff to cover the story. Indicates that the press's function to report or raise issues concerning industrial toxic releases and related health risks is tempered by community structure and particularly by community reliance on…

  13. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis.

    Science.gov (United States)

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  14. Local structural investigation of SmFeAsO1 - xFx high temperature superconductors

    Science.gov (United States)

    Malavasi, Lorenzo; Artioli, Gianluca A.; Kim, Hyunjeong; Maroni, Beatrice; Joseph, Boby; Ren, Yang; Proffen, Thomas; Billinge, Simon J. L.

    2011-07-01

    A strong revitalization of the field of high temperature superconductivity (HTSC) has been induced recently by the discovery of TC around 26 K in F-doped LaFeAsO iron pnictides. Starting from this discovery, a huge amount of experimental data have been accumulated. This important corpus of results will allow the development of suitable theoretical models aimed at describing the basic electronic structure properties and nature of superconducting states in these fascinating new systems. A close correlation between structural features and physical properties of the normal and superconducting states has already been demonstrated in the current literature. Advanced theoretical models are also based on the close correlation with structural properties and in particular with the Fe-As tetrahedral array. As for other complex materials, a deeper understanding of their structure-properties correlation requires a full knowledge of the atomic arrangement within the structure. Here we report an investigation of the local structure in the SmFeAsO1 - xFx system carried out by means of x-ray total scattering measurements and pair distribution function analysis. The results presented indicate that the local structure of these HTSC significantly differs from the average structure determined by means of traditional diffraction techniques, in particular the distribution of Fe-As bond lengths. In addition, a model for describing the observed discrepancies is presented.

  15. Local structural investigation of SmFeAsO₁₋xF(x) high temperature superconductors.

    Science.gov (United States)

    Malavasi, Lorenzo; Artioli, Gianluca A; Kim, Hyunjeong; Maroni, Beatrice; Joseph, Boby; Ren, Yang; Proffen, Thomas; Billinge, Simon J L

    2011-07-13

    A strong revitalization of the field of high temperature superconductivity (HTSC) has been induced recently by the discovery of T(C) around 26 K in F-doped LaFeAsO iron pnictides. Starting from this discovery, a huge amount of experimental data have been accumulated. This important corpus of results will allow the development of suitable theoretical models aimed at describing the basic electronic structure properties and nature of superconducting states in these fascinating new systems. A close correlation between structural features and physical properties of the normal and superconducting states has already been demonstrated in the current literature. Advanced theoretical models are also based on the close correlation with structural properties and in particular with the Fe-As tetrahedral array. As for other complex materials, a deeper understanding of their structure-properties correlation requires a full knowledge of the atomic arrangement within the structure. Here we report an investigation of the local structure in the SmFeAsO₁₋ xF(x) system carried out by means of x-ray total scattering measurements and pair distribution function analysis. The results presented indicate that the local structure of these HTSC significantly differs from the average structure determined by means of traditional diffraction techniques, in particular the distribution of Fe-As bond lengths. In addition, a model for describing the observed discrepancies is presented.

  16. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis

    Science.gov (United States)

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  17. Nuclear Enhanced X-ray Maximum Entropy Method Used to Analyze Local Distortions in Simple Structures

    DEFF Research Database (Denmark)

    Christensen, Sebastian; Bindzus, Niels; Christensen, Mogens;

    was conceived to analyse local distortions in the thermoelectric lead chalcogenides, PbX (X = S, Se, Te). Their extraordinary thermoelectric performance has caused huge research activity, but the mechanisms governing their unexpected low thermal conductivity still remain a controversial topic. It has been...... the ideal, undistorted rock-salt structure. NEXMEM employs a simple procedure to normalize extracted structure factors to the atomic form factors. The NDD is reconstructed by performing maximum entropy calculations on the normalized structure factors. NEXMEM has been validated by testing against simulated...

  18. Local structure in the disordered solid solution of cis- and trans-perinones

    DEFF Research Database (Denmark)

    Teteruk, Jaroslav L.; Glinnemann, Juergen; Heyse, Winfried;

    2016-01-01

    The cis- and trans-isomers of the polycyclic aromatic compound perinone, C26H12N4O2, form a solid solution (Vat Red 14). This solid solution is isotypic to the crystal structures of cis-perinone (Pigment Red 194) and trans-perinone (Pigment Orange 34) and exhibits a combined positional....... The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including...

  19. Identification and localization of the structural proteins of anguillid herpesvirus 1

    Directory of Open Access Journals (Sweden)

    van Beurden Steven J

    2011-10-01

    Full Text Available Abstract Many of the known fish herpesviruses have important aquaculture species as their natural host, and may cause serious disease and mortality. Anguillid herpesvirus 1 (AngHV-1 causes a hemorrhagic disease in European eel, Anguilla anguilla. Despite their importance, fundamental molecular knowledge on fish herpesviruses is still limited. In this study we describe the identification and localization of the structural proteins of AngHV-1. Purified virions were fractionated into a capsid-tegument and an envelope fraction, and premature capsids were isolated from infected cells. Proteins were extracted by different methods and identified by mass spectrometry. A total of 40 structural proteins were identified, of which 7 could be assigned to the capsid, 11 to the envelope, and 22 to the tegument. The identification and localization of these proteins allowed functional predictions. Our findings include the identification of the putative capsid triplex protein 1, the predominant tegument protein, and the major antigenic envelope proteins. Eighteen of the 40 AngHV-1 structural proteins had sequence homologues in related Cyprinid herpesvirus 3 (CyHV-3. Conservation of fish herpesvirus structural genes seemed to be high for the capsid proteins, limited for the tegument proteins, and low for the envelope proteins. The identification and localization of the structural proteins of AngHV-1 in this study adds to the fundamental knowledge of members of the Alloherpesviridae family, especially of the Cyprinivirus genus.

  20. Connecting the dots: how local structure affects global integration in infants.

    Science.gov (United States)

    Palomares, Melanie; Pettet, Mark; Vildavski, Vladimir; Hou, Chuan; Norcia, Anthony

    2010-07-01

    Glass patterns are moirés created from a sparse random-dot field paired with its spatially shifted copy. Because discrimination of these patterns is not based on local features, they have been used extensively to study global integration processes. Here, we investigated whether 4- to 5.5-month-old infants are sensitive to the global structure of Glass patterns by measuring visual-evoked potentials. Although we found strong responses to the appearance of the constituent dots, we found sensitivity to the global structure of the Glass patterns in the infants only over a very limited range of spatial separation. In contrast, we observed robust responses in the infants when we connected the dot pairs of the Glass pattern with lines. Moreover, both infants and adults showed differential responses to exchanges between line patterns portraying different global structures. A control study varying luminance contrast in adults suggests that infant sensitivity to global structure is not primarily limited by reduced element visibility. Together our results suggest that the insensitivity to structure in conventional Glass patterns is due to inefficiencies in extracting the local orientation cues generated by the dot pairs. Once the local orientations are made unambiguous or when the interpolation span is small, infants can integrate these signals over the image.

  1. Efficient tracker based on sparse coding with Euclidean local structure-based constraint

    Institute of Scientific and Technical Information of China (English)

    WANG Hongyuan; ZHANG Ji; CHEN Fuhua

    2016-01-01

    Sparse coding ( SC) based visual tracking ( l1⁃tracker) is gaining increasing attention, and many related algorithms are developed. In these algorithms, each candidate region is sparsely represented as a set of target tem⁃plates. However, the structure connecting these candidate regions is usually ignored. Lu proposed an NLSSC⁃tracker with non⁃local self⁃similarity sparse coding to address this issue, which has a high computational cost. In this study, we propose an Euclidean local⁃structure constraint based sparse coding tracker with a smoothed Euclidean local structure. With this tracker, the optimization procedure is transformed to a small⁃scale l1⁃optimization problem, sig⁃nificantly reducing the computational cost. Extensive experimental results on visual tracking demonstrate the effectiveness and efficiency of the proposed algorithm.

  2. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, L.W. [Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA (United States); Jesurum, C.E. [Massachusetts Institute of Technology, Dept. of Mathematics, Cambridge, MA (United States); Pulim, V. [Massachusetts Institute of Technology, Lab. for Computer Science, Cambridge, MA (United States)

    1997-07-01

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  3. Strong influence of regional species pools on continent-wide structuring of local communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Borregaard, Michael Krabbe; Fordyce, James A.;

    2012-01-01

    of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution......There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species...... pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use...

  4. Polydisperse hard spheres: crystallization kinetics in small systems and role of local structure

    Science.gov (United States)

    Campo, Matteo; Speck, Thomas

    2016-08-01

    We study numerically the crystallization of a hard-sphere mixture with 8% polydispersity. Although often used as a model glass former, for small system sizes we observe crystallization in molecular dynamics simulations. This opens the possibility to study the competition between crystallization and structural relaxation of the melt, which typically is out of reach due to the disparate timescales. We quantify the dependence of relaxation and crystallization times on density and system size. For one density and system size we perform a detailed committor analysis to investigate the suitability of local structures as order parameters to describe the crystallization process. We find that local structures are strongly correlated with generic bond order and add little information to the reaction coordinate.

  5. Experimental Study on Local Mass Transfer of Structured Packing with the Method of Flow Visualization

    Institute of Scientific and Technical Information of China (English)

    张燕来; 朱慧铭; 尹秋响

    2011-01-01

    A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method (AAM) that yields the surface distribution of transferred mass by analyzing the color distribution on a filter paper with the results of the color chemical reaction. A digital image processing technology is applied for data visualiza-tion. The three-dimensional plot of the local mass transfer coefficients shows that there exist three peak values on different positions of a unit cell of structured packing. In order to improve mass transfer efficiency of the structured packing, one piece of baffle is added between packing sheets. As a result, the average mass transfer coefficient increases by (10 20)% and the pressure drop decreases by (15-55)%.

  6. Effective 3D protein structure prediction with local adjustment genetic-annealing algorithm.

    Science.gov (United States)

    Zhang, Xiao-Long; Lin, Xiao-Li

    2010-09-01

    The protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing the energy function. The protein folding structure prediction is computationally challenging and has been shown to be NP-hard problem when the 3D off-lattice AB model is employed. In this paper, the local adjustment genetic-annealing (LAGA) algorithm was used to search the ground state of 3D offlattice AB model for protein folding structure. The algorithm included an improved crossover strategy and an improved mutation strategy, where a local adjustment strategy was also used to enhance the searching ability. The experiments were carried out with the Fibonacci sequences. The experimental results demonstrate that the LAGA algorithm appears to have better performance and accuracy compared to the previous methods.

  7. Localization and fractal spectra of optical phonon modes in quasiperiodic structures

    Science.gov (United States)

    Anselmo, D. H. A. L.; Dantas, A. L.; Medeiros, S. K.; Albuquerque, E. L.; Freire, V. N.

    2005-04-01

    The dispersion relation and localization profile of confined optical phonon modes in quasiperiodic structures, made up of nitride semiconductor materials, are analyzed through a transfer-matrix approach. The quasiperiodic structures are characterized by the nature of their Fourier spectrum, which can be dense pure point (Fibonacci sequences) or singular continuous (Thue-Morse and Double-period sequences). These substitutional sequences are described in terms of a series of generations that obey peculiar recursion relations and/or inflation rules. We present a quantitative analysis of the localization and magnitude of the allowed band widths in the optical phonons spectra of these quasiperiodic structures, as well as how they scale as a function of the number of generations of the sequences.

  8. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros

    2016-11-25

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.

  9. Emergence of Coherent Localized Structures in Shear Deformations of Temperature Dependent Fluids

    Science.gov (United States)

    Katsaounis, Theodoros; Olivier, Julien; Tzavaras, Athanasios E.

    2016-12-01

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states—in the form of similarity solutions—that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in uc(Katsaounis) and uc(Tzavaras) (SIAM J Appl Math 69:1618-1643, 2009).

  10. Functional annotation by identification of local surface similarities: a novel tool for structural genomics

    Directory of Open Access Journals (Sweden)

    Zanzoni Andreas

    2005-08-01

    Full Text Available Abstract Background Protein function is often dependent on subsets of solvent-exposed residues that may exist in a similar three-dimensional configuration in non homologous proteins thus having different order and/or spacing in the sequence. Hence, functional annotation by means of sequence or fold similarity is not adequate for such cases. Results We describe a method for the function-related annotation of protein structures by means of the detection of local structural similarity with a library of annotated functional sites. An automatic procedure was used to annotate the function of local surface regions. Next, we employed a sequence-independent algorithm to compare exhaustively these functional patches with a larger collection of protein surface cavities. After tuning and validating the algorithm on a dataset of well annotated structures, we applied it to a list of protein structures that are classified as being of unknown function in the Protein Data Bank. By this strategy, we were able to provide functional clues to proteins that do not show any significant sequence or global structural similarity with proteins in the current databases. Conclusion This method is able to spot structural similarities associated to function-related similarities, independently on sequence or fold resemblance, therefore is a valuable tool for the functional analysis of uncharacterized proteins. Results are available at http://cbm.bio.uniroma2.it/surface/structuralGenomics.html

  11. Strain properties analysis and wireless collection system of PVDF for structural local health monitoring of civil engineering structures

    Science.gov (United States)

    Yu, Yan; Wang, Yang; Dong, Weijie; Jin, Yajing; Ou, Jinping

    2009-07-01

    For large civil engineering structures and base establishments, for example, bridges, super-high buildings, long-span space structures, offshore platforms and pipe systems of water & gas supply, their lives are up to a few decades or centuries. Damaged by environmental loads, fatigue effects, corrosion effects and material aging, these structures experience inevitably such side effects as damage accumulation, resistance reduction and even accidents. The traditional civil structure is a kind of passive one, whose performance and status are unpredictable to a great extent, but the informatics' introduction breaks a new path to obtain the status of the structure, thus it is an important research direction to evaluate and improve reliability of civil structures by the use of monitoring and health diagnosis technique, and this also assures the security of service for civil engineering structures. Smart material structure, originated from the aerospace sector, has been a research hotspot in civil engineering, medicine, shipping, and so on. For structural health monitoring of civil engineering, the research about high-performance sensing unit of smart material structure is very important, and this will possibly push further the development and application of monitoring and health diagnosis techniques. At present, piezoelectric materials are one of the most widely used sensing materials among the research of smart material structures. As one of the piezoelectric materials, PVDF(Polyvinylidene Fluoride)film is widely considered for the advantages of low cost, good mechanical ability, high sensibility, the ability of being easily placed and resistance of corrosion. However, only a few studies exit about building a mature monitoring system using PVDF. In this paper, for the sake of using PVDF for sensing unit for structural local monitoring of civil engineering, the strain sensing properties of PVDF are studied in detail. Firstly, the operating mechanism of PVDF is analyzed

  12. Structural and functional characterization of human telomerase RNA processing and cajal body localization signals.

    Science.gov (United States)

    Theimer, Carla A; Jády, Beáta E; Chim, Nicholas; Richard, Patricia; Breece, Katherine E; Kiss, Tamás; Feigon, Juli

    2007-09-21

    The RNA component of human telomerase (hTR) includes H/ACA and CR7 domains required for 3' end processing, localization, and accumulation. The terminal loop of the CR7 domain contains the CAB box (ugAG) required for targeting of scaRNAs to Cajal bodies (CB) and an uncharacterized sequence required for accumulation and processing. To dissect out the contributions of the CR7 stem loop to hTR processing and localization, we solved the solution structures of the 3' terminal stem loops of hTR CR7 and U64 H/ACA snoRNA, and the 5' terminal stem loop of U85 C/D-H/ACA scaRNA. These structures, together with analysis of localization, processing, and accumulation of hTRs containing nucleotide substitutions in the CR7 domain, identified the sequence and structural requirements of the hTR processing and CB localization signals and showed that these signals are functionally independent. Further, 3' end processing was found to be a prerequisite for translocation of hTR to CBs.

  13. Cultural order and participatory local development: structure for the occupational therapist practice

    Directory of Open Access Journals (Sweden)

    Ricardo Lopes Correia

    2016-01-01

    Full Text Available The Cultural Order is understood as the expression of a game of interdependencies determinations between local and global social groups, pairs identified by productions, values and behavior that consciously guide the life projects and the expansion of a collective freedom. Based on a Social Science research and with theoretical mark of Nobert Elias and Amartya Sen, this article aims to present a theoretical-practice structure of the approach in participatory local development- PLD to the occupational therapist surround by the construction of collective life projects, in order to operationalize in the practice of the community question, understood as the strengths that singularize the participation. We discuss the use of the PLD approach to the occupational therapist in a flexible structure, aiming to guarantee its domain, the Human Occupation, and the set of interventions, technologies, sustained in the management of the activities of daily living. The approach in participatory local development presents itself as an important structural outline to the community actions, and it is the occupational therapist role to be an articulator of the Local Cultural Order dimensions, to deal with the target population their work processes of continuity in collective life projects and expansion of freedom.

  14. BAYESIAN LOCAL INFLUENCE ASSESSMENTS IN A GROWTH CURVE MODEL WITH GENERAL COVARIANCE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The objective of this paper is to present a Bayesian approach based on Kullback Leibler divergence for assessing local influence in a growth curve model with general covariance structure.Under certain prior distribution assumption,the Kullback-Leibler divergence is used to measure the influence of some minor perturbation on the posterior distribution of unknown parameter.This leads to the diagnostic statistic for detecting which response is locally influential.As an application,the common covariance-weighted perturbation scheme is thoroughly considered.

  15. Rearrangement dynamics in colloidal particle packings identified through local structure and machine-learning

    Science.gov (United States)

    Davidson, Zoey S.; Still, Tim; Gratale, Matthew D.; Ma, Xiaoguang; Schoenholz, Samuel S.; Sussman, Daniel M.; Liu, A. J.; Yodh, A. G.

    We explore the connection between measures of local structure and particle rearrangements in soft thermal quasi-two-dimensional colloidal systems employing a machine learning approach. Local structure is characterized by two and three point structure functions that measure radial and angular distributions of particles, and rearrangements are identified by a measure of change in average colloidal particle position. By generating labeled training data, we can extract the features of these functions that contribute to the likelihood of a rearrangement. In particular, we use a machine-learning algorithm to construct a decision function in the form of a scalar field we call softness that with high accuracy labels regions of particles more likely to rearrange. Thus, we can predict dynamic rearrangements from the instantaneous local structure. The softness field remains a good predictor when we vary the packing fraction between training and test data sets. In glassy samples, the softness field can identify aging as particles become less likely to undergo cage rearrangements. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, NASA NNX08AO0G, and DE-FG02-05ER46199.

  16. Local structure of temperature and pH-sensitive colloidal microgels

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Valentina, E-mail: nigro@fis.uniroma3.it; Bruni, Fabio; Ricci, Maria Antonietta [Dipartimento di Scienze, Sezione di Nanoscienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Angelini, Roberta; Ruzicka, Barbara [Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR) UOS Sapienza and Dipartimento di Fisica, Sapienza Università, Pz.le Aldo Moro 5, I-00185 Roma (Italy); Bertoldo, Monica [Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa (Italy); Castelvetro, Valter [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 3, I-56126 Pisa (Italy); Rogers, Sarah [ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom)

    2015-09-21

    The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneous interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.

  17. Protein subcellular localization prediction based on compartment-specific features and structure conservation

    Directory of Open Access Journals (Sweden)

    Lo Allan

    2007-09-01

    Full Text Available Abstract Background Protein subcellular localization is crucial for genome annotation, protein function prediction, and drug discovery. Determination of subcellular localization using experimental approaches is time-consuming; thus, computational approaches become highly desirable. Extensive studies of localization prediction have led to the development of several methods including composition-based and homology-based methods. However, their performance might be significantly degraded if homologous sequences are not detected. Moreover, methods that integrate various features could suffer from the problem of low coverage in high-throughput proteomic analyses due to the lack of information to characterize unknown proteins. Results We propose a hybrid prediction method for Gram-negative bacteria that combines a one-versus-one support vector machines (SVM model and a structural homology approach. The SVM model comprises a number of binary classifiers, in which biological features derived from Gram-negative bacteria translocation pathways are incorporated. In the structural homology approach, we employ secondary structure alignment for structural similarity comparison and assign the known localization of the top-ranked protein as the predicted localization of a query protein. The hybrid method achieves overall accuracy of 93.7% and 93.2% using ten-fold cross-validation on the benchmark data sets. In the assessment of the evaluation data sets, our method also attains accurate prediction accuracy of 84.0%, especially when testing on sequences with a low level of homology to the training data. A three-way data split procedure is also incorporated to prevent overestimation of the predictive performance. In addition, we show that the prediction accuracy should be approximately 85% for non-redundant data sets of sequence identity less than 30%. Conclusion Our results demonstrate that biological features derived from Gram-negative bacteria translocation

  18. Local Structure Analysis and Interface Layer Effect of Phase-Change Recording Material Using Actual Media

    Science.gov (United States)

    Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro; Ashida, Sumio

    2008-07-01

    The influences of the interface layer on crystal structure, the local atomic arrangement, and the electronic and chemical structure of a GeBiTe (GBT) phase-change recording material have been investigated using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), and hard X-ray photoelectron spectroscopy (HX-PES) methods using actual rewritable high-speed HD DVD media without special sample processing. XRD results showed that the crystal structure of laser-crystallized GBT alloy in the actual HD DVD media is the same as that of GeSbTe (GST) alloy, which has a NaCl-type structure. No differences between samples with and without interface layers were found. The lattice constant of GBT is larger than that of GST. Bi increases the lattice constant of GST with respect to the Bi substitution ratio of Sb. According to HX-PES, the DOS of in the recording film amorphous state with an interface layer is closer to that of the crystalline state than the recording film without an interface layer. From XAFS results, clear differences between amorphous (Amo.) and crystalline states (Cry.) were observed. The interatomic distance of amorphous recording material is independent of the existence of an interface layer. On the other hand, the coordination number varied slightly due to the presence of the interface layer. Therefore, the electronic state of the recording layer changes because of the interface layer, although the local structure changes only slightly except for the coordination number. Combining these results, we conclude that the interface layer changes the electronic state of the recording layer and promotes crystallization, but only affects the local structure of the atomic arrangement slightly.

  19. Local structure, composition, and crystallization mechanism of a model two-phase "composite nanoglass"

    Science.gov (United States)

    Chattopadhyay, Soma; Kelly, S. D.; Shibata, Tomohiro; Balasubramanian, M.; Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi; Ayyub, Pushan

    2016-02-01

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu55Nb45. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  20. Local structure, composition, and crystallization mechanism of a model two-phase “composite nanoglass”

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-02-14

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  1. Local structure in the disordered solid solution of cis- and trans-perinones.

    Science.gov (United States)

    Teteruk, Jaroslav L; Glinnemann, Jürgen; Heyse, Winfried; Johansson, Kristoffer E; van de Streek, Jacco; Schmidt, Martin U

    2016-06-01

    The cis- and trans-isomers of the polycyclic aromatic compound perinone, C26H12N4O2, form a solid solution (Vat Red 14). This solid solution is isotypic to the crystal structures of cis-perinone (Pigment Red 194) and trans-perinone (Pigment Orange 34) and exhibits a combined positional and orientational disorder: In the crystal, each molecular position is occupied by either a cis- or trans-perinone molecule, both of which have two possible molecular orientations. The structure of cis-perinone exhibits a twofold orientational disorder, whereas the structure of trans-perinone is ordered. The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic positions, but also the site occupancies and anisotropic displacement parameters.

  2. Protein function annotation with Structurally Aligned Local Sites of Activity (SALSAs

    Directory of Open Access Journals (Sweden)

    Wang Zhouxi

    2013-02-01

    Full Text Available Abstract Background The prediction of biochemical function from the 3D structure of a protein has proved to be much more difficult than was originally foreseen. A reliable method to test the likelihood of putative annotations and to predict function from structure would add tremendous value to structural genomics data. We report on a new method, Structurally Aligned Local Sites of Activity (SALSA, for the prediction of biochemical function based on a local structural match at the predicted catalytic or binding site. Results Implementation of the SALSA method is described. For the structural genomics protein PY01515 (PDB ID 2aqw from Plasmodium yoelii, it is shown that the putative annotation, Orotidine 5'-monophosphate decarboxylase (OMPDC, is most likely correct. SALSA analysis of YP_001304206.1 (PDB ID 3h3l, a putative sugar hydrolase from Parabacteroides distasonis, shows that its active site does not bear close resemblance to any previously characterized member of its superfamily, the Concanavalin A-like lectins/glucanases. It is noted that three residues in the active site of the thermophilic beta-1,4-xylanase from Nonomuraea flexuosa (PDB ID 1m4w, Y78, E87, and E176, overlap with POOL-predicted residues of similar type, Y168, D153, and E232, in YP_001304206.1. The substrate recognition regions of the two proteins are rather different, suggesting that YP_001304206.1 is a new functional type within the superfamily. A structural genomics protein from Mycobacterium avium (PDB ID 3q1t has been reported to be an enoyl-CoA hydratase (ECH, but SALSA analysis shows a poor match between the predicted residues for the SG protein and those of known ECHs. A better local structural match is obtained with Anabaena beta-diketone hydrolase (ABDH, a known β-diketone hydrolase from Cyanobacterium anabaena (PDB ID 2j5s. This suggests that the reported ECH function of the SG protein is incorrect and that it is more likely a β-diketone hydrolase. Conclusions

  3. The phase diagram of molybdenum at extreme conditions and the role of local liquid structures

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M

    2008-08-15

    Recent DAC measurements made of the Mo melting curve by the x-ray diffraction studies confirms that, up to at least 110 GPa (3300K) melting is directly from bcc to liquid, evidence that there is no basis for a speculated bcc-hcp or fcc transition. An examination of the Poisson Ratio, obtained from shock sound speed measurements, provides evidence that the 210 GPa (4100K) transition detected from shock experiments is a continuation of the bcc-liquid melting, but is from a bcc-to a solid-like mixed phase rather than to liquid. Calculations, modeled to include the free energy of liquid local structures, predict that the transition from the liquid to the mixed phase is near 150 GPa(3500K). The presence of local structures provides the simplest and most direct explanation for the Mo phase diagram, and the low melting slopes.

  4. On the local integrability of almost-product structures defined by space-time metrics

    CERN Document Server

    Delphenich, D H

    2016-01-01

    The splitting of the tangent bundle of space-time into temporal and spatial sub-bundles defines an almost-product structure. In particular, any space-time metric can be locally expressed in time-orthogonal form, in such a way that whether or not that almost-product structure is locally generated by a coordinate chart is a matter of the integrability of the Pfaff equation that the temporal 1-form of that expression for the metric defines. When one applies that analysis to the known exact solutions to the Einstein field equations, one finds that many of the common ones are completely-integrable, although some of the physically-interesting ones are not.

  5. Structural Health Monitoring of Wind Turbine Blades: Acoustic Source Localization Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Mabrok Bouzid

    2015-01-01

    Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.

  6. Scale-adaptive tensor algebra for local many-body methods of electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Liakh, Dmitry I [ORNL

    2014-01-01

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).

  7. R3D Align: global pairwise alignment of RNA 3D structures using local superpositions

    Science.gov (United States)

    Rahrig, Ryan R.; Leontis, Neocles B.; Zirbel, Craig L.

    2010-01-01

    Motivation: Comparing 3D structures of homologous RNA molecules yields information about sequence and structural variability. To compare large RNA 3D structures, accurate automatic comparison tools are needed. In this article, we introduce a new algorithm and web server to align large homologous RNA structures nucleotide by nucleotide using local superpositions that accommodate the flexibility of RNA molecules. Local alignments are merged to form a global alignment by employing a maximum clique algorithm on a specially defined graph that we call the ‘local alignment’ graph. Results: The algorithm is implemented in a program suite and web server called ‘R3D Align’. The R3D Align alignment of homologous 3D structures of 5S, 16S and 23S rRNA was compared to a high-quality hand alignment. A full comparison of the 16S alignment with the other state-of-the-art methods is also provided. The R3D Align program suite includes new diagnostic tools for the structural evaluation of RNA alignments. The R3D Align alignments were compared to those produced by other programs and were found to be the most accurate, in comparison with a high quality hand-crafted alignment and in conjunction with a series of other diagnostics presented. The number of aligned base pairs as well as measures of geometric similarity are used to evaluate the accuracy of the alignments. Availability: R3D Align is freely available through a web server http://rna.bgsu.edu/R3DAlign. The MATLAB source code of the program suite is also freely available for download at that location. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: r-rahrig@onu.edu PMID:20929913

  8. Local Impact Simulation of SC Wall Structures using Aircraft Engine Projectile

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chulhun; Lee, Jungwhee; Lee, Hanjoo [Dankook Univ., Yongin (Korea, Republic of); Jung, Raeyoung; Hyun, Changhun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    SC wall structure developed for nuclear power plant buildings consists of plain concrete and two steel plates on both surface of the concrete, while RC structure consists of re bar and concrete. SC structure has higher scabbing resistance than RC structure due to the action of steel plate on the rear side of impact. Therefore SC structure is known as more effective structure from the viewpoint of aircraft crash than RC structure. However, most of the recent researches and experiments about local impact damage deal with RC structures, and the effect of re bar and steel plate is not considered reasonably. Although Walter et al. and Make-work et al. suggested a formula for evaluating perforation depth of steel plate covered RC walls, most of the previous researches about SC structure are focused on perforation and scabbing due to the impact of hard projectile, rather than soft projectile such as an aircraft. In this research a soft projectile, i. e. aircraft engine, is utilized for impact simulation of RC and SC walls. To evaluate local damage of SC wall structures, parametric study with the variables of wall thickness and steel ratio of the cover plate is performed, and the results are compared with those of RC structures. Since scabbing was prevented by the steel plates, penetration mode of damage was observed in SC walls while scabbing damage was occurred in RC walls. It is confirmed that the rear steel plate not only contains concrete debris, but also reduces the internal damage of the concrete walls. Penetration depth of SC walls did not largely vary due to the increasing steel ratio, and similar results to RC walls were observed when the wall thickness is larger than a certain value since the impact resistance of SC wall is mainly governed by the thickness of concrete part. Therefore, it is expected that similar level of impact resistance to RC structure can be produced with the minimum thickness of steel plates of SC structure. According to these results, SC

  9. Structures et dynamiques spatiales des villes portuaires: du local au mondial

    Directory of Open Access Journals (Sweden)

    César Ducruet

    2005-04-01

    Full Text Available More than other cities, port cities must constantly adapt to a rapidly changing international trade environment. This adaptation is spurred by their ties to both maritime and land networks and by specific spatio-functional relations between cities and ports, from the local to the global level. For comparative purposes, this paper proposes a new way to interpret the basic structures and trends underlying these complex, and sometimes contradictory, ties.

  10. Nanoelectromechanics of Inorganic and Biological Systems: From Structural Imaging to Local Functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Brian [University College, Dublin; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL; Thompson, G. L. [Clemson University; Vertegel, Alexey [ORNL; Hohlbauch, Sophia [Asylum Research, Santa Barbara, CA; Proksch, Roger [Asylum Research, Santa Barbara, CA

    2008-01-01

    Coupling between electrical and mechanical phenomena is extremely common in inorganic materials, and nearly ubiquitous in biological systems, underpinning phenomena and devices ranging from SONAR to cardiac activity and hearing. This paper briefly summarizes the Scanning Probe Microscopy (SPM) approach, referred to as Piezoresponse Force Microscopy (PFM), for probing electromechanical coupling on the nanometer scales, and delineates some existing and emerging applications to probe local structure and functionality in inorganic ferroelectrics, calcified and connective tissues, and complex biosystems based on electromechanical detection.

  11. Model-based Leakage Localization in Drinking Water Distribution Networks using Structured Residuals

    OpenAIRE

    Rosich, Albert; Puig, Vicenç

    2013-01-01

    In this paper, a new model based approach to leakage localization in drinking water networks is proposed based on generating a set of structured residuals. The residual evaluation is based on a numerical method based on an enhanced Newton-Raphson algorithm. The proposed method is suitable for water network systems because the non-linearities of the model make impossible to derive analytical residuals. Furthermore, the computed residuals are designed so that leaks are decoupled, which impro...

  12. Observation of highly localized structures in a Faraday experiment with highly dissipative fluids

    Science.gov (United States)

    Cabeza, C.; Gibiat, V.; Negreira, C.

    2003-09-01

    We present an experimental study about the Faraday instability using a highly dissipative fluid. The fluid layer is excited with a vertical periodic acceleration field. In this regimen of high viscosity and shallow fluid depth, we have found two very interesting phenomena. On the one hand, we observed a periodicity windows appearing after the whole classical crispation, on the other hand highly spatially localized structures are generated within the periodicity window that propagates on fluid surface.

  13. Spatiotemporal Chaos, Localized Structures and Synchronization in the Vector Complex Ginzburg-Landau Equation

    CERN Document Server

    Hernández-García, E; Colet, P; Montagne, R; Miguel, M S; Hernandez-Garcia, Emilio; Hoyuelos, Miguel; Colet, Pere; Montagne, Raul; Miguel, Maxi San

    1999-01-01

    We study the spatiotemporal dynamics, in one and two spatial dimensions, of two complex fields which are the two components of a vector field satisfying a vector form of the complex Ginzburg-Landau equation. We find synchronization and generalized synchronization of the spatiotemporally chaotic dynamics. The two kinds of synchronization can coexist simultaneously in different regions of the space, and they are mediated by localized structures. A quantitative characterization of the degree of synchronization is given in terms of mutual information measures.

  14. Local structure and magnetism of Co3 + in wurtzite Co:ZnO

    Science.gov (United States)

    Henne, Bastian; Ney, Verena; Lumetzberger, Julia; Ollefs, Katharina; Wilhelm, Fabrice; Rogalev, Andrei; Ney, Andreas

    2017-02-01

    The structural and magnetic properties of 30% and 50% Co-doped ZnO have been investigated in order to determine the influence of the presence of Co3 + as a potential p -type dopant. For 30% doping, Co3 + could be stabilized in the wurtzite lattice of ZnO without phase separation by providing high oxygen partial pressures during growth. At 50% Co concentration, the crystal lattice destabilizes. X-ray absorption spectroscopy and simulations are used to substantiate the valence and local structure of Co3 +. Integral and element selective magnetometry reveals uncompensated antiferromagnetism of the Co atoms irrespective of being present as Co2 + or Co3 +.

  15. Spatial Object Aggregation Based on Data Structure,Local Triangulation and Hierarchical Analyzing Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper focuses on the methods and process of spatial aggregation based on semantic and geometric characteristics of spatial objects and relations among the objects with the help of spatial data structure (Formal Data Structure),the Local Constrained Delaunay Triangulations and semantic hierarchy.The adjacent relation among connected objects and unconnected objects has been studied through constrained triangle as elementary processing unit in aggregation operation.The hierarchical semantic analytical matrix is given for analyzing the similarity between objects types and between objects.Several different cases of aggregation have been presented in this paper.

  16. Local Structure of Ge/Si(100) Self-Assembled Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Local structure of uncapped and Si-capped Ge quantum dots grownon Si(100) has been probed by X-ray absorption fine structure spectroscopy. It is found that the uncapped Ge dots are partially oxidized and partially alloyed with Si. The amount of Ge present in the Ge phase is found to be about 20-30%. In the Si-capped sample, Ge is found to be dissolved in silicon, the fraction of Ge atoms existing as pure Ge phase being not more than 10%.

  17. Local-global alignment for finding 3D similarities in protein structures

    Science.gov (United States)

    Zemla, Adam T.

    2011-09-20

    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  18. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.;

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy......-dispersive XAS technique available on the ID24 beamline at the ESRF synchrotron. The examples chosen concern the melting and the liquid structure of 3d metals and alloys under high pressures (HPs) and the observation of temperature-induced spin crossover in FeCO3 at HP....

  19. The local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    CERN Document Server

    Zhao, Tianxing; Huang, Junheng; He, Jinfu; Liu, Qinghua; Pan, Zhiyun; Wu, Ziyu

    2014-01-01

    The local structures and optical absorption characteristic of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray Diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and UV-Vis absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region.

  20. AFM characterization of the shape of surface structures with localization factor.

    Science.gov (United States)

    Bonyár, Attila

    2016-08-01

    Although with the use of scanning probe microscopy (SPM) methods the topographical imaging of surfaces is now widely available, the characterization of surface structures, especially their shape, and the processes which change these features is not trivial with the existing surface describing parameters. In this work the application of a parameter called localization factor is demonstrated for the quantitative characterization of surface structures and for processes which alter the shape of these structures. The theory and optimal operation range of this parameter are discussed with three application examples: microstructure characterization of gold thin films, characterization of the changes in the grain structure of these films during thermal annealing, and finally, characterization of the oxidation processes on a polished tin surface.

  1. Near-Field Sound Localization Based on the Small Profile Monaural Structure

    Directory of Open Access Journals (Sweden)

    Youngwoong Kim

    2015-11-01

    Full Text Available The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA are derived by the designed model. From an azimuthal distance of 3–15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body.

  2. STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA

    Energy Technology Data Exchange (ETDEWEB)

    Way, M. J. [Also at NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA. (United States); Gazis, P. R.; Scargle, Jeffrey D., E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net, E-mail: Jeffrey.D.Scargle@nasa.gov [NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035 (United States)

    2015-01-20

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

  3. Structure in the 3D Galaxy Distribution. II. Voids and Watersheds of Local Maxima and Minima

    Science.gov (United States)

    Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D.

    2015-01-01

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

  4. Rethinking the Changing Structures of Rural Local Government--State Power, Rural Politics and Local Political Strategies?

    Science.gov (United States)

    Pemberton, Simon; Goodwin, Mark

    2010-01-01

    There is a notable absence in contemporary rural studies--of both a theoretical and empirical nature--concerning the changing nature of rural local government. Despite the scale and significance of successive rounds of local government reorganisation in the UK, very little has been written on this topic from a rural perspective. Instead research…

  5. Exciton Localization in Extended π-Electron Systems: Comparison of Linear and Cyclic Structures.

    Science.gov (United States)

    Thiessen, Alexander; Würsch, Dominik; Jester, Stefan-S; Aggarwal, A Vikas; Idelson, Alissa; Bange, Sebastian; Vogelsang, Jan; Höger, Sigurd; Lupton, John M

    2015-07-30

    We employ five π-conjugated model materials of different molecular shape-oligomers and cyclic structures-to investigate the extent of exciton self-trapping and torsional motion of the molecular framework following optical excitation. Our studies combine steady state and transient fluorescence spectroscopy in the ensemble with measurements of polarization anisotropy on single molecules, supported by Monte Carlo simulations. The dimer exhibits a significant spectral red shift within ∼100 ps after photoexcitation which is attributed to torsional relaxation. This relaxation mechanism is inhibited in the structurally rigid macrocyclic analogue. However, both systems show a high degree of exciton localization but with very different consequences: while, in the macrocycle, the exciton localizes randomly on different parts of the ring, scrambling polarization memory, in the dimer, localization leads to a deterministic exciton position with luminescence characteristics of a dipole. Monte Carlo simulations allow us to quantify the structural difference between the emitting and absorbing units of the π-conjugated system in terms of disorder parameters.

  6. Probing into the local structure of quadrupolar spin systems with MRFM

    Science.gov (United States)

    Verhagen, Rieko; Hilbers, Cees; Kentgens, Arno; van Kempen, Herman

    2001-03-01

    Magnetic Resonance Force Microscopy is a method to enhance the sensitivity of conventional inductive Nuclear Magnetic Resonance. It combines the advantages of Atomic Force Microscopy with those of NMR, resulting in a method that has both high spatial resolution and sub-surface sensitivity. This gives the capability of 3D imaging and/or spectral characterization of nanoscale structures. We have adapted a conventional MRFM probe to observe nuclei other than protons. The objective of this modification lays in the possibility to observe nuclear spins with spin quantum numbers other than 1/2. In an external magnetic field (Zeeman interaction), these nuclei have multiple spin-transitions with equal energy differences, causing a single spectral line. However, the nuclei have a quadrupole moment and therefore interact with the electrical field gradient caused by charge distributions in the local environment. This shifts the spin energy levels differently so that several transitions occur at different NMR frequencies. The quadrupolar interaction can be used as a probe for obtaining information on the local structure. Since the quadrupolar splitting can be large compared to the spectral resolution of the MRFM detection method it may be imaged using MRFM. We present some methods and first results of MRFM on quadrupolar spin systems, specifically ^23Na (S=3/2) at 4.2T. It is shown that the method is capable of observing the splitting and may obtain local disorders in the lattice structure by scanning the sample.

  7. Efficient determination of soft spots in amorphous solids using local structural information

    Science.gov (United States)

    Cubuk, Ekin; Schoenholz, Samuel; Malone, Brad; Liu, Andrea; Kaxiras, Efthimios

    2014-03-01

    Structural defects such as dislocations are also flow defects that control plastic flow in crystalline solids. In disordered solids, it is more challenging to identify such local regions that are susceptible to rearrangement. We propose an extremely fast method for identifying soft spots with high accuracy, which scales linearly with number of particles. We achieve this by training a supervised learning model with instances of local neighborhoods and their subsequent plastic flow behavior. By characterizing local neighborhoods with not just one structural quantity, such as bond orientational order, but a combination of multiple structural quantities, we are able to identify a population of regions that correlates just as strongly with rearrangements as do soft spots calculated from vibrational modes. This method does not require knowledge of the interparticle interactions and can readily be applied to experiments that measure the positions of constituent particles in a disordered packing. Furthermore, this also allows for the prediction of plastic behavior in systems like lithiated amorphous silicon, which is important for addressing the durability issues encountered in recent work on improving lithium-ion batteries.

  8. Protein structure alignment and fast similarity search using local shape signatures.

    Science.gov (United States)

    Can, Tolga; Wang, Yuan-Fang

    2004-03-01

    We present a new method for conducting protein structure similarity searches, which improves on the efficiency of some existing techniques. Our method is grounded in the theory of differential geometry on 3D space curve matching. We generate shape signatures for proteins that are invariant, localized, robust, compact, and biologically meaningful. The invariancy of the shape signatures allows us to improve similarity searching efficiency by adopting a hierarchical coarse-to-fine strategy. We index the shape signatures using an efficient hashing-based technique. With the help of this technique we screen out unlikely candidates and perform detailed pairwise alignments only for a small number of candidates that survive the screening process. Contrary to other hashing based techniques, our technique employs domain specific information (not just geometric information) in constructing the hash key, and hence, is more tuned to the domain of biology. Furthermore, the invariancy, localization, and compactness of the shape signatures allow us to utilize a well-known local sequence alignment algorithm for aligning two protein structures. One measure of the efficacy of the proposed technique is that we were able to perform structure alignment queries 36 times faster (on the average) than a well-known method while keeping the quality of the query results at an approximately similar level.

  9. Structural imperfections and attendant localized/itinerant ferromagnetism in ZnO nanoparticles

    Science.gov (United States)

    Yang, Chao-Yao; Lu, Yi-Hsuan; Lin, Wei-Hao; Lee, Min-Han; Hsu, Yung-Jung; Tseng, Yuan-Chieh

    2014-08-01

    Using synchrotron-based x-ray magnetic spectroscopy, we report a study focusing on the local symmetry of Cu-dopant and resultant structural imperfections in mediating Cu-doped ZnO nanoparticles' ferromagnetism (FM). Prepared by an antisolvent method, Cu appeared to preferably populate on the basal plane of ZnO with a local symmetry of [CuO4]. This unique symmetry was antiferromagnetic in nature, while electronically and structurally coupled to surrounded oxygen vacancies (Vo) that yielded a localized FM, because of a strong dependency on the number/location of the [CuO4] symmetry. Surprisingly, the FM of undoped but oxygen-deficient ZnO appeared to be more itinerant and long-range, where Vo percolated the FM effectively and isotropically through oxygen's delocalized orbital. By adopting the approach of structural imperfection, this study clearly identifies Vo's (defect's) true characters in mediating the FM of magnetic semiconductors which has been thought of as a long-standing debate, and thus provides a different thinking about the traditional extrinsic ferromagnetic-tuning in the semiconductors. It even illuminates recent research concerning the intrinsic FM of low-dimensional systems that contain defects but non-magnetic elements.

  10. The Future of the Local Large Scale Structure: the roles of Dark Matter and Dark Energy

    CERN Document Server

    Hoffman, Yehuda; Yepes, Gustavo; Dover, Yaniv

    2007-01-01

    We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (OCDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is frozen. Well before that epoch the two most massive members of the Local Group, the Milky Way and Andromeda (M31), will merge. However, as the expansion rates of the scale factor in the two models are different, the Local Group will be receding in physical coordinates from Virgo exponentially in a LCDM model and at a roughly constant velocity in an OCDM model. More generally, in comoving coordinates the future large scale structure will look like a sharpened image of the present structure: the skeleton of the cosmic web ...

  11. Network community structure alterations in adult schizophrenia: identification and localization of alterations.

    Science.gov (United States)

    Lerman-Sinkoff, Dov B; Barch, Deanna M

    2016-01-01

    A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks.

  12. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  13. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images

    Directory of Open Access Journals (Sweden)

    Paul Grégory

    2010-07-01

    Full Text Available Abstract Background Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power. Results We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data. Conclusions We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance

  14. ARX model-based damage sensitive features for structural damage localization using output-only measurements

    Science.gov (United States)

    Roy, Koushik; Bhattacharya, Bishakh; Ray-Chaudhuri, Samit

    2015-08-01

    The study proposes a set of four ARX model (autoregressive model with exogenous input) based damage sensitive features (DSFs) for structural damage detection and localization using the dynamic responses of structures, where the information regarding the input excitation may not be available. In the proposed framework, one of the output responses of a multi-degree-of-freedom system is assumed as the input and the rest are considered as the output. The features are based on ARX model coefficients, Kolmogorov-Smirnov (KS) test statistical distance, and the model residual error. At first, a mathematical formulation is provided to establish the relation between the change in ARX model coefficients and the normalized stiffness of a structure. KS test parameters are then described to show the sensitivity of statistical distance of ARX model residual error with the damage location. The efficiency of the proposed set of DSFs is evaluated by conducting numerical studies involving a shear building and a steel moment-resisting frame. To simulate the damage scenarios in these structures, stiffness degradation of different elements is considered. It is observed from this study that the proposed set of DSFs is good indicator for damage location even in the presence of damping, multiple damages, noise, and parametric uncertainties. The performance of these DSFs is compared with mode shape curvature-based approach for damage localization. An experimental study has also been conducted on a three-dimensional six-storey steel moment frame to understand the performance of these DSFs under real measurement conditions. It has been observed that the proposed set of DSFs can satisfactorily localize damage in the structure.

  15. Local atomic structure in tetragonal pure ZrO{sub 2} nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Acuna, Leandro M.; Lamas, Diego G.; Fuentes, Rodolfo O.; Fabregas, Ismael O. [CITEFA-CONICET, Villa Martelli, Provincia de Buenos Aires (AR). CINSO (Centro de Investigaciones en Solidos); Fantini, Marcia C.A.; Craievich, Aldo F. [Universidade de Sao Paulo (Brazil). Inst. de Fisica; Prado, Rogerio J. [Universidade Federal de Mato Grosso (UFMT), Cuiaba (Brazil). Inst. de Fisica

    2010-04-15

    The local atomic structures around the Zr atom of pure (undoped) ZrO{sub 2} nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wetchemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO{sub 2} nanopowders can be described by a model consisting of two oxygen subshells (4+4 atoms) with different Zr-O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye-Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to the z direction; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4+2+2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments. (orig.)

  16. The effect of static and dynamic spatially structured disturbances on a locally dispersing population.

    Science.gov (United States)

    Hiebeler, David E; Morin, Benjamin R

    2007-05-01

    Previous models of locally dispersing populations have shown that in the presence of spatially structured fixed habitat heterogeneity, increasing local spatial autocorrelation in habitat generally has a beneficial effect on such populations, increasing equilibrium population density. It has also been shown that with large-scale disturbance events which simultaneously affect contiguous blocks of sites, increasing spatial autocorrelation in the disturbances has a harmful effect, decreasing equilibrium population density. Here, spatial population models are developed which include both of these spatially structured exogenous influences, to determine how they interact with each other and with the endogenously generated spatial structure produced by the population dynamics. The models show that when habitat is fragmented and disturbance occurs at large spatial scales, the population cannot persist no matter how large its birth rate, an effect not seen in previous simpler models of this type. The behavior of the model is also explored when the local autocorrelation of habitat heterogeneity and disturbance events are equal, i.e. the two effects occur at the same spatial scale. When this scale parameter is very small, habitat fragmentation prevents the population from persisting because sites attempting to reproduce will drop most of their offspring on unsuitable sites; when the parameter is very large, large-scale disturbance events drive the population to extinction. Population levels reach their maximum at intermediate values of the scale parameter, and the critical values in the model show that the population will persist most easily at these intermediate scales of spatial influences. The models are investigated via spatially explicit stochastic simulations, traditional (infinite-dispersal) and improved (local-dispersal) mean-field approximations, and pair approximations.

  17. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  18. Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires.

    Science.gov (United States)

    Stiegler, J M; Tena-Zaera, R; Idigoras, O; Chuvilin, A; Hillenbrand, R

    2012-01-01

    High-resolution characterization methods play a key role in the development, analysis and optimization of nanoscale materials and devices. Because of the various material properties, only a combination of different characterization techniques provides a comprehensive understanding of complex functional materials. Here we introduce correlative infrared-electron nanoscopy, a novel method yielding transmission electron microscope and infrared near-field images of one and the same nanostructure. While transmission electron microscopy provides structural information up to the atomic level, infrared near-field imaging yields nanoscale maps of chemical composition and conductivity. We demonstrate the method's potential by studying the relation between conductivity and crystal structure in ZnO nanowire cross-sections. The combination of infrared conductivity maps and the local crystal structure reveals a radial free-carrier gradient, which inversely correlates to the density of extended crystalline defects. Our method opens new avenues for studying the local interplay between structure, conductivity and chemical composition in widely different material systems.

  19. Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires

    Science.gov (United States)

    Stiegler, J. M.; Tena-Zaera, R.; Idigoras, O.; Chuvilin, A.; Hillenbrand, R.

    2012-10-01

    High-resolution characterization methods play a key role in the development, analysis and optimization of nanoscale materials and devices. Because of the various material properties, only a combination of different characterization techniques provides a comprehensive understanding of complex functional materials. Here we introduce correlative infrared-electron nanoscopy, a novel method yielding transmission electron microscope and infrared near-field images of one and the same nanostructure. While transmission electron microscopy provides structural information up to the atomic level, infrared near-field imaging yields nanoscale maps of chemical composition and conductivity. We demonstrate the method's potential by studying the relation between conductivity and crystal structure in ZnO nanowire cross-sections. The combination of infrared conductivity maps and the local crystal structure reveals a radial free-carrier gradient, which inversely correlates to the density of extended crystalline defects. Our method opens new avenues for studying the local interplay between structure, conductivity and chemical composition in widely different material systems.

  20. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    Science.gov (United States)

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  1. Diversity, population structure, and evolution of local peach cultivars in China identified by simple sequence repeats.

    Science.gov (United States)

    Shen, Z J; Ma, R J; Cai, Z X; Yu, M L; Zhang, Z

    2015-01-15

    The fruit peach originated in China and has a history of domestication of more than 4000 years. Numerous local cultivars were selected during the long course of cultivation, and a great morphological diversity exists. To study the diversity and genetic background of local peach cultivars in China, a set of 158 accessions from different ecological regions, together with 27 modern varieties and 10 wild accessions, were evaluated using 49 simple sequence repeats (SSRs) covering the peach genome. Broad diversity was also observed in local cultivars at the SSR level. A total of 648 alleles were amplified with an average of 13.22 observed alleles per locus. The number of genotypes detected ranged from 9 (UDP96015) to 58 (BPPCT008) with an average of 27.00 genotypes per marker. Eight subpopulations divided by STRUCTURE basically coincided with the dendrogram of genetic relationships and could be explained by the traditional groups. The 8 subpopulations were juicy honey peach, southwestern peach I, wild peach, Buddha peach + southwestern peach II, northern peach, southern crisp peach, ornamental peach, and Prunus davidiana + P. kansuensis. Most modern varieties carried the genetic backgrounds of juicy honey peach and southwestern peach I, while others carried diverse genetic backgrounds, indicating that local cultivars were partly used in modern breeding programs. Based on the traditional evolution pathway, a modified pathway for the development of local peach cultivars in China was proposed using the genetic background of subpopulations that were identified by SSRs. Current status and prospects of utilization of Chinese local peach cultivars were also discussed according to the SSR information.

  2. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design.

    Science.gov (United States)

    Lee, Hui Sun; Im, Wonpil

    2016-04-01

    Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/.

  3. Local concurrent error detection and correction in data structures using virtual backpointers

    Science.gov (United States)

    Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent

    1989-01-01

    A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.

  4. Local structures of ions at ion-exchange resin/solution interface.

    Science.gov (United States)

    Harada, Makoto; Okada, Tetsuo

    2005-08-26

    The local structures of Cl- and Br- in anion-exchange resins have been studied by X-ray absorption fine structure (XAFS), and separation selectivity is discussed on the basis of results. When two different anion-exchange resins having trimethylammonium and dimethylammonium groups as anion-exchange groups are employed for ion-exchange experiments, slightly higher Br- selectivity has been obtained with the former. XAFS has indicated that the average hydration numbers for a given anion is not affected by the structure of the ion-exchange group, but that the extent of ion-association between the anion and the ion-exchange groups depends on the type of the ion-exchange group. Shorter interaction distance (and in turn stronger ion-association) has been confirmed for the dimethylammonium-type resin, and is consistent with lower Br- selectivity of this resin.

  5. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.;

    1997-01-01

    The paper deals with the prediction of global and localized damage and the future reliability estimation of partly damaged reinforced concrete (RC) structures under seismic excitation. Initially, a global maximum softening damage indicator is considered based on the variation of the eigenfrequency...... of the first mode due to the stiffness and strength deterioration of the structure. The hysteresis of the first mode is modelled by a Clough and Johnston hysteretic oscillator with a degrading elastic fraction of the restoring force. The linear parameters of the model are assumed to be known, measured before....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  6. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.;

    1994-01-01

    The paper deals with the prediction of global and localized damage and the future reliability estimation of partly damaged reinforced concrete (RC) structures under seismic excitation. Initially, a global maximum softening damage indicator is considered based on the variation of the eigenfrequency...... of the first mode due to the stiffness and strength deterioration of the structure. The hysteresis of the first mode is modelled by a Clough and Johnston hysteretic oscillator with a degrading elastic fraction of the restoring force. The linear parameters of the model are assumed to be known, measured before....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  7. Text localization using standard deviation analysis of structure elements and support vector machines

    Directory of Open Access Journals (Sweden)

    Zagoris Konstantinos

    2011-01-01

    Full Text Available Abstract A text localization technique is required to successfully exploit document images such as technical articles and letters. The proposed method detects and extracts text areas from document images. Initially a connected components analysis technique detects blocks of foreground objects. Then, a descriptor that consists of a set of suitable document structure elements is extracted from the blocks. This is achieved by incorporating an algorithm called Standard Deviation Analysis of Structure Elements (SDASE which maximizes the separability between the blocks. Another feature of the SDASE is that its length adapts according to the requirements of the application. Finally, the descriptor of each block is used as input to a trained support vector machines that classify the block as text or not. The proposed technique is also capable of adjusting to the text structure of the documents. Experimental results on benchmarking databases demonstrate the effectiveness of the proposed method.

  8. Fusion of multichannel local and global structural cues for photo aesthetics evaluation.

    Science.gov (United States)

    Luming Zhang; Yue Gao; Zimmermann, Roger; Qi Tian; Xuelong Li

    2014-03-01

    Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo aesthetics. However, existing rules, e.g., visual balance, heuristically define which spatial distribution among the salient regions of a photo is aesthetically pleasing. Second, it is difficult to adjust visual cues from multiple channels automatically in photo aesthetics assessment. To solve these problems, we propose a new photo aesthetics evaluation framework, focusing on learning the image descriptors that characterize local and global structural aesthetics from multiple visual channels. In particular, to describe the spatial structure of the image local regions, we construct graphlets small-sized connected graphs by connecting spatially adjacent atomic regions. Since spatially adjacent graphlets distribute closely in their feature space, we project them onto a manifold and subsequently propose an embedding algorithm. The embedding algorithm encodes the photo global spatial layout into graphlets. Simultaneously, the importance of graphlets from multiple visual channels are dynamically adjusted. Finally, these post-embedding graphlets are integrated for photo aesthetics evaluation using a probabilistic model. Experimental results show that: 1) the visualized graphlets explicitly capture the aesthetically arranged atomic regions; 2) the proposed approach generalizes and improves four prominent aesthetic rules; and 3) our approach significantly outperforms state-of-the-art algorithms in photo aesthetics prediction.

  9. Structural damage localization by outlier analysis of signal-processed mode shapes - Analytical and experimental validation

    Science.gov (United States)

    Ulriksen, M. D.; Damkilde, L.

    2016-02-01

    Contrary to global modal parameters such as eigenfrequencies, mode shapes inherently provide structural information on a local level. Therefore, this particular modal parameter and its derivatives are utilized extensively for damage identification. Typically, more or less advanced mathematical methods are employed to identify damage-induced discontinuities in the spatial mode shape signals, hereby, potentially, facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement noise. In the present paper, a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement noise is proposed. The method is based on signal processing of a spatial mode shape by means of continuous wavelet transformation (CWT) and subsequent application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact damage-induced, outlier analysis is conducted by applying the Mahalanobis metric to major principal scores of the sensor-located bands of the signal-processed mode shape. The method is tested analytically and benchmarked with other mode shape-based damage localization approaches on the basis of a free-vibrating beam and validated experimentally in the context of a residential-sized wind turbine blade subjected to an impulse load.

  10. Structural phase-dependent hole localization and transport in bismuth vanadate

    Science.gov (United States)

    Kweon, Kyoung E.; Hwang, Gyeong S.

    2013-05-01

    We present theoretical evidence for the phase dependence of hole localization and transport in bismuth vanadate (BiVO4). Our hybrid density-functional theory calculations predict that, in the tetragonal phase [tetragonal scheelite BiVO4 (ts-BiVO4)], an excess hole tends to localize around a BiO8 polyhedron with strong lattice distortion, whereas, in the monoclinic phase [monoclinic scheelite BiVO4 (ms-BiVO4)], it spreads over many lattice sites. The phase-dependent behavior is likely related to the higher structural stability of ms-BiVO4 than ts-BiVO4, which may suppress hole-induced lattice distortions. Our study also demonstrates that the relatively weakly localized hole in ms-BiVO4 undergoes faster diffusion compared to the case of ts-BiVO4, irrespective of the fact that the degrees of localization and mobility vary depending on the choice of exchange-correlation functional. The mobility difference may provide an explanation for the enhanced photocatalytic activity of ms-BiVO4 over ts-BiVO4 for water oxidation, considering that the increased mobility would lead to an increase in the hole current to the catalyst surface.

  11. Automated foveola localization in retinal 3D-OCT images using structural support vector machine prediction.

    Science.gov (United States)

    Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Schuman, Joel S; Rehg, James M

    2012-01-01

    We develop an automated method to determine the foveola location in macular 3D-OCT images in either healthy or pathological conditions. Structural Support Vector Machine (S-SVM) is trained to directly predict the location of the foveola, such that the score at the ground truth position is higher than that at any other position by a margin scaling with the associated localization loss. This S-SVM formulation directly minimizes the empirical risk of localization error, and makes efficient use of all available training data. It deals with the localization problem in a more principled way compared to the conventional binary classifier learning that uses zero-one loss and random sampling of negative examples. A total of 170 scans were collected for the experiment. Our method localized 95.1% of testing scans within the anatomical area of the foveola. Our experimental results show that the proposed method can effectively identify the location of the foveola, facilitating diagnosis around this important landmark.

  12. Local equivalent welding element to predict the welding deformations of plate-type structures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the Heat Affected Zone (HAZ) of welding joint, the residual strain be-haviors of material under constraint and temperature circulation, as well as the activating mechanism of welding process, this paper addresses a new type welding element for numerical simulation of welding deformation, which is called the LEWE (the local equivalent welding element). This element can describe the basic char-acteristics of welded seam: the local position points of inherent strain, the equiva-lent size, the bending radius (or bending angle) from inherent strain, etc. It could be used to predict the welding deformation of plate-type structure. The comparisons between the computed deflection of welded plate and its experiment measurement are present. The results showed that the LEWE possesses a potential to simulate the deformation of welding process high-efficiently and precisely.

  13. Boundary-locality and perturbative structure of entanglement spectra in gapped systems.

    Science.gov (United States)

    Alba, Vincenzo; Haque, Masudul; Läuchli, Andreas M

    2012-06-01

    The entanglement between two parts of a many-body system can be characterized in detail by the entanglement spectrum. Focusing on gapped phases of several one-dimensional systems, we show how this spectrum is dominated by contributions from the boundary between the parts. This contradicts the view of an "entanglement Hamiltonian" as a bulk entity. The boundary-local nature of the entanglement spectrum is clarified through its hierarchical level structure, through the combination of two single-boundary spectra to form a two-boundary spectrum, and finally through consideration of dominant eigenfunctions of the entanglement Hamiltonian. We show consequences of boundary-locality for perturbative calculations of the entanglement spectrum.

  14. High-order spoof localized surface plasmons supported on a complementary metallic spiral structure

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate that multiple high-order spoof localized surface plasmons (spoof-LSPs) modes can be supported on a complementary metallic spiral structure, which were absent in the previously reported spoof-LSPs modes. Through exact numerical simulations and near-field imaging experiments, we directly observe these high-order spoof-LSPs modes at microwave frequencies. We also show that these higher-order spoof-LSPs modes exhibit larger frequency shifts caused by the local environmental refractive index change than the previously reported low-order spoof-LSPs modes. Hence the complementary MSS may find potential applications as plasmonic sensor in the microwave and terahertz frequencies. PMID:27079658

  15. Generalized Pipek-Mezey orbital localization method for electronic structure calculations employing periodic boundary conditions

    CERN Document Server

    Jónsson, Elvar Ö; Puska, Martti; Jónsson, Hannes

    2016-01-01

    An implementation of the generalized Pipek-Mezey method [Lehtola, S.; J\\'onsson, H. J. Chem. Theory Comput. 2014, 10, 642] for generating localized orbitals in periodic systems, i.e. Wannier functions, is described. The projector augmented wave (PAW) formalism for the representation of atomic core electrons is included in the implementation, which has been developed within the atomic simulation environment (ASE) software library. The implementation supports several different kinds of representations for the wave function, including real-space grids, plane waves or a linear combination of atomic orbitals. The implementation is tailored to the GPAW program but can easily be adapted to use output from various other electronic structure software packages such as ABINIT, NWChem, or VASP through interfaces in ASE. Generalized Pipek-Mezey Wannier functions (PMWF) are presented for both isolated molecules, as well as systems with periodicity in one, two and three dimensions. The method gives a set of highly localized...

  16. Structure-Based Local Search Heuristics for Circuit-Level Boolean Satisfiability

    CERN Document Server

    Belov, Anton

    2011-01-01

    This work focuses on improving state-of-the-art in stochastic local search (SLS) for solving Boolean satisfiability (SAT) instances arising from real-world industrial SAT application domains. The recently introduced SLS method CRSat has been shown to noticeably improve on previously suggested SLS techniques in solving such real-world instances by combining justification-based local search with limited Boolean constraint propagation on the non-clausal formula representation form of Boolean circuits. In this work, we study possibilities of further improving the performance of CRSat by exploiting circuit-level structural knowledge for developing new search heuristics for CRSat. To this end, we introduce and experimentally evaluate a variety of search heuristics, many of which are motivated by circuit-level heuristics originally developed in completely different contexts, e.g., for electronic design automation applications. To the best of our knowledge, most of the heuristics are novel in the context of SLS for S...

  17. Classification of trabeculae into three-dimensional rodlike and platelike structures via local inertial anisotropy

    Science.gov (United States)

    Vasilić, Branimir; Rajapakse, Chamith S.; Wehrli, Felix W.

    2009-01-01

    Trabecular bone microarchitecture is a significant determinant of the bone’s mechanical properties and is thus of major clinical relevance in predicting fracture risk. The three-dimensional nature of trabecular bone is characterized by parameters describing scale, topology, and orientation of structural elements. However, none of the current methods calculates all three types of parameters simultaneously and in three dimensions. Here the authors present a method that produces a continuous classification of voxels as belonging to platelike or rodlike structures that determines their orientation and estimates their thickness. The method, dubbed local inertial anisotropy (LIA), treats the image as a distribution of mass density and the orientation of trabeculae is determined from a locally calculated tensor of inertia at each voxel. The orientation entropies of rods and plates are introduced, which can provide new information about microarchitecture not captured by existing parameters. The robustness of the method to noise corruption, resolution reduction, and image rotation is demonstrated. Further, the method is compared with established three-dimensional parameters including the structure-model index and topological surface-to-curve ratio. Finally, the method is applied to data acquired in a previous translational pilot study showing that the trabecular bone of untreated hypogonadal men is less platelike than that of their eugonadal peers. PMID:19673224

  18. Modal Strain Energy Based Structural Damage Localization for Offshore Platform using Simulated and Measured Data

    Institute of Scientific and Technical Information of China (English)

    WANG Shuqing; LIU Fushun; ZHANG Min

    2014-01-01

    Modal strain energy based methods for damage detection have received much attention. However, most of published articles use numerical methods and some studies conduct modal tests with simple 1D or 2D structures to verify the damage detection algorithms. Only a few studies utilize modal testing data from 3D frame structures. Few studies conduct performance comparisons between two different modal strain energy based methods. The objective of this paper is to investigate and compare the effectiveness of a traditional modal strain energy method (Stubbs index) and a recently developed modal strain energy decomposition (MSED) method for damage localization, for such a purpose both simulated and measured data from an offshore platform model being used. Particularly, the mode shapes used in the damage localization are identified and synthesized from only two measurements of one damage scenario because of the limited number of sensors. The two methods were first briefly reviewed. Next, using a 3D offshore platform model, the damage detection algorithms were implemented with different levels of damage severities for both single damage and multiple damage cases. Finally, a physical model of an offshore steel platform was constructed for modal testing and for validat-ing the applicability. Results indicate that the MSED method outperforms the Stubbs index method for structural damage detection.

  19. Dynamic morphometric characterization of local connective tissue network structure in humans using ultrasound

    Directory of Open Access Journals (Sweden)

    Konofagou Elisa E

    2007-06-01

    Full Text Available Abstract Background In humans, connective tissue forms a complex, interconnected network throughout the body that may have mechanosensory, regulatory and signaling functions. Understanding these potentially important phenomena requires non-invasive measurements of collagen network structure that can be performed in live animals or humans. The goal of this study was to show that ultrasound can be used to quantify dynamic changes in local connective tissue structure in vivo. We first performed combined ultrasound and histology examinations of the same tissue in two subjects undergoing surgery: in one subject, we examined the relationship of ultrasound to histological images in three dimensions; in the other, we examined the effect of a localized tissue perturbation using a previously developed robotic acupuncture needling technique. In ten additional non-surgical subjects, we quantified changes in tissue spatial organization over time during needle rotation vs. no rotation using ultrasound and semi-variogram analyses. Results 3-D renditions of ultrasound images showed longitudinal echogenic sheets that matched with collagenous sheets seen in histological preparations. Rank correlations between serial 2-D ultrasound and corresponding histology images resulted in high positive correlations for semi-variogram ranges computed parallel (r = 0.79, p Conclusion The combination of ultrasound and semi-variogram analyses allows quantitative assessment of dynamic changes in the structure of human connective tissue in vivo.

  20. The RNAsnp web server: predicting SNP effects on local RNA secondary structure.

    Science.gov (United States)

    Sabarinathan, Radhakrishnan; Tafer, Hakim; Seemann, Stefan E; Hofacker, Ivo L; Stadler, Peter F; Gorodkin, Jan

    2013-07-01

    The function of many non-coding RNA genes and cis-regulatory elements of messenger RNA largely depends on the structure, which is in turn determined by their sequence. Single nucleotide polymorphisms (SNPs) and other mutations may disrupt the RNA structure, interfere with the molecular function and hence cause a phenotypic effect. RNAsnp is an efficient method to predict the effect of SNPs on local RNA secondary structure based on the RNA folding algorithms implemented in the Vienna RNA package. The SNP effects are quantified in terms of empirical P-values, which, for computational efficiency, are derived from extensive pre-computed tables of distributions of substitution effects as a function of gene length and GC content. Here, we present a web service that not only provides an interface for RNAsnp but also features a graphical output representation. In addition, the web server is connected to a local mirror of the UCSC genome browser database that enables the users to select the genomic sequences for analysis and visualize the results directly in the UCSC genome browser. The RNAsnp web server is freely available at: http://rth.dk/resources/rnasnp/.

  1. Phylogeny, genetic relationships and population structure of five Italian local chicken breeds

    Directory of Open Access Journals (Sweden)

    Simone Ceccobelli

    2013-09-01

    Full Text Available Number and population size of local chicken breeds in Italy is considered to be critical. Molecular data can be used to provide reliable insight into the diversity of chicken breeds. The first aim of this study was to investigate the maternal genetic origin of five Italian local chicken breeds (Ancona, Livorno, Modenese, Romagnola and Valdarnese bianca based on mitochondrial DNA (mtDNA information. Secondly, the extent of the genetic diversity, population structure and the genetic relationships among these chicken populations, by using 27 microsatellite markers, were assessed. To achieve these targets, a 506 bp fragment of the D-loop region was sequenced in 50 chickens of the five breeds. Eighteen variable sites were observed which defined 12 haplotypes. They were assigned to three clades and two maternal lineages. Results indicated that 90% of the haplotypes are related to clade E, which has been described to originate from the Indian subcontinent. For the microsatellite analysis, 137 individual blood samples from the five Italian breeds were included. A total of 147 alleles were detected at 27 microsatellite loci. The five Italian breeds showed a slightly higher degree of inbreeding (FIS=0.08 than the commercial populations that served as reference. Structure analysis showed a separation of the Italian breeds from the reference populations. A further sub-clustering allowed discriminating among the five different Italian breeds. This research provides insight into population structure, relatedness and variability of the five studied breeds.

  2. Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators

    Science.gov (United States)

    Manimala, James Mathew

    Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation

  3. Local population structure of Plasmodium: impact on malaria control and elimination

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-12-01

    Full Text Available Abstract Background Regardless of the growing interest in detecting population structures in malarial parasites, there have been limited discussions on how to use this concept in control programmes. In such context, the effects of the parasite population structures will depend on interventions’ spatial or temporal scales. This investigation explores the problem of identifying genetic markers, in this case microsatellites, to unveil Plasmodium genetic structures that could affect decisions in the context of elimination. The study was performed in a low-transmission area, which offers a good proxy to better understand problems associated with surveillance at the final stages of malaria elimination. Methods Plasmodium vivax samples collected in Tumeremo, Venezuela, between March 2003 and November 2004 were analysed. Since Plasmodium falciparum also circulates in many low endemic areas, P. falciparum samples from the same locality and time period were included for comparison. Plasmodium vivax samples were assayed for an original set of 25 microsatellites and P. falciparum samples were assayed for 12 microsatellites. Results Not all microsatellite loci assayed offered reliable local data. A complex temporal-cluster dynamics is found in both P. vivax and P. falciparum. Such dynamics affect the numbers and the type of microsatellites required for identifying individual parasites or parasite clusters when performing cross-sectional studies. The minimum number of microsatellites required to differentiate circulating P. vivax clusters differs from the minimum number of hyper-variable microsatellites required to distinguish individuals within these clusters. Regardless the extended number of microsatellites used in P. vivax, it was not possible to separate all individual infections. Conclusions Molecular surveillance has great potential; however, it requires preliminary local studies in order to properly interpret the emerging patterns in the context of

  4. Electronic structure and local magnetism of 3d-5d impurity substituted CeFe2

    Science.gov (United States)

    Das, Rakesh; Das, G. P.; Srivastava, S. K.

    2016-04-01

    We present here a systematic first-principles study of electronic structure and local magnetic properties of Ce[Fe0.75M0.25]2 compounds, where M is a 3d, 4d or 5d transition or post-transition element, using the generalized gradient approximation of the density functional theory. The d-f band hybridizations existing in CeFe2 get modified by the impurity M in an orderly manner across a period for each impurity series: the hybridization is strongest for the Mn group impurity in the period and gets diminished on either side of it. The weakening of the d-f hybridization strength is also associated with a relative localization of the Ce 4f states with respect to the delocalized 4f states in CeFe2. The above effects are most prominent for 3d impurity series, while for 4d and 5d impurities, the hybridizations and relocalizations are relatively weak due primarily to the relatively extended nature of 4d and 5d wavefunctions. The Ce local moment is found to decrease from the CeFe2 value in proportion to the strength of relocalization, thus following almost the same orderly trend as obeyed by the d-f hybridization. Further, depending on the way the spin-up and spin-down densities of states of an impurity shift relative to the Fermi energy, the impurity local moments are highest for Mn or Fe group, reduce on either side, become zero for Ni to Ga, and are small but negative for V and Ti. The Ce hyperfine field is found to follow the M local moment in a linear fashion, and vice-versa.

  5. A Semi-rigorous Approach for Interaction Between Local and Global Buckling in Steel Structures

    DEFF Research Database (Denmark)

    Virdi, Kuldeep

    With an increasing trend towards the use of higher strength materials, members in steel structures become more slender. The cross-sectional plate elements of such members also become slender, triggering possible interaction between local buckling of the flange and web elements and the overall...... buckling of the column. The paper proposes use of plate buckling response, in terms of in-plane load and axial deformation, as modified stress-strain curves for use in column analysis. These curves can be derived from numerical analysis of such plates or may be based on experiments, where available. When...

  6. Surface structure and hole localization in bismuth vanadate: A first principles study

    Science.gov (United States)

    Kweon, Kyoung E.; Hwang, Gyeong S.

    2013-09-01

    The monoclinic and tetragonal phases of bismuth vanadate (BiVO4) have been found to exhibit significantly different photocatalytic activities for water splitting. To assess a possible surface effect on the phase-dependent behavior, we calculate and compare the geometries and electronic structures of the monoclinic and tetragonal BiVO4 (001) surfaces using hybrid density functional theory. The relaxed atomic configurations of these two surfaces are found to be nearly identical, while an excess hole shows a relatively stronger tendency to localize at the surface than the bulk in both phases. Possible factors for the phase-dependent photocatalytic activity of BiVO4 are discussed.

  7. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures

    Institute of Scientific and Technical Information of China (English)

    Yu Dian-Long; Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Qiu Jing

    2006-01-01

    The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases. The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.

  8. Three-dimensional velocity structure of the Galeras volcano (Colombia) from passive local earthquake tomography

    Science.gov (United States)

    Vargas, Carlos Alberto; Torres, Roberto

    2015-08-01

    A three-dimensional estimation of the Vp, Vs and Vp/Vs ratio structure at Galeras volcano was conducted by means of passive local earthquake tomography. 14,150 volcano-tectonic events recorded by 58 stations in the seismological network established for monitoring the volcanic activity by the Colombian Geological Survey - Pasto Volcano Observatory between the years 1989 and 2015, were inverted by using the LOTOS code. The seismic events are associated with shear-stress fractures in solid rock as a response to pressure induced by magma flow. Tomography resolution tests suggest a depth of imaging that yield 10 km from the summit of the main crater, illuminating a large portion of the volcanic structure and the interaction of tectonic features like the Buesaco and Silvia-Pijao faults. Full catalog tomographic inversion, that represents the stacked image of the volcanic structure or the most permanent features underneath the volcano, shows vertical structures aligned with seismicity beneath the main crater. We hypothesize that these structures correspond to a system of ducts or fractures through which magma and fluid phases flow up from deeper levels toward the top and related with the intersection of the surface traces of the Silvia-Pijao and Buesaco faults.

  9. Soil resources and topography shape local tree community structure in tropical forests.

    Science.gov (United States)

    Baldeck, Claire A; Harms, Kyle E; Yavitt, Joseph B; John, Robert; Turner, Benjamin L; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J; Chuyong, George B; Kenfack, David; Thomas, Duncan W; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N Nur; Dalling, James W

    2013-02-22

    Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24-50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9-34% and 5-29%, respectively), and all environmental variables together explain 13-39% of compositional variation within a plot. A large fraction of variation (19-37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe.

  10. Exotic Localized Coherent Structures of the (2+1)—Dimensional Dispersive Long—Wave Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANGJie-Fang

    2002-01-01

    This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations uty+ηxx+(u2)xy/2=0,ηt+(uη+u+uxy)x=0.Starting from the homogeneous balance method,we find that the richness of the localized coberent structures of the model is caused by the entrance of two variable-separated arbitrary functions.for some special selections of the arbitrary functions,it is shown that the localized structures of the model may be dromions,lumps,breathers,instantons and ring solitons.

  11. Local structural evidence for strong electronic correlations in spinel LiRh2O4

    Science.gov (United States)

    Knox, K. R.; Abeykoon, A. M. M.; Zheng, H.; Yin, W.-G.; Tsvelik, A. M.; Mitchell, J. F.; Billinge, S. J. L.; Bozin, E. S.

    2013-11-01

    The local structure of the spinel LiRh2O4 has been studied using atomic-pair distribution function analysis of powder x-ray diffraction data. This measurement is sensitive to the presence of short Rh-Rh bonds that form due to dimerization of Rh4+ ions on the pyrochlore sublattice, independent of the existence of long-range order. We show that structural dimers exist in the low-temperature phase, as previously supposed, with a bond shortening of Δr˜0.15 Å. The dimers persist up to 350 K, well above the insulator-metal transition, with Δr decreasing in magnitude on warming. Such behavior is inconsistent with the Fermi-surface nesting-driven Peierls transition model. Instead, we argue that LiRh2O4 should properly be described as a strongly correlated system.

  12. Optimal sensor placement for maximum area coverage (MAC) for damage localization in composite structures

    Science.gov (United States)

    Thiene, M.; Sharif Khodaei, Z.; Aliabadi, M. H.

    2016-09-01

    In this paper an optimal sensor placement algorithm for attaining the maximum area coverage (MAC) within a sensor network is presented. The proposed novel approach takes into account physical properties of Lamb wave propagation (attenuation profile, direction dependant group velocity due to material anisotropy) and geometrical complexities (boundary reflections, presence of openings) of the structure. A feature of the proposed optimization approach lies in the fact that it is independent of characteristics of the damage detection algorithm (e.g. probability of detection) making it readily up-scalable to large complex composite structures such as aircraft stiffened composite panel. The proposed fitness function (MAC) is independent of damage parameters (type, severity, location). Statistical analysis carried out shows that the proposed optimum sensor network with MAC results in high probability of damage localization. Genetic algorithm is coupled with the fitness function to provide an efficient optimization strategy.

  13. Localized structures for (2+1)-dimensional Boiti–Leon–Pempinelli equation

    Indian Academy of Sciences (India)

    Gui Mu; Zhengde Dai; Zhanhui Zhao

    2013-09-01

    It is shown that Painlevé integrability of (2+1)-dimensional Boiti–Leon–Pempinelli equation is easy to be verified using the standard Weiss–Tabor–Carnevale (WTC) approach after introducing the Kruskal’s simplification. Furthermore, by employing a singular manifold method based on Painlevé truncation, variable separation solutions are obtained explicitly in terms of two arbitrary functions. The two arbitrary functions provide us a way to study some interesting localized structures. The choice of rational functions leads to the rogue wave structure of Boiti–Leon–Pempinelli equation. In addition, for the other choices, it is observed that two solitons may evolve into breather after interaction. Also, the interaction between two kink compactons is investigated.

  14. The structure of filled skutterudites and the local vibration behavior of the filling atom

    Science.gov (United States)

    Zhou, Xiaojuan; Zong, Peng-an; Chen, Xihong; Tao, Juzhou; Lin, He

    2017-02-01

    Both of atomic pair distribution function (PDF) and extended x-ray absorption fine structure (EXAFS) experiments have been carried out on unfilled and Yb-filled skutterudites YbxCo4Sb12 (x=0, 0.15, 0.2 and 0.25) samples. The structure refinements on PDF data confirm the large amplitude vibration of Yb atom and the dependence of Yb vibration amplitude on the filling content. Temperature dependent EXAFS experiment on filled skutterudites have been carried out at Yb LⅢ-edge in order to explore the local vibration behavior of filled atom. EXAFS experiments show that the Einstein temperature of the filled atom is very low (70.9 K) which agrees with the rattling behavior.

  15. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    Science.gov (United States)

    Kochukhov, O.; Wade, G. A.; Shulyak, D.

    2012-04-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and

  16. Local and global semantic integration in an argument structure: ERP evidence from Korean.

    Science.gov (United States)

    Nam, Yunju; Hong, Upyong

    2016-07-01

    The neural responses of Korean speakers were recorded while they read sentences that included local semantic mismatch between adjectives (A) and nouns (N) or/and global semantic mismatch between object nouns (N) and verbs (V), as well as the corresponding control sentences without any semantic anomalies. In Experiment 1 using verb-final declarative sentences (Nsubject [A-N]object V), the local A-N incongruence yielded an N400 effect at the object noun and a combination of N400 and a late negativity effect at the sentence final verb, whereas the global N-V incongruence yielded a biphasic N400 and P600 ERP pattern at the verb compared with the ERPs of same words in the control sentences respectively; in Experiment 2 using verb-initial object relative clause constructions ([Nsubject _V]rel [A-N]object …..) derived from the materials of Experiment 1, the effect of local incongruence changed notably such that not only an N400 but also an additional P600 effect was observed at the object noun, whereas the effect of the global incongruence remained largely the same (N400 and P600). Our theoretical interpretation of these results specifically focused on the reason for the P600 effects observed across different experiment conditions, which turned out to be attributable to (i) coordination of a semantic conflict, (ii) prediction disconfirmation, or (iii) argument structure processing breakdown.

  17. A Bayesian Approach for Localization of Acoustic Emission Source in Plate-Like Structures

    Directory of Open Access Journals (Sweden)

    Gang Yan

    2015-01-01

    Full Text Available This paper presents a Bayesian approach for localizing acoustic emission (AE source in plate-like structures with consideration of uncertainties from modeling error and measurement noise. A PZT sensor network is deployed to monitor and acquire AE wave signals released by possible damage. By using continuous wavelet transform (CWT, the time-of-flight (TOF information of the AE wave signals is extracted and measured. With a theoretical TOF model, a Bayesian parameter identification procedure is developed to obtain the AE source location and the wave velocity at a specific frequency simultaneously and meanwhile quantify their uncertainties. It is based on Bayes’ theorem that the posterior distributions of the parameters about the AE source location and the wave velocity are obtained by relating their priors and the likelihood of the measured time difference data. A Markov chain Monte Carlo (MCMC algorithm is employed to draw samples to approximate the posteriors. Also, a data fusion scheme is performed to fuse results identified at multiple frequencies to increase accuracy and reduce uncertainty of the final localization results. Experimental studies on a stiffened aluminum panel with simulated AE events by pensile lead breaks (PLBs are conducted to validate the proposed Bayesian AE source localization approach.

  18. Vacuum Domain Walls in D-dimensions Local and Global Space-Time Structure

    CERN Document Server

    Cvetic, M; Cvetic, Mirjam; Wang, Jing

    2000-01-01

    We study local and global gravitational effects of (D-2)-brane configurations (domain-walls) in the vacuum of D-dimensional space-time. We focus on infinitely thin vacuum domain walls with arbitrary cosmological constants on either side of the wall. In the comoving frame of the wall we derive a general metric Ansatz, consistent with the homogeneity and isotropy of the space-time intrinsic to the wall, and employ Israel's matching conditions at the wall. The space-time, intrinsic to the wall, is that of (D-1)-dimensional Freedman-Lemaitre-Robertson-Walker universe (with k=-1,0,1) which has a (local) description as either anti-deSitter, Minkowski or deSitter space-time. For each of these geometries, we provide a systematic classification of the local and global space-time structure transverse to the walls, for those with both positive and negative tension; they fall into different classes according to the values of their energy density relative to that of the extreme (superysmmetric) configurations. We find tha...

  19. Structural health monitoring of localized internal corrosion in high temperature piping for oil industry

    Science.gov (United States)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.

  20. The Sustainability of Global Chain Governance: Network Structures and Local Supplier Upgrading in Thailand

    Directory of Open Access Journals (Sweden)

    Sungchul Cho

    2016-09-01

    Full Text Available Although it has been widely accepted that insertion into global production networks may play a critical role in fostering local supplier upgrading, scholars have yet to fully incorporate heterogeneous configurations of buyer-supplier relationships within networks into empirical testing. Using a representative sample of manufacturing firms in Thailand, we propose a more nuanced empirical framework that asks which features of buyer-supplier relationships are related to which aspects of local supplier upgrading. Our findings, derived from latent class analysis, show that the ways value chains are governed can exert varying effects on different types of technological upgrading. Being a multinational corporation (MNC supplier was found to have positive effects on process and minor product upgrading, irrespective of the types of buyer-supplier networks. However, we found a more radical type of upgrading (i.e., the development of own brands to be negatively related to insertion into ‘quasi-hierarchical’ or ‘buyer-driven relationships’, whilst involvement in ‘cooperative networks’ was associated with a significantly higher tendency of product and brand upgrading. Understanding this inherent relationality provides a crucial balance to previous firm-level findings, suggesting that the sustainability of participation in global value chains depends on the relational structures in which local manufacturers are embedded.

  1. Local Climate Heterogeneity Shapes Population Genetic Structure of Two Undifferentiated Insular Scutellaria Species

    Science.gov (United States)

    Hsiung, Huan-Yi; Huang, Bing-Hong; Chang, Jui-Tse; Huang, Yao-Moan; Huang, Chih-Wei; Liao, Pei-Chun

    2017-01-01

    Spatial climate heterogeneity may not only affect adaptive gene frequencies but could also indirectly shape the genetic structure of neutral loci by impacting demographic dynamics. In this study, the effect of local climate on population genetic variation was tested in two phylogenetically close Scutellaria species in Taiwan. Scutellaria taipeiensis, which was originally assumed to be an endemic species of Taiwan Island, is shown to be part of the widespread species S. barbata based on the overlapping ranges of genetic variation and climatic niches as well as their morphological similarity. Rejection of the scenario of “early divergence with secondary contact” and the support for multiple origins of populations of S. taipeiensis from S. barbata provide strong evolutionary evidence for a taxonomic revision of the species combination. Further tests of a climatic effect on genetic variation were conducted. Regression analyses show nonlinear correlations among any pair of geographic, climatic, and genetic distances. However, significantly, the bioclimatic variables that represent the precipitation from late summer to early autumn explain roughly 13% of the genetic variation of our sampled populations. These results indicate that spatial differences of precipitation in the typhoon season may influence the regeneration rate and colonization rate of local populations. The periodic typhoon episodes explain the significant but nonlinear influence of climatic variables on population genetic differentiation. Although, the climatic difference does not lead to species divergence, the local climate variability indeed impacts the spatial genetic distribution at the population level. PMID:28239386

  2. Waveform inversion for localized seismic structure and its application to D

    Science.gov (United States)

    Kawai, K.; Geller, R. J.; Fuji, N.; Konishi, K.

    2008-12-01

    In order to fully extract information on localized seismic structure from observed seismic data, we have developed a methodology for seismic waveform inversion. The calculation of synthetic seismograms and their partial derivatives are the key steps in such an inversion. We have developed accurate and efficient methods for calculating broadband synthetic seismograms for spherically symmetric transversely isotropic media for both shallow and deep events, which allows us to compute synthetics up to 2 Hz or higher frequencies (Kawai et al. 2006, GJI). Then, wWe formulate the inverse problem of waveform inversion for localized structure using the efficient algorithm of Geller and Hara (1993), computing partial derivatives for the 3-D anisotropic elastic parameters, including anelasticity, at particular points in space. Our method allows us to conduct both local and multi-scale global waveform inversion using pixel (or local shell) parameterization. We previouslyhave conducted waveform inversion for the vertical profile of the shear velocity in the lowermost mantle beneath Central America and the Arctic, beneath which the shear velocity is faster than the global average (Kawai et al., 2007ab, GRL). The obtained models suggest that the S-velocity increase in D'' may be localized in the zone from 100-200 km above the core-mantle boundary (CMB), while the S-velocity does not significantly deviate from PREM in the zone from 0-100 km above the CMB. In this studywork, we studied D'' beneath the Pacific, where the S-velocity is supposed thought to be slower than the global average on the basis of by many tomographic studies. models (e.g. Takeuchi 2007). We use the transverse component of broadband waveforms (for the period range, 8- 200 s). observed waveforms. We found 1-1.5% velocity decreases and increases in the zones from 400-500 km and from 300-400 km above the CMB, respectively. In addition, we found 0.5-1% velocity increases and decreases in the zones from 100-200 km

  3. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    Science.gov (United States)

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  4. Comparative study of local structure of two cyanobiphenyl liquid crystals by molecular dynamics method

    Energy Technology Data Exchange (ETDEWEB)

    Gerts, Egor D., E-mail: gerts-e-d@yandex.ru; Komolkin, Andrei V., E-mail: komolkin@nmr.phys.spbu.ru [Physical Faculty, Saint Petersburg State University, Saint Petersburg 198504 (Russian Federation); Burmistrov, Vladimir A. [Ivanovo State University of Chemical Technology, Ivanovo 153000 (Russian Federation); Alexandriysky, Victor V. [Ivanovo State University of Chemical Technology, Ivanovo 153000 (Russian Federation); Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045 (Russian Federation); Dvinskikh, Sergey V. [Laboratory of Biomolecular NMR, Saint Petersburg State University, Saint Petersburg 199034 (Russian Federation); Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44 (Sweden)

    2014-08-21

    Fully-atomistic molecular dynamics simulations were carried out on two similar cyanobiphenyl nematogens, HO-6OCB and 7OCB, in order to study effects of hydrogen bonds on local structure of liquid crystals. Comparable length of these two molecules provides more evident results on the effects of hydrogen bonding. The analysis of radial and cylindrical distribution functions clearly shows the differences in local structure of two mesogens. The simulations showed that anti-parallel alignment is preferable for the HO-6OCB. Hydrogen bonds between OH-groups are observed for 51% of HO-6OCB molecules, while hydrogen bonding between CN- and OH-groups occurs only for 16% of molecules. The lifetimes of H-bonds differ due to different mobility of molecular fragments (50 ps for N⋅⋅⋅H–O and 41 ps for O⋅⋅⋅H–O). Although the standard Optimized Potentials for Liquid Simulations - All-Atom force field cannot reproduce some experimental parameters quantitatively (order parameters are overestimated, diffusion coefficients are not reproduced well), the comparison of relative simulated results for the pair of mesogens is nevertheless consistent with the same relative experimental parameters. Thus, the comparative study of simulated and experimental results for the pair of similar liquid crystals still can be assumed plausible.

  5. "SP-G", a putative new surfactant protein--tissue localization and 3D structure.

    Directory of Open Access Journals (Sweden)

    Felix Rausch

    Full Text Available Surfactant proteins (SP are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.

  6. Electron paramagnetic resonance parameters and local structure for Gd3+ in KY3F10

    Indian Academy of Sciences (India)

    Shao-Yi Wu; Hua-Ming Zhang; Guang-Duo Lu; Zhi-Hong Zhang

    2007-09-01

    The electron paramagnetic resonance parameters, zero-field splittings (ZFSs) b$_{2}^{0}$, b$_{4}^{0}$, b$_{4}^{4}$, b$_{6}^{0}$, b$_{6}^{4}$ and the factors for Gd3+ on the tetragonal Y3+ site in KY3F10 are theoretically studied from the superposition model for the ZFSs and the approximation formula for the factor containing the admixture of the ground 8S7/2 and the excited 6L7/2 (L=P, D, F, G) states via the spin–orbit coupling interactions, respectively. By analysing the above ZFSs, the local structure information for the impurity Gd3+ is obtained, i.e., the impurity–ligand bonding angles related to the four-fold (C4) axis for the impurity Gd3+ center are found to be about 0.6° larger than those for the host Y3+ site in KY3F10. The calculated ZFSs based on the above angular distortion as well as the factors are in reasonable agreement with the observed values. The present studies on the ZFSs and the local structure would be helpful to understand the optical and magnetic properties of this material with Gd dopants.

  7. Local atomic and electronic structure of boron chemical doping in monolayer graphene.

    Science.gov (United States)

    Zhao, Liuyan; Levendorf, Mark; Goncher, Scott; Schiros, Theanne; Pálová, Lucia; Zabet-Khosousi, Amir; Rim, Kwang Taeg; Gutiérrez, Christopher; Nordlund, Dennis; Jaye, Cherno; Hybertsen, Mark; Reichman, David; Flynn, George W; Park, Jiwoong; Pasupathy, Abhay N

    2013-10-09

    We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film.

  8. Capturing ultrafast photoinduced local structural distortion of BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haidan [Argonne National Lab. (ANL), Argonne, IL (United States); Sassi, Michel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Luo, Zhenlin [Univ. of Science and Technology of China, Hefei (China); Adamo, Carolina [Cornell Univ., Ithaca, NY (United States); Schlom, Darrell G. [Cornell Univ., Ithaca, NY (United States); Cornell Univ., Ithaca, NY (United States). Kavli Inst. for Nanoscale Science; Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Xiaoyi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-14

    The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.

  9. Optical properties and local structure of Dy3+-doped chalcogenide and chalcohalide glasses

    Institute of Scientific and Technical Information of China (English)

    TANG Gao; YANG Zhiyong; LUO Lan; CHEN Wei

    2008-01-01

    Dy3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 rim, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy3+ ions. The longest lifetime was over 2.5 ms, and the value was signifi-cantly higher than that in other Dy3+-doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy3+-doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.

  10. The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals

    Science.gov (United States)

    Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.

    2014-07-01

    We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).

  11. Spatially localized structures and oscillons in atomic Bose-Einstein condensates confined in optical lattices

    Science.gov (United States)

    Charukhchyan, M. V.; Sedov, E. S.; Arakelian, S. M.; Alodjants, A. P.

    2014-06-01

    We consider the problem of formation of small-amplitude spatially localized oscillatory structures for atomic Bose-Einstein condensates confined in two- and three-dimensional optical lattices, respectively. Our approach is based on applying the regions with different signs of atomic effective masses where an atomic system exhibits effective hyperbolic dispersion within the first Brillouin zone. By using the kp method we have demonstrated mapping of the initial Gross-Pitaevskii equation on nonlinear Klein-Gordon and/or Ginzburg-Landau-Higgs equations, which is inherent in matter fields within ϕ4-field theories. Formation of breatherlike oscillating localized states—atomic oscillons—as well as kink-shaped states have been predicted in this case. Apart from classical field theories atomic field oscillons occurring in finite lattice structures possess a critical number of particles for their formation. The obtained results pave the way to simulating some analogues of fundamental cosmological processes occurring during our Universe's evolution and to modeling nonlinear hyperbolic metamaterials with condensed matter (atomic) systems.

  12. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery.

    Science.gov (United States)

    Vallet-Regí, María; Izquierdo-Barba, Isabel; Colilla, Montserrat

    2012-03-28

    This review article describes the importance of structure and functionalization in the performance of mesoporous silica bioceramics for bone tissue regeneration and local drug delivery purposes. Herein, we summarize the pivotal features of mesoporous bioactive glasses, also known as 'templated glasses' (TGs), which present chemical compositions similar to those of conventional bioactive sol-gel glasses and the added value of an ordered mesopore arrangement. An in-depth study concerning the possibility of tailoring the structural and textural characteristics of TGs at the nanometric scale and their influence on bioactive behaviour is discussed. The highly ordered mesoporous arrangement of cavities allows these materials to confine drugs to be subsequently released, acting as drug delivery devices. The functionalization of mesoporous silica walls has been revealed as the cornerstone in the performance of these materials as controlled release systems. The synergy between the improved bioactive behaviour and local sustained drug release capability of mesostructured materials makes them suitable to manufacture three-dimensional macroporous scaffolds for bone tissue engineering. Finally, this review tackles the possibility of covalently grafting different osteoinductive agents to the scaffold surface that act as attracting signals for bone cells to promote the bone regeneration process.

  13. Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics.

    Science.gov (United States)

    Chesnais, Céline; Boutin, Claude; Hans, Stéphane

    2012-10-01

    This work is devoted to the study of the wave propagation in infinite two-dimensional structures made up of the periodic repetition of frames. Such materials are highly anisotropic and, because of lack of bracing, can present a large contrast between the shear and compression deformabilities. Moreover, when the thickness to length ratio of the frame elements is small, these elements can resonate in bending at low frequencies when compressional waves propagate in the structure. The frame size being small compared to the wavelength of the compressional waves, the homogenization method of periodic discrete media is extended to situations with local resonance, and it is applied to identify the macroscopic behavior at the leading order. In particular, the local resonance in bending leads to an effective mass different from the real mass and to the generalization of the Newtonian mechanics at the macroscopic scale. Consequently, compressional waves become dispersive and frequency bandgaps occur. The physical origin of these phenomena at the microscopic scale is also presented. Finally, a method is proposed for the design of such materials.

  14. Gas-Expanded Liquids: Synergism of Experimental and Computational Determinations of Local Structure

    Energy Technology Data Exchange (ETDEWEB)

    Charles A. Eckert; Charles L. Liotta; Rigoberto Hernandez

    2007-06-26

    This project focuses on the characterization of a new class of solvent systems called gas-expanded liquids (GXLs), targeted for green-chemistry processing. The collaboration has adopted a synergistic approach combining elements of molecular dynamics (MD) simulation and spectroscopic experiments to explore the local solvent behavior that could not be studied by simulation or experiment alone. The major accomplishments from this project are: • Applied MD simulations to explore the non-uniform structure of CO2/methanol and CO2/acetone GXLs and studied their dynamic behavior with self-diffusion coefficients and correlation functions • Studied local solvent structure and solvation behavior with a combination of spectroscopy and MD simulations • Measured transport properties of heterocyclic solutes in GXLs through Taylor-Aris diffusion techniques and compared these findings to those of MD simulations • Probed local polarity and specific solute-solvent interactions with Diels-Alder and SN2 reaction studies The broader scientific impact resulting from the research activities of this contract have been recognized by two recent awards: the Presidential Green Chemistry Award (Eckert & Liotta) and a fellowship in the American Association for the Advancement of Science (Hernandez). In addition to the technical aspects of this contract, the investigators have been engaged in a number of programs extending the broader impacts of this project. The project has directly supported the development of two postdoctoral researcher, four graduate students, and five undergraduate students. Several of the undergraduate students were co-funded by a Georgia Tech program, the Presidential Undergraduate Research Award. The other student, an African-American female graduated from Georgia Tech in December 2005, and was co-funded through an NSF Research and Education for Undergraduates (REU) award.

  15. Robust structural damage detection and localization based on joint approximate diagonalization technique in frequency domain

    Science.gov (United States)

    Cao, Shancheng; Ouyang, Huajiang

    2017-01-01

    The structural characteristic deflection shapes (CDS’s) such as mode shapes and operational deflection shapes are highly sensitive to structural damage in beam- or plate-type structures. Nevertheless, they are vulnerable to measurement noise and could result in unacceptable identification errors. In order to increase the accuracy and noise robustness of damage identification based on CDS’s using vibration responses of random excitation, joint approximate diagonalization (JAD) technique and gapped smoothing method (GSM) are combined to form a sensitive and robust damage index (DI), which can simultaneously detect the existence of damage and localize its position. In addition, it is possible to apply this approach to damage identification of structures under ambient excitation. First, JAD method which is an essential technique of blind source separation is investigated to simultaneously diagonalize a set of power spectral density matrices corresponding to frequencies near a certain natural frequency to estimate a joint unitary diagonalizer. The columns of this joint diagonalizer contain dominant CDS’s. With the identified dominant CDS’s around different natural frequencies, GSM is used to extract damage features and a robust damage identification index is then proposed. Numerical and experimental examples of beams with cracks are used to verify the validity and noise robustness of JAD based CDS estimation and the proposed DI. Furthermore, damage identification using dominant CDS’s estimated by JAD method is demonstrated to be more accurate and noise robust than by the commonly used singular value decomposition method.

  16. Local structural preferences of calpastatin, the intrinsically unstructured protein inhibitor of calpain.

    Science.gov (United States)

    Kiss, Robert; Kovács, Dénes; Tompa, Péter; Perczel, András

    2008-07-01

    Calpain, the calcium-activated intracellular cysteine protease, is under the tight control of its intrinsically unstructured inhibitor, calpastatin. Understanding how potent inhibition by calpastatin can be reconciled with its unstructured nature provides deeper insight into calpain function and a more general understanding of how proteins devoid of a well-defined structure carry out their function. To this end, we performed a full NMR assignment of hCSD1 to characterize it in its solution state. Secondary chemical shift values and NMR relaxation data, R 1, R 2, and hetero-NOE, as well as spectral density function analysis have shown that conserved regions of calpastatin, subdomains A and C, which are responsible for calcium-dependent anchoring of the inhibitor to the enzyme, preferentially sample partially helical backbone conformations of a reduced flexibility. Moreover, the linker regions between subdomains are more flexible with no structural preference. The primary determinant of calpain inhibition, subdomain B, also has a non-fully random conformational preference, resembling a beta-turn structure also ascertained by prior studies of a 27-residue peptide encompassing the inhibitory region. This local structural preference is also confirmed by a deviation in chemical shift values between full-length calpastatin domain 1 and a truncated construct cut in the middle of subdomain B. At the C-terminal end of the molecule, a nascent helical region was found, which in contrast to the overall structural properties of the molecule may indicate a previously unknown functional region. Overall, these observations provide further evidence that supports previous suggestions that intrinsically unstructured proteins use preformed structural elements in efficient partner recognition.

  17. Unraveling Local Dust Storm Structure on Mars: The Case of Northern Amazonis During Mars Year 24

    Science.gov (United States)

    Heavens, N. G.

    2015-12-01

    On an average Martian afternoon, two or three local dust storms are taking place somewhere on the planet. By definition, these storms range in area from a few square kilometers to hundreds of thousands, rarely surviving from sol to the next. After more than 40 years of observation, a great deal is known about where and when they occur, but very little is known about the structure and dynamics of individual storms. This contrast in our knowledge about local dust storms results from how they are observed. Daily global mapping of Mars in the visible has enabled an accurate census of storms as well as observation of their morphological diversity. However, even under ideal conditions, an individual storm is only observed by sounder-type instrumentation once or twice (if it is a large enough), providing an incomplete picture of structure of an individual storm. Early studies of cyclogenesis on Earth had a similar problem. Cyclones were many, but observations of individual cyclones, especially over the ocean, were sparse. The structure and dynamics of cyclones was unraveled by noting similarities in properties between certain classes of cyclones and using observational data to generate composite cyclones that could be analyzed and modeled. Variability within the composite also could be studied. Here I establish the existence of a well-defined class of Martian local dust storms defined by: (1) occurrence along the axis of the dark albedo feature in northern Amazonis Planitia (36 N, 155 W); (2) not being associated with lifting or cloudiness due to a baroclinic wave/frontal boundary at higher latitude; (3) being textured, that is, having dust clouds with sharp, well-defined features that are thought to indicate their clouds are supplied by the active lifting of dust; (4) having dust clouds organized in well-defined streets indicative of convective rolls. In Mars Year 24, such storms developed on thirteen occasions in northern fall and autumn. Using data from the Mars

  18. Shatter cones at the Keurusselkä impact structure and their relation to local jointing

    Science.gov (United States)

    Hasch, Maximilian; Reimold, Wolf Uwe; Raschke, Ulli; Zaag, Patrice Tristan

    2016-08-01

    Shatter cones are the only distinct meso- to macroscopic recognition criterion for impact structures, yet not all is known about their formation. The Keurusselkä impact structure, Finland, is interesting in that it presents a multitude of well-exposed shatter cones in medium- to coarse-grained granitoids. The allegedly 27 km wide Keurusselkä impact structure was formed about 1150 Ma ago in rocks of the Central Finland Granitoid Complex. Special attention was paid in this work to possible relationships between shatter cones and local, as well as regionally occurring, fracture or joint systems. A possible shatter cone find outside the previously suggested edge of the structure could mean that the Keurusselkä impact structure is larger than previously thought. The spacing between joints/fractures from regional joint systems was influenced by the impact, but impact-induced fractures strongly follow the regional joint orientation trends. There is a distinct relationship between shatter cones and joints: shatter cones occur on and against joint surfaces of varied orientations and belonging to the regional orientation trends. Planar fractures (PF) and planar deformation features (PDF) were found in three shatter cone samples from the central-most part of the impact structure, whereas other country rock samples from the same level of exposure but further from the assumed center lack shock deformation features. PDF occurrence is enhanced within 5 mm of shatter cone surfaces, which is interpreted to suggest that shock wave reverberation at preimpact joints could be responsible for this local enhancement of shock deformation. Some shatter cone surfaces are coated with a quasi-opaque material which is also found in conspicuous veinlets that branch off from shatter cone surfaces and resemble pseudotachylitic breccia veins. The vein-filling is composed of two mineral phases, one of which could be identified as a montmorillonitic phyllosilicate. The second phase could not be

  19. Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis.

    Science.gov (United States)

    Herter, Barbara; Wolf, Sebastian; Fischer, Stefan; Gutmann, Johannes; Bläsi, Benedikt; Goldschmidt, Jan Christoph

    2013-09-09

    In upconversion processes, two or more low-energy photons are converted into one higher-energy photon. Besides other applications, upconversion has the potential to decrease sub-band-gap losses in silicon solar cells. Unfortunately, upconverting materials known today show quantum yields, which are too low for this application. In order to improve the upconversion quantum yield, two parameters can be tuned using photonic structures: first, the irradiance can be increased within the structure. This is beneficial, as upconversion is a non-linear process. Second, the rates of the radiative transitions between ionic states within the upconverter material can be altered due to a varied local density of photonic states. In this paper, we present a theoretical model of the impact of a photonic structure on upconversion and test this model in a simulation based analysis of the upconverter material β -NaYF(4):20% Er(3+) within a dielectric waveguide structure. The simulation combines a finite-difference time-domain simulation model that describes the variations of the irradiance and the change of the local density of photonic states within a photonic structure, with a rate equation model of the upconversion processes. We find that averaged over the investigated structure the upconversion luminescence is increased by a factor of 3.3, and the upconversion quantum yield can be improved in average by a factor of 1.8 compared to the case without the structure for an initial irradiance of 200 Wm(-2).

  20. DGCR8 Localizes to the Nucleus as well as Cytoplasmic Structures in Mammalian Spermatogenic Cells and Epididymal Sperm

    Directory of Open Access Journals (Sweden)

    Akane Nakano

    2013-01-01

    Full Text Available The localization of DGCR8 in spermatogenic cells and sperm from rat and mouse was studied by immunofluorescence and immunoelectron microscopy. Spermatogenic cells from these species yielded similar DGCR8 localization pattern. Immunofluorescence microscopy results showed that DGCR8 localized to both the cytoplasm and nucleus. In the cytoplasm, diffuse cytosolic and discrete granular staining was observed. Dual staining showed that DGCR8 colocalized to the granules with MAEL (a nuage marker. In the nucleus of spermatocytes, both the nucleoli and nucleoplasm were stained, whereas in the nucleus of early spermatids small spots were stained. In late spermatids, DGCR8 localized to the tip of their head and to small granules (neck granules of the neck cytoplasm. The neck granules were also observed in the neck of epididymal sperm. Immunoelectron microscopy results showed that DGCR8 localized to nuage structures. Moreover, DGCR8 localized to nonnuage structures in late spermatids. DGCR8 also localized to the nucleolus and euchromatin in spermatocytes and round spermatids and to small granules in the nucleus of late spermatids. The results suggest that in spermatogenic cells DGCR8 localizes not only to the nuclei but also to the cytoplasmic structures such as nuage and nonnuage structures. Furthermore, DGCR8 seems to be imported into the egg with neck granules in sperm during fertilization.

  1. Participatory Government and the Challenge of inclusion: The case of Local Government Structures in Post Apartheid South Africa.

    Directory of Open Access Journals (Sweden)

    Ralph Mathekga

    2006-06-01

    Full Text Available Local government structures are believed to be the essence of participatory democracy. It is through local government that citizens come into direct contact with their elected government, as power flows from national to local government. It is against this backdrop that the new local government structures were adopted in South Africa: as a measure to extend democracy to the larger citizenry. However, local government structures have not been able to live up to expectations, as they are generally characterized by sluggishness in terms of service delivery; failure to attract community participation; and, lately—towards the run-up of March 1 2006 local elections—mass protests and uprisings against these problems.The problem has been explained in terms of lack of capacity and technical know-how. This paper aims to go beyond such explanations, and argues that the local government “mayhem” has to do with structural limitations when it comes to drawing citizens’ participation.Thus, in addition to lack of capacity, there is a problem of exclusion which undermines local government.

  2. Subcellular localization and functional analyses of structural domains of COP1 in transgenic tobacco

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Plants have evolved an extremely exquisite light signal regulatory network to adapt to the changing ambient light conditions, in which COP1 plays a critical roleof the light signal transduction. Based on the cloned pea COP1 cDNA sequence and its protein structure, four indi-vidual gene fragments encoding different structural domains of the COP1 were designed to fuse to the GFP gene. The plant expression vectors containing these fusion genes as well as the COP1GFP fusion gene were constructed and used to transform tobacco by Agribacterium as confirmed by South-]ern analyses. Antibodies were raised against the recombi-nant GFP-COP1 overproduced in Escherichia coli. Im-munoblotting results demonstrated that all of the fusion genes were constitutively expressed in transgenic tobacco plants. We systematically investigated the different subcell- ular localization of these fusion proteins and the resulting phenotypic characteristics of these transgenic plants under light and dark conditions. Our data show that (1) the mo-lecular mass of the tobacco endogenous COP1 protein is 76 kD. It is constitutively expressed in all of the tested tissues and the total cellular content of COP1 protein is not noticea-bly affected by light conditions. (2) The nuclear localization signal of COP1 plays a critical role in regulation of its nu-clear-cytoplasmic partitioning. The subcellular localization of the COP1 protein containing nuclear localization signal is regulated by light in the epidermal cells of leaves, but, it is located in nucleus constitutively in root cells. (3) The coiled-coil domain is very critical to the function of COP1 protein, while the zinc binding RING finger domain only plays a supportive role. (4) The WD-40 repeats domain is essential to the COP1 function, but this domain alone does not affect photomorphogenesis. (5) Overexpression of COP1 protein not only inhibits the photomorphogenesis of the stems and leaves of the transgenic tobacco, but also results in the

  3. Optical bullets in (2+1)D photonic structures and their interaction with localized defects

    Science.gov (United States)

    Dohnal, Tomas

    2005-11-01

    This dissertation studies light propagation in Kerr-nonlinear two dimensional waveguides with a Bragg resonant, periodic structure in the propagation direction. The model describing evolution of the electric field envelopes is the system of 2D Nonlinear Coupled Mode Equations (2D CME). The periodic structure induces a range of frequencies (frequency gap) in which linear waves do not propagate. It is shown that, similarly to the ID case of a fiber grating, the 2D nonlinear system supports localized solitary wave solutions, referred to as 2D gap solitons, which have frequencies inside the linear gap and can travel at, any speed smaller than or equal to the speed of light in the corresponding homogeneous medium. Such solutions are constructed numerically via Newton's iteration. Convergence is obtained only near the upper edge of the gap. Gap solitons with a nonzero velocity are constructed by numerically following a bifurcation curve parameterized by the velocity v. It is shown that gap solitons are saddle points of the corresponding Hamiltonian functional and that no (constrained) local minima of the Hamiltonian exist. The linear stability problem is formulated and reasons for the failure of the standard Hamiltonian PDE approach for determining linear stability are discussed. In the second part of the dissertation interaction of 2D gap solitons with localized defects is studied and trapping of slow enough 2D gap solitons is demonstrated. This study builds on [JOSA B 19, 1635 (2002)], where such trapping of 1D gap solitons is considered. Analogously to this 1D problem trapping in the 2D model is explained as a resonant energy transfer into one or more defect modes existent for the particular defect. For special localized defects exact linear modes are found explicitly via the separation of variables. Numerical computation of linear defect modes is used for more general defects. Corresponding nonlinear modes are then constructed via Newton's iteration by following a

  4. Local probing of structure and property in dimensionally confined amorphous and crystalline structures by S/TEM

    Science.gov (United States)

    Yan, Aiming

    The characterization of materials' microstructure has been brought up to a new level since the invention and broad application of transmission electron microscope (TEM) thanks to the high-energy electron beam source which guarantees an unsurpassable spatial resolution and theoretical study of interaction between electron and matter. The advent of nano-world has imposed an urgent request to characterize nano-assemblies in nano- or even sub-nano-scale and scanning transmission electron microscopy (STEM) which typically utilizes an electron probe with a size of 1nm or even smaller has found its unique advantage to unravel the local structure, chemical and physical properties of these emerging nanostructures. Dimensionally constrained nanostructures such as thin films and nanopatterned systems have attracted people's attention for decades due to their novel chemical and physical properties and popularity in energy storage, biological integration and etc. This dissertation focuses on the unique characterization capability of S/TEM to study the local order in amorphous transparent conducting oxide thin films, disordering in 2-D layered materials, localized surface plasmons in nanoporous gold patterns on 2-D layered structures and crystallization process in dimensionally and spatially constrained oxide nanopatterns observed by in-situ TEM. Electron diffraction and x-ray diffraction are commonly used techniques to study the crystallinity in a certain material - crystalline or amorphous. In amorphous materials which lack long-range order, normal electron diffraction and x-ray diffraction techniques won't be able to extract any useful information regarding the ordering or disordering in the materials. We have developed a unique set of electron diffraction methods in both TEM and STEM, combined with density functional theory molecular dynamics of liquid quench to study the short-range (oxide films grown by pulsed laser deposition method. Graphene and graphene-like 2-D

  5. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition.

    Science.gov (United States)

    Liang, Yu; Guttman, Miklos; Davenport, Thaddeus M; Hu, Shiu-Lok; Lee, Kelly K

    2016-04-19

    Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes.

  6. Structure of thallium and lead calculated from Shaw local pseudopotential and molecular dynamics

    Directory of Open Access Journals (Sweden)

    Gasser J. G.

    2011-05-01

    Full Text Available Recently, we (Es Sbihi Phil. Mag 2010 have successfully calculated, by molecular dynamics, the static structure factor of liquid bismuth at different temperatures. Our results were in very good agreement with the Waseda experimental data. Our assumption was to consider the true density of states which presents a gap as measured by Indlekofer (J. Non-Cryst. Solids 1989 and calculated by Hafner-Jank (Phys. Rev. B 1990 for liquid bismuth. The number of electrons at the Fermi energy has been calculated with three conduction electrons for bismuth (number of p electrons. With this assumption, the structures were determined with an effective ion-ion potential constructed from the Shaw local Optimised Model Potential (OMP and the Ichimaru-Utsumi dielectric function. In the present paper, we generalize our assumptions to liquid thallium and lead which also present such a gap. Their calculated structures are also very close to the experimental ones. This confirms that the number of conduction electrons on the Fermi sphere is consistent with the number of p electrons as has been even shown for our electronic transport properties of liquid lead (A. Ben Abdellah, Phys. Rev. B 2003.

  7. Local and global ligand-induced changes in the structure of the GABA(A) receptor.

    Science.gov (United States)

    Muroi, Yukiko; Czajkowski, Cynthia; Jackson, Meyer B

    2006-06-13

    Ligand-gated channels mediate synaptic transmission through conformational transitions triggered by the binding of neurotransmitters. These transitions are well-defined in terms of ion conductance, but their structural basis is poorly understood. To probe these changes in structure, GABA(A) receptors were expressed in Xenopus oocytes and labeled at selected sites with environment-sensitive fluorophores. With labels at two different residues in the alpha1 subunit in loop E of the GABA-binding pocket, GABA elicited fluorescence changes opposite in sign. This pattern of fluorescence changes is consistent with a closure of the GABA-binding cavity at the subunit interface. The competitive antagonist SR-95531 inverted this pattern of fluorescence change, but the noncompetitive antagonist picrotoxin failed to elicit optical signals. In response to GABA (but not SR-95531), labels at the homologous residues in the beta2 subunit showed the same pattern of fluorescence change as the alpha1-subunit labels, indicating a global transition with comparable movements in homologous regions of different subunits. Incorporation of the gamma2 subunit altered the fluorescence changes of alpha1-subunit labels and eliminated them in beta2-subunit labels. Thus, the ligand-induced structural changes in the GABA(A) receptor can extend over considerable distances or remain highly localized, depending upon subunit composition and ligand.

  8. Local electronic structure of olivine phases of LixFePO4.

    Science.gov (United States)

    Miao, Shu; Kocher, Michael; Rez, Peter; Fultz, Brent; Yazami, Rachid; Ahn, Channing C

    2007-05-24

    Changes in the local electronic structure at atoms around Li sites in the olivine phase of LiFePO4 were studied during delithiation. Electron energy loss spectrometry was used for measuring shifts and intensities of the near-edge structure at the K-edge of O and at the L-edges of P and Fe. Electronic structure calculations were performed on these materials with a plane-wave pseudopotential code and with an atomic multiplet code with crystal fields. It is found that both Fe and O atoms accommodate some of the charge around the Li+ ion, evidently in a hybridized Fe-O state. The O 2p levels appear to be fully occupied at the composition LiFePO4. With delithiation, however, these states are partially emptied, suggestive of a more covalent bonding to the oxygen atom in FePO4 as compared to LiFePO4. The same behavior is found for the white lines at the Fe L2,3-edges, which also undergo a shift in energy upon delithiation. A charge transfer of up to 0.48 electrons is found at the Fe atoms, as determined from white line intensity variations after delithiation, while the remaining charge is compensated by O atoms. No changes are evident at the P L2,3-edges.

  9. Recurrent use of evolutionary importance for functional annotation of proteins based on local structural similarity.

    Science.gov (United States)

    Kristensen, David M; Chen, Brian Y; Fofanov, Viacheslav Y; Ward, R Matthew; Lisewski, Andreas Martin; Kimmel, Marek; Kavraki, Lydia E; Lichtarge, Olivier

    2006-06-01

    The annotation of protein function has not kept pace with the exponential growth of raw sequence and structure data. An emerging solution to this problem is to identify 3D motifs or templates in protein structures that are necessary and sufficient determinants of function. Here, we demonstrate the recurrent use of evolutionary trace information to construct such 3D templates for enzymes, search for them in other structures, and distinguish true from spurious matches. Serine protease templates built from evolutionarily important residues distinguish between proteases and other proteins nearly as well as the classic Ser-His-Asp catalytic triad. In 53 enzymes spanning 33 distinct functions, an automated pipeline identifies functionally related proteins with an average positive predictive power of 62%, including correct matches to proteins with the same function but with low sequence identity (the average identity for some templates is only 17%). Although these template building, searching, and match classification strategies are not yet optimized, their sequential implementation demonstrates a functional annotation pipeline which does not require experimental information, but only local molecular mimicry among a small number of evolutionarily important residues.

  10. Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite.

    Science.gov (United States)

    Korbas, M; Rokita, E; Meyer-Klaucke, W; Ryczek, J

    2004-01-01

    During mineral growth in rat bone-marrow stromal cell cultures, gallium follows calcium pathways. The dominant phase of the cell culture mineral constitutes the poorly crystalline hydroxyapatite (HAP). This model system mimics bone mineralization in vivo. The structural characterization of the Ga environment was performed by X-ray absorption spectroscopy at the Ga K-edge. These data were compared with Ga-doped synthetic compounds (poorly crystalline hydroxyapatite, amorphous calcium phosphate and brushite) and with strontium-treated bone tissue, obtained from the same culture model. It was found that Sr(2+) substitutes for Ca(2+) in the HAP crystal lattice. In contrast, the replacement by Ga(3+) yielded a much more disordered local environment of the probe atom in all investigated cell culture samples. The coordination of Ga ions in the cell culture minerals was similar to that of Ga(3+), substituted for Ca(2+), in the Ga-doped synthetic brushite (Ga-DCPD). The Ga atoms in the Ga-DCPD were coordinated by four oxygen atoms (1.90 A) of the four phosphate groups and two oxygen atoms at 2.02 A. Interestingly, the local environment of Ga in the cell culture minerals was not dependent on the onset of Ga treatment, the Ga concentration in the medium or the age of the mineral. Thus, it was concluded that Ga ions were incorporated into the precursor phase to the HAP mineral. Substitution for Ca(2+ )with Ga(3+) distorted locally this brushite-like environment, which prevented the transformation of the initially deposited phase into the poorly crystalline HAP.

  11. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures

    Science.gov (United States)

    Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng

    2015-10-01

    The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.

  12. Local electronic structure and magnetic properties of (Ga,Cr)N

    Institute of Scientific and Technical Information of China (English)

    LIN He; DUAN Haiming

    2006-01-01

    The local electronic structure and magnetic properties of diluted magnetic semiconductor (Ga,Cr)N have been studied by using discrete variational method (DVM) based on density functional theory. The magnetic moments per Cr atom vary significantly with Cr concentration, and the trend of variation is in agreement with that of the experiment.The coupling between Cr atoms in the system with two Cr atoms considered is found to be ferromagnetic,and the magnetic moment per Cr atom is similar to the case in which only one Cr atom is considered in the same doping concentration. For all doping concentrations, the coupling between Cr and the nearest neighbor N is found to be antiferromagnetic, and the Cr 3d states hybridize strongly with N 2p states,which are in agreement with the band calculations.

  13. Emergence and annihilation of localized structures in a phytoplankton-nutrient model

    CERN Document Server

    Zagaris, Antonios

    2010-01-01

    Co-limitation of marine phytoplankton by light and nutrient leads to complex dynamic behavior and a wide array of coherent patterns. The building blocks of this array can be considered to be deep chlorophyll maxima, or DCMs, which are structures localized in the vertical direction. From an ecological point of view, DCMs are evocative of a balance between the inflow of light from the water surface and of nutrients from the sediment. From a (linear) bifurcational point of view, they appear through a transcritical bifurcation in which the trivial, no-plankton steady state is destabilized. This article is devoted to the analytic investigation of the weakly nonlinear dynamics of these DCM patterns, and it has two overarching themes. The first of these concerns the fate of the destabilizing stationary DCM mode beyond the linear regime. Exploiting the natural singularly perturbed nature of the model, we derive an explicit reduced model of asymptotically high dimension which fully captures these dynamics. Our subsequ...

  14. Surface structure and hole localization in bismuth vanadate: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Kyoung E.; Hwang, Gyeong S. [Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-09-23

    The monoclinic and tetragonal phases of bismuth vanadate (BiVO{sub 4}) have been found to exhibit significantly different photocatalytic activities for water splitting. To assess a possible surface effect on the phase-dependent behavior, we calculate and compare the geometries and electronic structures of the monoclinic and tetragonal BiVO{sub 4} (001) surfaces using hybrid density functional theory. The relaxed atomic configurations of these two surfaces are found to be nearly identical, while an excess hole shows a relatively stronger tendency to localize at the surface than the bulk in both phases. Possible factors for the phase-dependent photocatalytic activity of BiVO{sub 4} are discussed.

  15. Band structure engineering of graphene by a local gate defined periodic potential

    Science.gov (United States)

    Forsythe, Carlos; Maher, Patrick; Scarabelli, Diego; Dean, Cory; Kim, Philip

    Recent improvements in 2-dimensional (2D) material layering have resulted in enhanced device quality and created pathways for new device architectures. We fabricate periodic arrays from a patterned local back gate and a uniform top gate on hBN encapsulated graphene channels. The symmetry and lattice size of the periodic potential can be determined by state-of-art electron beam lithography and etching, achieving a lattice constant of 35 nm. The strength of the electric potential modulation can be controlled through applied voltage on the patterned gate. We observe signatures of superlattice modulation near the main Dirac peak in the density dependent resistance measurement at zero magnetic field. Current studies focus on the exploration of Hofstadter fractal band structures under magnetic fields. Our nano-patterned engineered superlattices on graphene hold great promise for wider applications.

  16. Structure and chromosomal localization of the gene encoding the human myelin protein zero (MPZ)

    Energy Technology Data Exchange (ETDEWEB)

    Hayasaka, Kiyoshi; Himoro, Masato; Takada, Goro (Akita Univ. School of Medicine, Akita (Japan)); Wang, Yimin; Takata, Mizuho; Minoshima, Shinsei; Shimizu, Nobuyoshi; Miura, Masayuki; Uyemura, Keiichi (Keio Univ. School of Medicine, Tokyo (Japan))

    1993-09-01

    The authors describe the cloning, characterization, and chromosomal mapping of the human myelin protein zero (MPZ) gene (a structural protein of myelin and an adhesive glycoprotein of the immunoglobulin superfamily). The gene is about 7 kb long and consists of six exons corresponding of the functional domains. All exon-intron junction sequences conform to the GT/AG rule. The 5[prime]-flanking region of the gene has a TA-rich element (TATA-like box), two CAAT boxes, and a single defined transcription initiation site detected by the primer extension method. The gene for human MPZ was assigned to chromosome 1q22-q23 by spot blot hybridization of flow-sorted human chromosomes and fluorescence in situ hybridization. The localization of the MPZ gene coincides with the locus for Charcot-Marie-Tooth disease type 1B, determined by linkage analysis. 20 refs., 3 figs., 1 tab.

  17. A note on eigenfrequency sensitivities and structural eigenfrequency optimization based on local sub-domain frequencies

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2014-01-01

    result has many applications. It is therefore presented before specific use in optimization examples. The engineering approach of fully stressed design is a practical tool with a theoretical foundation. The analog approach to structural eigenfrequency optimization is presented here with its theoretical...... foundation. A numerical heuristic redesign procedure is proposed and illustrated with examples. For the ideal case, an optimality criterion is fulfilled if the design have the same sub-domain frequency (local Rayleigh quotient). Sensitivity analysis shows an important relation between squared system...... on the derived optimality condition. The design that maximize a frequency depend on the total amount of available material and on a necessary interpolation as illustrated by different design cases.In this note we have assumed a linear and conservative eigenvalue problem without multiple eigenvalues. The presence...

  18. Local electronic structure and magnetic properties of 3d transition metal doped GaAs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The local electronic structure and magnetic properties of GaAs doped with 3 transition metal(Sc,Ti,V,Cr,Mn,Fe,Co,Ni) were studied by using discrete varia tional method(DVM) based on density functional theory.The calculated result in dicated that the magnetic moment of transition metal increases first and then de creases,and reaches the maximum value when Mn is doped into GaAs.In the cas of Mn concentration of 1.4%,the magnetic moment of Mn is in good agreement wit the experimental result.The coupling between impure atoms in the system with tw impure atoms was found to have obvious variation.For different transition meta the coupling between the impure atom and the nearest neighbor As also has dif ferent variation.

  19. Bridging the pressure gap: Can we get local quantitative structural information at 'near-ambient' pressures?

    Science.gov (United States)

    Woodruff, D. P.

    2016-10-01

    In recent years there have been an increasing number of investigations aimed at 'bridging the pressure gap' between UHV surface science experiments on well-characterised single crystal surfaces and the much higher (ambient and above) pressures relevant to practical catalyst applications. By applying existing photon-in/photon-out methods and developing instrumentation to allow photoelectron emission to be measured in higher-pressure sample environments, it has proved possible to obtain surface compositions and spectroscopic fingerprinting of chemical and molecular states of adsorbed species at pressures up to a few millibars. None of these methods, however, provide quantitative structural information on the local adsorption sites of isolated atomic and molecular adsorbate species under these higher-pressure reaction conditions. Methods for gaining this information are reviewed and evaluated.

  20. Recursive estimation of 3D motion and surface structure from local affine flow parameters.

    Science.gov (United States)

    Calway, Andrew

    2005-04-01

    A recursive structure from motion algorithm based on optical flow measurements taken from an image sequence is described. It provides estimates of surface normals in addition to 3D motion and depth. The measurements are affine motion parameters which approximate the local flow fields associated with near-planar surface patches in the scene. These are integrated over time to give estimates of the 3D parameters using an extended Kalman filter. This also estimates the camera focal length and, so, the 3D estimates are metric. The use of parametric measurements means that the algorithm is computationally less demanding than previous optical flow approaches and the recursive filter builds in a degree of noise robustness. Results of experiments on synthetic and real image sequences demonstrate that the algorithm performs well.

  1. Formation and local electronic structure of Ge clusters on Si(111)-7×7 surfaces

    Institute of Scientific and Technical Information of China (English)

    Ma Hai-Feng; Xu Ming-Chun; Yang Bing; Shi Dong-Xia; Guo Hai-Ming; Pang Shi-Jin; Gao Hong-Jun

    2007-01-01

    We report the formation and local electronic structure of Ge clusters on the Si(111)-7×7 surface studied by using variable temperature scanning tunnelling microscopy (VT-STM) and low-temperature scanning tunnelling spectroscopy (STS). Atom-resolved STM images reveal that the Ge atoms are prone to forming clusters with 1.0 nm in diameter for coverage up to 0.12 ML. Such Ge clusters preferentially nucleate at the centre of the faulted-half unit cells, leading to the 'dark sites' of Si centre adatoms from the surrounding three unfaulted-half unit cells in filled-state images. Biasdependent STM images show the charge transfer from the neighbouring Si adatoms to Ge clusters. Low-temperature STS of the Ge clusters reveals that there is a band gap on the Ge cluster and the large voltage threshold is about 0.9 V.

  2. Local appearance features for robust MRI brain structure segmentation across scanning protocols

    DEFF Research Database (Denmark)

    Achterberg, H.C.; Poot, Dirk H. J.; van der Lijn, Fedde;

    2013-01-01

    Segmentation of brain structures in magnetic resonance images is an important task in neuro image analysis. Several papers on this topic have shown the benefit of supervised classification based on local appearance features, often combined with atlas-based approaches. These methods require...... a representative annotated training set and therefore often do not perform well if the target image is acquired on a different scanner or with a different acquisition protocol than the training images. Assuming that the appearance of the brain is determined by the underlying brain tissue distribution...... and that brain tissue classification can be performed robustly for images obtained with different protocols, we propose to derive appearance features from brain-tissue density maps instead of directly from the MR images. We evaluated this approach on hippocampus segmentation in two sets of images acquired...

  3. Extreme Associated Functions: Optimally Linking Local Extremes to Large-scale Atmospheric Circulation Structures

    CERN Document Server

    Panja, Debabrata

    2007-01-01

    We present a new statistical method to optimally link local weather extremes to large-scale atmospheric circulation structures. The method is illustrated using July-August daily mean temperature at 2m height (T2m) time-series over the Netherlands and 500 hPa geopotential height (Z500) time-series over the Euroatlantic region of the ECMWF reanalysis dataset (ERA40). The method identifies patterns in the Z500 time-series that optimally describe, in a precise mathematical sense, the relationship with local warm extremes in the Netherlands. Two patterns are identified; the most important one corresponds to a blocking high pressure system leading to subsidence and calm, dry and sunny conditions over the Netherlands. The second one corresponds to a rare, easterly flow regime bringing warm, dry air into the region. The patterns are robust; they are also identified in shorter subsamples of the total dataset. The method is generally applicable and might prove useful in evaluating the performance of climate models in s...

  4. Inverse solution technique of steady-state responses for local nonlinear structures

    Science.gov (United States)

    Wang, Xing; Guan, Xin; Zheng, Gangtie

    2016-03-01

    An inverse solution technique with the ability of obtaining complete steady-state primary harmonic responses of local nonlinear structures in the frequency domain is proposed in the present paper. In this method, the nonlinear dynamic equations of motion is first condensed from many to only one algebraic amplitude-frequency equation of relative motion. Then this equation is transformed into a polynomial form, and with its frequency as the unknown variable, the polynomial equation is solved by tracing all the solutions of frequency with the increase of amplitude. With this solution technique, some complicated dynamic behaviors such as sharp tuning, anomalous jumps, breaks in responses and detached resonance curves could be obtained. The proposed method is demonstrated and validated through a finite element beam under force excitations and a lumped parameter model with a local nonlinear element under base excitations. The phenomenon of detached resonance curves in the frequency response and its coupling effects with multiple linear modes in the latter example are observed.

  5. Local and regional effects on community structure of dung beetles in a mainland-island scenario.

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    Full Text Available Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites. We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal

  6. Does landscape connectivity shape local and global social network structure in white-tailed deer?

    Science.gov (United States)

    Koen, Erin L; Tosa, Marie I; Nielsen, Clayton K; Schauber, Eric M

    2017-01-01

    Intraspecific social behavior can be influenced by both intrinsic and extrinsic factors. While much research has focused on how characteristics of individuals influence their roles in social networks, we were interested in the role that landscape structure plays in animal sociality at both individual (local) and population (global) levels. We used female white-tailed deer (Odocoileus virginianus) in Illinois, USA, to investigate the potential effect of landscape on social network structure by weighting the edges of seasonal social networks with association rate (based on proximity inferred from GPS collar data). At the local level, we found that sociality among female deer in neighboring social groups (n = 36) was mainly explained by their home range overlap, with two exceptions: 1) during fawning in an area of mixed forest and grassland, deer whose home ranges had low forest connectivity were more social than expected; and 2) during the rut in an area of intensive agriculture, deer inhabiting home ranges with high amount and connectedness of agriculture were more social than expected. At the global scale, we found that deer populations (n = 7) in areas with highly connected forest-agriculture edge, a high proportion of agriculture, and a low proportion of forest tended to have higher weighted network closeness, although low sample size precluded statistical significance. This result implies that infectious disease could spread faster in deer populations inhabiting such landscapes. Our work advances the general understanding of animal social networks, demonstrating how landscape features can underlie differences in social behavior both within and among wildlife social networks.

  7. Human phenol sulfotransferase STP2 gene: Molecular cloning, structural characterization, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, C.; Raftogianis, R.; Weinshilboum, R.M. [Mayo Foundation, Rochester, MN (United States)

    1996-05-01

    Sulfonation is an important pathway in the biotransformation of many drugs, xenobiotics, neurotransmitters, and steroid hormones. The thermostable (TS) form of phenol sulfotransferase (PST) preferentially catalyzes the sulfonation of {open_quotes}simple{close_quotes} planar phenols, and levels of activity of TS PST in human tissues are controlled by inheritance. Two different human liver TS PST cDNAs have been cloned that encode proteins with amino acid sequences that are 96% identical. We have determined the structure and chromosomal localization of the gene for one of these two cDNAs, STP2, as a step toward understanding molecular genetic mechanisms involved in the regulation of this enzyme activity in humans. STP2 spans approximately 5.1 kb and contains nine exons that range in length from 74 to 347 bp. The locations of most STP2 exon-intron splice junctions are identical to those of a gene for the thermolabile form of PST in humans, STM; a rat PST gene; a human estrogen ST (EST) gene, STE; and a guinea pig EST gene. The two initial STP2 exons, IA and IB, were identified by performing 5{prime}-rapid amplification of cDNA ends with human liver cDNA as template. Exons IA and IB are noncoding and represent two different human liver TS PST cDNA 5{prime}untranslated region sequences. The two apparent 5{prime}-ons IA and IB, contain no canonical TATA boxes, but do contain CCAAT elements. STP2 was localized to human chromosome 16 by performing the PCR with DNA from NIGMS human/rodent somatic cell hybrids as template. Structural characterization of STP2 will make it possible to begin to study molecular genetic mechanisms involved in the regulation of TS PST activity in human tissues. 63 refs., 7 figs., 1 tab.

  8. Structure-dependent interatomic dispersion coefficients in oxides with maximally localized Wannier functions

    Science.gov (United States)

    Sukhomlinov, Sergey V.; Smirnov, Konstantin S.

    2012-11-01

    The interatomic C6 dispersion coefficients in crystalline and amorphous SiO2 and ZrO2 structures were obtained with the approach proposed by Silvestrelli (2008 Phys. Rev. Lett. 100 053002) and based on the use of maximally localized Wannier functions (MLWFs) for partitioning the electron density. Localization of Wannier functions close to the nuclei in oxide systems makes it possible to assign the MLWFs to the atoms in an unambiguous way and then to compute the C6 coefficients in an atom pairwise manner. A modification of the method is suggested in which the MLWFs are condensed to effective orbitals centred on the atoms and parameters of these effective orbitals are used for computing the interatomic dispersion coefficients. The obtained values of the dispersion coefficients were found to vary not only from one oxide to another, but also between different modifications of the same compound. The oxygen-oxygen coefficient {C}_{6}^{{OO}} reveals the largest variation and its value in ZrO2 structures is twice as large as that in SiO2 ones. Atomic characteristics obtained in the frame of the effective orbital method, such as the self-atom dispersion coefficient, and the oxide ion polarizability were found to correlate with the metal-oxygen bond length and the oxygen coordination number in the systems. This behaviour is attributed to the confinement of electrons by the electrostatic potential. The values of the coefficient and of the polarizability were related to charges of the oxygen atoms. In all studied systems the oxygen atoms having larger absolute values of charge were found to be less polarizable because of a stronger confinement effect. The obtained results can be used in the development of polarizable force fields for the atomistic modelling of oxide materials.

  9. Diffusion of helium in the perfect and non perfect uranium dioxide crystals and their local structures

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, Ludwik, E-mail: luddab@hotmail.com; Szuta, Marcin

    2014-12-05

    Highlights: • The nano local structure of UO{sub 2} containing oxygen and uranium vacancies was identified. • We have determined for the first time in the UO{sub 2} the dynamical energy barriers to He migration. • It was found that the migration of helium is along the polylines. • The helium diffusion is accompanied of the emission–absorption of phonons. - Abstract: Local nano structures and their changes relevant with the diffusion of helium was determined by applying the density functional theory (DFT). With its help we calculated deformation of the crystal lattice while wandering helium atoms between octahedral sites. The optimal mutual coordinates of the atoms were determined by minimizing the Hellman–Feyman forces, allowing at the same time precisely specify dynamic height and the shape of the potential barrier. For a crystal containing single oxygen or uranium vacancies, has been described both the deformation associated with the presence of vacancy, as well as additional deformation related to the migration of the helium atom in the lattice. It was found that in the case of vacancies, the migration of helium atoms between the octahedral sites is not along a straight line but along a polyline. In addition, the presence of uranium vacancy causes that helium atoms in the octahedral sites, situated in the I and II coordination shell of uranium vacancy, have different energies. Migration between such positions must be carried out with the participation of the emission–absorption of phonons. Applying two site – model we evaluated the time for an over-barrier jump and diffusion of interstitial He. The obtained values for diffusion coefficient are compared with the experimentally obtained values and with the theoretical values of other authors.

  10. First-principles study of the local structure and crystal field of Yb2+ in sodium and potassium halides

    Institute of Scientific and Technical Information of China (English)

    Wen Jun; Duan Chang-Kui; Yin Min; Yu.V.Orlovskii; Xia Shang-Da; Zhang Yong-Fan

    2012-01-01

    The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model.Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb2+ were calculated to study the effect of the doping on the local coordination structures of Yb2+.Using the calculated local structures,we obtained the crystal-field parameters for the Yb2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method.The calculated crystal-field parameters were analyzed and compared with the fitted results.

  11. Towards Consistent Mapping of Urban Structures - Global Human Settlement Layer and Local Climate Zones

    Science.gov (United States)

    Bechtel, B.; Pesaresi, M.; See, L.; Mills, G.; Ching, J.; Alexander, P. J.; Feddema, J. J.; Florczyk, A. J.; Stewart, I.

    2016-06-01

    Although more than half of the Earth's population live in urban areas, we know remarkably little about most cities and what we do know is incomplete (lack of coverage) and inconsistent (varying definitions and scale). While there have been considerable advances in the derivation of a global urban mask using satellite information, the complexity of urban structures, the heterogeneity of materials, and the multiplicity of spectral properties have impeded the derivation of universal urban structural types (UST). Further, the variety of UST typologies severely limits the comparability of such studies and although a common and generic description of urban structures is an essential requirement for the universal mapping of urban structures, such a standard scheme is still lacking. More recently, there have been two developments in urban mapping that have the potential for providing a standard approach: the Local Climate Zone (LCZ) scheme (used by the World Urban Database and Access Portal Tools project) and the Global Human Settlement Layer (GHSL) methodology by JRC. In this paper the LCZ scheme and the GHSL LABEL product were compared for selected cities. The comparison between both datasets revealed a good agreement at city and coarse scale, while the contingency at pixel scale was limited due to the mismatch in grid resolution and typology. At a 1 km scale, built-up as well as open and compact classes showed very good agreement in terms of correlation coefficient and mean absolute distance, spatial pattern, and radial distribution as a function of distance from town, which indicates that a decomposition relevant for modelling applications could be derived from both. On the other hand, specific problems were found for both datasets, which are discussed along with their general advantages and disadvantages as a standard for UST classification in urban remote sensing.

  12. Local Bamboo and Earth Construction Potential for Provision of Affordable Structures in Nigeria

    Directory of Open Access Journals (Sweden)

    OJI ACHUKA NWOKE

    2011-12-01

    Full Text Available In Nigeria and other developing countries where reinforced concrete in construction is widely used, the high and steadily increasing cost of steel has made construction very expensive. This, coupled with the political will, usually christened “Nigerian Factor” has made any conceived affordable mass housing program by successive governments a mirage. This development has triggered off the search for alternative and suitable replacement for steel reinforcement in concrete works. This search for a cheaper alternative has led to the exploration of abundant, naturally occurring materials such as bamboo, coconut fibres, sisal and oil palm fibres  which can be obtained locally at low cost and low levels of energy using local manpower and technology. The use of these locally available materials as substitute for the conventional materials in reinforced concrete elements can cut construction costs by as much as between 30% and 80%. Interest in these local materials is heightened by the facts that not only are they considered cheap; they are also “eco-friendly”. Also, the rising level of pollution in the construction industry has called for the adoption of “Eco-structures”, which are constructions that are in harmony with the surroundings and do not violate the environment neither through the chosen building materials nor through the construction methods. Several studies  have shown that contemporary  earth construction has the potentials to address the urban housing crisis in the developing countries. On the other hand there is a wrong perception among the users and the professionals that, ‘earth houses are only used by the poor people’. This paper investigates the information available on bamboo and earth material and their possible use as a low cost sustainable building material in Nigeria  in the light of problem of affordable structure. The findings of  this paper shows that more research has to be done to come up with reasonable

  13. Local population structure in Arabian Peninsula revealed by Y-STR diversity.

    Science.gov (United States)

    Alshamali, Farida; Pereira, Luísa; Budowle, Bruce; Poloni, Estella S; Currat, Mathias

    2009-01-01

    Genetic studies have been underway on Arabian Peninsula populations because of their pivotal geographic location for population migration and times of occurrence. To assist in better understanding population dynamics in this region, evidence is presented herein on local population structure in the Arabian Peninsula, based on Y-STR characterisation in four Arabian samples and its comparison in a broad geographical scale. Our results demonstrate that geography played an important role in shaping the genetic structure of the region around the Near-East. Populations are grouped regionally but none of these groups is significantly differentiated from others and all groups merge in the Near-East, in keeping with this important migration corridor for the human species. Focusing on the Arabian Peninsula, we show that Dubai and Oman share genetic affinities with other Near-Eastern populations, while Saudi Arabia and Yemen show a relative distinctive isolated background. Those two populations may have been kept relatively separated from migration routes, maybe due to their location in a desert area.

  14. Crustal Velocity Structure From Local Earthquake Data In Southeastern Sicily (italy)

    Science.gov (United States)

    Musumeci, C.; di Grazia, G.; Gresta, S.

    The monitoring of seismic activity in Southeastern Sicily (Italy) has been recently im- proved, by a 3-C digital seismic network. This effort has produced a homogeneous and complete dataset (324 local events recorded from January 1994 till October 2000) which we used to define the space and time distribution of the recent seismicity. We inverted P- and S-wave arrival times from 51 selected earthquakes to obtain a 1D velocity model, with the simultaneous inversion for hypocenters and velocity param- eters. Then, once tested the robustness of the model, we assess the reliability of the hypocentral locations it provides and we discuss the results taking into account the actual geophysical knowledge of the area derived by previous studies. The average distribution of the 1D locations can be considered representative of the true hypocen- tral position and then, the observed trend can represent a tectonic feature. Improve- ments in location accuracy are indicated by the reduced amplitude in the residuals, the smaller estimated location errors, and the increased tendency of many locations to cluster. Further, the distribution of hypocenters confirmed the absence of seismicity in the central part of the studied area along a NE-SW direction where several tectonic structures, geologically active, are evident at the surface. On the other hand, the lo- cation accuracy permitted us to define the deeper seismogenic structures of the area down to 35 km.

  15. Algebraic and group structure for bipartite anisotropic Ising model on a non-local basis

    Science.gov (United States)

    Delgado, Francisco

    2015-01-01

    Entanglement is considered a basic physical resource for modern quantum applications as Quantum Information and Quantum Computation. Interactions based on specific physical systems able to generate and sustain entanglement are subject to deep research to get understanding and control on it. Atoms, ions or quantum dots are considered key pieces in quantum applications because they are elements in the development toward a scalable spin-based quantum computer through universal and basic quantum operations. Ising model is a type of interaction generating entanglement in quantum systems based on matter. In this work, a general bipartite anisotropic Ising model including an inhomogeneous magnetic field is analyzed in a non-local basis. This model summarizes several particular models presented in literature. When evolution is expressed in the Bell basis, it shows a regular block structure suggesting a SU(2) decomposition. Then, their algebraic properties are analyzed in terms of a set of physical parameters which define their group structure. In particular, finite products of pulses in this interaction are analyzed in terms of SU(4) covering. Thus, evolution denotes remarkable properties, in particular those related potentially with entanglement and control, which give a fruitful arena for further quantum developments and generalization.

  16. Local structure studies of multiferroic RMn2O5 (R=Bi, Pr, Gd)

    Science.gov (United States)

    Fabbris, G.; Massa, N. E.; Granado, E.; Maciel, G. A.; Souza, J. A.; Alonso, J. A.; Martinez, M. J.; Azevedo, G. M.

    2009-03-01

    EXAFS measurements from 20 K to 300K were used to investigate the local structure of multiferroic RMn2O5 (R = Bi, Pr, Gd, TM TC 40K) in transmission mode at the Mn K- and R L3- edges in the XAFS2-LNLS beamline and analyzed using the IFEFFIT and FEFF codes. For BiMn2O5, Mn K-edge reveals very small temperature dependence of the Debye-Waller factor (DWF) and an Einstein temperature (ET) from Mn-O bonds of 675±22 K, suggesting that MnO polyhedra are rigid. We find structural distortions in the first coordination shell at the Bi L3-edge associated to vibrational anomalies in the Bi-O bonds. The quantitative analysis relates the origin of such distortions to two very distinct values of DWT and ET (294±7K and 462±28K) for these bonds on first shell. Similar behavior is observed for PrMn2O5, and GdMn2O5.

  17. Thermal response of a flat heat pipe sandwich structure to a localized heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, G.; Peterson, G.P. [Rensselaer Polytechnic Institute, Troy, NY (United States). Department of Mechanical, Aerospace and Nuclear Engineering; Sobhan, C.B. [National Institute of Technology, Calicut (India). Center for Nanotechnology, Department of Mechanical Engineering; Queheillalt, D.T.; Wadley, H.N.G. [University of Virginia, Charlottesville, VA (United States). Material Science and Engineering Department

    2006-10-15

    The temperature distribution across a flat heat pipe sandwich structure, subjected to an intense localized thermal flux has been investigated both experimentally and computationally. The aluminum sandwich structure consisted of a pair of aluminum alloy face sheets, a truncated square honeycomb (cruciform) core, a nickel metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch to the evaporator side of the flat heat pipe, while the condenser side was cooled via natural convective and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution of the torch on the evaporator side. This heat flux distribution was modeled using a probability function and validated against the experimental data. Applying the estimated heat flux distribution as the surface boundary condition, a finite volume analysis was performed for the wall, wick and vapor core regions of the flat heat pipe to obtain the field variables in these domains. The results were found to agree well with the experimental data indicating the thermal spreading effect of the flat heat pipe. (author)

  18. Design and fabrication of structural color by local surface plasmonic meta-molecules

    Science.gov (United States)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  19. Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep.

    Science.gov (United States)

    Hediger, R; Ansari, H A; Stranzinger, G F

    1991-01-01

    By using three gene probes, one derived from the porcine major histocompatibility complex (MHC) and two from bovine cytokeratin genes, type I (KRTA) and type II (KRTB), the hypothesis of conservation of genome structure in two members of the family Bovidae was examined. Gene mapping data revealed the MHC to be in chromosome region 23q15----q23 in cattle (BOLA) and 20q15----q23 in sheep (OLA). KRTA was localized to chromosome region 19q25----q29 in cattle and 11q25----q29 in sheep and KRTB to 5q14----q22 in cattle and 3q14----q22 in sheep. The banding patterns of the chromosome arms to which the loci were assigned were identical in both species. Moreover, the resemblances of GTG- or QFQ-banding patterns between the cattle and sheep karyotypes illustrated further chromosome homologies. These studies, based on gene mapping comparisons and comparative cytogenetics, document that within bovid chromosomes, homology of banding patterns corresponds to a homologous genetic structure. Hence, we propose that gene assignments on identified chromosomal segments in one species of the Bovidae can be extrapolated, in general, to other bovid species based on the banding homologies presented here.

  20. The effects of local correlations on the electronic structure of FeSe

    Science.gov (United States)

    Watson, Matthew; Kim, Timur; Haghighirad, Amir; Coldea, Amalia

    FeSe is structurally the simplest of Fe-based superconductors, but its complex and unique properties pose important theoretical questions. One important aspect of the physics of FeSe is the understanding of the strength and effects of electronic correlations. In order to explore this, we have performed angle-resolved photo-emission spectroscopy (ARPES) measurements on high quality bulk single crystals of FeSe over a wide range of binding energies, in different scattering geometries and with varying incident photon energies, analysing the quasiparticle renormalisations, scattering rates and degree of coherence. We find that FeSe exhibits moderately strong, orbital-dependent correlation effects which are understood to arise primarily due to local electron-electron interactions on the Fe sites. We conclude that electronic correlations constitute a key ingredient in understanding the electronic structure of FeSe. Part of this work was supported by EPSRC, UK (EP/I004475/1, EP/I017836/1). We thank Diamond Light Source for access to Beamline I05.

  1. Localization studies of two white spot syndrome virus structural proteins VP51 and VP76

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2006-09-01

    Full Text Available Abstract VP51 and VP76 are two structural proteins of white spot syndrome virus (WSSV. However, there is some controversy about their localization in the virion at present. In this study, we employ multiple approaches to reevaluate the location of VP51 and VP76. Firstly, we found VP51 and VP76 presence in viral nucleocapsids fraction by Western blotting. Secondly, after the high-salt treatment of nucleocapsids, VP51 and VP76 were still exclusively present in viral capsids by Western blotting and immunoelectron microscopy, suggesting two proteins are structural components of the viral capsid. To gather more evidence, we developed a method based on immunofluorescence flow cytometry. The results revealed that the mean fluorescence intensity of the viral capsids group was significantly higher than that of intact virions group after incubation with anti-VP51 or anti-VP76 serum and fluorescein isothiocyanate conjugated secondary antibody. All these results indicate that VP51 and VP76 are both capsid proteins of WSSV.

  2. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    Science.gov (United States)

    Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.

    2016-12-01

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  3. The local structure factor near an interface; beyond extended capillary-wave models

    Science.gov (United States)

    Parry, A. O.; Rascón, C.; Evans, R.

    2016-06-01

    We investigate the local structure factor S (zq) at a free liquid-gas interface in systems with short-ranged intermolecular forces and determine the corrections to the leading-order, capillary-wave-like, Goldstone mode divergence of S (zq) known to occur for parallel (i.e. measured along the interface) wavevectors q\\to 0 . We show from explicit solution of the inhomogeneous Ornstein-Zernike equation that for distances z far from the interface, where the profile decays exponentially, S (zq) splits unambiguously into bulk and interfacial contributions. On each side of the interface, the interfacial contributions can be characterised by distinct liquid and gas wavevector dependent surface tensions, {σ l}(q) and {σg}(q) , which are determined solely by the bulk two-body and three-body direct correlation functions. At high temperatures, the wavevector dependence simplifies and is determined almost entirely by the appropriate bulk structure factor, leading to positive rigidity coefficients. Our predictions are confirmed by explicit calculation of S (zq) within square-gradient theory and the Sullivan model. The results for the latter predict a striking temperature dependence for {σ l}(q) and {σg}(q) , and have implications for fluctuation effects. Our results account quantitatively for the findings of a recent very extensive simulation study by Höfling and Dietrich of the total structure factor in the interfacial region, in a system with a cut-off Lennard-Jones potential, in sharp contrast to extended capillary-wave models which failed completely to describe the simulation results.

  4. ASPECTS REGARDING IMPLICATIONS OF ASSOCIATIVE STRUCTURES FOR LOCAL DEVELOPMENT IN PROMOTING AND STRENGTHENING OF MULTILEVEL GOVERNANCE

    Directory of Open Access Journals (Sweden)

    Mihai Cristian APOSTOLACHE

    2014-12-01

    Full Text Available The need for the development of local communities in terms of economic and social policy-making requires finding answers institutional and public policy context in which the company is located. More and more the focus is on partnership and cooperation between the various actors of public life, on the involvement of private capital in local investment, on the establishment of companies to boost the joint venture or the establishment of local action groups to train both local public administration, the local economic environment, local non -governmental entities and other persons concerned in the design, implementation and completion of local development projects financed from European funds. The projects for local communities will receive support from the increasingly pronounced from the European Union, having regard to the fact that through the development of local communities will strengthen the European project.

  5. Structure and Local Seismicity From the Incoming Nazca Plate in the Southern Chile Subduction Zone

    Science.gov (United States)

    Scherwath, M.; Grevemeyer, I.; Flueh, E.; Contreras-Reyes, E.; Tilmann, F.; Kaul, N.; Weinrebe, W.

    2005-12-01

    Lithospheric deformation near the Chile Triple Junction is under investigation in the TIPTEQ (from The Incoming Plate to mega-Thrust EarthQuake processes) project. During R/V Sonne cruise SO181 (December 2004 to February 2005) various geophysical and geological data sets along several large transects across differently aged subducting oceanic lithosphere were acquired. TIPTEQ aims at studying the influence of the incoming plate on the seismogenic zone in the area of the 1960 great Chile earthquake (Mw=9.5), in particular the effects of the thermal regime (i.e., age).We compare structure and local seismicity on two of these transects, one where the incoming oceanic Nazca Plate was formed 6.5 Ma ago, the other 14.5 Ma in age at the trench, thus both of different thermal states. New magnetic data show that the older lithosphere was generated at a spreading rate of 40 mm/a compared to 25 mm/a for the younger one, yet the current convergence of both sections with the South American Plate is about the same (~80 mm/a). Bathymetric and vertical incidence seismic data show smooth and thicker sediments at the older transect whereas the rugged basement of the younger line is less covered, though the sedimentary thickness at the trench is ~2 km in both locations. The crust of the older transect is slightly thicker, shows a clear outer rise, and subducts at a slightly steeper angle than the younger line. On the latter, where the outer rise bulge has not yet been developed, the outer rise seismicity rate is higher and more concentrated in the crust. The local seismicity in the older region is less frequent and occurs predominantly in the upper mantle (see also Tilmann et al., this conference).

  6. Structural evolution of the Rieserferner Pluton: insight into the localization of deformation and regional tectonics implications

    Science.gov (United States)

    Ceccato, Alberto; Pennacchioni, Giorgio

    2016-04-01

    The Rieserferner pluton (RFP, Eastern Alps, 32.2±0.4 Ma, Romer et al. 2003) represents a relatively deep intrusion (12-15 km; Cesare, 1994) among Periadriatic plutons. The central portion of the RFP consists of dominant tonalites and granodiorites that show a sequence of solid-state deformation structures developed during pluton cooling and exhumation. This sequence includes: (1) quartz veins, filling two set of steeply-dipping joints trending respectively E-W and NW-SE, commonly showing a millimetric grain size and associated with strike-slip displacement. (2) Quartz- and locally epidote-filled shallowly E-dipping joint set, commonly exploited as discrete derived from both the quartz veins and the host tonalite. These mylonites show a composite sense of shear with a first stage of left-lateral strike-slip followed by a top-to-E dip-slip (normal) movement. The synmylonitic assemblage includes biotite + plagioclase + white mica + epidote ± sphene ± garnet. (3) Set of N-S-trending steeply-dipping joints. These joints are concentrated in zones 1-2 m wide, separated by otherwise un-jointed domains a few tens to hundred meters wide, and are commonly exploited as brittle-ductile faults with dominant dip-slip (normal) kinematics. The mineral assemblage of fault rocks includes white mica + calcite ± chlorite ± quartz. The joints/faults are locally involved in folding. (4) Mafic dikes, dated at 26.3±3 Ma (Steenken et al., 2000), locally injecting the N-S trending set of joints. (5) Cataclasite- and pseudotachylyte-bearing faults also forming a set of steeply-dipping N-S-trending structures. These faults are commonly associated with epidote veins surrounded by bleaching haloes. (6) Zeolite-bearing faults marked by whitish cataclasites, fault gouges and mirror-like surfaces. These faults have a complex oblique- to strike-slip kinematics with an overall N-S trending lineation. As observed in other plutons (e.g. Adamello; Pennacchioni et al., 2006), the network of

  7. Local architecture

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Local architecture refers to structures built in the countryside,such as temples,memorial halls,residences, stores,pavilions, bridges,decorated archways, and wells. Because these structures were all built by focal craftsmen and villagers in the traditional local style, they are generally called local architecture.

  8. Modeling of Local BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    Science.gov (United States)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.

  9. Oxygen-storage behavior and local structure in Ti-substituted YMnO3

    Science.gov (United States)

    Levin, I.; Krayzman, V.; Vanderah, T. A.; Tomczyk, M.; Wu, H.; Tucker, M. G.; Playford, H. Y.; Woicik, J. C.; Dennis, C. L.; Vilarinho, P. M.

    2017-02-01

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with

  10. Ab initio study of the effects of dilute defects on the local structure of unalloyed δ-plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Sarah Christine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kisiel, Elliot Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freibert, Franz Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-22

    We used density functional theory to examine the effects impurities and vacancies in the dilute limit in order to explore the effects on the local structure of the unalloyed face centered cubic δ-Pu lattice. The impurities considered are the radioactive daughter U or stabilizers in δ-phase stabilizer Ga. These impurities were placed at various interstitial sites, including octahedral, tetrahedral, and split interstitial along the (100) direction, as well as substitutional lattice sites. Self-interstitials, mono and di-vacancies were also considered. In addition we examined impurity-vacancy complexes at first and second nearest neighboring distances from each other. Radial distribution functions were plotted to gauge the local structural variations around the defect within the lattice and volume change with structural variation quantifies influence on thermodynamics. These local distortions will be discussed in this report.

  11. A new method for improving functional-to-structural MRI alignment using local Pearson correlation.

    Science.gov (United States)

    Saad, Ziad S; Glen, Daniel R; Chen, Gang; Beauchamp, Michael S; Desai, Rutvik; Cox, Robert W

    2009-02-01

    Accurate registration of Functional Magnetic Resonance Imaging (FMRI) T2-weighted volumes to same-subject high-resolution T1-weighted structural volumes is important for Blood Oxygenation Level Dependent (BOLD) FMRI and crucial for applications such as cortical surface-based analyses and pre-surgical planning. Such registration is generally implemented by minimizing a cost functional, which measures the mismatch between two image volumes over the group of proper affine transformations. Widely used cost functionals, such as mutual information (MI) and correlation ratio (CR), appear to yield decent alignments when visually judged by matching outer brain contours. However, close inspection reveals that internal brain structures are often significantly misaligned. Poor registration is most evident in the ventricles and sulcal folds, where CSF is concentrated. This observation motivated our development of an improved modality-specific cost functional which uses a weighted local Pearson coefficient (LPC) to align T2- and T1-weighted images. In the absence of an alignment gold standard, we used three human observers blinded to registration method to provide an independent assessment of the quality of the registration for each cost functional. We found that LPC performed significantly better (p<0.001) than generic cost functionals including MI and CR. Generic cost functionals were very often not minimal near the best alignment, thereby suggesting that optimization is not the cause of their failure. Lastly, we emphasize the importance of precise visual inspection of alignment quality and present an automated method for generating composite images that help capture errors of misalignment.

  12. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Directory of Open Access Journals (Sweden)

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  13. Surface and interfacial interactions of multilayer graphitic structures with local environment

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, R. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Robinson, B.J., E-mail: b.j.robinson@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Rabot, C. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Delamoreanu, A. [Microelectronics Technology Laboratory (LTM), Joseph Fourier University, French National Research Center (CNRS), 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Zenasni, A. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Dickinson, J.W.; Boxall, C. [Department of Engineering, Lancaster University, Lancaster LA1 4YR (United Kingdom); Kolosov, O.V. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2015-06-30

    In order to exploit the potential of graphene in next-generation devices, such as supercapacitors, rechargeable batteries, displays and ultrathin sensors, it is crucial to understand the solvent interactions with the graphene surface and interlayers, especially where the latter may be in competition with the former, in the medium of application deployment. In this report, we combine quartz crystal microbalance (QCM) and ultrasonic force microscopy methods to investigate the changes in the film–substrate and film–environment interfaces of graphene and graphene oxide films, produced by diverse scalable routes, in both polar (deionised water) and non-polar (dodecane) liquid and vapour environments. In polar liquid environments, we observe nanobubble adsorption/desorption on the graphene film corresponding to a surface coverage of up to 20%. As no comparable behaviour is observed for non-polar environment, we conclude that nanobubble formation is directly due to the hydrophobic nature of graphene with direct consequences for electrode structures immersed in electrolyte solutions. The amount of water adsorbed by the graphene films was found to vary considerably from 0.012 monolayers of water per monolayer of reduced graphene oxide to 0.231 monolayers of water per monolayer of carbon diffusion growth graphene. This is supported by direct nanomechanical mapping of the films immersed in water where an increased variation of local stiffness suggests water propagation within the film and/or between the film and substrate. Transferred film thickness calculations performed for QCM, atomic force microscopy topography and optical transmission measurements, returns results an order of magnitude larger (46 ± 1 layers) than Raman spectroscopy (1 - 2 graphene layers) on pristine pre-transferred films due to contamination during transfer and possible turbostratic structures of large areas. - Highlights: • Exploring interaction of graphene films with polar and nonpolar liquids

  14. Weak links between fast mobility and local structure in molecular and atomic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, S. [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Puosi, F. [Laboratoire de Physique de l’École Normale Supérieure de Lyon, UMR CNRS 5672, 46 allée d’Italie, 69007 Lyon (France); Leporini, D., E-mail: dino.leporini@df.unipi.it [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); IPCF-CNR, UOS Pisa, Pisa (Italy)

    2015-03-28

    We investigate by molecular-dynamics simulations, the fast mobility—the rattling amplitude of the particles temporarily trapped by the cage of the neighbors—in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes.

  15. Local structure, paramagnetic properties, and porosity of natural coals: Spectroscopic studies

    Science.gov (United States)

    Konchits, A. A.; Shanina, B. D.; Valakh, M. Ya.; Yanchuk, I. B.; Yukhymchuk, V. O.; Alexeev, A. D.; Vasilenko, T. A.; Molchanov, A. N.; Kirillov, A. K.

    2012-08-01

    Using methods of the scanning electron microscopy, Raman scattering of light(RS), and electron paramagnetic resonance (EPR), consistent research of the local structure and magnetic features of different types of raw coal samples from Donetsk basin is carried out. It is established that the ratio of the main peak intensities of RS spectrum D and G is inversely related to the volatile substance amount Vdaf in the coal samples. The study of the kinetic behavior of the EPR line width in hydrogen, oxygen, and methane sorption-desorption processes in each coal sample helped determine that the diffusion coefficient value for hydrogen in coal at room temperature is equal to DН = (2 ÷ 7) × 10-5 cm2/s. It is demonstrated that the oxygen diffusion occurs with time according to two different exponential laws with diffusion coefficients DO,1 = 5 × 10-6 cm2/s and DO,2 = 5.5 × 10-7 cm2/s, respectively. The smaller coefficient corresponds to the diffusion caused by the hopping process. Finally, it is established that the anthracite is a unique type of coal which does not possess the ability "to conserve" the significant EPR line width after oxygen pumping out from the samples.

  16. Constraints on local primordial non-Gaussianity from large scale structure

    CERN Document Server

    Slosar, Anze; Seljak, Uros; Ho, Shirley; Padmanabhan, Nikhil

    2008-01-01

    Recent work has shown that the local non-Gaussianity parameter f_nl induces a scale-dependent large scale structure bias, whose amplitude is growing with scale. Here we first rederive this result within the context of peak-background split formalism and show that it only depends on the assumption of universality of mass function, assuming halo bias only depends on mass. We then use extended Press-Schechter formalism to argue that this assumption may be violated and the scale dependent bias will depend on other properties, such as merging history of halos. In particular, in the limit of recent mergers we find the effect is suppressed. Next we use these predictions in conjunction with a compendium of large scale data to put a limit on the value of $\\fnl$. When combining all data assuming that halo occupation depends only on halo mass, we get a limit of -29(-57)

  17. The Magellanic Satellites Survey: Searching for Hierarchical Structure Formation within the Local Group

    Science.gov (United States)

    Bechtol, Keith; Magellanic Satellites Survey (MagLiteS)

    2017-01-01

    A generic prediction of galaxy formation in the standard cosmological model with cold dark matter is the hierarchical assembly of structure on mass scales ranging from ultra-faint galaxies to galaxy clusters. In the Local Group, dozens of galaxies have been found orbiting the Milky Way and Andromeda. The question of whether the largest Milky Way satellites, the Large and Small Magellanic Clouds, brought in their own entourage of satellites has been a long standing puzzle, and has garnered renewed interest following the recent discovery of more than a dozen ultra-faint galaxy candidates in the southern hemisphere. The on-going Magellanic Satellites Survey (MagLiteS) aims to complete an annulus of contiguous deep optical imaging with Blanco/DECam around the periphery of the Magellanic Clouds, enabling a systematic search for ultra-faint galaxies and other low-surface-brightness stellar substructures associated with the Magellanic system. I will report on the progress of MagLiteS and discuss science highlights from the first observing season, including a new ultra-faint galaxy candidate located ~11 kpc from the Large Magellanic Cloud.

  18. Local electronic structure and ferromagnetic interaction in La(Co,Ni)O3

    Science.gov (United States)

    Huang, Meng-Jie; Nagel, Peter; Fuchs, Dirk; von Loehneysen, Hilbert; Merz, Michael; Schuppler, Stefan

    Perovskite-related transition-metal oxides exhibit a wide range of properties from insulating to superconducting as well as many peculiar magnetic phases, and cobaltites, in particular, have been known for their proximity to spin-state transitions. How this changes with partial substitution by Ni is the topic of the present study. The local electronic structure and the ferromagnetic interaction in La(Co1-xNix) O3 has been studied by x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD). XAS clearly indicates a mixed-valence state for both Co and Ni, with both valences changing systematically with Ni content, x. While the gradual spin-state transition of Co3+ from low-spin (LS) to high-spin (HS) is preserved for low x it is suppressed in the high Ni-content samples. Regarding the spin configuration of Ni we find it stabilized in a ``mixed'' spin state, unlike the purely LS state of Ni in LaNiO3. XMCD identifies the element-specific contributions to the magnetic moment and interactions. In particular, we find that it must be the coexistence of the HS state in both Co3+ and Ni3 + that induces t2 g-based ferromagnetic interaction via the double-exchange mechanism.

  19. Unravelling the local structure of topological crystalline insulators using hyperfine interactions

    CERN Multimedia

    Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semi-metals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperfine interactions: emission Mössbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on: \\\\ \\\\(1) the mag...

  20. Local structure and magneto-transport in Sr 2FeMoO 6 oxides

    Science.gov (United States)

    Liscio, F.; Bardelli, F.; Meneghini, C.; Mobilio, S.; Ray, Sugata; Sarma, D. D.

    2006-05-01

    Double perovskite oxides Sr 2FeMoO 6 have attracted a great interest for their peculiar magneto-transport properties, and, in particular, for the large values of low-field magneto-resistance (MR) which remains elevated even at room temperature, thanks to their high Curie temperature ( Tc > 400 K). These properties are strongly influenced by chemical cation disorder, that is by the relative arrangement of Fe and Mo on their sublattices: the regular alternation of Fe and Mo enhances the MR and saturation magnetization. On the contrary the disorder generally depresses the magnetization and worsen the MR response. In this work the X-ray absorption fine structure (XAFS) technique has been employed in order to probe the cation order from a local point of view. XAFS spectra were collected at the Fe and Mo K edges on Sr 2FeMoO 6 samples with different degree of long-range chemical order. The XAFS results prove that a high degree of short-range cation order is preserved, despite the different long-range order: the Fe-Mo correlations are always preferred over the Fe-Fe and Mo-Mo ones in the perfectly ordered as well as in highly disordered samples.

  1. Localization model description of diffusion and structural relaxation in glass-forming Cu-Zr alloys

    Science.gov (United States)

    Douglas, Jack F.; Pazmino Betancourt, Beatriz A.; Tong, Xuhang; Zhang, Hao

    2016-05-01

    We test the localization model (LM) prediction of a parameter-free relationship between the α-structural relaxation time τ α and the Debye-Waller factor    for a series of simulated glass-forming Cu-Zr metallic liquids having a range of alloy compositions. After validating this relationship between the picosecond (‘fast’) and long-time relaxation dynamics over the full range of temperatures and alloy compositions investigated in our simulations, we show that it is also possible to estimate the self-diffusion coefficients of the individual atomic species (D Cu, D Zr) and the average diffusion coefficient D using the LM, in conjunction with the empirical fractional Stokes-Einstein (FSE) relation linking these diffusion coefficients to τ α . We further observe that the fragility and extent of decoupling between D and τ α strongly correlate with    at the onset temperature of glass-formation T A where particle caging and the breakdown of Arrhenius relaxation first emerge.

  2. The mouse Fau gene: genomic structure, chromosomal localization, and characterization of two retropseudogenes.

    Science.gov (United States)

    Casteels, D; Poirier, C; Guénet, J L; Merregaert, J

    1995-01-01

    The Fau gene is the cellular homolog of the fox sequence of the Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV). FBR-MuSV acquired the Fau gene by transduction in a transcriptional orientation opposite to that of the genomic Fau gene. The genomic structure of the mouse Fau gene (MMFAU) and its upstream elements have been determined and are similar to those of the human FAU gene. The gene consists of five exons and is located on chromosome 19. The first exon is not translated. The promoter region has no well-defined TATA box but contains the polypyrimidine initiator flanked by regions of high GC content (65%) and shows all of the characteristics of a housekeeping gene. The 5' end of the mRNA transcript was determined by 5' RACE analysis and is located, as expected, in the polypyrimidine initiator site. Furthermore, the sequences of two retropseudogenes (Fau-ps1 and Fau-ps2) are reported. Both pseudogenes are approximately 75% identical to the Fau cDNA, but both are shorter due to a deletion at the 5' end and do not encode a functional protein. Fau-prs is interrupted by an AG-rich region of about 350 bp within the S30 region of the Fau cDNA. Fau-ps1 was localized on chromosome 1 and Fau-ps2 on chromosome 7.

  3. Fluid-structure interaction of complex bodies in two-phase flows on locally refined grids

    Science.gov (United States)

    Angelidis, Dionysios; Shen, Lian; Sotiropoulos, Fotis

    2016-11-01

    Many real-life flow problems in engineering applications involve fluid-structure interaction (FSI) of arbitrarily complex geometries interacting with free surface flows. Despite the recent significant computational advances, conventional numerical methods are inefficient to resolve the prevailing complex dynamics due to the inherent large disparity of spatial and temporal scales that emerge in the air/water phases of the flow and around rigid bodies. To this end, the new generation 3D, unsteady, unstructured Cartesian incompressible flow solver, developed at the Saint Anthony Falls Laboratory (SAFL), is integrated with a FSI immersed boundary method and is coupled with the level-set formulation. The predictive capabilities of our method to simulate non-linear free surface phenomena, with low computational cost, are significantly improved by locally refining the computational grid in the vicinity of solid boundaries and around the free surface interface. We simulate three-dimensional complex flows involving complex rigid bodies interacting with a free surface both with prescribed body motion and coupled FSI and we investigate breaking wave events. In all the cases, very good agreement with benchmark data is found. This material is based upon work supported by the National Science Foundation (CBET-1509071).

  4. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  5. Local structure and defect chemistry of substituted lithium manganate spinels: X-ray absorption and computer simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Ammundsen, B. [Centre National de la Recherche Scientifique, 34 - Montpellier (France). Lab. des Agregats Moleculaires et Materiaux Inorganique; Victoria Univ., Wellington (New Zealand). School of Chemical and Physical Sciences; Saiful Islam, M. [Surrey Univ., Guildford (United Kingdom). Dept. of Chemistry; Jones, D.J.; Roziere, J. [Centre National de la Recherche Scientifique, 34 - Montpellier (France). Lab. des Agregats Moleculaires et Materiaux Inorganique

    1999-09-01

    The charge distributions and effects on local structure resulting from substitution of Mn by Ti, Cr, Co and Ga in LiMn{sub 2}O{sub 4} are determined by X-ray absorption spectroscopy. Atomistic simulation methods are used to obtain additional insights into local structure and to calcualte the energetics of lithium disorder and migration in lattices containing these substitutional ions or Li on octahedral Mn sites. The formation of protonic species in spinel lithium manganates is discussed in relation to a tetrahedral-octahedral vacancy pair model. (orig.)

  6. Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range

    Science.gov (United States)

    Miraftabi, Arezoo; Amini, Navid; Morales, Esteban; Henry, Sharon; Yu, Fei; Afifi, Abdolmonem; Coleman, Anne L.; Caprioli, Joseph; Nouri-Mahdavi, Kouros

    2016-01-01

    Purpose We tested the hypothesis that the macular ganglion cell layer (GCL) thickness demonstrates a stronger structure-function (SF) relationship and extends the useful range of macular measurements compared with combined macular inner layer or full thickness. Methods Ninety-eight glaucomatous eyes and eight normal eyes with macular spectral domain optical coherence tomography (SD-OCT) volume scans and 10-2 visual fields were enrolled. Inner plexiform layer (IPL), GCL, macular retinal nerve fiber layer (mRNFL), ganglion cell-inner plexiform layer (GCIPL), ganglion cell complex (GCC), and full thickness (FT) measurements were calculated for 8 × 8 arrays of 3° superpixels. Main outcome measures were local structure-function relationships between macular superpixels and corresponding sensitivities on 10-2 fields after adjusting for ganglion cell displacement, dynamic range of measurements, and the change point (total deviation value where macular parameters reached measurement floor). Results Median (interquartile range [IQR]) mean deviation was −7.2 (−11.6 to −3.2) dB in glaucoma eyes. Strength of SF relationships was highest for GCIPL, GCL, GCC, and IPL (ρ = 0.635, 0.627, 0.621, and 0.577, respectively; P ≤ 0.046 for comparisons against GCIPL). Highest SF correlations coincided with the peak of GCL thickness, where the dynamic range was widest for FT (81.1 μm), followed by GCC (65.7 μm), GCIPL (54.9 μm), GCL (35.2 μm), mRNFL (27.5 μm), and IPL (20.9 μm). Change points were similar for all macular parameters (−7.8 to −8.9 dB). Conclusions GCIPL, GCL, and GCC demonstrated comparable SF relationships while FT, GCC, and GCIPL had the widest dynamic range. Measurement of GCL did not extend the range of useful structural measurements. Measuring GCL does not provide any advantage for detection of progression with current SD-OCT technology. PMID:27623336

  7. Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Colin; Laurencin, Danielle; Burnell, Victoria; Smith, Mark E.; Grover, Liam M.; Hriljac, Joseph A.; Wright, Adrian J. (CNRS-UMR); (Birmingham UK)

    2012-10-25

    There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilizers, by utilizing pyrophosphates (P{sub 2}O{sub 7}{sup 4-}); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O and Sr{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O (3.8 < n < 4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond 8 {angstrom} in both phases, with this local order found to resemble crystalline analogues. Further studies, including {sup 1}H and {sup 31}P solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P-O-P bond angles within the P{sub 2}O{sub 7} units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to 450 C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P{sub 2}O{sub 7} anions, leading to the hydrolysis of some P-O-P linkages and the formation of HPO{sub 4}{sup 2-} anions within the amorphous matrix. The latter anions then recombined into P{sub 2}O{sub 7} ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme

  8. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  9. Local interactions influence the fibrillation kinetics, structure and dynamics of Aβ(1-40) but leave the general fibril structure unchanged.

    Science.gov (United States)

    Adler, Juliane; Scheidt, Holger A; Krüger, Martin; Thomas, Lars; Huster, Daniel

    2014-04-28

    A series of peptide mutants was studied to understand the influence of local physical interactions on the fibril formation mechanism of amyloid β (Aβ)(1-40). In the peptide variants, the well-known hydrophobic contact between residues phenylalanine 19 and leucine 34 was rationally modified. In single site mutations, residue phenylalanine 19 was replaced by amino acids that introduce higher structural flexibility by a glycine mutation or restrict the backbone flexibility by introduction of proline. Next, the aromatic phenylalanine was replaced by tyrosine or tryptophan, respectively, to probe the influence of additional hydrogen bond forming capacity in the fibril interior. Furthermore, negatively charged glutamate or positively charged lysine was introduced to probe the influence of electrostatics. In double mutants, the hydrophobic contact was replaced by a putative salt bridge (glutamate and lysine) or two electrostatically repelling lysine residues. The influence of these mutations on the fibrillation kinetics and morphology, cross-β structure as well as the local structure and dynamics was probed using fluorescence, transmission electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. While the fibrillation kinetics and the local structure and dynamics of the peptide variants were influenced by the introduction of these local fields, the overall morphology and cross-β structure of the fibrils remained very robust against all the probed interactions. Overall, 7 out of the 8 mutated peptides formed fibrils of very similar morphology compared to the wildtype. However, characteristic local structural and dynamical changes indicate that amyloid fibrils show an astonishing ability to respond to local perturbations but overall show a very homogenous mesoscopic organization.

  10. Electronic structure of {alpha}-Al{sub 2}O{sub 3} slabs: A local environment study

    Energy Technology Data Exchange (ETDEWEB)

    Darriba, German N., E-mail: darriba@fisica.unlp.edu.ar [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Faccio, Ricardo [Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Renteria, Mario [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)

    2012-08-15

    In this work we performed an ab initio/Density Functional Theory (DFT) study of structural and electronic properties of the (0 0 1) {alpha}-Al{sub 2}O{sub 3} surface. For this study we used two methods with different basis set: the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) and a linear combination of numerical localized atomic orbital basis sets, employing the WIEN2k code and the SIESTA code, respectively. In order to calculate the structural and electronic properties of the reconstructed surface, we calculated the final equilibrium atomic position with the SIESTA code and then the electric-field gradient (EFG) at Al sites was calculated with the FP-APW+lo code using the optimized positions. Using this procedure we found equilibrium structures with comparative lower energy than those obtained using only the FP-APW+lo method. The EFG tensor and the local structure for Al were studied as a function of the depth from the surface for the relaxed structures. We found that distances down to 6 A from the surface are sufficient to converge the EFG and the Al-O distances to bulk values. The predicted bulk EFG at the Al site is in good agreement with available experimental values. These results can be used for local probes purposes, e.g., in the case of doping, with important sensitivity for probes located close to the top of the surface, in particular for distances smaller than 6 A.

  11. The Analysis of Space-Time Structure in QCD Vacuum I: Localization vs Global Behavior in Local Observables and Dirac Eigenmodes

    CERN Document Server

    Horváth, I

    2004-01-01

    The structure of QCD vacuum can be studied from first principles using lattice-regularized theory. This line of research entered a qualitatively new phase recently, wherein the space-time structure (at least for some quantities) can be directly observed in configurations dominating the QCD path integral, i.e. without any subjective processing of typical configurations. This approach to QCD vacuum structure does not rely on any proposed picture of QCD vacuum but rather attempts to characterize this structure in a model-independent manner, so that a coherent physical picture of the vacuum can emerge when such unbiased numerical information accumulates to a sufficient degree. An important part of this program is to develop a set of suitable quantitative characteristics describing the space-time structure in a meaningful and physically relevant manner. One of the basic pertinent issues here is whether QCD vacuum dynamics can be understood in terms of localized vacuum objects, or whether such objects behave as inh...

  12. Hydrograph structure informed calibration in the frequency domain with time localization

    Science.gov (United States)

    Kumarasamy, K.; Belmont, P.

    2015-12-01

    Complex models with large number of parameters are commonly used to estimate sediment yields and predict changes in sediment loads as a result of changes in management or conservation practice at large watershed (>2000 km2) scales. As sediment yield is a strongly non-linear function that responds to channel (peak or mean) velocity or flow depth, it is critical to accurately represent flows. The process of calibration in such models (e.g., SWAT) generally involves the adjustment of several parameters to obtain better estimates of goodness of fit metrics such as Nash Sutcliff Efficiency (NSE). However, such indicators only provide a global view of model performance, potentially obscuring accuracy of the timing or magnitude of specific flows of interest. We describe an approach for streamflow calibration that will greatly reduce the black-box nature of calibration, when response from a parameter adjustment is not clearly known. Fourier Transform or the Short Term Fourier Transform could be used to characterize model performance in the frequency domain as well, however, the ambiguity of a Fourier transform with regards to time localization renders its implementation in a model calibration setting rather useless. Brief and sudden changes (e.g. stream flow peaks) in signals carry the most interesting information from parameter adjustments, which are completely lost in the transform without time localization. Wavelet transform captures the frequency component in the signal without compromising time and is applied to contrast changes in signal response to parameter adjustments. Here we employ the mother wavelet called the Mexican hat wavelet and apply a Continuous Wavelet Transform to understand the signal in the frequency domain. Further, with the use of the cross-wavelet spectrum we examine the relationship between the two signals (prior or post parameter adjustment) in the time-scale plane (e.g., lower scales correspond to higher frequencies). The non-stationarity of

  13. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank, E-mail: fkempken@bot.uni-kiel.de

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  14. Local structures in ionic liquids probed and characterized by microscopic thermal diffusion monitored with picosecond time-resolved Raman spectroscopy.

    Science.gov (United States)

    Yoshida, Kyousuke; Iwata, Koichi; Nishiyama, Yoshio; Kimura, Yoshifumi; Hamaguchi, Hiro-o

    2012-03-14

    Vibrational cooling rate of the first excited singlet (S(1)) state of trans-stilbene and bulk thermal diffusivity are measured for seven room temperature ionic liquids, C(2)mimTf(2)N, C(4)mimTf(2)N, C(4)mimPF(6), C(5)mimTf(2)N, C(6)mimTf(2)N, C(8)mimTf(2)N, and bmpyTf(2)N. Vibrational cooling rate measured with picosecond time-resolved Raman spectroscopy reflects solute-solvent and solvent-solvent energy transfer in a microscopic solvent environment. Thermal diffusivity measured with the transient grating method indicates macroscopic heat conduction capability. Vibrational cooling rate of S(1) trans-stilbene is known to have a good correlation with bulk thermal diffusivity in ordinary molecular liquids. In the seven ionic liquids studied, however, vibrational cooling rate shows no correlation with thermal diffusivity; the observed rates are similar (0.082 to 0.12 ps(-1) in the seven ionic liquids and 0.08 to 0.14 ps(-1) in molecular liquids) despite large differences in thermal diffusivity (5.4-7.5 × 10(-8) m(2) s(-1) in ionic liquids and 8.0-10 × 10(-8) m(2) s(-1) in molecular liquids). This finding is consistent with our working hypothesis that there are local structures characteristically formed in ionic liquids. Vibrational cooling rate is determined by energy transfer among solvent ions in a local structure, while macroscopic thermal diffusion is controlled by heat transfer over boundaries of local structures. By using "local" thermal diffusivity, we are able to simulate the vibrational cooling kinetics observed in ionic liquids with a model assuming thermal diffusion in continuous media. The lower limit of the size of local structure is estimated with vibrational cooling process observed with and without the excess energy. A quantitative discussion with a numerical simulation shows that the diameter of local structure is larger than 10 nm. If we combine this lower limit, 10 nm, with the upper limit, 100 nm, which is estimated from the transparency (no light

  15. THE STRUCTURAL CHARACTERIZATION AND LOCALLY SUPPORTED BASES FOR BIVARIATE SUPER SPLINES

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang Xu; Ren-hong Wang

    2004-01-01

    Super splines are bivariate splines defined on triangulations, where the smoothness enforced at the vertices is larger than the smoothness enforced across the edges. In this paper, the smoothness conditions and conformality conditions for super splines are presented.Three locally supported super splines on type-1 triangulation are presented. Moreover, the criteria to select local bases is also given. By using local supported super spline function, avariation-diminishing operator is built. The approximation properties of the operator are also presented.

  16. Local Structure of La1-xSrxCoO3 determined from EXAFS and neutron PDF studies

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, N.; Jiang, Y.; Anderson, I. E.; Belanger, D. P.; Booth, C. H.; Bridges, F.; Mitchell, J. F.; Proffen, Th.; Zheng, H.

    2009-01-26

    The combined local structure techniques, extended x-ray absorption fine structure (EXAFS) and neutron pair distribution function analysis, have been used for temperatures 4<= T<= 330 K to rule out a large Jahn-Teller (JT) distortion of the Co-O bond in La1?xSrxCoO3 for a significant fraction of Co sites (x<= 0.35), indicating few, if any, JT-active, singly occupied eg Co sites exist.

  17. A study on building an experimental system of PVDF sensor for structural local monitoring on a bridge model

    Science.gov (United States)

    Yu, Yan; Wang, Yang; An, Yonghui; Ou, Jinping

    2010-04-01

    Smart material structure originated from aerospace area has been a research hotspot in the application of civil engineering, shipping, and so on. For structural health monitoring of civil engineering, the research about highperformance sensing unit of smart material structure is very important, and this will possibly push further the development of health monitoring and diagnosis technique. As one of the piezoelectric materials belonging to smart materials, PVDF (Polyvinylidene Fluoride) film is widely concerned for its property advantages of low cost, good mechanical ability, high sensibility, resistance of corrosion. In this paper, for the validation of using PVDF for sensing unit for structural local monitoring of civil engineering, an experimental system of PVDF sensor for structural local monitoring on a bridge model is built. Based on the operating mechanism of PVDF, its measure circuit and characteristics(quasi-static and dynamic strain responding) are introduced. A bridge model is designed, and experiments have also been done for structural local health monitoring using PVDF. The experimental results show that, PVDF can finish impact response monitoring and damage detection of a bridge model, and the developed experimental system with simple and easy implement can be used for practical monitoring engineering.

  18. Constraints on local primordial non-Gaussianity from large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Slosar, Anze [Berkeley Center for Cosmological Physics, Physics Department, University of California, Berkeley, CA 94720 (United States); Hirata, Christopher [Caltech M/C 130-33, Pasadena, CA 91125 (United States); Seljak, Uros [Institute for Theoretical Physics, University of Zurich, Zurich (Switzerland); Ho, Shirley [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Padmanabhan, Nikhil, E-mail: anze@berkeley.edu, E-mail: chirata@tapir.caltech.edu, E-mail: seljak@physik.unizh.ch, E-mail: shirley@astro.princeton.edu, E-mail: npadmanabhan@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2008-08-15

    Recent work has shown that the local non-Gaussianity parameter f{sub NL} induces a scale dependent bias, whose amplitude is growing with scale. Here we first rederive this result within the context of the peak-background split formalism and show that it only depends on the assumption of universality of the mass function, assuming that the halo bias only depends on the mass. We then use the extended Press-Schechter formalism to argue that this assumption may be violated and that the scale dependent bias will depend on other properties, such as the merging history of halos. In particular, in the limit of recent mergers we find that the effect is suppressed. Next we use these predictions in conjunction with a compendium of large scale data to put a limit on the value of f{sub NL}. When combining all data assuming that the halo occupation depends only on the halo mass, we get a limit of -29 (-65)structure simulations with realistic quasar and galaxy formation models, our results indicate that this is a competitive method relative to the cosmic microwave background one and should be further pursued both observationally and theoretically.

  19. The Connection between Galaxies and Dark Matter Structures in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Tinker, Jeremy L.; Behroozi, Peter S.

    2012-07-11

    We provide new constraints on the connection between galaxies in the local Universe, identified by the Sloan Digital Sky Survey (SDSS), and dark matter halos and their constituent substructures in the {Lambda}CDM model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (a) which halo property is most closely associated with galaxy stellar masses and luminosities, (b) how much scatter is in this relationship, and (c) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 {+-} 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy - halo connection can be modeled with sufficient fidelity for future precision studies of the dark Universe.

  20. Necessary Conditions for Nonlinear Ultrasonic Modulation Generation Given a Localized Fatigue Crack in a Plate-Like Structure

    Directory of Open Access Journals (Sweden)

    Hyung Jin Lim

    2017-02-01

    Full Text Available It has been shown that nonlinear ultrasonics can be more sensitive to local incipient defects, such as a fatigue crack, than conventional linear ultrasonics. Therefore, there is an increasing interest in utilizing nonlinear ultrasonics for structural health monitoring and nondestructive testing applications. While the conditions, which are the necessary conditions that should be satisfied for the generation of nonlinear harmonic components, are extensively studied for distributed material nonlinearity, little work has been done to understand the necessary conditions at the presence of a localized nonlinear source such as a fatigue crack. In this paper, the necessary conditions of nonlinear ultrasonic modulation generation in a plate-like structure are formulated specifically for a localized nonlinear source. Then, the correctness of the formulated necessary conditions is experimentally verified using ultrasounds obtained from aluminum plates.

  1. Phase-space structure in the local dark matter distribution and its signature in direct detection experiments

    NARCIS (Netherlands)

    Vogelsberger, Mark; Helmi, Amina; Springel, Volker; White, Simon D. M.; Wang, Jie; Frenk, Carlos S.; Jenkins, Adrian; Ludlow, Aaron; Navarro, Julio F.

    2009-01-01

    We study predictions for dark matter (DM) phase-space structure near the Sun based on high-resolution simulations of six galaxy haloes taken from the Aquarius project. The local DM density distribution is predicted to be remarkably smooth; the density at the Sun differs from the mean over a best-fit

  2. Phase-space structure in the local dark matter distribution and its signature in direct detection experiments

    NARCIS (Netherlands)

    Vogelsberger, Mark; Helmi, Amina; Springel, Volker; White, Simon D. M.; Wang, Jie; Frenk, Carlos S.; Jenkins, Adrian; Ludlow, Aaron; Navarro, Julio F.

    2008-01-01

    We study predictions for dark matter phase-space structure near the Sun based on high-resolution simulations of six galaxy halos taken from the Aquarius Project. The local DM density distribution is predicted to be remarkably smooth; the density at the Sun differs from the mean over a best-fit ellip

  3. Recent trends in local-scale marine biodiversity reflect community structure and human impacts

    NARCIS (Netherlands)

    Elahi, Robin; O'Connor, Mary I; Byrnes, Jarrett E K; Dunic, Jillian; Eriksson, Britas Klemens; Hensel, Marc J S; Kearns, Patrick J

    2015-01-01

    The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales [1-7]. Reconciling the threat of global biodiversity loss [2, 4, 6-9] with recent evidence of stabil

  4. Local Structural Investigation of SmFeAsO1−xFx High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Billinge, S.J.; Malavasi, L.; Artioli, G.A.; Kim. H.; Maroni, B.; Joseph, B.; Ren, Y.; Proffen, T.

    2011-06-10

    A strong revitalization of the field of high temperature superconductivity (HTSC) has been induced recently by the discovery of T{sub C} around 26 K in F-doped LaFeAsO iron pnictides. Starting from this discovery, a huge amount of experimental data have been accumulated. This important corpus of results will allow the development of suitable theoretical models aimed at describing the basic electronic structure properties and nature of superconducting states in these fascinating new systems. A close correlation between structural features and physical properties of the normal and superconducting states has already been demonstrated in the current literature. Advanced theoretical models are also based on the close correlation with structural properties and in particular with the Fe-As tetrahedral array. As for other complex materials, a deeper understanding of their structure-properties correlation requires a full knowledge of the atomic arrangement within the structure. Here we report an investigation of the local structure in the SmFeAsO{sub 1-x}F{sub x} system carried out by means of x-ray total scattering measurements and pair distribution function analysis. The results presented indicate that the local structure of these HTSC significantly differs from the average structure determined by means of traditional diffraction techniques, in particular the distribution of Fe-As bond lengths. In addition, a model for describing the observed discrepancies is presented.

  5. Local structural investigation of SmFeAsO{sub 1-x}F{sub x} high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Malavasi, Lorenzo; Artioli, Gianluca A; Maroni, Beatrice; Joseph, Boby [Dipartimento di Chimica-Sezione di Chimica Fisica, INSTM (UdR Pavia), Universita di Pavia, Viale Taramelli 16, 27100 Pavia (Italy); Kim, Hyunjeong; Proffen, Thomas [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Ren, Yang [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Billinge, Simon J L [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States)

    2011-07-13

    A strong revitalization of the field of high temperature superconductivity (HTSC) has been induced recently by the discovery of T{sub C} around 26 K in F-doped LaFeAsO iron pnictides. Starting from this discovery, a huge amount of experimental data have been accumulated. This important corpus of results will allow the development of suitable theoretical models aimed at describing the basic electronic structure properties and nature of superconducting states in these fascinating new systems. A close correlation between structural features and physical properties of the normal and superconducting states has already been demonstrated in the current literature. Advanced theoretical models are also based on the close correlation with structural properties and in particular with the Fe-As tetrahedral array. As for other complex materials, a deeper understanding of their structure-properties correlation requires a full knowledge of the atomic arrangement within the structure. Here we report an investigation of the local structure in the SmFeAsO{sub 1-x}F{sub x} system carried out by means of x-ray total scattering measurements and pair distribution function analysis. The results presented indicate that the local structure of these HTSC significantly differs from the average structure determined by means of traditional diffraction techniques, in particular the distribution of Fe-As bond lengths. In addition, a model for describing the observed discrepancies is presented. (fast track communication)

  6. Nonlinear dynamic response analysis of localized damaged laminated composite structures in the context of component mode synthesis

    Science.gov (United States)

    Mahmoudi, S.; Trivaudey, F.; Bouhaddi, N.

    2015-07-01

    The aim of this study is the prediction of the dynamic response of damaged laminated composite structures in the context of component mode synthesis. Hence, a method of damage localization of complex structures is proposed. The dynamic behavior of transversely isotropic layers is expressed through elasticity coupled with damage based on an existing macro model for cracked structures. The damage is located only in some regions of the whole structure, which is decomposed on substructures. The incremental linear dynamic governing equations are obtained by using the classical linear Kirchhoff-Love theory of plates. Then, considering the damage-induced nonlinearity, the obtained nonlinear dynamic equations are solved in time domain. However, a detailed finite element modelling of such structure on the scale of localized damage would generate very high computational costs. To reduce this cost, Component Mode Synthesis method (CMS) is used for modelling a nonlinear fine-scale substructure damaged, connected to linear dynamic models of the remaining substructures, which can be condensed and not updated at each iteration. Numerical results show that the mechanical properties of the structure highly change when damage is taken into account. Under an impact load, damage increases and reaches its highest value with the maximum of the applied load and then remains unchanged. Besides, the eigenfrequencies of the damaged structure decrease comparing with those of an undamaged one. This methodology can be used for monitoring strategies and lifetime estimations of hybrid complex structures due to the damage state is known in space and time.

  7. Analyzing the effect of large rotations on the seismic response of structures subjected to foundation local uplift

    Directory of Open Access Journals (Sweden)

    El Abbas N.

    2016-01-01

    Full Text Available This work deals with seismic analysis of structures by taking into account soil-structure interaction where the structure is modeled by an equivalent flexible beam mounted on a rigid foundation that is supported by a Winkler like soil. The foundation is assumed to undergo local uplift and the rotations are considered to be large. The coupling of the system is represented by a series of springs and damping elements that are distributed over the entire width of the foundation. The non-linear equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-structure system where the structure was idealized as a single-degree-of-freedom. The seismic response of the structure was calculated under the occurrence of foundation uplift for both large and small rotations. The non-linear differential system of equations was integrated by using the Matlab command ode15s. The maximum response has been determined as function of the intensity of the earthquake, the slenderness of the structure and the damping ratio. It was found that considering local uplift with small rotations of foundation under seismic loading leads to unfavorable structural response in comparison with the case of large rotations.

  8. Localization of the places of stress-strain state changes of building structures based on the vibrodiagnostic measurement data

    Directory of Open Access Journals (Sweden)

    Shakhraman'yan Andrey Mikhaylovich

    Full Text Available The method of localization of changes in the deflected mode is based on the analysis of time series of oscillations (displacement, velocity, acceleration of building constructions and structures. The method is based on the hypothesis that any changes in the deflected mode of structures result in changes in the oscillation energy. In this case, once the information on the structure oscillation parameters in different points of the building is available, the changes in the oscillation energy will signify the changes in the deflected mode in the relevant points.

  9. Temperature-dependent EXAFS study of the local structure and lattice dynamics in cubic Y₂O₃.

    Science.gov (United States)

    Jonane, Inga; Lazdins, Karlis; Timoshenko, Janis; Kuzmin, Alexei; Purans, Juris; Vladimirov, Pavel; Gräning, Tim; Hoffmann, Jan

    2016-03-01

    The local structure and lattice dynamics in cubic Y2O3 were studied at the Y K-edge by X-ray absorption spectroscopy in the temperature range from 300 to 1273 K. The temperature dependence of the extended X-ray absorption fine structure was successfully interpreted using classical molecular dynamics and a novel reverse Monte Carlo method, coupled with the evolutionary algorithm. The obtained results allowed the temperature dependence of the yttria atomic structure to be followed up to ∼6 Å and to validate two force-field models.

  10. Effects of self-irradiation on local crystal structure and 5flocalization in PuCoGa5

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C.H.; Daniel, M.; Wilson, R.E.; Bauer, E.D.; Mitchell,J.N.; Moreno, N.O.; Morales, L.A.; Sarrao, J.L.; Allen, P.G.

    2006-10-20

    The 18.5 K superconductor PuCoGa{sub 5} has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.

  11. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba ,K ) (Zn,Mn ) 2As2

    Science.gov (United States)

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; Banerjee, Soham; Chen, Bijuan; Jin, Changqing; Feygenson, Mikhail; Uemura, Yasutomo J.; Billinge, Simon J. L.

    2016-09-01

    We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba ,K )(Zn ,Mn )2As2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5 Å , resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system.

  12. Total neutron scattering: The key to the local and medium range structure of complex materials

    Indian Academy of Sciences (India)

    Th Proffen

    2008-10-01

    Structural characterization is mainly based on the measurement of Bragg intensities and yields the average structure of crystalline materials. The total scattering pattern, however, contains structural information over all length scales, and it can be used to obtain a complete structural picture of complex materials. Suddenly one has access to a new parameter, the real-space range of the refinement and structures can be analysed as a function of length scale straightforwardly.

  13. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global – disturbed local network organization

    Directory of Open Access Journals (Sweden)

    Justina Sidlauskaite

    2015-01-01

    Full Text Available Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD. However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  14. Encoding the structure of many-body localization with matrix product operators

    Science.gov (United States)

    Pekker, David; Clark, Bryan K.

    2017-01-01

    Anderson insulators are noninteracting disordered systems which have localized single-particle eigenstates. The interacting analog of Anderson insulators are the many-body localized (MBL) phases. The spectrum of the many-body eigenstates of an Anderson insulator is efficiently represented as a set of product states over the single-particle modes. We show that product states over matrix product operators of small bond dimension is the corresponding efficient description of the spectrum of an MBL insulator. In this language all of the many-body eigenstates are encoded by matrix product states (i.e., density matrix renormalization group wave functions) consisting of only two sets of low bond dimension matrices per site: the Gi matrices corresponding to the local ground state on site i and the Ei matrices corresponding to the local excited state. All 2n eigenstates can be generated from all possible combinations of these sets of matrices.

  15. Improving the crash behavior of structural components made of advanced high strength steel by local heat treatment

    Science.gov (United States)

    Conrads, L.; Daamen, M.; Hirt, G.; Bambach, M.

    2016-11-01

    High manganese TWIP steel belongs to the second generation of advanced high strength steels. During the production of strip material, the microstructure and hence the mechanical properties of TWIP steel can be adapted to the specific needs of crash relevant structures. Whereas typically the whole steel strip is heat-treated after cold rolling, a local heat treatment can be applied to tailor the properties accordingly. In this work, a method is presented to identify a suitable process window for the local laser heat treatment of TWIP steel. The material is strain hardened and afterwards heat-treated at various temperatures for a short time. The influence of the respective heat treatment on microstructure and mechanical properties is evaluated and the most appropriate heat treatment is then reproduced using laser heating. To verify the effect of a local laser heat treatment at a structural component, crash boxes with different heat treatment patterns were produced and tested. The dynamic crash tests show that the local heat treatment can be used to improve the crash behavior of structural components. In addition, their deformation path can be influenced by using adapted heat treatment patterns and the crash behavior can be controlled.

  16. Low-redshift effects of local structure on the Hubble parameter in presence of a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Antonio Enea [University of Crete, Department of Physics and CCTP, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Vallejo, Sergio Andres [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia)

    2016-04-15

    In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H(z) and (δH)/(H) for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H(z) observations will show deviations from the ΛCDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure. (orig.)

  17. Local structures of mechanically alloyed Fe100—xCux solid soulutions studied by X—ray absorption fine structure

    Institute of Scientific and Technical Information of China (English)

    WenshengYan; YuzhiLi; 等

    2001-01-01

    The local structures of the immiscible Fe100-xCux alloys(x=0,10,20,40,60,80and100)produced by mechanical alloying have been investigated by XAFS.For the Fe100-xCux(x≥40) solid solutions,the local structures around Fe atoms change from bcc structure to fcc one and the Cu atoms maintain the original coordination geometry after milling for 160 hours.On the contrary,the local structures around Cu atoms in both of Fe80Cu20 and Fe90 Cu10 alloys appear a transition from fcc to bcc structure.We found that the Debye-waller factor σof fcc Fe-Cu phase is larger than that of bcc F-Cu phase,and the σ(0.099A°)around Fe atoms is larger than that (0.089A°) of Cu in the Fe100-xCux(x≥40)solid solutions,This suggests that the mechanically alloyed Fe100-xCux supersaturated solid solution is not a homogeneous alloy,and consists of Fe-rich and Cu-rich regions for various compositions.A possible mechanism for bcc-to-fcc and fcc-to-bcc changes in Fe100-xCux solid solutions is discussed in relation to the interdiffusion and transition induced by the ball milling.

  18. Heterogeneity of Global and Local Connectivity in Spatial Network Structures of World Migration

    OpenAIRE

    2016-01-01

    We examine world migration as a social-spatial network of countries connected via movements of people. We assess how multilateral migratory relationships at global, regional, and local scales coexist ("glocalization"), divide ("polarization"), or form an interconnected global system ("globalization"). To do this, we decompose the world migration network (WMN) into communities---sets of countries with denser than expected migration connections---and characterize their pattern of local (i.e., i...

  19. Hybrid local FEM/global LISA modeling of guided wave propagation and interaction with damage in composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2015-03-01

    This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate

  20. Local atomic structural investigations of precursory phenomenon of the hydrogen release from LiAlD4

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toyoto [ORNL; Tomiyasu, Dr. Keisuke [Tohoku University, Japan; Ikeda, Kazutaka [High Energy Accelerator Research Organization, KEK; Otomo, Toshiya [ORNL; Feygenson, Mikhail [ORNL; Neuefeind, Joerg C [ORNL; Yamada, Kazuyoshi [Institute for Materials Research, Tohoku University, Sendai, Japan; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai, Japan

    2013-01-01

    Local atomic structural investigations of LiAlD4, which is composed of Li+ and [AlD4], at 40 300 K were studied by total neutron scattering combined with pair distribution function (PDF) analysis for understanding of hydrogen release from LiAlD4. The results showed that the Al D pair distribution almost unchanged, while the Li D pair distribution clearly started to broaden and shrink above 200 250 K. The shrinking of the Li D pair distribution might lead to the local generation of LiD, which was speculated as the precursory phenomenon for the hydrogen release from LiAlD4.

  1. Effect of local and global structural order on the performance of perylene diimide excimeric solar cells.

    Science.gov (United States)

    Ye, Tengling; Singh, Ranbir; Butt, Hans-Jürgen; Floudas, George; Keivanidis, Panagiotis E

    2013-11-27

    Herein, we present a detailed study of the structure-function relationship in the organic photovoltaic (OPV) blend film composed of N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and the low energy gap copolymer of poly[4,8-bis-substituted-benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b]thiophene-2,6-diyl] (PBDTTT-E-O). The hierarchical organization in the photoactive layers and in extruded fibers of PBDTTT-E-O:EP-PDI was studied by fluorescence optical microscopy, atomic force microscopy, and wide-angle X-ray scattering (WAXS). WAXS revealed a nanophase-separated structure where PBDTTT-E-O domains of 4.3 nm in size coexist with EP-PDI domains of 20 nm size. Thermal annealing results in an increase of the PBDTTT-E-O domains, but it does not affect the size of the EP-PDI domains. Only the length of the EP-PDI columns in each domain is increased by thermal treatment. The photophysical characterization of the PBDTTT-E-O:EP-PDI layers and the electrical characterization of the corresponding OPV and unipolar carrier devices were performed. The quenching of the EP-PDI excimer luminescence is correlated with the photocurrent generation efficiency of the OPV devices. At high annealing temperatures the EP-PDI columnar length becomes larger than the previously reported diffusion length of the PDI excimer, and fewer excimers dissociate at the EP-PDI/polymer interfaces, leading to reduced photocurrent generation. The charge transport properties of the PBDTTT-E-O:EP-PDI blend film were studied as a function of the active layer microstructure that was tuned by thermal treatment. Thermal processing increases electron mobility, but the poor connectivity of the EP-PDI domains keeps hole mobility six times higher. In respect to the as-spun OPV device, a 3-fold increase is found in the power conversion efficiency of the device annealed at 100 °C. The high surface roughness of the PBDTTT-E-O:EP-PDI photoactive layer impedes the

  2. Average and Local Crystal Structures of (Ga(1-x)Znx)(N(1-x)Ox) Solid Solution Nanoparticles.

    Science.gov (United States)

    Feygenson, Mikhail; Neuefeind, Joerg C; Tyson, Trevor A; Schieber, Natalie; Han, Wei-Qiang

    2015-12-07

    We report a comprehensive study of the crystal structure of (Ga(1-x)Znx)(N(1-x)Ox) solid solution nanoparticles by means of neutron and synchrotron X-ray scattering. In our study, we used four different types of (Ga(1-x)Znx)(N(1-x)Ox) nanoparticles, with diameters of 10-27 nm and x = 0.075-0.51, which show energy band gaps from 2.21 to 2.61 eV. Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is hexagonal wurtzite (space group P63mc) for the larger nanoparticles, while the crystal structure of smaller nanoparticles is disordered hexagonal. Pair-distribution-function analysis found that the intermediate crystal structure retains a "motif" of the average one; however, the local structure is more disordered. The implications of disorder on the reduced energy band gap are discussed.

  3. Studies on the fine structural localization of zinc iodide-osmium reaction in the brain. III. Some characteristics of localization in the synaptosomes.

    Science.gov (United States)

    Halász, N; Joó, F; Karnushina, I

    1978-02-01

    Synaptosomes from rat cerebral cortex were impregnated in the zinc iodide--osmium (ZIO) solution. The fine structural localization of the ZIO impregnation product was studied and, in addition, the function-dependent features of the reaction were examined after electrical stimulation or potassium chloride treatment. It was revealed that: (i) Aldehyde prefixation resulted in an increase in the number of reactive synaptic vesicles in all types of synaptosomes; (ii) Electrical stimulation decreased the number of reactive vesicles in a voltage dependent manner; (iii) Potassium chloride treatment also reduced the reactivity of vesicles; the reduction was dependent on the concentration of potassium and duration of treatment; (iv) Experimental interventions leading to the release of neurotransmitters from the synaptic vesicles and to fatigue of the nerve terminals also resulted in a decrease of the ZIO-reaction product of synaptic vesicles in a manner proportional to the strength of stimuli.

  4. Género y estructura de oportunidad participativa local: el caso de Bilbao, España Gender and local participatory opportunity structure: The case of Bilbao, Spain

    Directory of Open Access Journals (Sweden)

    Ane Larrinaga Renteria

    2013-06-01

    Full Text Available El estudio del diseño institucional participativo del municipio de Bilbao ha permitido identificar algunos componentes de la estructura de oportunidad participativa que condicionan las formas de participación vigentes y conducen a procesos de exclusión de las mujeres en las prácticas ciudadanas. El foco de atención de este texto se ha centrado en el análisis de los mecanismos de base asociativa, que indica la necesidad de que los gobiernos locales integren el enfoque de género no sólo en las propias instituciones municipales, sino también en las prácticas y en los actores de la gobernanza democrática.The study of the participatory institutional design of the Bilbao municipality has allowed us to identify some of the elements of the participatory opportunity structure that influence the current forms of participation and result in process that exclude women from citizenship practices. The main focus of this text centers on the analysis of the mechanisms of associative basis. This analysis indicates that local governments need to integrate the gender perspective not only in the municipal institutions themselves, but also in the practices and actors of democratic governance.

  5. Compared study of the local structure of alteration products of SON 68 glass and natural gels; Etude comparee de la structure locale des produits d'alteration du verre SON 68 et de gels naturels

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrin, E

    2000-07-01

    This study is a contribution in the understanding of the long time behavior of alteration products of the glass SON 68, used to simulate the nuclear glass R7T7. The local structure around Zirconium and iron has been probed using X-ray absorption spectroscopy in altered surface layer of glass SON 68. Alteration products of this glass have been prepared for short (3 hours to 7 days) and long (17 months) time, using various indexes of saturation for the leaching solution with respect to the Si content of the glass (from 0 to 90 %). The evolution of the local structure around Fe has also been studied in recent and old natural ferric gels. Zr, Fe- L{sub 2,3} XANES and Zr, Fe-K EXAFS spectroscopies have shown that, in the pristine glass, these elements are connected to the polymeric network. Zr is found in an environment close to that of a zircon-silicate containing Na and Ca. Trivalent Fe is a network former. The leached layer of glass SON 68 is constituted of poorly ordered Zr-and Fe-(oxi-hydr)oxides that may have been formed by a mechanism of dissolution/precipitation; a relict phase with the same Zr local structure as that observed in the pristine glass, probably obtained thanks to in-situ solid condensation. The structural characteristics of the leached layer are observed from the first steps of alteration for Zr and Fe. Conversely to Fe, the structural status of Zr depends on the leaching kinetic as well as the contents of Ca and Si in the solid. Fe-K EXAFS results in recent natural ferri-hydrides present a clear structural similarity with that determined in glass SON 68 leached products. The study of old paleosols (between 1,800 and 200,000 years) has demonstrated the long time stability of ferric gels, although an increase of medium range order around Fe is seen. (author)

  6. STRUCTURE FORMATION OF HYPOEUTECTOID CONSTRUCTIONS STEELS AT CARBONITRIDING WITH LOCAL INDUCTION CYCLIC HEATING

    Directory of Open Access Journals (Sweden)

    G. A. Tkachenko

    2010-01-01

    Full Text Available Improvement of mechanical characteristics of details of the soil-cultivating car. Structurization at cyclic heating of steels. The reasons of an intensification of diffusion at cyclic heating. Structure crushing, impact strength and hardness increase.

  7. Local structure and electronic properties of BaTaO2N with perovskite-type structure

    NARCIS (Netherlands)

    Fang, C.M.; Wijs, G.A. de; Orhan, E.; With, G. de; de Groot, R.A.; Hintzen, H.T.; Marchand, R.

    2003-01-01

    First-principles calculation based on density-functional theory in the pseudo-potential approach have been performed for the total energy and crystal structure of BaTaO2N. The calculations indicate a random occupation of the anionic positions by O and N in a cubic structure, in agreement with neutro

  8. Local descriptors of protein structure: a systematic analysis of the sequence-structure relationship in proteins using short- and long-range interactions.

    Science.gov (United States)

    Hvidsten, Torgeir R; Kryshtafovych, Andriy; Fidelis, Krzysztof

    2009-06-01

    Local protein structure representations that incorporate long-range contacts between residues are often considered in protein structure comparison but have found relatively little use in structure prediction where assembly from single backbone fragments dominates. Here, we introduce the concept of local descriptors of protein structure to characterize local neighborhoods of amino acids including short- and long-range interactions. We build a library of recurring local descriptors and show that this library is general enough to allow assembly of unseen protein structures. The library could on average re-assemble 83% of 119 unseen structures, and showed little or no performance decrease between homologous targets and targets with folds not represented among domains used to build it. We then systematically evaluate the descriptor library to establish the level of the sequence signal in sets of protein fragments of similar geometrical conformation. In particular, we test whether that signal is strong enough to facilitate correct assignment and alignment of these local geometries to new sequences. We use the signal to assign descriptors to a test set of 479 sequences with less than 40% sequence identity to any domain used to build the library, and show that on average more than 50% of the backbone fragments constituting descriptors can be correctly aligned. We also use the assigned descriptors to infer SCOP folds, and show that correct predictions can be made in many of the 151 cases where PSI-BLAST was unable to detect significant sequence similarity to proteins in the library. Although the combinatorial problem of simultaneously aligning several fragments to sequence is a major bottleneck compared with single fragment methods, the advantage of the current approach is that correct alignments imply correct long range distance constraints. The lack of these constraints is most likely the major reason why structure prediction methods fail to consistently produce adequate

  9. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Streltsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloid-β peptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloid-β peptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloid-β peptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  10. Evaluation of structural change and local strain distribution in polymers comparatively imaged by FFSA and OCT techniques

    Directory of Open Access Journals (Sweden)

    E. Leiss-Holzinger

    2012-03-01

    Full Text Available Mechanical material testing combined with optical coherence tomography (OCT allows for the first time the immediate detection of inner structural changes along with a qualitative observation of the local strain distribution in surface near bulk regions of semitransparent and translucent specimens. In addition to a 3D full field strain analysis (FFSA system based on digital image correlation (DIC, a customized spectral domain OCT system operating at 1550 nm was applied for investigation. Exemplified by tensile testing of elastomer particle filled polypropylene specimens, local dissimilarity evaluation of the OCT images was performed. The results show the high potential of OCT to provide complementary information to DIC-based FFSA, like to identify processes influencing the remaining life of advanced commodity plastics such as the start and progress of yielding, identification of the yielding point, localization of the necking front and the development of small scale voids as in the case of matrix crazing.

  11. PRKRA Localizes to Nuage Structures and the Ectoplasmic Specialization and Tubulobulbar Complexes in Rat and Mouse Testis

    Directory of Open Access Journals (Sweden)

    Junya Suzuki

    2014-01-01

    Full Text Available The cytoplasmic RNA-induced silencing complex (RISC contains dsRNA binding proteins, including PRKRA, TRBP, and Dicer. RISC localizes to P-bodies. The nuage of the spermatogenic cells has function similar to the P-bodies. We study whether PRKRA localizes to nuage of spermatogenic cells of rat and mouse. PRKRA localized to four types of nuage structures, including aggregates of 60–90 nm particles, irregularly-shaped perinuclear granules, and intermitochondrial cement of pachytene spermatocytes, and chromatoid bodies of round spermatids. In addition, PRKRA is associated with dense material surrounding tubulobulbar complexes and with the ectoplasmic specialization. The results suggest that PRKRA functions in the nuage as an element of RNA silencing system and plays unknown role in the ectoplasmic specialization and at the tubulobulbar complexes of Sertoli cells attaching the head of late spermatids.

  12. Intrinsic Nanoscience of δ Pu-Ga Alloys: Local Structure and Speciation, Collective Behavior, Nanoscale Heterogeneity, and Aging Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Bock, Nicolas; Castro, Julio M.; Conradson, Dylan R.; Cox, Lawrence E.; Dmowski, Wojtek; Dooley, David E.; Egami, Takeshi; Espinosa-Faller, Francisco J.; Freibert, Franz J.; Garcia-Adeva, Angel J.; Hess, Nancy J.; Holmstrom, Erik; Howell, Rafael C.; Katz, Barbara A.; Lashley, Jason C.; Martinez, Raymond J.; Moore, David P.; Morales, Luis A.; Olivas, J David; Pereyra, Ramiro A.; Ramos, Michael; Terry, Jeff H.; Villella, Phillip M.

    2014-04-24

    Because diffraction measurements are sensitive only to the long range average arrangement of the atoms in the coherent portion of a crystal, complementary local structure measurements are required for a complete understanding of the structure of a complex material. This is particularly an issue in solid solutions where even random distributions of a solute will result in nanometer-scale fluctuations in the local composition. The structure will be further complicated if collective and cooperative phenomena organize the solute distribution via longer range interactions between non-bonded solute sites. If the solute affects the phase stability then the question is raised of whether the atoms in domains with local compositions outside the limits of the bulk phase will rearrange into the structure stable for that composition and temperature or if the resulting stress would prevent such a local phase transition. If the former, then phase separated, heterogeneous structures at or below the diffraction limit will form. This nanometerscale competition between the phase transition and the epitaxial mismatch – exacerbated by the added strain if the transition involves a volume change – raises the potential for the formation of novel structures that do not occur in bulk material, e.g., fcc Fe. This coupling over multiple scales between inhomogeneity ordering, elastic forces, phase competition, and texture in the form of coexisting structures is a hallmark of martensites, a class of complex materials that includes δ-stabilized PuGa and that often exhibit correlated atomic and electronic properties. The enigmatic and extreme nature of Pu is consistent with its exhibiting unusual structural behavior of this type, including nanoscale heterogeneity in δ-stabilized PuGa and its enhanced homogeneity on aging that has been suggested based on earlier X-ray Absorption Fine Structure (XAFS) spectroscopy and x-ray pair distribution function (pdf) measurements. Measurements on a

  13. The utility of comparative models and the local model quality for protein crystal structure determination by Molecular Replacement

    Directory of Open Access Journals (Sweden)

    Pawlowski Marcin

    2012-11-01

    Full Text Available Abstract Background Computational models of protein structures were proved to be useful as search models in Molecular Replacement (MR, a common method to solve the phase problem faced by macromolecular crystallography. The success of MR depends on the accuracy of a search model. Unfortunately, this parameter remains unknown until the final structure of the target protein is determined. During the last few years, several Model Quality Assessment Programs (MQAPs that predict the local accuracy of theoretical models have been developed. In this article, we analyze whether the application of MQAPs improves the utility of theoretical models in MR. Results For our dataset of 615 search models, the real local accuracy of a model increases the MR success ratio by 101% compared to corresponding polyalanine templates. On the contrary, when local model quality is not utilized in MR, the computational models solved only 4.5% more MR searches than polyalanine templates. For the same dataset of the 615 models, a workflow combining MR with predicted local accuracy of a model found 45% more correct solution than polyalanine templates. To predict such accuracy MetaMQAPclust, a “clustering MQAP” was used. Conclusions Using comparative models only marginally increases the MR success ratio in comparison to polyalanine structures of templates. However, the situation changes dramatically once comparative models are used together with their predicted local accuracy. A new functionality was added to the GeneSilico Fold Prediction Metaserver in order to build models that are more useful for MR searches. Additionally, we have developed a simple method, AmIgoMR (Am I good for MR?, to predict if an MR search with a template-based model for a given template is likely to find the correct solution.

  14. Molecular dynamics investigation of dynamical heterogeneity and local structure in the supercooled liquid and glass states of Al

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Wang, C. Z.; Mandelev, M.; Ho, K. M.

    2008-05-13

    Molecular dynamics simulations are performed to study the structure and dynamical heterogeneity in the liquid and glass states of Al using a frequently employed embedded atom potential. While the pair correlation function of the glass and liquid states displays only minor differences, the icosahedral short-range order (ISRO) and the dynamics of the two states are very different. The ISRO is much stronger in the glass than in the liquid. It is also found that both the most mobile and the most immobile atoms in the glass state tend to form clusters, and the clusters formed by the immobile atoms are more compact. In order to investigate the local environment of each atom in the liquid and glass states, a local density is defined to characterize the local atomic packing. There is a strong correlation between the local packing density and the mobility of the atoms. These results indicate that dynamical heterogeneity in glasses is directly correlated to the local structure. We also analyze the diffusion mechanisms of atoms in the liquid and glass states. It is found that for the mobile atoms in the glass state, initially they are confined in the cages formed by their nearest neighbors and vibrating. On the time scale of {beta} relaxation, the mobile atoms try to break up the cage confinement and hop into new cages. In the supercooled liquid states, however, atoms continuously diffuse. Furthermore, it is found that on the time scale of {beta} relaxation, some of the mobile atoms in the glass state cooperatively hop, which is facilitated by the stringlike cluster structures. On the longer time scale, it is found that a certain fraction of atoms can simultaneously hop, although they are not nearest neighbors. Further analysis shows that these hopping atoms form big and more compact clusters than the characterized most mobile atoms. The cooperative rearrangement of these big compact clusters might facilitate the simultaneous hopping of atoms in the glass states on the long

  15. In-situ analysis of strain localization related to structural heterogeneities of carbonate rocks

    Directory of Open Access Journals (Sweden)

    Dimanov A.

    2010-06-01

    Full Text Available The technique of Digital Image Correlation (DIC has been applied to study the deformation of porous carbonate rocks subjected to uniaxial compression tests. The tests have been performed at two different scales: on cylinders of 10 cm high compressed with a standard press with digital images recorded by optical microscopy at a global and local scale and on smaller parallelepiped samples deformed inside a scanning electron microscope (SEM. The development of localization at different scales is thus recorded as well as the damage and compaction mechanisms in relation with the microstructural heterogeneities.

  16. LOCALIZED COHERENT STRUCTURES OF THE (2+1)-DIMENSIONAL HIGHER ORDER BROER-KAUP EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    张解放; 刘宇陆

    2002-01-01

    By using the extended homogeneous balance method, the localized coherentstructures are studied. A nonlinear transformation was first established, and then thelinearization form was obtained based on the extended homogeneous balance method for thehigher order ( 2 + 1 ) -dimensional Broer-Kaup equations. Starting from this linearizationform equation, a variable separation solution with the entrance of some arbitrary functionsand some arbitrary parameters was constructed. The quite rich localized coherent structureswere revealed. This method, which can be generalized to other (2 + 1 )-dimensionalnonlinear evolution equation, is simple and powerful.

  17. Theoretical studies of the local structure and spin Hamiltonian parameters for Rh{sup 2+}:ZnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chang-Chun, E-mail: ccding626@163.com; Wu, Shao-Yi; Kuang, Min-Quan; Cheng, Yong-Kun; Zhang, Li-Juan

    2014-10-15

    By establishing the perturbation formulas of the spin Hamiltonian parameters (anisotropic g factors and hyperfine structure constants) for a rhombically compressed 4d{sup 7} cluster, the EPR spectra and local structure are theoretically investigated for Rh{sup 2+}:ZnWO{sub 4}. Due to the Jahn–Teller effect, the impurity center shows slight axial compression of about 0.002 nm along the Z-axis and the perpendicular angular variation of about 6° for the planar impurity–ligand bonds. These lattice deformations transform the significant elongation (by about 0.031 nm) of host Zn{sup 2+} site into slight compression in the impurity center. The local distortion of the Jahn–Teller nature is discussed.

  18. Local structural distortions and their role in superconductivity in SmFeAsO1-xFx superconductors

    Science.gov (United States)

    Ingle, Kapil; Priolkar, K. R.; Pal, Anand; Awana, V. P. S.; Emura, S.

    2014-07-01

    EXAFS studies at the As K edge as a function of temperature were carried out in SmFeAsO1-xFx (x = 0 and 0.2) compounds to understand the role of local structural distortions in superconductivity observed in F-doped compounds. A significant correlation between the thermal variation of local structural parameters such as anion height and superconducting onset is found in the fluorinated compounds. Such a variation in anion height is absent in the non-superconducting compound. An increase in the Fe-As bond distance just below the superconducting onset temperature indicates a similarity between the distortions observed in the high-T_{C} cuprates and these Fe-based superconductors.

  19. Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks.

    Science.gov (United States)

    Nunez, P L; Wingeier, B M; Silberstein, R B

    2001-07-01

    A theoretical framework supporting experimental measures of dynamic properties of human EEG is proposed with emphasis on distinct alpha rhythms. Robust relationships between measured dynamics and cognitive or behavioral conditions are reviewed, and proposed physiological bases for EEG at cellular levels are considered. Classical EEG data are interpreted in the context of a conceptual framework that distinguishes between locally and globally dominated dynamic processes, as estimated with coherence or other measures of phase synchronization. Macroscopic (scalp) potentials generated by cortical current sources are described at three spatial scales, taking advantage of the columnar structure of neocortex. New EEG data demonstrate that both globally coherent and locally dominated behavior can occur within the alpha band, depending on narrow band frequency, spatial measurement scale, and brain state. Quasi-stable alpha phase structures consistent with global standing waves are observed. At the same time, alpha and theta phase locking between cortical regions during mental calculations is demonstrated, consistent with neural network formation. The brain-binding problem is considered in the context of EEG dynamic behavior that generally exhibits both of these local and global aspects. But specific experimental designs and data analysis methods may severely bias physiological interpretations in either local or global directions.

  20. New localized excitations and cross-like fractal structures to the (2+1)-dimensional Broer–Kaup system

    Indian Academy of Sciences (India)

    Zitian Li

    2014-09-01

    A broad general variable separation solution with two arbitrary lower-dimensional functions of the (2+1)-dimensional Broer–Kaup (BK) equations was derived by means of a projective equation method and a variable separation hypothesis. Based on the derived variable separation excitation, some new special types of localized solutions such as oscillating solitons, instantonlike and cross-like fractal structures are revealed by selecting appropriate functions of the general variable separation solution.

  1. Localized Structures on Periodic Background Wave of (2+1)-Dimensional Boiti-Leon-Pempinelli System via an Object Reduction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon-Pempinelli system, which has the extensive physics background, and an abundance of exact solutions is derived from some reduction equations. Based on the derived solutions, the localized structures under the periodic wave background are obtained.

  2. Electronic structure of the actinide-Rh3 systems and the 5f localization in UPd3

    DEFF Research Database (Denmark)

    Eriksson, Olle; Johansson, Börje; Brooks, M. S. S.

    1989-01-01

    We present electronic-structure calculations for the isostructural (AuCu3-structure) series of intermetallic compounds ARh3 (A=Ac, Th, Pa, U, Np, Pu, Am, and Cm). The calculations were performed using both the scalar relativistic and the fully relativistic linear muffin-tin orbital (LMTO) method....... The localization of the 5f electrons in UPd3 as opposed to the itinerant 5f behavior for the earlier compounds (UMo3, UTc3 , URu3, and URh3) is explained in terms of the variation of the hybridization between 5f and ligand 4d states through the series....

  3. Structural durability assessment of welded offshore K-nodes by different local design concepts

    Directory of Open Access Journals (Sweden)

    C.M. Sonsino

    2009-07-01

    Full Text Available The structural durability design of complex welded structures should not rely only on one single design method but should apply different methods for assuring the reliability of the assessment. In this context the application of the structural stress concept, notch stress concept and crack propagation concept are discussed through the example of K-nodes used in energetic offshore constructions like oil platforms or windpower plants, presenting the state of the art.

  4. Local variability in population structure and density of the protogynous reef herbivore Sparisoma viride

    NARCIS (Netherlands)

    van Rooij, J.M.; Kok, J.P; Videler, J.J

    1996-01-01

    We compare the (relative) abundance of life phases [juveniles (JU), initial phase (IF) and terminal phase (TP) fish], social categories (territorial and group adults), and fish following alternative mating styles, in three local populations of the protogynous reef herbivore, Sparisoma viride, on the

  5. Nonlinear Localized Dissipative Structures for Long-Time Solution of Wave Equation

    Science.gov (United States)

    2009-07-01

    interesting that the role of the second order term (£0) in equation (2.11) is different from typical nonlinear pde’s studied, such as KdV , that harbor...the commonly used form of the CH equation. An important point is that other nonlinear pde’s like Kdv , which can successfully propagate localized

  6. Local buckling of aluminium structures exposed to fire. Part 1: Tests

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.

    2009-01-01

    This paper describes an experimental investigation into local buckling of compressed aluminium alloy sections at elevated temperatures. Stress-strain relationships are derived based on uniaxial tensile tests. A special test set-up with a furnace is developed to test slender square hollow sections an

  7. Genetic population structure of local populations of the endangered saltmarsh sesarmid crab Clistocoeloma sinense in Japan.

    Science.gov (United States)

    Yuhara, Takeshi; Kawane, Masako; Furota, Toshio

    2014-01-01

    During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species.

  8. Correlation between local clusters and structure of Al71Cu29 melt

    Institute of Scientific and Technical Information of China (English)

    陈莹; 边秀房; 孙民华; 王丽

    2003-01-01

    The structures of Al1-4Cu1-2 clusters were optimized by B3LYP method and the six geometries ground states were obtained. Al71Cu29 alloy melt has been investigated using X-ray diffractometry at 700℃. The experimental data were compared with calculated results to find the relation between the structures of Al-Cu clusters and melt structure. It is shown that there exists a strong interaction between Al and Cu atoms. The bond length in some geometries is very close to the experimental atomic distance. Such optimized geometries have close correlation with the liquid structure of Al-Cu alloy.

  9. CTSS: a robust and efficient method for protein structure alignment based on local geometrical and biological features.

    Science.gov (United States)

    Can, Tolga; Wang, Yuan-Fang

    2003-01-01

    We present a new method for conducting protein structure similarity searches, which improves on the accuracy, robustness, and efficiency of some existing techniques. Our method is grounded in the theory of differential geometry on 3D space curve matching. We generate shape signatures for proteins that are invariant, localized, robust, compact, and biologically meaningful. To improve matching accuracy, we smooth the noisy raw atomic coordinate data with spline fitting. To improve matching efficiency, we adopt a hierarchical coarse-to-fine strategy. We use an efficient hashing-based technique to screen out unlikely candidates and perform detailed pairwise alignments only for a small number of candidates that survive the screening process. Contrary to other hashing based techniques, our technique employs domain specific information (not just geometric information) in constructing the hash key, and hence, is more tuned to the domain of biology. Furthermore, the invariancy, localization, and compactness of the shape signatures allow us to utilize a well-known local sequence alignment algorithm for aligning two protein structures. One measure of the efficacy of the proposed technique is that we were able to discover new, meaningful motifs that were not reported by other structure alignment methods.

  10. Robust action recognition using multi-scale spatial-temporal concatenations of local features as natural action structures.

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhu

    Full Text Available Human and many other animals can detect, recognize, and classify natural actions in a very short time. How this is achieved by the visual system and how to make machines understand natural actions have been the focus of neurobiological studies and computational modeling in the last several decades. A key issue is what spatial-temporal features should be encoded and what the characteristics of their occurrences are in natural actions. Current global encoding schemes depend heavily on segmenting while local encoding schemes lack descriptive power. Here, we propose natural action structures, i.e., multi-size, multi-scale, spatial-temporal concatenations of local features, as the basic features for representing natural actions. In this concept, any action is a spatial-temporal concatenation of a set of natural action structures, which convey a full range of information about natural actions. We took several steps to extract these structures. First, we sampled a large number of sequences of patches at multiple spatial-temporal scales. Second, we performed independent component analysis on the patch sequences and classified the independent components into clusters. Finally, we compiled a large set of natural action structures, with each corresponding to a unique combination of the clusters at the selected spatial-temporal scales. To classify human actions, we used a set of informative natural action structures as inputs to two widely used models. We found that the natural action structures obtained here achieved a significantly better recognition performance than low-level features and that the performance was better than or comparable to the best current models. We also found that the classification performance with natural action structures as features was slightly affected by changes of scale and artificially added noise. We concluded that the natural action structures proposed here can be used as the basic encoding units of actions and may hold

  11. Physical modeling of river spanning rock structures: Evaluating interstitial flow, local hydraulics, downstream scour development, and structure stability

    Science.gov (United States)

    Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.

    2009-01-01

    Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.

  12. Structure-preservingness, internal merge, and the strict locality of triads

    NARCIS (Netherlands)

    Koster, J.; Karimi, S.; Samiian, V.; Wilkins, W.

    2007-01-01

    This paper examines Emonds’ Structure Preserving Hypothesis, and suggests that the insight behind this hypothesis survives reformulation in terms of recent minimalist theory: each structure created by internal merge can also, independently, be created by external merge. As before, this makes movemen

  13. Technological Process and Equipment for Electric-local Softening Soil of Different Strength and Structure

    Directory of Open Access Journals (Sweden)

    Rizun, A.R.

    2014-09-01

    Full Text Available Electric-discharge technology for soil local softening is developed; the pre-production model of mobile high-energy electric-discharge generator with the controlled energy release is produced. Application of the proposed equipment and technology will allow essentially reduce construction materials and cost of the installation and construction works, in particular, capital investments in alternative energy, industrial, residential construction, and hydraulic engineering in general.

  14. Changes in the localization length with vanadium doping in the Gd123 structure

    Directory of Open Access Journals (Sweden)

    H Javanmard

    2009-08-01

    Full Text Available   The normal state behavior of the Gd123 samples doped with vanadium has been studied. A metal-insulator transition in samples has been observed. The normal state resistivity has been compared with the variable range hoping model, which shows the 2D-VRH and CG having a better agreement for our samples. The localization length is calculated, which shows a decrease with doping, and for x=0.15 this drop is significant.

  15. Local atomic structure in strained interfaces of InxGa1-xAs/InP heterostructures

    Science.gov (United States)

    Boscherini, F.; Lamberti, C.; Pascarelli, S.; Rigo, C.; Mobilio, S.

    1998-10-01

    We present a structural study of the interfaces between InxGa1-xAs and InP (and vice versa) by x-ray absorption fine structure spectroscopy (XAFS); the samples investigated are a set of nominally matched InxGa1-xAs/InP short-period superlattices. We find that the coordination numbers around As and Ga deviate significantly from those expected in an abrupt superlattice structure even if interface bonds are taken into account; this demonstrates the presence of unwanted interface layers between InP and InxGaxAs (and vice versa). Based on the growth sequence employed and on indications from other techniques, we model the structure as composed of the two nominal layers plus InAsxP1-x and In0.53Ga0.47As1-yPy strained interface layers. XAFS is a chemically sensitive probe of the local structure in these strained layers. We find that each bond length measured (As-In, Ga-As, and Ga-P) has a different value, with small variations among the different samples. This implies the presence of structural distortions that accommodate strain at the local level. We find good agreement between the XAFS results and high-resolution x-ray diffraction data that probe the structure in an average way. The results are discussed also with reference to the problem of the band offsets at InxGa1-xAs/InP heterojunctions and to theoretical simulations.

  16. PHBV/PAM Scaffolds with Local Oriented Structure through UV Polymerization for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yu Ke

    2014-01-01

    Full Text Available Locally oriented tissue engineering scaffolds can provoke cellular orientation and direct cell spread and migration, offering an exciting potential way for the regeneration of the complex tissue. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV scaffolds with locally oriented hydrophilic polyacrylamide (PAM inside the macropores of the scaffolds were achieved through UV graft polymerization. The interpenetrating PAM chains enabled good interconnectivity of PHBV/PAM scaffolds that presented a lower porosity and minor diameter of pores than PHBV scaffolds. The pores with diameter below 100 μm increased to 82.15% of PHBV/PAM scaffolds compared with 31.5% of PHBV scaffolds. PHBV/PAM scaffold showed a much higher compressive elastic modulus than PHBV scaffold due to PAM stuffing. At 5 days of culturing, sheep chondrocytes spread along the similar direction in the macropores of PHBV/PAM scaffolds. The locally oriented PAM chains might guide the attachment and spreading of chondrocytes and direct the formation of microfilaments via contact guidance.

  17. Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Lyngsø, Rune B.; Stormo, Gary D.

    2005-01-01

    Motivation: Searching for non-coding RNA (ncRNA) genes and structural RNA elements (eleRNA) are major challenges in gene finding todya as these often are conserved in structure rather than in sequence. Even though the number of available methods is growing, it is still of interest to pairwise....... The structure prediction performance for a family is typically around 0.7 using Matthews correlation coefficient. In case (2), the algorithm is successful at locating RNA families with an average sensitivity of 0.8 and a positive predictive value of 0.9 using a BLAST-like hit selection scheme. Availability...

  18. A highly organized structure mediating nuclear localization of a Myb2 transcription factor in the protozoan parasite Trichomonas vaginalis.

    Science.gov (United States)

    Chu, Chien-Hsin; Chang, Lung-Chun; Hsu, Hong-Ming; Wei, Shu-Yi; Liu, Hsing-Wei; Lee, Yu; Kuo, Chung-Chi; Indra, Dharmu; Chen, Chinpan; Ong, Shiou-Jeng; Tai, Jung-Hsiang

    2011-12-01

    Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import.

  19. A Semi-Structured MODFLOW-USG Model to Evaluate Local Water Sources to Wells for Decision Support.

    Science.gov (United States)

    Feinstein, Daniel T; Fienen, Michael N; Reeves, Howard W; Langevin, Christian D

    2016-07-01

    In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A "semi-structured" approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a).

  20. Local structure analysis of diluted magnetic semiconductor Co and Al co-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, K.; Morimoto, S.; Yamazaki, T.; Ishikawa, T.; Ichiyanagi, Y. [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501 (Japan); Utsumi, J. [Engineering Department Machine Tool Division, Machinery, Equipment & Infrastructure, Mitsubishi Heavy Industries, Ltd., Ritto, Shiga 520-3080 (Japan)

    2016-02-01

    In this study, Co and Al ions co-doped ZnO nanoparticles (Zn(Al, Co)O NPs) were prepared by our original chemical preparation method. The obtained samples prepared by this method, were encapsulated in amorphous SiO{sub 2}. X-ray diffraction (XRD) results showed Zn(Al, Co)O NPs had a single-phase nature with hexagonal wurtzite structure. These particle sizes could be controlled to be approximately 30 nm. We investigate the effect that the increase in the carrier has on the magnetization by doping Al to Co-doped ZnO NPs. The local structures were qualitatively analyzed using X-ray absorption fine structure (XAFS) measurements.

  1. Local structure and site occupancy of Cd and Hg substitutions in CeTIn_5 (T=Co, Rh, Ir)

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Corwin H.; Bauer, Eric. D.; Bianchi, Andrea D.; Ronning, Fillip; Thompson, Joe D.; Sarrao, John L.; Cho, Jung Young; Chan, Julia Y.; Capan, Cigdem; Fisk, Zachary

    2009-04-22

    The CeTIn_5 superconductors (T=Co, Rh, or Ir) have generated great interest due to their relatively high transition temperatures, non-Fermi liquid behavior, and their proximity to antiferromagnetic order and quantum critical points. In contrast to small changes with the T-species, electron doping in CeT(In_1-x M_x)_5 with $M$=Sn and hole doping with Cd or Hg have a dramatic effect on the electronic properties at very low concentrations. The present work reports local structure measurements usingthe extended x-ray absorption fine-structure (EXAFS) technique that address the substituent atom distribution as a function of T, M, and x, in the vicinity of the superconducting phase. Together with previous measurements for M=Sn, the proportion of the $M$ atom residing on the In(1) site, f_\\textrm In(1), increases in the order M=Cd, Sn, and Hg, ranging from about 40\\percent to 70percent, showing a strong preference for each of these substituents to occupy the In(1) site (random occupation = 20percent). In addition, f_In(1) ranges from 70percent to 100percent for M=Hg in the order T=Co,Rh, and Ir. These fractions track the changes in the atomic radii of the various species, and help explain the sharp dependence of $T_c$ on substituting into the In site. However, it is difficult to reconcile the small concentrations of M with the dramatic changes in the ground state in the hole-doped materials with only an impurity scattering model. These results therefore indicate that while such substitutions have interesting local atomic structures with important electronic and magnetic consequences, other local changes in the electronic and magnetic structure are equally important in determining the bulk properties of these materials.

  2. Local structure and site occupancy of Cd and Hg substitutions in CeTIn5 (T=Co, Rh, Ir)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Eric D [Los Alamos National Laboratory; Ronning, Filip [Los Alamos National Laboratory; Thompson, J D [Los Alamos National Laboratory; Sarrao, J L [Los Alamos National Laboratory; Booth, C H [LBNL; Bianchi, A D [UC, IRVINE; Cho, J Y [LSU; Chan, J Y [LSU; Capan, C [UC-IRVINE; Fisk, Z [UC-IRVINE

    2009-01-01

    The CeTIn{sub 5} superconductors (T = Co, Rh, or Ir) have generated great interest due to their relatively high transition temperatures, non-Fermi liquid behavior, and their proximity to antiferromagnetic order and quantum critical points. In contrast to small changes with the T-species, electron doping in CeT(In{sub 1-x}M{sub x}){sub 5} with M = Sn and hole doping with Cd or Hg have a dramatic effect on the electronic properties at very low concentrations. The present work reports local structure measurements using the extended x-ray absorption fine-structure (EXAFS) technique that address the substituent atom distribution as a function of T, M, and x, in the vicinity of the superconducting phase. Together with previous measurements for M = Sn, the proportion of the M atom residing on the In(1) site, f{sub 1n(1)}, increases in the order M = Cd, Sn, and Hg, ranging from about 40% to 70%, showing a strong preference for each of these substituents to occupy the In(1) site (random occupation = 20%). In addition, f{sub In(1)} ranges from 70% to 100% for M = Hg in the order T = Co, Rh, and Ir. These fractions track the changes in the atomic radii of the various species, and help explain the sharp dependence of T{sub c} on substituting into the In site. However, it is difficult to reconcile the small concentrations of M with the dramatic changes in the ground state in the hole-doped materials with only an impurity scattering model. These results therefore indicate that while such substitutions have interesting local atomic structures with important electronic and magnetic consequences, other local changes in the electronic and magnetic structure are equally important in determining the bulk properties of these materials.

  3. Constraints on the crustal structure beneath the Sinai subplate, SE Mediterranean, from analysis of local and regional travel times

    Directory of Open Access Journals (Sweden)

    Mohamed K. Salah

    2013-03-01

    Full Text Available The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift, the Dead Sea Transform fault, and the Red Sea rift. The upper and lower crustal structures of this tectonically active, rapidly developing region are yet poorly understood because of many limitations. For this reason, a set of P- and S-wave travel times recorded at 14 seismic stations belonging to the Egyptian National Seismographic Network (ENSN from 111 local and regional events are analyzed to investigate the crustal structures and the locations of the seismogenic zones beneath central and southern Sinai. Because the velocity model used for routine earthquake location by ENSN is one-dimensional, the travel-time residuals will show lateral heterogeneity of the velocity structures and unmodeled vertical structures. Seismic activity is strong along the eastern and southern borders of the study area but low to moderate along the northern boundary and the Gulf of Suez to the west. The crustal Vp/Vs ratio is 1.74 from shallow (depth ≤ 10 km earthquakes and 1.76 from deeper (depth > 10 km crustal events. The majority of the regional and local travel-time residuals are positive relative to the Preliminary Reference Earth Model (PREM, implying that the seismic stations are located above widely distributed, tectonically-induced low-velocity zones. These low-velocity zones are mostly related to the local crustal faults affecting the sedimentary section and the basement complex as well as the rifting processes prevailing in the northern Red Sea region and the ascending of hot mantle materials along crustal fractures. The delineation of these low-velocity zones and the locations of big crustal earthquakes enable the identification of areas prone to intense seismotectonic activities, which should be excluded from major future development projects and large constructions in central and southern Sinai.

  4. Local atomic structural investigations of precursory phenomenon of the hydrogen release from LiAlD{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toyoto, E-mail: toyoto@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); Tomiyasu, Keisuke [Department of Physics, Tohoku University, 6-3 Aoba, Aoba-ku, Sendai 980-8578 (Japan); Ikeda, Kazutaka; Otomo, Toshiya [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Feygenson, Mikhail; Neuefeind, Jörg [Chemical and Engineering Materials Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Yamada, Kazuyoshi [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan)

    2014-02-15

    Highlights: • Local atomic structural changes in LiAlD{sub 4} were investigated. • The Li–D pair distribution started to broaden and shrink above 200–250 K. • The Al–D pair distribution remained nearly constant below 300 K. -- Abstract: Local atomic structural investigations of LiAlD{sub 4}, which is composed of Li{sup +} and [AlD{sub 4}]{sup −}, at 40–300 K were studied by total neutron scattering combined with pair distribution function (PDF) analysis for understanding of hydrogen release from LiAlD{sub 4}. The results showed that the Al–D pair distribution almost unchanged, while the Li–D pair distribution clearly started to broaden and shrink above 200–250 K. The shrinking of the Li–D pair distribution might lead to the local generation of LiD, which was speculated as the precursory phenomenon for the hydrogen release from LiAlD{sub 4}.

  5. Optimization of phosphorus localization by EFTEM of nucleic acid containing structures.

    Science.gov (United States)

    Quintana, C; Marco, S; Bonnet, N; Risco, C; Gutiérrez, M L; Guerrero, A; Carrascosa, J L

    1998-08-01

    Energy Filtered Transmission Electron Microscopy (EFTEM) has been used to study nucleic acids localization in unstained thin sections of virus-infected cells. For this purpose, phosphorus maps (P-maps) have been obtained by applying the N-windows Egerton model for background subtraction from data acquired by a non-dedicated TEM Jeol 1200EXII equipped with a post-column PEELS Gatan 666-9000 and a Gatan Image Filter (GIF-100). To prevent possible errors in the evaluation of elemental maps and thus incorrect nucleic acid localization, we have studied different regions of swine testis (ST) cells with similar local density containing either high concentration of nucleic acids (condensed chromatin and ribosomes) or a very low concentration (mitochondria). Special care was taken to optimize the sample preparation conditions to avoid as much as possible the traditional artifacts derived from this source. Selection of the best set of pre-edge images for background fitting was also considered in order to produce "true P-maps". A new software for interactive processing of images series has been applied to estimate this set. Multivariate Statistical Analysis was used as a filtering tool to separate the "useful information" present in the inelastic image series (characteristic signal) from the "non-useful information" (noise and acquisition artifacts). The reconstitution of the original image series preserving mainly the useful information allowed the computation of P-maps with improved signal-to-noise ratio (SNR). This methodology has been applied to study the RNA content of maturation intermediate coronavirus particles found inside infected cells.

  6. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    Science.gov (United States)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  7. A New Method of Color Edge Detection Based on Local Structure Analysis

    Institute of Scientific and Technical Information of China (English)

    JIANG Shu; ZHOU Yue; ZHU Wei-wei

    2008-01-01

    Human's real life is within a colorful world.Compared to the gray images, color images contain more information and have better visual effects.In today's digital image processing, image segmentation is an important section for computers to "understand" images and edge detection is always one of the most important methods in the field of image segmentation.Edges in color images are considered as local discontinuities both in color and spatial domains.Despite the intensive study based on integration of single-channel edge detection results, and on vector space analysis, edge detection in color images remains as a challenging issue.

  8. Damage localization in metallic plate structures using edge-reflected lamb waves

    Science.gov (United States)

    Ebrahimkhanlou, A.; Dubuc, B.; Salamone, S.

    2016-08-01

    This paper presents a model-based guided ultrasonic waves imaging algorithm, in which multiple ultrasonic echoes caused by reflections from the plate’s boundaries are leveraged to enhance imaging performance. An analytical model is proposed to estimate the envelope of scattered waves. Correlation between the estimated and experimental data is used to generate images. The proposed method is validated through experimental tests on an aluminum plate instrumented with three low profile piezoelectric transducers. Different damage conditions are simulated including through-thickness holes. Results are compared with two other imaging localization methods, that is, delay and sum and minimum variance.

  9. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-04-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties.

  10. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  11. Ssr analysis for genetic structure and diversity determination of maize local populations from former Yugoslavia territories.

    Science.gov (United States)

    Ignjatović-Micić, D; Drinić, S Mladenović; Nikolić, A; Lazić-Jancić, V

    2008-11-01

    A collection of 2178 local populations from ex-Yugoslavia territories is maintained in Maize Research Institute (MRI) gene bank. These populations were characterized mainly by morphological markers. In this work 21 local populations belonging to seven different agro-ecological groups have been subjected to SSR analysis using a DNA-pooling strategy. The objective of this work was to develop genetic fingerprints for characterization, identification and classification of the populations, as well as for estimation of their genetic diversity. Also, a DNA-pooling strategy was employed with the aim to certify if it could be applied for population analysis with SSR markers. Statistical analysis of 25 informative SSR primers revealing 224 alleles (bands) showed that the average within-population mean number of alleles was 2.55, the average values for total and within-population diversity were 0.784 and 0.502, respectively and G(ST) value was 0.360. Genetic distance values calculated using Modified Rogers' Distance were in the range from 0.35 to 0.60. The silver staining method of DNA used for bulked samples showed some weakness that could be overcome with a more sensitive staining method. Nevertheless, the results in this work indicate that the SSR analysis of bulks could be used for characterizing a large number of populations in gene banks.

  12. A Local Controller for Discrete-Time Large-Scale System by Using Integral Variable Structure Control

    Directory of Open Access Journals (Sweden)

    C. H. Chai

    2015-01-01

    Full Text Available A new local controller for discrete-time integral variable structure control of a large-scale system with matched and unmatched uncertainty is presented. The local controller is able to bring the large-scale system into stability by using only the states feedback from individual subsystem itself. A new theorem is established and proved that the controller is able to handle the effect of interconnection for the large-scale system with matched and unmatched uncertainty, and the system stability is ensured. The controller is able to control the system to achieve the quasi-sliding surface and remains on it. The results showed a fast convergence to the desired value and the attenuation of disturbance is achieved.

  13. Localized excitons in In sub x Ga sub 1 sub - sub x N/GaN quantum well structure

    CERN Document Server

    Ryu, M Y; Park, S W; Yu, P W; Oh, E S; Park, Y J; Park, H S; Kim, T I

    1998-01-01

    Photoluminescence (PL) photoreflectance (PR) have been employed to study the optical transitions of In sub x Ga sub 1 sub - sub x N/GaN quantum well (QW) structures grown by metal-organic chemical vapor deposition (MOCVD). The main Pl peak at 2.895 eV is attributed to the excitons localized at trap centers, which originate from the In-rich region within the well. Several emission bands on both sides of the main peak are attributed to the interference fringe effects and the recombination of excitons localized at several levels in the In sub 0 sub . sub 1 sub 8 sub 3 Ga sub 0 sub . sub 8 sub 1 sub 7 N well. The PL peak at 3.040 eV is ascribed to the lowest n=1 quantized transition which agrees well the calculated result.

  14. Investigations on the local structure and factors for the interstitial Ti3+ in TiO2

    Indian Academy of Sciences (India)

    L H Wei; S Y Wu; Z H Zhang; X F Wang; Y X Hu

    2008-07-01

    The EPR factors ( = , , ) for the interstitial Ti3+ in rutile are theoretically studied from the perturbation formulas of these parameters for a 3d1 ion in rhombically compressed octahedra. The ligand octahedron in the impurity center is found to be less compressed than that on the host interstitial site due to the Jahn–Teller effect. The local compression parameter (≈ 0.026) and the rhombic distortion angle ' (≈ 0.7°) around the impurity Ti3+ are smaller than the host values (≈ 0.091 and 3.5°). The theoretical factors based on the above local structural parameters are in good agreement with the experimental data. In addition, the factors for a tetragonal interstitial Ti3+ center are also reasonably interpreted.

  15. Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kirsten Bomblies

    2010-03-01

    Full Text Available As Arabidopsis thaliana is increasingly employed in evolutionary and ecological studies, it is essential to understand patterns of natural genetic variation and the forces that shape them. Previous work focusing mostly on global and regional scales has demonstrated the importance of historical events such as long-distance migration and colonization. Far less is known about the role of contemporary factors or environmental heterogeneity in generating diversity patterns at local scales. We sampled 1,005 individuals from 77 closely spaced stands in diverse settings around Tübingen, Germany. A set of 436 SNP markers was used to characterize genome-wide patterns of relatedness and recombination. Neighboring genotypes often shared mosaic blocks of alternating marker identity and divergence. We detected recent outcrossing as well as stretches of residual heterozygosity in largely homozygous recombinants. As has been observed for several other selfing species, there was considerable heterogeneity among sites in diversity and outcrossing, with rural stands exhibiting greater diversity and heterozygosity than urban stands. Fine-scale spatial structure was evident as well. Within stands, spatial structure correlated negatively with observed heterozygosity, suggesting that the high homozygosity of natural A. thaliana may be partially attributable to nearest-neighbor mating of related individuals. The large number of markers and extensive local sampling employed here afforded unusual power to characterize local genetic patterns. Contemporary processes such as ongoing outcrossing play an important role in determining distribution of genetic diversity at this scale. Local "outcrossing hotspots" appear to reshuffle genetic information at surprising rates, while other stands contribute comparatively little. Our findings have important implications for sampling and interpreting diversity among A. thaliana accessions.

  16. A semi-structured MODFLOW-USG model to evaluate local water sources to wells for decision support

    Science.gov (United States)

    Feinstein, Daniel T.; Fienen, Michael N.; Reeves, Howard W.; Langevin, Christian D.

    2016-01-01

    In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A “semi-structured” approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a).

  17. Local structure distortion and spin Hamiltonian parameters of oxide-diluted magnetic semiconductor Mn-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Yang Zi-Yuan

    2009-01-01

    The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn2+(3d5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zero-field splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman p-factors: g// and g⊥ and the energy differences of the ground state: δ1 and δ2 for Mn2+ in Mn2+: ZnO are in good agreement with experimental measurements when the three O2- ions below the Mn2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn2+ ions in Mn2+: ZnO crystals. It is found for Mn2+ ions in Mn2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO~SS~SOO~OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.

  18. Performance and scaling of locally-structured grid methods for partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Bell, John; Keen, Noel; Ligocki, Terry; Lijewski, Michael; Straalen, Brian van [Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2007-07-15

    In this paper, we discuss some of the issues in obtaining high performance for block-structured adaptive mesh refinement software for partial differential equations. We show examples in which AMR scales to thousands of processors. We also discuss a number of metrics for performance and scalability that can provide a basis for understanding the advantages and disadvantages of this approach.

  19. Absence of quantized energy-states local diffusion in semiconductor quantum-dash structures

    KAUST Repository

    Tan, Cheeloon

    2010-01-01

    We present an analysis of InAs/InAlGaAs/InP quantum-dash structures utilizing different degrees of postgrowth-lattice-disordering. The observation of digital transitions among quantized states discards the origins of multiple excited states from a single group of dash ensembles.

  20. Structure of the ATP synthase from chloroplasts studied by electron microscopy. Localization of the small subunits

    NARCIS (Netherlands)

    Boekema, Egbert J.; Xiao, Jianping; McCarty, Richard E.

    1990-01-01

    The structure of the hydrophilic part of the ATP synthase from chloroplasts (CF1) has been further investigated by electron microscopy and image analysis of negatively stained samples. The projections of three different types of CF1 were analyzed: the holoenzyme with five different subunits and two

  1. Local scour at roundhead and along the trunk of low crested structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Fredsøe, Jørgen; Lamberti, Alberto;

    2005-01-01

    not exhibit the pattern experienced in the case of emerged breakwaters where the scour and deposition areas are bcorrelatedQ with the nodal and antinodal points of the standing wave in front of the structure. Furthermore, it was found that scour occurs not only at the offshore side of the breakwater but also...

  2. Structuring the Administrative Organization of Local School Systems. Educational Research Service Circular No. 2.

    Science.gov (United States)

    American Association of School Administrators, Washington, DC.

    This paper is intended to assist school administrators in improving existing school organizations. It discusses the nature of organizations, provides indicators of reorganization timing, and discusses the task of reorganization. A matrix chart, used to analyze and compare different organizational structures, is provided with explanations.…

  3. Asymptotic Near Nucleus Structure of the Electron-Interaction Potential in Local Effective Potential Theories

    Science.gov (United States)

    Sahni, Viraht; Qian, Zhixin

    2007-03-01

    In previous work, it has been shown that for spherically symmetric or sphericalized systems, the asymptotic near nucleus structure of the electron-interaction potential is vee(r) = vee(0) + βr + γr^2. In this paper we prove via time-independent Quantal Density Functional Theory[1](Q-DFT): (i) correlations due to the Pauli exclusion principle and Coulomb repulsion do not contribute to the linear structure;(ii) these Pauli and Coulomb correlations contribute quadratically; (iii) the linear structure is solely due to Correlation-Kinetic effects, the coefficient β being determined analytically. By application of adiabatic coupling constant perturbation theory via QDFT we further prove: (iv) the Kohn-Sham (KS-DFT) `exchange' potential vx(r) approaches the nucleus linearly, this structure being due solely to lowest- order Correlation-Kinetic effects: (v) the KS-DFT `correlation' potential vc(r) also approaches the nucleus linearly, being solely due to higher-order Correlation-Kinetic contributions. The above conclusions are equally valid for system of arbitrary symmetry, provided spherical averages of the properties are employed. 1 Quantal Density Functional Theory, V. Sahni (Springer-Verlag 2004)

  4. Science Inquiry into Local Animals: Structure and Function Explored through Model Making

    Science.gov (United States)

    Rule, Audrey C.; Tallakson, Denise A.; Glascock, Alex L.; Chao, Astoria

    2015-01-01

    This article describes an arts- and spatial thinking skill--integrated inquiry project applied to life science concepts from the Next Generation Science Standards for fourth grade students that focuses on two unifying or crosscutting themes: (1) structure (or "form") and function and (2) use of models. Students made observations and…

  5. Characterizing the relationship between hyperstoichiometry, defect structure and local corrosion kinetics of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    He Heming; Qin, Z. [Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.c [Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7 (Canada)

    2010-12-15

    The ability of the UO{sub 2} fluorite structure to accommodate large amounts of interstitial oxygen in various lattice sites leads to the formation of hyper-stoichiometric phases. The defect structures occurring in hyper-stoichiometric UO{sub 2+x} over the range 0.02 {<=} x {<=} 0.1 have been characterized by SEM/EDX and Raman analyses. The results demonstrate that as the nominal stoichiometry increases from 2.002 to 2.1, the diversity of defective structures existing on the UO{sub 2+} surface also increases. Scanning electrochemical microscopy (SECM) measurements combined with a theoretical model were used to determine the rate constant for the reduction of the redox mediator ferrocene methanol, acting as a cathodic oxidant to corrode the four UO{sub 2+x} specimens. The rate constant was found to vary with location on the surface. Stoichiometric locations, with a well defined fluorite structure, exhibited very low corrosion rates. Higher rates were observed at more non-stoichiometric locations with the highest rates being obtained on locations exhibiting tetragonal distortions as their composition approached UO{sub 2.33}. The distribution of rates increases with the degree of nominal non-stoichiometry as the diversity of microstructures existing on the UO{sub 2+x} surface increases.

  6. Localized structures and front propagation in the Lengyel-Epstein model

    DEFF Research Database (Denmark)

    Jensen, O.; Pannbacker, Viggo Ole; Mosekilde, Erik

    1994-01-01

    behind a traveling front. The speed of propagation for a front between the homogeneous steady state and a one-dimensional (ID) Turing structure is obtained. This velocity shows a characteristic change in behavior at the crossover between the subcritical and supercritical regimes for the Turing...

  7. Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Sadan [SNTG Laboratory, Department of Physics Engineering, Hacettepe University, 06800 Ankara (Turkey); Rumaiz, Abdul K. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States); Caliskan, Deniz [Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Ozbay, Ekmel [Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey); Woicik, J. C. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2015-03-14

    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600 °C for 30, 60, and 90 s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27 nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA.

  8. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    Energy Technology Data Exchange (ETDEWEB)

    Del Ben, Mauro, E-mail: delben@chem.uzh.ch; Hutter, Jürg, E-mail: hutter@chem.uzh.ch [Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch [Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2015-08-07

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.

  9. Structure of Eigenstates and Local Spectral Density of States A Three-Orbital Schematic Shell Model

    CERN Document Server

    Wang, W; Casati, G; Wang, Wen-ge

    1998-01-01

    The average shape of the Spectral Local Density of States (LDOS) and eigenfunctions (EFs) has been studied numerically for a conservative dynamical model (three-orbital Lipkin-Meshkov-Glick model) which can exhibit strong chaos in the classical limit. The attention is paid to the comparison of the shape of LDOS with that known for random matrix models, as well as to the shape of the EFs, for different values of the perturbation strength. The classical counterparts of the LDOS has also been studied and found in a remarkable agreement with the quantum calculations. Finally, by making use of a generalization of Brillouin- Wigner perturbation expansion, the form of long tails of LDOS and EFs is given analytically and confirmed numerically.

  10. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

    Directory of Open Access Journals (Sweden)

    M. Réjou-Méchain

    2014-04-01

    Full Text Available Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+. Though broad scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass (AGB at spatial grains ranging from 5 to 250 m (0.025–6.25 ha, and we evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that the spatial sampling error in AGB is large for standard plot sizes, averaging 46.3% for 0.1 ha subplots and 16.6% for 1 ha subplots. Topographically heterogeneous sites showed positive spatial autocorrelation in AGB at scales of 100 m and above; at smaller scales, most study sites showed negative or nonexistent spatial autocorrelation in AGB. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGB leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with current statistical methods. Overall, our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.

  11. The spatial structure of hunter access determines the local abundance of forest elephants (Loxodonta africana cyclotis).

    Science.gov (United States)

    Yackulic, Charles B; Strindberg, Samantha; Maisels, Fiona; Blake, Stephen

    2011-06-01

    In many previously remote regions in the world, increasing and often unregulated access is leading to dramatic increases in hunting pressure and declines in the densities of prey species, sometimes to the point of local extinction. Not surprisingly, numerous studies have found a correlation between the distance to the closest access point and prey densities. Here we hypothesized that, for many wide-ranging species, local abundances are reduced by hunting associated with multiple access points as opposed to just the closest access points. We also hypothesized that the distribution of hunter access determines both patterns of occupancy and abundance in occupied areas and that these two patterns (occupancy and abundance) respond to access at different spatial scales. Using data on the distribution of abundances of African forest elephant (Loxodonta africana cyclotis) in and around five national parks in Central Africa, we tested these hypotheses using a model comparison framework. We found that models including an index based on the distance to multiple roads outperformed models including other access-based covariates, including a model based on distance to the closest road only. We also found that models that allowed us to model occupancy and abundance separately outperformed simpler models. Occupancy responds to access at the same scale as previous estimates of average maximum displacement in the subspecies, while the scale of the response of abundance is more ambiguous, but appears to be greater. Lastly, we show that incorporating indices based on multiple access points and modeling abundance and occupancy has important practical consequences for our understanding of overall regional abundances and the distribution of abundances within regions.

  12. TiO{sub 2} nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H., E-mail: lhlewis@neu.edu [Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Luo, Si [Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 and Department of Chemistry, SUNY Stony Brook, Stony Brook, New York 117944 (United States); Heiman, Don; Menon, Latika [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Arena, Dario A. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-03-15

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO{sub 2} nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O{sub 2} (oxidizing), Ar (inert), and H{sub 2} (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO{sub 2} nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (∼5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO{sub 2} nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H{sub 2}-annealed nanotubes than with the Ar- and O{sub 2}-annealed nanotube samples. This enhanced photocatalytic response of the H{sub 2}-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti{sup 3+} and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the

  13. Temporal expression and immunogold localization of Plodia interpunctella granulosis virus structural proteins

    Science.gov (United States)

    Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Monospecific antisera were produced against four structural proteins (VP12, VP17, VP31, and granulin) of the Plodia interpunctella granulosis virus using polypeptides derived by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or acid extraction. The antisera were shown to be specific on immunoblots of SDS-PAGE separated granulosis virus and were further used to detect structural proteins in infected fat body lysates. Immunoblots of fat body lysates from early stages of infection indicated that VP12, VP17, VP31, and granulin were expressed by 2.5 days post-infection. Immunogold labeling of the virus using the monospecific antisera and electron microscopy confirmed earlier reports that granulin is located in the protein matrix, V17 is an envelope protein, and VP31 is a capsid protein.

  14. Band Structure Calculation of Si and Ge by Non-Local Empirical Pseudo-Potential Technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong; RAVAIOLI Umberto

    2005-01-01

    In this paper, the princ iple of spatial nonlocal empirical pseudopotential and its detailed calculation procedure is presented. Consequently, this technique is employed to calculate the band structuresof Silicon and Germaniun. By comparing the results with photoemission experimental data, the validity and accuracy of this calculation are fully conformed for valence or conductance band,respectively. Thus it can be concluded that the spin-orbit Hamiltonian will only affect the energy band gap and another conductance or valence band structure. Therefore, this nonlocal approach without spin-orbit part is adequate for the device simulation of only one carrier transport such as metal oxide semiconductor field effect transistors (MOSFET)'s, and it can significantly reduce the complication of band structure calculation.

  15. LoCo: a novel main chain scoring function for protein structure prediction based on local coordinates

    Directory of Open Access Journals (Sweden)

    Samudrala Ram

    2011-09-01

    Full Text Available Abstract Background Successful protein structure prediction requires accurate low-resolution scoring functions so that protein main chain conformations that are close to the native can be identified. Once that is accomplished, a more detailed and time-consuming treatment to produce all-atom models can be undertaken. The earliest low-resolution scoring used simple distance-based "contact potentials," but more recently, the relative orientations of interacting amino acids have been taken into account to improve performance. Results We developed a new knowledge-based scoring function, LoCo, that locates the interaction partners of each individual residue within a local coordinate system based only on the position of its main chain N, Cα and C atoms. LoCo was trained on a large set of experimentally determined structures and optimized using standard sets of modeled structures, or "decoys." No structure used to train or optimize the function was included among those used to test it. When tested against 29 other published main chain functions on a group of 77 commonly used decoy sets, our function outperformed all others in Cα RMSD rank of the best-scoring decoy, with statistically significant p-values Conclusions Our function demonstrates an unmatched combination of accuracy, speed, and simplicity and shows excellent promise for protein structure prediction. Broader applications may include protein-protein interactions and protein design.

  16. Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsas, N.L. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Horikis, T.P. [Department of Mathematics, University of Ioannina, Ioannina 45110 (Greece); Shen, Y.; Kevrekidis, P.G.; Whitaker, N. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J., E-mail: dfrantz@phys.uoa.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)

    2010-03-01

    We consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Two short-pulse equations (SPEs) are derived for the high- and low-frequency 'band gaps' (where linear electromagnetic waves are evanescent) with linear effective permittivity epsilon<0 and permeability mu>0. The structure of the solutions of the SPEs is also briefly discussed, and connections with the soliton solutions of the nonlinear Schroedinger equation are made.

  17. Total scattering investigation of materials for clean energy applications: the importance of the local structure.

    Science.gov (United States)

    Malavasi, Lorenzo

    2011-04-21

    In this Perspective article we give an account of the application of total scattering methods and pair distribution function (PDF) analysis to the investigation of materials for clean energy applications such as materials for solid oxide fuel cells and lithium batteries, in order to show the power of this technique in providing new insights into the structure-property correlation in this class of materials.

  18. Flaws detection and localization in weld structure using the topological energy method

    Science.gov (United States)

    Lubeigt, Emma; Mensah, Serge; Rakotonarivo, Sandrine; Chaix, Jean-François; Gobillot, Gilles; Baqué, François

    2017-02-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity and safety of critical structures in a nuclear reactor. The bedspring and the deck are complex welded structures of very restricted access; the ability to reliably detect and locate defects like cracks is therefore a difficult challenge. Ultrasonic testing is a well-recognized non-invasive technique which exhibits high characterization performances in homogeneous media (steel). However, its capabilities are hampered when operating in heterogeneous and anisotropic austenitic welds because of deviation and splitting of the ultrasonic beam. In order to rise to this important challenge, a model-based method is proposed, which takes into account a prior knowledge corresponding to the welding procedure specifications that condition the austenitic grains orientation within the weld and thus the wave propagation. The topological imaging method implemented is a differential approach which, compares signals from the reference defect-free medium to the inspected medium. It relies on combinations of two computed ultrasonic fields, one forward and one adjoint. Numerical simulations and experiments have been carried out to validate the practical relevance of this approach to detect and locate a flaw in a weld.

  19. Variation of local atomic structure due to devitrification of Ni-Zr alloy thin films probed by EXAFS measurements

    Science.gov (United States)

    Bhattacharya, Debarati; Tiwari, Nidhi; Bhattacharyya, Dibyendu; Jha, S. N.; Basu, S.

    2016-05-01

    Thin film metallic glasses (TFMGs) exhibit properties superior to their bulk counterparts allowing them to be potentially useful in many practical applications. Apart from their technological interest, when converted to crystallized state (devitrification) TFMGs can also act as precursors for partially crystallized or fully crystallized forms. Such devitrified forms are attractive due to their novel structural and magnetic properties. The amorphous-to-crystalline transformation of co-sputtered Ni-Zr alloy thin films through annealing was studied using EXAFS (Extended X-ray Absorption Fine Structure) measurements. Investigation through an atomic probe gives a better insight into the local environment of the atomic species, rendering a deeper understanding of thermal evolution of such materials.

  20. Turbulent intermittent structure in non-homogeneous non-local flows

    Science.gov (United States)

    Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.

    2010-05-01

    Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on intermittency [1]. Standard instrumentation, 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) were available in September 1998 and calculations are done in order to evaluate structure functions and the scale to scale characteristics. Using BDF [2-4] as well as other models of cascades, the spectral equilibrium values were used to calculate fluxes of momentum and heat as well as non-homogeneous models and the turbulent mixing produced. The differences in structure and higher order moments between stable, convective and neutral turbulence were used to identify differences in turbulent intermittent mixing and velocity PDF's. The intermittency of atmospheric turbulence in strongly stable situations affected by buoyancy and internal waves are seen to modify the structure functions exponents and intermittency, depending on the modulus of the Richardson's number,Ri, as well as of the Monin-Obukhov and Ozmidov lengthscales. The topological aspects of the turbulence affected by stratification reduce the vertical length-scales to a maximum described by the Thorpe and the Ozmidov lenth-scales, but intermittency, Kurtosis and other higher order descriptors of the turbulence based on spectral wavelet analysis are also affected in a complex way [5,6]. The relationship between stratification, intermittency, µ(Ri) and the fractal dimension of the stable flows and between the dispersion, the fractal dimension are discussed. The data analyzed is from the campaign SABLES-98 at the north-west Iberian Peninsula plateau.(Cuxart et al. 2000). Conditional statistics of the relationship between µ(Ri) are confirmed as in (Vindel et al 2008)[4] and compared with laboratory experiments and with 2D-3D aspects of the turbulence cascade. The use of BDF [3] model comparing the corresponding relative scaling exponents which are