WorldWideScience

Sample records for burst x-ray flares

  1. Coronal type III radio bursts and their X-ray flare and interplanetary type III counterparts

    CERN Document Server

    Reid, Hamish A S

    2016-01-01

    Type III bursts and hard X-rays are both produced by flare energetic electron beams. The link between both emissions has been investigated in many previous studies, but no statistical studies have compared both coronal and interplanetary type III bursts with X-ray flares. Using coronal radio events above 100 MHz exclusively from type III bursts, we revisited long-standing questions: Do all coronal type III bursts have X-ray counterparts. What correlation, if any, occurs between radio and X-ray intensities. What X-ray and radio signatures above 100 MHz occur in connection with interplanetary type III bursts below 14 MHz. We analysed data from 2002 to 2011 starting with coronal type III bursts above 100 MHz. We used RHESSI X-ray data greater than 6 keV to make a list of 321 events that have associated type III bursts and X-ray flares, encompassing at least 28 percent of the initial sample of type III events. We examined the timings, intensities, associated GOES class, and any interplanetary radio signature. For...

  2. Self-organized criticality in X-ray flares of gamma-ray burst afterglows

    CERN Document Server

    Wang, F Y

    2013-01-01

    X-ray flares detected in nearly half of gamma-ray burst (GRB) afterglows are one of the most intriguing phenomena in high-energy astrophysics. All the observations indicate that the central engines of bursts, after the gamma-ray emission has ended, still have long periods of activity, during which energetic explosions eject relativistic materials, leading to late-time X-ray emission. It is thus expected that X-ray flares provide important clues to the nature of the central engines of GRBs, and more importantly, unveil the physical mechanism of the flares themselves, which has so far remained mysterious. Here we report statistical results of X-ray flares of GRBs with known redshifts, and show that X-ray flares and solar flares share three statistical properties: power-law frequency distributions for energies, durations, and waiting times. All of the distributions can be well understood within the physical framework of a self-organized criticality (SOC) system. The statistical properties of X-ray flares of GRBs...

  3. Comprehensive study of the X-ray flares from gamma-ray bursts observed by Swift

    CERN Document Server

    Yi, Shuang-Xi; Yu, Hai; Wang, F Y; Mu, Hui-Jun; Lv, Lian-Zhong; Liang, En-Wei

    2016-01-01

    X-ray flares are generally supposed to be produced by the later central engine activities, and may share the similar physical origin with prompt emission of gamma-ray bursts (GRBs). In this paper, we have analyzed all significant X-ray flares from the GRBs observed by {\\em Swift} from April 2005 to March 2015. The catalog contains 468 bright X-ray flares, including 200 flares with redshifts. We obtain the fitting results of X-ray flares, such as start time, peak time, duration, peak flux, fluence, peak luminosity, and mean luminosity. The peak luminosity decreases with peak time, following a power-law behavior $L_p \\propto T_{peak,z}^{-1.27}$. The flare duration increases with peak time. The 0.3-10 keV isotropic energy of X-ray flares distribution is a lognormal peaked at $10^{51.2}$ erg. We also study the frequency distributions of flare parameters, including energies, durations, peak fluxes, rise times, decay times and waiting times. Power-law distributions of energies, durations, peak fluxes, and waiting t...

  4. Models for Flare Statistics and the Waiting-time Distribution of Solar Flare Hard X-ray Bursts

    Science.gov (United States)

    Wheatland, M. S.; Edney, S. D.

    1999-12-01

    In a previous study (Wheatland, Sturrock, McTiernan 1998), a waiting-time distribution was constructed for solar flare hard X-ray bursts observed by the ICE/ISEE-3 spacecraft. A comparison of the observed distribution with that of a time-dependent Poisson process indicated an overabundance of short waiting times (10~s -- 10~min), implying that the hard X-ray bursts are not independent events. Models for flare statistics assume or predict that flares are independent events -- in particular the avalanche model makes this specific prediction. The results of the previous study may be reconciled with the avalanche picture if individual flares produce several distinct bursts of hard X-ray emission. A detailed comparison of the avalanche model and the ICE/ISEE-3 waiting-time distribution is presented here.

  5. Modeling Gamma-Ray Burst X-Ray Flares within the Internal Shock Model

    CERN Document Server

    Maxham, Amanda

    2009-01-01

    X-ray afterglow light curves have been collected for over 400 Swift gamma-ray bursts with nearly half of them having X-ray flares superimposed on the regular afterglow decay. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We pay special attention to the time history of central engine activity, internal shocks, and observed flares, but do not calculate the shock dynamics and radiation processes in detail. Using the empirical E_p - E_iso (Amati) relation with an assumed Band function spectrum for each collision and an empirical flare temporal pr...

  6. Modeling Gamma-Ray Burst X-Ray Flares Within the Internal Shock Model

    Science.gov (United States)

    Maxham, Amanda; Zhang, Bing

    2009-12-01

    X-ray afterglow light curves have been collected for over 400 Swift gamma-ray bursts (GRBs) with nearly half of them having X-ray flares superimposed on the regular afterglow decay. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge, and spread, producing prompt emission and X-ray flares. We pay special attention to the time history of central engine activity, internal shocks, and observed flares, but do not calculate the shock dynamics and radiation processes in detail. Using the empirical Ep -E iso (Amati) relation with an assumed Band function spectrum for each collision and an empirical flare temporal profile, we calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary central engine activity and compare the model results with the observational data. We show that the observed X-ray flare phenomenology can be explained within the internal shock model. The number, width, and occurring time of flares are then used to diagnose the central engine activity, putting constraints on the energy, ejection time, width, and number of ejected shells. We find that the observed X-ray flare time history generally reflects the time history of the central engine, which reactivates multiple times after the prompt emission phase with progressively reduced energy. The same shell model predicts an external shock X-ray afterglow component, which has a shallow decay phase due to the initial pile-up of shells onto the blast wave. However, the predicted X-ray afterglow is too bright as compared with the observed flux level, unless epsilon e is

  7. On the average Gamma-Ray Burst X-ray flaring activity

    CERN Document Server

    Margutti, R; Duran, R Barniol; Guidorzi, C; Shen, R F; Chincarini, G

    2010-01-01

    Gamma-ray burst X-ray flares are believed to mark the late time activity of the central engine. We compute the temporal evolution of the average flare luminosity $$ in the common rest frame energy band of 44 GRBs taken from the large \\emph{Swift} 5-years data base. Our work highlights the importance of a proper consideration of the threshold of detection of flares against the contemporaneous continuous X-ray emission. In the time interval $30 \\rm{s}\\propto t^{-2.7\\pm 0.1}$; this implies that the flare isotropic energy scaling is $E_{\\rm{iso,flare}}\\propto t^{-1.7}$. The decay of the continuum underlying the flare emission closely tracks the average flare luminosity evolution, with a typical flare to steep-decay luminosity ratio which is $L_{\\rm{flare}}/L_{\\rm{steep}}=4.7$: this suggests that flares and continuum emission are deeply related to one another. We infer on the progenitor properties considering different models. According to the hyper-accreting black hole scenario, the average flare luminosity scali...

  8. Multiple Plasmoid Ejections and Associated Hard X-ray Bursts in the 2000 November 24 Flare

    CERN Document Server

    Nishizuka, N; Asai, A; Shibata, K; 10.1088/0004-637X/711/2/1062

    2013-01-01

    The Soft X-ray Telescope (SXT) on board Yohkoh revealed that the ejection of X-ray emitting plasmoid is sometimes observed in a solar flare. It was found that the ejected plasmoid is strongly accelerated during a peak in the hard X-ray emission of the flare. In this paper we present an examination of the GOES X 2.3 class flare that occurred at 14.51 UT on 2000 November 24. In the SXT images we found multiple plasmoid ejections with velocities in the range of 250-1500 km/s, which showed blob-like or loop-like structures. Furthermore, we also found that each plasmoid ejection is associated with an impulsive burst of hard X-ray emission. Although some correlation between plasmoid ejection and hard X-ray emission has been discussed previously, our observation shows similar behavior for multiple plasmoid ejection such that each plasmoid ejection occurs during the strong energy release of the solar flare. As a result of temperature-emission measure analysis of such plasmoids, it was revealed that the apparent veloc...

  9. A common stochastic process rules gamma-ray burst prompt emission and X-ray flares

    CERN Document Server

    Guidorzi, C; Frontera, F; Margutti, R; Baldeschi, A; Amati, L

    2015-01-01

    Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt gamma-rays. However, the physical mechanism that leads to the complex temporal distribution of gamma-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over 4 decades with index ~2 and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (>=8) gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1 sigma Gaussian confidence). These results are consistent with a simple interpretation: an hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same pro...

  10. Numbers of Electrons in Solar Flares as Deduced from Microwave and X-Ray Bursts

    Institute of Scientific and Technical Information of China (English)

    YU Xing-Feng; YAO Jin-Xing

    2001-01-01

    We discuss whether the numbers of x-ray and radio-produced electrons in solar flares are the same. The number of radio-produced electrons that is estimated with an inhomogeneous source increases by a factor of 103 - 104because of the inhomogeneity and the decreased magnetic field (B = 120 G) of the radio source. The number of x-ray-produced electrons decreases by a factor of 10 - 30 due to the increase of the number density of ions (3 × 1010 cm-3). These are the reasons why the number of radio-produced electrons is approximately equal tothat of x-ray-produced electrons in the 1981 April 27 burst.

  11. X-ray flares of γ-ray bursts: Quakes of solid quark stars?

    Institute of Scientific and Technical Information of China (English)

    XU RenXin; LIANG EnWei

    2009-01-01

    A star-quake model is proposed to understand X-ray flares of both long and short γ-ray bursts (GRBs) in a solid quark star regime. Two kinds of central engines for GRBs are available if pulsar-like stars are actually (solid) quark stars, I.e., the SNE-type GRBs and the SGR-type GRBs. It is found that a quark star could be solidified about 103 to 106 s later after its birth if the critical temperature of phase transi-tion is a few Metga-electron-volts, and then s new source of free energy (I.e., elastic and gravitational ones, rather than rotational or magnetic energy) could be possible to power GRB X-ray flares.

  12. X-ray flares of γ-ray bursts: Quakes of solid quark stars?

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A star-quake model is proposed to understand X-ray flares of both long and short γ-ray bursts (GRBs) in a solid quark star regime. Two kinds of central engines for GRBs are available if pulsar-like stars are actually (solid) quark stars, i.e., the SNE-type GRBs and the SGR-type GRBs. It is found that a quark star could be solidified about 103 to 106 s later after its birth if the critical temperature of phase transi- tion is a few Metga-electron-volts, and then a new source of free energy (i.e., elastic and gravitational ones, rather than rotational or magnetic energy) could be possible to power GRB X-ray flares.

  13. The Low-High-Low Trend of Type III Radio Burst Starting Frequencies and Solar Flare Hard X-rays

    CERN Document Server

    Reid, Hamish A S; Kontar, Eduard P

    2014-01-01

    Using simultaneous X-ray and radio observations from solar flares, we investigate the link between the type III radio burst starting frequency and hard X-ray spectral index. For a proportion of events the relation derived between the starting height (frequency) of type III radio bursts and the electron beam velocity spectral index (deduced from X-rays) is used to infer the spatial properties (height and size) of the electron beam acceleration region. Both quantities can be related to the distance travelled before an electron beam becomes unstable to Langmuir waves. To obtain a list of suitable events we considered the RHESSI catalogue of X-ray flares and the Phoenix 2 catalogue of type III radio bursts. From the 200 events that showed both type III and X-ray signatures, we selected 30 events which had simultaneous emission in both wavelengths, good signal to noise in the X-ray domain and > 20 seconds duration. We find that > 50 % of the selected events show a good correlation between the starting frequencies ...

  14. The influence of the energy emitted by solar flare soft X-ray bursts on the propagation of their associated interplanetary shock waves

    Science.gov (United States)

    Pinter, S.; Dryer, M.

    1985-01-01

    The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.

  15. Joint Spectral Analysis for Early Bright X-ray Flares of -Ray Bursts with Swift BAT and XRT Data

    Indian Academy of Sciences (India)

    Fang-Kun Peng; You-Dong Hu; Xiang-Gao Wang; Rui-Jing Lu; En-Wei Liang

    2014-09-01

    A joint spectral analysis for early bright X-ray flares that were simultaneously observed with Swift BAT and XRT are present. Both BAT and XRT lightcurves of these flares are correlated. Our joint spectral analysis shows that the radiations in the two energy bands are from the same spectral component, which can be well fitted with a single power-law. Except for the flares in GRBs 060904B and 100906A, the photon spectral indices are < 2.0, indicating the peak energies (p) of the prompt -rays should be above the high energy end of the BAT band.

  16. Astrophysics: Unexpected X-ray flares

    Science.gov (United States)

    Campana, Sergio

    2016-10-01

    Two sources of highly energetic flares have been discovered in archival X-ray data of 70 nearby galaxies. These flares have an undetermined origin and might represent previously unknown astrophysical phenomena. See Letter p.356

  17. X-ray and optical bursts and flares in YSOs: results from a 5-day XMM-Newton monitoring campaign of L1551

    CERN Document Server

    Giardino, G; Micela, G; Reale, F; Sciortino, S; Silva, B

    2006-01-01

    We present the results of a five-day monitoring campaign with XMM-Newton of six X-ray bright young stellar objects (YSOs) in the star-forming complex L1551 in Taurus. All stars present significant variability on the five-day time scale. Modulation of the light curve on time scales comparable with the star's rotational period appeared to be present in the case of one weak-lined T Tauri star. Significant spectral variations between the 2000 and the 2004 observations were detected in the (unresolved) classical T Tauri binary system XZ Tau: a hot plasma component which was present in the X-ray spectrum in 2000 had significantly weakened in 2004. As XZ Tau N was undergoing a strong optical outburst in 2000, which had terminated since then, we speculate on the possible relationship between episodic, burst accretion, and X-ray heating. The transition object HL Tau underwent a strong flare with a complex temperature evolution, which is indicative of an event confined within a very large magnetic structure (few stella...

  18. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    Rajmal Jain; Malini Aggarwal; Raghunandan Sharma

    2008-03-01

    Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.

  19. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    B. Sylwester; J. Sylwester; K. J. H. Phillips

    2008-03-01

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a number of individual spectral lines have been obtained. The analysis of these lines allows us to follow the evolution of important thermodynamic parameters characterizing the emitting plasma throughout this flare evolution.

  20. A Burst Chasing X-ray Polarimeter

    Science.gov (United States)

    Hill, Joanne

    2007-01-01

    This viewgraph presentation reviews the rationale, design, and importance of an X-Ray Polarimeter. There is a brief discussion of Gamma Ray Bursts, followed by a review of the theories of Gamma-Ray Bursts Polarization. This leads to the question of "How do we measure the polarization?" and a discussion of the GRB x-ray emission, the photoelectric effect and photoelectric polarimetry. The requirements for the work, can only be approached using a gas detector. This leads to a discussion of a Micropattern Gas Polarimeter, and the Time-Projection Chamber (TPC) X-ray Polarimeter.

  1. Short-living Supermassive Magnetar Model for the Early X-ray Flares Following Short GRBs

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong Gao; Yi-Zhong Fan

    2006-01-01

    We suggest a short-lived supermassive magnetar model to account for the X-ray flares following short γ-ray bursts. In this model the central engine of the short γ-ray bursts is a supermassive millisecond magnetar, formed in coalescence of double neutron stars. The X-ray flares are powered by the dipole radiation of the magnetar. When the magnetar has lost a significant part of its angular momentum, it collapses to a black hole and the X-ray flares cease abruptly.

  2. K alpha line emission during solar X-ray bursts

    Science.gov (United States)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    The expected flux of K alpha line emission from sulfur, argon, calcium, and iron is calculated during both thermal and nonthermal solar X-ray events. Such emission is shown to be weak during the course of most of the nonthermal hard X-ray bursts that Kane and Anderson (1970) have observed. If Compton backscattering is significant at high energies, the flux is reduced still further for disk flares, but it is noted that the strong, near-limb burst of June 26 would have produced about 100 photons /sq cm/sec of sulfur and iron K alpha emission. The impulsive hard X-ray bursts may in general be too short-lived for much K alpha emission. It may be noted that sulfur K alpha emission in particular depends sensitively on the lower-energy limit of the nonthermal electron spectrum, assuming such a sharply defined boundary exists. During soft X-ray bursts, when temperatures of a few 10 to the 7th power K are obtained, K alpha emission from certain iron ions, specifically Fe XVIII-XXIII, may be important.

  3. Evidence of Bulk Acceleration of the GRB X-Ray Flare Emission Region

    Science.gov (United States)

    Uhm, Z. Lucas; Zhang, Bing

    2016-06-01

    Applying our recently developed generalized version of the high-latitude emission theory to the observations of X-ray flares in gamma-ray bursts (GRBs), here we present clear observational evidence that the X-ray flare emission region is undergoing rapid bulk acceleration as the photons are emitted. We show that both the observed X-ray flare light curves and the photon index evolution curves can be simultaneously reproduced within a simple physical model invoking synchrotron radiation in an accelerating emission region far from the GRB central engine. Such an acceleration process demands an additional energy dissipation source other than kinetic energy, which points toward a significant Poynting flux in the emission region of X-ray flares. As the X-ray flares are believed to share a similar physical mechanism as the GRB prompt emission, our finding here hints that the GRB prompt emission jets may also carry a significant Poynting flux in their emitting region.

  4. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels;

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  5. Analysis of ultraviolet and X-ray observations of three homologous solar flares from SMM

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1987-01-01

    Three homologous flares observed in the UV lines of Fe XXI and O V and in X-rays from the SMM were studied. It was found that: (1) the homology of the flares was most noticeable in Fe XXI and soft X-ray emissions; (2) the three flares shared many of the same loop footprints which were located in O V bright kernals associated with hard X-ray bursts; and (3) in spite of the strong spatial homology, the temporal evolution in UV and X-ray emissions varied from flare to flare. A comparison between the UV observations and photospheric magnetograms revealed that the basic flare configuration was a complex loop system consisting of many loops or bundles of loops.

  6. On the X-Ray emission of Gamma Ray Bursts

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro

    2007-01-01

    Recent data gathered and triggered by the SWIFT satellite have greatly improved our knowledge of long-duration gamma ray bursts (GRBs) and X-ray flashes (XRFs). This is particularly the case for the X-ray data at all times. We show that the entire X-ray observations are in excellent agreement with the predictions of the `cannonball' model of GRBs and XRFs, which are based on simple physics and were published long before the launch of SWIFT. Two mechanisms underlie these predictions: inverse Compton scattering and synchrotron radiation, generally dominant at early and late times, respectively. The former mechanism provides a unified description of the gamma-ray peaks, X-ray flares and even the optical `humps' seen in some favourable cases; i.e. their very different durations, fluxes and peak-times are related precisely as predicted. The observed smooth or bumpy fast decay of the X-ray light curve is correctly described case-by-case, in minute detail. The `canonical' X-ray plateau, as well as the subsequent gra...

  7. Burst Detector X-Ray IIR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Burst Detector X-Ray (BDX) instrument for the Block IIR series of Global Positioning System satellites is described. The BDX instrument can locate and characterize exoatmospheric nuclear detonations by using four sensors consisting of sets of filters over silicon diodes to detect x rays of various energies from the burst. On the BDX-IIR, a fifth sensor with a response spanning those of the other sensors confirms coincidences among the four main channels. The mechanical and electronic features of the BDX-IIR and its sensors are described. The calibrations and the system tests used in flight are presented. The commands for the BDX-IIR are given. The messages sent from the BDX-IIR are described in detail.

  8. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    Science.gov (United States)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  9. Stereoscopic observations of a solar flare hard X-ray source in the high corona

    Science.gov (United States)

    Kane, S. R.; Mctiernan, J.; Loran, J.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.

    1992-01-01

    The vertical structure of the impulsive and gradual hard X-ray sources in high coronae and the characteristics of the impulsive soft X-ray emission are investigated on the basis of PVE, ICE, and GOES observations of the energetic flare on February 16, 1984. The average photon spectra observed by these instruments during the impulsive and gradual hard X-ray bursts are summarized. A comparison of these unocculted and partially occulted spectra shows that the sources of the impulsive hard X-ray (greater than about 25 keV) and impulsive soft X-ray (2-5 keV) emissions in this flare extended to coronal altitudes greater than about 200,000 km above the photosphere. At about 100 keV, the ratio of the coronal source brightness to the total source brightness was 0.001 during the impulsive phase and less than about 0.01 during the gradual hard X-ray burst. The sources of the gradual hard X-ray burst and gradual soft X-ray burst were almost completely occulted, indicating that these sources were located at heights less than 200,000 km above the photosphere.

  10. Swift and Fermi Observations of X-Ray Flares: The Case of Late Internal Shock

    Science.gov (United States)

    Troja, E.; Piro, L.; Vasileiou, V.; Omodei, N.; Burgess, J. M.; Cutini, S.; Connaughton, V.; McEnery, J. E.

    2015-01-01

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (gamma greater than 50) outflow at radii R approximately 10(exp 13) - 10(exp 14) cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.

  11. SWIFT AND FERMI OBSERVATIONS OF X-RAY FLARES: THE CASE OF LATE INTERNAL SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Troja, E. [Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Piro, L. [INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Vasileiou, V. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, and CNRS/IN2P3, Montpellier (France); Omodei, N. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Burgess, J. M.; Connaughton, V. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Cutini, S. [ASI Science Data Center, via Galileo Galilei, I-00044 Frascati (Italy); McEnery, J. E., E-mail: eleonora.troja@nasa.gov, E-mail: luigi.piro@iaps.inaf.it, E-mail: Vlasios.Vasileiou@lupm.in2p3.fr [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-04-10

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (Γ > 50) outflow at radii R ∼ 10{sup 13}-10{sup 14} cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.

  12. Stereoscopic observations of hard x ray sources in solar flares made with GRO and other spacecraft

    Science.gov (United States)

    Kane, S. R.; Hurley, K.; Mctiernan, J. M.; Laros, J. G.

    1992-01-01

    Since the launch of the Gamma Ray Observatory (GRO) in Apr. 1991, the Burst and Transient Source Experiment (BATSE) instrument on GRO has recorded a large number of solar flares. Some of these flares have also been observed by the Gamma-Ray Burst Detector on the Pioneer Venus Orbiter (PVO) and/or by the Solar X-Ray/Cosmic Gamma-Ray Burst Experiment on the Ulysses spacecraft. A preliminary list of common flares observed during the period May-Jun. 1991 is presented and the possible joint studies are indicated.

  13. H-alpha and hard X-ray development in two-ribbon flares

    Science.gov (United States)

    Dwivedi, B. N.; Hudson, H. S.; Kane, S. R.; Svestka, Z.

    1984-01-01

    Morphological features of two-ribbon flares have been studied, using simultaneous ISEE-3 hard X-ray records and high-resolution Big Bear H-alpha movies for more than 20 events. Long-lasting and complex hard X-ray bursts are almost invariably found associated with flares of the two-ribbon type. At least three events are found, namely March 31, 1979, April 10, 1980, and July 1, 1980, where the occurrence of individual spikes in hard X-ray radiation coincides with suddenly enhanced H-alpha emission covering the sunspot penumbra. There definitely exist important (greater than or equal to 1 B) two-ribbon flares without significant hard X-ray emission.

  14. Universal Behavior of X-Ray Flares from Black Hole Systems

    Science.gov (United States)

    Wang, F. Y.; Dai, Z. G.; Yi, S. X.; Xi, S. Q.

    2015-01-01

    X-ray flares have been discovered in black hole systems such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A* at the center of our Galaxy, and some active galactic nuclei. Occurrences of X-ray flares are always accompanied by relativistic jets. However, it is still unknown whether or not there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here, we report observed data of X-ray flares and show that they have three statistical properties similar to solar flares, including power-law distributions of their energies, durations, and waiting times, which can be explained by a fractal-diffusive, self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetically dominated.

  15. RXTE detects X-ray bursts from Circinus X-1

    NARCIS (Netherlands)

    Linares, M.; Soleri, P.; Watts, A.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; van der Klis, M.; Patruno, A.; Wijnands, R.; Yang, Y.; Casella, P.; Rea, N.

    2010-01-01

    After the recent report of X-ray re-brightening (ATel #2608), RXTE has observed the peculiar neutron star X-ray binary Cir X-1 eleven times during the last two weeks (May 11-25, 2010). We report the detection of nine X-ray bursts in RXTE-PCA data, 25 years after the first -and the only previous- det

  16. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.;

    2008-01-01

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence...

  17. GRB 060714: No Clear Dividing Line Between Prompt Emission and X-ray Flares

    CERN Document Server

    Krimm, H A; Marshal, F; Perri, M; Barthelmy, S D; Burrows, D N; Gehrels, N; Mészáros, P; Morris, D

    2007-01-01

    The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning ~70 s after the burst trigger T0 and continuing until T0 + ~200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. ...

  18. Model Atmospheres for X-ray Bursting Neutron Stars

    CERN Document Server

    Medin, Zach; Calder, Alan C; Fontes, Christopher J; Fryer, Chris L; Hungerford, Aimee L

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  19. GRB 060714: No Clear Dividing Line Between Prompt Emission and X-Ray Flares

    Energy Technology Data Exchange (ETDEWEB)

    Krimm, Hans A.; /NASA, Goddard /Universities Space Research Assoc.; Granot, J.; /KIPAC, Menlo Park; Marshal, F.; /NASA, Goddard; Perri, M.; /ASDC, Frascati; Barthelmy, S.D.; /NASA, Goddard; Burrows, D.N.; /Penn State U., Astron. Astrophys.; Gehrels, N.; /NASA, Goddard; Meszaros, P.; Morris, D.; /Penn State U., Astron. Astrophys.

    2007-02-26

    The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning {approx} 70 s after the burst trigger T{sub 0} and continuing until {approx} T{sub 0} + 200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. We show that the flares in GRB 060714 cannot be the result of internal shocks in which the contrast in the Lorentz factor of the colliding shells is very small, and that this mechanism faces serious difficulties in most Swift GRBs. The morphological similarity of the flares and the prompt emission and the gradual and continual evolution of the flares with time makes it difficult and arbitrary to draw a dividing line between the prompt emission and the flares.

  20. X-ray Emission Characteristics of Flares Associated with CMEs

    Indian Academy of Sciences (India)

    Malini Aggarwal; Rajmal Jain; A. P. Mishra; P. G. Kulkarni; Chintan Vyas; R. Sharma; Meera Gupta

    2008-03-01

    We present the study of 20 solar flares observed by ``Solar X-ray Spectrometer (SOXS)” mission during November 2003 to December 2006 and found associated with coronal mass ejections (CMEs) seen by LASCO/SOHO mission. In this investigation, X-ray emission characteristics of solar flares and their relationship with the dynamics of CMEs have been presented.We found that the fast moving CMEs, i.e., positive acceleration are better associated with short rise time (< 150 s) flares. However, the velocity of CMEs increases as a function of duration of the flares in both 4.1–10 and 10–20 keV bands. This indicates that the possibility of association of CMEs with larger speeds exists with long duration flare events. We observed that CMEs decelerate with increasing rise time, decay time and duration of the associated X-ray flares. A total 10 out of 20 CMEs under current investigation showed positive acceleration, and 5 of them whose speed did not exceed 589 km/s were associated with short rise time (< 150 s) and short duration (< 1300 s) flares. The other 5 CMEs were associated with long duration or large rise time flare events. The unusual feature of all these positive accelerating CMEs was their low linear speed ranging between 176 and 775 km/s. We do not find any significant correlation between X-ray peak intensity of the flares with linear speed as well as acceleration of the associated CMEs. Based on the onset time of flares and associated CMEs within the observing cadence of CMEs by LASCO, we found that in 16 cases CME preceded the flare by 23 to 1786 s, while in 4 cases flare occurred before the CME by 47 to 685 s. We argue that both events are closely associated with each other and are integral parts of one energy release system.

  1. Universal Behavior of X-ray Flares from Black Hole Systems

    CERN Document Server

    Wang, F Y; Yi, S X; Xi, S Q

    2014-01-01

    X-ray flares have been discovered in black hole systems, such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A$^*$ at the center of our Galaxy, and some active galactic nuclei. Their occurrences are always companied by relativistic jets. However, it is still unknown whether there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here we report the observed data of X-ray flares, and show that they have three statistical properties similar to solar flares, including power-law distributions of energies, durations, and waiting times, which both can be explained by a fractal-diffusive self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetica...

  2. X-ray Flares of EV Lac: Statistics, Spectra, Diagnostics

    CERN Document Server

    Huenemoerder, David P; Testa, Paola; Drake, Jeremy J; Osten, Rachel A; Reale, Fabio

    2010-01-01

    We study the spectral and temporal behavior of X-ray flares from the active M-dwarf EV Lac in 200 ks of exposure with the Chandra/HETGS. We derive flare parameters by fitting an empirical function which characterizes the amplitude, shape, and scale. The flares range from very short (<1 ks) to long (10 ks) duration events with a range of shapes and amplitudes for all durations. We extract spectra for composite flares to study their mean evolution and to compare flares of different lengths. Evolution of spectral features in the density-temperature plane shows probable sustained heating. The short flares are significantly hotter than the longer flares. We determined an upper limit to the Fe K fluorescent flux, the best fit value being close to what is expected for compact loops.

  3. Soft X-ray Pulsations in Solar Flares

    CERN Document Server

    Simões, Paulo J A; Fletcher, Lyndsay

    2014-01-01

    The soft X-ray emissions of solar flares come mainly from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the bulk of the total flare energy goes elsewhere. Recently Dolla et al. (2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES (Geostationary Operational Environmental Satellite) spacecraft. We analyze the suitability of the GOES data for this kind of analysis and find them to be generally valuable after Sept. 2010 (GOES-15). We then extend Dolla et al. results to a list of X-class flares from Cycle 24, and show that most of them display QPP in the impulsive phase. During the impulsive phase the footpoints of the newly-forming flare loops may also contribute to the observed soft X-ray variations. The QPP show up cleanly in both channels of the GOES dat...

  4. A study of hard X-ray associated meter-decameter bursts observed on December 19, 1979

    Science.gov (United States)

    Kundu, M. R.; Gergely, T. E.; Kane, S. R.; Sawant, H. S.

    1986-01-01

    The results of a study of the relationship of a complex meter-decameter wavelength radio burst observed with the Clark Lake E-W and N-S interferometers, with a hard X-ray burst observed with the X-ray spectrometer aboard ISEE-3 are presented. The radio burst consisted of several type III's, reverse drift type III's, a U burst, and type II and type IV bursts. The X-ray emission was also complex. The radio as well as hard X-ray emissions were observed before the flash phase of the flare; they were not always associated and it is conjectured that this may constitute evidence for acceleration of electrons high in the corona. On the other hand, all components of the reverse drift burst were associated with hard X-ray subpeaks, indicating multiple injection of electron beams along field lines with different density gradients. While the type II burst appeared to be related to the hard X-ray burst, a detailed correspondence between individual features of the radio and hard X-ray burst emissions could not be found. The type IV burst started after all hard X-ray emissions ceased. Its source appeared to be a magnetic arch, presumably containing energetic electrons reponsible for the gyrosynchrotron radiation of type IV.

  5. X-ray flares in GRBs: general considerations and photospheric origin

    Science.gov (United States)

    Beniamini, Paz; Kumar, Pawan

    2016-03-01

    Observations of X-ray flares from Gamma Ray Bursts imply strong constraints on possible physical models. We provide a general discussion of these. In particular, we show that in order to account for the relatively flat and weak optical flux during the X-ray flares, the size of the emitting region should be ≲3 × 1014cm. The bolometric luminosity of flares also strongly constrain the energy budget, and are inconsistent with late time activity of a central engine powered by the spin-down of a magnetar. We provide a simple toy model according to which flares are produced by an outflow of modest Lorentz factor (a few tens instead of hundreds) that is launched more or less simultaneously with the highly relativistic jet which produced the prompt gamma-ray emission. The `slower moving outflow produces the flare as it reaches its photosphere. If the X-ray flare jets are structured, the existence of such a component may naturally resolve the observational challenges imposed by flares, outlined in this work.

  6. Hard X-rays and associated weak decimetric bursts

    Science.gov (United States)

    Sawant, H. S.; Lattari, C. J. B.; Benz, A. O.; Dennis, B. R.

    1990-01-01

    Results are presented of observations (made with the Hard X-Ray Burst Spectrometer on the SMM and with the Itapetinga antenna) that unambiguously show associations of hard X-ray bursts with RS-type III bursts between 16:46 UT and 16:52 UT on July 9, 1985. The comparison between the hard X-ray and the radio observations shows a clear association, in at least 13 cases, of the hard X-ray and the decimetric RS bursts. On the average, the X-ray peaks were delayed from the peak of the RS bursts at 1.6 Ghz by about 400 msec. It is shown that, if the time comparisons are made between the peak of the radio pulse and the start of the X-ray burst, the delays are consistent with an electron travel time with a velocity of about 0.3 c from the 800 MHz plasma level to the lower corona, assuming that the radio emission is at the second harmonic.

  7. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international...... collaboration lead by the JEM-X team at the Danish National Space Center has proposed to exploit the improved sensitivity of the INTEGRAL instruments to investigate the observational properties and physics up to high energies of exceptional burst events lasting between a few tens of minutes and several hours...

  8. X-ray observations of the impulsive phase of solar flares with the Yohkoh satellite

    Science.gov (United States)

    Phillips, Andrew

    This thesis starts with an overview of the physics of the solar corona, concentrating on X-ray emission and the plasma dynamics associated with the impulsive or rise phase of solar flares. The Yohkoh satellite is described, with a section on each major instrument on board. Analysis techniques used in the thesis are then introduced, with a section of soft X-ray spectroscopy and on the application of the Maximum Entropy Method image reconstruction technique to data from the Hard X-ray Telescope on Yohkoh. The instrumental effect known as fixed pattern noise is described, leading to a numerical model of the BCS digitisation process, which is used both to understand the limits of the detector, and to correct the data in a limited way. Alternative methods for the avoidance of fixed pattern noise are evaluated. The analysis of a solar flare with unusually large soft X-ray blue shifts is then performed. Physical parameters of the plasma during the initial stages of the flare are derived, which are used in an energy balance calculation. Agreement is found between the energy in nonthermal electrons and that contained in the coronal plasma, supporting the nonthermal beam driven chromospheric evaporation theory of impulsive flares. The location of superhot plasma in two impulsive flares and one hot thermal flare is then investigated. Superhot plasma is found to be located close to the chromosphere, and related to the nonthermal burst in the two impulsive flares. Superhot plasma in the hot thermal flare is distributed uniformly throughout the loop. The differences are explained as being due to the different energy transport processes active in each type of flare.

  9. The INTEGRAL view of intermediate long X-ray bursts

    DEFF Research Database (Denmark)

    CONCLUSIONS Most intermediate bursts are observed from low luminosity sources and are interpreted as long pure He bursts. If no H is accreted, they are consistent with the burning of a slowly accreted, thick He layer, in Ultra Compact X-ray Binaries (UCXB) where the donor star is probably a degen...

  10. Two distinct phases of hard x-ray emissions in a solar eruptive flare

    CERN Document Server

    Joshi, Bhuwan; Cho, K -S; Bong, S -C; Moon, Y -J; Lee, Jeongwoo; Somov, B V; Manoharan, P K; Kim, Y -H

    2008-01-01

    We present a detailed analysis of the evolution of an M7.6 flare that occurred near the south-east limb on October 24, 2003 utilizing a multi-wavelength data set. Preflare images at TRACE 195 A show that the bright and complex system of coronal loops already existed at the flaring site. The X-ray light curves clearly reveal two phases of flare evolution. The emission during the first phase is seen in GOES and RHESSI measurements at energies below 25 keV, while the second phase is evident in all the X-ray energies as high as 300 keV. The first phase is gradual whereas the second phase shows impulsive emission with several individual hard X-ray bursts. The first phase starts with the appearance of an X-ray loop-top (LT) source in RHESSI images below 25 keV. About 5 minute later, the TRACE 195 A images show an intense emission that is cospatial with RHESSI LT source. This hot and diffuse TRACE emission is attributed to the existence of 15-20 MK plasma, heated directly from the primary energy source. Both X-ray a...

  11. Hard x-ray spectroscopy for proton flare prediction

    Science.gov (United States)

    Garcia, Howard A.; Farnik, Frantisek; Kiplinger, Alan L.

    1998-11-01

    High energy interplanetary proton events can jeopardize vital military and civilian spacecraft by disrupting logical circuits and by actually damaging spacecraft electronic components. Studies of solar hard x-rays indicate that high-energy proton events observed near Earth are highly associated with an uncommon type of solar flare exhibiting temporal progressively hardening hard x-ray spectra. A hard x-ray spectrometer is being developed by the Czech Astronomical Institute to provide a test bed for evaluating this phenomenon as a possible proton-storm prediction method. The instrument is designed to measure hard x-ray spectra in a high fluence, high-energy particle background environment such as that found at geosynchronous altitude. This experiment has been selected for space flight by the DoD Space Test Program and will fly aboard the Department of Energy satellite, Multi-spectral thermal Imager, scheduled for a three year mission, beginning in late 1999. The timing of this mission, fortuitously, coincides with the experiment are: 1) to evaluate the efficacy of this type of solar instrument in predicting interplanetary proton storms; 2) to study the high-energy physics of solar flares in concert with the premier flight of the NOAA soft x-ray imaging telescope, SXI, on the GOES 12 weather satellite and other solar mission. If the first goal is demonstrated by this mission, continuous monitoring of the Sun for proton events could become operational from geo-synchronous orbit during solar cycle 24.

  12. Magnetar-like X-ray bursts from an anomalous X-ray pulsar.

    Science.gov (United States)

    Gavriil, F P; Kaspi, V M; Woods, P M

    2002-09-12

    Anomalous X-ray pulsars (AXPs) are a class of rare X-ray emitting pulsars whose energy source has been perplexing for some 20 years. Unlike other X-ray emitting pulsars, AXPs cannot be powered by rotational energy or by accretion of matter from a binary companion star, hence the designation 'anomalous'. Many of the rotational and radiative properties of the AXPs are strikingly similar to those of another class of exotic objects, the soft-gamma-ray repeaters (SGRs). But the defining property of the SGRs--their low-energy-gamma-ray and X-ray bursts--has not hitherto been observed for AXPs. Soft-gamma-ray repeaters are thought to be 'magnetars', which are young neutron stars whose emission is powered by the decay of an ultra-high magnetic field; the suggestion that AXPs might also be magnetars has been controversial. Here we report two X-ray bursts, with properties similar to those of SGRs, from the direction of the anomalous X-ray pulsar 1E1048.1 - 5937. These events imply a close relationship (perhaps evolutionary) between AXPs and SGRs, with both being magnetars.

  13. Soft X-ray emission in flaring coronal loops

    CERN Document Server

    Pinto, R F; Brun, A S

    2014-01-01

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the heating of the plasma in flares. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in such kink-unstable magnetic flux-ropes using a series of MHD simulations. We deduce emission diagnostics and their temporal evolution and discuss the results of the simulations with respect to observations. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) and deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly ...

  14. Soft X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  15. MAXI observations of long X-ray bursts

    Science.gov (United States)

    Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi

    2016-12-01

    We report nine long X-ray bursts from neutron stars, detected with the Monitor of All-sky X-ray Image (MAXI). Some of these bursts lasted for hours, and hence are qualified as superbursts, which are prolonged thermonuclear flashes on neutron stars and are relatively rare events. MAXI observes roughly 85% of the whole sky every 92 minutes in the 2-20 keV energy band, and has detected nine bursts with a long e-folding decay time, ranging from 0.27 to 5.2 hr, since its launch in 2009 August until 2015 August. The majority of the nine events were found to originate from transient X-ray sources. The persistent luminosities of the sources, when these prolonged bursts were observed, were lower than 1% of the Eddington luminosity for five of them and lower than 20% for the rest. This trend is contrastive to the 18 superbursts observed before MAXI, all but two of which originated from bright persistent sources. The distribution of the total emitted energy, i.e., the product of e-folding time and luminosity, of these bursts clusters around 1041-1042 erg, whereas both the e-folding time and luminosity ranges for an order of magnitude. Among the nine events, two were from 4U 1850-086 during phases of relatively low persistent flux, whereas it usually exhibits standard short X-ray bursts during outbursts.

  16. Dependence of X-ray Burst Models on Nuclear Masses

    CERN Document Server

    Schatz, H

    2016-01-01

    X-ray burst model predictions of light curves and final composition of the nuclear ashes are affected by uncertain nuclear physics. Nuclear masses play an important role. Significant progress has been made in measuring the masses of very neutron deficient rare isotopes along the path of the rapid proton capture process (rp-process) in X-ray bursts. This paper identifies the remaining nuclear mass uncertainties in X-ray burst models using a one zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated - a typical mixed H/He burst with a limited rp-process and an extreme mixed H/He burst with an extended rp-process. Only three remaining nuclear mass uncertainties affect the light curve predictions of a typical H/He burst, and only three additional masses affect the composition strongly. A larger number of mass uncertainties remains to be addressed for the extreme H/He burst. Mass uncertainties of better than...

  17. X-ray flares in GRBs: general considerations and photospheric origin

    CERN Document Server

    Beniamini, Paz

    2015-01-01

    Observations of X-ray flares from Gamma Ray Bursts (GRBs) imply strong constraints on possible physical models. We provide a general discussion of these. In particular, we show that in order to account for the relatively flat and weak optical flux during the X-ray flares, the size of the emitting region should be $\\lesssim 3\\times 10^{14}$cm. The bolometric luminosity of flares also strongly constrain the energy budget, and are inconsistent with late time activity of a central engine powered by the spin-down of a magnetar. We provide a simple toy model according to which flares are produced by an outflow of modest Lorentz factor (a few tens instead of hundreds) that is launched more or less simultaneously with the highly relativistic jet which produced the prompt gamma-ray emission. The "slower" moving outflow produces the flare as it reaches its photosphere. The existence of such a component would naturally resolve the observational challenges imposed by flares, outlined in this work.

  18. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    of the known X-ray bursters are frequently observed by INTEGRAL, in particular in the frame of the Key Programmes. Taking advantage of the INTEGRAL instrumentation, an international collaboration led by the JEM-X team at the Danish National Space Institute has been monitoring the occurrence of uncommon burst...

  19. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  20. Neutron Stars and Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  1. X-ray bursts and superbursts - recent developments

    CERN Document Server

    Zand, Jean in 't

    2011-01-01

    The past decade and a half has seen many interesting new developments in X-ray burst research, both observationally and theoretically. New phenomena were discovered, such as burst oscillations and superbursts, and new regimes of thermonuclear burning identified. An important driver of the research with present and future instrumentation in the coming years is the pursuit of fundamental neutron star parameters. However, several other more direct questions are also in dire need of an answer. For instance, how are superbursts ignited and why do burst oscillations exist in burst tails? We briefly review recent developments and discuss the role that MAXI can play. Thanks to MAXI's large visibility window and large duty cycle, it is particularly well suited to investigate the recurrence of rare long duration bursts such as superbursts. An exploratory study of MAXI data is briefly presented.

  2. Maxi observations of long X-ray bursts

    CERN Document Server

    Serino, Motoko; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi

    2016-01-01

    We report nine long X-ray bursts from neutron stars, detected with Monitor of All-sky X-ray Image (MAXI). Some of these bursts lasted for hours, and hence are qualified as superbursts, which are prolonged thermonuclear flashes on neutron stars and are relatively rare events. MAXI observes roughly 85% of the whole sky every 92 minutes in the 2-20 keV energy band, and has detected nine bursts with a long e-folding decay time, ranging from 0.27 to 5.2 hours, since its launch in 2009 August until 2015 August. The majority of the nine events were found to originate from transient X-ray sources. The persistent luminosities of the sources, when these prolonged bursts were observed, were lower than 1% of the Eddington luminosity for five of them and lower than 20% for the rest. This trend is contrastive to the 18 superbursts observed before MAXI, all but two of which originated from bright persistent sources. The distribution of the total emitted energy, i.e., the product of e-folding time and luminosity, of these bu...

  3. Ejection Lorentz Factor and Radiation Location of X-ray Flares

    CERN Document Server

    Mu, Hui-Jun; Xi, Shao-Qiang; Lin, Ting-Ting; Wang, Yuan-Zhu; Liang, Yun-Feng; Lv, Lian-Zhong; Zhang, Jin; Liang, En-Wei

    2016-01-01

    We present time-resolved spectral analysis of the steep decay segments of 29 bright X-ray flares of gamma-ray bursts (GRBs) observed with the Swift/X-ray telescope, and model their lightcurves and spectral index evolution behaviors with the curvature effect model. Our results show that the observed rapid flux decay and strong spectral index evolution with time can be well fit with this model, and the derived characteristic timescales ($t_c$) are in the range of $33\\sim 264$ seconds. Using an empirical relation between the peak luminosity and the Lorentz factor derived from the prompt gamma-rays, we estimate the Lorentz factors of the flares ($\\Gamma_{\\rm X}$). We obtain $\\Gamma_{\\rm X}=17\\sim 87$ with a median value of $52$, which is smaller than the initial Lorentz factors of prompt gamma-ray fireballs. With the derived $t_c$ and $\\Gamma_{\\rm X}$, we constrain the radiating regions of 13 X-ray flares, yielding $R_{\\rm X}=(0.2\\sim 1.1)\\times 10^{16}$ cm, which are smaller than the radii of the afterglow fireb...

  4. Future Probes of the Neutron Star Equation of State Using X-ray Bursts

    OpenAIRE

    Strohmayer, Tod E.

    2004-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, "burst oscillations") during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). It is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best under...

  5. Deka-keV X-ray observations of solar bursts with WATCH/GRANAT: frequency distributions of burst parameters

    Science.gov (United States)

    Crosby, N.; Vilmer, N.; Lund, N.; Sunyaev, R.

    1998-06-01

    Solar flare observations in the deka-keV range are performed by the WATCH experiment on board the GRANAT satellite. The WATCH experiment is presented, including the energy calibration as applied in the present work. The creation of the solar burst catalogue covering two years of observation is described and some examples of solar observations are given. The estimated energy releases in the flares presented here are found to extend below the range of hard X-ray flares which were previously studied by ISEE-3 and HXRBS/SMM detectors. The X-ray emitting component cannot be exclusively explained by contributions from a thermal plasma around a few keV. Either a hotter component or a non-thermal population of particles must also be present to produce the observed deka-keV emission. The WATCH data furthermore shows that the relative contributions of these components may change during an event or from event to event and that the injection of energy contained in suprathermal electrons may occur throughout an event and not only during the rise phase. For the most energetic WATCH flares simultaneous observations performed by other experiments at higher energies further indicate that non-thermal emission can be observed as low as 10 keV. A statistical study is performed on the total WATCH solar database and frequency distributions are built on measured X-ray flare parameters. It is also investigated how the properties of these frequency distributions behave when subgroups of events defined by different ranges of parameters are considered. No correlation is found between the elapsed time interval between successive flares arising from the same active region and the peak intensity of the flare.

  6. Detection of burning ashes from thermonuclear X-ray bursts

    Science.gov (United States)

    Kajava, J. J. E.; Nättilä, J.; Poutanen, J.; Cumming, A.; Suleimanov, V.; Kuulkers, E.

    2017-01-01

    When neutron stars (NS) accrete gas from low-mass binary companions, explosive nuclear burning reactions in the NS envelope fuse hydrogen and helium into heavier elements. The resulting thermonuclear (type-I) X-ray bursts produce energy spectra that are fit well with black bodies, but a significant number of burst observations show deviations from Planck spectra. Here we present our analysis of RXTE/PCA observations of X-ray bursts from the NS low-mass X-ray binary HETE J1900.1-2455. We have discovered that the non-Planckian spectra are caused by photoionization edges. The anticorrelation between the strength of the edges and the colour temperature suggests that the edges are produced by the nuclear burning ashes that have been transported upwards by convection and become exposed at the photosphere. The atmosphere model fits show that occasionally the photosphere can consist entirely of metals, and that the peculiar changes in blackbody temperature and radius can be attributed to the emergence and disappearance of metals in the photosphere. As the metals are detected already in the Eddington-limited phase, it is possible that a radiatively driven wind ejects some of the burning ashes into the interstellar space.

  7. Detection of burning ashes from thermonuclear X-ray bursts

    CERN Document Server

    Kajava, J J E; Poutanen, J; Cumming, A; Suleimanov, V; Kuulkers, E

    2016-01-01

    When neutron stars (NS) accrete gas from low-mass binary companions, explosive nuclear burning reactions in the NS envelope fuse hydrogen and helium into heavier elements. The resulting thermonuclear (type-I) X-ray bursts produce energy spectra that are fit well with black bodies, but a significant number of burst observations show deviations from Planck spectra. Here we present our analysis of RXTE/PCA observations of X-ray bursts from the NS low-mass X-ray binary HETE J1900.1-2455. We have discovered that the non-Planckian spectra are caused by photo-ionization edges. The anti-correlation between the strength of the edges and the colour temperature suggests that the edges are produced by the nuclear burning ashes that have been transported upwards by convection and become exposed at the photosphere. The atmosphere model fits show that occasionally the photosphere can consist entirely of metals, and that the peculiar changes in black body temperature and radius can be attributed to the emergence and disappea...

  8. H-alpha spectra of dynamic chromospheric processes in five well-observed X-ray flares

    Science.gov (United States)

    Canfield, Richard C.; Penn, Matthew J.; Wulser, Jean-Pierre; Kiplinger, Alan L.

    1990-01-01

    Simultaneous H-alpha and hard X-ray (HXR) spectra were obtained for five solar flares to determine the relationship of H-alpha profiles and the nonthermal part of the flare represented by the hard X-ray burst. All five flares exhibited impulsive-phase redshifted H-alpha in emission, which was temporarily and spatially associated with intense HXR emission and broad impulsive-phase H-alpha wings. A few small regions within two flares showed a blueshifted H-alpha emission which appeared only early in the impulsive phase and was temporally correlated with the HXR emission but not with broad H-alpha wings. Finally, there were both redshifted and blueshifted absorption spectra with properties fully consistent with those known for erupting and untwisting filaments.

  9. Using the Maximum X-ray Flux Ratio and X-ray Background to Predict Solar Flare Class

    CERN Document Server

    Winter, Lisa M

    2015-01-01

    We present the discovery of a relationship between the maximum ratio of the flare flux (namely, 0.5-4 Ang to the 1-8 Ang flux) and non-flare background (namely, the 1-8 Ang background flux), which clearly separates flares into classes by peak flux level. We established this relationship based on an analysis of the Geostationary Operational Environmental Satellites (GOES) X-ray observations of ~ 50,000 X, M, C, and B flares derived from the NOAA/SWPC flares catalog. Employing a combination of machine learning techniques (K-nearest neighbors and nearest-centroid algorithms) we show a separation of the observed parameters for the different peak flaring energies. This analysis is validated by successfully predicting the flare classes for 100% of the X-class flares, 76% of the M-class flares, 80% of the C-class flares and 81% of the B-class flares for solar cycle 24, based on the training of the parametric extracts for solar flares in cycles 22-23.

  10. Hard X-ray Emission From A Flare-related Jet

    Science.gov (United States)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    Solar X-ray jets were first observed by Yohkoh (Shibata 1992, Strong 1992). During these events, collimated flows of plasma are accelerated in the corona. Previous observations have detected jet-related electrons directly in space as well as via radio signatures (type III bursts). However the major diagnostic of fast electrons is bremsstrahlung X-ray emission, but until now we have never seen any evidence of hard X-ray emission directly from the jet in the corona. This could be because it is rare to find a coronal jet dense enough to provide a bremsstrahlung target for the electrons, or hot enough to generate high energy thermal emission. We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. The event occurred on the 22nd of August 2002 and its evolution was observed by a number of instruments. In particular we study the pre-impulsive and impulsive phase of the flare using data from RHESSI, TRACE and the Nobeyama Radioheliograph. During this period RHESSI observed significant hard X-ray emission to energies as high as 50 keV in the jet. Radio observations from the Nobeyama Radioheliograph show a positive spectral index for the ejected material, which may be explained by optically-thick gyrosynchrotron emission from non-thermal electrons in the jet. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  11. Large X-ray Flares on Stars Detected with MAXI/GSC: A Universal Correlation between the Duration of a Flare and its X-ray Luminosity

    CERN Document Server

    Tsuboi, Yohko; Sugawara, Yasuharu; Kawagoe, Atsushi; Kaneto, Soichiro; Iizuka, Ryo; Matsumura, Takanori; Nakahira, Satoshi; Higa, Masaya; Matsuoka, Masaru; Sugizaki, Mutsumi; Ueda, Yoshihiro; Kawai, Nobuyuki; Morii, Mikio; Serino, Motoko; Mihara, Tatehiro; Tomida, Hiroshi; Ueno, Shiro; Negoro, Hitoshi; Daikyuji, Arata; Ebisawa, Ken; Eguchi, Satoshi; Hiroi, Kazuo; Ishikawa, Masaki; Isobe, Naoki; Kawasaki, Kazuyoshi; Kimura, Masashi; Kitayama, Hiroki; Kohama, Mitsuhiro; Kotani, Taro; Nakagawa, Yujin E; Nakajima, Motoki; Ozawa, Hiroshi; Shidatsu, Megumi; Sootome, Tetsuya; Sugimori, Kousuke; Suwa, Fumitoshi; Tsunemi, Hiroshi; Usui, Ryuichi; Yamamoto, Takayuki; Yamaoka, Kazutaka; Yoshida, Atsumasa

    2016-01-01

    23 giant flares from 13 active stars (eight RS CVn systems, one Algol system, three dMe stars and one YSO) were detected during the first two years of our all-sky X-ray monitoring with the gas propotional counters (GSC) of the Monitor of All-sky X-ray Image (MAXI). The observed parameters of all of these MAXI/GSC flares are found to be at the upper ends for stellar flares with the luminosity of 10^(31-34) ergs s-1 in the 2-20 keV band, the emission measure of 10^(54-57) cm-3, the e-folding time of 1 hour to 1.5 days, and the total radiative energy released during the flare of 10^(34-39) ergs. Notably, the peak X-ray luminosity of 5(3-9)*10^33 ergs s-1 in the 2-20 keV band was detected in one of the flares on II Peg, which is one of the, or potentially the, largest ever observed in stellar flares. X-ray flares were detected from GT Mus, V841 Cen, SZ Psc, and TWA-7 for the first time in this survey. Whereas most of our detected sources are multiple-star systems, two of them are single stars (YZ CMi and TWA-7). ...

  12. The spatial, spectral and polarization properties of solar flare X-ray sources

    CERN Document Server

    Jeffrey, Natasha L S

    2014-01-01

    X-rays are a valuable diagnostic tool for the study of high energy accelerated electrons. Bremsstrahlung X-rays produced by, and directly related to, high energy electrons accelerated during a flare, provide a powerful diagnostic tool for determining both the properties of the accelerated electron distribution, and of the flaring coronal and chromospheric plasmas. This thesis is specifically concerned with the study of spatial, spectral and polarization properties of solar flare X-ray sources via both modelling and X-ray observations using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Firstly, a new model is presented, accounting for finite temperature, pitch angle scattering and initial pitch angle injection. This is developed to accurately infer the properties of the acceleration region from the observations of dense coronal X-ray sources. Moreover, examining how the spatial properties of dense coronal X-ray sources change in time, interesting trends in length, width, position, number density ...

  13. Relationship between CME velocities and X-ray fluxes of associated flares

    Institute of Scientific and Technical Information of China (English)

    An-Qin Chen; Wei-Guo Zong

    2009-01-01

    Coronal mass ejection (CME) velocities have been studied over recent decades. We present a statistical analysis of the relationship between CME velocities and X-ray fluxes of the associated flares. We study two types of CMEs. One is the FL type associ- ated only with flares, while the other is the intermediate type associated with both filament eruptions and flares. It is found that the velocities of the FL type CMEs are strongly cor- related with both the peak and the time-integrated X-ray fluxes of the associated flares. However, the correlations between the intermediate type CME velocities and the corre- sponding two parameters are poor. It is also found that the correlation between the CME velocities and the peak X-ray fluxes is stronger than that between the CME velocities and the time-integrated X-ray fluxes of the associated flares.

  14. Deka-keV X-ray observations of solar bursts with WATCH/GRANAT: frequency distributions of burst parameters

    DEFF Research Database (Denmark)

    Crosby, N.; Vilmer, N.; Lund, Niels

    1998-01-01

    is described and some examples of solar observations are given. The estimated energy releases in the flares presented here are found to extend below the range of hard X-ray flares which were previously studied by ISEE-3 and HXRBS/SMM detectors. The X-ray emitting component cannot be exclusively explained...

  15. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    Science.gov (United States)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  16. Comparison of 30 THz impulsive burst time development to microwaves, H-alpha, EUV, and GOES soft X-rays

    CERN Document Server

    Miteva, R; Cabezas, D P; Cassiano, M M; Fernandes, L O T; Freeland, S L; Karlicky, M; Kerdraon, A; Kudaka, A S; Luoni, M L; Marcon, R; Raulin, J -P; Trottet, G; White, S M

    2015-01-01

    The recent discovery of impulsive solar burst emission in the 30 THz band is raising new interpretation challenges. One event associated with a GOES M2 class flare has been observed simultaneously in microwaves, H-alpha, EUV, and soft X-ray bands. Although these new observations confirm some features found in the two prior known events, they exhibit time profile structure discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the Neupert effect). These results suggest a more complex relationship between 30 THz emission and radiation produced at other wavelength ranges. The multiple frequency emissions in the impulsive phase are likely to be produced at a common flaring site lower in the chromosphere. The 30 THz burst emission may be either part of a nonthermal radiation mechanism or due to the rapid thermal response to a beam of high-energy particles bombarding the dense solar atmosphere.

  17. On the relationship between soft X-rays and H-alpha-emitting structures during a solar flare

    Science.gov (United States)

    Zirin, H.; Feldman, U.; Doschek, G. A.; Kane, S.

    1981-01-01

    Based on data obtained during a solar flare on March 31, 1979, soft X-ray (SXR) and hard X-ray (HXR) bursts are analyzed and compared with other available data in order to identify structures in H-alpha that may correspond to the SXR-emitting site. Measurements taken with the X-ray telescope and the XUV spectroheliograph flown on Skylab, have shown that the SXR emission from many flares comes from rather small structures of about 10-20 arcsec across. These structures appear to be loops that cross the magnetic neutral line. Understanding of the morphology of SXR was based on data of the solar flare of June 15, 1973, observed from Skylab, and the work of Moore et al., (1980). Dense, highly emissive coronal structures, not suggested to be the X-ray source, were forming, lost energy rapidly by emission and conduction, and finally formed the loops. It is concluded that bright H-alpha loops form rapidly as the SXR emission rises, and the overall decay (cooling rate) of SXR emission is much slower than the formation time of individual loops.

  18. A Statistical Study of GRB X-Ray Flares: Evidence of Ubiquitous Bulk Acceleration in the Emission Region

    Science.gov (United States)

    Jia, Lan-Wei; Uhm, Z. Lucas; Zhang, Bing

    2016-07-01

    When emission in a conical relativistic jet ceases abruptly (or decays sharply), the observed decay light curve is controlled by the high-latitude “curvature effect.” Recently, Uhm & Zhang found that the decay slopes of three gamma-ray burst (GRB) X-ray flares are steeper than what the standard model predicts. This requires bulk acceleration of the emission region, which is consistent with a Poynting-flux-dominated outflow. In this paper, we systematically analyze a sample of 85 bright X-ray flares detected in 63 Swift GRBs and investigate the relationship between the temporal decay index α and spectral index β during the steep decay phase of these flares. The α values depend on the choice of the zero time point t 0. We adopt two methods. “Method I” takes {t}0{{I}} as the first rising data point of each flare and is the most conservative approach. We find that at the 99.9% confidence level 56/85 flares have decay slopes steeper than the simplest curvature effect prediction and therefore are in the acceleration regime. “Method II” extrapolates the rising light curve of each flare backward until the flux density is three orders of magnitude lower than the peak flux density, and it defines the corresponding time as the zero time point ({t}0{{II}}). We find that 74/85 flares fall into the acceleration regime at the 99.9% confidence level. This suggests that bulk acceleration is common and may even be ubiquitous among X-ray flares, pointing toward a Poynting-flux-dominated jet composition for these events.

  19. Spatial and temporal characteristics of flare energy release determined from X-ray and radio imaging observations

    Science.gov (United States)

    Hernandez, A. M.; Machado, M. E.; Vilmer, N.; Trottet, G.

    1986-01-01

    Using the Hard X-ray Imaging Spectrometer (HXIS) from the Solar Maximum Mission Satellite, the morphological aspects and temporal evolution of three major flares which occurred on June 29, 1980 are studied. One of these events, observed at 10:40 UT, is analyzed in particular detail, including Hard X-ray Burst Spectrometer (HXRBS) data and metric wavelength data from the Nancay radioheliograph. The flares occurred during the interaction of two distinct magnetic structures. There is an early onset phase during which there is a weak level of particle acceleration, perhaps accompanied by strong heating within the magnetic interaction region. The impulsive phase of high power energy release is associated with a major interaction between the two structures and accompanied by strong acceleration and heating.

  20. Large X-ray flares on stars detected with MAXI/GSC: A universal correlation between the duration of a flare and its X-ray luminosity

    Science.gov (United States)

    Tsuboi, Yohko; Yamazaki, Kyohei; Sugawara, Yasuharu; Kawagoe, Atsushi; Kaneto, Soichiro; Iizuka, Ryo; Matsumura, Takanori; Nakahira, Satoshi; Higa, Masaya; Matsuoka, Masaru; Sugizaki, Mutsumi; Ueda, Yoshihiro; Kawai, Nobuyuki; Morii, Mikio; Serino, Motoko; Mihara, Tatehiro; Tomida, Hiroshi; Ueno, Shiro; Negoro, Hitoshi; Daikyuji, Arata; Ebisawa, Ken; Eguchi, Satoshi; Hiroi, Kazuo; Ishikawa, Masaki; Isobe, Naoki; Kawasaki, Kazuyoshi; Kimura, Masashi; Kitayama, Hiroki; Kohama, Mitsuhiro; Kotani, Taro; Nakagawa, Yujin E.; Nakajima, Motoki; Ozawa, Hiroshi; Shidatsu, Megumi; Sootome, Tetsuya; Sugimori, Kousuke; Suwa, Fumitoshi; Tsunemi, Hiroshi; Usui, Ryuichi; Yamamoto, Takayuki; Yamaoka, Kazutaka; Yoshida, Atsumasa

    2016-10-01

    Twenty-three giant flares from thirteen active stars (eight RS CVn systems, one Algol system, three dMe stars, and one young stellar object) were detected during the first two years of our all-sky X-ray monitoring with the gas propotional counters (GSC) of the Monitor of All-sky X-ray Image (MAXI). The observed parameters of all these MAXI/GSC flares are found to be at the upper ends for stellar flares with the luminosity of 1031-34 erg s-1 in the 2-20 keV band, the emission measure of 1054-57 cm-3, the e-folding time of 1 hr to 1.5 d, and the total radiative energy released during the flare of 1034-39 erg. Notably, the peak X-ray luminosity of 5^{+4}_{-2} × 10^{33}erg s-1 in the 2-20 keV band was detected in one of the flares on II Peg, which is one of the, or potentially the, largest-ever-observed in stellar flares. X-ray flares were detected from GT Mus, V841 Cen, SZ Psc, and TWA-7 for the first time in this survey. Whereas most of our detected sources are multiple-star systems, two of them are single stars (YZ CMi and TWA-7). Among the stellar sources within 100 pc distance, the MAXI/GSC sources have larger rotation velocities than the other sources. This suggests that the rapid rotation velocity may play a key role in generating large flares. Combining the X-ray flare data of nearby stars and the sun, taken from literature and our own data, we discovered a universal correlation of τ ∝ L_X^{0.2} for the flare duration τ and the intrinsic X-ray luminosity LX in the 0.1-100 keV band, which holds for 5 and 12 orders of magnitude in τ and LX, respectively. The MAXI/GSC sample is located at the highest ends of the correlation.

  1. Swift-XRT detects X-ray burst from Circinus X-1

    NARCIS (Netherlands)

    Linares, M.; Soleri, P.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; van der Klis, M.; Patruno, A.; Watts, A.; Wijnands, R.; Yang, Y.; Casella, P.; Rea, N.; Chakrabarty, D.; Homan, J.

    2010-01-01

    Following the recent re-brightening (ATel #2608) and RXTE-PCA detection of X-ray bursts from the peculiar X-ray binary Cir X-1 between May 15 and 25 (ATel #2643), we obtained a series of Swift-XRT observations of the field (see also ATel #2650). Swift-XRT detected an X-ray burst on 2010-05-28 at 12:

  2. Burst-only sources: probing type I X-ray bursters at low persistent luminosities

    Energy Technology Data Exchange (ETDEWEB)

    Cornelisse, R.; Zand, J.J.M. in ' t; Kuulkers, E.; Heise, J.; Verbunt, F.; Cocchi, M.; Bazzano, A.; Natalucci, L.; Ubertini, P

    2004-06-01

    The Wide Field Cameras onboard BeppoSAX observed 9 type I X-ray bursters without detectable persistent emission around the burst. According to the standard theory of X-ray bursts these sources should be in the lowest mass-accretion regime, opening the possibility to study this regime for the first time. We compare the sources with the burst theory, and show that the evidence of a new sub-class of low mass X-ray binaries, the burst-only source, is still meagre.

  3. Hard X-ray and ultraviolet emission during the 2011 June 7 solar flare

    CERN Document Server

    Inglis, Andrew R

    2013-01-01

    The relationship between X-ray and UV emission during flares, particularly in the context of quasi-periodic pulsations, remains unclear. To address this, we study the X-ray and UV emission during the eruptive flare of 2011 June 7 utilising X-ray imaging from RHESSI and UV 1700A imaging from SDO/AIA. This event is associated with synchronous quasi-periodic pulsations in both the X-ray and UV emission, as well as substantial motion of the hard X-ray footpoints. The motion of the footpoint associated with the left-hand flare ribbon is shown to reverse direction along the flare ribbons on at least two occasions. Over the same time interval, the footpoints also gradually move apart at v ~ 12 km/s. This is consistent with the measured plane-of-sky thermal X-ray source outward velocity of ~ 14 km/s, and matches the gradual outward expansion of the UV ribbons. However, there is no associated short-timescale motion of the UV bright regions. We find that the locations of the brightest X-ray and UV regions are different...

  4. Analysis of coronal and chromospheric hard X-ray sources in an eruptive solar flare

    Science.gov (United States)

    Zimovets, Ivan; Golovin, Dmitry; Livshits, Moisey; Vybornov, Vadim; Sadykov, Viacheslav; Mitrofanov, Igor

    We have analyzed hard X-ray emission of an eruptive solar flare on 3 November 2010. The entire flare region was observed by the STEREO-B spacecraft. This gave us an information that chromospheric footpoints of flare magnetic loops were behind the east solar limb for an earth observer. Hard X-ray emission from the entire flare region was detected by the High Energy Neutron Detector (HEND) onboard the 2001 Mars Odyssey spacecraft while hard X-rays from the coronal part of the flare region were detected by the RHESSI. This rare situation has allowed us to investigate both coronal and chromospheric sources of hard X-ray emission separately. Flare impulsive phase was accompanied by eruption of a magnetic flux rope and formation of a plasmoid detected by the AIA/SDO in the EUV range. Two coronal hard X-ray sources (S_{1} and S_{2}) were detected by the RHESSI. The upper source S_{1} coincided with the plasmoid and the lower source S_{2} was near the tops of the underlying flare loops that is in accordance with the standard model of eruptive flares. Imaging spectroscopy with the RHESSI has allowed to measure energetic spectra of hard X-ray emission from the S_{1} and S_{2} sources. At the impulsive phase peak they have power-law shape above ≈ 15 keV with spectral slopes gamma_{S_{1}}=3.46 ± 1.58 and gamma_{S_{2}}=4.64 ± 0.12. Subtracting spatially integrated spectrum of coronal hard X-ray emission measured by the RHESSI from the spectrum measured by the HEND we found spectrum of hard X-rays emitted from the footpoints of the flare loops (source S_{0}). This spectrum has a power-law shape with gamma_{S_{0}}=2.21 ± 0.57. It is shown that it is not possible to explain the measured spectra of the S_{2} and S_{0} sources in frames of the thin and thick target models respectively if we assume that electrons were accelerated in the energy release site situated below the plasmoid and above the flare loops as suggested by the standard flare model. To resolve the contradiction

  5. Effects of X-ray flares on the aeronomy of Mars: Simultaneous measurements of ionospheric effects of X-ray flares on Earth and Mars

    Science.gov (United States)

    Haider, Syed A.; Machado Santos, Angela; Abdu, Mangalathayil A.; Batista, Inez S.; Shah, Siddhi Y.; Thirupathaiah, P.

    2016-07-01

    MIRI: Validation and Testing Requirements We have studied X-ray aeronomy in the ionospheric E region of Mars during six X-ray flares that occurred on 28 March and 6 April, 2001; 17,18 March and 21 April, 2003 and 19 February, 2005 respectively. These flares were responded by the corresponding electron density profiles of Mars Global Surveyor (MGS). The time series of photoionization rate, photoelectron impact ionization rate, photoelectron flux, ion density, electron density and total Electron Content (TEC) are predicted for each flare day. The estimated production rate, flux and densities are increased by 1-2 orders of magnitude due to effects of these flares in the E region ionosphere of Mars. The normalized estimated TEC are compared with the normalized measured TEC of MGS profiles. At the peak flare time the normalized estimated and normalized measured TEC were enhanced by a factor of 5-10 and 2 respectively. The effects of these flares were also registered in the D region equatorial ionosphere of Earth at Fortaleza observatory. The flares of 6 April, 2001, 17 March and 21 April, 2003 also produced electron density enhancement in the E region ionosphere of Earth at College AK and Cachoeira Paulista observatories. The minimum frequency fmin, recorded in ionogram, increased by 100% (due to D region absorption) while the foE increased by 20%, in the Earth's ionosphere.

  6. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies

    CERN Document Server

    Irwin, Jimmy A; Sivakoff, Gregory R; Romanowsky, Aaron J; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M

    2016-01-01

    An X-ray flaring source was found near the galaxy NGC 4697. Two flares were seen, separated by four years. The flux increased by a factor of 90 on a timescale of about one minute. Both flares were very brief. There is no optical counterpart at the position of the flares, but if the source was at the distance of NGC 4697, the luminosities were 10^39 erg/s. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar such flares. We found two flaring sources in globular clusters or ultra-compact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 x 10^40 erg/s, while the other flared five times to 10^40 erg/s. All of the flare rise times were <1 minute, and they then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron star or black hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft gamma repeaters that hav...

  7. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Oliveros, Juan Carlos Martinez; Hudson, Hugh S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  8. Coordinated soft X-ray and H-alpha observation of solar flares

    Science.gov (United States)

    Zarro, D. M.; Canfield, R. C.; Metcalf, T. R.; Lemen, J. R.

    1988-01-01

    Soft X-ray, Ca XIX, and H-alpha observations obtained for a set of four solar flares in the impulsive phase are analyzed. A blue asymmetry was observed in the coronal Ca XIX line during the soft-Xray rise phase in all of the events. A red asymmetry was observed simultaneously in chromospheric H-alpha at spatial locations associated with enhanced flare heating. It is shown that the impulsive phase momentum of upflowing soft X-ray plasma equalled that of the downflowing H-alpha plasma to within an order of magnitude. This supports the explosive chromospheric evaporation model of solar flares.

  9. A ``perfect'' Late Phase Flare Loop: X-ray And Radio Studies

    Science.gov (United States)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    We present observations of a GOES X3.1 class flare which occurred on the 24th August 2002. The event was observed by a number of instruments including RHESSI, TRACE and NoRH. This flare is particularly interesting due to its position and orientation on the west limb of the Sun. The flare appears to be perpendicular to the line of sight making it possible to ascertain the geometrical parameters of the post flare arcade loops. We investigate the decay phase of the flare by comparing X-ray and radio observations of the post flare arcade loops with models of soft x-ray and thermal gyrosynchrotron emission to characterise the electron distribution present within the loop. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  10. X-ray burst-induced spectral variability in 4U 1728-34

    Science.gov (United States)

    Kajava, J. J. E.; Sánchez-Fernández, C.; Kuulkers, E.; Poutanen, J.

    2017-03-01

    Aims: INTEGRAL has been monitoring the Galactic center region for more than a decade. Over this time it has detected hundreds of type-I X-ray bursts from the neutron star low-mass X-ray binary 4U 1728-34, also known as the slow burster. Our aim is to study the connection between the persistent X-ray spectra and the X-ray burst spectra in a broad spectral range. Methods: We performed spectral modeling of the persistent emission and the X-ray burst emission of 4U 1728-34 using data from the INTEGRAL JEM-X and IBIS/ISGRI instruments. Results: We constructed a hardness intensity diagram to track spectral state variations. In the soft state, the energy spectra are characterized by two thermal components likely coming from the accretion disc and the boundary/spreading layer, together with a weak hard X-ray tail that we detect in 4U 1728-34 for the first time in the 40 to 80 keV range. In the hard state, the source is detected up to 200 keV and the spectrum can be described by a thermal Comptonization model plus an additional component: either a powerlaw tail or reflection. By stacking 123 X-ray bursts in the hard state, we detect emission up to 80 keV during the X-ray bursts. We find that during the bursts the emission above 40 keV decreases by a factor of approximately three with respect to the persistent emission level. Conclusions: Our results suggest that the enhanced X-ray burst emission changes the spectral properties of the accretion disc in the hard state. The likely cause is an X-ray burst induced cooling of the electrons in the inner hot flow near the neutron star.

  11. X-Ray Bursts from the Transient Magnetar Candidate XTE J1810-197

    Science.gov (United States)

    Kouveliotou, Chryssa; Woods, Peter M.; Gavriil, Fotis P.; Kaspi, Victoria M.; Roberts, Mallory S. E.; Ibrahim, Alaa; Markwardt, Craig B.; Swank, Jean H.; Finger, Mark H.

    2005-01-01

    We have discovered four X-ray bursts, recorded with the Rossi X-ray Timing Explorer Proportional Counter Array between 2003 September and 2004 April, that we show to originate from the transient magnetar candidate XTE 51810-197. The burst morphologies consist of a short spike or multiple spikes lasting approx. 1 s each followed by extended tails of emission where the pulsed flux from XTE 51810-197 is significantly higher. The burst spikes are likely correlated with the pulse maxima, having a chance probability of a random phase distribution of 0.4%. The burst spectra are best fit to a blackbody with temperatures 4-8 keV, considerably harder than the persistent X-ray emission. During the X-ray tails following these bursts, the temperature rapidly cools as the flux declines, maintaining a constant emitting radius after the initial burst peak. The temporal and spectral characteristics of these bursts closely resemble the bursts seen from 1E 1048.1-5937 and a subset of the bursts detected from 1E 2259+586, thus establishing XTE J1810-197 as a magnetar candidate. The bursts detected from these three objects are sufficiently similar to one another, yet si,g&cantly differe2t from those seen from soft gamma repeaters, that they likely represent a new class of bursts from magnetar candidates exclusive (thus far) to the anomalous X-ray pulsar-like sources.

  12. Particle Acceleration and the Origin of X-ray Flares in GRMHD simulations of Sgr A*

    CERN Document Server

    Ball, David; Psaltis, Dimitrios; Chan, Chi-kwan

    2016-01-01

    Significant X-ray variability and flaring has been observed from Sgr A* but is poorly understood from a theoretical standpoint. We perform GRMHD simulations that take into account a population of non-thermal electrons with energy distributions and injection rates that are motivated by PIC simulations of magnetic reconnection. We explore the effects of including these non-thermal electrons on the predicted broadband variability of Sgr A* and find that X-ray variability is a generic result of localizing non-thermal electrons to highly magnetized regions, where particles are likely to be accelerated via magnetic reconnection. The proximity of these high-field regions to the event horizon forms a natural connection between IR and X-ray variability and accounts for the rapid timescales associated with the X-ray flares. The qualitative nature of this variability is consistent with observations, producing X-ray flares that are always coincident with IR flares, but not vice versa, i.e., there are a number of IR flare...

  13. Correlation of hard X-ray and white light emission in solar flares

    CERN Document Server

    Kuhar, Matej; Oliveros, Juan Carlos Martínez; Battaglia, Marina; Kleint, Lucia; Casadei, Diego; Hudson, Hugh S

    2015-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and HMI (Helioseismic and Magnetic Imager). We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 \\r{A} summed over the hard X-ray flare ribbons with an integration time of 45 seconds around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ~50 keV. At higher electron energies the co...

  14. Risks due to X-ray Flares during Astronaut Extravehicular Activity

    CERN Document Server

    Smith, David S; 10.1029/2006SW000300

    2009-01-01

    Solar hard X-ray flares can expose astronauts on lunar and deep space extravehicular activities (EVAs) to dangerous acute biological doses. We combine calculations of radiative transfer through shielding materials with subsequent transfer through tissue to show that hazardous doses, taken as >= 0.1 Gy, should occur with a probability of about 10% per 100 hours of accumulated EVA inside current spacesuits. The rapid onset and short duration of X-ray flares and the lack of viable precursor events require strategies for quick retreat, in contrast to solar proton events, which usually take hours to deliver significant fluence and can often be anticipated by flares or other light-speed precursors. Our results contrast with the view that only particle radiation poses dangers for human space exploration. Heavy-element shields provide the most efficient protection from X-ray flares, since X-rays produce no significant secondary radiation. We calculate doses due to X-ray flares behind aluminum shields and estimate the...

  15. Estimation of Energy Equation Correlate of CMEs with X-Ray Flares during Solar Cycle 23rd

    Science.gov (United States)

    Shaltout, Mosalam; Shaltout, Mosalam; Ramy Mawad, Rr.

    . The aim of this paper is estimating the energy equation of CMEs with associated X-ray flares. In addition, we studied, when and where X-ray flares can eject CMEs? We are used CMEs data which observed from SOHO/LASCO, during the full solar cycle 23rd (1996- 2006), we have 12433 events. Also we are used the X-Ray flares data observed by Geostationary Operational Environmental Satellite (GEOS), during the same interval (1996-2006) in the 1-8 Ao GEOS Channel, it is recorded 22688 X-ray flare events. We had estimated energy equation between CMEs and associated X-ray flares during solar cycle 23rd (1996-2006). It is found the energy equation between them is polynomial series with correlation coefficient 92%. The characteristics of the CMEs and associated X-ray flares have been studied.

  16. Puzzling thermonuclear burst behaviour from the transient low-mass X-ray binary IGR J17473-2721

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Altamirano, Diego; Galloway, Duncan

    2010-01-01

    We investigate the thermonuclear bursting behaviour of IGR J17473−2721, an X-ray transient that in 2008 underwent a 6-month long outburst, starting (unusually) with an X-ray burst. We detected a total of 57 thermonuclear bursts throughout the outburst with AGILE, Swift, Rossi X-ray Timing Explore...

  17. The Thermal Properties of Solar Flares Over Three Solar Cycles Using GOES X-ray Observations

    CERN Document Server

    Ryan, Daniel F; Gallagher, Peter T; Dennis, Brian R; Tolbert, A Kim; Schwartz, Richard A; Young, C Alex

    2012-01-01

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) onboard the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated temperature and emission measure-based background subtraction method (TEBBS), which builds on the methods of Bornmann (1990). Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. (2005). TEBBS was successfully applied to over 50,...

  18. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    Science.gov (United States)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  19. Central Engine of Late-time X-Ray Flares with Internal Origin

    Science.gov (United States)

    Mu, Hui-Jun; Gu, Wei-Min; Hou, Shu-Jin; Liu, Tong; Lin, Da-Bin; Yi, Tuan; Liang, En-Wei; Lu, Ju-Fu

    2016-12-01

    This work focuses on a sample of seven extremely late-time X-ray flares with peak time {t}{{p}}\\gt {10}4 {{s}}, among which two flares can be confirmed as the late-time activity of central engine. The main purpose is to investigate the mechanism of such late-time flares based on the internal origin assumption. In the hyper-accreting black hole (BH) scenario, we study the possibility of two well-known mechanisms acting as the central engine to power such X-ray flares, i.e., the neutrino-antineutrino annihilation and the Blandford-Znajek (BZ) process. Our results show that the annihilation luminosity is far below the observational data. Thus, the annihilation mechanism cannot account for such late-time flares. For the BZ process, if the role of outflows is taken into consideration, the inflow mass rate near the horizon will be quite low such that the magnetic field will probably be too weak to power the observed X-ray flares. We therefore argue that, for the late-time flares with internal origin, the central engine is unlikely to be associated with BHs. On the contrary, a fast rotating neutron star with strong bipolar magnetic fields may be responsible for such flares.

  20. Continuous heating of a giant X-ray flare on Algol

    CERN Document Server

    Schmitt, J H M M

    1999-01-01

    Giant flares can release large amounts of energy within a few days: X-ray emission alone can be up to ten percent of the star's bolometric luminosity. These flares exceed the luminosities of the largest solar flares by many orders of magnitude, which suggests that the underlying physical mechanisms supplying the energy are different from those on the Sun. Magnetic coupling between the components in a binary system or between a young star and an accretion disk has been proposed as a prerequisite for giant flares. Here we report X-ray observations of a giant flare on Algol B, a giant star in an eclipsing binary system. We observed a total X-ray eclipse of the flare, which demonstrates that the plasma was confined to Algol B, and reached a maximum height of 0.6 stellar radii above its surface. The flare occurred around the south pole of Algol B, and energy must have been released continously throughout its life. We conclude that a specific extrastellar environment is not required for the presence of a flare, and...

  1. Miocrowave spectral imaging, H-alpha and hard X-ray observations of a solar limb flare

    Science.gov (United States)

    Wang, H.; Gary, D. E.; Lim, J.; Schwartz, R. A.

    1994-01-01

    We compare the microwave, H-alpha, and hard X-ray observations for a west limb C7.3 flare that occurred at 17:10 UT, 1992 June 26. H-alpha movies were obtained at Big Bear Solar Observatory. Before the onset of the flare, overexposed H-alpha images show the complicated flux loop structure above the limb. Material was observed to descend along the loops toward the site where the flare occurred hours later. Using the five-antenna solar array at Owens Valley Radio Observatory, we obtain two-dimensional maps of flare emission from 1.4 to 14 GHz. In all three temporal peaks of the microwave bursts, the maps show the same characteristics. The peak low-frequency emission comes from the top of one bundle of the H-alpha loops and gradually shifts to the foot-point of the loops (the location of H-alpha flare) as the frequency increases. The location of the emission peak shifts 88 sec between 1 and 14 GHz. Seventy percent of the shift occurs between 1 and 5 GHz. The locus of the shift of the emission peak follows the shape of an H-alpha surge that occurred after the flare. For each point along the locus, we create the microwave brightness temperature spectrum and compare the radio-derived electron distribution with that derived from the high-resolution hard X-ray spectra measured with Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO). We find that the peak frequency changes from approximately 3 GHz at the loop top to approximately 7 GHz at the footprint, presumably due to the increase of the magnetic field from approximately 160 GHz at the loop top to approximately 300 G at the footpoint. The high-frequency slope of the microwave power-law spectrum decreases from approximately 10 at the loop top to approximately 5 at the footprint due to a change in the energy distribution of the dominant electrons. The microwave brightness temperature spectral index predicted by the BATSE power-law hard X-ray spectra agrees with the measured

  2. Uhuru observations of 4U 1608-52 - The 'steady' X-ray source associated with the X-ray burst source in Norma

    Science.gov (United States)

    Tananbaum, H.; Chaisson, L. J.; Forman, W.; Jones, C.; Matilsky, T. A.

    1976-01-01

    Data are presented for the X-ray source 4U 1608-52, summarizing its light curve, location, and spectral parameters. Evidence is presented showing that this source is the 'steady' X-ray counterpart of the X-ray burst source in Norma. The spectrum of the 'steady' source is compared with the spectrum observed during two bursts, and it is noted that there is substantially more low-energy absorption during the bursts. The 'steady' source spectral data are used to examine the optical data, and it is concluded that if the X-ray spectrum is thermal, then a globular-cluster counterpart probably would have been detected (whereas none has been). Further X-ray and optical observations are suggested for this source, since an optical identification may be central in determining whether all X-ray bursts have a common origin and if this origin requires a globular-cluster environment.

  3. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Science.gov (United States)

    Effenberger, Frederic; Rubio da Costa, Fatima; Oka, Mitsuo; Saint-Hilaire, Pascal; Liu, Wei; Petrosian, Vahé; Glesener, Lindsay; Krucker, Säm

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  4. Implications of X-ray Observations for Electron Acceleration and Propagation in Solar Flares

    CERN Document Server

    Holman, Gordon D; Aurass, Henry; Battaglia, Marina; Grigis, Paolo C; Kontar, Eduard P; Liu, Wei; Saint-Hilaire, Pascal; Zharkova, Valentina V

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general fla...

  5. Fast X-Ray Oscillations during Magnetar Flares

    Science.gov (United States)

    Strohmayer Tod E.

    2009-01-01

    The giant flares produced by highly magnetized neutron stars, "magnetars," are the brightest sources of high energy radiation outside our solar system. High frequency oscillations have been discovered during portions of the two most recently observed giant flares which may represent the first detection of global oscillation modes of neutron stars. I will give an observational and theoretical overview of these oscillations and describe how they might allow us to probe neutron star interiors and dense matter physics.

  6. Search for Millisecond Periodicities in Type I X-ray Bursts of the Rapid Burster

    CERN Document Server

    Fox, D W; Rutledge, R E; Morgan, E H; Guerriero, R A; Bildsten, L; Van der Klis, M; Van Paradijs, J; Moore, C B; Dotani, T; Asai, K

    2000-01-01

    We have searched the rising portion of type I X-ray bursts observed from the Rapid Burster with the Rossi X-ray Timing Explorer for the presence of periodicities. The 95 per cent confidence upper limit on the average root-mean-square variation of near coherent pulsations with a width of 98 per cent significance) at 306.5 Hz.

  7. Observations of the limb solar flare on 1980 April 30 with the SMM X-ray polychromator

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, A.H.; Acton, L.W.; Culhane, J.L.; Phillips, K.J.H.; Wolfson, C.J.; Rapley, C.G.; Antonucci, E.; Bentley, R.D.; Jordan, C.; Kayat, M.A.; Leibacher, J.W.; Levay, M.; Sherman, J.C.; Strong, K.T.; Veck, N.J.

    1981-03-15

    Soft X-ray observations of the limb event on 1980 April 30 are summarized. These consist of maps made with the Flat Crystal Spectrometer and calcium and iron spectra obtained with the Bent Crystal Spectrometer. The physical conditions, e.g., temperature, density, and energy fluxes, are estimated. The conductive losses exceed the radiative flux during the flare by a factor of about 100. Spectral lines were observed to have enhanced broadening, probably indicating turbulence, for several minutes, coincident with the hard X-ray burst. Since the estimated cooling time is less than the duration of the hot plasma, continuous heating is likely. An estimate is derived for the energy required of 3 x 10/sup 30/ ergs.

  8. The hard X-ray shortages prompted by the clock bursts in GS 1826--238

    CERN Document Server

    Long, Ji; YuPeng, Chen; Shuang-Nan, Zhang; Diego, Torres F; Peter, Kretschmar; Jian, Li

    2013-01-01

    We report on a study of GS 1826--238 using all available {\\it RXTE} observations, concentrating on the behavior of the hard X-rays during type-I bursts. We find a hard X-ray shortage at 30--50 keV promoted by the shower of soft X-rays coming from type-I bursts. This shortage happens with a time delay after the peak of the soft flux of 3.6 $\\pm$ 1.2 seconds.The behavior of hard X-rays during bursts indicates cooling and reheating of the corona, during which a large amount of energy is required. We speculate that this energy originates from the feedback of the type-I bursts to the accretion process, resulting in a rapid temporary increase of the accretion rate.

  9. Observations of Type i X-Ray Bursts from GS 1826-238 with RXTE

    Science.gov (United States)

    Lewin, Walter

    Type I X-ray bursts are the result of thermonuclear flashes on the surface of accreting neutron stars. The spectral lines which are expected in the X-ray spectra of the bursts will allow for a direct measurement of the gravitational redshift from the surface of the neutron stars (one of the holy grails in physics). XMM-Newton has the potential of detecting such lines. We have been awarded 200 ksec observations with XMM-Newton of the X-ray burster GS 1826-238. During this time we expect to observe ten X-ray bursts and to accumulate about 40,000 high-spectral resolution burst counts with the RGS, and roughly 2 Mcounts with EPIC-PN. We are requesting simultaneous observations with RXTE to obtain essential information about the underlying continuum spectrum.

  10. Modification of gravitational redshift of x-ray burst produced by pulsar surface magnetoplasma

    Institute of Scientific and Technical Information of China (English)

    Zhu Jun; Ji Pei-Yong

    2008-01-01

    In this paper,the propagation of x-ray bursts in the magnetoplasma of pulsar magnetosphere is discussed.The electromagnetic interaction between x-ray bursts and magnetoplasma is described as some geometry.The electromagnetic effects of surface superstrong magnetic field and dynamic effects of outflowing magnetoplasma of pulsars are treated as an optical metric.The Gordon metric is introduced to represent the gravitational metric and optical metric.So the propagation of x-ray bursts in magnetoplasma of pulsars can be described as x-ray bursts transmitting in an effective space characterized by Gordon metric.The modification of gravitational redshift,attributed to the flowing magnetoplasma of pulsars,is obtained and it is shown that the modification is of redshift and can reach the same magnitude as the gravitational redshift for ordinary pulsars.

  11. Spectroscopic comparison between ultraluminous X-ray sources and magnetar bursts

    CERN Document Server

    Kajava, J J E

    2016-01-01

    Nearby galaxies host ultra-luminous X-ray sources (ULXs), whose nature remains largely unknown. Until the discovery of the first ULX pulsar, M82 X-2, the mechanism powering the large luminosities of most ULXs was thought to be super-Eddington accretion onto black holes. The ULX pulsar clearly indicates that this hypothesis is not universal, and the question arises if other ULXs are as well powered by accretion onto neutron stars. One possibility to have highly super-Eddington luminosity is by reducing the opacity by strong magnetic fields as in magnetars, as proposed for M82 X-2. To study the link between ULXs and magnetar bursts/flares, we have performed a comparative spectral study between these classes, which both emit at similar super-Eddington luminosities at around $L \\sim 10^{40}$ erg s$^{-1}$. We find that, when their spectra are fitted with dual thermal models, the long term spectral variations of ULXs are similar to short term spectral variability seen during magnetar flares. In both classes of sour...

  12. Central Engine of Late-Time X-ray Flares with Internal Origin

    CERN Document Server

    Mu, Hui-Jun; Hou, Shu-Jin; Liu, Tong; Lin, Da-Bin; Yi, Tuan; Liang, En-Wei; Lu, Ju-Fu

    2016-01-01

    This work focuses on a sample of seven extremely late-time X-ray flares with peak time $t_{\\rm p} > 10^4 {\\rm s}$, among which two flares can be confirmed as the late-time activity of central engine. The main purpose is to investigate the mechanism of such late-time flares based on the internal origin assumption. In the hyper-accreting black hole (BH) scenario, we study the possibility of two well-known mechanisms as the central engine to power such X-ray flares, i.e., the neutrino-antineutrino annihilation and the Blandford-Znajek (BZ) process. Our results show that the annihilation luminosity is far below the observational data. Thus, the annihilation mechanism cannot account for such late-time flares. For the BZ process, if the role of outflows is taken into consideration, the inflow mass rate near the horizon will be quite low such that the magnetic field will probably be too weak to power the observed X-ray flares. We therefore argue that, for the late-time flares with internal origin, the central engine...

  13. Data Mining Solar X-Ray Flares Triggered by Emerging Magnetic Flux

    Science.gov (United States)

    Loftus, Kaitlyn; Saar, Steven H.; Schanche, Nicole

    2017-01-01

    We investigate the association between emerging magnetic flux and solar X-ray flares to identify, and if possible quantify, distinguishing physical properties of flares triggered by flux emergence versus those triggered by other sources. Our study uses as its basis GOES-classified solar flares from March 2011 through June 2016 that have been identified by the Space Weather Prediction Center’s flare detection algorithm. The basic X-ray flare data is then enriched with data about related EUV-spectrum flares, emerging fluxes, active regions, eruptions, and sigmoids, which are all characterized by event-specific keywords, identified via SDO feature finding tools, and archived in the Heliophysics Events Knowledgebase (HEK). Using appropriate spatial and temporal parameters for each event type to determine association, we create a catalogue of solar events associated with each GOES-classified flare. After accounting for the primitive state of many of these event detection algorithms, we statistically analyze the compiled dataset to determine the effects of an emerging flux trigger on flare properties. A two-sample Kolmogorov-Smirnov test confirms with 99.9% confidence that flares triggered by emerging flux have a different peak flux distribution than non-emerging-flux-associated flares. We observe no linear or logarithmic correlations between flares’ and their associated emerging fluxes’ individual properties and find flares triggered by emerging flux are ~ 10% more likely to cause an eruption inside an active region while outside of an active region, the flare’s association with emerging flux has no effect on its likeliness to cause an eruption. We also compare the morphologies of the flares triggered by emerging flux and flares not via a superposed epoch analysis of lightcurves. Our results will be of interest for predicting flare behavior as a function of magnetic activity (where we can use enhanced rates of emerging flux as a proxy for heightened stellar

  14. X-ray bursts at extreme mass accretion rates from GX 17+2

    CERN Document Server

    Kuulkers, E; Van der Klis, M; Lewin, W H G; Méndez, M

    2002-01-01

    (abridged version) We report on ten X-ray bursts from GX 17+2 in RXTE data in 1996-2000. Three bursts were short in duration (~10 s), whereas the others lasted for ~6-25 min. Five of the long bursts showed evidence for radius expansion of the neutron star photosphere. No correlations of the burst properties with respect to the persistent X-ray spectral properties are seen, suggesting no correlation with inferred persistent mass accretion rate. The presence of short bursts in GX 17+2 and other bright X-ray sources, i.e. Cyg X-2, GX 3+1 and GX 13+1, as well as the ABSENCE of bursts in the bright X-ray sources Sco X-1, GX 5-1, GX 340+0, GX 349+2, GX 9+1 and GX 9+9 is not accounted for in the current X-ray bursts theories at the high mass accretion rates encountered in these sources. We find that in contrast to previous suggestions the persistent black-body emission does NOT arise from the same site as the burst emission. The black-body component of the persistent emission is consistent with arising in an expande...

  15. Temporal Study of Magnetar Bursts with Rossi X-ray Timing Explorer

    Science.gov (United States)

    Sasmaz Mus, Sinem; Gogus, Ersin; Kaneko, Yuki

    2016-07-01

    We performed detailed temporal analyses of all bursts observed with the Rossi X-ray Timing Explorer originated from four magnetars: SGR 1806-20, SGR 1900+14, SGR J1550-5418, and AXP 1E 2259+586. We first implemented a Bayesian block algorithm to identify bursts, and constructed Bayesian block representations of all identified bursts from these magnetars. Based on these results, we formed the burst duration distributions, and compared to those previously reported using different approach. We also performed detailed investigation of time lag between various energy intervals in order to uncover any possible time delay between soft and hard X-ray emission components.

  16. X-ray Spectroscopy of Bursts from SGR 1806-20 with RXTE

    CERN Document Server

    Strohmayer, T E; Strohmayer, Tod E.; Ibrahim, Alaa

    1998-01-01

    We report on new RXTE X-ray spectral analysis of bursts from SGR 1806-20, the most prolific SGR source known. Previous studies of bursts from this source revealed a remarkable lack of spectral variability both in single bursts as well as from burst to burst. We present here some of the first evidence for significant spectral evolution within SGR bursts. We find that optically thin thermal bremsstrahlung (OTTB) spectra including photoelectric absorption provide the best fits to most bursts, however, other models (power law, Band GRB) can also produce statistically acceptable fits. We confirm the existence of a rolloff in the photon number spectrum below 5 keV.

  17. Solar X-ray Flare Hazards on the Surface of Mars

    CERN Document Server

    Smith, D S; Smith, David S.; Scalo, John M.

    2006-01-01

    Putative organisms on the Martian surface would be exposed to potentially high doses of ionizing radiation during strong solar X-ray flares. We extrapolate the observed flare frequency-energy release scaling relation to releases much larger than seen so far for the sun, an assumption supported by observations of flares on other solar- and subsolar-mass main sequence stars. We calculate the surficial reprocessed X-ray spectra using a Monte Carlo code we have developed. Biological doses from indirect genome damage are calculated for each parameterized flare spectrum by integration over the X-ray opacity of water. We estimate the mean waiting time for solar flares producing a given biological dose of ionizing radiation on Mars and compare with lethal dose data for a wide range of terrestrial organisms. These timescales range from decades for significant human health risk to 0.5 Myr for D. radiodurans lethality. Such doses require total flare energies of 10^33--10^38 erg, the lower range of which has been observe...

  18. Evolution of the X-ray spectrum in the flare model of Active Galactic Nuclei

    CERN Document Server

    Collin, S; Dumont, A M; Petrucci, P O; Rózanska, A R

    2003-01-01

    Nayakshin & Kazanas (2002) have considered the time-dependent illumination of an accretion disc in Active Galactic Nuclei, in the lamppost model. We extend their study to the flare model, which postulates the release of a large X-ray flux above a small region of the accretion disc. A fundamental difference with the lamppost model is that the region of the disc below the flare is not illuminated before the onset of the flare. A few test models show that the spectrum which follows immediately the increase in continuum flux should display the characteristics of a highly illuminated but dense gas, i.e. very intense X-ray emission lines and ionization edges in the soft X-ray range. The behaviour of the iron line is different in the case of a "moderate" and a ``strong'' flare: for a moderate flare, the spectrum displays a neutral component of the Fe K$\\alpha$ line at 6.4 keV, gradually leading to more highly ionized lines. For a strong flare, the lines are already emitted by FeXXV (around 6.7 keV) after the ons...

  19. Prediction soft-X-ray spectrum of solar flares from Very Low Frequency observations: an inverse problem in ionospheric science

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    Earth's lower ionosphere and upper atmosphere absorb X-rays and gamma-rays from astronomical sources such as solar flares, Short Gamma ray Repeaters (SGRs) or Gamma Ray Bursts (GRBs). The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectrum and hence vary from one source to another. Obviously the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we examine the possibility of inverting the electron density-height profiles uniquely by deconvolution of the VLF amplitude signal to obtain information on the injected spectrum. We have been able to reproduce the soft-X-ray part of the injected spectra from two different classes of solar flares with satisfactory accuracy. With the possibilities of probing even lower parts of the atmosphere, the method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. We show that to a certain accuracy, the Earth's atmosphere may be used as a gigantic detector of relatively strong ionizing extra-terrestrial events.

  20. Science Fair Report: Detection of Solar X-Ray Flares with a Geiger Counter.

    Science.gov (United States)

    Mims, Vicki Rae

    1991-01-01

    Described is a science fair project in which M- and X-class x-ray flares on the surface of the earth were detected using a Geiger counter. Background information, the problem, hypothesis, a list of needed materials, the procedure, observations, conclusions, and a critique are included. (KR)

  1. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel F.; Gallagher, Peter T. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-10-15

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  2. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    Science.gov (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  3. X-ray flares reveal mass and angular momentum of the Galactic Center black hole

    OpenAIRE

    Aschenbach, B.; Grosso, N.; Porquet, D.; Predehl, P.

    2004-01-01

    We have analysed the light curve of the two brightest X-ray flares from the Galactic Center black hole, one flare observed by XMM-Newton on October 3, 2002 (Porquet et al. 2003), and the other flare observed by Chandra on October 26, 2000 (Baganoff et al. 2001). The power density spectra show five distinct peaks at periods of ~ 100 s, 219 s, 700 s, 1150 s, and 2250 s common to both observations within their estimated measurement uncertainties. The power density spectrum of the recently report...

  4. Evidence of 1122 Hz X-ray burst oscillations from the neutron star X-ray transient XTE J1739-285

    DEFF Research Database (Denmark)

    Kaaret, P.; Prieskorn, Z.; in 't Zand, J.J.M.

    2007-01-01

    We report on millisecond variability from the X-ray transient XTE J1739-285. We detected six X-ray type I bursts and found evidence for oscillations at 1122 +/- 0.3 Hz in the brightest X-ray burst. Taking into consideration the power in the oscillations and the number of trials in the search, the...... ranging from 757 to 862 Hz. Using the brightest burst, we derive an upper limit on the source distance of about 10.6 kpc....

  5. Hard X-ray and microwave sources located around the apex of a solar flare loop

    Science.gov (United States)

    Masuda, S.; Shimojo, M.; Watanabe, K.; Minoshima, T.; Yaji, K.

    2010-12-01

    The apex of a flare loop is one of important regions to understand particle acceleration in solar flares, under the framework of the flare model based on magnetic reconnection. At that portion, nonthermal emissions are observed in hard X-rays and microwave. These two emissions are originated from electrons accelerated/energized in different energy ranges. Hard X-rays (~ 50 - 100 keV ) are emitted by relatively lower-energy (~ 100 keV) accelerated electrons. On the other hand, microwaves (17 GHz) are emitted by relatively higher-energy (~ 1 MeV) electrons. The locations (heights) of these two emitting regions impose considerable constraints on the acceleration/transport/loss processes of electrons in solar flares. To compare hard X-ray and microwave sources, we chose twenty-three events among all events detected by Nobeyama Radio Heliograph (NoRH) during the almost whole period of its operation (1992 - 2008). The criteria are (1) limb event, (2) simultaneous observation with Yohkoh/HXT or RHESSI, (3) enough number of photons in the energy range of 33 - 53 keV, and (4) microwave source large enough to resolve the flare loop into footpoint and looptop sources. However, only seven events among them can be used for this study. The remaining sixteen events are displaced from the list due to no hard X-ray looptop source, too complex structure of multiple loops, and so force. Among the seven events, six events show that the looptop hard X-ray source is located at a higher altitude than the looptop microwave source. This result suggests that lower-energy accelerated electrons (~ 100 keV) are located at a higher altitude than higher-energy (~ 1 MeV) electrons. What makes this height difference? We discuss the cause of it from various kinds of viewpoints, e.g. emission mechanism, trapping effect, transport process, loss process.

  6. Energetic Electrons in Solar Flares - As Viewed in X-Rays

    Science.gov (United States)

    Holman, Gordon D.

    2004-01-01

    Hard X-ray observations provide the most direct diagnostic we have of the suprathermal electrons and the hottest thermal plasma present in solar flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is obtaining the most comprehensive observations of individual solar flares ever available in hard X-rays. For the first time, high-resolution spectra are available for a large number of flares that accurately display the spectral shape and its evolution and, in many cases, allow us to identify the transition from the bremsstrahlung X-rays produced by suprathermal electrons to the bremsstrahlung at lower energies emitted by thermal plasma. Also, for the first time, images can be produced in arbitrary energy bands above 3 keV, and spectra of distinct imaged components can be obtained. I will review what we have learned from RHESSI observations about flare suprathermal electron distributions and their evolution Next, I will present computations of the energy deposited by these suprathermal electrons in individual flares and compare this with the energy contained in the hot thermal plasma. I will point out unsolved problems in deducing both suprathermal electron distributions and the energy content of the thermal plasma, and discuss possible solutions. Finally, I will present evidence that electron acceleration is associated with magnetic reconnection in the corona.

  7. The first observed stellar X-ray flare oscillation: Constraints on the flare loop length and the magnetic field

    CERN Document Server

    Mitra-Kraev, U; Williams, D R; Kraev, E

    2005-01-01

    We present the first X-ray observation of an oscillation during a stellar flare. The flare occurred on the active M-type dwarf AT Mic and was observed with XMM-Newton. The soft X-ray light curve (0.2-12 keV) is investigated with wavelet analysis. The flare's extended, flat peak shows clear evidence for a damped oscillation with a period of around 750 s, an exponential damping time of around 2000 s, and an initial, relative peak-to-peak amplitude of around 15%. We suggest that the oscillation is a standing magneto-acoustic wave tied to the flare loop, and find that the most likely interpretation is a longitudinal, slow-mode wave, with a resulting loop length of (2.5 +- 0.2) e10 cm. The local magnetic field strength is found to be (105 +- 50) G. These values are consistent with (oscillation-independent) flare cooling time models and pressure balance scaling laws. Such a flare oscillation provides an excellent opportunity to obtain coronal properties like the size of a flare loop or the local magnetic field stre...

  8. Three X-ray Flares Near Primary Eclipse of the RS CVn Binary XY UMa

    CERN Document Server

    Gong, Hang; Maccarone, Thomas; Reale, Fabio; Liu, Jifeng; Heckert, Paul A

    2016-01-01

    We report on an archival X-ray observation of the eclipsing RS CVn binary XY UMa ($\\rm P_{orb}\\approx$ 0.48d). In two $\\emph{Chandra}$ ACIS observations spanning 200 ks and almost five orbital periods, three flares occurred. We find no evidence for eclipses in the X-ray flux. The flares took place around times of primary eclipse, with one flare occurring shortly ($<0.125\\rm P_{orb}$) after a primary eclipse, and the other two happening shortly ($<0.05\\rm P_{orb}$) before a primary eclipse. Two flares occurred within roughly one orbital period ($\\Delta \\phi\\approx1.024\\rm P_{orb}$) of each other. We analyze the light curve and spectra of the system, and investigate coronal length scales both during quiescence and during flares, as well as the timing of the flares. We explore the possibility that the flares are orbit-induced by introducing a small orbital eccentricity, which is quite challenging for this close binary.

  9. An accretion disk swept up by a powerful thermonuclear X-ray burst

    Science.gov (United States)

    Degenaar, Nathalie

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. Swift recently caught a very energetic type-I X-ray burst from the neutron star IGR J17062-6143 that displayed exceptional features. Firstly, the light curve of the 18 minute long X-ray burst tail shows an episode of 10 minutes with wild X-ray intensity fluctuations. Secondly, X-ray spectral analysis revealed a highly significant emission line around 1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. Finally, the detection of significant absorption lines and edges in the Fe-K band are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent emission of the source. The X-ray burst of IGR J17062-6143 shows the first unambiguous detection of atomic features at CCD resolution. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line, and photo-ionization modeling of the Fe-K absorption features each independently point to swept-up gas at a radius of ~1000 km from the neutron star. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  10. The Variable Crab Nebula: Evidence for a Connection between GeV flares and Hard X-ray Variations

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Kust Harding, Alice; Hays, Elizabeth A.; Cherry, Michael L.; Case, Gary L.; Finger, Mark H.; Jenke, Peter; Zhang, Xiao-Ling

    2016-04-01

    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  11. Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Science.gov (United States)

    Cyburt, R. H.; Amthor, A. M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K.

    2016-10-01

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ), (α, γ), and (α, p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  12. Future Probes of the Neutron Star Equation of State Using X-ray Bursts

    Science.gov (United States)

    Strohmayer, Tod E.

    2004-01-01

    Observations with NASA s Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, %urstoscillations ) during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). Although many of their detailed properties remain to be fully understood, it is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best understood, in the sense that many of their properties can be explained in the framework of this relatively simple model. Because of this, detailed modelling of burst oscillations can be an extremely powerful probe of neutron star structure, and thus the equation of state (EOS) of supra-nuclear density matter. Both the compactness parameter beta = GM/c(sup 2)R, and the surface velocity, nu(sub rot) = Omega(sub spin)R, are encoded in the energy-dependent amplitude and shape of the modulation pulses. The new discoveries have spurred much new theoretical work on thermonuclear burning and propagation on neutron stars, so that in the near future it is not unreasonable to think that detailed physical models of the time dependent flux from burning neutron stars will be available for comparison with the observed pulse profiles from a future, large collecting area X-ray timing observatory. In addition, recent high resolution burst spectroscopy with XMM/Newton suggests the presence of redshifted absorption lines from the neutron star surface during bursts. This leads to the possibility of using large area, high spectral resolution measurements of X-ray bursts as a precise probe of neutron star structure. In this work I will explore the precision with which constraints on neutron star structure, and hence the dense matter EOS, can be made with the implementation of such programs.

  13. Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts

    CERN Document Server

    Shao, L; Mirabal, N

    2007-01-01

    We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs). We find that the echo emission can provide an alternative way of understanding X-ray shallow decays and jet breaks. In particular, a shallow decay followed by a "normal" decay and a further rapid decay of X-ray afterglows can be together explained as being due to the echo from prompt X-ray emission scattered by dust grains in a massive wind bubble around a GRB progenitor. We also introduce an extra temporal break in the X-ray echo emission. By fitting the afterglow light curves, we can measure the locations of the massive wind bubbles, which will bring us closer to finding the mass loss rate, wind velocity, and the age of the progenitors prior to the GRB explosions.

  14. A Systematic Chandra study of Sgr A$^{\\star}$: I. X-ray flare detection

    CERN Document Server

    Yuan, Qiang

    2016-01-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{\\star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {\\it Chandra} observations obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare lightcurves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of $6\\%-14\\%$, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flar...

  15. Another Very Strong X-ray Flare in 1ES 1959+650

    Science.gov (United States)

    Kapanadze, Bidzina

    2016-10-01

    The nearby TeV-detected HBL source 1ES 1959+650 (z=0.047) has been observed five times by X-ray Telescope onboard the Swift satellite (Swift-XRT) in the framework of our Target of Opportunity (ToO) requests of different urgencies (ToO Request Number: 8544, 8614, 8623; see https://www.swift.psu.edu/secure/toop/summary.php) which revealed an onset of the third very strong X-ray flare during the last 1 year period.

  16. A Flaring X-ray Source with an Halpha-bright Counterpart toward the SMC

    CERN Document Server

    Laycock, Silas

    2008-01-01

    We report the discovery of a flaring X-ray source with an optical counterpart with Halpha emission and red-excess, in the direction of the SMC. A 100 ksec X-ray observation with Chandra detected a flare lasting 6 ksec in the source CXO J005428.9-723107. The X-ray spectrum during the flare was consistent with a thermal plasma of temperature kT=2.5 keV. In quiescence following the flare the spectrum was softer (kT= 0.4 keV). Timing analysis did not reveal any significant periodicities or QPOs. Optical images taken with the Magellan-Baade 6.5m telescope show a single star in the (0.9") error circle. This star has apparent magnitude V=19.17, exhibits enhanced Halpha emission (Halpha - r = -0.88), and has a large proper motion. Alternative explanations are explored, leading to identification as a relatively nearby (Galactic) coronally active star of the BY Draconis class.

  17. X-ray burst induced spectral variability in 4U 1728-34

    CERN Document Server

    Kajava, J J E; Kuulkers, E; Poutanen, J

    2016-01-01

    Aims. INTEGRAL has been monitoring the Galactic center region for more than a decade. Over this time INTEGRAL has detected hundreds of type-I X-ray bursts from the neutron star low-mass X-ray binary 4U 1728-34, a.k.a. "the slow burster". Our aim is to study the connection between the persistent X-ray spectra and the X-ray burst spectra in a broad spectral range. Methods. We performed spectral modeling of the persistent emission and the X-ray burst emission of 4U 1728-34 using data from the INTEGRAL JEM-X and IBIS/ISGRI instruments. Results. We constructed a hardness intensity diagram to track spectral state variations. In the soft state the energy spectra are characterized by two thermal components - likely from the accretion disc and the boundary/spreading layer - together with a weak hard X-ray tail that we detect in 4U 1728-34 for the first time in the 40 to 80 keV range. In the hard state the source is detected up to 200 keV and the spectrum can be described by a thermal Comptonization model plus an addit...

  18. The 3 Ms Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    CERN Document Server

    Neilsen, J; Gammie, C; Dexter, J; Markoff, S; Haggard, D; Nayakshin, S; Wang, Q D; Grosso, N; Porquet, D; Tomsick, J A; Degenaar, N; Fragile, P C; Houck, J C; Wijnands, R; Miller, J M; Baganoff, F K

    2013-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic Center.

  19. Hard X-ray morphology of the X1.3 April 25, 2014 partially occulted limb solar flare

    CERN Document Server

    Effenberger, Frederic; Petrosian, Vahe

    2016-01-01

    At hard X-ray energies, the bright footpoint emission from solar flare loops often prevents a detailed analysis of the weaker loop-top source morphology due to the limited dynamic range available for X-ray imaging. Here, we study the X1.3 April 25, 2014 flare with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). This partially occulted limb flare allows the analysis of the loop-top emission in isolation. We present results on the flare light curve at different energies, the source morphology from X-ray imaging and a detailed spectral analysis of the different source components by imaging spectroscopy. The loop-top source, a likely site of particle acceleration, shows a clear composition of different emission components. The results indicate the opportunities that detailed imaging of hard X-rays can provide to learn about particle acceleration, transport and heating processes in solar flares.

  20. The WATCH solar X-ray burst catalogue

    DEFF Research Database (Denmark)

    Crosby, N.; Lund, Niels; Vilmer, N.

    1998-01-01

    The WATCH experiment aboard the GRANAT satellite provides observations of the Sun in the deka-keV range covering the years 1990 through mid-1992. An introduction to the experiment is given followed by an explanation of how the WATCH solar burst catalogue was created. The different parameters listed...

  1. Type I X-ray bursts and burst oscillations in the accreting millisecond X-ray pulsar IGR J17511-3057

    CERN Document Server

    Altamirano, D; Linares, M; Markwardt, C B; Strohmayer, T; Patruno, A

    2010-01-01

    We report the discovery of burst oscillations at the spin frequency in ten thermonuclear bursts from the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057. The burst oscillation properties are, like those from the AMXPs SAX J1808.4-3658 and XTE J1814-338, anomalous compared to burst oscillations from intermittent pulsars or non-pulsing LMXBs. Like SAX J1808.4-3658 they show frequency drifts in the rising phase rather than the tail. There is also evidence for harmonic content. Where IGR J17511-3057 is unusual compared to the other pulsars is that oscillations are not detected throughout all bursts. As accretion rate drops the bursts get brighter and their rise/decay time scales become shorter, while the oscillation amplitude falls below the detection threshold: first in the burst peak and then also in the rise. None of the bursts from IGR J17511-3057 show evidence for photospheric radius expansion (which might be expected to suppress oscillation amplitude) which allow us to set an upper limit to the di...

  2. Thermalisation and hard X-ray bremsstrahlung efficiency of self-interacting solar flare fast electrons

    CERN Document Server

    Galloway, R K; MacKinnon, A L; Brown, J C

    2010-01-01

    Most theoretical descriptions of the production of solar flare bremsstrahlung radiation assume the collision of dilute accelerated particles with a cold, dense target plasma, neglecting interactions of the fast particles with each other. This is inadequate for situations where collisions with this background plasma are not completely dominant, as may be the case in, for example, low-density coronal sources. We aim to formulate a model of a self-interacting, entirely fast electron population in the absence of a dense background plasma, to investigate its implications for observed bremsstrahlung spectra and the flare energy budget. We derive approximate expressions for the time-dependent distribution function of the fast electrons using a Fokker-Planck approach. We use these expressions to generate synthetic bremsstrahlung X-ray spectra as would be seen from a corresponding coronal source. We find that our model qualitatively reproduces the observed behaviour of some flares. As the flare progresses, the model's...

  3. The Flare Activity of SgrA*; New Coordinated mm to X-Ray Observations

    CERN Document Server

    Eckart, A; Bautz, M W; Bower, G C; Brandt, W N; Garmire, G P; Genzel, R; Marrone, D; Moran, J M; Morris, M; Ott, T; Rao, R; Ricker, G R; Roberts, D A; Schödel, R; Straubmeier, C; Trippe, S; Viehmann, T; Yusef-Zadeh, F; Zhao, J H

    2005-01-01

    We report new simultaneous near-infrared/sub-millimeter/X-ray observations of the SgrA* counterpart associated with the massive 3-4x10**6 solar mass black hole at the Galactic Center. The main aim is to investigate the physical processes responsible for the variable emission from SgrA*. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope and the ACIS-I instrument aboard the Chandra X-ray Observatory as well as the Submillimeter Array SMA on Mauna Kea, Hawaii, and the Very Large Array in New Mexico. We detected one moderately bright flare event in the X-ray domain and 5 events at infrared wavelengths.

  4. Solar Flare Element Abundances from the Solar Assembly for X-rays (SAX) on MESSENGER

    CERN Document Server

    Dennis, B R; Schwartz, R A; Tolbert, A K; Starr, R D; Nittler, L R

    2015-01-01

    X-ray spectra in the range $1.5-8.5$~keV have been analyzed for 526 large flares detected with the Solar Assembly for X-rays (SAX) on the Mercury {\\em MESSENGER} spacecraft between 2007 and 2013. For each flare, the temperature and emission measure of the emitting plasma were determined from the spectrum of the continuum. In addition, with the SAX energy resolution of 0.6 keV (FWHM) at 6~keV, the intensities of the clearly resolved Fe-line complex at 6.7~keV and the Ca-line complex at 3.9~keV were determined, along with those of unresolved line complexes from S, Si, and Ar at lower energies. Comparisons of these line intensities with theoretical spectra allow the abundances of these elements relative to hydrogen to be derived, with uncertainties due to instrument calibration and the unknown temperature distribution of the emitting plasma. While significant deviations are found for the abundances of Fe and Ca from flare to flare, the abundances averaged over all flares are found to be enhanced over photospheri...

  5. Solar Flare X-ray Source Motion as a Response to Electron Spectral Hardening

    CERN Document Server

    O'Flannagain, A; Brown, J; Milligan, R; Holman, G

    2013-01-01

    Context: Solar flare hard X-rays (HXRs) are thought to be produced by nonthermal coronal electrons stopping in the chromosphere, or remaining trapped in the corona. The collisional thick target model (CTTM) predicts that sources produced by harder power-law injection spectra should appear further down the legs or footpoints of a flare loop. Therefore, hardening of the injected power-law electron spectrum during flare onset should be concurrent with a descending hard X-ray source. Aims: To test this implication of the CTTM by comparing its predicted HXR source locations with those derived from observations of a solar flare which exhibits a nonthermally-dominated spectrum before the peak in HXRs, known as an early impulsive event. Methods: HXR images and spectra of an early impulsive C-class flare were obtained using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Images were reconstructed to produce HXR source height evolutions for three energy bands. Spatially-integrated spectral analysis was perf...

  6. X-ray flaring in PDS 456 observed in a high-flux state

    Science.gov (United States)

    Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Turner, T. J.; Costa, M. T.

    2017-03-01

    We present an analysis of a 190 ks (net exposure) Suzaku observation, carried out in 2007, of the nearby (z = 0.184) luminous (Lbol ∼ 1047 erg s-1) quasar PDS 456. In this observation, the intrinsically steep bare continuum is revealed compared to subsequent observations, carried out in 2011 and 2013, where the source is fainter, harder and more absorbed. We detected two pairs of prominent hard and soft flares, restricted to the first and second halves of the observation, respectively. The flares occur on time-scales of the order of ∼50 ks, which is equivalent to a light-crossing distance of ∼10 Rg in PDS 456. From the spectral variability observed during the flares, we find that the continuum changes appear to be dominated by two components: (i) a variable soft component (2 keV). The photon index of the latter power-law component appears to respond to changes in the soft band flux, increasing during the soft X-ray flares. Here, the softening of the spectra, observed during the flares, may be due to Compton cooling of the disc corona induced by the increased soft X-ray photon seed flux. In contrast, we rule out partial covering absorption as the physical mechanism behind the observed short time-scale spectral variability, as the time-scales are likely too short to be accounted for by absorption variability.

  7. Extensive Serendipitous X-ray Coverage of a Flare Star with ROSAT

    CERN Document Server

    Silverman, J D; Green, P J; Saar, S H

    2000-01-01

    We report the serendipitous discovery of a flare star observed with the ROSAT X-ray observatory. From optical spectra, which show strong and variable emission lines of the hydrogen Balmer series and neutral helium, we classify this object as a M3.0Ve star, and estimate a distance of 52 pc from published photometry. Due to the star's close proximity (13.6') to the calibration source and RS CVn binary AR Lacertae, long term X-ray coverage is available in the ROSAT archive (~50 hours spanning 6.5 years). Two large flare events occurred early in the mission (6-7/1990), and the end of a third flare was detected in 6/1996. One flare, observed with the Position Sensitive Proportional Counter (PSPC), had a peak luminosity Lx=1.1x10^{30} erg/s, an e-folding rise time of 2.2 hours and a decay time of 7 hours. This decay time is one of the longest detected on a dMe star, providing evidence for the possibility of additional heating during the decay phase. A large HRI flare (peak Lx=2.9x10^{30} erg/s) is also studied. The...

  8. Decomposition of the X-ray waveform of soft gamma-ray repeaters during giant flares

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We have analyzed the observations of SGR 1806-20 and SGR 1900+14 during giant flares made with the Rossi X-ray Timing Explorer.We have studied the pulsating tail after the initial spike and decomposed the pulse waveform into separate components of sub-pulses.We found evidence for phase shifts of those sub-pulses.This is probably due to rapid geometrical changes in the magnetic field of the neutron star during giant flares.The phase shifts could be used to constrain the geometry of the magnetic field.

  9. Future Probes of the Neutron Star Equation of State Using X-ray Bursts

    CERN Document Server

    Strohmayer, T E

    2004-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, "burst oscillations") during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). It is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best understood, in the sense that many of their properties can be explained in the framework of this relatively simple model. Because of this, detailed modelling of burst oscillations can be an extremely powerful probe of neutron star structure, and thus the equation of state (EOS) of supra-nuclear density matter. The new discoveries have spurred much new theoretical work on thermonuclear burning and propagation on neutron stars, so that in the near future it is not unreasonable to think that detailed physical models of the time d...

  10. X-ray Burst Oscillations: From Flame Spreading to the Cooling Wake

    CERN Document Server

    Mahmoodifar, Simin

    2015-01-01

    Type I X-ray bursts are thermonuclear flashes observed from the surface of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but to date there haven't been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for two such "cooling wake" models, a "canonical" cooling model where each patch on the neutron star surface heats and cools identically, and an "asymmetric" model where parts of the star cool at different rates. We show that while canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternative...

  11. Nonradial g-mode oscillations in X-ray bursting neutron stars

    Science.gov (United States)

    Mcdermott, P. N.; Taam, Ronald E.

    1987-01-01

    The oscillation spectrum of nonradial g-modes in X-ray bursting neutron stars has been studied. The pulsation periods are found to be sensitive to the envelope temperature and range from about 15 ms to about 50 ms for the l = 1 g(1) mode during the X-ray burst. From a quasi-adiabatic stability analysis it is likely that a spectrum of l-pole g-modes is unstable due to the epsilon-mechanism associated with rapid alpha captures. As the thermal structure of the envelope of the neutron star changes on time scales less than 0.2 s during the rise of the X-ray burst, the oscillations are expected to be quasi-coherent during this phase. The calculated period derivatives are large during the burst and are about 1 ms/s. The pulsations are short-lived and are most likely to be seen in the immediate vicinity of the burst peak. Finally, the possible relevance of nonradial g-mode pulsations to the recently discovered quasi-periodic oscillations observed in a number of X-ray sources is discussed.

  12. Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Kuznetsov, S. A.; Zimovets, I. V.; Morgachev, A. S.; Struminsky, A. B.

    2016-09-01

    We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 - 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks P ≈8 - 270 s are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares ( 55~%) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares ( 45~%) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 ( 88~%) group 1 flares and 11 ( 85~%) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the

  13. SAS-3 observations of an X-ray flare from Cygnus X-1

    Science.gov (United States)

    Canizares, C. R.; Bradt, H.; Buff, J.; Laufer, B.

    1976-01-01

    Preliminary results are presented for the SAS-3 observation of an X-ray flare from Cygnus X-1. The 1.5 to 6 keV intensity rose by a factor of four and exhibited variability on several time scales from seconds to hours. The 6 to 15 keV intensity showed less activity. The event is similar to that observed by ANS and Ariel 5, but lasted less than two weeks.

  14. A recent strong X-ray flaring activity of 1ES 1959+650 with possibly less efficient stochastic acceleration

    Science.gov (United States)

    Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Kapanadze, S.; Mdzinarishvili, T.

    2016-09-01

    We present an X-ray flaring activity of 1ES 1959+650 in 2015 August-2016 January, which was the most powerful and prolonged during the 10.75 yr period since the start of its monitoring with X-ray Telescope onboard Swift. A new highest historical 0.3-10 keV count rate was recorded three times that makes this object the third BL Lacertae source exceeding the level of 20 counts s-1. Along with the overall variability by a factor of 5.7, this epoch was characterized by fast X-ray flares by a factor of 2.0-3.1, accompanied with an extreme spectral variability. The source also shows a simultaneous flaring activity in the optical - UV and 0.3-100 GeV bands, although a fast γ-ray flare without significant optical - X-ray counterparts is also found. In contrast to the X-ray flares in the previous years, the stochastic acceleration seems be less important for the electrons responsible for producing X-ray emission during this flare that challenges the earlier suggestion that the electrons in the jets of TeV-detected BL Lacertae objects should undergo an efficient stochastic acceleration resulting in a lower X-ray spectral curvature.

  15. The Relationship Between X-ray Luminosity and Major Flare Launching in GRS 1915+105

    CERN Document Server

    Punsly, Brian

    2012-01-01

    We perform the most detailed analysis to date of the X-ray state of the Galactic black hole candidate GRS 1915+105 just prior to (0 to 4 hours) and during the brief (1 to 7 hour) ejection of major (superluminal) radio flares. A very strong model independent correlation is found between the 1.2 keV - 12 keV X-ray flux 0 to 4 hours before flare ejections with the peak optically thin 2.3 GHz emission of the flares. This suggests a direct physical connection between the energy in the ejection and the luminosity of the accretion flow preceding the ejection. In order to quantify this concept, we develop techniques to estimate the intrinsic (unabsorbed) X-ray luminosity, $L_{\\mathrm{intrinsic}}$, from RXTE ASM data and to implement known methods to estimate the time averaged power required to launch the radio emitting plasmoids, $Q$ (sometimes called jet power). We find that the distribution of intrinsic luminosity from 1.2 keV - 50 keV, $L_{\\mathrm{intrinsic}}(1.2 - 50)$, is systematically elevated just before ejec...

  16. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    CERN Document Server

    Bhardwaj, A; Elsner, R F; Ford, P G; Gladstone, G R; Bhardwaj, Anil; Cravens, Thomas E.; Elsner, Ronald F.; Ford, Peter G.

    2005-01-01

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn's disk X-ray emissions are found to be variable on time scales of hours to weeks to months, and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's polar (auroral) region have characteristics similar to those from its disk. This report, combined with earlier studies, establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  17. ANISOTROPY OF X-RAY BURSTS FROM NEUTRON STARS WITH CONCAVE ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    He, C.-C. [College of Physics, Jilin University, Changchun 130012 (China); Keek, L., E-mail: jordanhe1994@gmail.com [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States)

    2016-03-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is anisotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk make the observed flux dependent on the inclination angle of the disk with respect to the line of sight. This is of importance for the interpretation of thermonuclear X-ray bursts from neutron stars. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star’s equation of state. Previous predictions of the anisotropy factors assumed a geometrically flat disk. Detailed observations of two so-called superbursts allowed for the direct and the reflected burst fluxes to each be measured separately. The reflection fraction was much higher than what the anisotropies of a flat disk can account for. We create numerical models to calculate the anisotropy factors for different disk shapes, including concave disks. We present the anisotropy factors of the direct and reflected burst fluxes separately, as well as the anisotropy of the persistent flux. Reflection fractions substantially larger than unity are produced in the case where the inner accretion disk increases steeply in height, such that part of the star is blocked from view. Such a geometry could possibly be induced by the X-ray burst if X-ray heating causes the inner disk to puff up.

  18. Discovery of type-I X-ray bursts from the low-mass X-ray binary 4U 1708-40

    CERN Document Server

    Migliari, S; Belloni, T; Van der Klis, M; Fender, R P; Campana, S; Kouveliotou, C; Méndez, M; Lewin, W H G

    2003-01-01

    We report the discovery of type-I X-ray bursts from the low-mass X-ray binary 4U 1708-40 during the 100 ks observation performed by BeppoSAX on 1999 August 15-16. Six X-ray bursts have been observed. The unabsorbed 2-10 keV fluxes of the bursts range from ~ (3-9)x10^(-10) erg cm^(-2)s^(-1). A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate Mdot~7x10^(-11) Msun/yr, that may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of 4U 1708-40, where no bursts have been observed; we found persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts...

  19. Spatio-temporal dynamics of sources of hard X-ray pulsations in solar flares

    CERN Document Server

    Kuznetsov, S A; Morgachev, A S; Struminsky, A B

    2016-01-01

    We present systematic analysis of spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phase are accompanied by a series of more than three peaks (pulsations) of HXR emission detected in the RHESSI 50-100 keV channel with 4-second cadence. 29 such flares observed from February 2002 to June 2015 with time differences between successive peaks of 8-270 s are studied. The main observational result is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent displacements from pulsation to pulsation. The flares can be subdivided into two groups depending on character of dynamics of HXR sources. The group-1 consists of 16 flares (55%) with systematic dynamics of HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has simple extended trace on the photosphere. The group-2 consists of 13 flares (45%) with more chaotic displacements of HXR sources with respe...

  20. Windowless microfluidic platform based on capillary burst valves for high intensity x-ray measurements

    DEFF Research Database (Denmark)

    Vig, Asger Laurberg; Haldrup, Kristoffer; Enevoldsen, Nikolaj Brandt;

    2009-01-01

    We propose and describe a microfluidic system for high intensity x-ray measurements. The required open access to a microfluidic channel is provided by an out-of-plane capillary burst valve (CBV). The functionality of the out-of-plane CBV is characterized with respect to the diameter of the window...

  1. Sensitivity of Type I X-Ray Bursts to rp-Process Reaction Rates

    CERN Document Server

    Amthor, A M; Heger, A; Sakharuk, A; Schatz, H; Smith, K; Galaviz, Daniel; Heger, Alexander; Sakharuk, Alexander; Schatz, Hendrik; Smith, Karl

    2006-01-01

    First steps have been taken in a more comprehensive study of the dependence of observables in Type I X-ray bursts on uncertain (p,gamma) reaction rates along the rp-process path. We use the multizone hydrodynamics code KEPLER which implicitly couples a full nuclear reaction network of more than 1000 isotopes, as needed, to follow structure and evolution of the X-ray burst layer and its ashes. This allows us to incorporate the full rp-process network, including all relevant nuclear reactions, and individually study changes in the X-ray burst light curves when modifying selected key nuclear reaction rates. In this work we considered all possible proton captures to nuclei with 10 < Z < 28 and N <= Z. When varying individual reaction rates within a symmetric full width uncertainty of a factor of 10000, early results for some rates show changes in the burst light curve as large as 10 percent of peak luminosity. This is very large compared to the current sensitivity of X-ray observations. More precise reac...

  2. X-ray flares reveal mass and angular momentum of the Galactic Center black hole

    CERN Document Server

    Aschenbach, B; Porquet, D; Predehl, P

    2004-01-01

    We have analysed the light curve of the two brightest X-ray flares from the Galactic Center black hole, one flare observed by XMM-Newton on October 3, 2002 (Porquet et al. 2003), and the other flare observed by Chandra on October 26, 2000 (Baganoff et al. 2001). The power density spectra show five and just five distinct peaks at periods of ~ 100s, 219s, 700s, 1150s, and 2250s common to both observations within their estimated measurement uncertainties. The power density spectrum of the recently reported infrared flare of June 16, 2003 (Genzel et al. 2003) shows distinct peaks at two, if not three, periods (including the 1008+/-120 s infrared period), which are consistent with the X-ray periods. The remaining two periods could not be covered by the infrared measurements. Each period can be identified with one of the characteristic gravitational cyclic modes associated with accretion disks, i.e. either Lense-Thirring precession, Kepler orbital motion and the vertical and radial epicyclic oscillation modes, in s...

  3. THREE-DIMENSIONAL RADIO AND X-RAY MODELING AND DATA ANALYSIS SOFTWARE: REVEALING FLARE COMPLEXITY

    Energy Technology Data Exchange (ETDEWEB)

    Nita, Gelu M.; Fleishman, Gregory D.; Gary, Dale E. [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kuznetsov, Alexey A. [Institute of Solar-Terrestrial Physics, Irkutsk 664033 (Russian Federation); Kontar, Eduard P. [School of Physics and Astronomy, The University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2015-02-01

    Many problems in solar physics require analysis of imaging data obtained in multiple wavelength domains with differing spatial resolution in a framework supplied by advanced three-dimensional (3D) physical models. To facilitate this goal, we have undertaken a major enhancement of our IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The enhanced software architecture allows the user to (1) import photospheric magnetic field maps and perform magnetic field extrapolations to generate 3D magnetic field models; (2) investigate the magnetic topology by interactively creating field lines and associated flux tubes; (3) populate the flux tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform, nonthermal electron distributions; (4) investigate the spatial and spectral properties of radio and X-ray emission calculated from the model; and (5) compare the model-derived images and spectra with observational data. The package integrates shared-object libraries containing fast gyrosynchrotron emission codes, IDL-based soft and hard X-ray codes, and potential and linear force-free field extrapolation routines. The package accepts user-defined radiation and magnetic field extrapolation plug-ins. We use this tool to analyze a relatively simple single-loop flare and use the model to constrain the magnetic 3D structure and spatial distribution of the fast electrons inside this loop. We iteratively compute multi-frequency microwave and multi-energy X-ray images from realistic magnetic flux tubes obtained from pre-flare extrapolations, and compare them with imaging data obtained by SDO, NoRH, and RHESSI. We use this event to illustrate the tool's use for the general interpretation of solar flares to address disparate problems in solar physics.

  4. MAXI/GSC detection of a possible X-ray flare from an RS CVn star AR Psc

    Science.gov (United States)

    Nakamura, Y.; Tsuboi, Y.; Sasaki, R.; Serino, M.; Nakahira, S.; Ueno, S.; Tomida, H.; Ishikawa, M.; Nakagawa, Y. E.; Sugawara, Y.; Mihara, T.; Sugizaki, M.; Iwakiri, W.; Shidatsu, M.; Sugimoto, J.; Takagi, T.; Matsuoka, M.; Kawai, N.; Isobe, N.; Sugita, S.; Yoshii, T.; Tachibana, Y.; Ono, Y.; Fujiwara, T.; Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Kitaoka, Y.; Tsunemi, H.; Shomura, R.; Negoro, H.; Nakajima, M.; Tanaka, K.; Masumitsu, T.; Kawase, T.; Ueda, Y.; Kawamuro, T.; Hori, T.; Tanimoto, A.; Yamauchi, M.; Furuya, K.; Yamaoka, K.

    2016-07-01

    On July 30th 2016, the MAXI/GSC nova-alert system triggered on a possible X-ray flare from an RS CVn star AR Psc. The intense X-ray emission was detected from a transit starting at 21:52 UT on July 29th 2016 to the next transit starting at 23:25 UT on 29th.

  5. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    CERN Document Server

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  6. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    Science.gov (United States)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  7. High-Resolution X-Ray Spectroscopy of the Bursting Pulsar GRO J1744-28

    CERN Document Server

    Degenaar, N; Harrison, F A; Kennea, J A; Kouveliotou, C; Younes, G

    2014-01-01

    The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/HETG observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E_l ~ 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ~ 52 degrees and an inner disk radius of R_in ~ 85 GM/c^2, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ~ (2-6)E10 G. Furthermore, we identify an absorption feature nea...

  8. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  9. Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    Science.gov (United States)

    Pasham, Dheeraj R.; Cenko, S. Bradley; Sadowski, Aleksander; Guillochon, James; Stone, Nicholas C.; van Velzen, Sjoert; Cannizzo, John K.

    2017-03-01

    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.

  10. X-RAY EMISSION AND ABSORPTION FEATURES DURING AN ENERGETIC THERMONUCLEAR X-RAY BURST FROM IGR J17062-6143

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Fabian, A. C., E-mail: degenaar@umich.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom)

    2013-04-20

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. We analyze a very energetic type-I X-ray burst from the neutron star low-mass X-ray binary IGR J17062-6143 that was detected with Swift on 2012 June 25. The light curve of the {approx_equal}18 minute long X-ray burst tail shows an episode of {approx_equal}10 minutes during which the intensity is strongly fluctuating by a factor of {approx_equal}3 above and below the underlying decay trend on a timescale of seconds. The X-ray spectrum reveals a highly significant emission line around {approx_equal}1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. We also detect significant absorption lines and edges in the Fe-K band, which are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent X-ray spectrum of the source. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line (assuming Keplerian motion), and photoionization modeling of the Fe-K absorption features each independently point to gas at a radius of {approx_equal} 10{sup 3} km as the source of these features. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  11. Solar flare count periodicities in different X-ray flare classes

    Science.gov (United States)

    Gao, Peng-Xin; Xu, Jing-Chen

    2016-04-01

    Using the Morlet wavelet transform and the Hilbert-Huang transform (HHT), we investigate the periodic behaviours of C, M and X-class flare counts, respectively, recorded by the Geostationary Operational Environmental Satellites (GOES) from 1983 May to 2014 December, which cover the two complete solar cycles (SCs) 22 and 23 as well as the part of declining phase of SC 21 and rise and maximum phases of SC 24. Analyses show that the periodic behaviours of various class flare counts are different. (1) Not all periods of various class flare counts appear dominant during the cycle maxima. For C-class flares, during SC 23, periods appear dominant during the maximum phase, however, compared to those during SC 23, there are more periods during the declining phase of SC 22; for M-class flares, during SCs 22 and 23, periods appear dominant during the cycle maxima; for X-class flares, during SC 22, almost all periods appear during the maximum phase; however, during SC 23, there are more periods during the declining phase compared to those during SC 22. (2) For C-class flares, the appearance of periods do not follow the amplitude of C-class flare cycles; while, for M and X-class flares, the appearance of periods follows the amplitude of the investigated corresponding class flare cycles. (3) From the overall trends, the 10 yr and longer time-scale trends of the monthly numbers of M and X-class flares, we can infer that the maximum values of the monthly M and X-class flare numbers would increase during SC 25.

  12. Simultaneous optical and X-ray bursts from 4U/MXB 1636-53

    Science.gov (United States)

    Pedersen, H.; Lub, J.; Inoue, H.; Koyama, K.; Makishima, K.; Matsuoka, M.; Mitsuda, K.; Murakami, T.; Oda, M.; Ogawara, Y.

    1982-01-01

    Methods of obtaining information about the geometry of X-ray burster systems from simultaneous optical and X-ray observations are discussed, and such simultaneous observations of 4U/MXB 1636-53 are reported. The physical idea of an optical burst being due to reprocessing of an X-ray burst in material in the vicinity of the compact object is discussed. The resulting modification of the X-ray burst signal is described in terms of an optical response function. Delay and smearing due to radiative processes are discussed along with those due to the geometry. For 4U/MXB 1636-53, the estimated delay is 2.5 seconds, the smearing is less than four seconds, and the maximum temperature of the reprocessing region is about 75,000 K. The projected area of the reprocessing region is about 6 x 10 to the 21st square cm. The neutron star is about 1.4 solar masses, the radius of the accretion disk is greater than 1.5 lt-sec, and the mass of the Roche lobe filling companion star is less than 2.0 solar masses, corresponding to a binary period between about one and ten hours.

  13. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    Science.gov (United States)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  14. X-ray emission and absorption features during an energetic thermonuclear X-ray burst from IGR J17062-6143

    CERN Document Server

    Degenaar, N; Wijnands, R; Altamirano, D; Fabian, A C

    2012-01-01

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. We analyze a very energetic type-I X-ray burst from the neutron star low-mass X-ray binary IGR J17062-6143 that was detected with Swift on 2012 June 25. The light curve of the ~18 min long X-ray burst tail shows an episode of ~10 min during which the intensity is strongly fluctuating by a factor of ~3 above and below the underlying decay trend, on a time scale of seconds. The X-ray spectrum reveals a highly significant emission line around ~1 keV, which can be interpreted as a Fe-L shell line caused by irradiation of cold gas. We also detect significant absorption lines and edges in the Fe-K band, which are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent X-ray spectrum of the source. The time scale of the stro...

  15. Millihertz Oscillation Frequency Drift Predicts the Occurrence of Type I X-ray Bursts

    CERN Document Server

    Altamirano, D; Wijnandsm, R; Cumming, A

    2007-01-01

    Millihertz quasi-periodic oscillations reported in three neutron-star low mass X-ray binaries have been suggested to be a mode of marginally stable nuclear burning on the neutron star surface. In this Letter, we show that close to the transition between the island and the banana state, 4U~1636--53 shows mHz QPOs whose frequency systematically decreases with time until the oscillations disappear and a Type I X-ray burst occurs. There is a strong correlation between the QPO frequency $\

  16. The Swift capture of a long X-ray burst from XTE J1701-407

    CERN Document Server

    Linares, Manuel; Wijnands, Rudy; Soleri, Paolo; Degenaar, Nathalie; Curran, Peter A; Starling, Rhaana L C; van der Klis, Michiel

    2008-01-01

    XTE J1701-407 is a new transient X-ray source discovered on June 8th, 2008. More than one month later it showed a rare type of thermonuclear explosion: a long type I X-ray burst. We report herein the results of our study of the spectral and flux evolution during this burst, as well as the analysis of the outburst in which it took place. We find an upper limit on the distance to the source of 6.2 kpc by considering the maximum luminosity reached by the burst. We measure a total fluence of 3.5*10^{-6} erg/cm^2 throughout the ~20 minutes burst duration and a fluence of 2.6*10^{-3} erg/cm^2 during the first two months of the outburst. We show that the flux decay is best fitted by a power law (index ~1.6) along the tail of the burst. Finally, we discuss the implications of the long burst properties, and the presence of a second and shorter burst detected by Swift ten days later, for the composition of the accreted material and the heating of the burning layer.

  17. Numerical simulations of chromospheric hard X-ray source sizes in solar flares

    CERN Document Server

    Battaglia, Marina; Fletcher, Lyndsay; MacKinnon, Alec L

    2012-01-01

    X-ray observations are a powerful diagnostic tool for transport, acceleration, and heating of electrons in solar flares. Height and size measurements of X-ray footpoints sources can be used to determine the chromospheric density and constrain the parameters of magnetic field convergence and electron pitch-angle evolution. We investigate the influence of the chromospheric density, magnetic mirroring and collisional pitch-angle scattering on the size of X-ray sources. The time-independent Fokker-Planck equation for electron transport is solved numerically and analytically to find the electron distribution as a function of height above the photosphere. From this distribution, the expected X-ray flux as a function of height, its peak height and full width at half maximum are calculated and compared with RHESSI observations. A purely instrumental explanation for the observed source size was ruled out by using simulated RHESSI images. We find that magnetic mirroring and collisional pitch-angle scattering tend to ch...

  18. Discovery of a high confidence soft lag from an X-ray flare of Markarian 421

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We present the X-ray variability properties of the X-ray and TeV bright blazar Mrk 421 with a-60 ks long XMM-Newton observation performed on November 9-10,2005.The source experienced a pronounced flare,of which the inter-band time lags were determined with a very high confidence level.The soft(0.6-0.8 keV) X-ray variations lagged the hard(4-10 keV) ones by 1.09+0.11-0.12 ks,and the soft lag increases with increasing difference in the photon energy.The energy-dependent soft lags can be well fitted with the difference of the energy-dependent cooling timescales of the relativistic electron distribution responsible for the observed X-ray emission,which constrains the magnetic field strength and Doppler factor of the emitting region to be Bδ 1/3-1.78 Gauss.

  19. A search for thermal X-ray signatures in Gamma-Ray Bursts I: Swift bursts with optical supernovae

    CERN Document Server

    Starling, R L C; Pe'er, A; Beardmore, A P; Osborne, J P

    2012-01-01

    The X-ray spectra of Gamma-Ray Bursts can generally be described by an absorbed power law. The landmark discovery of thermal X-ray emission in addition to the power law in the unusual GRB 060218, followed by a similar discovery in GRB 100316D, showed that during the first thousand seconds after trigger the soft X-ray spectra can be complex. Both the origin and prevalence of such spectral components still evades understanding, particularly after the discovery of thermal X-ray emission in the classical GRB 090618. Possibly most importantly, these three objects are all associated with optical supernovae, begging the question of whether the thermal X-ray components could be a result of the GRB-SN connection, possibly in the shock breakout. We therefore performed a search for blackbody components in the early Swift X-ray spectra of 11 GRBs that have or may have associated optical supernovae, accurately recovering the thermal components reported in the literature for GRBs 060218, 090618 and 100316D. We present the ...

  20. Hard X-Ray Imaging of Individual Spectral Components in Solar Flares

    CERN Document Server

    Caspi, Amir; McTiernan, James M; Krucker, Säm

    2015-01-01

    We present a new analytical technique, combining Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) high-resolution imaging and spectroscopic observations, to visualize solar flare emission as a function of spectral component (e.g., isothermal temperature) rather than energy. This computationally inexpensive technique is applicable to all spatially-invariant spectral forms and is useful for visualizing spectroscopically-determined individual sources and placing them in context, e.g., comparing multiple isothermal sources with nonthermal emission locations. For example, while extreme ultraviolet images can usually be closely identified with narrow temperature ranges, due to the emission being primarily from spectral lines of specific ion species, X-ray images are dominated by continuum emission and therefore have a broad temperature response, making it difficult to identify sources of specific temperatures regardless of the energy band of the image. We combine RHESSI calibrated X-ray visibilities wi...

  1. A CHANDRA OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511-3057

    Energy Technology Data Exchange (ETDEWEB)

    Paizis, A. [Istituto Nazionale di Astrofisica, INAF-IASF, Via Bassini 15, 20133 Milano (Italy); Nowak, M. A. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Rodriguez, J.; Chaty, S. [Astrophysique, Instrumentation et Modelisation (AIM, UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Wilms, J. [Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universitaet Erlangen-Nuernberg, Sternwartstr. 7, 96049 Bamberg (Germany); Del Santo, M.; Ubertini, P., E-mail: ada@iasf-milano.inaf.it, E-mail: mnowak@space.mit.edu [IAPS, INAF, Via Fosso del Cavaliere 100, 00133 Rome (Italy)

    2012-08-10

    IGR J17511-3057 is a low-mass X-ray binary hosting a neutron star and is one of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on a 20 ks Chandra grating observation of IGR J17511-3057, performed on 2009 September 22. We determine the most accurate X-ray position of IGR J17511-3057, {alpha}{sub J2000} = 17{sup h}51{sup m}08.{sup s}66, {delta}{sub J2000} = -30 Degree-Sign 57'41.''0 (90% uncertainty of 0.''6). During the observation, a {approx}54 s long type-I X-ray burst is detected. The persistent (non-burst) emission has an absorbed 0.5-8 keV luminosity of 1.7 Multiplication-Sign 10{sup 36} erg s{sup -1} (at 6.9 kpc) and can be well described by a thermal Comptonization model of soft, {approx}0.6 keV, seed photons upscattered by a hot corona. The type-I X-ray burst spectrum, with average luminosity over the 54 s duration L{sub 0.5-8{sub keV}} = 1.6 Multiplication-Sign 10{sup 37} erg s{sup -1}, can be well described by a blackbody with kT{sub bb} {approx} 1.6 keV and R{sub bb} {approx} 5 km. While an evolution in temperature of the blackbody can be appreciated throughout the burst (average peak kT{sub bb} = 2.5{sup +0.8}{sub -0.4} keV to tail kT{sub bb} = 1.3{sup +0.2}{sub -0.1} keV), the relative emitting surface shows no evolution. The overall persistent and type-I burst properties observed during the Chandra observation are consistent with what was previously reported during the 2009 outburst of IGR J17511-3057.

  2. H-alpha macrospicules - Identification with EUV macrospicules and with flares in X-ray bright points

    Science.gov (United States)

    Moore, R. L.; Tang, F.; Bohlin, J. D.; Golub, L.

    1977-01-01

    The paper presents observational evidence that two newly observed transient solar phenomena, EUV macrospicules and X-ray bright-point flares, are closely related. Time-lapse H-alpha filtergram observations of the limb in quiet regions show small surgelike eruptions called H-alpha macrospicules. From the similarity of H-alpha macrospicules and EUV macrospicules, and from comparison of simultaneous H-alpha and He II 304 A observations, we conclude that H-alpha macrospicules are EUV macrospicules viewed in H-alpha, although most EUV macrospicules are too faint in H-alpha to appear on H-alpha filtergrams of normal exposure. From comparison of simultaneous X-ray and H-alpha observations of flares in X-ray bright points situated on the limb, we show that flares in X-ray bright points often produce H-alpha macrospicules.

  3. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  4. Long Type I X-ray Bursts and Neutron Star Interior Physics

    CERN Document Server

    Cumming, A; in 't Zand, J J M; Page, D; Cumming, Andrew; Macbeth, Jared; Page, Dany

    2005-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. A number of "intermediate duration" bursts have also been observed, probably associated with ignition of a thick helium layer. We investigate the sensitivity of these long X-ray bursts to the thermal profile of the neutron star crust and core. We first compare cooling models of superburst lightcurves with observations, and derive constraints on the ignition mass and energy release, and then calculate ignition models for superbursts and pure helium bursts, and compare to observations. The superburst lightcurves and ignition models imply that the carbon mass fraction is approximately 20% or greater in the fuel layer, constraining models of carbon production. However, the most important result is that when Cooper pairing neutrino emission is included in the crust, the temperature is too low to support unst...

  5. The Energy Dependence of Neutron Star Surface Modes and X-ray Burst Oscillations

    CERN Document Server

    Piro, A L; Piro, Anthony L.; Bildsten, Lars

    2006-01-01

    We calculate the photon energy dependence of the pulsed amplitude of neutron star (NS) surface modes. Simple approximations demonstrate that it depends most strongly on the bursting NS surface temperature. This result compares well with full integrations that include Doppler shifts from rotation and general relativistic corrections to photon propagation. We show that the energy dependence of type I X-ray burst oscillations agrees with that of a surface mode, lending further support to the hypothesis that they originate from surface waves. The energy dependence of the pulsed emission is rather insensitive to the NS inclination, mass and radius, or type of mode, thus hindering constraints on these parameters. We also show that, for this energy-amplitude relation, the majority of the signal (relative to the noise) comes in the 2-25 keV band, so that the current burst oscillation searches with the Rossi X-Ray Timing Explorer are close to optimal. The critical test of the mode hypothesis for X-ray burst oscillatio...

  6. Mass and Radius of Neutron Stars Constrained by Photospheric Radius Expansion X-ray Bursts

    Science.gov (United States)

    Kwak, Kyujin; Kim, Myungkuk; Kim, Young-Min; Lee, Chang-Hwan

    Simultaneous measurement of mass and radius of a neutron star is important because it provides strong constraint on the equation of state for nuclear matter inside a neutron star. Type I X-ray Bursts (XRBs) that have been observed in low-mass X-ray binaries sometimes show photospheric radius expansion (PRE). By combining observed fluxes, X-ray spectra, and distances of PRE XRBs and using a statistical analysis, it is possible to simultaneously constrain the mass and radius of a neutron star. However, the mass and radius of a neutron star estimated in this method depends on the opacity of accreted material. We investigate the effect of the opacity on the mass and radius estimation by taking into account the cases that the hydrogen mass fraction of accreted material has narrowly-distributed values. We present preliminary results that are investigated with three different values of hydrogen mass fraction and compare our results with previous studies.

  7. Evidence of heavy-element ashes in thermonuclear X-ray bursts with photospheric superexpansion

    CERN Document Server

    Zand, J J M in 't

    2010-01-01

    A small subset of thermonuclear X-ray bursts on neutron stars exhibit such a strong photospheric expansion that for a few seconds the photosphere is located at a radius r_ph greater than ~1000 km. Such `superexpansions' imply a large and rapid energy release, a feature characteristic of pure He burst models. Calculations have shown that during a pure He burst, the freshly synthesized heavy-element ashes of burning can be ejected in a strong radiative wind and produce significant spectral absorption features. We find 32 superexpansion bursts from 8 different systems with the following interesting features: (1) At least 7 out of 8 systems are (candidate) ultracompact X-ray binaries in which the neutron star accretes hydrogen-deficient fuel, suggesting that these bursts indeed ignite in a helium-rich layer. (2) In two bursts we detect strong absorption edges during the expansion phase. The edge energies and depths are consistent with the H-like edge of iron-peak elements with abundances greater than ~100 times s...

  8. Exceptional flaring activity of the anomalous X-ray pulsar 1E 1547.0-5408

    CERN Document Server

    Savchenko, V; Beckmann, V; Produit, N; Walter, R

    2009-01-01

    (Abridged) We studied an exceptional period of activity of the anomalous X-ray pulsar 1E 1547.0-5408 in January 2009, during which about 200 bursts were detected by INTEGRAL. The major activity episode happened when the source was outside the field of view of all the INTEGRAL instruments. But we were still able to study the properties of 84 bursts detected simultaneously by the anti-coincidence shield of the spectrometer SPI and by the detector of the imager ISGRI. We find that the luminosity of the 22 January 2009 bursts of 1E 1547.0-5408 was > 1e42 erg/s. This luminosity is comparable to that of the bursts of soft gamma repeaters (SGR) and is at least two orders of magnitude larger than the luminosity of the previously reported bursts from AXPs. Similarly to the SGR bursts, the brightest bursts of 1E 1547.0-5408 consist of a short spike of ~100 ms duration with a hard spectrum, followed by a softer extended tail of 1-10 s duration, which occasionally exhibits pulsations with the source spin period of ~2 s. ...

  9. Reflection spectra from an accretion disc illuminated by a neutron star X-ray burst

    CERN Document Server

    Ballantyne, D R

    2004-01-01

    Recent time-resolved X-ray spectra of a neutron star undergoing a superburst revealed an Fe K line and edge consistent with reprocessing from the surrounding accretion disc. Here, we present models of X-ray reflection from a constant density slab illuminated by a blackbody, the spectrum emitted by a neutron star burst. The calculations predict a prominent Fe K line and a rich soft X-ray line spectrum which is superimposed on a strong free-free continuum. The lines slowly vanish as the ionization parameter of the slab is increased, but the free-free continuum remains dominant at energiesless than 1 keV. The reflection spectrum has a quasi-blackbody shape only at energies greater than 3 keV. If the incident blackbody is added to the reflection spectrum, the Fe K equivalent width varies between 100 and 300 eV depending on the ionization parameter and the temperature, kT, of the blackbody. The equivalent width is correlated with kT, and therefore we predict a strong Fe K line when an X-ray burst is at its brighte...

  10. The X-ray emission of solar flares generated by anisotropic electron beams

    Science.gov (United States)

    Bogovalov, S. V.; Kelner, S. R.; Kotov, Y. D.

    1987-12-01

    For three types of the initial angle distribution of fast electrons, energy spectra, directivity, and polarization of the bremsstrahlung have been computed with an account for multiple scattering and energy losses. The influence of Compton scattering and of photoabsorption on the observed hard X-ray emission of solar flares has been investigated. It is obtained that the photon spectrum index depends not only on the spectrum of electrons but also on the registered energy range and on the angle of view of the flare. In the 10 - 40 keV range the spectrum is softer at the limb than in the solar disc centre; in the 60 - 360 keV the situation is reverse, the spectrum being softer in the solar disc centre.

  11. Computational Models of X-Ray Burst Quenching Times and 12C Nucleosynthesis Following a Superburst

    Energy Technology Data Exchange (ETDEWEB)

    Fisker, J L

    2009-03-19

    Superbursts are energetic events on neutron stars that are a thousand times more powerful than ordinary type I X-ray bursts. They are believed to be powered by a thermonuclear explosion of accumulated {sup 12}C. However, the source of this {sup 12}C remains elusive to theoretical calculations and its concentration and ignition depth are both unknown. Here we present the first computational simulations of the nucleosynthesis during the thermal decay of a superbust, where X-ray bursts are quenched. Our calculations of the quenching time verify previous analytical calculations and shed new light on the physics of stable burning at low accretion rates. We show that concentrated (X{sub {sup 12}C} {approx}> 0.40), although insufficient, amounts of {sup 12}C are generated during the several weeks following the superburst where the decaying thermal flux of the superburst stabilizes the burning of the accreted material.

  12. Two-phase X-ray burst from GX 3+1 observed by INTEGRAL

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.F.; Brandt, Søren

    2006-01-01

    INTEGRAL detected on August 31, 2004, an unusual thermonuclear X-ray burst from the low-mass X-ray binary GX 3 3+1. Its duration was 30 min, which is between the normal burst durations for this source (less than or similar to 10 s) and the superburst observed in 1998 ( several hours). We see...... in the present case); and 3) limited carbon burning at an unusually shallow depth triggered by unstable helium ignition. Though none of these provide a satisfactory description of this uncommon event, the former one seems the most probable......., followed by a remarkable extended decay of cooling emission. We discuss three alternative schemes to explain its twofold nature: 1) unstable burning of a hydrogen hydrogen/helium layer involving an unusually large amount of hydrogen; 2) pure helium ignition at an unusually large depth ( unlikely...

  13. Relationship of type III radio bursts with quasi-periodic pulsations in a solar flare

    CERN Document Server

    Kupriyanova, E G; Reid, H A S; Myagkova, I N

    2016-01-01

    We studied a solar flare with pronounced quasi-periodic pulsations detected in the microwave, X-ray, and radio bands. We used the methods of correlation, Fourier, and wavelet analyses to examine the temporal fine structures and relationships between the time profiles in each wave band. We found that the time profiles of the microwaves, hard X-rays and type III radio bursts vary quasi-periodically with the common period of 40-50 s. The average amplitude of the variations is high, above 30% of the background flux level and reaching 80% after the flare maximum. We did not find the periodicity in either the thermal X-ray flux component or source size dynamics. Our findings indicate that the detected periodicity is likely to be associated with periodic dynamics in the injection of non-thermal electrons, that can be produced by periodic modulation of magnetic reconnection.

  14. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    Science.gov (United States)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  15. Flare X-ray photochemistry of the E region ionosphere of Mars

    Science.gov (United States)

    Haider, S. A.; Batista, I. S.; Abdu, M. A.; Santos, A. M.; Shah, Siddhi Y.; Thirupathaiah, P.

    2016-07-01

    Based on electron density profiles obtained from the Mars Global Surveyor (MGS) we report X-ray flare responses in the E region ionosphere of Mars during six events that occurred on 28 March and 6 April 2001, 17 and 18 March and 21 April 2003, and 19 February 2005. We have developed a time-dependent Analytical Yield Spectrum model to calculate a time series of photoionization rate, photoelectron impact ionization rate, photoelectron flux, ion density, electron density, and ionospheric electron content (IEC) of the E region for each flare day. The estimated production rate, flux, and densities increase by 1-2 orders of magnitude due to effect of these flares in the E region ionosphere of Mars. The estimated IEC are compared with the measured IEC. It is found that the normalized IEC of the simulated E layer increased by a factor of 5-10 at the flare time compared to a factor of 2 enhancements in the normalized IEC of the corresponding MGS profiles.

  16. X-ray flaring in PDS 456 observed in a high-flux state

    CERN Document Server

    Matzeu, G A; Nardini, E; Braito, V; Turner, T J; Costa, M T

    2016-01-01

    We present an analysis of a $190$\\,ks (net exposure) \\textit{Suzaku} observation, carried out in 2007, of the nearby ($z=0.184$) luminous (L$_{\\rm bol}\\sim10^{47}$\\,erg\\,s$^{-1}$) quasar PDS\\,456. In this observation, the intrinsically steep bare continuum is revealed compared to subsequent observations, carried out in 2011 and 2013, where the source is fainter, harder and more absorbed. We detected two pairs of prominent hard and soft flares, restricted to the first and second half of the observation respectively. The flares occur on timescales of the order of $\\sim50$\\,ks, which is equivalent to a light-crossing distance of $\\sim10\\,R_{\\rm g}$ in PDS\\,456. From the spectral variability observed during the flares, we find that the continuum changes appear to be dominated by two components: (i) a variable soft component ($2$\\,keV). The photon index of the latter power-law component appears to respond to changes in the soft band flux, increasing during the soft X-ray flares. Here the softening of the spectra, ...

  17. On the ionisation fraction in protoplanetary disks III. The effect of X-ray flares on gas-phase chemistry

    CERN Document Server

    Ilgner, M; Ilgner, Martin; Nelson, Richard P.

    2006-01-01

    Context. Recent observations of the X-ray emission from T Tauri stars in the Orion nebula have shown that they undergo frequent outbursts in their X-ray luminosity. These X-ray flares are characterised by increases in luminosity by two orders of magnitude, a typical duration of less than one day, and a significant hardening of the X-ray spectrum. Aims. It is unknown what effect these X-ray flares will have on the ionisation fraction and dead-zone structure in protoplanetary disks. We present the results of calculations designed to address this question. Methods. We have performed calculations of the ionisation fraction in a standard $\\alpha$-disk model using two different chemical reaction networks. We include in our models ionisation due to X-rays from the central star, and calculate the time-dependent ionisation fraction and dead--zone structure for the inner 10 AU of a protoplanetary disk model. Results. We find that the disk response to X-ray flares depends on whether the plasma temperature increases duri...

  18. Observation of Sudden Ionospheric Disturbances over Istanbul in Response to X-Ray Flare Events

    Science.gov (United States)

    Ceren Kalafatoglu Eyiguler, Emine; Kaymaz, Zerefsan; Ceren Moral, Aysegul

    2016-07-01

    Sudden ionospheric disturbances (SID) are the enhanced electron density structures in the D region ionosphere which occur in response to the increase in X-ray flares and EUV flux. SIDs can be monitored using Very Low Frequency (VLF) radio signals (3-30 kHz) which travel between the D-region and the surface of the Earth. In this study, we use SID monitors obtained from the Stanford University Solar Center and two antennas which were built at the Istanbul Technical University to track the ionospheric disturbances in the VLF range. Our antennas are capable of capturing signals from several VLF transmitting stations. In this work, we focus on the variations in the signal strength of the closest VLF transmitting station 'TBB' which is operating at 26.7 kHz frequency at BAFA, Turkey (37.43N, 27.15E). We present ITU SID observations from both antennas; show the daily variation, general structure and the typical patterns we observe as well as case studies of significant events. Our initial analysis shows close relationship between observed X-ray flares from geosynchronous GOES 13 and GOES 15 satellites and VLF station signal strength received by the monitors.

  19. Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares

    Science.gov (United States)

    Todorović Drakul, M.; Čadež, V. M.; Bajčetić, J.; Popović, L. Č.; Blagojević, D.; Nina, A.

    2016-08-01

    One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km - 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TEC_{D}) during activity of a solar X-ray flare (it rises by a factor of 136 in the considered case) when TEC_{D} contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.

  20. Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares

    Science.gov (United States)

    Todorović Drakul, M.; Čadež, V. M.; Bajčetić, J.; Popović, L. Č.; Blagojević, D.; Nina, A.

    2016-12-01

    One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km - 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TEC_{D) during activity of a solar X-ray flare (it rises by a factor of 136 in the considered case) when TEC_{D} contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.

  1. HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE BURSTING PULSAR GRO J1744-28

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Harrison, F. A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kennea, J. A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Kouveliotou, C. [Space Science Office, ZP12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Younes, G., E-mail: degenaar@umich.edu [Universities Space Research Association, 6767 Old Madison Pike, Suite 450, Huntsville, AL 35806 (United States)

    2014-11-20

    The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/High Energy Transmission Grating observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E {sub l} ≅ 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ≅ 52° and an inner disk radius of R {sub in} ≅ 85 GM/c {sup 2}, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ≅ (2-6) × 10{sup 10} G. Furthermore, we identify an absorption feature near ≅ 6.85 keV that could correspond to blue-shifted Fe XXV and point to a fast disk wind with an outflow velocity of v {sub out} ≅ (7.5-8.2) × 10{sup 3} km s{sup –1} (≅ 0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.

  2. DIRECT SPATIAL ASSOCIATION OF AN X-RAY FLARE WITH THE ERUPTION OF A SOLAR QUIESCENT FILAMENT

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Gordon D.; Foord, Adi, E-mail: gordon.d.holman@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-05-10

    Solar flares primarily occur in active regions. Hard X-ray flares have been found to occur only in active regions. They are often associated with the eruption of active region filaments and coronal mass ejections (CMEs). CMEs can also be associated with the eruption of quiescent filaments, not located in active regions. Here we report the first identification of a solar X-ray flare outside an active region observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The X-ray emission was directly associated with the eruption of a long, quiescent filament and fast CME. Images from RHESSI show this flare emission to be located along a section of the western ribbon of the expanding, post-eruption arcade. EUV images from the Solar Dynamics Observatory Atmospheric Imaging Assembly show no connection between this location and nearby active regions. Therefore the flare emission is found not to be located in or associated with an active region. However, a nearby, small, magnetically strong dipolar region provides a likely explanation for the existence and location of the flare X-ray emission. This emerging dipolar region may have also triggered the filament eruption.

  3. Probing the effects of a thermonuclear X-ray burst on the neutron star accretion flow with NuSTAR

    CERN Document Server

    Degenaar, N; Chakrabarty, D; Kara, E; Altamirano, D; Miller, J M; Fabian, A C

    2016-01-01

    Observational evidence has been accumulating that thermonuclear X-ray bursts ignited on the surface of neutron stars influence the surrounding accretion flow. Here, we exploit the excellent sensitivity of NuSTAR up to 79 keV to analyze the impact of an X-ray burst on the accretion emission of the neutron star LMXB 4U 1608-52. The ~200 s long X-ray burst occurred during a hard X-ray spectral state, and had a peak intensity of ~30-50 per cent of the Eddington limit with no signs of photospheric radius expansion. Spectral analysis suggests that the accretion emission was enhanced up to a factor of ~5 during the X-ray burst. We also applied a linear unsupervised decomposition method, namely non-negative matrix factorization (NMF), to study this X-ray burst. We find that the NMF performs well in characterizing the evolution of the burst emission and is a promising technique to study changes in the underlying accretion emission in more detail than is possible through conventional spectral fitting. For the burst of ...

  4. Infrared observations of the possible X-ray counterpart to the 1992 May 1 gamma-ray burst

    NARCIS (Netherlands)

    Blaes, O; Hurt, T; Antonucci, R; Hurley, K; Smette, A

    1997-01-01

    We present the results of deep infrared imaging in J, H, and K of the quiescent X-ray source located within the 1992 May 1 gamma-ray burst error box. The field is crowded, containing both stars and galaxies, and we discuss the Likelihood that they are associated with the X-ray source. Two objects (o

  5. Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    CERN Document Server

    Cyburt, R H; Heger, A; Johnson, E; Keek, L; Meisel, Z; Schatz, H; Smith, K

    2016-01-01

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,$\\gamma$), ($\\alpha$,$\\gamma$), and ($\\alpha$,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reac...

  6. Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts

    Science.gov (United States)

    Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura

    2016-07-01

    Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.

  7. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    Science.gov (United States)

    Holman, Gordon D.

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  8. X-RAY SOURCE HEIGHTS IN A SOLAR FLARE: THICK-TARGET VERSUS THERMAL CONDUCTION FRONT HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Reep, J. W. [National Research Council Post-Doc Program, Naval Research Laboratory, Washington, DC 20375 (United States); Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Holman, G. D., E-mail: jeffrey.reep.ctr@nrl.navy.mil, E-mail: stephen.bradshaw@rice.edu, E-mail: gordon.d.holman@nasa.gov [Solar Physics Laboratory, Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-10

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O’Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  9. X-ray Source Heights in a Solar Flare: Thick-target versus Thermal Conduction Front Heating

    CERN Document Server

    Reep, Jeffrey W; Holman, Gordon D

    2015-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 28 November 2002 C1.1 flare, first observed with RHESSI by Sui et al. 2006 and quantitatively analyzed by O'Flannagain et al. 2013, very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  10. Reconciliation of Waiting Time Statistics of Solar Flares Observed in Hard X-rays

    Science.gov (United States)

    Aschwanden, Markus J.; McTiernan, James M.

    2010-07-01

    We study the waiting time distributions of solar flares observed in hard X-rays with ISEE-3/ICE, HXRBS/SMM, WATCH/GRANAT, BATSE/CGRO, and RHESSI. Although discordant results and interpretations have been published earlier, based on relatively small ranges (<2 decades) of waiting times, we find that all observed distributions, spanning over 6 decades of waiting times (Δt ≈ 10-3-103 hr), can be reconciled with a single distribution function, N(Δt) vprop λ0(1 + λ0Δt)-2, which has a power-law slope of p ≈ 2.0 at large waiting times (Δt ≈ 1-1000 hr) and flattens out at short waiting times Δt <~ Δt 0 = 1/λ0. We find a consistent breakpoint at Δt 0 = 1/λ0 = 0.80 ± 0.14 hr from the WATCH, HXRBS, BATSE, and RHESSI data. The distribution of waiting times is invariant for sampling with different flux thresholds, while the mean waiting time scales reciprocically with the number of detected events, Δt 0 vprop 1/n det. This waiting time distribution can be modeled with a nonstationary Poisson process with a flare rate λ = 1/Δt that varies as f(λ) vprop λ-1exp - (λ/λ0). This flare rate distribution requires a highly intermittent flare productivity in short clusters with high rates, separated by relatively long quiescent intervals with very low flare rates.

  11. Comparison of Damped Oscillations in Solar and Stellar X-Ray flares

    Science.gov (United States)

    Cho, I.-H.; Cho, K.-S.; Nakariakov, V. M.; Kim, S.; Kumar, P.

    2016-10-01

    We explore the similarity and difference of the quasi-periodic pulsations (QPPs) observed in the decay phase of solar and stellar flares at X-rays. We identified 42 solar flares with pronounced QPPs, observed with RHESSI, and 36 stellar flares with QPPs, observed with XMM-Newton. The empirical mode decomposition (EMD) method and least-squares fit by a damped sine function were applied to obtain the periods (P) and damping times (τ) of the QPPs. We found that (1) the periods and damping times of the stellar QPPs are 16.21 ± 15.86 minutes and 27.21 ± 28.73 minutes, while those of the solar QPPs are 0.90 ± 0.56 and 1.53 ± 1.10 minutes, respectively; (2) the ratios of the damping times to the periods (τ /P) observed in the stellar QPPs (1.69 ± 0.56) are statistically identical to those of solar QPPs (1.74 ± 0.77) and (3) the scalings of the QPP damping time with the period are well described by the power law in both solar and stellar cases. The power indices of the solar and stellar QPPs are 0.96 ± 0.10 and 0.98+/- 0.05, respectively. This scaling is consistent with the scalings found for standing slow magnetoacoustic and kink modes in solar coronal loops. Thus, we propose that the underlying mechanism responsible for the stellar QPPs is the natural magnetohydrodynamic oscillation in the flaring or adjacent coronal loops, as in the case of solar flares.

  12. Ionospheric Effects of X-Ray Solar Bursts in the Brazilian Sector

    Science.gov (United States)

    Becker-Guedes, F.; Takahashi, H.; Costa, J. E.; Otsuka, Y.

    2011-12-01

    When the solar X-ray flux in the interplanetary medium reaches values above a certain threshold, some undesired effects affecting radio communications are expected. Basically, the magnitudes of these effects depend on the X-ray peak brightness and duration, which drive the intensity of the ionosphere response when the associated electromagnetic wave hit the sunlit side of the Earth atmosphere. An important aspect defining the severity of damages to HF radio communications and LF navigation signals in a certain area is the local time when each event takes place. In order to create more accurate warnings referred to possible radio signal loss or degradation in the Brazilian sector, we analyze TEC maps obtained by a GPS network, formed by dual-frequency receivers spread all over the country, to observe ionospheric local changes during several X-ray events in the 0.1-0.8 nm range measured by GOES satellite. Considering the duration, peak brightness, and local time of the events, the final purpose of this study is to understand and predict the degree of changes suffered by the ionosphere during these X-ray bursts. We intend using these results to create a radio blackout warning product to be offered by the Brazilian space weather program named EMBRACE (Estudo e Monitoramento BRAsileiro do Clima Espacial): Brazilian Monitoring and Study of Space Weather.

  13. Bounds on Compactness for LMXB Neutron Stars from X-ray Burst Oscillations

    CERN Document Server

    Nath, N R; Swank, J H; Nath, Nitya; Strohmayer, Tod E.; Swank, Jean H.

    2001-01-01

    We have modelled X-ray burst oscillations observed with the Rossi X-ray Timing Explorer (RXTE) from two low mass X-ray binaries (LMXB): 4U 1636-53 with a frequency of 580 Hz, and 4U 1728-34 at a frequency of 363 Hz. We have computed least squares fits to the oscillations observed during the rising phase of bursts using a model which includes emission from either a single circular hot spot or a pair of circular antipodal hot spots on the surface of a neutron star. We model the spreading of the thermonuclear hot spots by assuming that the hot spot angular size grows linearly with time. We calculate the flux as a function of rotational phase from the hot spots and take into account photon deflection in the relativistic gravitational field of the neutron star assuming the exterior spacetime is the Schwarzschild metric. We find acceptable fits with our model and we use these to place constraints on the compactness of the neutron stars in these sources. For 4U 1636-53, in which detection of a 290 Hz sub-harmonic su...

  14. Se-68 rp-process waiting point and X-ray bursts

    Science.gov (United States)

    Del Santo, M.; Schatz, H.; Lorusso, G.; Crawford, H.; Grinyer, G. F.; Meisel, Z.; Becerril, A.; Montes, F.; Pereira, J.; Smith, K.; George, S.; Bazin, D.; Mantica, P.

    2011-04-01

    The x-ray light curve of astrophysical X-ray bursts and the composition of their nuclear ashes are shaped by the effective half-life of Se-68, a rare neutron deficient isotope near the proton drip line and a waiting point in the rapid proton capture process (rp-process). We addressed the nuclear physics uncertainty in the Se-68 half-life by studying the beta-delayed particle emission of Kr-69. The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL). The rare isotope beam was produced by fragmentation of a Kr-78 primary beam, separated using the A1900 and Radio Frequency Fragment Separator, and sent to the Beta Counting Station (BCS). The remaining fragments were implanted into a 500 micron double-sided-Si-strip-detector (DSSD) to detect charged particles (fast electrons and protons) following beta decay. The measured decay curve and delayed proton spectrum will be presented and the possible implications on the energy production in X-ray bursts and mass flow along the rp-process path in the A ~ 70 region will be discussed. This work was supported in part by the National Science Foundation.

  15. Estimating the properties of hard X-ray solar flares by constraining model parameters

    CERN Document Server

    Ireland, Jack; Schwartz, Richard A; Holman, Gordon D; Dennis, Brian R

    2013-01-01

    We compare four different methods of calculating uncertainty estimates in fitting parameterized models to RHESSI X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the GOES X1.3 class flare of 19 January 2005, and the other from the X4.8 flare of 23 July 2002. The four methods give approximately the same uncertainty estimates for the 19 January 2005 spectral fit parameters, but lead to very different uncertainty estimates for the 23 July 2002 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent re...

  16. Soft X-ray Fluxes of Major Flares Far Behind the Limb as Estimated Using STEREO EUV Images

    CERN Document Server

    Nitta, N V; Boerner, P F; Freeland, S L; Lemen, J R; Wuelser, J -P; 10.1007/s11207-013-0307-7

    2013-01-01

    With increasing solar activity since 2010, many flares from the backside of the Sun have been observed by the Extreme Ultraviolet Imager (EUVI) on either of the twin STEREO spacecraft. Our objective is to estimate their X-ray peak fluxes from EUVI data by finding a relation of the EUVI with GOES X-ray fluxes. Because of the presence of the Fe xxiv line at 192 A, the response of the EUVI 195 A channel has a secondary broad peak around 15 MK, and its fluxes closely trace X-ray fluxes during the rise phase of flares. If the flare plasma is isothermal, the EUVI flux should be directly proportional to the GOES flux. In reality, the multithermal nature of the flare and other factors complicate the estimation of the X-ray fluxes from EUVI observations. We discuss the uncer- tainties, by comparing GOES fluxes with the high cadence EUV data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We conclude that the EUVI 195 A data can provide estimates of the X-ray peak fluxes of in...

  17. The Early X-ray Afterglows of Optically Bright and Dark Gamma-Ray Bursts

    Institute of Scientific and Technical Information of China (English)

    Yi-Qing Lin

    2006-01-01

    A systematic study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift is presented. Our sample includes 25 GRBs of which 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (Fx), the gamma-ray fluxes (Sγ), and the ratio (Rγ,X) are similar for the two kinds of GRBs, that any observed differences should be simply statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are of the same population with comparable total energies of explosion. The suppression of optical emission in the D-GRBs should result from circumburst but not from their central engine.

  18. A bright thermonuclear X-ray burst simultaneously observed with Chandra and RXTE

    CERN Document Server

    Zand, J J M in t; Marshall, H L; Ballantyne, D R; Jonker, P G; Paerels, F B S; Palmer, D M; Patruno, A; Weinberg, N N

    2013-01-01

    The prototypical accretion-powered millisecond pulsar SAX J1808.4-3658 was observed simultaneously with Chandra-LETGS and RXTE-PCA near the peak of a transient outburst in November 2011. A single thermonuclear (type-I) burst was detected, the brightest yet observed by Chandra from any source, and the second-brightest observed by RXTE. We found no evidence for discrete spectral features during the burst; absorption edges have been predicted to be present in such bursts, but may require a greater degree of photospheric expansion than the rather moderate expansion seen in this event (a factor of a few). These observations provide a unique data set to study an X-ray burst over a broad bandpass and at high spectral resolution (lambda/delta-lambda=200-400). We find a significant excess of photons at high and low energies compared to the standard black body spectrum. This excess is well described by a 20-fold increase of the persistent flux during the burst. We speculate that this results from burst photons being sc...

  19. The Height of a White-Light Flare and its Hard X-Ray Sources

    Science.gov (United States)

    Oliveros, Juan-Carlos Martinez; Hudson, Hugh S.; Hurford, Gordon J.; Kriucker, Saem; Lin, R. P.; Lindsey, Charles; Couvidat, Sebastien; Schou, Jesper; Thompson, W. T.

    2012-01-01

    We describe observations of a white-light (WL) flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray (HXR) sources. For this purpose, we use HXR images from the Reuven Ramaty High Energy Spectroscopic Imager and optical images at 6173 Ang. from the Solar Dynamics Observatory.We find that the centroids of the impulsive-phase emissions in WL and HXRs (30 -80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0".2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 Ang. image from the Solar-Terrestrial RElations Observatory spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; tau = 1 at 5000 Ang.) of 305 +/- 170 km and 195 +/- 70 km, respectively, for the centroids of the HXR and WL footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of tau = 1 for the 6173 Ang and the approx 40 keV photons observed, respectively.

  20. UFCORIN: A Fully Automated Predictor of Solar Flares in GOES X-Ray Flux

    CERN Document Server

    Muranushi, Takayuki; Muranushi, Yuko Hada; Isobe, Hiroaki; Nemoto, Shigeru; Komazaki, Kenji; Shibata, Kazunari

    2015-01-01

    We have developed UFCORIN, a platform for studying and automating space weather prediction. Using our system we have tested 6,160 different combinations of SDO/HMI data as input data, and simulated the prediction of GOES X-ray flux for 2 years (2011-2012) with one-hour cadence. We have found that direct comparison of the true skill statistics (TSS) is ill-posed, and used the standard scores ($z$) of the TSS to compare the performance of the various prediction strategies. The best strategies we have found for predicting X, $\\geq$M and $\\geq$C class flares are better than the average of the 6,160 strategies by 2.3$\\sigma$, 2.1$\\sigma$, 3.8$\\sigma$ confidence levels, respectively. The best three's TSS values were $0.745\\pm0.072$, $0.481\\pm0.017$, and $0.557\\pm0.043$, respectively.

  1. The thermonuclear-flash model for X-ray burst sources - A new tool for observing neutron stars

    Science.gov (United States)

    Joss, P. C.

    1979-01-01

    The helium-flash model for X-ray burst sources, in which matter is presumed to accrete onto the surface of a neutron star, is discussed. Attention is given to the accretion process, nuclear burning, X-ray emission, and the energy released by convection as well as by radiative diffusion near the surface. The rise times of observed bursts, their spectral evolution, and the properties of the spectrally soft X-ray transients are considered. Problems in interpreting the continuum spectra are discussed, along with problems in the detection and measurement of line features in the spectra. Also considered are the ratio of time-averaged persistent luminosity to time-averaged burst luminosity, peak burst luminosities, and the possibility of detecting binary membership for burst sources.

  2. The Microchannel X-ray Telescope for the Gamma-Ray Burst mission SVOM

    CERN Document Server

    Gotz, D; Cordier, B; Paul, J; Evans, P; Beardmore, A; Martindale, A; Willingale, R; O'Brien, P; Basa, S; Rossin, C; Godet, O; Webb, N; Greiner, J; Nandra, K; Meidinger, N; Perinati, E; Santangelo, A; Mercier, K; Gonzalez, F

    2014-01-01

    We present the Microchannel X-ray Telescope, a new light and compact focussing telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling of square pore micro-channel plates with a low noise pnCCD. MXT will provide an effective area of about 50 cmsq, and its point spread function is expected to be better than 3.7 arc min (FWHM) on axis. The estimated sensitivity is adequate to detect all the afterglows of the SVOM GRBs, and to localize them to better then 60 arc sec after five minutes of observation.

  3. Discovery of hard X-ray emission from Type II bursts of the Rapid Burster

    CERN Document Server

    Frontera, F; Orlandini, M; Amati, L; Palazzi, E; Dal Fiume, D; Del Sordo, S; Cusumano, G; Parmar, A N; Pareschi, G; Lapidus, I; Stella, L

    2000-01-01

    We report on results of BeppoSAX Target Of Opportunity (TOO) observations of the source MXB 1730-335, also called the Rapid Burster (RB), made during its outburst of February-March 1998. We monitored the evolution of the spectral properties of the RB from the outburst decay to quiescence. During the first TOO, the X-ray light curve of the RB showed many Type II bursts and its broadband (1-100 keV) spectrum was acceptably fit with a two blackbody plus power law model. Moreover, to our knowledge, this is the first time that this source is detected beyond 30 keV.

  4. An impulsive solar burst observed in H-alpha, microwaves, and hard X-rays

    Science.gov (United States)

    Gary, D. E.; Tang, F.

    1985-01-01

    H-alpha, microwave, and hard X-ray observations of an unusually short duration impulsive spike burst are presented. The observations are analyzed, and it is found that the single spike is in fact composed of two separate acceleration episodes. The differences found in the time profiles for the two components stress the role of the decay rate and lead to a simple explanation for the often observed delay of the microwave peak. The approximate numbers of electrons responsible for the two types of emission are derived and compared.

  5. Classical novae and type I X-ray bursts: challenges for the 21st century

    CERN Document Server

    Parikh, A; Sala, G

    2014-01-01

    Classical nova explosions and type I X-ray bursts are the most frequent types of thermonuclear stellar explosions in the Galaxy. Both phenomena arise from thermonuclear ignition in the envelopes of accreting compact objects in close binary star systems. Detailed observations of these events have stimulated numerous studies in theoretical astrophysics and experimental nuclear physics. We discuss observational features of these phenomena and theoretical efforts to better understand the energy production and nucleosynthesis in these explosions. We also examine and summarize studies directed at identifying nuclear physics quantities with uncertainties that significantly affect model predictions.

  6. Characteristics of Solar Flare Hard X-ray Emissions: Observations and Models

    Science.gov (United States)

    Liu, Wei

    2007-05-01

    The main theme of this dissertation is the investigation of the physics of acceleration and transport of particles in solar flares and their radiative signatures. The observational studies, using hard X-rays (HXRs) observed by RHESSI, concentrate on four flares, which support the classical magnetic reconnection model of flares in various ways. In the 11/03/2003 X3.9 flare, there is an upward motion of the loop-top source, accompanied by a systematic increase in the separation of the foot-point sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 M1.3 event exhibits rarely observed two coronal sources, with very similar spectra and their higher-energy emission being close together. This suggests that reconnection occurs between the two sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the two foot-points correlates with their mean magnetic field. The foot-points show asymmetric HXR fluxes, qualitatively consistent with the magnetic mirroring effect. The 11/13/2003 M1.7 flare reveals evidence of chromospheric evaporation directly imaged by RHESSI for the first time. The emission centroids move toward the loop-top, indicating a density increase in the loop. The theoretical modeling of this work combines the Stanford stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by electrons. I find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is found to be present and effects of suppression of thermal conduction are tested in the presence of hydrodynamic flows. I gratefully thank my adviser, Prof. Vahe' Petrosian, my collaborators, and funding support

  7. Possible hard X-ray shortages in bursts from KS 1731-260 and 4U 1705-44

    CERN Document Server

    Ji, Long; Chen, YuPeng; Zhang, Shuang-Nan; Kretschmar, Peter; Wang, Jian-Min; Li, Jian

    2014-01-01

    Aims: A hard X-ray shortage, implying the cooling of the corona, was observed during bursts of IGR J17473-272, 4U 1636-536, Aql X-1, and GS 1826-238. Apart from these four sources, we investigate here an atoll sample, in which the number of bursts for each source is larger than 5, to explore the possible additional hard X-ray shortage during {\\it Rossi X-ray timing explorer (RXTE)} era. Methods: According to the source catalog that shows type-I bursts, we analyzed all the available pointing observations of these sources carried out by the {\\it RXTE} proportional counter array (PCA). We grouped and combined the bursts according to their outburst states and searched for the possible hard X-ray shortage while bursting. Results: We found that the island states of KS 1731-260 and 4U 1705-44 show a hard X-ray shortage at significant levels of 4.5 and 4.7 $\\sigma$ and a systematic time lag of $0.9 \\pm 2.1$ s and $2.5 \\pm 2.0$ s with respect to the soft X-rays, respectively. While in their banana branches and other s...

  8. Fermi acceleration at fast shock in a solar flare and impulsive loop-top hard X-ray source

    CERN Document Server

    Tsuneta, S; Tsuneta, Saku; Naito, Tsuguya

    1998-01-01

    We propose that non-thermal electrons are efficiently accelerated by first-order Fermi process at the fast shock, as a natural consequence of the new magnetohydrodynamic picture of the flaring region revealed with Yohkoh. An oblique fast shock is naturally formed below the reconnection site, and boosts the acceleration to significantly decrease the injection energy. The slow shocks attached to the reconnection X-point heat the plasma up to 10--20 MK, exceeding the injection energy. The combination of the oblique shock configuration and the pre-heating by the slow shock allows bulk electron acceleration from the thermal pool. The accelerated electrons are trapped between the two slow shocks due to the magnetic mirror downstream of the fast shock, thus explaining the impulsive loop-top hard X-ray source discovered with Yohkoh. Acceleration time scale is ~ 0.3--0.6 s, which is consistent with the time scale of impulsive bursts. When these electrons stream away from the region enclosed by the fast shock and the s...

  9. Type-I X-ray bursts reveal a fast co-evolving behavior of the corona in an X-ray binary

    CERN Document Server

    Chen, Yu-Peng; Zhang, Shuang-Nan; Li, Jian; Wang, Jian-Min

    2013-01-01

    The coronae in X-ray binaries (XRBs) still remain poorly understood, although they have been believed for a long time to play a key role in modeling the characteristic outbursts of XRBs. Type-I X-ray bursts, the thermonuclear flashes happening on the surface of a neutron star (NS), can be used as a probe to the innermost region of a NS XRB, where the corona is believed to be located very close to the NS. We report the discovery of a tiny life cycle of the corona that is promptly co-evolved with the type-I bursts superimposed on the outburst of the NS XRB IGR J17473$-$2721. This finding may serve as the first evidence of directly seeing the rapid disappearance and formation of a corona in an XRB with a cooling/heating timescale of less than a second, which can strongly constrain the accretion models in XRBs at work.

  10. Using infrared/X-ray flare statistics to probe the emission regions near the event horizon of Sgr A*

    CERN Document Server

    Dibi, Salome; Belmont, Renaud; Malzac, Julien; Neilsen, Joey; Witzel, Gunther

    2016-01-01

    The supermassive black hole at the centre of the Galaxy flares at least daily in the infrared (IR) and X-ray bands, yet the process driving these flares is still unknown. So far detailed analysis has only been performed on a few bright flares. In particular, the broadband spectral modelling suffers from a strong lack of simultaneous data. However, new monitoring campaigns now provide data on thousands of flaring events, allowing a statistical analysis of the flare properties. In this paper, we investigate the X-ray and IR flux distributions of the flare events. Using a self-consistent calculation of the particle distribution, we model the statistical properties of the flares. Based on a previous work on single flares, we consider two families of models: pure synchrotron models and synchrotron self-Compton (SSC) models. We investigate the effect of fluctuations in some relevant parameters (e.g. acceleration properties, density, magnetic field) on the flux distributions. The distribution of these parameters is ...

  11. Derivation of Stochastic Acceleration Model Characteristics for Solar Flares from RHESSI Hard X-ray Observations

    Science.gov (United States)

    Petrosian, Vahé; Chen, Qingrong

    2010-04-01

    The model of stochastic acceleration of particles by turbulence has been successful in explaining many observed features of solar flares. Here, we demonstrate a new method to obtain the accelerated electron spectrum and important acceleration model parameters from the high-resolution hard X-ray (HXR) observations provided by RHESSI. In our model, electrons accelerated at or very near the loop top (LT) produce thin target bremsstrahlung emission there and then escape downward producing thick target emission at the loop footpoints (FPs). Based on the electron flux spectral images obtained by the regularized spectral inversion of the RHESSI count visibilities, we derive several important parameters for the acceleration model. We apply this procedure to the 2003 November 3 solar flare, which shows an LT source up to 100-150 keV in HXR with a relatively flat spectrum in addition to two FP sources. The results imply the presence of strong scattering and a high density of turbulence energy with a steep spectrum in the acceleration region.

  12. A fundamental plane for gamma-ray bursts with X-ray plateaus

    CERN Document Server

    Dainotti, Maria Giovanna; Hernandez, Xavier; Ostrowski, Michał

    2016-01-01

    A class of long Gamma-Ray Bursts (GRBs) presenting light curves with an extended plateau phase in their X-ray afterglows obeys a correlation between the rest frame end time of the plateau, $T_a$, and its corresponding X-ray luminosity, $L_{a}$, Dainotti et al. (2008). In this work we perform an analysis of a total sample of 176 {\\it Swift} GRBs with known redshifts, exhibiting afterglow plateaus. By adding a third parameter, that is the peak luminosity in the prompt emission, $L_{peak}$, we discover the existence of a new three parameter correlation, a GRB `fundamental plane'. The scatter of data about this plane becomes smaller when a class-specific GRB sample is defined. This sample of 122 GRBs is selected from the total sample by excluding GRBs with associated Supernovae (SNe), X-ray flashes and short GRBs with extended emission. Moreover, we further limit our analysis to GRBs with lightcurves having good data coverage and almost flat plateaus, 40 GRBs forming our `gold sample'. The intrinsic scatter, $\\si...

  13. A gigantic X-ray flare from the star Trumpler 14 Y442 in the Carina star forming complex

    Science.gov (United States)

    Hamaguchi, Kenji; Drake, Stephen A.; Corcoran, Michael F.; Richardson, Noel; Teodoro, Mairan

    2015-09-01

    XMM-Newton, NuSTAR and Swift observations of the Carina star forming complex on 2015 July 16 (ObsID - XMM:0762910401, NuSTAR:30101005002, Swift:00081578001) detected an X-ray flare at the coordinates (R.A., Dec)[J2000] = (10 44 02.80, -59 39 46.7).

  14. Statistics of X-ray flares of Sgr A*: evidence for solar-like self-organized criticality phenomenon

    CERN Document Server

    Li, Ya-Ping; Yuan, Qiang; Wang, Q Daniel; Chen, P F; Neilsen, Joseph; Fang, Taotao; Zhang, Shuo; Dexter, Jason

    2015-01-01

    X-ray flares have routinely been observed from the supermassive black hole, Sgr A*, at our Galactic center. The nature of these flares remains largely unclear, despite of many theoretical models,. In this paper, we study the statistical properties of the Sgr A* X-ray flares, by fitting the count rate (CR) distribution and the structure function (SF) of the light curve with a Markov Chain Monte Carlo (MCMC) method. With the 3 million second \\textit{Chandra} observations accumulated in the Sgr A* X-ray Visionary Project, we construct the theoretical light curves through Monte Carlo simulations. We find that the $2-8$ keV X-ray light curve can be decomposed into a quiescent component with a constant count rate of $ 6\\times10^{-3} $count s$^{-1}$ and a flare component with a power-law fluence distribution $dN/dE\\propto E^{-\\alpha_{\\rm E}}$ with $\\alpha_{\\rm E}=1.65\\pm0.17$. The duration-fluence correlation can also be modelled as a power-law $T\\propto E^{\\alpha_{\\rm ET}}$ with $\\alpha_{\\rm ET} < 0.55$ ($95\\%$ ...

  15. NuSTAR detection of high-energy X-ray emission and rapid variability from sagittarius A* flares

    DEFF Research Database (Denmark)

    Barrière, Nicolas M.; Tomsick, John A.; Baganoff, Frederick K.;

    2014-01-01

    of the two brightest flares (∼55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters...

  16. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  17. The cooling phase of Type-I X-ray bursts in 4U 1636-53

    CERN Document Server

    Zhang, Guobao; Altamirano, Diego

    2010-01-01

    Time-resolved spectra during the cooling phase of thermonuclear X-ray bursts in low-mass X-ray binaries (LMXBs) can be used to measure the radii and masses of neutron stars. We analyzed ~ 300 bursts of the LMXB 4U 1636-53 using data from the Rossi X-ray Timing Explorer. We divided the bursts in three groups, photospheric radius expansion (PRE), hard non-PRE and soft non-PRE bursts, based on the properties of the bursts and the state of the source at the time of the burst. For the three types of bursts, we found that the average relation between the bolometric flux and the temperature during the cooling phase of the bursts is significantly different from the canonical $F \\propto T^4$ relation that is expected if the apparent emitting area on the surface of the neutron star remains constant as the flux decreases during the decay of the bursts. We also found that a single power law cannot fit the average flux-temperature relation for any of the three types of bursts, and that the flux-temperature relation for th...

  18. Fast and slow magnetic deflagration fronts in Type I X-ray bursts

    CERN Document Server

    Cavecchi, Yuri; Watts, Anna L; Braithwaite, Jonathan

    2015-01-01

    Type I X-ray bursts are produced by thermonuclear runaways that develop on accreting neutron stars. Once one location ignites, the flame propagates across the surface of the star. Flame propagation is fundamental in order to understand burst properties like rise time and burst oscillations. Previous work quantified the effects of rotation on the front, showing that the flame propagates as a deflagration and that the front strongly resembles a hurricane. However the effect of magnetic fields was not investigated, despite the fact that magnetic fields strong enough to have an effect on the propagating flame are expected to be present on many bursters. In this paper we show how the coupling between fluid layers introduced by an initially vertical magnetic field plays a decisive role in determining the character of the fronts that are responsible for the Type I bursts. In particular, on a star spinning at 450 Hz (typical among the bursters) we test seed magnetic fields of $10^{7} - 10^{10}$ G and find that for th...

  19. The Post-Burst Awakening of the Anomalous X-ray Pulsar in Westerlund 1

    CERN Document Server

    Israel, G L; Dall'Osso, S; Muno, M P; Cummings, J; Perna, R; Stella, L

    2007-01-01

    On September 21, 2006, an intense (~10^39 erg/s) and short (20 ms) burst was detected by Swift BAT at a position consistent with that of the candidate Anomalous X-ray Pulsar, CXOU J164710.2-455216, discovered by Chandra in 2005. Swift follow-up observations began about 13 hours after the event and found the source at a 1-10keV flux level of about 4.5 x 10^-11 erg/s/cm^2, i.e. ~300 times brighter than measured 5 days earlier by XMM. We report the results obtained from Swift BAT observations of the burst and subsequent Swift XRT observations carried out during the first four months after the burst. These data are complemented with those from two XMM observations (carried out just before and after the BAT event) and four archival Chandra observations carried out between 2005 and 2007. We find a phase coherent solution for the source pulsations after the burst. The evolution of the pulse phase comprises an exponential component decaying with timescale of 1.4d which we interpret as the recovery stage following a l...

  20. One-dimensional Turbulence Models of Type I X-ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chen [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-01-06

    Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.

  1. ESA's X-ray space telescope proves supernovae can cause mysterious gamma-ray bursts

    Science.gov (United States)

    2002-04-01

    By analysing the afterglow of the gamma-ray burst in the X-ray light, scientists produced the first ever evidence of the presence of chemical elements which were the unmistakable remnants of a supernova explosion which had occurred just a few days before. "We can now confidently say that the death of a massive star, a supernova, was the cause of a gamma-ray burst. However we still don't know exactly how and why these bursts, the most energetic phenomena in the Universe, are triggered," says ESA astronomer Norbert Schartel, a co-author of the original paper, published today in Nature. Gamma-ray bursts were first discovered in 1967 by chance, when satellites designed to look for violations of the Nuclear Test Ban Treaty detected strong gamma-ray emissions coming from sources not in the vicinity of Earth, but from outer space. They have been a mystery ever since. They occur as often as several times a day but last for no longer than a couple of minutes, and there is no way to predict when or where the next burst will occur. Consequently they are very difficult to study. For three decades it was not even known whether the explosions were close, in our own Milky Way galaxy, or far away in distant galaxies. But astronomers set up an 'alert system'. This allows them to see the 'afterglow' of the burst before it fades away, by quickly aiming their telescopes at the precise location in the sky shortly after a detector triggers the alert. It is now clear that the bursts occur in galaxies millions of light-years away. The longest burst Technically called 'GRB 011211', it was first detected on 11 December 2001 at 19:09:21 (Universal Time), by the Italian-Dutch satellite BeppoSAX. The burst lasted for 270 seconds - the longest one observed by the satellite. A few hours afterwards, when a first analysis confirmed that a burst had indeed been registered, the BeppoSAX team alerted the rest of the astronomical community. ESA's XMM-Newton arrived on the scene 11 hours after the

  2. QPOs from Random X-ray Bursts around Rotating Black Holes

    Science.gov (United States)

    Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon

    2009-01-01

    We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.

  3. X-ray bursts as a probe of the corona: the case of XRB 4U 1636-536

    CERN Document Server

    Ji, Long; Chen, YuPeng; Zhang, Shuang-Nan; Torres, Diego F; Kretschmar, Peter; Chernyakova, Masha; Li, Jian; Wang, Jian-Min

    2013-01-01

    To investigate the possible cooling of the corona by soft X-rays bursts, we have studied 114 bursts embedded in the known X-ray evolution of 4U 1636-536. We have grouped these bursts according to the ratio of the flux in the 1.5--12 keV band with respect to that in the 15--50 keV band, as monitored by RXTE/ASM and Swift/BAT, respectively. We have detected a shortage at hard X-rays while bursting. This provides hints for a corona cooling process driven by soft X-rays fed by the bursts that occurred on the surface of neutron star. The flux shortage at 30--50 keV has a time lag of 2.4$\\pm$1.5 seconds with respect to that at 2--10 keV, which is comparable to that of 0.7$\\pm$0.5 seconds reported in bursts of IGR 17473-2721. We comment on the possible origin of these phenomena and on the implications for the models on the location of the corona.

  4. INTEGRAL/JEM-X detection of a type-I X-ray burst from MAXI J1421-613

    DEFF Research Database (Denmark)

    Bozzo, E.; Bazzano, A.; Kuulkers, Erik

    2014-01-01

    During the Galactic Plane Scan performed on 2014 January 10, the two JEM-X instruments on-board INTEGRAL detected a type-I X-ray burst from the newly discovered X-ray transient MAXI J1421-613 (ATels #5750, #5751, #5759) over the 5 ks in which the source was in the instruments field of view. The o...... (translating into a luminosity of 1.3E37 erg/s at 8 kpc; 3-10 keV). We estimated a persistent flux outside the burst of 7E-10 erg/cm^2/s (3-25 keV). This detection reveals that MAXI J1421-613 is a newly discovered X-ray bursting transient source, thus hosting an accreting neutron star....

  5. Magnetar-like X-Ray Bursts from a Rotation-powered Pulsar, PSR J1119-6127

    Science.gov (United States)

    Göğüş, Ersin; Lin, Lin; Kaneko, Yuki; Kouveliotou, Chryssa; Watts, Anna L.; Chakraborty, Manoneeta; Alpar, M. Ali; Huppenkothen, Daniela; Roberts, Oliver J.; Younes, George; van der Horst, Alexander J.

    2016-10-01

    Two energetic hard X-ray bursts from the rotation-powered pulsar PSR J1119-6127 recently triggered the Fermi and Swift space observatories. We have performed in-depth spectral and temporal analyses of these two events. Our extensive searches in both observatories’ data for lower luminosity bursts uncovered 10 additional events from the source. We report here on the timing and energetics of the 12 bursts from PSR J1119-6127 during its burst active phase on 2016 July 26 and 28. We also found a spectral softer X-ray flux enhancement in a post-burst episode, which shows evidence of cooling. Here we discuss the implications of these results on the nature of this unusual high-field radio pulsar, which firmly place it within the typical magnetar population.

  6. Determining Neutron Star Properties by Fitting Oblate Schwarzschild Waveforms To X-ray Burst Oscillations

    CERN Document Server

    Miller, M Coleman

    2014-01-01

    We have developed sophisticated new Bayesian analysis methods that enable us to estimate quickly the masses and radii of rapidly rotating, oblate neutron stars using the energy-resolved waveforms of their X-ray burst oscillations and to determine the uncertainties in these mass and radius estimates. We demonstrate these methods by generating and analyzing the energy-resolved burst oscillation waveforms that would be produced by a hot spot on various rapidly rotating, oblate stars, using the analytic implementation of the oblate-star Schwarzschild-spacetime (OS) approximation introduced by Morsink et al. 2007. In generating these synthetic data, we assume that 10$^6$ counts have been collected from the hot spot and that the background is $9\\times10^6$ counts. This produces a realistic modulation amplitude and a total number of counts comparable to the number that could be obtained by future space missions, by combining data from many bursts from a given star. We compute the joint posterior distribution of the ...

  7. Using infrared/X-ray flare statistics to probe the emission regions near the event horizon of Sgr A*

    Science.gov (United States)

    Dibi, S.; Markoff, S.; Belmont, R.; Malzac, J.; Neilsen, J.; Witzel, G.

    2016-09-01

    The supermassive black hole at the centre of the Galaxy flares at least daily in the infrared (IR) and X-ray bands, yet the process driving these flares is still unknown. So far detailed analysis has only been performed on a few bright flares. In particular, the broad-band spectral modelling suffers from a strong lack of simultaneous data. However, new monitoring campaigns now provide data on thousands of flaring events, allowing a statistical analysis of the flare properties. In this paper, we investigate the X-ray and IR flux distributions of the flare events. Using a self-consistent calculation of the particle distribution, we model the statistical properties of the flares. Based on a previous work on single flares, we consider two families of models: pure synchrotron (SD) models and synchrotron self-Compton (SSC) models. We investigate the effect of fluctuations in some relevant parameters (e.g. acceleration properties, density, magnetic field) on the flux distributions. The distribution of these parameters is readily derived from the flux distributions observed at different wavelengths. In both scenarios, we find that fluctuations of the power injected in accelerated particles play a major role. This must be distributed as a power law (with different indices in each model). In the synchrotron-dominated scenario, we derive the most extreme values of the acceleration power required to reproduce the brightest flares. In that model, the distribution of the acceleration slope fluctuations is constrained and in the SSC scenario we constrain the distributions of the correlated magnetic field and flow density variations.

  8. On the variation of solar flare coronal x-ray source sizes with energy

    CERN Document Server

    Jeffrey, Natasha L S; Bian, Nicolas H; Emslie, A Gordon

    2014-01-01

    Observations with {\\em RHESSI} have enabled the detailed study of the structure of dense hard X-ray coronal sources in solar flares. The variation of source extent with electron energy has been discussed in the context of streaming of non-thermal particles in a one-dimensional cold-target model, and the results used to constrain both the physical extent of, and density within, the electron acceleration region. Here we extend this investigation to a more physically realistic model of electron transport that takes into account the finite temperature of the ambient plasma, the initial pitch-angle distribution of the accelerated electrons, and the effects of collisional pitch-angle scattering. The finite temperature results in the thermal diffusion of electrons, that leads to the observationally-inferred value of the acceleration region volume being an overestimate of its true value. The different directions of the electron trajectories, a consequence of both the non-zero injection pitch-angle and scattering with...

  9. X-rays From Magnetic Flares In Cygnus X-1 The Role Of A Transition Layer

    CERN Document Server

    Nayakshin, S; Nayakshin, Sergei; Dove, James B.

    1998-01-01

    The spectrum of Seyfert 1 Galaxies is very similar to that of several Galactic Black Hole Candidates (GBHCs) in their hard state, suggestive that both classes of objects have similar physical processes. While it appears that an accretion disk corona (ADC) model, where the corona sandwiches the cold accretion disk, is capable of explaining the observations of Seyfert galaxies, recent work has shown that this model is problematic for GBHCs. To address the differences in the spectra of Seyferts and GBHCs, we consider the structure of the atmosphere of the accretion disk in a region near an active magnetic flare (we refer to this region as transition layer). We show that the transition layer is subject to a thermal instability. Due to the much higher ionizing X-ray flux in GBHCs, the only stable solution for the upper layer of the accretion disk is that in which it is highly ionized and is at the Compton temperature ($kT \\sim $ a few keV). Using numerical simulations for a slab geometry ADC, we show that the pres...

  10. UFCORIN: A fully automated predictor of solar flares in GOES X-ray flux

    Science.gov (United States)

    Muranushi, Takayuki; Shibayama, Takuya; Muranushi, Yuko Hada; Isobe, Hiroaki; Nemoto, Shigeru; Komazaki, Kenji; Shibata, Kazunari

    2015-11-01

    We have developed UFCORIN, a platform for studying and automating space weather prediction. Using our system we have tested 6160 different combinations of Solar Dynamic Observatory/Helioseismic and Magnetic Imager data as input data, and simulated the prediction of GOES X-ray flux for 2 years (2011-2012) with 1 h cadence. We have found that direct comparison of the true skill statistic (TSS) from small cross-validation sets is ill posed and used the standard scores (z) of the TSS to compare the performance of the various prediction strategies. The z of a strategy is a stochastic variable of the stochastically chosen cross-validation data set, and the z for the three strategies best at predicting X-, ≥M-, and ≥C-class flares are better than the average z of the 6160 strategies by 2.3σ, 2.1σ, and 3.8σ confidence levels, respectively. The best three TSS values were 0.75 ± 0.07, 0.48 ± 0.02, and 0.56 ± 0.04, respectively.

  11. Reconciliation of Waiting Time Statistics of Solar Flares Observed in Hard X-Rays

    CERN Document Server

    Aschwanden, Markus J

    2010-01-01

    We study the waiting time distributions of solar flares observed in hard X-rays with ISEE-3/ICE, HXRBS/SMM, WATCH/GRANAT, BATSE/CGRO, and RHESSI. Although discordant results and interpretations have been published earlier, based on relatively small ranges ($< 2$ decades) of waiting times, we find that all observed distributions, spanning over 6 decades of waiting times ($\\Delta t \\approx 10^{-3}- 10^3$ hrs), can be reconciled with a single distribution function, $N(\\Delta t) \\propto \\lambda_0 (1 + \\lambda_0 \\Delta t)^{-2}$, which has a powerlaw slope of $p \\approx 2.0$ at large waiting times ($\\Delta t \\approx 1-1000$ hrs) and flattens out at short waiting times $\\Delta t \\lapprox \\Delta t_0 = 1/\\lambda_0$. We find a consistent breakpoint at $\\Delta t_0 = 1/\\lambda_0 = 0.80\\pm0.14$ hours from the WATCH, HXRBS, BATSE, and RHESSI data. The distribution of waiting times is invariant for sampling with different flux thresholds, while the mean waiting time scales reciprocically with the number of detected event...

  12. X-ray bursting neutron star atmosphere models: spectra and color corrections

    CERN Document Server

    Suleimanov, V; Werner, K

    2010-01-01

    X-ray bursting neutron stars in low mass X-ray binaries constitute an appropriate source class to constrain masses and radii of neutron stars, but a sufficiently extended set of corresponding model atmospheres is necessary for these investigations. We computed such a set of model atmospheres and emergent spectra in a plane-parallel, hydrostatic, and LTE approximation with Compton scattering taken into account. The models were calculated for six different chemical compositions: pure hydrogen and pure helium atmospheres, and atmospheres with solar mix of hydrogen and helium, and various heavy element abundances Z = 1, 0.3, 0.1, and 0.01 Z_sun. For each chemical composition the models are computed for three values of surface gravity, log g =14.0, 14.3, and 14.6, and for 20 values of the luminosity in units of the Eddington luminosity, L/L_Edd, in the range 0.001--0.98. The emergent spectra of all models are redshifted and fitted by a diluted blackbody in the RXTE/PCA 3--20 keV energy band, and corresponding valu...

  13. Impulsive solar X-ray bursts. 4: Polarization, directivity and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.

  14. The influence of accretion geometry on the spectral evolution during thermonuclear (type-I) X-ray bursts

    CERN Document Server

    Kajava, Jari J E; Latvala, Outi-Marja; Pursiainen, Miika; Poutanen, Juri; Suleimanov, Valery F; Revnivtsev, Mikhail G; Kuulkers, Erik; Galloway, Duncan K

    2014-01-01

    Neutron star (NS) masses and radii can be estimated from observations of photospheric radius-expansion X-ray bursts, provided the chemical composition of the photosphere, the spectral colour-correction factors in the observed luminosity range, and the emission area during the bursts are known. By analysing 246 X-ray bursts observed by the Rossi X-ray Timing Explorer from 11 low-mass X-ray binaries, we find a dependence between the persistent spectral properties and the time evolution of the black body normalisation during the bursts. All NS atmosphere models predict that the colour-correction factor decreases in the early cooling phase when the luminosity first drops below the limiting Eddington value, leading to a characteristic pattern of variability in the measured blackbody normalisation. However, the model predictions agree with the observations for most bursts occurring in hard, low-luminosity, 'island' spectral states, but rarely during soft, high-luminosity, 'banana' states. The observed behaviour may...

  15. An emergence of new polarized emission region in blazar Mrk 421 associated with X-ray flare

    CERN Document Server

    Itoh, Ryosuke; Tanaka, Yasuyuki T; Kawabata, Koji S; Takaki, Katsutoshi; Hayashi, Kazuma; Uemura, Makoto; Ui, Takahiro; Sasada, Mahito; Yamanaka, Masayuki; Yoshida, Michitoshi

    2015-01-01

    We report on long-term multi-wavelength monitoring of blazar Mrk~421 from 2010 to 2011. The source exhibited extreme X-ray flares in 2010. Our research group performed optical photopolarimetric follow-up observations using the Kanata telescope. In 2010, the variability in the X-ray band was significant, while the optical and ultraviolet (UV) flux decreased gradually. Polarization properties also exhibited unique variability in 2010, suggesting the presence of systematic component of polarization and magnetic field alignment for the emergence of a new polarized emission region. In contrast, in 2011 the variability in the X-ray band was smaller, and the variability in the optical and UV bands was larger, than in 2010. To explore the reasons for these differences, spectral fitting analysis was performed via simple synchrotron-self Compton modelling; the results revealed different behaviors in terms of spectral evolution between these periods, suggesting different variability mechanisms between 2010 and 2011. In ...

  16. DISCOVERY OF A WANDERING RADIO JET BASE AFTER A LARGE X-RAY FLARE IN THE BLAZAR MARKARIAN 421

    Energy Technology Data Exchange (ETDEWEB)

    Niinuma, K. [Graduate School of Science and Engineering, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Yamaguchi 753-8512 (Japan); Kino, M. [Korean VLBI Network, Korea Astronomy and Space Science Institute, Daedeokdae-ro 776, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Doi, A. [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 229-8510 (Japan); Hada, K. [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Nagai, H. [Chile Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Koyama, S., E-mail: niinuma@yamaguchi-u.ac.jp [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2015-07-01

    We investigate the location of the radio jet bases (“radio cores”) of blazars in radio images and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted a 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time,we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale corresponds to the de-projected length of a scale of 10{sup 5} Schwarzschild radii (R{sub s}) at the distance of Markarian 421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.

  17. Discovery of a wandering radio jet base after a large X-ray flare in the blazar Markarian 421

    CERN Document Server

    Niinuma, K; Doi, A; Hada, K; Nagai, H; Koyama, S

    2015-01-01

    We investigate the location of the radio jet bases ("radio cores") of blazars in radio images, and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time, we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale corresponds to the de-projected length of a scale of $10^5$ Schwarzschild radii (Rs) at the distance of Markarian~421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.

  18. The relationship between hard X-ray pulse timings and the locations of footpoint sources during solar flares

    CERN Document Server

    Inglis, A R; 10.1088/0004-637X/748/2/139

    2013-01-01

    The cause of quasi-periodic pulsations (QPP) in solar flares remains the subject of debate. Recently, Nakariakov & Zimovets (2011) proposed a new model suggesting that, in two-ribbon flares, such pulsations could be explained by propagating slow waves. These waves may travel obliquely to the magnetic field, reflect in the chromosphere and constructively interfere at a spatially separate site in the corona, leading to quasi-periodic reconnection events progressing along the flaring arcade. Such a slow wave regime would have certain observational characteristics. We search for evidence of this phenomenon during a selection of two-ribbon flares observed by RHESSI, SOHO and TRACE; the flares of 2002 November 9, 2005 January 19 and 2005 August 22. We were not able to observe a clear correlation between hard X-ray footpoint separations and pulse timings during these events. Also, the motion of hard X-ray footpoints is shown to be continuous within the observational error, whereas a discontinuous motion might be...

  19. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    Science.gov (United States)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  20. Wind, jet, hybrid corona and hard X-ray flares: multiwavelength evolution of GRO J1655-40 during the 2005 outburst rise

    Science.gov (United States)

    Kalemci, E.; Begelman, M. C.; Maccarone, T. J.; Dinçer, T.; Russell, T. D.; Bailyn, C.; Tomsick, J. A.

    2016-11-01

    We have investigated the complex multiwavelength evolution of GRO J1655-40 during the rise of its 2005 outburst. We detected two hard X-ray flares, the first one during the transition from the soft state to the ultra-soft state, and the second one in the ultra-soft state. The first X-ray flare coincided with an optically thin radio flare. We also observed a hint of increased radio emission during the second X-ray flare. To explain the hard flares without invoking a secondary emission component, we fit the entire data set with the eqpair model. This single, hybrid Comptonization model sufficiently fits the data even during the hard X-ray flares if we allow reflection fractions greater than unity. In this case, the hard X-ray flares correspond to a Comptonizing corona dominated by non-thermal electrons. The fits also require absorption features in the soft and ultra-soft state which are likely due to a wind. In this work we show that the wind and the optically thin radio flare co-exist. Finally, we have also investigated the radio to optical spectral energy distribution, tracking the radio spectral evolution through the quenching of the compact jet and rise of the optically thin flare, and interpreted all data using state transition models.

  1. Study of the properties of Cosmic rays and solar X-Ray Flares by balloon borne experiments

    CERN Document Server

    Chakrabarti, S K; Chakraborty, S; Palit, S; Mondal, S K; Bhattacharya, A; Midya, S; Chakrabarti, S

    2013-01-01

    Indian Centre for Space Physics is engaged in pioneering balloon borne experiments with typical payloads less than ~ 3.5kg. Low cost rubber balloons are used to fly them to a height of about 40km. In a double balloon system, the booster balloon lifts the orbiter balloon to its cruising altitude where data is taken for a longer period of time. In this Paper, we present our first scientific report on the variation of Cosmic Rays and muons with altitude and detection of several solar flares in X-rays between 20keV and 100keV. We found the altitude of the Pfotzer maximum at Tropic of Cancer for cosmic rays and muons and catch several solar flares in hard X-rays. We find that the hard X-ray (> 40keV) sky becomes very transparent above Pfotzer maximum. We find the flare spectrum to have a power-law distribution. From these studies, we infer that valuable scientific research could be carried out in near space using low cost balloon borne experiments. Published in Online version of Indian Journal of Physics.

  2. A study of solar flare energy transport based on coordinated H-alpha and X-ray observations

    Science.gov (United States)

    Canfield, Richard C.; Wulser, Jean-Pierre; Zarro, Dominic M.; Dennis, Brian R.

    1991-01-01

    The temporal evolution of the ratio between H-alpha to nonthermal hard X-ray emission was investigated using coordinated H-alpha and hard- and soft-X-ray observations of five solar flares (on May 7, June 23, June 24, and June 25, 1980 and on April 30, 1985). These observations were used to estimate the emitted flare energy flux F(H-alpha) in H-alpha, the flux of F(2O) energy deposited by nonthermal electrons with energies above 20 keV, and the pressure p(c) of soft X-ray-emitting plasma as functions of time during the impulsive phase of each flare. It was found that the F(H-alpha)/F(2O) ratio shows a power-law dependence on F(2O), with a slope that differs slightly from that predicted by the static thick-target model of solar transport. Results also indicate that the power-law dependence is modified by hydrostatic pressure effects.

  3. POLAR - novel hard X-ray polarimeter for Gamma Ray Bursts

    Science.gov (United States)

    Hajdas, Wojtek

    Our present knowledge of the Gamma Ray Bursts GRBs - the most powerful explosions in the universe after the Big Bang - links them with a birth of the black holes and localize at cosmological distances. There is also a strong evidence relating some of them with Supernovae and thus with gravitational waves. Despite of such significant role of GRBs only little is known about their mechanisms and progenitors. Existing theories still have troubles describing bursts prompt emissions while predictions of the photon polarization show large divergences. On the observational side there are just few isolated measurements of the hard X-ray polarization affected by large experimental uncertainties. Nevertheless, it became clear that determining the GRB polarization could be an ultimate step for understanding their genuine nature. To participate in this task we propose POLAR - novel instrument for hard X-ray and low energy gamma ray polarimetry. The instrument goal is to perform highly precise polarization studies from a very large number of GRBs. Measurements of the linear polarization in the GRB prompt emission at photon energies from 5 keV to 500 keV will be carried out using continuous observations of the sky. Our calculations showed that for several bursts per year the experimental precision will reach a 1 sigma level of 3 per cent. For the strongest events it will be possible to study polarization as a function of energy achieving much more detailed view of the emitting system structure. POLAR uses a uniform array of 1600 weakly shielded plastic detectors coupled with the new multi-anode photo-multipliers. The polarization measurement is based on Compton scattering and relies on detection of fast coincidences between plastic scintillator bars. The total mass (28 kg) and power requirements (30 W) are very moderate. POLAR has relatively small dimensions and it was designed to be not only non-intrusive but also highly adaptable. The qualification model is currently under

  4. Si XII X-ray Satellite Lines in Solar Flare Spectra

    Science.gov (United States)

    Phillips, K. J.; Sylwester, J.; Sylwester, B.; Dubau, J.

    2005-05-01

    We demonstrate the temperature dependence of the intensity ratio of dielectronic satellite lines due to Li-like Si (Si XII) to nearby He-like Si (Si XIII) 1s2 - 1snp(n=3, 4, 5) lines emitted in solar flare X-ray spectra. These lines, which occur in the wavelength range 5.253~Å--5.818~Å, have been observed by the RESIK bent crystal spectrometer on the Russian CORONAS-F solar mission. Line features made up of several strong satellites with transitions 1s2 n'l' - 1s n'l' nl lie near the `parent' Si XIII lines, transition 1s2 1S0 - 1snp 1P1; thus, the feature at 5.818~Å is made up of several blended Si XII satellites with `spectator' electrons n'l'=2s or 2p and nl=3p or 3d, and lies on the long-wavelength side of the Si XIII 1s2 - 1s3p line at 5.681~Å. A similar n=4 satellite feature at 5.565~Å is on the long-wavelength side of the Si XIII 1s2 - 1s4p line at 5.384~Å. The Si XII satellites are formed by dielectronic recombination and direct (inner-shell) excitation. The ratio Is/IHe (Is = Si XII satellite line flux, IHe = Si XIII line flux) depends on electron temperature approximately as Te-1. The atomic data needed to calculate Is/IHe for individual n=3 and n=4 Si XII satellite lines have been calculated and will be presented in this paper; excitation mechanisms including those by dielectronic recombination and inner-shell excitation were included using the SUPERSTRUCTURE and Distorted Wave formalisms. With these and theoretical fluxes of the Si XIII lines, synthetic spectra were calculated and compared with RESIK solar flare spectra. Values of Is/IHe measured from RESIK spectra during the decay of four long-duration solar flares, together with temperatures estimated both from the ratio of the GOES channels and from the ratio of total fluxes in two of the four RESIK channels, enable a comparison to be made with theoretical curves. The agreement with the theoretical curve based on synthetic spectra is within expected uncertainties, and the Te-1 dependence is

  5. Predictions for Fourier-resolved X-ray spectroscopy from the model of magnetic flare avalanches above an accretion disc with hot ionized skin

    CERN Document Server

    Zycki, P T

    2002-01-01

    The magnetic flare avalanches model of Poutanen & Fabian for X-ray variability of accreting black holes is combined with computations of vertical structure of illuminated accretion discs in hydrostatic equilibrium. The latter predict the existence of a hot ionized skin, due to the thermal instability of X-ray illuminated plasma. The presence of such ionized skin, with properties dependent on disc radius, introduces a dependence of the emitted X-ray spectrum on the position on the disc. If the position is related to the time scale of the flares, the X-ray energy spectra (both the primary continuum and the reprocessed component) gain an additional dependence on Fourier frequency, beside that resulting from spectral evolution during a flare. We compute the Fourier frequency resolved spectra in this model and demonstrate that the presence of the hot skin introduces trends opposite to those observed in black hole binaries. Furthermore, the flare profile is strongly constrained, if the Fourier frequency depende...

  6. Flares from a new Integral hard X-ray source, IGR J17407-2808, likely associated with the ROSAT source SBM 10

    DEFF Research Database (Denmark)

    Kretschmar, P.; Mereghetti, S.; Hermsen, W.;

    2004-01-01

    was not detected. The last flare, with peak fluxes of 0.8±0.1 Crab and 0.6±0.1 Crab in the energy ranges 20-40 keV and 40-60 keV respectively, triggered an automatic alert message of the Integral Burst Alert System (IBAS Alert #2010) which led to the discovery of the source (Gotz et al., GCN Circ. #2793......This new hard X-ray source, IGR J17407-2808, is positionally coincident with a faint ROSAT source listed as no. 10 in the catalogue of sources in the Galactic Center region by Sidoli, Belloni & Mereghetti 2001, A&A 368, 835 and as 2RXP J174040.9-280852 in the ROSAT Source Browser. No other...... observations of [SBM2001] 10 have been published up to date. The flares were observed with the IBIS instrument in the 20-60 keV energy range, starting at MJD 53287.6310 and over a timespan of 2000 seconds finishing in a strong flare at MJD 53287.6327. Before and after this time period the source...

  7. Wind, jet, hybrid corona and hard X-ray flares: multiwavelength evolution of GRO J1655-40 during the 2005 outburst rise

    CERN Document Server

    Kalemci, E; Maccarone, T J; Dincer, T; Russell, T D; Bailyn, C; Tomsick, J A

    2016-01-01

    We have investigated the complex multiwavelength evolution of GRO J1655-40 during the rise of its 2005 outburst. We detected two hard X-ray flares, the first one during the transition from the soft state to the ultra-soft state, and the second one in the ultra-soft state. The first X-ray flare coincided with an optically thin radio flare. We also observed a hint of increased radio emission during the second X-ray flare. To explain the hard flares without invoking a secondary emission component, we fit the entire data set with the eqpair model. This single, hybrid Comptonization model sufficiently fits the data even during the hard X-ray flares if we allow reflection fractions greater than unity. In this case, the hard X-ray flares correspond to a Comptonizing corona dominated by non-thermal electrons. The fits also require absorption features in the soft and ultra-soft state which are likely due to a wind. In this work we show that the wind and the optically thin radio flare co-exist. Finally, we have also in...

  8. The cooling phase of Type I X-ray bursts observed with RXTE in 4U 1820–30 does not follow the canonical F / T4 relation

    NARCIS (Netherlands)

    Garc´ıa, Federico; Zhan, Guobao; M´endez, Mariano

    2013-01-01

    We analysed the complete set of bursts from the neutron-star low-mass X-ray binary 4U 1820–30 detected with the Rossi X-ray Timing Explorer (RXTE). We found that all are photospheric radius expansion bursts, and have similar duration, peak flux and fluence. From the analysis of time-resolved spectra

  9. Delays of optical bursts in simultaneous optical and X-ray observations of MXB 1636-53

    Science.gov (United States)

    Matsuoka, M.; Mitsuda, K.; Ohashi, T.; Inoue, H.; Koyama, K.; Makino, F.; Makishima, K.; Murakami, T.; Oda, M.; Ogawara, Y.

    1984-01-01

    Observations of simultaneous optical and X-ray bursts from 4U/MXB 1636-53 were made using the Hakucho burst monitor system and optical telescopes at the European Southern Observatory during 1979 and 1980. The six best cases among the 10 coinciding observations are analyzed in terms of a model in which the optical emission is the result of reprocessing of X-rays (through blackbody heating). From this analysis, the temperature (spatially averaged) and size of a reprocessor, and the smearing and delay of the optical bursts are obtained. For the maximum temperatures of the optical reprocessor, the values differ from burst to burst, ranging from about 3 x 10 to the 4th to about 10 to the 5th K. The present analysis suggests that the size of the reprocessor varies by a factor of a few. For the smearing of the optical bursts an upper limit of a few seconds is derived. The most important result of this analysis is that the delay times are not the same for all bursts. The possible constraints which these results put on a low-mass binary model of this burst source are discussed.

  10. NuSTAR observations of X-ray bursts from the magnetar 1E 1048.1–5937

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun; Kaspi, Victoria M.; Archibald, Robert F. [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kouveliotou, Chryssa [Space Science Office, ZP12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-20

    We report the detection of eight bright X-ray bursts from the 6.5 s magnetar 1E 1048.1–5937, during a 2013 July observation campaign with the Nuclear Spectroscopic Telescope Array. We study the morphological and spectral properties of these bursts and their evolution with time. The bursts resulted in count rate increases by orders of magnitude, sometimes limited by the detector dead time, and showed blackbody spectra with kT ∼ 6-8 keV in the T{sub 90} duration of 1-4 s, similar to earlier bursts detected from the source. We find that the spectra during the tail of the bursts can be modeled with an absorbed blackbody with temperature decreasing with flux. The burst flux decays followed a power law of index 0.8-0.9. In the burst tail spectra, we detect a ∼13 keV emission feature, similar to those reported in previous bursts from this source as well as from other magnetars observed with the Rossi X-ray Timing Explorer. We explore possible origins of the spectral feature such as proton cyclotron emission, which implies a magnetic field strength of B ∼ 2 × 10{sup 15} G in the emission region. However, the consistency of the energy of the feature in different objects requires further explanation.

  11. NuSTAR Observations of X-Ray Bursts from the Magnetar 1E 1048.1-5937

    Science.gov (United States)

    An, Hongjun; Kaspi, Victoria M.; Beloborodov, Andrei M.; Kouveliotou, Chryssa; Archibald, Robert T.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Gotthelf, Eric V.; Stern, Daniel; Zhang, William W.

    2014-01-01

    We report the detection of eight bright X-ray bursts from the 6.5 s magnetar 1E 1048.1-5937, during a 2013 July observation campaign with the Nuclear Spectroscopic Telescope Array. We study the morphological and spectral properties of these bursts and their evolution with time. The bursts resulted in count rate increases by orders of magnitude, sometimes limited by the detector dead time, and showed blackbody spectra with kT is approx. 6-8 keV in the T90 duration of 1-4 s, similar to earlier bursts detected from the source. We find that the spectra during the tail of the bursts can be modeled with an absorbed blackbody with temperature decreasing with flux. The burst flux decays followed a power law of index 0.8-0.9. In the burst tail spectra, we detect a is approx. 13 keV emission feature, similar to those reported in previous bursts from this source as well as from other magnetars observed with the Rossi X-ray Timing Explorer.We explore possible origins of the spectral feature such as proton cyclotron emission, which implies a magnetic field strength of B is approx. 2×10(exp15) G in the emission region. However, the consistency of the energy of the feature in different objects requires further explanation.

  12. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Magdalenic, J.; Marque, C.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, SIDC, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, Kaciceva 26, HR-10000 Zagreb (Croatia); Veronig, A., E-mail: Jasmina.Magdalenic@oma.be [IGAM/Kanzelhoehe Observatory, Institut of Physics, Universitaet Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.

  13. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  14. X-ray and microwave emissions from the July 19, 2012 solar flare: Highly accurate observations and kinetic models

    Science.gov (United States)

    Gritsyk, P. A.; Somov, B. V.

    2016-08-01

    The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ˜5 × 1010 erg cm-2 s-1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ˜5. To independently test the model, we have calculated the microwave spectrum in the range 1-50 GHz that corresponds to the available radio observations.

  15. A reconnection-driven model of the hard X-ray loop-top source from flare 2004-Feb-26

    CERN Document Server

    Longcope, Dana; Brewer, Jasmine

    2016-01-01

    A compact X-class flare on 2004-Feb-26 showed a concentrated source of hard X-rays at the tops of the flare's loops. This was analyzed in previous work (Longcope et al. 2010), and interpreted as plasma heated and compressed by slow magnetosonic shocks generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. These simulations corroborate the prior hypothesis that slow mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, bu...

  16. Tomographic analysis of the nonthermal x-ray bursts during disruption instability in the T-10 tokamak.

    Science.gov (United States)

    Savrukhin, P V; Ermolaeva, A I; Shestakov, E A; Khramenkov, A V

    2014-10-01

    Non-thermal x-ray radiation (Eγ up to 150 keV) is measured in the T-10 tokamaks during disruption instability using two sets of CdTe detectors (10 vertical and 7 horizontal view detectors). Special narrow cupper tubes collimators with lead screening and CdTe detectors integrated with amplifiers inside metallic containers provides enhanced spatial resolution of the system (r ∼ 3 cm) and assures protection from the parasitic hard x-ray (Eγ up to 1.5 MeV) and electromagnetic loads during disruption. Spatial localization of the nonthermal x-ray emissivity is reconstructed using tomographic Cormack technique with SVD matrix inversion. Analysis indicated appearance of an intensive non-thermal x-ray bursts during initial stage of the disruptions at high density. The bursts are characterized by repetitive spikes (2-3 kHz) of the x-ray emissivity from the plasma core area. Analysis indicated that the spikes can be connected with acceleration of the non-thermal electrons in enhanced longitudinal electric fields induced during energy quench at the disruption instability.

  17. NuSTAR Observations of X-ray Bursts from the Magnetar 1E 1048.1-5937

    DEFF Research Database (Denmark)

    An, Hongjun; Kaspi, Victoria M.; Beloborodov, Andrei M.

    2014-01-01

    with an absorbed blackbody with temperature decreasing with flux. The burst flux decays followed a power law of index 0.8-0.9. In the burst tail spectra, we detect a ~13 keV emission feature, similar to those reported in previous bursts from this source as well as from other magnetars observed with the Rossi X......-ray Timing Explorer. We explore possible origins of the spectral feature such as proton cyclotron emission, which implies a magnetic field strength of B ~ 2 × 1015 G in the emission region. However, the consistency of the energy of the feature in different objects requires further explanation....

  18. A Statistical Study of GRB X-ray Flares: Evidence of Ubiquitous Bulk Acceleration in the Emission Region

    CERN Document Server

    Jia, Lan-Wei; Zhang, Bing

    2015-01-01

    When emission in a conical relativistic jet ceases abruptly, the observed decay light curve is controlled by the high-latitude "curvature effect". If the zero time is defined properly, the decay slope and the spectral index has a simple relation \\alpha=2+\\beta if the relativistic jet moves with a constant Lorentz factor. Uhm & Zhang recently found that the decay is steeper than this standard value if the jet is undergoing bulk acceleration when the emission ceases. By applying this theory to the flare data of GRBs, they found that the decay properties of flares demand that the emission region is undergoing significant bulk acceleration. This suggests that the jet is PFD, and that emission is powered by significant dissipation of Poynting-flux energy within the jet. Uhm & Zhang presented three X-ray flares as the examples. In this paper, we systematically analyze the flare data released by Swift to investigate whether bulk acceleration is common among flares. We select a sample of 85 bright flares dete...

  19. Helium in natal HII regions: the origin of the X-ray absorption in gamma-ray burst afterglows

    CERN Document Server

    Watson, Darach; Andersen, Anja C; Fynbo, Johan P U; Gorosabel, Javier; Hjorth, Jens; Jakobsson, Páll; Krühler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele

    2012-01-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that He in the GRB's host HII region is responsible for most of the absorption. We show that the X-ray absorbing column density (N_Hx) is correlated with both the neutral gas column density and with the optical afterglow extinction (Av). This correlation explains the connection between dark bursts and bursts with high N_Hx values. From these correlations we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e. the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this we conclude that the column density of the X-ray absorpt...

  20. Central compact objects, superslow X-ray pulsars, gamma-ray bursts: do they have anything to do with magnetars?

    CERN Document Server

    Tong, H

    2014-01-01

    Magnetars and many of the magnetar-related objects are summarized together and discussed. It is shown that there is an abuse of language in the use of "magnetar". Anomalous X-ray pulsars and soft gamma-ray repeaters are well-known magnetar candidates. The current so called anti-magnetar (for central compact objects), accreting magnetar (for superslow X-ray pulsars in high mass X-ray binaries), and millisecond magnetar (for the central engine of some gamma-ray bursts), they may not be real magnetars in present understandings. Their observational behaviors are not caused by the magnetic energy. Many of them are just neutron stars with strong surface dipole field. A neutron star plus strong dipole field is not a magnetar. The characteristic parameters of the neutron stars for the central engine of some gamma-ray bursts are atypical from the neutron stars in the Galaxy. Possible signature of magnetic activities in accreting systems are discussed, including repeated bursts and a hard X-ray tail. China's future har...

  1. Long Duration X-Ray Flash and X-Ray Rich Gamma Ray Burst from Low Mass Population III Star

    CERN Document Server

    Nakauchi, Daisuke; Sakamoto, Takanori; Kashiyama, Kazumi; Nakamura, Takashi

    2012-01-01

    Recent numerical simulations suggest that Population III (Pop III) stars are born with masses not larger than $\\sim 100M_\\odot$ but typically $\\sim 40M_{\\odot}$. We investigate whether such a low mass Pop III star can raise a Gamma Ray Burst (GRB) by considering the propagation of a jet, which is launched from the black hole, in the stellar envelope. It is generally believed that a super giant star is not an appropriate progenitor of a GRB, since the large envelope prevents the successful jet breakout. Especially for Pop III stars, the mass loss is not expected and the large hydrogen envelope is kept due to the low opacity envelope. We find, however, that those Pop III stars who end as blue super giants are compact enough for jets to break out the stellar envelopes successfully. We evaluate observational characters of Pop III GRBs and predict that Pop III GRBs have the duration of $\\sim 10^5$ sec in the observer frame and the peak luminosity of $\\sim 5 \\times 10^{50}{\\rm erg/sec}$. Moreover, assuming that the...

  2. Analysis of intermittency in submillimeter radio and Hard X-Rays during the impulsive phase of a solar flare

    CERN Document Server

    de Castro, C Guillermo Giménez; Raulin, Jean-Pierre; Guimarães, Odilon M

    2016-01-01

    We present an analysis of intermittent processes occurred during the impulsive phase of the flare SOL2012-03-13, using hard X-rays and submillimeter radio data. Intermittency is a key characteristic in turbulent plasmas and have been a analyzed recently for Hard X-rays data only. Since in a typical flare the same accelerated electron population is believed to produce both Hard X-rays and gyrosynchrotron, we compare both time profiles searching for intermittency signatures. For that we define a cross-wavelet power spectrum, that is used to obtain the Local Intermittency Measure or LIM. When greater than 3, the square LIM coefficients indicate a local intermittent process. The LIM$^2$ coefficient distribution in time and scale helps to identify avalanche or cascade energy release processes. We find two different and well separated intermittent behaviors in the submillimeter data: for scales greater than 20 s, a broad distribution during the rising and maximum phases of the emission seems to favor a cascade proc...

  3. Long-term X-ray monitoring of LS I +61 303: analysis of spectral variability and flares

    CERN Document Server

    Li, Jian; Zhang, Shu; Chen, Yupeng; Hadasch, Daniela; Ray, Paul S; Kretschmar, Peter; Rea, Nanda; Wang, Jianmin

    2011-01-01

    We report on the full analysis of a Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) monitoring of the {\\gamma}-ray binary system LS I +61 303. The data set covers 42 contiguous cycles of the system orbital motion. Analyzing this X-ray monitoring dataset, the largest to date for this source, we report on the variability of the orbital profile and the spectral distribution, and provide strong evidence for an anti-correlation between flux and spectral index (the higher the flux, the harder the spectral index). Furthermore, we present the analysis of two newly discovered ks-timescale flares, which present significant variability also on shorter timescales, and tend to occur at orbital phases between 0.6-0.9. However, a detailed timing analysis of the flares does not show any coherent or quasi-coherent (QPO) structure in their power spectra. We also investigated the possible appearance of the radio super-orbital modulation at X-rays energies, but we could not unambiguously detect such modulatio...

  4. A Luminous X-ray Flare From The Nucleus of The Dormant Bulgeless Spiral Galaxy NGC 247

    CERN Document Server

    Feng, Hua; Kaaret, Philip; Tao, Lian; Yamaoka, Kazutaka; Zhang, Shuo; Grisé, Fabien

    2015-01-01

    NGC 247 is a nearby late-type bulgeless spiral galaxy that contains an inactive nucleus. We report a serendipitous discovery of an X-ray flare from the galaxy center with a luminosity up to 2*10^39 erg/s in the 0.3-10 keV band with XMM-Newton. A Chandra observation confirms that the new X-ray source is spatially coincident with the galaxy nucleus. The XMM-Newton data revealed a hard power-law spectrum with a spectral break near 3-4 keV, no pulsations on timescales longer than 150 ms, and a flat power spectrum consistent with Poisson noise from 1 mHz to nearly 10 Hz. Follow-up observations with Swift detected a second flux peak followed by a luminosity drop by factor of almost 20. The spectral and temporal behaviors of the nuclear source are well consistent with the scenario that the flare was due to an outburst of a low-mass X-ray binary that contains a stellar-mass black hole emitting near its Eddington limit at the peak. However, it cannot be ruled out that the sudden brightening in the nucleus was due to a...

  5. Multi-band study of a new asynchronous magnetic cataclysmic variable and a flaring X-ray source

    CERN Document Server

    Rea, N; Esposito, P; D'Avanzo, P; de Martino, D; Israel, G L; Torres, D F; Campana, S; Belloni, T M; Papitto, A; Masetti, N; Carrasco, L; Possenti, A; Wieringa, M; Wilhelmi, E De Ona; Li, J; Bozzo, E; Ferrigno, C; Linares, M; Tauris, T M; Hernanz, M; Ribas, I; Monelli, M; Borghese, A; Baglio, M C; Casares, J

    2016-01-01

    In search for the counterpart to the Fermi-LAT source 3FGL J0838.8-2829, we report on 1) a new magnetic Cataclysmic Variable (mCV), RX J0838-2827, that we identify as an asynchronous system (therefore not associated with this Fermi-LAT source) and 2) on a new X-ray flaring source, XMM J083850.4-282759, that might be tentatively identified as new candidate Transitional Millisecond Pulsar, possibly associated with the gamma-ray source. We observed the field in the X-ray band with Swift, twice with XMM-Newton, as well as performed infrared, optical (with OAGH, ESO-NTT and IAC80) and radio (ATCA) observations, and we report on archival INTEGRAL observations. RX J0838-2827 is extremely variable in the X-ray and optical bands, and timing analysis reveals the presence of several periodicities modulating its X-ray and optical emission. The most evident modulations are interpreted as due to the binary system orbital period of ~1.64hr and the white dwarf spin period of ~1.47hr. Furthermore, a strong flux modulation at ...

  6. On the power-law distributions of X-ray fluxes from solar flares observed with GOES

    Science.gov (United States)

    Li, You-Ping; Feng, Li; Zhang, Ping; Liu, Si-Ming; Gan, Wei-Qun

    2016-10-01

    The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power-law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites. The temperature (T) distribution, on the other hand, approaches a power-law distribution with an index of 2 for high values of T. Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.

  7. The effect of turbulent density fluctuations on wave-particle interactions and solar flare X-ray spectrum

    CERN Document Server

    Hannah, I G; Reid, H A S

    2012-01-01

    To demonstrate the effect of turbulent background density fluctuations on flare accelerated electron transport in the solar corona. Using the quasi-linear approximation, we numerically simulate the propagation of a beam of accelerated electrons from the solar corona to chromosphere, including the self-consistent response of the inhomogeneous background plasma in the form of Langmuir waves. We calculate the X-ray spectrum from these simulations using the bremsstrahlung cross-section and fit the footpoint spectrum using the collisional "thick-target" model, a standard approach adopted in observational studies. We find that the interaction of the Langmuir waves with the background electron density gradient shifts the waves to higher phase velocity where they then resonate with higher velocity electrons. The consequence is that some of the electrons are shifted to higher energies, producing more high energy X-rays than expected in the cases where the density inhomogeneity is not considered. We find that the level...

  8. A Large X-ray Flare from a Single Weak-lined T Tauri Star TWA-7 Detected with MAXI GSC

    CERN Document Server

    Uzawa, Akiko; Morii, Mikio; Yamazaki, Kyohei; Kawai, Nobuyuki; Matsuoka, Masaru; Nakahira, Satoshi; Serino, Motoko; Matsumura, Takanori; Mihara, Tatehiro; Tomida, Hiroshi; Ueda, Yoshihiro; Sugizaki, Mutsumi; Ueno, Shiro; Daikyuji, Arata; Ebisawa, Ken; Eguchi, Satoshi; Hiroi, Kazuo; Ishikawa, Masaki; Isobe, Naoki; Kawasaki, Kazuyoshi; Kimura, Masashi; Kitayama, Hiroki; Kohama, Mitsuhiro; Kotani, Taro; Nakagawa, Yujin E; Nakajima, Motoki; Negoro, Hitoshi; Ozawa, Hiroshi; Shidatsu, Megumi; Sootome, Tetsuya; Sugimori, Kousuke; Suwa, Fumitoshi; Tsunemi, Hiroshi; Usui, Ryuichi; Yamamoto, Takayuki; Yamaoka, Kazutaka; Yoshida, Atsumasa

    2011-01-01

    We present a large X-ray flare from a nearby weak-lined T Tauri star TWA-7 detected with the Gas Slit Camera (GSC) on the Monitor of All-sky X-ray Image (MAXI). The GSC captured X-ray flaring from TWA-7 with a flux of $3\\times10^{-9}$ ergs cm$^{-2}$ s$^{-1}$ in 2--20 keV band during the scan transit starting at UT 2010-09-07 18:24:30.The estimated X-ray luminosity at the scan in the energy band is 3$\\times10^{32}$ ergs s$^{-1}$,indicating that the event is among the largest X-ray flares fromT Tauri stars.Since MAXI GSC monitors a target only during a scan transit of about a minute per 92 min orbital cycle, the luminosity at the flare peak might have been higher than that detected. At the scan transit, we observed a high X-ray-to-bolometric luminosity ratio, log $L_{\\rm X}/L_{\\rm bol}$ = $-0.1^{+0.2}_{-0.3}$; i.e., the X-ray luminosity is comparable to the bolometric luminosity. Since TWA-7 has neither an accreting disk nor a binary companion, the observed event implies that none of those are essential to gene...

  9. Puzzling thermonuclear burst behaviour from the transient low-mass X-ray binary IGR J17473-2721

    CERN Document Server

    Chenevez, J; Galloway, D K; Zand, J J M in 't; Kuulkers, E; Degenaar, N; Falanga, M; Del Monte, E; Evangelista, Y; Feroci, M; Costa, E

    2010-01-01

    We investigate the thermonuclear bursting behaviour of IGR J17473-2721, an X-ray transient that in 2008 underwent a six month long outburst, starting (unusually) with an X-ray burst. We detected a total of 57 thermonuclear bursts throughout the outburst with AGILE, Swift, RXTE, and INTEGRAL. The wide range of inferred accretion rates (between <1% and about 20% of the Eddington accretion rate m-dot_Edd) spanned during the outburst allows us to study changes in the nuclear burning processes and to identify up to seven different phases. The burst rate increased gradually with the accretion rate until it dropped (at a persistent flux corresponding to about 15% of m-dot_Edd) a few days before the outburst peak, after which bursts were not detected for a month. As the persistent emission subsequently decreased, the bursting activity resumed with a much lower rate than during the outburst rise. This hysteresis may arise from the thermal effect of the accretion on the surface nuclear burning processes, and the tim...

  10. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. II. Eddington Limit

    OpenAIRE

    Guver, Tolga; Ozel, Feryal; Psaltis, Dimitrios

    2011-01-01

    Time resolved X-ray spectroscopy of thermonuclear bursts observed from low mass X-ray binaries offer a unique tool to measure neutron star masses and radii. In this paper, we continue our systematic analysis of all the X-ray bursts observed with RXTE from X-ray binaries. We determine the events which show clear evidence for photospheric radius expansion and measure the Eddington limits for these accreting neutron stars using the bolometric fluxes attained at the touchdown moments of each X-ra...

  11. X-Ray Reflection and an Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143

    Science.gov (United States)

    Keek, L.; Iwakiri, W.; Serino, M.; Ballantyne, D. R.; in’t Zand, J. J. M.; Strohmayer, T. E.

    2017-02-01

    Thermonuclear X-ray bursts from accreting neutron stars power brief but strong irradiation of their surroundings, providing a unique way to study accretion physics. We analyze MAXI/Gas Slit Camera and Swift/XRT spectra of a day-long flash observed from IGR J17062-6143 in 2015. It is a rare case of recurring bursts at a low accretion luminosity of 0.15% Eddington. Spectra from MAXI, Chandra, and NuSTAR observations taken between the 2015 burst and the previous one in 2012 are used to determine the accretion column. We find it to be consistent with the burst ignition column of 5 × 1010 g cm‑2, which indicates that it is likely powered by burning in a deep helium layer. The burst flux is observed for over a day, and decays as a straight power law: F ∝ t ‑1.15. The burst and persistent spectra are well described by thermal emission from the neutron star, Comptonization of this emission in a hot optically thin medium surrounding the star, and reflection off the photoionized accretion disk. At the burst peak, the Comptonized component disappears, when the burst may dissipate the Comptonizing gas, and it returns in the burst tail. The reflection signal suggests that the inner disk is truncated at ∼102 gravitational radii before the burst, but may move closer to the star during the burst. At the end of the burst, the flux drops below the burst cooling trend for 2 days, before returning to the pre-burst level.

  12. Turbulent pitch-angle scattering and diffusive transport of hard-X-ray producing electrons in flaring coronal loops

    CERN Document Server

    Kontar, E P; Emslie, A G; Vilmer, N

    2013-01-01

    Recent observations from {\\em RHESSI} have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high energy electrons are confined to the coronal region of the source, we consider turbulent pitch angle scattering of fast electrons off low frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop and ...

  13. INTEGRAL detects an X-ray burst from SAX J1747.0-2853 with no detectable persistent emission

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Brandt, Søren Kristian; Kuulkers, Erik;

    2009-01-01

    A new season of observations for the INTEGRAL Galactic Bulge monitoring (see ATel #438) has started on 2009 Feb. 21st. During the latest observation between 2009 Feb 25 13:21 and 17:02 (UT) a type I X-ray burst from SAX J1747.0-2853 (1A 1743-288, aka GX .2-0.2) was detected by JEM-X at UT 14:50:5...

  14. NuSTAR detection of high-energy X-ray emission and rapid variability from Sagittarius A{sup *} flares

    Energy Technology Data Exchange (ETDEWEB)

    Barrière, Nicolas M.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Kgs. Lyngby (Denmark); Dexter, Jason [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Hailey, Charles J.; Mori, Kaya; Zhang, Shuo [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-05-01

    Sagittarius A{sup *} harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A{sup *} spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A{sup *} X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (∼55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse Compton models. One flare exhibits large and rapid (<100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within ∼10 Schwarzschild radii of the black hole.

  15. Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile

    Directory of Open Access Journals (Sweden)

    D. P. Grubor

    2008-06-01

    Full Text Available The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal, during the summer months of 2004–2007, on the single trace, Skelton (54.72 N, 2.88 W to Belgrade (44.85 N, 20.38 E with a distance along the Great Circle Path (GCP D≈2000 km in length.

    The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC, using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km and reflection height (H' in km. By varying the values of β and H' so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile Ne(z was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10−5 W/m2 at 0.1–0.8 nm, each giving rise to a different time development of signal perturbation.

    The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. Ne(74 km=2.16×108 m−3 to the value induced by an M5 class flare, up to Ne(74 km=4×1010 m−3 is obtained. The β parameter is found to range from 0.30–0.49 1/km and the reflection height H' to vary from 74–63 km. The changes in Ne(z during the flares, within height range z=60 to 90 km are determined, as well.

  16. The direct cooling tail method for X-ray burst analysis to constrain neutron star masses and radii

    Science.gov (United States)

    Suleimanov, Valery F.; Poutanen, Juri; Nättilä, Joonas; Kajava, Jari J. E.; Revnivtsev, Mikhail G.; Werner, Klaus

    2017-04-01

    Determining neutron star (NS) radii and masses can help to understand the properties of matter at supra-nuclear densities. Thermal emission during thermonuclear X-ray bursts from NSs in low-mass X-ray binaries provides a unique opportunity to study NS parameters, because of the high fluxes, large luminosity variations and the related changes in the spectral properties. The standard cooling tail method uses hot NS atmosphere models to convert the observed spectral evolution during cooling stages of X-ray bursts to the Eddington flux FEdd and the stellar angular size Ω. These are then translated to the constraints on the NS mass M and radius R. Here we present the improved, direct cooling tail method that generalizes the standard approach. First, we adjust the cooling tail method to account for the bolometric correction to the flux. Then, we fit the observed dependence of the blackbody normalization on flux with a theoretical model directly on the M-R plane by interpolating theoretical dependences to a given gravity, hence ensuring only weakly informative priors for M and R instead of FEdd and Ω. The direct cooling method is demonstrated using a photospheric radius expansion burst from SAX J1810.8-2609, which has happened when the system was in the hard state. Comparing to the standard cooling tail method, the confidence regions are shifted by 1σ towards larger radii, giving R = 11.5-13.0 km at M = 1.3-1.8 M⊙ for this NS.

  17. Hard X-rays from Type II bursts of the Rapid Burster and its transition toward quiescence

    CERN Document Server

    Masetti, N; Stella, L; Orlandini, M; Parmar, A N; Del Sordo, S; Amati, L; Palazzi, E; Dal Fiume, D; Cusumano, G; Pareschi, G; Lapidus, I; Remillard, R A

    2000-01-01

    We report on 4 BeppoSAX Target Of Opportunity observations of MXB 1730-335, the Rapid Burster (RB), made during the 1998 February-March outburst. In the first observation, approximately 20 days after the outburst peak, the X-ray light curve showed Type II bursts at a rate of 43 per hour. Nine days later, during the second BeppoSAX pointing, only 5 Type II bursts were detected at the beginning of the observation. During the third pointing no X-ray bursts were detected and in the fourth and final observation the RB was not detected at all. Persistent emission from the RB was detected up to 10 keV during the first three pointings. The spectra of the persistent and bursting emissions below 10 keV were best fit with a model consisting of two blackbodies. An additional component (a power law) was needed to describe the 1-100 keV bursting spectrum when the persistent emission was subtracted. To our knowledge, this is the first detection of the RB beyond 20 keV. We discuss the evolution of the spectral parameters for...

  18. Contemporaneous XMM-Newton investigation of a giant X-ray flare and quiescent state from a cool M-class dwarf in the local cavity

    CERN Document Server

    Gupta, Anjali; Williams, Benjamin

    2011-01-01

    We report the serendipitous detection of a giant X-ray flare from the source 2XMM J043527.2-144301 during an XMM-Newton observation of the high latitude molecular cloud MBM20. The source has not been previously studied at any wavelength. The X-ray flux increases by a factor of more than 52 from quiescent state to peak of flare. A 2MASS counterpart has been identified (2MASS J04352724-1443017), and near-infrared colors reveal a spectral type of M8-M8.5 and a distance of (67\\pm 13) pc, placing the source in front of MBM20. Spectral analysis and source luminosity are also consistent with this conclusion. The measured distance makes this object the most distant source (by about a factor of 4) at this spectral type detected in X-rays. The X-ray flare was characterized by peak X-ray luminosity of ~8.2E28 erg s-1 and integrated X-ray energy of ~2.3E32 erg. The flare emission has been characterized with a 2-temperature model with temperatures of ~10 and 46 MK (0.82 and 3.97 keV), and is dominated by the higher temper...

  19. Magnetic Non-Potentiality of Solar Active Regions and Peak X-Ray Flux of the Associated Flares

    CERN Document Server

    Tiwari, Sanjiv Kumar; Gosain, Sanjay

    2010-01-01

    Predicting the severity of the solar eruptive phenomena like flares and Coronal Mass Ejections (CMEs) remains a great challenge despite concerted efforts for several decades. The advent of high quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the Spatially Averaged Signed Shear Angle (SASSA) seems to be an unique parameter to quantify the non-potentiality of the active regions. We demonstrate the usefulness of SASSA for predicting the flare severity. For this purpose we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of four active regions namely ARs NOAA 10930, 10960, 10961 and 10963 during December 08-15, 2006, June 03-10, 2007, June 28-July 5, 2007 and July 10-17, 2007 respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively les...

  20. Does There Exist a Relationship Between Acoustic and White-Light Emission in Hard-X ray Solar Flares?

    Science.gov (United States)

    Buitrago-Casas, J. C.; Martinez Oliveros, J. C.; Glesener, L.; Krucker, S.; Calvo-Mozo, B.

    2014-12-01

    Several mechanisms have been proposed to explain the observed seismicity during some solar flares. One theory associates high-energy electrons and white-light emission with sunquakes. This relationship is based on the back-warming model, where high-energy electrons and their subsequent heating of the photosphere induce acoustic waves in the solar interior. We carried out a correlative study of solar flares with emission in hard-X rays (HXRs) above 50 keV, enhanced white light emission at 6573Å, and acoustic sources. We selected those flares observed by RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) with a considerable flux in the 50-100 and 100-300 keV bands between January 1, 2010 and June 26, 2014. Additionally, we restricted the sample to flares close to disk center where it is observationally easiest to detect a sunquake. We then used data from the Helioseismic and Magnetic Imager onboard the Solar Dynamic Observatory (SDO/HMI) to search for white-light emission and helioseismic signatures. Finally, we calculated a coefficient of correlation for this set of dichotomic observables. We discuss the phenomenological connectivity between these physical quantities and the observational difficulties of detecting seismic signals and white-light radiation with terrestrial and space-borne observations.

  1. Millisecond extragalactic radio bursts as magnetar flares

    CERN Document Server

    Popov, S B

    2013-01-01

    Properties of the population of millisecond extragalactic radio bursts discovered by Thornton et al. (2013) are in good correspondence with the hypothesis that such events are related to hyperflares of magnetars, as was proposed by us after the first observation of an extragalactic millisecond radio burst by Lorimer et al. (2007). We also point that some of multiple millisecond radio bursts from M31 discovered by Rubio-Herrera et al. (2013) also can be related to weaker magnetar bursts.

  2. On the Power-Law Distributions of X-ray Fluxes from Solar Flares Observed with GOES

    CERN Document Server

    Li, You-ping; Zhang, Ping; Liu, Siming; Gan, Weiqun

    2016-01-01

    Power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system of self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power-law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES. The temperature ($T$) distribution, on the other hand, approaches a ...

  3. A survey of stellar X-ray flares from the XMM-Newton serendipitous source catalogue: Hipparcos-Tycho cool stars

    CERN Document Server

    Pye, J P; Fyfe, D; Schroeder, A C

    2015-01-01

    The X-ray emission from flares on cool (i.e. spectral-type F-M) stars is indicative of very energetic, transient phenomena, associated with energy release via magnetic reconnection. We present a uniform, large-scale survey of X-ray flare emission. The XMM-Newton Serendipitous Source Catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. The 2XMM Catalogue and the associated time-series (`light-curve') data products have been used as the basis for a survey of X-ray flares from cool stars in the Hipparcos Tycho-2 catalogue. In addition, we have generated and analysed spectrally-resolved (i.e. hardness-ratio), X-ray light-curves. Where available, we have compared XMM OM UV/optical data with the X-ray light-curves. Our sample contains ~130 flares with well-observed profiles; they originate from ~70 stars. ...

  4. LONG-DURATION X-RAY FLASH AND X-RAY-RICH GAMMA-RAY BURSTS FROM LOW-MASS POPULATION III STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nakauchi, Daisuke; Kashiyama, Kazumi; Nakamura, Takashi [Department of Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Sakamoto, Takanori [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-11-10

    Recent numerical simulations suggest that Population III (Pop III) stars were born with masses not larger than {approx}100 M {sub Sun} and typically {approx}40 M {sub Sun }. By self-consistently considering the jet generation and propagation in the envelope of these low-mass Pop III stars, we find that a Pop III blue supergiant star has the possibility of giving rise to a gamma-ray burst (GRB) even though it keeps a massive hydrogen envelope. We evaluate observational characteristics of Pop III GRBs and predict that Pop III GRBs have a duration of {approx}10{sup 5} s in the observer frame and a peak luminosity of {approx}5 Multiplication-Sign 10{sup 50} erg s{sup -1}. Assuming that the E {sub p}-L {sub p} (or E {sub p}-E {sub {gamma},iso}) correlation holds for Pop III GRBs, we find that the spectrum peak energy falls at approximately a few keV (or {approx}100 keV) in the observer frame. We discuss the detectability of Pop III GRBs by future satellite missions such as EXIST and Lobster. If the E {sub p}-E {sub {gamma},iso} correlation holds, we have the possibility to detect Pop III GRBs at z {approx} 9 as long-duration X-ray-rich GRBs by EXIST. Conversely, if the E {sub p}-L {sub p} correlation holds, we have the possibility to detect Pop III GRBs up to z {approx} 19 as long-duration X-ray flashes by Lobster.

  5. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Science.gov (United States)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2017-03-01

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ cr ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  6. New flaring of an ultraluminous X-ray source in NGC 1365

    CERN Document Server

    Soria, R; Risaliti, G; Fabbiano, G; King, A R; La Parola, V; Zezas, A

    2007-01-01

    We have studied a highly variable ultraluminous X-ray source (ULX) in the Fornax galaxy NGC 1365, with a series of 12 Chandra and XMM-Newton observations between 2002 and 2006. In 2006 April, the source peaked at a luminosity ~ 3 x 10^{40} erg/s in the 0.3-10 keV band (similar to the maximum luminosity found by ASCA in 1995), and declined on an e-folding timescale ~ 3 days. The X-ray spectrum is always dominated by a broad power-law-like component. When the source is seen at X-ray luminosities ~ 10^{40} erg/s, an additional soft thermal component (which we interpret as emission from the accretion disk) contributes ~ 1/4 of the X-ray flux; when the luminosity is higher, ~ 3 x 10^{40} erg/s, the thermal component is not detected and must contribute < 10% of the flux. At the beginning of the decline, ionized absorption is detected around 0.5-2 keV; it is a possible signature of a massive outflow. The power-law is always hard, with a photon index Gamma ~ 1.7 (and even flatter at times), as is generally the cas...

  7. Results from DROXO IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85

    CERN Document Server

    Pizzocaro, Daniele; Paladini, Roberta; Tiengo, Andrea; Lisini, Gianni; Novara, Giovanni; Vianello, Giacomo; Belfiore, Andrea; Marelli, Martino; Salvetti, David; Pillitteri, Ignazio; Sciortino, Salvatore; D'Agostino, Daniele; Haberl, Frank; Watson, Mike; Wilms, Joern; Salvaterra, Ruben; De Luca, Andrea

    2015-01-01

    X-ray emission from Young Stellar Objects (YSOs) is crucial to understand star formation. A very limited amount of X-ray results is available for the protostellar (ClassI) phase. A systematic search of transient X-ray phenomena combined with a careful evaluation of the evolutionary stage offer a widely unexplored window to our understanding of YSOs X-ray properties. Within the EXTraS project, a search for transients and variability in the whole XMM-Newton archive, we discover transient X-ray emission consistent with ISO-Oph 85, a strongly embedded YSO in the rho Ophiuchi region, not detected in previous time-averaged X-ray studies. We extract an X-ray light curve for the flare and determine its spectral parameters from XMM-Newton/EPIC (European Photon Imaging Camera) data using quantile analysis. The X-ray flare ($2500\\,s$), the only one detected in the XMM-Newton archive for ISO-Oph 85, has a luminosity of $LogL_X[erg/s]=31.1$ and a spectrum consistent with a highly-absorbed one-component thermal model ($N_H...

  8. Two new bursting neutron star low-mass X-ray binaries: Swift J185003.2-005627 and Swift J1922.7-1716

    CERN Document Server

    Degenaar, N; Altamirano, D; Wijnands, R

    2012-01-01

    We discuss the origin of two triggers of Swift's Burst Alert Telescope (BAT) that occurred in 2011. The triggers were identified with Swift J185003.2-005627, a previously unknown X-ray source, and the known but unclassified X-ray transient Swift J1922.7-1716. We investigate the BAT data and follow-up observations obtained with the X-ray and ultra-violet/optical telescopes to demonstrate that both triggers are consistent with thermonuclear X-ray bursts. This implies that both sources are neutron star low-mass X-ray binaries. The total duration of ~7 min and estimated energy output of ~(3-7)E39 erg, fall in between that of normal and intermediately long X-ray bursts. From the observed peaks of the X-ray bursts we estimate a distance of <3.7 kpc for Swift J185003.2-005627 and <4.8 kpc for Swift J1922.7-1716. We characterize the outburst and quiescent X-ray properties of the two sources. They have comparable average outburst luminosities of ~1E35-1E36 erg/s, and a quiescent luminosity equal to or lower than...

  9. X-ray Reflection and An Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143

    CERN Document Server

    Keek, L; Serino, M; Ballantyne, D R; Zand, J J M in 't; Strohmayer, T E

    2016-01-01

    Thermonuclear X-ray bursts from accreting neutron stars power brief but strong irradiation of their surroundings, providing a unique way to study accretion physics. We analyze MAXI/GSC and Swift/XRT spectra of an exceptionally long flash observed from IGR J17062-6143 in 2015. It is a rare case of recurring bursts at the low accretion luminosity of 0.15% Eddington. Spectra from MAXI, Chandra, and NuSTAR observations taken between the 2015 burst and the previous one in 2012 are used to determine the accretion column. We find it to be consistent with the burst ignition column of 5x10^10 g cm^-2, which indicates that it is likely powered by burning in a deep helium layer. The burst flux is observed for hours, and decays as a straight power law: F~t^-1.15. The burst and persistent spectra are well described by thermal emission from the neutron star, Comptonization of this emission in a hot optically thin medium surrounding the star, and reflection off the photoionized accretion disk. At the burst peak, the Compton...

  10. The direct cooling tail method for X-ray burst analysis to constrain neutron star masses and radii

    CERN Document Server

    Suleimanov, Valery F; Nättilä, Joonas; Kajava, Jari J E; Revnivtsev, Mikhail G; Werner, Klaus

    2016-01-01

    Determining neutron star (NS) radii and masses can help to understand the properties of matter at supra-nuclear densities. Thermal emission during thermonuclear X-ray bursts from NSs in low-mass X-ray binaries provides a unique opportunity to study NS parameters, because of the high fluxes, large luminosity variations and the related changes in the spectral properties. The standard cooling tail method uses hot NS atmosphere models to convert the observed spectral evolution during cooling stages of X-ray bursts to the Eddington flux F_Edd and the stellar angular size \\Omega. These are then translated to the constraints on the NS mass M and radius R. Here we present the improved, direct cooling tail method that generalises the standard approach. First, we adjust the cooling tail method to account for the bolometric correction to the flux. Then, we fit the observed dependence of the blackbody normalization on flux with a theoretical model directly on the M-R plane by interpolating theoretical dependences to a gi...

  11. On the connection of gamma-ray bursts and X-ray flashes in the BATSE and RHESSI databases

    Science.gov (United States)

    Řípa, J.; Mészáros, A.

    2016-12-01

    Classification of gamma-ray bursts (GRBs) into groups has been intensively studied by various statistical tests in previous years. It has been suggested that there was a distinct group of GRBs, beyond the long and short ones, with intermediate durations. However, such a group is not securely confirmed yet. Strangely, concerning the spectral hardness, the observations from the Swift and RHESSI satellites give different results. For the Swift/BAT database it is found that the intermediate-duration bursts might well be related to so-called X-ray flashes (XRFs). On the other hand, for the RHESSI dataset the intermediate-duration bursts seem to be spectrally too hard to be given by XRFs. The connection of the intermediate-duration bursts and XRFs for the BATSE database is not clear as well. The purpose of this article is to check the relation between XRFs and GRBs for the BATSE and RHESSI databases, respectively. We use an empirical definition of XRFs introduced by other authors earlier. For the RHESSI database we also use a transformation between the detected counts and the fluences based on the simulated detector response function. The purpose is to compare the hardnesses of GRBs with the definition of XRFs. There is a 1.3-4.2 % fraction of XRFs in the whole BATSE database. The vast majority of the BATSE short bursts are not XRFs because only 0.7-5.7 % of the short bursts can be given by XRFs. However, there is a large uncertainty in the fraction of XRFs among the intermediate-duration bursts. The fraction of 1-85 % of the BATSE intermediate-duration bursts can be related to XRFs. For the long bursts this fraction is between 1.0 % and 3.4 %. The uncertainties in these fractions are large, however it can be claimed that all BATSE intermediate-duration bursts cannot be given by XRFs. At least 79 % of RHESSI short bursts, at least 53 % of RHESSI intermediate-duration bursts, and at least 45 % of RHESSI long bursts should not be given by XRFs. A simulation of XRFs

  12. Observation of 2011-02-15 X2.2 flare in Hard X-ray and Microwave

    CERN Document Server

    Kuroda, Natsuha; Gary, Dale E

    2015-01-01

    Previous studies have shown that the energy release mechanism of some solar flares follow the Standard magnetic-reconnection model, but the detailed properties of high-energy electrons produced in the flare are still not well understood. We conducted a unique, multi-wavelength study that discloses the spatial, temporal and energy distributions of the accelerated electrons in the X2.2 solar flare on 2011, Feb. 15. We studied the source locations of seven distinct temporal peaks observed in hard X-ray (HXR) and microwave (MW) lightcurves using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in 50 to 75 keV channels and Nobeyama Radioheliograph (NoRH) in 34 GHz, respectively. We found that the seven emission peaks did not come from seven spatially distinct sites in HXR and MW, but rather in HXR we observed a sudden change in location only between the second and the third peak, with the same pattern occurring, but evolving more slowly in MW. Comparison between the HXR lightcurve and the temporal...

  13. Flare-associated type III radio bursts and dynamics of the EUV jet from SDO/AIA and RHESSI observations

    CERN Document Server

    Chen, Naihwa; Innes, Davina

    2013-01-01

    We present a detailed description of the interrelation between the Type III radio bursts and energetic phenomena associated with the flare activities in Active region AR 11158 at 07:58 UT on 2011, Feb. 15. The timing of the Type-III radio burst measured by the radio wave experiment on the Wind/WAVE and an array of ground-based radio telescopes, coincided with an EUV jet and hard X-ray emission observed by SDO/AIA and RHESSI., respectively. There is clear evidence that the EUV jet shares the same source region as the hard X-ray emission. The temperature of the jet, as determined by multiwavelength measurements of AIA, suggests that type III emission is associated with hot, 7 MK, plasma at the jet's footpoint.

  14. Are Coronae of Magnetically Active Stars Heated by Flares? II. EUV and X-Ray Flare Statistics and the Differential Emission Measure Distribution

    CERN Document Server

    Güdel, M; Kashyap, V L; Drake, J J; Guinan, E F; Guedel, Manuel; Audard, Marc; Kashyap, Vinay L.; Drake, Jeremy J.; Guinan, Edward F.

    2003-01-01

    (Abridged) We investigate the EUV and X-ray flare rate distribution in radiated energy of the late-type active star AD Leo using long EUVE and BeppoSAX observations. We compare the observed light curves with light curves synthesized from model flares that are distributed in energy according to a power law with selectable index alpha (dN/dE ~ E^{-alpha}). Two methods are applied, the first comparing flux distributions of the binned data, and the second using the distributions of photon arrival time differences in the unbinned data. We find acceptable alpha values between 2.0-2.5 for the EUVE DS and the BeppoSAX LECS data. The BeppoSAX MECS data indicate a somewhat shallower energy distribution than the LECS data, which is attributed to the harder range of sensitivity of the MECS detector and the increasing peak temperatures of flares with increasing total (radiative) energy. The results suggest that flares can play an important role in the energy release of this active corona. We discuss caveats related to tim...

  15. Quasi -Periodic Pulsations in Solar Flares: new clues from the Fermi Gamma-Ray Burst Monitor

    CERN Document Server

    Gruber, D; Bissaldi, E; Briggs, M S; Connaughton, V; Greiner, J; van der Horst, A J; Kanbach, G; Rau, A; Bhat, P N; Diehl, R; von Kienlin, A; Kippen, R M; Meegan, C A; Paciesas, W S; Preece, R D; Wilson-Hodge, C

    2011-01-01

    In the last four decades it has been observed that solar flares show quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest, i.e. gamma-ray, part of the electromagnetic spectrum. To this day, it is still unclear which mechanism creates such QPPs. In this paper, we analyze four bright solar flares which show compelling signatures of quasi-periodic behavior and were observed with the Gamma-Ray Burst Monitor (\\gbm) onboard the Fermi satellite. Because GBM covers over 3 decades in energy (8 keV to 40 MeV) it can be a key instrument to understand the physical processes which drive solar flares. We tested for periodicity in the time series of the solar flares observed by GBM by applying a classical periodogram analysis. However, contrary to previous authors, we did not detrend the raw light curve before creating the power spectral density spectrum (PSD). To assess the significance of the frequencies we made use of a method which is commonly applied for X-ray binaries and Seyfert galaxies. This...

  16. X-ray Flares Observed from Six Young Stars Located in the Region of Star Clusters NGC 869 and IC 2602

    Indian Academy of Sciences (India)

    Himali Bhatt; J. C. Pandey; K. P. Singh; Ram Sagar; Brijesh Kumar

    2014-03-01

    We present, for the first time, an analysis of seven intense X-ray flares observed from six stars (LAV 796, LAV 1174, SHM2002 3734, 2MASS 02191082+5707324, V553 Car, V557 Car). These stars are located in the region of young open star clusters NGC 869 and IC 2602. These flares detected in the XMM-Newton data show a rapid rise (10–40 min) and a slow decay (20–90 min). The X-ray luminosities during the flares in the energy band 0.3–7.5 keV are in the range of 1029.9 to 1031.7 erg s-1. The strongest flare was observed with the ratio ∼ 13 for count rates at peak of the flare to the quiescent intensity. The maximum temperature during the flares has been found to be ∼ 100 MK. The semi-loop lengths for the flaring loops are estimated to be of the order of 1010 cm. The physical parameters of the flaring structure, the peak density, pressure and minimum magnetic field required to confine the plasma have been derived and found to be consistent with flares from pre-main sequence stars in the Orion and the Taurus-Auriga-Perseus region.

  17. X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and Magnetic Field amplification in Supernova Remnants

    CERN Document Server

    Butt, Yousaf; Katz, Boaz; Waxman, Eli

    2008-01-01

    For more than fifty years, it has been believed that cosmic ray (CR) nuclei are accelerated to high energies in the rapidly expanding shockwaves created by powerful supernova explosions. Yet observational proof of this conjecture is still lacking. Recently, Uchiyama and collaborators reported the detection of small-scale X-ray flares in one such supernova remnant, dubbed 'RX J1713-3946' (a.k.a. G347.3-0.5), which also emits very energetic, TeV (10^12 eV) range, gamma-rays. They contend that the variability of these X-ray 'hotspots' implies that the magnetic field in the remnant is about a hundred times larger than normally assumed; and this, they say, means that the detected TeV range photons were produced in energetic nuclear interactions, providing 'a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10^15 eV) and beyond in young supernova remnants.' We point out here that the existing multiwavelength data on this object certainly do not support such conclusions. Though intriguing...

  18. Constraining Hot Plasma in a Non-flaring Solar Active Region with FOXSI Hard X-ray Observations

    CERN Document Server

    Ishikawa, Shin-nosuke; Christe, Steven; Ishibashi, Kazunori; Brooks, David H; Williams, David R; Shimojo, Masumi; Sako, Nobuharu; Krucker, Sam

    2015-01-01

    We present new constraints on the high-temperature emission measure of a non-flaring solar active region using observations from the recently flown Focusing Optics X-ray Solar Imager sounding rocket payload. FOXSI has performed the first focused hard X-ray (HXR) observation of the Sun in its first successful flight on 2012 November 2. Focusing optics, combined with small strip detectors, enable high-sensitivity observations with respect to previous indirect imagers. This capability, along with the sensitivity of the HXR regime to high-temperature emission, offers the potential to better characterize high-temperature plasma in the corona as predicted by nanoflare heating models. We present a joint analysis of the differential emission measure (DEM) of active region 11602 using coordinated observations by FOXSI, Hinode/XRT and Hinode/EIS. The Hinode-derived DEM predicts significant emission measure between 1 MK and 3 MK, with a peak in the DEM predicted at 2.0-2.5 MK. The combined XRT and EIS DEM also shows emi...

  19. High-temperature differential emission measure and altitude variations in the temperature and density of solar flare coronal X-ray sources

    OpenAIRE

    2015-01-01

    The detailed knowledge of plasma heating and acceleration region properties presents a major observational challenge in solar flare physics. Using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the high temperature differential emission measure, DEM(T), and the energy-dependent spatial structure of solar flare coronal sources are studied quantitatively. The altitude of the coronal X-ray source is observed to increase with energy by ~+0.2 arcsec/keV between 10 and 25 keV. Although...

  20. Flares in Gamma Ray Bursts: Disc Fragmentation and Evolution

    CERN Document Server

    Dall'Osso, Simone; Tanaka, Takamitsu L; Margutti, Raffaella

    2016-01-01

    Flaring activity following gamma-ray bursts (GRBs), observed in both long and short GRBs, signals a long-term activity of the central engine. However, its production mechanism has remained elusive. Here we develop a quantitative model of the idea proposed by Perna et al. of a disc whose outer regions fragment due to the onset of gravitational instability. The self-gravitating clumps migrate through the disc and begin to evolve viscously when tidal and shearing torques break them apart. Our model consists of two ingredients: theoretical bolometric flare lightcurves whose shape (width, skewness) is largely insensitive to the model parameters, and a spectral correction to match the bandpass of the available observations, that is calibrated using the observed spectra of the flares. This simple model reproduces, with excellent agreement, the empirical statistical properties of the flares as measured by their width-to-arrival time ratio and skewness (ratio between decay and rise time). We present model fits to the ...

  1. Electron Distribution Functions in Solar Flares from combined X-ray and EUV Observations

    CERN Document Server

    Battaglia, Marina

    2013-01-01

    Simultaneous solar flare observations with SDO and RHESSI provide spatially resolved information about hot plasma and energetic particles in flares. RHESSI allows the properties of both hot (> 8 MK) thermal plasma and nonthermal electron distributions to be inferred, while SDO/AIA is more sensitive to lower temperatures. We present and implement a new method to reconstruct electron distribution functions from SDO/AIA data. The combined analysis of RHESSI and AIA data allows the electron distribution function to be inferred over the broad energy range from ~0.1 keV up to a few tens of keV. The analysis of two well observed flares suggests that the distributions in general agree to within a factor of three when the RHESSI values are extrapolated into the intermediate range 1-3 keV, with AIA systematically predicting lower electron distributions. Possible instrumental and numerical effects, as well as potential physical origins for this discrepancy are discussed. The inferred electron distribution functions in g...

  2. Nonthermal gamma-ray and X-ray flashes from shock breakout in gamma-ray bursts/supernovae

    CERN Document Server

    Wang, X Y; Waxman, E; Mészáros, P; Wang, Xiang-Yu; Li, Zhuo; Waxman, Eli; Meszaros, Peter

    2006-01-01

    Thermal X-ray emission which is simultaneous with the prompt gamma-rays has been detected for the first time from a supernova connected with a gamma-ray burst (GRB), namely GRB060218/SN2006aj. It has been interpreted as arising from the breakout of a mildly relativistic, radiation-dominated shock from a dense stellar wind surrounding the progenitor star. There is also evidence for the presence of a mildly relativistic ejecta in GRB980425/SN1998bw, based on its X-ray and radio afterglow. Here we study the process of repeated bulk Compton scatterings of shock breakout thermal photons by the mildly relativistic ejecta. During the shock breakout process, a fraction of the thermal photons would be repeatedly scattered between the pre-shock material and the shocked material as well as the mildly relativistic ejecta and, as a result, the thermal photons get boosted to increasingly higher energies. This bulk motion Comptonization mechanism will produce nonthermal gamma-ray and X-ray flashes, which could account for t...

  3. Determining neutron star masses and radii using energy-resolved waveforms of X-ray burst oscillations

    CERN Document Server

    Lo, Ka-Ho; Bhattacharyya, Sudip; Lamb, Frederick K

    2013-01-01

    Simultaneous, precise measurements of the mass $M$ and radius $R$ of neutron stars can yield uniquely valuable information about the still uncertain properties of cold matter at several times the density of nuclear matter. One method that could be used to measure $M$ and $R$ is to analyze the energy-dependent waveforms of the X-ray flux oscillations seen during some thermonuclear bursts from some neutron stars. These oscillations are thought to be produced by X-ray emission from hotter regions on the surface of the star that are rotating at or near the spin frequency of the star. Here we explore how well $M$ and $R$ could be determined by generating, and analyzing using Bayesian techniques, synthetic energy-resolved X-ray data that we produce assuming a future space mission having 2--30 keV energy coverage and an effective area of 10 m$^2$, such as the proposed \\textit{LOFT} or \\textit{AXTAR} missions. We find that if the hot spot is within 10$^\\circ$ of the rotation equator, both $M$ and $R$ can usually be d...

  4. ECLAIRs A microsatellite for the prompt optical and X-ray emission of Gamma-Ray Bursts

    CERN Document Server

    Barret, D

    2001-01-01

    The prompt gamma-ray emission of Gamma-Ray Bursts (GRBs) is currently interpreted in terms of radiation from electrons accelerated in internal shocks in a relativistic fireball. On the other hand, the origin of the prompt (and early afterglow) optical and X-ray emission is still debated, mostly because very few data exist for comparison with theoretical predictions. It is however commonly agreed that this emission hides important clues on the GRB physics and can be used to constrain the fireball parameters, the acceleration and emission processes and to probe the surroundings of the GRBs. ECLAIRs is a microsatellite devoted to the observation of the prompt optical and X-ray emission of GRBs. For about 150 GRBs/yr, independent of their duration, ECLAIRs will provide high time resolution high sensitivity spectral coverage from a few eV up to ~50 keV and localization to ~ 5'' in near real time. This capability is achieved by combining wide field optical and X-ray cameras sharing a common field of view (>~ 2.2 st...

  5. ECLAIRs A microsatellite to observe the prompt optical and X-ray emission of Gamma-Ray Bursts

    CERN Document Server

    Barret, D

    2003-01-01

    ECLAIRs is a French microsatellite devoted to the observation of the prompt optical and X-ray emission of GRBs. For about 100 GRBs/yr, independent of their duration, ECLAIRs will provide high time resolution high sensitivity spectral coverage from a few eV up to ~50 keV and localization to ~5 arcsec in near real time. This capability is achieved by combining wide field optical and X-ray cameras sharing a common field of view (~1/6th of the sky) with the coded-mask imaging telescopes providing the triggers and the coarse localizations of the bursts. Given the delays to start ground-based observations in response to a GRB trigger, ECLAIRs is unique in its ability to observe the early phases (the first ~20 sec) of all GRBs at optical wavelengths. Furthermore, with its mode of operation, ECLAIRs will enable to search for optical and X-ray precursors expected from theoretical grounds. Finally ECLAIRs is proposed to operate simultaneously with GLAST on a synchronous orbit. This combination will ensure broad band sp...

  6. SMM observations of K-alpha radiation from fluorescence of photospheric iron by solar flare X-rays

    Science.gov (United States)

    Parmar, A. N.; Culhane, J. L.; Rapley, C. G.; Wolfson, C. J.; Acton, L. W.; Phillips, K. J. H.; Dennis, B. R.

    1984-01-01

    High-resolution Fe K-alpha spectra near 1.94 A observed during solar flares with the Bent Crystal Spectrometer on the Solar Maximum Mission are presented. The evidence for two possible excitation mechanisms, electron impact and fluorescence, is examined. It is found that the fluorescence mechanism satisfactorily describes the results, while the observations do not support electron collisional excitation of the Fe K-alpha transitions in low ionization stages (II-XII) of iron. Using Bai's model of the fluorescent excitation process, the photospheric iron abundance relative to that of hydrogen is estimated to be 5-6 x 10 to the -5th. The mean height of the soft X-ray source producing the K-alpha fluorescence is calculated on the basis of this model for about 40 large flares. The solar K-alpha lines are found to be about 25 percent wider than those measured in the laboratory. Weak line features observed at wavelengths shorter than that of the K-alpha lines are discussed.

  7. POSSIBLE DETECTION OF APPARENT SUPERLUMINAL INWARD MOTION IN MARKARIAN 421 AFTER THE GIANT X-RAY FLARE IN 2010 FEBRUARY

    Energy Technology Data Exchange (ETDEWEB)

    Niinuma, K. [Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8511 (Japan); Kino, M.; Oyama, T. [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Nagai, H. [ALMA-J Project, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Isobe, N. [Institute of Space and Astronautics, Japan Aerospace Exploration Agency, Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Gabanyi, K. E. [Hungarian Academy of Sciences, Research Group for Physical Geodesy and Geodynamics, FOMI Satellite Geodetic Observatory Budapest, 1592 Budapest (Hungary); Hada, K. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Koyama, S. [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Asada, K. [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 10617, Taiwan (China); Fujisawa, K., E-mail: niinuma@yamaguchi-u.ac.jp [Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511 (Japan)

    2012-11-10

    We report on the very long baseline interferometry (VLBI) follow-up observations using the Japanese VLBI Network array at 22 GHz for the largest X-ray flare of TeV blazar Mrk 421 that occurred in 2010 mid-February. The total of five epochs of observations were performed at intervals of about 20 days between 2010 March 7 and May 31. No newborn component associated with the flare was seen directly in the total intensity images obtained by our multi-epoch VLBI observations. However, one jet component located at {approx}1 mas northwest from the core was able to be identified, and its proper motion can be measured as -1.66 {+-} 0.46 mas yr{sup -1}, which corresponds to an apparent velocity of -3.48 {+-} 0.97c. Here, this negative velocity indicates that the jet component was apparently moving toward the core. As the most plausible explanation, we discuss that the apparent negative velocity was possibly caused by the ejection of a new component, which could not be resolved with our observations. In this case, the obtained Doppler factor of the new component is around 10-20, which is consistent with the ones typically estimated by model fittings of spectral energy distribution for this source.

  8. Possible Detection of Apparent Superluminal inward motion in Markarian 421 after the Giant X-ray flare in February, 2010

    CERN Document Server

    Niinuma, K; Nagai, H; Isobe, N; Gabanyi, K E; Hada, K; Koyama, S; Asada, K; Oyama, T; Fujisawa, K

    2012-01-01

    We report on the VLBI follow-up observations using the Japanese VLBI Network (JVN) array at 22 GHz for the largest X-ray flare of TeV blazar Mrk 421 that occurred in mid-February, 2010. The total of five epochs of observations were performed at intervals of about 20 days between March 7 and May 31, 2010. No new-born component associated with the flare was seen directly in the total intensity images obtained by our multi-epoch VLBI observations. However, one jet component located at ~1 mas north-west from the core was able to be identified, and its proper motion can be measured as -1.66+/-0.46 mas yr^-1, which corresponds to an apparent velocity of -3.48+/-0.97 c. Here, this negative velocity indicates that the jet component was apparently moving toward the core. As the most plausible explanation, we discuss that the apparent negative velocity was possibly caused by the ejection of a new component, which could not be resolved with our observations. In this case, the obtained Doppler factor of the new component...

  9. Microwave Type III Pair Bursts in Solar Flares

    CERN Document Server

    Tan, Baolin; Karlicky, Marian; Huang, Guangli; Tan, Chengming

    2016-01-01

    Solar microwave type III pair burst is composed of normal and reverse-sloped (RS) burst branches with oppositely fast frequency drifts. It is the most sensitive signature of the primary energy release and electron accelerations in flares. This work reported 11 microwave type III pair events in 9 flares observed by radio spectrometers in China and the Czech Republic at frequency of 0.80 - 7.60 GHz during 1994 - 2014. These type III pairs occurred in flare impulsive and postflare phases with separate frequency in range of 1.08 - 3.42 GHz and frequency gap 10 - 1700 MHz. The frequency drift increases with the separate frequency (f_{x}), the lifetime of each burst is anti-correlated to f_{x}, while the frequency gap is independent to f_{x}. In most events, the normal branches are drifting obviously faster than the RS branches. The type III pairs occurring in flare impulsive phase have lower separate frequency, longer lifetime, wider frequency gap, and slower frequency drift than that occurring in postflare phase....

  10. X-ray and H-alpha observations of a filament-disappearance flare - An empirical analysis of the magnetic field configuration

    Science.gov (United States)

    Kahler, S. W.; Webb, D. F.; Moore, R. L.

    1981-01-01

    On August, 29, 1973, a flare event occurred that involved the disappearance of a filament near central meridian. The event, well-observed in X-rays on Skylab and in H-alpha, was a four-ribbon flare involving both new and old magnetic inversion lines which were roughly parallel. The H-alpha, X-ray, and magnetic field data are used to deduce the magnetic polarities of the H-alpha brightening at the footpoints of the brightest X-ray loops. It is suggested that the event involved a reconnection of magnetic field lines rather than a brightening in place of preexisting loops. The simultaneity of the H-alpha brightening onsets in the four ribbons and the apparent lack of an eruption of the filament are consistent with this interpretation.

  11. Hard X-ray bursts and DD microfusion neutrons from complex plasmas of vacuum discharge

    Indian Academy of Sciences (India)

    Yu K Kurilenkov; M Skowronek

    2003-12-01

    We create the random complex media of high-power density in low-energy nanosecond vacuum discharges. Hard X-ray emission efficiency, generation of energetic ions (∼ 1 MeV) and neutrons, trapping and releasing of fast ions and/or X-rays from interelectrode aerosol ensembles are the subject of our study. The neutrons from DD microfusion, as well as the modelling of some interstellar nuclear burning due to microexplosive nucleosynthesis are discussed. The value of neutron yield from DD fusion in interelectrode space varies and amounts to ∼ 105-107/4 per shot under ≈ 1 J of total energy deposited to create all discharge processes.

  12. Effects of a New Triple-alpha Reaction on X-ray Bursts of a Helium Accreting Neutron Star

    CERN Document Server

    Matsuo, Y; Noda, T; Saruwatari, M; Ono, M; Hashimoto, M; Fujimoto, M

    2011-01-01

    The effects of a new triple-$\\alpha$ reaction rate (OKK rate) on the helium flash of a helium accreting neutron star in a binary system have been investigated. Since the ignition points determine the properties of a thermonuclear flash of type I X-ray bursts, we examine the cases of different accretion rates, $dM/dt (\\dot{M})$, of helium from $3\\times10^{-10} M_{\\odot} \\rm yr^{-1}$ to $3\\times10^{-8} M_{\\odot} \\rm yr^{-1}$, which could cover the observed accretion rates. We find that for the cases of low accretion rates, nuclear burnings are ignited at the helium layers of rather low densities. As a consequence, helium deflagration would be triggered for all cases of lower accretion rate than $\\dot{M}\\simeq 3\\times10^{-8} M_{\\odot} \\rm yr^{-1}$. We find that OKK rate could be barely consistent with the available observations of the X-ray bursts on the helium accreting neutron star. However this coincidence is found to depend on the properties of crustal heating and the neutron star model.We suggest that OKK r...

  13. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  14. On the Connection of Gamma-Ray Bursts and X-Ray Flashes in the BATSE and RHESSI Databases

    CERN Document Server

    Řípa, Jakub

    2016-01-01

    Classification of gamma-ray bursts (GRBs) into groups has been intensively studied by various statistical tests in previous years. It has been suggested that there was a distinct group of GRBs, beyond the long and short ones, with intermediate durations. However, such a group is not securely confirmed yet. Strangely, concerning the spectral hardness, the observations from the Swift and RHESSI satellites give different results. For the Swift/BAT database it is found that the intermediate-duration bursts might well be related to so-called X-ray flashes (XRFs). On the other hand, for the RHESSI dataset the intermediate-duration bursts seem to be spectrally too hard to be given by XRFs. The connection of the intermediate-duration bursts and XRFs for the BATSE database is not clear as well. The purpose of this article is to check the relation between XRFs and GRBs for the BATSE and RHESSI databases, respectively. We use an empirical definition of XRFs introduced by other authors earlier. For the RHESSI database we...

  15. X-ray flares on the UV Ceti-type star CC Eridani: a "peculiar" time-evolution of spectral parameters

    CERN Document Server

    Crespo-Chacón, I; Reale, F; Caramazza, M; López-Santiago, J; Pillitteri, I

    2007-01-01

    Context: Weak flares are supposed to be an important heating agent of the outer layers of stellar atmospheres. However, due to instrumental limitations, only large X-ray flares have been studied in detail until now. Aims: We used an XMM-Newton observation of the very active BY-Dra type binary star CC Eri in order to investigate the properties of two flares that are weaker than those typically studied in the literature. Methods: We performed time-resolved spectroscopy of the data taken with the EPIC-PN CCD camera. A multi-temperature model was used to fit the spectra. We inferred the size of the flaring loops using the density-temperature diagram. The loop scaling laws were applied for deriving physical parameters of the flaring plasma. We also estimated the number of loops involved in the observed flares. Results: A large X-ray variability was found. Spectral analysis showed that all the regions in the light curve, including the flare segments, are well-described by a 3-T model with variable emission measures...

  16. RADIO FLARES FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Harrison, R. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Japelj, J.; Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, I-44122 Ferrara (Italy); Melandri, A., E-mail: D.Kopac@ljmu.ac.uk [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807, Merate (Italy)

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  17. Radio flares from gamma-ray bursts

    CERN Document Server

    Kopac, D; Kobayashi, S; Virgili, F J; Harrison, R; Japelj, J; Guidorzi, C; Melandri, A; Gomboc, A

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later opt...

  18. Flares in gamma-ray bursts: disc fragmentation and evolution

    Science.gov (United States)

    Dall'Osso, Simone; Perna, Rosalba; Tanaka, Takamitsu L.; Margutti, Raffaella

    2017-02-01

    Flaring activity following gamma-ray bursts (GRBs), observed in both long and short GRBs, signals a long-term activity of the central engine. However, its production mechanism has remained elusive. Here, we develop a quantitative model of the idea proposed by Perna et al. of a disc whose outer regions fragment due to the onset of gravitational instability. The self-gravitating clumps migrate through the disc and begin to evolve viscously when tidal and shearing torques break them apart. Our model consists of two ingredients: theoretical bolometric flare light curves whose shape (width, skewness) is largely insensitive to the model parameters, and a spectral correction to match the bandpass of the available observations, that is calibrated using the observed spectra of the flares. This simple model reproduces, with excellent agreement, the empirical statistical properties of the flares as measured by their width-to-arrival time ratio and skewness (ratio between decay and rise time). We present model fits to the observed light curves of two well-monitored flares, GRB 060418 and GRB 060904B. To the best of our knowledge, this is the first quantitative model able to reproduce the flare light curves and explain their global statistical properties.

  19. Flares from Galactic centre pulsars: a new class of X-ray transients?

    CERN Document Server

    Giannios, Dimitrios

    2016-01-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic centre (GC) should harbor a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03~pc from Sgr~A* can be revealed by the shock interactions with the disk around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over timescales of months, provided that the spin down luminosity of the neutron star is L_{sd}~10^{35} erg/s. Current limits on the population of normal and millisecond pulsars in the GC regi...

  20. Flares from Galactic Centre pulsars: a new class of X-ray transients?

    Science.gov (United States)

    Giannios, Dimitrios; Lorimer, Duncan R.

    2016-06-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic Centre (GC) should harbour a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03 pc from Sgr A* can be revealed by the shock interactions with the disc around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over time-scales of months, provided that the spin-down luminosity of the neutron star is Lsd ˜ 1035 erg s-1. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.

  1. An exceptionally bright flare from SGR 1806-20 and the origins of short-duration gamma-ray bursts.

    Science.gov (United States)

    Hurley, K; Boggs, S E; Smith, D M; Duncan, R C; Lin, R; Zoglauer, A; Krucker, S; Hurford, G; Hudson, H; Wigger, C; Hajdas, W; Thompson, C; Mitrofanov, I; Sanin, A; Boynton, W; Fellows, C; von Kienlin, A; Lichti, G; Rau, A; Cline, T

    2005-04-28

    Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic gamma-ray burst. At least a significant fraction of the mysterious short-duration gamma-ray bursts may therefore come from extragalactic magnetars.

  2. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045

    Science.gov (United States)

    Lin, Lin; Kouveliotou, Chryssa; Gogus, Ersin; van der Horst, Alexander J.; Watts, Anna L.; Baring, Matthew G.; Kaneko, Yuki; Wijers, Ralph A. M. J.; Woods, Peter M.; Barthelmy, Scott; Burgess, J. Michael; Chaplin, Vandiver; Gehrels, Neil; Goldstein, Adam; Granot, Jonathan; Guiriec, Sylvain; Mcenery, Julie; Preece, Robert D.; Tierney, David; van der Klis, Michiel; von Kienlin, Andreas; Zhang, Shuang Nan

    2011-01-01

    SWift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18 - 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 1038 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in IE 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  3. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-ray Pulsar 1E 1841-045

    CERN Document Server

    Lin, Lin; Gogus, Ersin; van der Horst, Alexander J; Watts, Anna L; Baring, Matthew G; Kaneko, Yuki; Wijers, Ralph A M J; Woods, Peter M; Barthelmy, Scott; Burgess, J Michael; Chaplin, Vandiver; Gehrels, Neil; Goldstein, Adam; Granot, Jonathan; Guiriec, Sylvain; Mcenery, Julie; Preece, Robert D; Tierney, David; van der Klis, Michiel; von Kienlin, Andreas; Zhang, Shuang Nan

    2011-01-01

    Swift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18-140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8 - 25)E38 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in 1E 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  4. Chandra observation of an unusually long and intense X-ray flare from a young solar-like star in M78

    CERN Document Server

    Grosso, N; Feigelson, E D; Forbes, T G

    2004-01-01

    LkHA312 has been observed serendipitously with the ACIS-I detector on board Chandra with 26h continuous exposure. This H_alpha emission line star belongs to the star-forming region M78 (NGC2068). From the optical and NIR data, we show that it is a pre-main sequence (PMS) low-mass star with a weak NIR excess. This genuine T Tauri star displayed an X-ray flare with an unusual long rise phase (~8h). The X-ray emission was nearly constant during the first 18h of the observation, and then increased by a factor of 13 during a fast rise phase (~2h), and reached a factor of 16 above the quiescent X-ray level at the end of a gradual phase (~6h) showing a slower rise. To our knowledge this flare, with \\~0.4-~0.5 cts/s, has the highest count rate observed so far with Chandra from a PMS low-mass star. By chance, the source position, 8.2' off-axis, protected this observation from pile-up. We make a spectral analysis of the X-ray emission versus time, showing that the plasma temperature of the quiescent phase and the flare...

  5. Evidence that the Bursting Component of the X-ray Radiation From 3C 111 Originates in the PC-Scale Jet

    CERN Document Server

    Bell, M B

    2011-01-01

    Evidence is presented indicating that the bursting component of the X-ray radiation detected in the nuclear region of the active radio galaxy 3C 111 comes from the blobs ejected in the pc-scale jet and not from the accretion disc. After each new outburst the radio flux density associated with it increases to a peak in ~1 year and then subsides over a period of 1-2 years with the flux falling off exponentially as the blob moves outward and dissipates. Similar peaks (bursts) are seen in the X-ray light curve and a cross-correlation between the two shows a very high correlation with the X-ray peaks leading the radio peaks by ~100 days. A second cross-correlation, this time between the radio event start times and the X-ray light curve, also shows a significant correlation. When this is taken together with the long (~1 yr) delay between the start of each ejection event and its associated X-ray peak it indicates that this bursting component of the X-ray flux must be associated with the ejected blobs in the pc-scale...

  6. Temperature Measurement during Thermonuclear X-ray Bursts with BeppoSAX

    CERN Document Server

    Beri, Aru; Orlandini, Mauro; Maitra, Chandreyee

    2015-01-01

    We have carried out a study of temperature evolution during thermonuclear bursts in LMXBs using broad band data from two instruments onboard BeppoSAX, the MECS and the PDS. However, instead of applying the standard technique of time resolved spectroscopy, we have determined the temperature in small time intervals using the ratio of count rates in the two instruments assuming a blackbody nature of burst emission and different interstellar absorption for different sources. Data from a total of twelve observations of six sources were analysed during which 22 bursts were detected. We have obtained temperatures as high as ~3.0 keV, even when there is no evidence of photospheric radius expansion. These high temperatures were observed in the sources within different broadband spectral states (soft and hard).

  7. Martian upper atmosphere response to solar EUV flux and soft X-ray flares

    Science.gov (United States)

    Jain, Sonal; Stewart, Ian; Schneider, Nicholas M.; Deighan, Justin; Stiepen, Arnaud; Evans, J. Scott; Stevens, Michael H.; Chaffin, Michael S.; Crismani, Matteo; McClintock, William; Montmessin, Franck; Thiemann, E. M.; Eparvier, Frank; Chamberlin, Phillip C.; Jacosky, Bruce

    2016-10-01

    Planetary upper atmosphere energetics is mainly governed by absorption of solar extreme ultraviolet (EUV) radiation. Understanding the response of planetary upper atmosphere to the daily, long and short term variation in solar flux is very important to quantify energy budget of upper atmosphere. We report a comprehensive study of Mars dayglow observations made by the IUVS instrument aboard the MAVEN spacecraft, focusing on upper atmospheric response to solar EUV flux. Our analysis shows both short and long term effect of solar EUV flux on Martian thermospheric temperature. We find a significant drop (> 100 K) in thermospheric temperature between Ls = 218° and Ls = 140°, attributed primarily to the decrease in solar activity and increase in heliocentric distance. IUVS has observed response of Martian thermosphere to the 27-day solar flux variation due to solar rotation.We also report effect of two solar flare events (19 Oct. 2014 and 24 March 2015) on Martian dayglow observations. IUVS observed about ~25% increase in observed brightness of major ultraviolet dayglow emissions below 120 km, where most of the high energy photons (< 10 nm) deposit their energy. The results presented in this talk will help us better understand the role of EUV flux in total heat budget of Martian thermosphere.

  8. A pacemaker with P = 2.48 h modulated the generator of flares in the X-ray light curve of Sgr A* in the year 2012

    Science.gov (United States)

    Leibowitz, Elia

    2017-01-01

    In an intensive observational campaign in the nine month duration of Chandra X-ray Visionary Project that was conducted in the year 2012, 39 large X-ray flares of Sgr A* were recorded. An analysis of the times of the observed flares reveals that the 39 flares are separated in time by intervals that are grouped around integer numbers times 0.10333 days. This time interval is thus the period of a uniform grid of equally spaced points on the time axis. The grouping of the flares around tic marks of this grid is derived from the data with at least a 3.2 σ level of statistical significance. No signal of any period can be found among 22 flares recorded by Chandra in the years 2013-2014. If the 0.10333 day period is that of a nearly circular Keplerian orbit around the blackhole at the center of the Galaxy, its radius is at 7.6 Schwarzschild radii. Large flares were more likely to be triggered when the agent responsible for their outbursts was near the peri-center phase of its slightly eccentric orbit.

  9. A Pacemaker with P=2.48 hour Modulated the Generator of Flares in the X-ray Light Curve of Sgr A* in the year 2012

    CERN Document Server

    Leibowitz, Elia M

    2016-01-01

    In an intensive observational campaign in the 9 month duration of Chandra X-ray Visionary Project that was conducted in the year 2012, 39 large X-ray flares of Sgr A* were recorded. An analysis of the times of the observed flares reveals that the 39 flares are separated in time by intervals that are grouped around integer numbers times 0.10333 days. This time interval is thus the period of a uniform grid of equally spaced points on the time axis. The grouping of the flares around tic marks of this grid is derived from the data with at least a 3.2 {\\sigma} level of statistical significance. No signal of any period can be found among 22 flares recorded by Chandra in the years 2013-2014. If the 0.10333 d period is that of a nearly circular Keplerian orbit around the blackhole at the center of the Galaxy, its radius is at 7.6 Schwarzschild radii. Large flares were more likely to be triggered when the agent responsible for their outbursts was near the peri-center phase of its slightly eccentric orbit.

  10. X-ray fading and optical/X-ray flaring in the current faint outburst of MAXI J0556-332

    Science.gov (United States)

    Russell, David M.; Udrescu, Silviu-Marian; Lewis, Fraser

    2016-03-01

    The neutron star X-ray binary transient, MAXI J0556-332 began a new outburst at the start of this year (ATel #8513, #8517). Since 7 January (MJD 57394) we have been monitoring the optical activity of the source regularly in Bessel B, V, R, I filters with the 2-m Faulkes Telescopes and the 1-m Las Cumbres Observatory Global Telescope (LCOGT) network telescopes.

  11. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    CERN Document Server

    Arcodia, Riccardo; Salvaterra, Ruben

    2016-01-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts. Over the last few years, a strong correlation between the intrinsic X-ray absorbing column density (N_H(z)) and the redshift was found. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium, by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the N_H(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models, the Leiden Argentine Bonn HI survey and the more recent model including molecular hydrogen. We find that, if on the one hand the new Galactic model considerably affects the single column density values, on the other hand there is no drastic change in ...

  12. Magnetically driven winds from differentially rotating neutron stars and X-ray afterglows of short gamma-ray bursts

    CERN Document Server

    Siegel, Daniel M; Rezzolla, Luciano

    2014-01-01

    Besides being among the most promising sources of gravitational waves, merging neutron-star binaries also represent a leading scenario to explain the phenomenology of short gamma-ray bursts (SGRBs). Recent observations have revealed a large subclass of SGRBs with roughly constant luminosity in their X-ray afterglows lasting 10-10^4 s. These features are generally taken as evidence for a long-lived central engine powered by the magnetic spin-down of a uniformly rotating magnetized object. We propose a different scenario in which the central engine powering the X-ray emission is a differentially rotating hypermassive neutron star (HMNS) that launches a quasi-isotropic and baryon-loaded wind driven by the magnetic field built-up through differential rotation. Our model is supported by long-term, three-dimensional, general-relativistic and ideal magnetohydrodynamic simulations showing that this isotropic emission is a very robust feature. For a given HMNS, the presence of a collimated component depends sensitivel...

  13. MAGNETICALLY DRIVEN WINDS FROM DIFFERENTIALLY ROTATING NEUTRON STARS AND X-RAY AFTERGLOWS OF SHORT GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Daniel M.; Ciolfi, Riccardo; Rezzolla, Luciano [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam-Golm (Germany)

    2014-04-10

    Besides being among the most promising sources of gravitational waves, merging neutron star binaries also represent a leading scenario to explain the phenomenology of short gamma-ray bursts (SGRBs). Recent observations have revealed a large subclass of SGRBs with roughly constant luminosity in their X-ray afterglows, lasting 10-10{sup 4} s. These features are generally taken as evidence of a long-lived central engine powered by the magnetic spin-down of a uniformly rotating, magnetized object. We propose a different scenario in which the central engine powering the X-ray emission is a differentially rotating hypermassive neutron star (HMNS) that launches a quasi-isotropic and baryon-loaded wind driven by the magnetic field, which is built-up through differential rotation. Our model is supported by long-term, three-dimensional, general-relativistic, and ideal magnetohydrodynamic simulations, showing that this isotropic emission is a very robust feature. For a given HMNS, the presence of a collimated component depends sensitively on the initial magnetic field geometry, while the stationary electromagnetic luminosity depends only on the magnetic energy initially stored in the system. We show that our model is compatible with the observed timescales and luminosities and express the latter in terms of a simple scaling relation.

  14. Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostic

    CERN Document Server

    Brown, John C

    2007-01-01

    Context. Flare Hard X-Rays (HXRs) from non-thermal electrons are commonly treated as solely bremsstrahlung (f-f), recombination (f-b) being neglected. This assumption is shown to be substantially in error, especially in hot sources, mainly due to recombination onto Fe ions. Aims. We analyse the effects of including non-thermal recombination onto heavy elements on HXR spectra and electron diagnostics. Methods. Using Kramers hydrogenic cross sections with effective Z, we calculate f-f and f-b spectra for power-law electron spectra, in both thin and thick target limits, and for Maxwellians, with summation over all important ions. Results. We find that non-thermal electron recombination, especially onto Fe, must, in general, be included together with f-f, for reliable spectral interpretation, when the HXR source is hot. f-b contribution is largest when the electron spectral index is large, and any low energy cut-off small. f-b spectra recombination edges mean a cut-off in F(E) appears as a HXR feature at Photon e...

  15. Study of a solar flare on 2005 August 22 observed in hard X-rays and microwaves

    Science.gov (United States)

    Liu, Zhong-Yin; Li, You-Ping; Gan, Wei-Qun; Firoz, Kazi A.

    2015-01-01

    We investigate the 2005 August 22 flare event (00:54 UT) exploiting hard X-ray (HXR) observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and microwave (MW) observations from the Nobeyama Solar Radio Observatory. The HXR time profile exposes well-damped quasi-periodic pulsations with four sequential peaks, and the MW time profile follows the corresponding peaks. Based on this feature, we derive the time relationship of HXRs and MWs with multi-frequency data from the Nobeyama Radio Polarimeter, and the spatially resolvable data from RHESSI and the Nobeyama Radioheliograph. We find that both frequency dependent delays in MWs and energy dependent delays in HXRs are significant. Furthermore, MW emissions from the south source are delayed with respect to those from the north source at both 17 GHz and 34 GHz, but no significant delays are found in HXR emissions from the different sources at the same energies. To better understand all these long time delays, we derive the electron fluxes of different energies by fitting the observed HXR spectra with a single power-law thick-target model, and speculate that these delays might be related to an extended acceleration process. We further compare the time profile of a MW spectral index derived from 17 and 34 GHz fluxes with the flux densities, and find that the spectral index shows a strong anti-correlation with the HXR fluxes.

  16. X-ray spectral and timing behavior of Scorpius X-1. Spectral hardening during the flaring branch

    CERN Document Server

    Titarchuk, Lev; Shrader, Chris

    2015-01-01

    We present an analysis of the spectral and timing properties of X-ray emission from the Z-source Sco~X-1 during its evolution between the Horizontal (HB) and Flaring(FB) branches observed with the RXTE during the 1996 -- 2002 period. We find that the broad-band (3 - 250 keV) energy spectra during all spectral states can be adequately reproduced by a model, consisting of two Comptonized components and an iron-line. We suggest that the seed photons of kT_s1~0.7 keV coming from the disk and of temperature kT_s2~1.8 keV coming from the neutron star (NS) are each upscattered by hot electrons of a "Compton cloud" (herein Comptb1 and Comptb2 components respectively with which are associated similarly subscripted parameters). The photon power-law index Gamma_{2} is almost constant (Gamma_{2}~2) for all spectral states. In turn, Gamma_{1} demonstrates a two-phase behavior with the spectral state: Gamma_{1} is quasi-constant at the level Gamma_{1}~2 for the HB-NB and Gamma_{1} is less than 2, namely in the range of 1.3...

  17. Hard X-ray and Microwave Simulation of 2015-06-22 M6.6 flare

    Science.gov (United States)

    Kuroda, Natsuha; Wang, Haimin; Gary, Dale E.; Fleishman, Gregory D.; Nita, Gelu M.; Chen, Bin; Xu, Yan; Jing, Ju

    2016-05-01

    It is well known that the time profiles of the hard X-ray (HXR) emission and the microwave (MW) emission during the impulsive phase of the solar flare are well correlated, and this has led to the expectation that these emissions come from a common population of flare-accelerated electrons. However, the energy ranges of the electrons producing two emissions are believed to be different (below and above several hundred keV for HXR-producing and MW-producing electrons, respectively), and some studies have shown that the indices of their energy spectra may differ as well. To better understand the energy distributions of the electrons producing these emissions, we present realistic forward-fit simulations of the HXR and the MW emissions of 2015 June 22, M6.6 flare using the newly developed, IDL-based platform GX simulator. We use the 3D magnetic field model extrapolated from magnetogram data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO), the images and the electron energy distribution parameters deduced from the photon spectrum from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and the spatially integrated MW spectrum and the cross-correlated amplitude data from the Expanded Owens Valley Solar Array (EOVSA) to guide the modeling. We have observed a possible above the-loop-top HXR source in 20-25 keV image, well separated from the source seen in 6-12 keV that is typically interpreted as a thermal loop-top source. Therefore, we simulate the HXR emissions by combining two flux tubes at different heights: the lower loop dominated by thermal electrons and the higher loop dominated by nonthermal electrons. The MW and HXR emissions produced from the forward-fit model are compared with observations to investigate possible differences in the energy spectra of the HXR-producing and the MW-producing electrons and what they can tell us about particle acceleration.

  18. Comparison between Major Confined and Eruptive Flares

    Science.gov (United States)

    Gopalswamy, N.; Yashiro, S.; Mäkelä, P.; Dennis, B. R.

    2012-05-01

    Statistical studies have shown that a large fraction of major solar flares (42% M-class and 15% X-class) are not associated with coronal mass ejections (CMEs). The CME-less flares are confined flares as opposed to the eruptive flares associated with CMEs. Confined flares are certainly good particle accelerators as inferred from intense microwave, hard X-ray, and gamma-ray emissions. Note that a single acceleration mechanism operates in confined flares, whereas eruptive flares can have both flare-resident and shock accelerations (the shock acceleration is due to energetic CMEs). In this paper, we report on a statistical study of more than two dozen confined flares with soft X-ray flare size exceeding M5 in comparison with a control sample of eruptive flares with similar soft X-ray flare size. We compare the microwave and X-ray emission characteristics in the two populations; these emissions correspond to sunward energy flow. For a given X-ray flare size, the microwave flux is scattered over a wider range for the eruptive flares when compared to the confined flares. We also compare the metric and longer wavelength radio bursts between the two populations; these emissions correspond to the flow of nonthermal electrons away from the Sun. We find that almost all the confined flares lack metric radio bursts, suggesting that there is very little flow of energy into the interplanetary medium. On the other hand, there is high degree of association between eruptive flares and metric radio bursts. This suggests that in confined flares the accelerated electrons have no access to open magnetic field lines. Finally, we examined the association of EUV waves with the two flare populations. While we find EUV waves in most of the eruptive flares, there was no confined flare with EUV waves. This suggests that CMEs is a necessary condition for the generation of global waves.

  19. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  20. Bursting SN 1996cr's Bubble: Hydrodynamic and X-ray Modeling of its Circumstellar Medium

    CERN Document Server

    Dwarkadas, Vikram V; Bauer, Franz

    2010-01-01

    SN1996cr is one of the five closest SNe to explode in the past 30 years. Due to its fortuitous location in the Circinus Galaxy at ~ 3.7 Mpc, there is a wealth of recently acquired and serendipitous archival data available to piece together its evolution over the past decade, including a recent 485 ks Chandra HETG spectrum. In order to interpret this data, we have explored hydrodynamic simulations, followed by computations of simulated spectra and light curves under non-equilibrium ionization conditions, and directly compared them to the observations. Our simulated spectra manage to fit both the X-ray continuum and lines at 4 epochs satisfactorily, while our computed light curves are in good agreement with additional flux-monitoring data sets. These calculations allow us to infer the nature and structure of the circumstellar medium, the evolution of the SN shock wave, and the abundances of the ejecta and surrounding medium. The data imply that SN 1996cr exploded in a low-density medium before interacting with ...

  1. Correlated optical, X-ray, and gamma-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

    CERN Document Server

    Rodriguez, J; Alfonso-Garzón, J; Siegert, T; Zhang, X -L; Grinberg, V; Savchenko, V; Tomsick, J A; Chenevez, J; Clavel, M; Corbel, S; Diehl, R; Domingo, A; Gouiffès, C; Greiner, J; Krause, M G H; Laurent, P; Loh, A; Markoff, S; Mas-Hesse, J M; Miller-Jones, J C A; Russell, D M; Wilms, J

    2015-01-01

    After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from the optical V-band, up to the soft gamma-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20-40 keV) within 3 days. The flare recurrence can be as short as 20~min from peak to peak. A model-independent analysis shows that the >6 Crab flares have a hard spectrum. A preliminary 10-400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be due to variations of a cut-off power law component only. At X-ray and gamma-r...

  2. A Simple Way to Estimate the Soft X-ray Class of Far-Side Solar Flares Observed with STEREO/EUVI

    CERN Document Server

    Chertok, I M; Grechnev, V V

    2015-01-01

    Around the peaks of substantial flares, bright artifact nearly horizontal saturation streaks (B-streaks) corresponding to the brightest parts of the flare sources appear in the STEREO/EUVI 195 \\AA\\ images. We show that the length of such B-streaks can be used for the solution of an actual problem of evaluating the soft X-ray flux and class of far-side flares registered with double STEREO spacecraft but invisible from Earth. For this purpose from data on about 350 flares observed from January 2007 to July 2014 (mainly exceeding the GOES M1.0 level) both with GOES and STEREO, an empirical relation is established correlating the GOES 1-8 \\AA\\ peak flux and the B-streak length. This allowed us for the same years to estimate the soft X-ray classes for approximately 65 strong far-side flares observed by STEREO. The results of this simple and prompt method are consistent with the estimations of Nitta et al. (Solar Phys., 288, 241, 2013) based on the calculations of the EUVI full-disk digital number output. In additi...

  3. Unveiling the Nature of an X-ray flare from 3XMM J014528.9+610729: A candidate spiral galaxy

    CERN Document Server

    Bhatt, Himali; Bhatt, Nilay; Pandey, J C

    2014-01-01

    We report an X-ray flare from 3XMM J014528.9+610729, serendipitously detected during the observation of the open star cluster NGC 663. The colour-colour space technique using optical and infrared data reveals the X-ray source as a candidate spiral galaxy. The flare shows fast rise and exponential decay shape with a ratio of the peak and the quiescent count rates of $\\sim$60 and duration of $\\sim$5.4 ks. The spectrum during the flaring state is well fitted with a combination of thermal ({\\sc Apec}) model with a plasma temperature of $\\rm{1.3\\pm0.1}$ keV and non-thermal ({\\sc Power-law}) model with power-law index of $\\rm{1.9\\pm0.2}$. However, no firm conclusion can be made for the spectrum during the quiescent state. The temporal behavior, plasma temperature and spectral evolution during flare suggest that the flare from 3XMM J014528.9+610729 can not be associated with tidal disruption events.

  4. The LOFT perspective on neutron star thermonuclear bursts: White paper in support of the mission concept of the large observatory for X-ray timing

    Energy Technology Data Exchange (ETDEWEB)

    in' t Zand, J. J.M. [SRON Netherlands Institute for Space Research, Utrecht (The Netherlands); Malone, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Altamirano, D. [Univ. of Southampton, Southampton (United Kingdom); Ballantyne, D. R. [Georgia Inst. of Technology, Atlanta, GA (United States); Bhattacharyya, S. [Tata Institute of Fundamental Research, Mumbai (India); Brown, E. F. [Michigan State Univ., East Lansing, MI (United States); Cavecchi, Y. [Univ. of Amsterdam, Amsterdam (The Netherlands); Chakrabarty, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Chenevez, J. [Technical Univ. of Denmark, Lyngby (Denmark); Cumming, A. [McGill Univ., Montreal, QC (Canada); Degenaar, N. [Univ. of Cambridge, Cambridge (United Kingdom); Falanga, M. [International Space Science Institute, Bern (Switzerland); Galloway, D. K. [Monash Univ., VIC (Australia); Heger, A. [Monash Univ., VIC (Australia); Jose, J. [Univ. Politecnica de Catalunya, Barcelona (Spain); Institut d' Estudis Espacials de Catalunya, Barcelona (Spain); Keek, L. [Georgia Institute of Technology, Atlanta, GA (United States); Linares, M. [Univ. de La Laguna, Tenerife (Spain); Mahmoodifar, S. [Univ. of Maryland, College Park, MD (United States); Mendez, M. [Univ. of Groningen, Groningen (The Netherlands); Miller, M. C. [Univ. of Maryland, College Park, MD (United States); Paerels, F. B. S. [Columbia Astrophysics Lab., New York, NY (United States); Poutanen, J. [Univ. of Turku, Piikkio (Finland); Rozanska, A. [N. Copernicus Astronomical Center PAS, Warsaw (Poland); Schatz, H. [National Superconducting Cyclotron Laboratory at Michigan State University; Serino, M. [Institute of Physical and Chemical Research (RIKEN); Strohmayer, T. E. [NASA' s Goddard Space Flight Center, Greenbelt, MD (United States); Suleimanov, V. F. [Univ. Tubingen, Tubingen (Germany); Thielemann, F. -K. [Univ. Basel, Basel (Switzerland); Watts, A. L. [Univ. of Amsterdam, Amsterdam (The Netherlands); Weinberg, N. N. [Massachusetts Institute of Technology, Cambridge, MA (United States); Woosley, S. E. [Univ. of California, Santa Cruz, CA (United States); Yu, W. [Chinese Academy of Sciences (CAS), Shanghai (China); Zhang, S. [Institute of High-Energy Physics, Beijing (China); Zingale, M. [Stony Brook Univ., Stony Brook, NY (United States)

    2015-01-14

    The Large Area Detector (LAD) on the Large Observatory For X-ray Timing ( LOFT ), with a 8.5 m 2 photon- collecting area in the 2–30 keV bandpass at CCD-class spectral resolving power (λ/Δλ = 10 – 100), is designed for optimum performance on bright X-ray sources. Thus, it is well-suited to study thermonuclear X-ray bursts from Galactic neutron stars. These bursts will typically yield 2 x 105 photon detections per second in the LAD, which is at least 15 times more than with any other instrument past, current or anticipated. The Wide Field Monitor (WFM) foreseen for LOFT uniquely combines 2–50 keV imaging with large (30%) prompt sky coverage. This will enable the detection of tens of thousands of thermonuclear X-ray bursts during a 3-yr mission, including tens of superbursts. Both numbers are similar or more than the current database gathered in 50 years of X-ray astronomy.

  5. Two types of softening detected in X-ray afterglows of Swift bursts: internal and external shock origins?

    CERN Document Server

    Qin, Y -P; Fan, J H; Lu, R -J

    2008-01-01

    The softening process observed in the steep decay phase of early X-ray afterglows of Swift bursts has remained a puzzle since its discovery. The softening process can also be observed in the later phase of the bursts and its cause has also been unknown. Recently, it was suggested that, influenced by the curvature effect, emission from high latitudes would shift the Band function spectrum from higher energy band to lower band, and this would give rise to the observed softening process accompanied by a steep decay of the flux density. The curvature effect scenario predicts that the terminating time of the softening process would be correlated with the duration of the process. In this paper, based on the data from the UNLV GRB group web-site, we found an obvious correlation between the two quantities. In addition, we found that the softening process can be divided into two classes: the early type softening ($t_{s,max}\\leq "4000"s$) and the late type softening ($t_{s,max} > "4000"s$). The two types of softening s...

  6. On the Statistical Relationship between CME Speed and Soft X-ray Flux and Fluence of the Associated Flare

    CERN Document Server

    Salas-Matamoros, Carolina

    2015-01-01

    Both observation and theory reveal a close relationship between the kinematics of coronal mass ejections (CMEs) and the thermal energy release traced by the related soft X-ray (SXR) emission. The major problem of empirical studies of this relationship is the distortion of the CME speed by the projection effect in the coronagraphic measurements. We present a re-assessment of the statistical relationship between CME velocities and SXR parameters, using the SOHO/LASCO catalog and GOES whole Sun observations during the period 1996 to 2008. 49 events were identified where CMEs originated near the limb, at central meridian distances between 70$^\\circ$ and 85$^\\circ$, and had a reliably identified SXR burst, the parameters of which - peak flux and fluence - could be determined with some confidence. We find similar correlations between the logarithms of CME speed and of SXR peak flux and fluence as several earlier studies, with correlation coefficients of 0.48 and 0.58, respectively. Correlations are slightly improve...

  7. High-temperature differential emission measure and altitude variations in the temperature and density of solar flare coronal X-ray sources

    CERN Document Server

    Jeffrey, Natasha; Dennis, Brian

    2015-01-01

    The detailed knowledge of plasma heating and acceleration region properties presents a major observational challenge in solar flare physics. Using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the high temperature differential emission measure, DEM(T), and the energy-dependent spatial structure of solar flare coronal sources are studied quantitatively. The altitude of the coronal X-ray source is observed to increase with energy by ~+0.2 arcsec/keV between 10 and 25 keV. Although an isothermal model can fit the thermal X-ray spectrum observed by RHESSI, such a model cannot account for the changes in altitude, and multi-thermal coronal sources are required where the temperature increases with altitude. For the first time, we show how RHESSI imaging information can be used to constrain the DEM(T) of a flaring plasma. We develop a thermal bremsstrahlung X-ray emission model with inhomogeneous temperature and density distributions to simultaneously reproduce: i) DEM(T), ii) altitude as a function of ...

  8. Analisis Klaster K-Means dari Data Luas Grup Sunspot dan Data Grup Sunspot Klasifikasi Mc.Intosh yang membangkitkan Flare Soft X-Ray dan H-alpha

    Directory of Open Access Journals (Sweden)

    Siti Jumaroh

    2015-12-01

    Full Text Available Analisis klaster merupakan teknik interpendensi yang mengelompokkan suatu objek berdasarkan kemiripan dan kedekatan jarak antar objek. Pengelompokan objek dengan jumlah banyak membutuhkan waktu yang lama. Salah satu analisis klaster yang dapat digunakan dalam situasi ini adalah analisis klaster non hierarki, yaitu K-means. Pada artikel ini mengelompokkan data luas grup sunspot dan data grup sunspot klasifikasi Mc.Intosh yang membangkitkan flare soft X-Ray dan Hα. Untuk mengetahui luas grup sunspot dan grup sunspot klasifikasi Mc.Intosh yang berpeluang membangkitkan flare soft X-Ray dan Hα dengan intensitas ledakan yang tinggi dan rendah. Berdasarkan hasil analisis, diperoleh dua klaster yaitu klaster pertama yang tergolong mampu membangkitkan flare Soft X-Ray dan Hα dengan intensitas yang tinggi. Sedangkan klaster kedua yang tergolong mampu membangkitkan flare Soft X-Ray dan Hα dengan intensitas yang rendah

  9. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Mette [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Watson, Darach, E-mail: mef4@hi.is, E-mail: darach@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  10. NuSTAR OBSERVATION OF A TYPE I X-RAY BURST FROM GRS 1741.9-2853

    Energy Technology Data Exchange (ETDEWEB)

    Barrière, Nicolas M.; Krivonos, Roman; Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Bachetti, Matteo [Institut de Recherche en Astrophysique et Plantologie, UMR 5277, Toulouse (France); Chakrabarty, Deepto [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Christensen, Finn E. [National Space Institute, Technical University of Denmark, Copenhagen (Denmark); Hailey, Charles J.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Hong, Jaesub [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: barriere@ssl.berkeley.edu [X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-01

    We report on two NuSTAR observations of GRS 1741.9-2853, a faint neutron star (NS) low-mass X-ray binary burster located 10' away from the Galactic center. NuSTAR detected the source serendipitously as it was emerging from quiescence: its luminosity was 6 × 10{sup 34} erg s{sup –1} on 2013 July 31 and 5 × 10{sup 35} erg s{sup –1} in a second observation on 2013 August 3. A bright, 800 s long, H-triggered mixed H/He thermonuclear Type I burst with mild photospheric radius expansion (PRE) was present during the second observation. Assuming that the luminosity during the PRE was at the Eddington level, an H mass fraction X = 0.7 in the atmosphere, and an NS mass M = 1.4 M {sub ☉}, we determine a new lower limit on the distance for this source of 6.3 ± 0.5 kpc. Combining with previous upper limits, this places GRS 1741.9-2853 at a distance of 7 kpc. Energy independent (achromatic) variability is observed during the cooling of the NS, which could result from the disturbance of the inner accretion disk by the burst. The large dynamic range of this burst reveals a long power-law decay tail. We also detect, at a 95.6% confidence level (1.7σ), a narrow absorption line at 5.46 ± 0.10 keV during the PRE phase of the burst, reminiscent of the detection by Waki et al. We propose that the line, if real, is formed in the wind above the photosphere of the NS by a resonant Kα transition from H-like Cr gravitationally redshifted by a factor 1 + z = 1.09, corresponding to a radius range of 29.0-41.4 km for a mass range of 1.4-2.0 M {sub ☉}.

  11. Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops

    CERN Document Server

    Zimovets, I V

    2009-01-01

    We investigate the solar flare of 20 October 2002. The flare was accompanied by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of the HXR time profiles in different energy channels made with the Lomb periodogram indicates two statistically significant time periods of about 16 and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR emission in the impulsive phase of the flare. The 16-second QPP were more pronounced in the thermal HXR emission and were observed both in the impulsive and in the decay phases of the flare. Imaging analysis of the flare region, the determined time periods of the QPP and the estimated physical parameters of magnetic loops in the flare region allow us to interpret the observations as follows. 1) In the impulsive phase energy was released and electrons were accelerated by successive acts with the average time period of about 36 seconds in different parts of two spati...

  12. NuSTAR observation of a Type I X-ray burst from GRS 1741.9-2853

    CERN Document Server

    Barrière, Nicolas M; Tomsick, John A; Bachetti, Matteo; Boggs, Steven E; Chakrabarty, Deepto; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Hong, Jaesub; Mori, Kaya; Stern, Daniel; Zhang, William W

    2014-01-01

    We report on two NuSTAR observations of GRS 1741.9-2853, a faint neutron star low mass X-ray binary burster located 10' away from the Galactic center. NuSTAR detected the source serendipitously as it was emerging from quiescence: its luminosity was $6\\times 10^{34}$ erg~s$^{-1}$ on 2013 July 31, and $5\\times 10^{35}$ erg~s$^{-1}$ in a second observation on 2013 August 3. A bright, 800-s long, H-triggered mixed H/He thermonuclear Type I burst with mild photospheric radius expansion (PRE) was present during the second observation. Assuming that the luminosity during the PRE was at the Eddington level, a H mass fraction $X=0.7$ in the atmosphere, and a neutron star mass $M=1.4 M_{\\odot}$, we determine a new lower limit on the distance for this source of $6.3 \\pm 0.5$ kpc. Combining with previous upper limits, this places GRS 1741.9-2853 at a distance of 7 kpc. Energy independent (achromatic) variability is observed during the cooling of the neutron star, which could result from the disturbance of the inner accre...

  13. Flame Propagation on the Surfaces of Rapidly Rotating Neutron Stars during Type I X-ray Bursts

    CERN Document Server

    Cavecchi, Yuri; Braithwaite, Jonathan; Levin, Yuri

    2012-01-01

    We present the first vertically resolved hydrodynamic simulations of a laterally propagating, deflagrating flame in the thin helium ocean of a rotating accreting neutron star. We use a new hydrodynamics solver tailored to deal with the large discrepancy in horizontal and vertical length scales typical of neutron star oceans, and which filters out sound waves that would otherwise limit our timesteps. We find that the flame moves horizontally with velocities of order $10^5$ cm s$^{-1}$, crossing the ocean in few seconds, broadly consistent with the rise times of Type I X-ray bursts. We address the open question of what drives flame propagation, and find that heat is transported from burning to unburnt fuel by a combination of top-to-bottom conduction and mixing driven by a baroclinic instability. The speed of the flame propagation is therefore a sensitive function of the ocean conductivity and spin: we explore this dependence for an astrophysically relevant range of parameters and find that in general flame pro...

  14. The cooling phase of Type I X-ray bursts observed with RXTE in 4U 1820-30 does not follow the canonical F - T^4 relation

    CERN Document Server

    García, Federico; Méndez, Mariano

    2013-01-01

    We analysed the complete set of bursts from the neutron-star low-mass X-ray binary 4U 1820-30 detected with the Rossi X-ray Timing Explorer (RXTE). We found that all are photospheric radius expansion bursts, and have similar duration, peak flux and fluence. From the analysis of time-resolved spectra during the cooling phase of the bursts, we found that the relation between the bolometric flux and the temperature is very different from the canonical F - T^4 relation that is expected if the apparent emitting area on the surface of the neutron star remains constant. The flux-temperature relation can be fitted using a broken power law, with indices 2.0$\\pm$0.3 and 5.72$\\pm$0.06. The departure from the F - T^4 relation during the cooling phase of the X-ray bursts in 4U 1820-30 could be due to changes in the emitting area of the neutron star while the atmosphere cools-down, variations in the colour-correction factor due to chemical evolution, or the presence of a source of heat, e.g. residual hydrogen nuclear burni...

  15. The Multi-Instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Residual Non-Thermal Soft X-Ray Emission

    Science.gov (United States)

    McTiernan, James M.; Caspi, Amir; Warren, Harry

    2015-04-01

    In the soft X-ray energy range, solar flare spectra are typically dominated by thermal emission. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI). The improvement over the isothermal approximation is intended to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV for medium to large solar flares.Previous work (Caspi et.al. 2014ApJ...788L..31C) has concentrated on obtaining DEM models that fit both instruments' observations well. Now we are interested in any breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. Thermal emission is again modeled using a DEM that is parametrized as multiple gaussians in temperature; the non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner. The results for non-thermal parameters then are compared with those found using RHESSI data alone, with isothermal and double-thermal models.

  16. A Very Small and Super Strong Zebra Pattern Burst at the Beginning of a Solar Flare

    CERN Document Server

    Tan, Baolin; Zhang, Yin; Huang, Jing; Meszarosova, Hana; Karlicky, Marian; Yan, Yihua

    2014-01-01

    Microwave emission with spectral zebra pattern structures (ZPs) is observed frequently in solar flares and the Crab pulsar. The previous observations show that ZP is only a structure overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an extremely unusual strong ZP burst occurring just at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and Czech Republic and by the extreme ultraviolet (EUV) telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that of the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying EUV flash is an unusual explosion revealing a str...

  17. Models of Type I X-ray Bursts from GS 1826-24: A Probe of rp-Process Hydrogen Burning

    CERN Document Server

    Heger, Alexander; Galloway, Duncan K; Woosley, Stanford E

    2007-01-01

    The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst lightcurves using multizone models which follow the rp-process nucleosynthesis with an extensive nuclear reaction network. The theoretical and observed burst lightcurves show remarkable agreement. The models naturally explain the slow ~5s rise and long ~100s tails of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source, and constrains the distance to the source. The main difference is that the observed lightcurves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface, or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well-rep...

  18. X-ray spectrometer experiment aboard the ISEE-C /Heliocentric/ spacecraft

    Science.gov (United States)

    Anderson, K. A.; Kane, S. R.; Primbsch, J. H.; Weitzmann, R. H.; Evans, W. D.; Klebesadel, R. W.; Aiello, W. P.

    1978-01-01

    This experiment is designed to provide continuous coverage of solar flare X-ray bursts and transient cosmic gamma-ray bursts. A proportional counter and a scintillation detector together cover the energy range from 5 to 228 keV with good sensitivity, large dynamic range, and high temporal resolution. This experiment provides data storage capability and good absolute timing so that in conjunction with similar experiments on other spacecraft, accurate source locations can be obtained for cosmic gamma-ray bursts.

  19. Associations of decimetric type Ⅲ bursts with coronal mass ejections and Hα flares

    Institute of Scientific and Technical Information of China (English)

    Yuan Ma; De-Yu Wang; Jun Lin; Shuo Dai; Xue-Fei Zhang

    2010-01-01

    We present a statistical study of decimetric type Ⅲ radio bursts,coronal mass ejections(CMEs),and Hα flares observed in the period from July 2000 to March2005.In total,we investigated 395 decimetric type Ⅲ radio burst events,21% of which showed apparent correlation to CMEs that were associated with Hα flares.We noticed that the Hα flares which were strongly associated with CMEs were gradual events,and82% of them took place before CMEs appeared in the field of view of LASCO C2;that most of the CME-associated radio bursts started in the frequency range around750 MHz with a frequency drifting rate of several hundred MHz s-1,of which both positive and negative ones were recognized; and that the correlation of type Ⅲ radio bursts to CMEs without associated flares is fairly vague,less than 9%.

  20. BURST FLUENCE DISTRIBUTIONS OF SOFT GAMMA REPEATERS 1806-20 AND 1900+14 IN THE ROSSI X-RAY TIMING EXPLORER PCA ERA

    Energy Technology Data Exchange (ETDEWEB)

    Prieskorn, Zachary; Kaaret, Philip, E-mail: prieskorn@psu.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

    2012-08-10

    We study the fluence distributions of over 3040 bursts from SGR 1806-20 and over 1963 bursts from SGR 1900+14 using the complete set of observations available from the Rossi X-Ray Timing Explorer/Proportional Counter Array through 2011 March. Cumulative event distributions are presented for both sources and are fitted with single and broken power laws as well as an exponential cutoff. The distributions are best fitted by a broken power law with exponential cutoff; however the statistical significance of the cutoff is not high and the upper portion of the broken power law can be explained as the expected number of false bursts due to random noise fluctuations. Event distributions are also examined in high and low burst rate regimes and power-law indices are found to be consistent, independent of the burst rate. The contribution function of the event fluence is calculated. This distribution shows that the energy released in the soft gamma repeater (SGR) bursts is dominated by the most powerful events for both sources. The power-law nature of these distributions combined with the dominant energy dissipation of the system occurring in the large, less frequent bursts is indicative of a self-organized critical system, as suggested by Gogus et al. in 1999.

  1. A comprehensive statistical analysis of Swift X-ray light-curves: the prompt-afterglow connection in Gamma-Ray Bursts

    CERN Document Server

    Margutti, Raffaella; Bernardini, M G; Chincarini, G

    2012-01-01

    We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs), with more than 650 GRBs. Two questions drive this effort: (1) Does the X-ray emission retain any kind of memory of the prompt phase? (2) Where is the dividing line between long and short GRBs? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs, but are interestingly characterized by very similar intrinsic absorption. Our analysis reveal the existence of a number of relations that link the X-ray to prompt parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. Here we concentrate on a 3-parameter (E_pk-Egamma,iso-E_X,iso) scaling that is shared by the GRB class as a whole (short GRBs, long GRBs and X-ray Flashes -XRFs): interpreted in terms of emission efficiency, this scaling may imply that GRBs with high $E_{\\rm{pk}}$ are more efficient during their prompt emission.

  2. A Correlation between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    Science.gov (United States)

    Racusin, J. L.; Oates, S. R.; de Pasquale, M.; Kocevski, D.

    2016-07-01

    We present a correlation between the average temporal decay ({α }{{X},{avg},\\gt 200{{s}}}) and early-time luminosity ({L}{{X},200{{s}}}) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the γ-ray trigger. The luminosity-average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  3. An Explanation for the Different X-ray to Optical Column Densities in the Environments of Gamma Ray Bursts: A Progenitor Embedded in a Dense Medium

    CERN Document Server

    Krongold, Yair

    2013-01-01

    We study the > 10 ratios in the X-ray to optical column densities inferred from afterglow spectra of Gamma Ray Bursts due to gas surrounding their progenitors. We present time-evolving photoionization calculations for these afterglows and explore different conditions for their environment. We find that homogenous models of the environment (constant density) predict X-ray columns similar to those found in the optical spectra, with the bulk of the opacity being produced by neutral material at large distances from the burst. This result is independent of gas density or metallicity. Only models assuming a progenitor immersed in a dense (10^(2-4) cm-3) cloud of gas (with radius ~10 pc), with a strong, declining gradient of density for the surrounding interstellar medium are able to account for the large X-ray to optical column density ratios. However, to avoid an unphysical correlation between the size of this cloud, and the size of the ionization front produced by the GRB, the models also require that the circumb...

  4. The Extraordinary X-ray Light Curve of the Classical Nova V1494 Aquilae (1999 #2) in Outburst The Discovery of Pulsations and a "Burst"

    CERN Document Server

    Drake, J J; Starrfield, S; Butt, Y; Krautter, J; Bond, H E; Valle, M D; Gehrz, R D; Woodward, C E; Evans, A; Orio, M; Hauschildt, P H; Hernanz, M; Mukai, K; Truran, J W; Drake, Jeremy J.; Starrfield, Sumner; Butt, Yousaf; Krautter, Joachim; Woodward, Charles E.

    2003-01-01

    V1494 Aql (Nova Aql 1999 No. 2) was discovered on 2 December 1999. We obtained Chandra ACIS-I spectra on 15 April and 7 June 2000 which appear to show only emission lines. Our third observation, on 6 August, showed that its spectrum had evolved to that characteristic of a Super Soft X-ray Source. We then obtained Chandra LETG+HRC-S spectra on 28 September (8 ksec) and 1 October (17 ksec). We analyzed the X-ray light curve of our grating observations and found both a short time scale ``burst'' and oscillations. Neither of these phenomena have previously been seen in the light curve of a nova in outburst. The ``burst'' was a factor of 10 rise in X-ray counts near the middle of the second observation, and which lasted about 1000 sec; it exhibited at least two peaks, in addition to other structure. Our time series analysis of the combined 25 ksec observation shows a peak at 2500 s which is present in independent analyses of both the zeroth order image and the dispersed spectrum and is not present in similar analy...

  5. Are Homologous Radio Bursts Driven by Solar Post-Flare Loops?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6 GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other instruments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole magnetic structures. By examining the evolutions of the magnetic polarities of sources (17 GHz),we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.

  6. Testing the External Shock Model of Gamma-Ray Bursts using the Late-Time Simultaneous Optical and X-ray Afterglows

    CERN Document Server

    Urata, Yuji; Sakamoto, Takanori; Huang, Kuiyun; Zheng, Weikang; Sato, Goro; Aoki, Tsutomu; Deng, Jinsong; Ioka, Kunihito; Ip, WingHuen; Kawabata, Koji S; Lee, YiHsi; Liping, Xin; Mito, Hiroyuki; Miyata, Takashi; Nakada, Yoshikazu; Ohsugi, Takashi; Qiu, Yulei; Soyano, Takao; Tarusawa, Kenichi; Tashiro, Makoto; Uemura, Makoto; Wei, Jianyan; Yamashita, Takuya

    2007-01-01

    We study the ``normal'' decay phase of the X-ray afterglows of gamma-ray bursts (GRBs), which follows the shallow decay phase, using the events simultaneously observed in the R-band. The classical external shock model, in which neither the delayed energy injection nor time-dependency of shock micro-physics is considered, shows that the decay indices of the X-ray and R-band light curves, $\\alpha_{\\rm X}$ and $\\alpha_{\\rm O}$, obey a certain relation, and that in particular, $\\alpha_{\\rm O}-\\alpha_{\\rm X}$ should be larger than -1/4. For our selected 14 samples, we have found that 7 events violate the limit taking into account 1$\\sigma$ error, so that a fraction of events are outliers of the classical external shock model at the ``normal'' decay phase.

  7. Minifilament Eruption as the Source of a Blowout Jet, C-class Flare, and Type-III Radio Burst

    Science.gov (United States)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Li, Haidong; Xu, Zhe

    2017-01-01

    We report a strong minifilament eruption associated with Geostationary Operational Environmental Satellite C1.6 flare and WIND type-III radio burst. The minifilament, which lies at the periphery of active region 12259, is detected by Hα images from the New Vacuum Solar Telescope. The minifilament undergoes a partial and then a full eruption. Simultaneously, two co-spatial jets are successively observed in extreme ultraviolet images from the Solar Dynamic Observatory. The first jet exhibits a typical fan-spine geometry, suggesting that the co-spatial minifilament is possibly embedded in magnetic fields with a fan-spine structure. However, the second jet displays blowout morphology when the entire minifilament erupts upward, leaving behind a hard X-ray emission source in the base. Differential emission measure analyses show that the eruptive region is heated up to about 4 MK during the fan-spine jet, while up to about 7 MK during the blowout jet. In particular, the blowout jet is accompanied by an interplanetary type-III radio burst observed by WIND/WAVES in the frequency range from above 10 to 0.1 MHz. Hence, the minifilament eruption is correlated with the interplanetary type-III radio burst for the first time. These results not only suggest that coronal jets can result from magnetic reconnection initiated by erupting minifilaments with open fields, but also shed light on the potential influence of minifilament eruption on interplanetary space.

  8. AN EXPLANATION FOR THE DIFFERENT X-RAY TO OPTICAL COLUMN DENSITIES IN THE ENVIRONMENTS OF GAMMA RAY BURSTS: A PROGENITOR EMBEDDED IN A DENSE MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Krongold, Yair [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, 04510 Mexico DF (Mexico); Prochaska, J. Xavier, E-mail: xavier@ucolick.org [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-09-10

    We study the {approx}> 10 ratios in the X-ray to optical column densities inferred from afterglow spectra of gamma ray bursts (GRBs) due to gas surrounding their progenitors. We present time-evolving photoionization calculations for these afterglows and explore different conditions of their environment. We find that homogenous models of the environment (constant density) predict X-ray columns similar to those found in the optical spectra, with the bulk of the opacity being produced by neutral material at large distances from the burst. This result is independent of gas density or metallicity. Only models assuming a progenitor immersed in a dense ({approx}10{sup 2-4} cm{sup -3}) cloud of gas (with radius {approx}10 pc), with a strong, declining gradient of density for the surrounding interstellar medium (ISM) are able to account for the large X-ray to optical column density ratios. However, to avoid an unphysical correlation between the size of this cloud and the size of the ionization front produced by the GRB, the models also require that the circumburst medium is already ionized prior to the burst. The inferred cloud masses are {approx}< 10{sup 6} M{sub Sun }, even if low metallicities in the medium are assumed (Z {approx} 0.1 Z{sub Sun }). These cloud properties are consistent with those found in giant molecular clouds and our results support a scenario in which the progenitors reside within intense star formation regions of galaxies. Finally, we show that modeling over large samples of GRB afterglows may offer strong constraints on the range of properties in these clouds, and the host galaxy ISM.

  9. GAMMA-RAY BURSTS IN CIRCUMSTELLAR SHELLS: A POSSIBLE EXPLANATION FOR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Mesler, Robert A.; Pihlstroem, Ylva M. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Whalen, Daniel J. [MS B227, T-2 Los Alamos National Laboratory, Los Alamos NM, 87545 (United States); Lloyd-Ronning, Nicole M.; Fryer, Chris L., E-mail: meslerra@unm.edu [MS-B227, T-6 Los Alamos National Laboratory, Los Alamos NM, 87545 (United States)

    2012-10-01

    It is now generally accepted that long-duration gamma-ray bursts (GRBs) are due to the collapse of massive rotating stars. The precise collapse process itself, however, is not yet fully understood. Strong winds, outbursts, and intense ionizing UV radiation from single stars or strongly interacting binaries are expected to destroy the molecular cloud cores that give birth to them and create highly complex circumburst environments for the explosion. Such environments might imprint features on GRB light curves that uniquely identify the nature of the progenitor and its collapse. We have performed numerical simulations of realistic environments for a variety of long-duration GRB progenitors with ZEUS-MP and have developed an analytical method for calculating GRB light curves in these profiles. Though a full, three-dimensional, relativistic magnetohydrodynamical computational model is required to precisely describe the light curve from a GRB in complex environments, our method can provide a qualitative understanding of these phenomena. We find that, in the context of the standard afterglow model, massive shells around GRBs produce strong signatures in their light curves, and that this can distinguish them from those occurring in uniform media or steady winds. These features can constrain the mass of the shell and the properties of the wind before and after the ejection. Moreover, the interaction of the GRB with the circumburst shell is seen to produce features that are consistent with observed X-ray flares that are often attributed to delayed energy injection by the central engine. Our algorithm for computing light curves is also applicable to GRBs in a variety of environments such as those in high-redshift cosmological halos or protogalaxies, both of which will soon be targets of future surveys such as the Joint Astrophysics Nascent Satellite or Lobster.

  10. A very small and super strong zebra pattern burst at the beginning of a solar flare

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin; Tan, Chengming; Zhang, Yin; Huang, Jing; Yan, Yihua [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China); Mészárosová, Hana; Karlický, Marian, E-mail: bltan@nao.cas.cn [Astronomical Institute of the Academy of Sciences of the Czech Republic, Ondřejov 15165 (Czech Republic)

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that of the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.

  11. Experimental measurements of the O15(alpha,gamma)Ne19 reaction rate vs. observations of type I X-ray bursts

    CERN Document Server

    Fisker, J L; Görres, J; Wiescher, M; Cooper, R L; Fisker, Jacob Lund; Tan, Wanpeng; Goerres, Joachim; Wiescher, Michael; Cooper, Randall L.

    2007-01-01

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the continuously accreting fuel supply and depletion by nuclear burning via the hot CNO cycles. Therefore the ignition depends critically on the hot CNO breakout reaction O15(alpha,gamma)Ne19 that regulates the flow between the beta-limited hot CNO cycle and the rapid proton capture process. Until recently, the O15(alpha,gamma)Ne19 reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we report on the astrophysical consequences of the first measurement of this reaction rate on the thermonuclear instability that leads to type I X-ray bursts on accr...

  12. Timing Analysis of the Light Curve of the Dipping-Bursting X-ray Binary X1916-053

    CERN Document Server

    Chou, Y; Bloser, P F

    2001-01-01

    We present the timing analysis results for our observations of the x-ray dip source X1916-053 conducted with RXTE between February and October of 1996. Our goal was to finally measure the binary period - as either the x-ray dip period or ~1% longer optical modulation period, thereby establishing if the binary has a precessing disk (SU UMa model) or a third star (triple model). Combined with historical data (1979-96), the x-ray dip period is measured to be 3000.6508 $\\pm$ 0.0009 sec with a 2$\\sigma$ upper limit $|\\dot P| \\leq 2.06 \\times 10^{-11}$. From our quasi-simultaneous optical observations (May 14-23, 1996) and historical data (1987-96), we measure the optical modulation period to be 3027.5510 $\\pm$ 0.0052 sec with a 2$\\sigma$ upper limit $|\\dot P| \\leq 2.28 \\times 10^{-10}$. The two periods are therefore each stable (over all recorded data) and require a $3.9087 \\pm 0.0008$d beat period. This beat period, and several of its harmonics is also observed as variations in the dip shape. Phase modulation of ...

  13. Hard X-ray Spectroscopic, Microwave and H-alpha Linear Polarization Studies with Hard X-Ray Observations from HESSI

    Science.gov (United States)

    Kiplinger, Alan L.

    2005-01-01

    The Principal Investigator (P.I.) has been pursuing a three year grant under NASA's Sun-Earth Connection Guest Investigator Program in support of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). An objective of these efforts is to combine X-ray and other data on solar flares, coronal mass ejections and interplanetary particle events in order to obtain a more comprehensive recognition of signatures, and understanding of interplanetary proton events. Thus, part of these efforts are to investigate if signatures seen in hard X-rays and microwaves can lead to better predictions of interplanetary proton events that can be dangerous to astronauts and spacecraft. The original proposal was written in May, 2000 and it discusses a three-pronged approach for data comparisons with three new types of instrumentation observing at X-ray, microwave and optical wavelengths. The major impetus behind this work and the proposal is that the P.I. discovered a strong correlation between a particular type of hard X-ray signature seen in spectral evolutions and interplanetary proton events (Kiplinger, 1995). The basic signature is that hard X-ray flux peaks either exhibit spectra that soften on their decays (Le. show fewer and fewer high energy X-rays with time) or they harden during decays (i.e. high energy X-rays decay significantly slower that lower energy X-rays). This signature is called progressive hardening. Studies were conducted over an eight-year period of data from the Hard X-Ray Burst Spectrometer (HXRBS) of the Solar maximum mission. Out of the 750 well observed flares studied, 41 flares had major associated proton events. Of these, 29 events were predicted on the basis of progressive hardening for a hit rate of 71%. The 152 largest flares had a hit rate of 82%.

  14. BURST TAILS FROM SGR J1550–5418 OBSERVED WITH THE ROSSI X-RAY TIMING EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Muş, Sinem Şaşmaz; Gögüş, Ersin; Kaneko, Yuki; Chakraborty, Manoneeta; Aydın, Berk, E-mail: sinemsmus@sabanciuniv.edu [Sabancı University, Faculty of Engineering and Natural Sciences, Orhanlı Tuzla 34956 Istanbul (Turkey)

    2015-07-01

    We present the results of our extensive search using the Bayesian block method for long tails following short bursts from a magnetar, SGR J1550–5418, over all RXTE observations of the source. We identified four bursts with extended tails, most of which occurred during its 2009 burst active episode. The durations of tails range between ∼13 s and over 3 ks, which are much longer than the typical duration of bursts. We performed detailed spectral and temporal analyses of the burst tails. We find that the spectra of three tails show a thermal nature with a trend of cooling throughout the tail. We compare the results of our investigations with the properties of four other extended tails detected from SGR 1900+14 and SGR 1806–20 and suggest a scenario for the origin of the tail in the framework of the magnetar model.

  15. Fluctuation analysis of solar radio bursts associated with geoeffective X-class flares

    Science.gov (United States)

    Veronese, T. B.; Rosa, R. R.; Bolzan, M. J. A.; Rocha Fernandes, F. C.; Sawant, H. S.; Karlicky`, M.

    2011-07-01

    High temporal resolution solar observations in the decimetric range (1-3 GHz) can provide additional information on solar active regions dynamics and thus contribute to better understanding of solar geoeffective events as flares and coronal mass ejections. The June 6, 2000 flares are a set of remarkable geoeffective eruptive phenomena observed as solar radio bursts (SRB) by means of the 3 GHz Ondrejov Observatory radiometer. We have selected and analyzed, applying detrended fluctuation analysis (DFA), three decimetric bursts associated to X1.1, X1.2 and X2.3 flare-classes, respectively. The association with geomagnetic activity is also reported. DFA method is performed in the framework of a radio burst automatic monitoring system. Our results may characterize the SRB evolution, computing the DFA scaling exponent, scanning the SRB time series by a short windowing before the extreme event. For the first time, the importance of DFA in the context of SRB monitoring analysis is presented.

  16. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    Science.gov (United States)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  17. Microwave burst with fine spectral structures in a solar flare on 2011 August 9

    CERN Document Server

    Tan, Baolin; Liu, Yuying; 10.1051/eas/1255035

    2012-01-01

    On August 9, 2011, there was an X6.9 flare event occurred near the west limb of solar disk. From the observation obtained by the spectrometer of the Chinese Solar Broadband Radio Spectrometer in Huairou (SBRS/Huairou) around the flare, we find that this powerful flare has only a short-duration microwave burst of about only 5 minutes, and during the short-duration microwave burst, there are several kinds of fine structures on the spectrogram. These fine structures include very short-period pulsations, millisecond spike bursts, and type III bursts. The most interesting is that almost all of the pulses of very short-period pulsation (VSP) are structured by clusters of millisecond timescales of spike bursts or type III bursts. And there exists three different kinds of frequency drift rates in the VSP: the frequency drift rates with absolute value of about 55 - 130 MHz s^{-1} in the pulse groups, the frequency drift rates with absolute value of about 2.91 - 16.9 GHz s^{-1} on each individual pulse, and the frequen...

  18. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    CERN Document Server

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  19. Multidimensional Modeling of Type I X-ray Bursts. II. Two-Dimensional Convection in a Mixed H/He Accretor

    CERN Document Server

    Malone, C M; Nonaka, A; Almgren, A S; Bell, J B

    2014-01-01

    Type I X-ray Bursts (XRBs) are thermonuclear explosions of accreted material on the surfaces of a neutron stars in low mass X-ray binaries. Prior to the ignition of a subsonic burning front, runaway burning at the base of the accreted layer drives convection that mixes fuel and heavy-element ashes. In this second paper in a series, we explore the behavior of this low Mach number convection in mixed hydrogen/helium layers on the surface of a neutron star using two-dimensional simulations with the Maestro code. Maestro takes advantage of the highly subsonic flow field by filtering dynamically unimportant sound waves while retaining local compressibility effects, such as those due to stratification and energy release from nuclear reactions. In these preliminary calculations, we find that the rp-process approximate network creates a convective region that is split into two layers. While this splitting appears artificial due to the approximations of the network regarding nuclear flow out of the breakout reaction 1...

  20. Intermediate long X-ray bursts from the ultra-compact binary candidate SLX1737-282

    DEFF Research Database (Denmark)

    Falanga, M.; Chenevez, Jérôme; Cumming, A.

    2008-01-01

    emission in the 3-100 keV energy band is studied with the INTEGRAL data. Results: The persistent emission is measured to be 0.5% Eddington luminosity. From the photospheric radius expansion observed during at least one burst we derive the source distance at 7.3 kpc assuming a pure helium atmosphere...

  1. Measurement of the 18Ne(a,p_0)21Na reaction cross section in the burning energy region for X-ray bursts

    CERN Document Server

    Salter, P J C; Davinson, T; Falou, H Al; Chen, A; Davids, B; Fulton, B R; Galinski, N; Howell, D; Lotay, G; Machule, P; Murphy, A StJ; Ruiz, C; Sjue, S; Taggart, M; Walden, P; Woods, P J

    2012-01-01

    The 18Ne(a,p)21Na reaction provides one of the main HCNO-breakout routes into the rp-process in X-ray bursts. The 18Ne(a,p_0)21Na reaction cross section has been measured for the first time in the Gamow energy region for peak temperatures T=2GK using the time-reversal approach in inverse kinematics. The astrophysical rate for ground-state to ground-state transitions was found to be a factor of 2 lower than Hauser-Feshbach theoretical predictions. Our reduced rate will affect the physical conditions under which breakout from the HCNO cycles occurs via the 18Ne(a,p)21Na reaction.

  2. X-ray and optical plateaus following the main bursts in GRBs and SNe Ⅱ-P: a hint about similar late injection behaviors?

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hong Cui; Ren-Xin Xu

    2013-01-01

    We analyze the emission plateaus in the X-ray afterglow light curves of gamma-ray bursts (GRBs) and those in the optical light curves of type Ⅱ plateau supernovae (SNe Ⅱ-P) in order to study whether they have similar late energy injection behaviors.We show that correlations of bolometric energies (or luminosities) between the prompt explosions and the plateaus for the two phenomena are similar.The energy emitted by SNe Ⅱ-P are at the lower end of the range of possible energies for GRBs.The bolometric energies (or luminosities) in the prompt phase Eexpl (or Lexpl) and in the plateau phase Eplateau (or Lplateau) share relations of Eexpl ∝ E0.73±0.14plateau and Lexpl ∝ L~0.70plateau These results may indicate a similar late energy injection behavior that produces the observed plateaus in these two phenomena.

  3. NuSTAR Observation Of A Type I X-Ray Burst From GRS 1741.9-2853

    DEFF Research Database (Denmark)

    Barriere, Nicolas M.; Krivonos, Roman; Tomsick, John A.

    2015-01-01

    of the burst, reminiscent of the detection by Waki et al. We propose that the line, if real, is formed in the wind above the photosphere of the NS by a resonant K alpha transition from H-like Cr gravitationally redshifted by a factor 1 + z = 1.09, corresponding to a radius range of 29.0-41.4 km for a mass...

  4. Detection of a very bright optical flare from a gamma-ray burst at redshift 6.29

    CERN Document Server

    Bo"er, M; Damerdji, Y; Gendre, B; Klotz, A; Stratta, G; Bo\\"{e}r, Michel

    2006-01-01

    The event of September 4th, 2005 (GRB 050904) was detected by the SWIFT/BAT experiment. The source was found to be at a redshift z = 6.29, corresponding to an age of the Universe which is only 7% of the present epoch. The 25 cm TAROT robotic telescope3 was able to catch the bright flare emitted by GRB 050904 at the time of the prompt high-energy event. In this letter we discuss the flux and the behaviour of the optical emission during the prompt high-energy emission and the early afterglow. We combine our data with simultaneous observations performed in X-rays and we analyze the broad-band spectrum. We show that the optical emission is too bright to have the same origin as the high energy photons. Both the temporal and spectral behaviour of the event are difficult to explain within the current internal or reverse shock models. These observations lead us to emphasize the similarity of GRB 050904 with GRB 990123, a remarkable gamma-ray burst whose optical emission reached 9th magnitude4. While GRB 990123 was, u...

  5. Observational Signatures of High-Energy Emission during the Shallow Decay Phase of Gamma-Ray Burst X-Ray Afterglows

    Science.gov (United States)

    Yu, Y. W.; Liu, X. W.; Dai, Z. G.

    2007-12-01

    The widely existing shallow decay phase of the X-ray afterglows of gamma-ray bursts (GRBs) is generally accepted to be due to long-lasting energy injection. The outflows carrying the injecting energy, based on the component that is dominant in energy, fall into two possible types: baryon-dominated and lepton-dominated ones. The former type of outflow could be ejecta that is ejected during the prompt phase of a GRB and consists of a series of baryonic shells with a distribution of Lorentz factors, and the latter type could be an electron-positron pair wind that is driven by the postburst central engine. We here provide a unified description for the dynamics of fireballs based on these two types of energy injection and calculate the corresponding high-energy photon emission by considering synchrotron radiation and inverse Compton scattering (including synchrotron self-Compton and combined inverse Compton) of electrons. We find that, in the two energy-injection models, there is a plateau (even a hump) in high-energy light curves during the X-ray shallow decay phase. In particular, a considerable fraction of the injecting energy in the lepton-dominated model can be shared by the long-lasting reverse shock since it is relativistic. Furthermore, almost all of the energy of the reverse shock is carried by leptons, and thus, the inverse Compton emission is enhanced dramatically. Therefore, this model predicts more significant high-energy afterglow emission than the baryon-dominated model. We argue that these observational signatures would be used to discriminate between different energy-injection models in the upcoming Gamma-Ray Large Area Space Telescope (GLAST) era.

  6. Detection and Interpretation of Long-lived X-Ray Quasi-periodic Pulsations in the X-class Solar Flare on 2013 May 14

    Science.gov (United States)

    Dennis, Brian R.; Tolbert, Anne K.; Inglis, Andrew; Ireland, Jack; Wang, Tongjiang; Holman, Gordon D.; Hayes, Laura A.; Gallagher, Peter T.

    2017-02-01

    Quasi-periodic pulsations (QPP) seen in the time derivative of the GOES soft X-ray light curves are analyzed for the X3.2 event on 2013 May 14. The pulsations are apparent for a total of at least two hours from the impulsive phase to well into the decay phase, with a total of 163 distinct pulses evident to the naked eye. A wavelet analysis shows that the characteristic timescale of these pulsations increases systematically from ∼25 s at 01:10 UT, the time of the GOES peak, to ∼100 s at 02:00 UT. A second “ridge” in the wavelet power spectrum, most likely associated with flaring emission from a different active region, shows an increase from ∼40 s at 01:40 UT to ∼100 s at 03:10 UT. We assume that the QPP that produced the first ridge result from vertical kink-mode oscillations of the newly formed loops following magnetic reconnection in the coronal current sheet. This allows us to estimate the magnetic field strength as a function of altitude given the density, loop length, and QPP timescale as functions of time determined from the GOES light curves and Ramaty High Energy Solar Spectroscopic Imager (RHESSI) images. The calculated magnetic field strength of the newly formed loops ranges from ∼500 G at an altitude of 24 Mm to a low value of ∼10 G at 60 Mm, in general agreement with the expected values at these altitudes. Fast sausage-mode oscillations are also discussed and cannot be ruled out as an alternate mechanism for producing the QPP.

  7. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    CERN Document Server

    Struminsky, Alexei

    2015-01-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  8. Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the successful launch of Swift satellite, more and more data of early X-ray afterglows from short gamma-ray bursts have been collected. Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed. Especially, in some cases, there is a flat segment in the X-ray afterglow light curve. Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine. We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars. We check this model with the short GRB 060313. Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.

  9. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    NARCIS (Netherlands)

    Wijnands, R.; Degenaar, N.

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which r

  10. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  11. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  12. Soft X-ray Extended Emissions of Short Gamma-Ray Bursts as Electromagnetic Counterparts of Compact Binary Mergers; Possible Origin and Detectability

    CERN Document Server

    Nakamura, Takashi; Nakauchi, Daisuke; Suwa, Yudai; Sakamoto, Takanori; Kawai, Nobuyuki

    2013-01-01

    We investigate the possible origin of extended emissions (EE) of short gamma-ray bursts (SGRBs) with an isotropic energy of $\\sim 10^{50\\mbox{-}51} \\ \\rm erg$ and a duration of $\\sim 100 \\ \\rm s$, based on the compact binary (neutron star (NS)-NS or NS-black hole (BH)) merger scenario. We analyze the evolution of magnetized neutrino-dominated accretion disks of mass $\\sim 0.1 \\ M_\\odot$ around BHs formed after the mergers, and estimate the power of relativistic outflows via the Blandford-Znajek (BZ) process. We show that a rotation energy of the BH up to $\\sim 10^{53} \\ \\rm erg$ can be extracted with a time scale of $\\sim 100 \\ \\rm s$ with a disk viscosity parameter of $\\alpha \\sim 0.01$. Such a BZ power dissipates by clashing with non-relativistic pre-ejected matter of mass $M \\sim 10^{-(2\\mbox{-}4)} \\ M_\\odot$, and form a mildly relativistic fireball. We show that the dissipative photospheric emissions from such fireballs are likely in soft X-ray band ($1\\mbox{-}10 \\ \\rm keV$) for $M \\sim 10^{-2} M_\\odot$ p...

  13. Examination of the role of the $^{14}$O($\\alpha$,$p$)$^{17}$F reaction rate in type I x-ray bursts

    CERN Document Server

    Hu, J; Parikh, A; Xu, S W; Yamaguchi, H; Kahl, D; Ma, P; Su, J; Wang, H W; Nakao, T; Wakabayashi, Y; Teranishi, T; Hahn, K I; Moon, J Y; Jung, H S; Hashimoto, T; Chen, A A; Irvine, D; Lee, C S; Kubono, S

    2014-01-01

    The $^{14}$O($\\alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts (XRBs). The resonant properties in the compound nucleus $^{18}$Ne have been investigated through resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ${\\Delta}$E-E silicon telescopes at laboratory angles of $\\theta$$_{lab}$$\\approx$3$^\\circ$, 10$^\\circ$ and 18$^\\circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an $R$-matrix analysis. In particular, $J^{\\pi}$=1$^-$ was firmly assigned to the 6.15-MeV state which dominates the thermonuclear $^{14}$O($\\alpha$,$p$)$^{17}$F rate below 2 GK. As well, a possible new excited state in $...

  14. Properties of resonant states in 18Ne relevant to key 14O(alpha,p)17F breakout reaction in type I x-ray bursts

    CERN Document Server

    Hu, J; Parikh, A; Xu, S W; Yamaguchi, H; Kahl, D; Ma, P; Su, J; Wang, H W; Nakao, T; Wakabayashi, Y; Teranishi, T; Hahn, K I; Moon, J Y; Sung, H S; Hashimoto, T; Chen, A A; Irvine, D; Lee, C S; Kubono, S

    2014-01-01

    The $^{14}$O($\\alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts. The resonant properties in the compound nucleus $^{18}$Ne have been investigated through resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by using three ${\\Delta}$E-E silicon telescopes at laboratory angles of $\\theta$$_{lab}$$\\approx$3$^\\circ$, 10$^\\circ$ and 18$^\\circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions. Based on an $R$-matrix analysis, $J^{\\pi}$=1$^-$ was firmly assigned to the 6.15-MeV state. This state dominates the thermonuclear $^{14}$O($\\alpha$,$p$)$^{17}$F rate below 1 GK. We have also confirmed the existence and spin-parities of three states between 6.1 and 6.4 MeV. A...

  15. Superorbital modulation of X-ray emission from gamma-ray binary LSI +61 303

    CERN Document Server

    Chernyakova, M; Molkov, S; Malyshev, D; Lutovinov, A; Pooley, G; 10.1088/2041-8205/747/2/L29

    2012-01-01

    We report the discovery of a systematic constant time lag between the X-ray and radio flares of the gamma-ray binary LSI +61 303, persistent over long, multi-year, time scale. Using the data of monitoring of the system by RXTE we show that the orbital phase of X-ray flares from the source varies from $\\phi_X\\simeq 0.35$ to $\\phi_X\\simeq 0.75$ on the superorbital 4.6 yr time scale. Simultaneous radio observations show that periodic radio flares always lag the X-ray flare by $\\Delta\\phi_{X-R}\\simeq 0.2$. We propose that the constant phase lag corresponds to the time of flight of the high-energy particle filled plasma blobs from inside the binary to the radio emission region at the distance ~10 times the binary separation distance. We put forward a hypothesis that the X-ray bursts correspond to the moments of formation of plasma blobs inside the binary system.

  16. X-ray plateaus followed by sharp drops in GRBs 060413, 060522,060607A and 080330: Further evidences for central engine afterglow from gamma-ray bursts

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui Zhang

    2009-01-01

    The X-ray afterglows of GRBs 060413, 060522, 060607A and 080330 are characterized by a plateau followed by a very sharp drop. The plateau could be explained within the framework of the external forward shock model but the sharp drop can not.We interpret the plateau as the afterglows of magnetized central engines, plausibly magnetars. In this model, the X-ray afterglows are powered by the internal magnetic energy dissipation and the sudden drop is caused by the collapse of the magnetar. Accordingly,the X-ray plateau photons should have a high linear polarization, which can be tested by future X-ray polarimetry.

  17. Circinus X-1 - X-ray observations with SAS 3

    Science.gov (United States)

    Dower, R. G.; Bradt, H. V.; Morgan, E. H.

    1982-01-01

    Eight observations of Cir X-1 with SAS 3, each lasting 1-6 days, have yielded a variety of new phenomena, viz., a luminous state of steady emission, rapid large-intensity dips, an extremely rapid X-ray transition, and bright flares. Through searches for periodic X-ray pulsations were carried out on data trains of duration up to 6 days; upper limits for pulsations with periods greater than 250 microsec range down to 0.3%. Aperiodic variability with characteristic times of 0.4-1.0 sec was observed but is not well characterized by a simple shot noise model. No millisecond bursts were observed during 40,000 sec in three separate observations. Spectral parameters derived before and after several X-ray transitions indicate that the transitions are not due to absorption of X-rays by intervening gas. Models previously proposed for the Cir X-1 system do not easily provide explanations for all the complex phenomena reported herein.

  18. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  19. Chest X Ray?

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. Chest X Ray A chest x ray is a fast and painless imaging test ... tissue scarring, called fibrosis. Doctors may use chest x rays to see how well certain treatments are ...

  20. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  1. Medical X-Rays

    Science.gov (United States)

    ... Benefits The discovery of X-rays and the invention of CT represented major advances in medicine. X- ... in X-ray and CT Examinations — X-ray definition, dose measurement, safety precautions, risk, and consideration with ...

  2. Primordial flares, flux tubes, MHD waves in the early universe and genesis of cosmic gamma ray bursts

    CERN Document Server

    Hiremath, K M

    2009-01-01

    It is conjectured that energy sources of the gamma ray bursts are similar to energy sources which trigger solar and stellar transient activity phenomena like flares, plasma accelerated flows in the flux tubes and, dissipation of energy and acceleration of particles by the MHD waves. Phenomenologically we examine in detail the following energy sources which may trigger gamma ray bursts : (i) cosmic primordial flares which could be solar flare like phenomena in the region of inter galactic or inter galactic cluster regions, (ii) primordial magnetic flux tubes that might have been formed from the convective collapse of the primordial magnetic flux (iii) nonlinear interaction and dissipation of MHD waves that are produced from the perturbations of large-scale inter galactic or inter cluster magnetic field of primordial origin. We examine in detail each of the afore mentioned phenomena keeping in mind that whether such processes are responsible for energy sources of the gamma ray bursts. By considering the similar...

  3. Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

    DEFF Research Database (Denmark)

    Rodriguez, J.; Cadolle Bel, M.; Alfonso-Garzón, J.;

    2015-01-01

    After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections...

  4. Hard x-ray Morphological and Spectral Studies of the Galactic Center Molecular Cloud SGR B2: Constraining Past SGR A* Flaring Activity

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Mori, Kaya;

    2015-01-01

    In 2013, NuSTAR observed the Sgr B2 region and for the first time resolved its hard X-ray emission on subarcminute scales. Two prominent features are detected above 10 keV:. a newly emerging cloud, G0.66-0.13, and the central 90 '' radius region containing two compact cores, Sgr B2(M) and Sgr B2(...

  5. Bright 30 THz Impulsive Solar Bursts

    CERN Document Server

    Kaufmann, P; Marcon, R; Kudaka, A S; Cabezas, D P; Cassiano, M M; Francile, C; Fernandes, L O T; Ramirez, R F Hidalgo; Luoni, M; Marun, A; Pereyra, P; de Souza, R V

    2015-01-01

    Impulsive 30 THz continuum bursts have been recently observed in solar flares, utilizing small telescopes with a unique and relatively simple optical setup concept. The most intense burst was observed together with a GOES X2 class event on October 27, 2014, also detected at two sub-THz frequencies, RHESSI X-rays and SDO/HMI and EUV. It exhibits strikingly good correlation in time and in space with white light flare emission. It is likely that this association may prove to be very common. All three 30 THz events recently observed exhibited intense fluxes in the range of 104 solar flux units, considerably larger than those measured for the same events at microwave and sub-mm wavelengths. The 30 THz burst emission might be part of the same spectral burst component found at sub-THz frequencies. The 30 THz solar bursts open a promising new window for the study of flares at their origin

  6. Evidence of Significant Energy Input in the Late Phase of a Solar Flare from NuSTAR X-Ray Observations

    Science.gov (United States)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; Wright, Paul J.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 1046 cm‑3, and density estimated at (2.5–6.0) × 108 cm‑3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  7. Radio Nondetection of the SGR 1806-20 Giant Flare and Implications for Fast Radio Bursts

    Science.gov (United States)

    Tendulkar, Shriharsh P.; Kaspi, Victoria M.; Patel, Chitrang

    2016-08-01

    We analyze archival data from the Parkes radio telescope, which was observing a location 35.°6 away from SGR 1806-20 during its giant γ-ray flare of 2004 December 27. We show that no fast radio burst (FRB)-like burst counterpart was detected, and set a radio limit of 110 MJy at 1.4 GHz, including the estimated 70 dB suppression of the signal due to its location in the far sidelobe of Parkes and the predicted scattering from the interstellar medium. The upper limit for the ratio of magnetar giant flare radio to γ-ray fluence is η SGR ≲ 107 Jy ms erg-1 cm2. Based on the nondetection of a short and prompt γ-ray counterpart of 15 FRBs in γ-ray transient monitors, we set a lower limit on the fluence ratios of FRBs to be η FRB ≳ 107-9 Jy ms erg-1 cm2. The fluence ratio limit for SGR 1806-20 is inconsistent with all but one of the 15 FRBs. We discuss possible variations in the magnetar-FRB emission mechanism and observational caveats that may reconcile the theory with observations.

  8. X-ray pulsar rush in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, K.; Tsujimoto, K.; Nishiuchi, Mamiko; Yokogawa, J.; Koyama, K. [Kyoto Univ., Faculty of Science, Kyoto (Japan)

    1999-08-01

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B {approx} 10{sup 15} G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  9. Hard x-ray Morphological and Spectral Studies of the Galactic Center Molecular Cloud SGR B2: Constraining Past SGR A* Flaring Activity

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Mori, Kaya

    2015-01-01

    In 2013, NuSTAR observed the Sgr B2 region and for the first time resolved its hard X-ray emission on subarcminute scales. Two prominent features are detected above 10 keV:. a newly emerging cloud, G0.66-0.13, and the central 90 '' radius region containing two compact cores, Sgr B2(M) and Sgr B2(N...... Sgr A*. In the X-ray reflection nebula (XRN) scenario, the 3-79 keV Sgr. B2 spectrum allows us to self-consistently test the XRN model using both the Fe K alpha line and the continuum emission. The peak luminosity of the past Sgr A* outburst is constrained to L3-79keV∼5 x 1038 ergs s-1. A newly...... discovered cloud feature, G0.66-0.13, shows different timing variability. We suggest that it could be a molecular clump located in the Sgr B2 envelope reflecting the same Sgr A* outburst. In contrast, if the Sgr. B2 X-ray emission has reached a constant background level, it would imply an origin of low...

  10. INTEGRAL monitoring of the X-ray burster XTE J1739-285

    DEFF Research Database (Denmark)

    Sánchez-Fernández, C.; Kuulkers, E.; Chenevez, Jérôme;

    2008-01-01

    XTE J1739-285 is a recurrent X-ray transient first discovered by INTEGRAL as an X-ray burster. We have carried out a systematic search for X-ray bursts at various levels of accretion rate onto the Neutron Star surface during the source outbursts in 2005 and 2006. A total of 25 X-ray bursts were f...

  11. GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Hou Shujin [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lei Weihua, E-mail: xfwu@pmo.ac.cn, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-04-20

    A particularly interesting discovery in observations of GRB 121027A is that of a giant X-ray bump detected by the Swift/X-Ray Telescope. The X-ray afterglow re-brightens sharply at {approx}10{sup 3} s after the trigger by more than two orders of magnitude in less than 200 s. This X-ray bump lasts for more than 10{sup 4} s. It is quite different from typical X-ray flares. In this Letter we propose a fall-back accretion model to interpret this X-ray bump within the context of the collapse of a massive star for a long-duration gamma-ray burst. The required fall-back radius of {approx}3.5 Multiplication-Sign 10{sup 10} cm and mass of {approx}0.9-2.6 M{sub Sun} imply that a significant part of the helium envelope should survive through the mass loss during the last stage of the massive progenitor of GRB 121027A.

  12. X-Rays from Saturn and its Rings

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  13. A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    CERN Document Server

    Longcope, D W; Carranza-Fulmer, T; Qiu, J; 10.1007/s11207-010-9635-z

    2011-01-01

    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localiz...

  14. A magnetohydrodynamic model for multi-wavelength flares from Sagittarius~A$^\\star$. I. method, the near-infrared and X-ray properties

    CERN Document Server

    Li, Ya-Ping; Wang, Q Daniel

    2016-01-01

    Flares from the supermassive black hole in our Galaxy, Sagittarius~A$^\\star$ (\\sgra), are routinely observed over the last decade or so. Despite numerous observational and theoretical efforts, the nature of flares still remains poorly understood, although a few phenomenological scenarios have been proposed. In this work, we develop the Yuan et al. (2009) scenario into a magnetohydrodynamic (MHD) model for \\sgra\\ flares. This model is analogous with the theory of solar flares and coronal mass ejection in solar physics. In the model, magnetic field loops emerge from the accretion flow and are twisted to form flux ropes because of shear and turbulence. The magnetic energy is also accumulated in this process until a threshold is reached. This then results in a catastrophic evolution of the flux rope with the help of magnetic reconnection in the current sheet. In this catastrophic process, the magnetic energy will be partially converted into the energy of non-thermal electrons and their synchrotron radiation can r...

  15. Probing the emission physics and weak/soft population of Gamma-Ray Bursts with LOFT. White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing

    DEFF Research Database (Denmark)

    Amati, L.; Stratta, G.; Atteia, J.L.

    of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of general relativity? These goals are elaborated in the mission Yellow Book ( http://sci.esa.int/loft/ 53447-loft-yellow-book/ ) describing the LOFT mission as proposed in M3, which closely...... science case, but also for many other open questions in astrophysics. LOFT ’s primary instrument is the Large Area Detector (LAD), a 8 . 5 m 2 instrument operating in the 2–30 keV energy range, which will revolutionise studies of Galactic and extragalactic X-ray sources down to their fundamental time...... with an on-board alert system for the detection and rapid broadcasting to the ground of celestial bright and fast outbursts of X-rays (particularly, Gamma-ray Bursts). This paper is one of twelve White Papers that illustrate the unique potential of LOFT as an X-ray observatory in a variety of astrophysical...

  16. Hard X-ray Morphological and Spectral Studies of The Galactic Center Molecular Cloud Sgr B2: Constraining Past Sgr A* Flaring Activity

    CERN Document Server

    Zhang, Shuo; Mori, Kaya; Clavel, Maïca; Terrier, Régis; Ponti, Gabriele; Goldwurm, Andrea; Bauer, Franz E; Boggs, Steven E; Craig, William W; Christensen, Finn E; Harrison, Fiona A; Hong, Jaesub; Nynka, Melania; Stern, Daniel; Soldi, Simona; Tomsick, John A; Zhang, William W

    2015-01-01

    Galactic Center (GC) molecular cloud Sgr B2 is the best manifestation of an X-ray reflection nebula (XRN) reprocessing a past giant outburst from the supermassive black hole Sgr A*. Alternatively, Sgr B2 could be illuminated by low-energy cosmic ray electrons (LECRe) or protons (LECRp). In 2013, NuSTAR for the first time resolved Sgr B2 hard X-ray emission on sub-arcminute scales. Two prominent features are detected above 10 keV - a newly emerging cloud G0.66-0.13 and the central 90" radius region containing two compact cores Sgr B2(M) and Sgr B2(N) surrounded by diffuse emission. It is inconclusive whether the remaining level of Sgr B2 emission is still decreasing or has reached a constant background level. A decreasing Fe K$\\alpha$ emission can be best explained by XRN while a constant background emission can be best explained by LECRp. In the XRN scenario, the 3-79 keV Sgr B2 spectrum can well constrain the past Sgr A* outburst, resulting in an outburst spectrum with a peak luminosity of $L_{3-79\\rm~keV} \\...

  17. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  18. X-Ray Diffractive Optics

    Science.gov (United States)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  19. Abdominal x-ray

    Science.gov (United States)

    ... are, or may be, pregnant. Alternative Names Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... Assistant Studies, Department of Family Medicine, UW Medicine, School of Medicine, University of Washington, Seattle, WA. Also ...

  20. Extremity x-ray

    Science.gov (United States)

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Arthritis Other conditions for which the test ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Review Date 7/3/2016 Updated ...

  1. Centroiding and point response function measurements of the mirror/detector combination for the x-ray telescope on the SWIFT gamma-ray burst explorer

    Science.gov (United States)

    Ambrosi, Richard M.; Abbey, Anthony F.; Hutchinson, Ian; Willingale, Richard; Campana, Sergio; Cusumano, G.; Burkert, Wolfgang; Wells, Alan A.; Short, Alexander T.; Citterio, Oberto; Ghigo, Mauro; Tagliaferri, G.; Braeuninger, Heinrich W.

    2002-01-01

    The essential optical components of the Swift X-ray Telescope (XRT) are already developed items. They are: the flight spare x-ray mirror from the JET-X/Spectrum-X program and a MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on the XMM- Newton. The JET-X mirrors were first calibrated at the Max Plank Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996. Half energy widths (HEW) of 16 arc seconds at 1.5 keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the four years that the mirror had been in storage at the OAB, Milan, Italy. This results reported in this paper, confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the focus of the JET-X mirror to simulate the optical system of the Swift X-ray telescope. On-axis and off-axis point spread functions (PSFs) were measured and calibration data sets were used to obtain centroid positions of X-ray point sources. The results confirmed Swift's ability to determine the centroid positions of sources at 100mCrab brightness to better than 1 arc second and provided a calibration of the centroiding process as a function of source flux and off axis angle. The presence of background events in the image frame introduced errors in the centroiding process, making the choice of centroiding algorithm important. Algorithm performance and the trade-off between processing speed and centroiding accuracy were investigated.

  2. X-Ray Supernovae

    CERN Document Server

    Immler, S; Immler, Stefan; Lewin, Walter H.G.

    2002-01-01

    We present a review of X-ray observations of supernovae (SNe). By observing the (~0.1--100 keV) X-ray emission from young SNe, physical key parameters such as the circumstellar matter (CSM) density, mass-loss rate of the progenitor and temperature of the outgoing and reverse shock can be derived as a function of time. Despite intensive search over the last ~25 years, only 15 SNe have been detected in X-rays. We review the individual X-ray observations of these SNe and discuss their implications as to our understanding of the physical processes giving rise to the X-ray emission.

  3. LOBSTER - New Space X-Ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Hudec, R. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Pina, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Simon, V. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Sveda, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Inneman, A.; Semencova, V. [Center for Advanced X-ray Technologies, Reflex, Prague (Czech Republic); Skulinova, M. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic)

    2007-04-15

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science.

  4. Measurement of wavelengths and lamb shifts for inner-shell transitions in Fe XVIII-XXIV. [from solar flare X-ray spectra

    Science.gov (United States)

    Seely, J. F.; Feldman, U.; Safronova, U. I.

    1986-01-01

    The wavelengths of inner-shell 1s-2p transitions in the ions Fe XVIII-XXIV have been measured in solar flare spectra recorded by the Naval Research Laboratory crystal spectrometer (SOLFLEX) on the Air Force P78-1 spacecraft. The measurements are compared with previous measurements and with recently calculated wavelengths. It is found that the measured wavelengths are systematically larger than the wavelengths calculated using the Z-expansion method by up to 0.65 mA. For the more highly charged ions, these differences can be attributed to the QED contributions to the transition energies that are not included in the Z-expansion calculations.

  5. X-ray in Zeta-Ori

    Science.gov (United States)

    López-García, M. A.; López-Santiago, J. L.; Albacete-Colombo, J. F.; De Castro, E.

    2013-05-01

    Nearby star-forming regions are ideal laboratories to study high-energy emission processes but they usually present high absorption what makes difficult to detect the stellar population inside the molecular complex. As young late-type stars show high X-ray emission and X-ray photons are little absorbed by interstellar material, X-ray dedicated surveys are an excellent tool to detect the low-mass stellar population in optically absorbed regions. In this work, we present a study of the star-forming region Zeta-Ori and its surroundings. We combine optical, infrared and X-ray data. Properties of the X-ray emiting plasma and infrared features of the young stellar objects detected in the XMM-Newton observation are determined. The southern part of the Orion B giant molecular cloud complex harbor other star forming regions, as NGC 2023 and NGC 2024, we use this regions to compare. We study the spectral energy distribution of X-ray sources. Combining these results with infrared, the X-ray sources are classified as class I, class II and class III objects. The X-ray spectrum and ligth curve of detected X-ray sources is analyzed to found flares. We use a extincion-independent index to select the stars with circumstellar disk, and study the relationship between the present of disk and the flare energy. The results are similar to others studies and we conclude that the coronal properties of class II and class III objects in this region do not differ significantly from each other and from stars of similar infrared class in the ONC.

  6. Point spread function and centroiding accuracy measurements with the JET-X mirror and MOS CCD detector of the Swift gamma ray burst explorer's X-ray telescope

    Science.gov (United States)

    Ambrosi, R. M.; Abbey, A. F.; Hutchinson, I. B.; Willingale, R.; Wells, A.; Short, A. D. T.; Campana, S.; Citterio, O.; Tagliaferri, G.; Burkert, W.; Brauninger, H.

    2002-08-01

    The optical components of the Swift X-ray telescope (XRT) are already developed items. They are the flight spare X-ray mirror from the JET-X/Spectrum-X program and an MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on XMM-Newton (SPIE 4140 (2000) 64). The JET-X mirrors were first calibrated at the Max Plank Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996 (SPIE 2805 (1996) 56; SPIE 3114 (1997) 392). Half-energy widths of 16arcsec at 1.5keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the 4yr that the mirror had been in storage at the OAB, Milan, Italy. The results reported in this paper confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the focus of the JET-X mirror to simulate the optical system of the Swift XRT. Tolerances in the mirror focal length, the on-axis and off-axis point spread functions were measured and calibration data sets were used to obtain centroid positions of X-ray point sources. The results confirmed Swift's ability to determine the centroid positions of sources at 100mCrab brightness to better than 1arcsec and provided a calibration of the centroiding process as a function of source flux and off-axis angle. The presence of background events in the image frame introduced errors in the centroiding process and this was accounted for by reducing the sampling area used for the centroiding algorithm.

  7. A Study of Halo Coronal Mass Ejections and Related Flare and Radio Burst Observations in Solar Cycle 23

    CERN Document Server

    Georgiou, M; Pothitakis, G; Hillaris, A; Preka-Papadema, P; Moussas, X; 10.1063/1.2347981

    2010-01-01

    We present a statistical study of dynamical and kinetic characteristics of CMEs which show temporal and spatial association with flares and type II radio bursts or complex radio events of type II bursts and type IV continua. This study is based on a set of earth-directed full halo CMEs occurring during the present solar cycle, with data from the Large Angle Spectrometric Coronagraphs (LASCO) and Extreme-Ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO) mission and the Magnetic Fields Investigation (MFI) and 3-D Plasma and Energetic Particle Analyzer Investigation experiment on board the WIND spacecraft.

  8. Polarized X-ray Scattering and Birefringence in Magnetars

    Science.gov (United States)

    Barchas, Joseph; Baring, Matthew G.

    2017-01-01

    Interest in radiative processes in the super-strong magnetic regime germane to magnetars has grown over the last two decades. These processes have an inherently anisotropic and polarization-dependent character. Of particular interest is the resonant cyclotron scattering domain, where the Compton cross section is enhanced by orders of magnitude very near the cyclotron frequency -- for electrons in magnetar atmospheres, this is above 10 MeV in energy, and for protons this can be at 1-10 keV. The Compton process is dominant in the highly optically thick environs of magnetar atmospheres, and also in the magnetospheric locales for the production of the hard X-ray bursts. The detailed forms of X-ray spectra will depend intimately on the character of the Compton cross section and the emission zone geometry. The practical determination of the rate of Compton scattering depends on the polarization configuration of incoming photons. This in turn is sensitive to the details of radiation dispersion and transport in hot plasmaspheres near neutron stars. This birefringent dispersion present in strongly-magnetized plasmas can profoundly influence the determination of scattering probabilities. Such polarization transfer is usually addressed by simplifying to the transfer two normal mode intensities. The assumptions involved in this simplification such as orthonormality and "large Faraday depolarization" are valid for a wide range of parameter space, but are known to break down in important cases, such as near a cyclotron resonance. We explore the polarization transfer problem for Compton scattering including the regime where Faraday depolarization is not large. Accordingly, plasma birefringence and the generalized Faraday effect are considered explicitly as part of the transfer problem. Spectra generated from two Monte Carlo models of the transfer problem are presented, one treating isothermal atmospheres in the normal X-ray band, and the other addressing hard X-ray flares in

  9. X-Ray Polarimetry

    CERN Document Server

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band soft X-ray polarimeters based on Bragg reflection. Developments in scintillator and solid-state hard X-ray detectors facilitate construction of both modular, large area Compton scattering polarimeters and compact devices suitable for use with focusing X-ray telescopes.

  10. Diagnose Physical Conditions Near the Flare Energy-release Sites from Observations of Solar Microwave Type III Bursts

    CERN Document Server

    Tan, Baolin; Meszarosova, Hana; Huang, Guangli

    2015-01-01

    In the physics of solar flares, it is crucial to diagnose the physical conditions near the flare energy-release sites. However, so far it is unclear how do diagnose these physical conditions. Solar microwave type III burst is believed to be a sensitive signature of the primary energy release and electron accelerations in solar flares. This work takes into account the effect of magnetic field on the plasma density and developed s set of formulas which can be used to estimate the plasma density, temperature, magnetic field near the magnetic reconnection site and particle acceleration region, and the velocity and energy of electron beams. We applied these formulas to three groups of microwave type III pairs in a X-class flare, and obtained some reasonable and interesting results. This method can be applied to other microwave type III bursts to diagnose the physical conditions of source regions, and provide some basic information to understand the intrinsic nature and fundamental processes occurring near the flar...

  11. Large-angle OBServaTory with Energy Resolution for Synoptic X-ray Studies (LOBSTER-SXS)

    CERN Document Server

    Gorenstein, Paul

    2011-01-01

    The soft X-ray band hosts a larger, more diverse range of variable sources than any other region of the electromagnetic spectrum. They are stars, compact binaries, SMBH's, the X-ray components of Gamma-Ray Bursts, their X-ray afterglows, and soft X-ray flares from supernova. We describe a concept for a very wide field (~ 4 ster) modular hybrid X-ray telescope system that can measure positions of bursts and fast transients with as good as arc second accuracy, the precision required to identify fainter and increasingly more distant events. The dimensions and materials of all telescope modules are identical. All but two are part of a cylindrical lobster-eye telescope with flat double sided mirrors that focus in one dimension and utilize a coded mask for resolution in the other. Their positioning accuracy is about an arc minute. The two remaining modules are made from the same materials but configured as a Kirkpatrick-Baez telescope with longer focal length that focuses in two dimensions. When pointed it refines ...

  12. Simultaneous Optical and X-ray Observations of Flares and Rotational Modulation on the RS CVn Binary HR 1099 (V711 Tau) from the MUSICOS 1998 Campaign

    CERN Document Server

    García-Álvarez, D; Montes, D; Oliveira, J M; Doyle, J G

    2003-01-01

    We present simultaneous and continuous observations of the H$\\alpha$, H$\\beta$, He {\\sc i} D$_{3}$, Na {\\sc i} D$_{1}$,D$_{2}$ doublet and the Ca {\\sc ii} H & K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of $2\\fd8$. Two large optical flares were observed, both showing an increase in the emission of H$\\alpha$, Ca {\\sc ii} H & K, H$\\beta$ and He {\\sc i} D$_{3}$ and a strong filling-in of the Na {\\sc i} D$_{1}$,D$_{2}$ doublet. {Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria}. Rotational m...

  13. Decay phases of Swift X-ray afterglows and the forward-shock model.

    Science.gov (United States)

    Panaitescu, A

    2007-05-15

    The X-ray flux of the gamma-ray burst (GRB) afterglows monitored by the Swift satellite from January 2005 to July 2006 displays one to four phases of flux power-law decay. In chronological order, they are: the GRB tail, the 'hump', the standard decay and the post-jet-break decay. More than half of the GRB tails can be identified with the large-angle emission produced during the burst (but arriving later at observer). The remaining, slower GRB tails imply that the gamma-ray mechanism continues to radiate after the burst, as also suggested by the frequent occurrence of X-ray flares during the burst tail. The several GRB tails exhibiting a slow unbroken power-law decay until 100ks must be attributed to the forward shock. In fact, the decay of most GRB tails is also consistent with that of the forward-shock emission from a narrow jet. The X-ray light-curve hump may be due to an increase of the kinetic energy per solid angle of the forward-shock region visible to the observer, caused by either the transfer of energy from ejecta to the forward shock or the emergence of the emission from an outflow seen from a location outside the jet opening. The decay following the X-ray light-curve hump is consistent with the emission from an adiabatic blast wave but, contrary to expectations, the light-curve decay index and spectral slope during this phase are not correlated. The X-ray light curves of two dozens X-ray afterglows that followed for more than a week do not exhibit a jet break, in contrast with the behaviour of pre-Swift optical afterglows, which displayed jet breaks at 0.5-2 days. Nevertheless, the X-ray light curves of several Swift afterglows show a second steepening break at 0.4-3 days that is consistent with the break expected for a jet when its edge becomes visible to the observer.

  14. Dental x-rays

    Science.gov (United States)

    ... X-rays are a form of high energy electromagnetic radiation. The x-rays penetrate the body to form ... for detecting cavities, unless the decay is very advanced and deep. Many ... The amount of radiation given off during the procedure is less than ...

  15. Supergiant Fast X-ray Transients

    CERN Document Server

    Sidoli, Lara

    2011-01-01

    The phenomenology of a subclass of High Mass X-ray Binaries hosting a blue supergiant companion, the so-called Supergiant Fast X-ray Transients (SFXTs), is reviewed. Their number is growing, mainly thanks to the discoveries performed by the INTEGRAL satellite, then followed by soft X-rays observations (both aimed at refining the source position and at monitoring the source behavior) leading to the optical identification of the blue supergiant nature of the donor star. Their defining properties are a transient X-ray activity consisting of sporadic, fast and bright flares, (each with a variable duration between a few minutes and a few hours), reaching 1E36-1E37 erg/s. The quiescence is at a luminosity of 1E32 erg/s, while their more frequent state consists of an intermediate X-ray emission of 1E33-1E34 erg/s (1-10 keV). Only the brightest flares are detected by INTEGRAL (>17 keV) during short pointings, with no detected persistent emission. The physical mechanism driving the short outbursts is still debated, al...

  16. X-Ray-powered Macronovae

    Science.gov (United States)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  17. X-Ray Surveys

    CERN Document Server

    Giommi, P; Perri, M

    1998-01-01

    A review of recent developments in the field of X-ray surveys, especially in the hard (2-10 and 5-10 keV) bands, is given. A new detailed comparison between the measurements in the hard band and extrapolations from ROSAT counts, that takes into proper account the observed distribution of spectral slopes, is presented. Direct comparisons between deep ROSAT and BeppoSAX images show that most hard X-ray sources are also detected at soft X-ray energies. This may indicate that heavily cutoff sources, that should not be detectable in the ROSAT band but are expected in large numbers from unified AGN schemes, are in fact detected because of the emerging of either non-nuclear components, or of reflected, or partially transmitted nuclear X-rays. These soft components may complicate the estimation of the soft X-ray luminosity function and cosmological evolution of AGN.

  18. A giant gamma-ray flare from the magnetar SGR 1806-20.

    Science.gov (United States)

    Palmer, D M; Barthelmy, S; Gehrels, N; Kippen, R M; Cayton, T; Kouveliotou, C; Eichler, D; Wijers, R A M J; Woods, P M; Granot, J; Lyubarsky, Y E; Ramirez-Ruiz, E; Barbier, L; Chester, M; Cummings, J; Fenimore, E E; Finger, M H; Gaensler, B M; Hullinger, D; Krimm, H; Markwardt, C B; Nousek, J A; Parsons, A; Patel, S; Sakamoto, T; Sato, G; Suzuki, M; Tueller, J

    2005-04-28

    Two classes of rotating neutron stars-soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars-are magnetars, whose X-ray emission is powered by a very strong magnetic field (B approximately 10(15) G). SGRs occasionally become 'active', producing many short X-ray bursts. Extremely rarely, an SGR emits a giant flare with a total energy about a thousand times higher than in a typical burst. Here we report that SGR 1806-20 emitted a giant flare on 27 December 2004. The total (isotropic) flare energy is 2 x 10(46) erg, which is about a hundred times higher than the other two previously observed giant flares. The energy release probably occurred during a catastrophic reconfiguration of the neutron star's magnetic field. If the event had occurred at a larger distance, but within 40 megaparsecs, it would have resembled a short, hard gamma-ray burst, suggesting that flares from extragalactic SGRs may form a subclass of such bursts.

  19. Novel X-ray telescopes for wide-field X-ray monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hudec, R. [Academy of science of Czech Republic, Ondrejov (Czech Republic); Inneman, A. [Centre for advanced X-ray technologies Reflex sro, Prague (Czech Republic); Pina, L.; Sveda, L. [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Science

    2005-07-15

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science.

  20. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  1. The SAS-3 X-ray observatory

    Science.gov (United States)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  2. X-ray spectral properties of accretion discs in X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    White, N.E.; Stella, L.; Parmar, A.N.

    1988-01-01

    Exosat observations are used to compare the spectral properties of the persistent emission from a number of X-ray burst sources, high-luminosity low-mass X-ray binaries (LMXRB) and galactic black hole candidates with various models for X-ray emission from an accretion disk surrounding a compact object in a binary system. It is shown that only a Comptonization model provides a good fit to all of the spectra considered. The fits to the spectra of the high-luminosity LMXRB systems necessitate an additional blackbody component with a luminosity 16 to 34 percent that from the Comptonized component. 82 references.

  3. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  4. Solar hard X-rays and gamma-rays

    Institute of Scientific and Technical Information of China (English)

    甘为群; 常进; 李友平; 林春梅

    2002-01-01

    We briefly introduce our recent work on the spectral evolution of energetic protons, the beam property of accelerated electrons, the gamma-ray flare classification, the temporal features of the annihilation line, the hard X-ray delayed events, the hydrodynamic process, and the continuum emission in solar flares.

  5. The Origin of the UCSD X-ray Astronomy Program - A Personal Perspective

    Science.gov (United States)

    Peterson, Laurence E.

    2013-01-01

    I was a graduate student in the late 1950’s at the University of Minnesota in the Cosmic Ray Group under Prof. John R. Winckler. He had a project monitoring Cosmic ray time variations from an extensive series of balloon flights using simple detectors during the International Geophysical Year 1957-58. During the 20 March 1958 flight, a short 18 sec. burst of high energy radiation was observed simultaneously with a class II Solar flare. From the ratio of the Geiger counter rate to the energy loss in the ionization chamber, it was determined this radiation was likely hard X-rays or low-energy gamma rays and not energetic particles. Further analysis using information from other concurrent observations indicated the X-rays were likely due to Bremsstrahlung from energetic electrons accelerated in the solar flare magnetic field; these same electrons produced radio emissions. This first detection of extra-terrestrial X- or gamma rays showed the importance of non-thermal processes in Astrophysical phenomena. Winckler and I were interested by the possibility of non-solar hard X-rays. While completing my thesis on a Cosmic ray topic, I initiated a balloon program to develop more sensitive collimated low-background scintillation counters. This led to a proposal to the newly formed NASA to place an exploratory instrument on the 1st Orbiting Solar Observatory launched 7 March 1962. In August that year, I assumed a tenure-track position at UCSD; the data analysis of OSO-1 and the balloon program were transferred to UCSD to initiate the X-ray Astronomy program. The discovery of Cosmic X-ray sources in the 1-10 Kev range on a rocket flight in June 1962 by Giacconi and colleagues gave impetus to the UCSD activities. It seemed evident cosmic X-ray sources could be detected above 20 Kev using high-flying balloons. Early results included measurements of the 50 million K gas in SCO X-1, and the X-ray continuum from the Crab Nebula characterized by a power-law dN/dE ~ E-2.2. The

  6. Hard X-ray Spectral Investigations of Gamma-ray Bursts, 120521C and 130606A, at High-redshift z~6

    CERN Document Server

    Yasuda, Tetsuya; Enomoto, Junich; Tashiro, Makoto S

    2016-01-01

    This study presents the temporal and spectral analysis of the prompt emission of two high-redshift gamma-ray bursts (GRBs), 120521C at $z\\sim6$ and 130606A at $z\\sim5.91$, which were performed using the Swift-XRT/BAT and the Suzaku-WAM simultaneously. Based on follow-up XRT observations, the longest durations of the prompt emissions were approximately $80$ s (120521C) and $360$ s (130606A) in the rest frame of each GRB, which are categorized as long-duration GRBs, but are insufficiently long compared with the predicted duration of GRBs that originate from first-generation stars. Because of the wide bandpass of the instruments covering the ranges of 15 keV--5 MeV (BAT-WAM) and 0.3 keV--5.0 MeV (XRT-BAT-WAM), we successfully determined the $\

  7. X-Ray Diffraction.

    Science.gov (United States)

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  8. Pelvis x-ray

    Science.gov (United States)

    X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...

  9. X-ray - skeleton

    Science.gov (United States)

    ... x-ray particles pass through the body. A computer or special film records the images. Structures that ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  10. Bone x-ray

    Science.gov (United States)

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  11. Hand x-ray

    Science.gov (United States)

    ... include fractures, bone tumors , degenerative bone conditions, and osteomyelitis (inflammation of the bone caused by an infection). ... chap 46. Read More Bone tumor Broken bone Osteomyelitis X-ray Review Date 9/8/2014 Updated ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  13. X-ray insights into star and planet formation.

    Science.gov (United States)

    Feigelson, Eric D

    2010-04-20

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  16. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  17. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  18. SMM X-ray polychromator

    Science.gov (United States)

    Strong, Keith T.; Haisch, Bernhard M. (Compiler); Lemen, James R. (Compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

    1988-01-01

    The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

  19. REACTION RATES OF {sup 64}Ge(p,γ){sup 65}As AND {sup 65}As(p,γ){sup 66}Se AND THE EXTENT OF NUCLEOSYNTHESIS IN TYPE I X-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Y. H.; He, J. J.; Wang, M.; Zhang, Y. H.; Zhou, X. H.; Xu, H. S. [Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Parikh, A. [Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, Barcelona E-08036 (Spain); Schatz, H.; Brown, B. A. [Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Guo, B., E-mail: jianjunhe@impcas.ac.cn, E-mail: anuj.r.parikh@upc.edu, E-mail: schatz@nscl.msu.edu [China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413 (China)

    2016-02-10

    The extent of nucleosynthesis in models of type I X-ray bursts (XRBs) and the associated impact on the energy released in these explosive events are sensitive to nuclear masses and reaction rates around the {sup 64}Ge waiting point. Using the well known mass of {sup 64}Ge, the recently measured {sup 65}As mass, and large-scale shell model calculations, we have determined new thermonuclear rates of the {sup 64}Ge(p,γ){sup 65}As and {sup 65}As(p,γ){sup 66}Se reactions with reliable uncertainties. The new reaction rates differ significantly from previously published rates. Using the new data, we analyze the impact of the new rates and the remaining nuclear physics uncertainties on the {sup 64}Ge waiting point in a number of representative one-zone XRB models. We find that in contrast to previous work, when all relevant uncertainties are considered, a strong {sup 64}Ge rp-process waiting point cannot be ruled out. The nuclear physics uncertainties strongly affect XRB model predictions of the synthesis of {sup 64}Zn, the synthesis of nuclei beyond A = 64, the energy generation, and the burst light curve. We also identify key nuclear uncertainties that need to be addressed to determine the role of the {sup 64}Ge waiting point in XRBs. These include the remaining uncertainty in the {sup 65}As mass, the uncertainty of the {sup 66}Se mass, and the remaining uncertainty in the {sup 65}As(p,γ){sup 66}Se reaction rate, which mainly originates from uncertain resonance energies.

  20. X-ray emission processes in stars

    CERN Document Server

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the HR diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, evolution of X-ray activity with age), to X-ray generating processes (e.g. accretion, jets, magnetically confined winds) that were poorly understood in the pre-Chandra/XMM-Newton era. I discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics no...

  1. X-Ray Protection

    Science.gov (United States)

    1955-01-01

    15,000. • When developed In Kodak liquid X-ray developer for 5 min at a temperature of 200 C. b Film sensitivities vary with photon energy by the...for example temporomandibular -joint exposures where a skin dose of 25 r or more may be obtained during a single exposure with 65 kvp, 1.5 mm aluminum...communication. W. J. Updegrave, Temporomandibular articulation-X-ray examina- tion, Dental Radiography and Photography 26, No. 3, 41 (1953). H. 0. Wyckoff, R. J

  2. A model for the optical flares from the Galactic transient SWIFT J195509+261406

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Galactic hard X-ray transient SWIFT J195509+261406 was first observed as gamma-ray burst GRB 070610.Within 3 days after the burst,more than forty optical flares had been observed.Here,we propose that this peculiar event should be associated with a white dwarf.The hard X-ray burst itself may be triggered by a collision between two planets orbiting the white dwarf.Some cracked fragments produced in the collision then fell onto the surface of the white dwarf over several days,giving birth to the observed optical flares via cyclotron radiation.Our model can satisfactorily explain the basic features of the observations.

  3. RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937: Long-Term Variability and the 2007 March Event

    Science.gov (United States)

    Dib, Rim; Kaspi, Victoria M.; Gavriil, Fotis P.

    2009-01-01

    After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (deltav/v = 1.63(2) x 10(exp -5)) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (deltav/v = 2.91(9) x 10(exp -6)) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three flares and discuss changes in the hardness ratio. In our pulse profile study, we show that the profile exhibited large variations near the peak of the first two flares, and several small short-term profile variations during the most recent flare. Finally, we report on the discovery of a small burst 27 days after the peak of the last flare, the fourth burst discovered from this source. We discuss the relationships between the observed properties in the framework of the magnetar model.

  4. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  5. Method of separation of celestial gamma-ray bursts from solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, K.W.; White, R.S. (Institute of Geophysics and Planetary Physics, UC Riverside, California 92521 (United States)); Klebesadel, R.W.; Laros, J.G. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1991-09-01

    We recently discovered 217 new'' celestial gamma-ray burst candidates from the new'' burst search of the PVO real time data base.[sup 1] The burst search covered the time period from September 1978 to July 1988. Sixty were confirmed by at lest on other spacecraft, e.g., ISEE-3, V-11, V-12, etc. None triggered the PVO high time resolution memory. In this paper we describe a new algorithm based ont eh relationship between time width [ital T][sub [ital w

  6. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    1981-01-01

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  7. X-ray Time Lags in TeV Blazars

    CERN Document Server

    Chen, Xuhui; Liang, Edison; Böttcher, Markus

    2011-01-01

    We use Monte Carlo/Fokker-Planck simulations to study the X-ray time lags. Our results show that soft lags will be observed as long as the decay of the flare is dominated by radiative cooling, even when acceleration and cooling timescales are similar. Hard lags can be produced in presence of a competitive achromatic particle energy loss mechanism if the acceleration process operates on a timescale such that particles are slowly moved towards higher energy while the flare evolves. In this type of scenario, the {\\gamma} -ray/X-ray quadratic relation is also reproduced.

  8. X-ray Time Lags in TeV Blazars

    Indian Academy of Sciences (India)

    X. Chen; G. Fossati; E. Liang; M. Böttcher

    2011-03-01

    We use Monte Carlo/Fokker–Planck simulations to study the X-ray time lags. Our results show that soft lags will be observed as long as the decay of the flare is dominated by radiative cooling, even when acceleration and cooling time scales are similar. Hard lags can be produced in the presence of a competitive achromatic particle energy loss mechanism if the acceleration process operates on a time scale such that particles are slowly moved towards higher energy while the flare evolves. In this type of scenario, the -ray/X-ray quadratic relation is also reproduced.

  9. X-ray Observations of Neutron Star Binaries: Evidence for Millisecond Spins

    OpenAIRE

    Strohmayer, Tod E.

    2001-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries (LMXB), a long sought goal of X-ray astronomy. I briefly review the status of our knowledge of these oscillations. ...

  10. X-Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  11. Analysis of the flare stars radio bursts parameters at the decameter wavelengths

    Science.gov (United States)

    Konovalenko, A. A.; Koliadin, V. L.; Boiko, A. I.; Zarka, Ph.; Griessmeier, J.-M.; Denis, L.; Coffre, A.; Rucker, H. O.; Zaitsev, V. V.; Litvinenko, G. V.; Melnik, V. N.; Stanislavsky, A. A.; Stepkin, S. V.; Mukha, D. V.; Brazhenko, A.; Leitzinger, M.; Odret, P.; Scherf, M.

    2012-09-01

    Detection of decameter sporadic radio emission from flare stars AD Leonis and EV Lacertae were carried out with UTR-2 radio telescope in the range of 16.5- 33 MHz during 2011 observational campaign. Criterion to discriminate particular events from stars and continuous sources in the main beam (ON) and two diverted beams (OFF), where true events should not appear, are discussed.

  12. X-ray Flashes from Off-axis Nonuniform Jets

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ping Jin; Da-Ming Wei

    2004-01-01

    It has been widely believed that the outflows in gamma-ray bursts are jetted and some jets may have structures like ∈(θ) ∝θ-κ. We check the possibility that X-ray flashes come from such jets. Both qualitative and quantitative analyses have shown that this model can reproduce most of the observational features of both X-ray flashes and gamma-ray bursts. Using the usual parameters of gamma-ray bursts, we have carried out numerical calculations for both uniform and nonuniform jets, of their fluxes, spectra and peak energies. It seems that nonuniform jets are more appropriate to these observational properties than uniform jets. We have also shown that in our model the observational ratio of gamma-ray bursts to X-ray flashes is about a few units.

  13. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    Science.gov (United States)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  14. The Young Binary DQ Tau: A Hunt For X-ray Emission From Colliding Magnetospheres

    CERN Document Server

    Getman, Konstantin V; Salter, Demerese M; Garmire, Gordon P; Hogerheijde, Michiel R

    2011-01-01

    The young high-eccentricity binary DQ Tau exhibits powerful recurring millimeter-band (mm) flaring attributed to collisions between the two stellar magnetospheres near periastron, when the stars are separated by only ~8Rstar. These magnetospheric interactions are expected to have scales and magnetic field strengths comparable to those of large X-ray flares from single pre-main-sequence (PMS) stars observed in the Chandra Orion Ultradeep Project (COUP). To search for X-rays arising from processes associated with colliding magnetospheres, we performed simultaneous X-ray and mm observations of DQ Tau near periastron phase. We report here several results. 1) As anticipated, DQ Tau was caught in a flare state in both mm and X-rays. A single long X-ray flare spanned the entire 16.5 hour Chandra exposure. 2) The inferred morphology, duration, and plasma temperature of the X-ray flare are typical of those of large flares from COUP stars. 3) However, our study provides three lines of evidence that this X-ray flare lik...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  16. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small dose ... to produce pictures of the inside of the abdominal cavity. It is used to evaluate the stomach, liver, ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... radiation like light or radio waves. X-rays pass through most objects, including the body. Once it ... organs, allow more of the x-rays to pass through them. As a result, bones appear white ...

  20. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your privacy. Information entered here ...