WorldWideScience

Sample records for burst reactors

  1. Concept for LEU Burst Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    Design and performance of a proposed LEU burst reactor are sketched. Salient conclusions reached are the following: size would be ~1,500 kg or greater, depending on the size of the central cavity; internal stresses during burst require split rings for relief; the reactor would likely require multiple control and safety rods for fine control; the energy spectrum would be comparable to that of HEU machines; and burst yields and steady-state power levels will be significantly greater in an LEU reactor.

  2. Concept for LEU Burst Reactor

    International Nuclear Information System (INIS)

    Design and performance of a proposed LEU burst reactor are sketched. Salient conclusions reached are the following: size would be ~1,500 kg or greater, depending on the size of the central cavity; internal stresses during burst require split rings for relief; the reactor would likely require multiple control and safety rods for fine control; the energy spectrum would be comparable to that of HEU machines; and burst yields and steady-state power levels will be significantly greater in an LEU reactor.

  3. Thermomechanical analysis of fast-burst reactors

    International Nuclear Information System (INIS)

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor

  4. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  5. Fast Burst Reactors in the United States of America

    International Nuclear Information System (INIS)

    Early in 1953, the bare uranium metal reactor, Lady Godiva, produced self-quenching fission bursts for the first time. Since then, seven progeny of Godiva have been produced in the USA, and at least two more are nascent. Fast burst reactors which have operated in the USA are listed in Table I, which shows time of start-up, nominal fission yield per burst and full width of pulse at half maximum power. The first five employ enriched uranium metal (∼93.5% U285); the three latest models contain an alloy of uranium and molybdenum which permits operation at higher temperatures, hence higher fission densities. Essential design features of these reactors with regard to a variety of pulse irradiation applications are discussed together with mechanical limitations and some advanced design proposals. (author)

  6. Burst slug detection system in french power reactors (1961)

    International Nuclear Information System (INIS)

    Gas samples are taken from the channels of the reactor and the short lived fission products are electrostatically collected to be analysed by a phosphor and photomultiplier system. The electrostatic collection and rotating electrode detector is described and its main uses exposed. Experience has shown the interest of measuring the evolution of fission products activities and not their absolute value only. In this way, data processing equipment have been designed and adapted to the detection apparatus. The system developed and realized for the G-l - G-2 - G-3 - EDF-1 - EDF-2 reactors are compared. (authors)

  7. Reactor dynamics and stability analysis of a burst-mode gas core reactor, Brayton cycle space power system

    International Nuclear Information System (INIS)

    Reactor dynamics and system stability studies are performed on a conceptual burst-mode gaseous core reactor space nuclear power system. This concept operates on a closed Brayton cycle in the burst mode (on the order of 100-MW output for a few thousand seconds) using a disk magnetohydrodynamic generator for energy conversion. The fuel is a gaseous mixture of UF4 or UF6 and helium. Nonlinear dynamic analysis is performed using circulating-fuel, point-reactor-kinetics equations along with thermodynamic, lumped-parameter heat transfer and one-dimensional isentropic flow equations. The gaseous nature of the fuel plus the fact that the fuel is circulating lead to dynamic behavior that is quite different from that of conventional solid-core systems. For the transients examined, Doppler fuel temperature and moderator temperature feedbacks are insignificant when compared with reactivity feedback associated with fuel gas density variations. The gaseous fuel density power coefficient of reactivity is capable of rapidly stabilizing the system, within a few seconds, even when large positive reactivity insertions are imposed; however, because of the strength of this feedback, standard external reactivity insertions alone are inadequate to bring about significant power level changes during normal reactor operation. Additional methods of reactivity control, such as changes in the gaseous of fuel mass flow rate or core inlet pressure, are required to achieve desired power level control. Finally, linear stability analysis gives results that are qualitatively in agreement with the nonlinear analysis

  8. Fatigue experiment on bursting disk device in non-active heat discharging system of chinese experimentation fast reactor

    International Nuclear Information System (INIS)

    Passive residual heat removal system is very important for faster reactors to ensure its safety. Bursting disk is one passive discharging device under over-pressure. Action performance of the bursting diak is carried out by adding fatigue loads repeatedly in this paper. The load stress is 80% of the nominal bursting pressure of the bursting disk, and the load cycles is over 105. The experimental result shows that the action pressure difference before and after the fatigue experiment of the bursting disk is less than 1.5%, which indicates that the fatigue resistance of the bursting disk for the passive residual heat removal system is excellent, and it can ensure the reliable work of the passive system. (authors)

  9. Modifications of the PRONTO 3D finite element program tailored to fast burst nuclear reactor design

    International Nuclear Information System (INIS)

    This update discusses modifications of PRONTO 3D tailored to the design of fast burst nuclear reactors. A thermoelastic constitutive model and spatially variant thermal history load were added for this special application. Included are descriptions of the thermoelastic constitutive model and the thermal loading algorithm, two example problems used to benchmark the new capability, a user's guide, and PRONTO 3D input files for the example problems. The results from PRONTO 3D thermoelastic finite element analysis are benchmarked against measured data and finite difference calculations. PRONTO 3D is a three-dimensional transient solid dynamics code for analyzing large deformations of highly non-linear materials subjected to high strain rates. The code modifications are implemented in PRONTO 3D Version 5.3.3. 12 refs., 30 figs., 9 tabs

  10. Power burst reactor facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, addition shielding, and penetration of the present concrete shield with a collimating and (optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam existing from the collimator port is predicted to be of sufficient intensity (∼ 1010) neutrons/cm2-s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 references, 11 figures, 3 tables

  11. Characteristics of UO2-Zircaloy fuel rod materials from the Saxton reactor for use in power burst facility

    International Nuclear Information System (INIS)

    This report describes the destructive and nondestructive characterization studies performed on Zircaloy-4-clad UO2 fuel rods taken from the Saxton reactor. The results of the studies and a description of the techniques used in performing the studies are included. The fuel rods will now be used in a series of experiments to be conducted in the Power Burst Facility at the Idaho National Engineering Laboratory

  12. Characteristics of UO/sub 2/-Zircaloy fuel rod materials from the Saxton reactor for use in power burst facility

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, G.W.; Murdock, B.A.; Quapp, W.J.; Hobbins, R.B.; Ising, R.H. (comps.)

    1976-09-01

    This report describes the destructive and nondestructive characterization studies performed on Zircaloy-4-clad UO/sub 2/ fuel rods taken from the Saxton reactor. The results of the studies and a description of the techniques used in performing the studies are included. The fuel rods will now be used in a series of experiments to be conducted in the Power Burst Facility at the Idaho National Engineering Laboratory.

  13. A theoretical study of destructive nuclear bursts in fast power reactors

    International Nuclear Information System (INIS)

    An analytic method of calculating the energy release in destructive nuclear bursts in fast reactors was given by Bethe and Tait. This treatment made several major assumptions, the consequences of which needed investigation. Some changes in the formulation were made during maximum accident calculations for EBR-II. Three major assumptions in the original method involved the neglect of wave propagation, the use of a constant rate of exponential power rise during the positive period range, and the neglect of power generated thereafter. The latter two assumptions have compensating tendencies. An exact, numerical solution on the IBM-704 enabled a testing of the importance of these hypotheses, some results having been given in preliminary fashion. Detailed comparisons of the exact solution with the original analytical method are presented herein. An improved quasi-analytical formulation, which still neglects wave propagation, is used to ascertain the importance of this assumption and define boundaries of its applicability. Investigations of the sensitivity of energy yield to parameters in the equation of state have led to scaling laws, based on the proportionality of excess reactivity to displacements, which permit an expression of some uncertainties in the energy-pressure relationship in terms of the initial reactivity. (author)

  14. Bursting in the Belousov-Zhabotinsky Reaction added with Phenol in a Batch Reactor

    International Nuclear Information System (INIS)

    The classic Belousov-Zhabotinski reaction was modified by adding phenol as a second organic substrate that kinetically competes with the malonic acid in the reduction of Ce4+ to Ce3+ and in the removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and with a longer quiescent state, as a function of the initial phenol concentration increase. It was hypothesized that the bursting phenomenon can be explained introducing a redox cycle between the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis was experimentally and numerically tested and from the results it is possible to conclude that the bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by a p-di-hydroxy-benzene/p-benzoquinone redox cycle (author)

  15. Bursting in the Belousov-Zhabotinsky Reaction added with Phenol in a Batch Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cadena, Ariel; Agreda, Jesus, E-mail: jaagredab@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Barragan, Daniel [Escuela de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Medellin (Colombia)

    2013-12-01

    The classic Belousov-Zhabotinski reaction was modified by adding phenol as a second organic substrate that kinetically competes with the malonic acid in the reduction of Ce{sup 4+} to Ce{sup 3+} and in the removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and with a longer quiescent state, as a function of the initial phenol concentration increase. It was hypothesized that the bursting phenomenon can be explained introducing a redox cycle between the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis was experimentally and numerically tested and from the results it is possible to conclude that the bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by a p-di-hydroxy-benzene/p-benzoquinone redox cycle (author)

  16. Recent progress in the detection of bursts in the canning in French reactors

    International Nuclear Information System (INIS)

    system provide a specific signal of the fission products which is then marked on a recorder. In a case where the activity threshold is exceeded, the cell involved is isolated from the prospection system and taker, over by a 'follow-up' detector which follows the evolution of the crack. A year of working on the pile G1, which is cooled by air at atmospheric pressure, has made it possible to obtain results on the operation of the canning-burst detection appliance, which has led us to perfect the original device by installing an 'evolution-meter' of the type described above for G3. The reactor EL3, cooled by heavy water, uses a detection system based on the measurement by GM counters of the activity of the fission gases carried by diluted helium into the heavy water, then extracted by hydro-cyclones. The selectivity of the system gives it a low sensitivity to parasite activities, and an excellent performance. (author)

  17. Highly Perturbed Operational Test Configurations at the WSMR Fast Burst Reactor

    Directory of Open Access Journals (Sweden)

    Flanders T. Michael

    2016-01-01

    Full Text Available The White Sands Missile Range (WSMR MoLLY-G reactor has a long history of producing a well characterized environment for testing electronic systems/devices in fission environments. As an unmoderated, unreflected, bare critical assembly, it provides a slightly degraded fission spectrum with a 1/E tail. For radiation hardness testing of electronics, the neutron fluence is usually reported as the 1-MeV Equivalent Neutron Fluence for Silicon. In this paper, we examine additional neutron environments and characterizations ranging from low intensity neutron fields to more extreme modifications of our normal test environment.

  18. Highly Perturbed Operational Test Configurations at the WSMR Fast Burst Reactor

    Science.gov (United States)

    Flanders, T. Michael; Sparks, Mary Helen; Daniel, Joshua D.

    2016-02-01

    The White Sands Missile Range (WSMR) MoLLY-G reactor has a long history of producing a well characterized environment for testing electronic systems/devices in fission environments. As an unmoderated, unreflected, bare critical assembly, it provides a slightly degraded fission spectrum with a 1/E tail. For radiation hardness testing of electronics, the neutron fluence is usually reported as the 1-MeV Equivalent Neutron Fluence for Silicon. In this paper, we examine additional neutron environments and characterizations ranging from low intensity neutron fields to more extreme modifications of our normal test environment.

  19. Preliminary reactor physics calculations for Phase II severe fuel damage tests in the Power Burst Facility

    International Nuclear Information System (INIS)

    This report documents the results of some preliminary scoping calculations completed in support of various recent proposals for conducting advanced severe fuel damage experiments in the Power Burst Facility (PBF). For these experiments the PBF core would be modified by installation of a large (44 cm O.D.) in-pile tube. This would allow testing of large bundles of commercial fuel rods in order to study various fuel damage mechanisms. It would also allow testing of large, homogeneous cylindrical capsules of fuel-cladding materials in order to study interactions between melted fuel and selected containment materials such as steel and concrete. Calculations of estimated attainable heat generation rates have been completed for 60 cases involving parametric changes on several conceptual capsule designs and conceptual bundle designs. These calculations were based on one-dimensonal (radial) S/sub n/ transport theory models of the PBF core and enlarged experiment space. The S/sub n/ calculations were benchmarked against corresponding three-dimensional Monte Carlo calculations for two selected cases. The results obtained in this work indicate that axial and radial average heating rates of 0.06 to 1.25 watts/cm3 per MW of PBF core power are attainable in homogeneous cylindrical test capsules of various designs. For bundles of commercial fuel rods, axial average heating rates of approximately 0.16 kW/m (0.05 kW/ft) per rod per MW of core power are attainable in 289-rod assemblies of 2.5%-enriched PWR 17 x 17-type rods. This can be increased somewhat by higher test fuel enrichments, however, criticality safety considerations are expected to limit the enrichment of such large bundles to about 7% or less

  20. Device for locating burst claddings in the fuel assemblies of a fast nuclear reactor

    International Nuclear Information System (INIS)

    The device includes at least one localization module comprising a sampling selector, a pump and a neutron detector. The selector has a cylindrical casing provided with holes to which are connected sampling tubes each one linked to a core assembly and a sampling pipe which moves in rubbing contact with the internal surface of the casing. The pipe is composed of a tube fitted with a sampling head at its lower end, mounted inside and along the vertical axis of a tubular drive component. This component is held through its threaded external surface with a nut. This component can be driven rotationally by a gear wheel and by a drive located offset in relation to the axis of the selector and module. The sampling pipe is integral with the component but can be slightly pivoted about a horizontal axis inside the component. A counter weight mounted on the component applies the sampling head to the surface of the casing with a constant pressure. The invention applies in particular to liquid sodium cooled fast nuclear reactors

  1. PIN diodes for measurement of the gamma dose rate produced by the fast burst reactor operating in the gamma enhancement mode

    International Nuclear Information System (INIS)

    The Fast Burst Reactor (FBR) is operated in the gamma enhancement mode to produce long pulses of gamma radiation for special test requirements. In this particular mode of operation, varying thickness of cadmium and dysprosium loaded polyethylene are used to enhance the gamma radiation environment of the FBR. In principle, the polyethylene thermalizes the fast neutron component of the FBR, the thermal and epithermal neutrons are captured by the cadmium and dysprosium which, in turn, results in a strong capture gamma ray environment. The enhanced gamma environment is used for selected nuclear survivability tests. In addition to the total ionizing dose (measured by thermoluminescent detectors), the gamma dose rate and rate profile is of prime importance. In fact, the peak gamma dose rate is most often the desired quantity. PIN diodes have proven a very useful method for measuring the instantaneous dose rates from the FBR gamma enhanced mode of operation. This presentation describes results and characteristics of these diodes for making such measurements along with calibration methods and long term stability of the diode calibration

  2. Gamma bursts

    International Nuclear Information System (INIS)

    The Vela satellite series has recently detected gamma bursts in the 0.2-1.5MeV energy range. These bursts last an average of from 0.1 to 10s and have a fine time structure, with pulses lasting less than several tens of milliseconds. With simultaneous observations from different satellites it has been possible to determine the spatial origin of some of the bursts. No correlation, however, has been made with known objects. In spite of the fragmentary character of the information received to date, several theories have already been proposed to account for these phenomena

  3. How Long does a Burst Burst?

    CERN Document Server

    Zhang, Bin-Bin; Murase, Kohta; Connaughton, Valerie; Briggs, Michael S

    2013-01-01

    Several gamma-ray bursts (GRBs) last much longer (~ hours) in gamma-rays than typical long GRBs (~ minutes), and recently it was proposed that these "ultra-long GRBs" may form a distinct population, probably with a different (e.g. blue supergiant) progenitor than typical GRBs. However, Swift observations have suggested that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with XRT observations to investigate GRB central engine activity duration and to check whether ultra-long GRBs are special. We define burst duration t_{burst} based on both gamma-ray and X-ray light curves rather than using gamma-ray observations only. We show that the distribution of t_{burst} peaks at ~ 320s for the entire sample, with 17.6% GRBs having t_{burst} > 10^3 s and 5.4% GRBs having t_{burst} > 10^4 s. The distribution shows a tail at the long t_{burst} end. The existence of a separate population is not ruled ou...

  4. Reactors

    International Nuclear Information System (INIS)

    Purpose: To provide a spray cooling structure wherein the steam phase in a bwr reactor vessel can sufficiently be cooled and the upper cap and flanges in the vessel can be cooled rapidly which kept from direct contaction with cold water. Constitution: An apertured shielding is provided in parallel spaced apart from the inner wall surface at the upper portion of a reactor vessel equipped with a spray nozzle, and the lower end of the shielding and the inner wall of the vessel are closed to each other so as to store the cooling water. Upon spray cooling, cooling water jetting out from the nozzle cools the vapor phase in the vessel and then hits against the shielding. Then the cooling water mostly falls as it is, while partially enters through the apertures to the back of the shielding plate, abuts against stoppers and falls down. The stoppers are formed in an inverted L shape so that the spray water may not in direct contaction with the inner wall of the vessel. (Horiuchi, T.)

  5. How long does a burst burst?

    International Nuclear Information System (INIS)

    Several gamma-ray bursts (GRBs) last much longer (∼hours) in γ-rays than typical long GRBs (∼minutes), and it has recently been proposed that these 'ultra-long GRBs' may form a distinct population, probably with a different (e.g., blue supergiant) progenitor than typical GRBs. However, Swift observations suggest that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with X-Ray Telescope observations to investigate GRB central engine activity duration and to determine whether ultra-long GRBs are unusual events. We define burst duration t burst based on both γ-ray and X-ray light curves rather than using γ-ray observations alone. We find that t burst can be reliably measured in 343 GRBs. Within this 'good' sample, 21.9% GRBs have t burst ≳ 103 s and 11.5% GRBs have t burst ≳ 104 s. There is an apparent bimodal distribution of t burst in this sample. However, when we consider an 'undetermined' sample (304 GRBs) with t burst possibly falling in the gap between GRB duration T 90 and the first X-ray observational time, as well as a selection effect against t burst falling into the first Swift orbital 'dead zone' due to observation constraints, the intrinsic underlying t burst distribution is consistent with being a single component distribution. We found that the existing evidence for a separate ultra-long GRB population is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. We also discuss the theoretical implications of our results. In particular, the central engine activity duration of GRBs is generally much longer than the γ-ray T 90 duration and it does not even correlate with T 90. It would be premature to make a direct connection between T 90 and the size of the progenitor star.

  6. High sensitivity neutron bursts detecting system

    International Nuclear Information System (INIS)

    Technique and instrumentation to detect multiplicity of fast neutrons, emitted in sharp bursts, has been developed. A bank of 16 BF3 detectors, in an appropriate thermalising assembly, efficiency ∼ 16%, is used to detect neutron bursts. The output from this setup, through appropriate electronics, is divided into two paths. The first is directly connected to a computer controlled scalar. The second is connected to another similar scalar through a delay time unit (DTU). The DTU design is such that once it is triggered by a count pulse than it does not allow any counts to be recorded for a fixed dead time set at ∼ 100 μs. The difference in counts recorded directly and through DTU gives the total number of neutrons produced in bursts. This setup is being used to study lattice cracking, anomalous effects in solid deuterium systems and various reactor physics experiments. (author). 3 refs., 1 fig

  7. Thermonuclear burst oscillations

    CERN Document Server

    Watts, Anna L

    2012-01-01

    Burst oscillations, a phenomenon observed in a significant fraction of Type I (thermonuclear) X-ray bursts, involve the development of highly asymmetric brightness patches in the burning surface layers of accreting neutron stars. Intrinsically interesting as nuclear phenomena, they are also important as probes of dense matter physics and the strong gravity, high magnetic field environment of the neutron star surface. Burst oscillation frequency is also used to measure stellar spin, and doubles the sample of rapidly rotating (above 10 Hz) accreting neutron stars with known spins. Although the mechanism remains mysterious, burst oscillation models must take into account thermonuclear flame spread, nuclear processes, rapid rotation, and the dynamical role of the magnetic field. This review provides a comprehensive summary of the observational properties of burst oscillations, an assessment of the status of the theoretical models that are being developed to explain them, and an overview of how they can be used to...

  8. GLAST's GBM Burst Trigger

    Science.gov (United States)

    Band, D.; Briggs, M.; Connaughton, V.; Kippen, M.; Preece, R.

    2003-01-01

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  9. Interplanetary Type IV Bursts

    CERN Document Server

    Hillaris, Alexander; Nindos, Alexander

    2016-01-01

    In this work we study the characteristics of moving type IV radio bursts which extend to the hectometric wavelengths (interplanetary type IV or type IV IP bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprised 48 Interplanetary type IV bursts observed by the Wind/WAVES in the 13.825 MHz?20 KHz frequency range. The dynamic spec tra of the RSTN, DAM, ARTEMIS-IV, CULGOORA, Hiraiso and IZMIRAN Radio-spectrographs were used to track the evolution of the events in the low corona; these were supplemented with SXR ?ux recordings from GOES and CME data from LASCO. Positional information for the coronal bursts were obtained by the Nan\\c{c}ay radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs and SXR ?ares. The majority of the events (45) were characterized as compact; their duration was on average 106 min. This type of events were, mostly, associated with M and X class ?ares (40 out of 45) and fast CMEs; 32 of these events had CME...

  10. Interplanetary Type IV Bursts

    Science.gov (United States)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  11. A Repeating Fast Radio Burst

    CERN Document Server

    Spitler, L G; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-01-01

    Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and wh...

  12. Mixed Burst Error Correcting Codes

    OpenAIRE

    Sethi, Amita

    2015-01-01

    In this paper, we construct codes which are an improvement on the previously known block wise burst error correcting codes in terms of their error correcting capabilities. Along with different bursts in different sub-blocks, the given codes also correct overlapping bursts of a given length in two consecutive sub-blocks of a code word. Such codes are called mixed burst correcting (mbc) codes.

  13. A repeating fast radio burst

    Science.gov (United States)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  14. A repeating fast radio burst.

    Science.gov (United States)

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. PMID:26934226

  15. Introduction to Optical Burst Switching

    OpenAIRE

    KERNÁCS János; SZILÁGYI Szabolcs

    2010-01-01

    Optical Burst Switching (OBS) isconsidered a popular switching paradigm for therealization of all-optical networks due to the balance itoffers between the coarse-grained Optical CircuitSwitching (OSC) and fine-grained Optical PacketSwitching (OPS). Given that the data are switched allopticallyat the burst level, Optical Burst Switchingcombines the transparency of Optical CircuitSwitching with the benefits of statistical multiplexingin Optical Packet Switching.

  16. Sky Coverage and Burst Repetition

    OpenAIRE

    Band, David L.

    1996-01-01

    To investigate the repeater content of gamma ray burst samples I develop two models where sources burst at a constant average rate. I find that the sky coverage affects the number of repeaters in a sample predominantly through the detector livetime, and that the number of bursts in the sample is the primary parameter. Thus the repeater content of burst samples should be compared within the context of a repetition model; a direct comparison between two samples is possible only if the samples h...

  17. UWB dual burst transmit driver

    Science.gov (United States)

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  18. NEW BURST ASSEMBLY AND SCHEDULING TECHNIQUE FOR OPTICAL BURST SWITCHING NETWORKS

    OpenAIRE

    V.KAVITHA; Palanisamy, V.

    2013-01-01

    The Optical Burst Switching is a new switching technology that efficiently utilizes the bandwidth in the optical layer. The key areas to be concentrated in Optical Burst Switching (OBS) networks are the burst assembly and burst scheduling i.e., assignment of wavelengths to the incoming bursts. This study presents a New Burst Assembly and Scheduling (NBAS) technique in a simultaneous multipath transmission for burst loss recovery in OBS networks. A Redundant Burst Segmentation (RBS) is used fo...

  19. Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  20. Gamma-Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Mészáros, Péter

    2012-08-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  1. Gamma Ray Bursts

    CERN Document Server

    Gehrels, Neil; 10.1126/science.1216793

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day, last typically 10s of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  2. Dark Gamma Ray Bursts

    OpenAIRE

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2016-01-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stell...

  3. Dark Gamma Ray Bursts

    CERN Document Server

    Brdar, Vedran; Liu, Jia

    2016-01-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p-wave process than for s-wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to Standard Model particles later, the annihilation bu...

  4. Burst propagation in Texas Helimak

    Science.gov (United States)

    Pereira, F. A. C.; Toufen, D. L.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.

    2016-05-01

    We present investigations of extreme events (bursts) propagating in the Texas Helimak, a toroidal plasma device in which the radial electric field can be changed by application of bias. In the experiments analyzed, a large grid of Langmuir probes measuring ion saturation current fluctuations is used to study the burst propagation and its dependence on the applied bias voltage. We confirm previous results reported on the turbulence intermittency in the Texas Helimak, extending them to a larger radial interval with a density ranging from a uniform decay to an almost uniform value. For our analysis, we introduce an improved procedure, based on a multiprobe bidimensional conditional averaging method, to assure precise determination of burst statistical properties and their spatial profiles. We verify that intermittent bursts have properties that vary in the radial direction. The number of bursts depends on the radial position and on the applied bias voltage. On the other hand, the burst characteristic time and size do not depend on the applied bias voltage. The bias voltage modifies the vertical and radial burst velocity profiles differently. The burst velocity is smaller than the turbulence phase velocity in almost all the analyzed region.

  5. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  6. Burst Mode Transmission in GPON

    Institute of Scientific and Technical Information of China (English)

    LI Liang-chuan; ZHANG Yan-gan; LI Ling; XU Da-xiong

    2004-01-01

    In this paper, a newly approved standard G.984 for Gigabit-capable Passive Optical Networks (GPON) is introduced. Technical challenges about high-speed burst-mode data transmission in GPON are discussed and key issues such as Forward Error Correction (FEC), timing to uplink performance of burst mode are high-lighted.

  7. Scheduling start time in CDMA burst admission

    OpenAIRE

    Zhuge, L; Li, VOK

    2002-01-01

    Burst transmission protocols have been proposed in the next generation CDMA cellular systems to support short-time high-speed data communications. The existing burst admission algorithm considers only the current interference condition in the system. The burst transmission request will be rejected if the interference in the system will exceed the acceptable level with the burst admitted. In this paper we propose a new burst admission algorithm where a currently-unacceptable burst request can ...

  8. Burst Detector Sensitivity: Past, Present & Future

    OpenAIRE

    Band, David L.

    2006-01-01

    I compare the burst detection sensitivity of CGRO's BATSE, Swift's BAT, the GLAST Burst Monitor (GBM) and EXIST as a function of a burst's spectrum and duration. A detector's overall burst sensitivity depends on its energy sensitivity and set of accumulations times Delta t; these two factors shape the detected burst population. For example, relative to BATSE, the BAT's softer energy band decreases the detection rate of short, hard bursts, while the BAT's longer accumulation times increase the...

  9. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  10. Improvements of the sensitivity of burst cartridge detection

    International Nuclear Information System (INIS)

    I - Special tests for improving the sensitivity of burst cartridge detection equipment in power reactors II - Scintillator purge-flow tests using aged gas in the B.C.D. /E.D.F. 2 Summary. - The first part of this report describes the tests carried out on fission product detectors by a process in which gas is continuously injected in front of the scintillator. Using this system, the background is reduced and perturbations caused by pneumatic switches on the prospecting circuits are eliminated. The quality of the signals thus obtained permits better processing of the data and thus leads to a possible improvement in the sensitivity of burst cartridge detection. The second part gives results of tests carried out with both fresh and aged gases, the economic advantage of the latter being that it permits recycling through the reactor. Reduction of the background is less pronounced but the advantage of the stable signals is conserved. (author)

  11. Interference Resilience of Burst-by-burst Adaptive Modems

    OpenAIRE

    Torrance, J.M.; Hanzo, L.; Keller, T

    1997-01-01

    Adaptive modulation can achieve channel capacity gains by adapting t h e number of bits per transmission symbol on a burst-by-burst basis, in harmony with channel quality fluctuations. In this treatise their interference resilience is quantified and the modem mode switching levels are determined under interfered conditions. The associated performance curves are portrayed in Figures 6, 7 and 8 for target bit error rates of 1 and 0.01 %, respectively. The corresponding modem mode switching leve...

  12. Analysis of Burst Assembly Modeling for Optical Burst Switched Network

    Directory of Open Access Journals (Sweden)

    Bhumika Patel

    2013-11-01

    Full Text Available In this paper, we have study the current state of the technology, the Optical burst Switched (OBS network is the most practical in all-optical architecture. Here we define how Burst Assembly will carried out and also here in the network architecture each node is consist of Core router and Edge router. Moreover we define challenges faced at practical implementation of OBS and proposed its unique solution at the node as Delay model.

  13. FERMIGBRST - Fermi GBM Burst Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — This table lists all of the triggers observed by a subset of the 14 GBM detectors (12 NaI and 2 BGO) which have been classified as gamma-ray bursts (GRBs). Note...

  14. SWIFT and BATSE bursts' classification

    CERN Document Server

    Horvath, I; Balazs, L G; Tusnady, G; Veres, P

    2009-01-01

    Two classes of gamma-ray bursts were identified in the BATSE catalogs characterized by their durations. There were also some indications for the existence of a third type of gamma-ray bursts. Swift satellite detectors have different spectral sensitivity than pre-Swift ones for GRBs. Therefore in this paper we analyze the bursts' duration distribution and also the duration-hardness bivariate distribution, published in The First BAT Catalog. Similarly to the BATSE data, to explain the BAT GRBs' duration distribution three components are needed. Although, the relative frequencies of the groups are different than they were in the BATSE GRB sample, the difference in the instrument spectral sensitivities can explain this bias in a natural way. This means theoretical models may have to explain three different type of gamma-ray bursts.

  15. Disinhibition Bursting of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Collin J Lobb

    2011-05-01

    Full Text Available Substantia nigra pars compacta (SNpc dopaminergic neurons receive strong tonic inputs from GABAergic neurons in the substantia nigra pars reticulata (SNpr and globus pallidus (GP, and glutamatergic neurons in the subthalamic nucleus. The presence of these tonic inputs raises the possibility that phasic disinhibition may trigger phasic bursts in dopaminergic neurons. We first applied constant NMDA and GABAA conductances onto a two-compartment single cell model of the dopaminergic neuron (Kuznetsov et al., 2006. The model exhibited disinhibition bursting upon stepwise removal of inhibition. A further bifurcation analysis suggests that disinhibition may be more robust than excitation alone in that for most levels of NMDA conductance, the cell remains capable of bursting even after a complete removal of inhibition, whereas too much excitatory input will drive the cell into depolarization block. To investigate the network dynamics of disinhibition, we used a modified version of an integrate-and-fire based model of the basal ganglia (Humphries et al., 2006. Synaptic activity generated in the network was delivered to the two-compartment single cell dopaminergic neuron. Phasic activation of the D1-expressing medium spiny neurons in the striatum (D1STR produced disinhibition bursts in dopaminergic neurons through the direct pathway (D1STR to SNpr to SNpc. Anatomical studies have shown that D1STR neurons have collaterals that terminate in GP. Adding these collaterals to the model, we found that striatal activation increased the intra-burst firing frequency of the disinhibition burst as the weight of this connection was increased. Our studies suggest that striatal activation is a robust means by which disinhibition bursts can be generated by SNpc dopaminergic neurons, and that recruitment of the indirect pathway via collaterals may enhance disinhibition bursting.

  16. Chimera states in bursting neurons

    OpenAIRE

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2015-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e. disorder), coherent, chimera and multi-chimera states. Surprisingly, we find that chimera and multi-chimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is i...

  17. Burst Suppression: A Review and New Insights

    OpenAIRE

    Jonathan Dillon Kenny; M. Brandon Westover; ShiNung Ching; Brown, Emery N.; Ken Solt

    2014-01-01

    Burst suppression is a pattern of brain electrical activity characterized by alternating periods of high-amplitude bursts and electrical silence. Burst suppression can arise from several different pathological conditions, as well as from general anesthesia. Here we review current algorithms that are used to quantify burst suppression, its various etiologies, and possible underlying mechanisms. We then review clinical applications of anesthetic-induced burst suppression. Finally, we report the...

  18. Mining Gamma-Ray Burst Data

    OpenAIRE

    Hakkila, Jon; Roiger, Richard J.; Haglin, David J.; Mallozzi, Robert S.; Pendleton, Geoffrey N.; Meegan, Charles A.

    2000-01-01

    Gamma-ray bursts provide what is probably one of the messiest of all astrophysical data sets. Burst class properties are indistinct, as overlapping characteristics of individual bursts are convolved with effects of instrumental and sampling biases. Despite these complexities, data mining techniques have allowed new insights to be made about gamma-ray burst data. We demonstrate how data mining techniques have simultaneously allowed us to learn about gamma-ray burst detectors and data collectio...

  19. Evaluation of Burst Loss Rate of an Optical Burst Switching (OBS) Network with Wavelength Conversion Capability

    OpenAIRE

    Reza, Md. Shamim; Hossain, Md. Maruf; Majumder, Satya Prasad

    2010-01-01

    This paper presents a new analytical model for calculating burst loss rate (BLR) in a slotted optical burst switched network. The analytical result leads to a framework which provides guidelines for optical burst switched networks. Wavelength converter is used for burst contention resolution. The effect of several design parameters such as burst arrival probability, wavelength conversion capability, number of slots per burst and number of wavelengths is incorporated on the above performance m...

  20. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  1. Chimera states in bursting neurons

    Science.gov (United States)

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  2. Bursts in intermittent aeolian saltation

    CERN Document Server

    Carneiro, M V; Herrmann, H J

    2014-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of intermittent flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the critical Shields number $\\theta_c$. The time delay between each burst decreases on average with the increase of the Shields number until saltation becomes non-intermittent and the sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain intermittent flux even below the threshold $\\theta_c$ for natural saltation initiation.

  3. Tube-burst response of irradiated Zircaloy spent-fuel cladding

    International Nuclear Information System (INIS)

    Transient-heating tube-burst tests were conducted on a 50.8-cm length of Zircaloy cladding obtained from spent-fuel rods irradiated in the H.B. Robinson power reactor to a peak burn-up of 30 MWD/kg. Internal electrical resistance heaters were used to achieve nominal heating rates of 28$degree$C/s for the tests. The tests were conducted in steam and the independent experimental variable was the initial level of helium pressurization. Tube burst pressures varied from 0.965 to 12.514 MPa. No significant difference in burst behavior between unirradiated and spent nuclear fuel Zircaloy cladding was observed experimentally. No influence of axial restraint on burst strains was noted. 9 refs

  4. US Army Nuclear Burst Detection System (NBDS)

    International Nuclear Information System (INIS)

    The Nuclear Burst Detection System (NBDS) was developed to meet the Army requirements of an unattended, automatic nuclear burst reporting system. It provides pertinent data for battlefield commanders on a timely basis with high reliability

  5. Preemption window for burst differentiation in OBS

    OpenAIRE

    Klinkowski, Miroslaw; Careglio, Davide; Morató, Daniel; Solé Pareta, Josep

    2008-01-01

    This paper presents a novel control architecture for optical burst switching networks to efficiently apply burst preemption without the resources overbooking, which is specific to conventional OBS. Simulation results prove the effectiveness of this proposal.

  6. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  7. Periodicities in gamma ray bursts

    International Nuclear Information System (INIS)

    Gamma ray burst models based on magnetic neutron stars face a problem of account for the scarcity of observed periods. Both this scarcity and the typical period found when any is detected are explained if the neutron stars are accreting in binary systems

  8. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    OpenAIRE

    Abubakar Muhammad Umaru; Muhammad Shafie Abd Latiff; Yahaya Coulibaly

    2014-01-01

    The optical burst switching (OBS) paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT) burst assembly algorithm via simulation. Simulation results sh...

  9. Two-dimensional burst identification codes and their use in burst correction

    OpenAIRE

    1988-01-01

    A new class of codes, called burst identification codes, is defined and studied. These codes can be used to determine the patterns of burst errors. Two-dimensional burst correcting codes can be easily constructed from burst identification codes. The resulting class of codes is simple to implement and has lower redundancy than other comparable codes. The results are pertinent to the study of radiation effects on VLSI RAM chips, which can cause two-dimensional bursts of errors.

  10. Gamma-Ray Bursts: The End Game

    Science.gov (United States)

    Lamb, Don

    1997-11-01

    The nature of gamma-ray bursts has been one of the greatest unsolved mysteries in astrophysics for more than a quarter century. A major reason for this is that no definite counterparts to the bursts could be found at other wavelengths, despite intense efforts spanning more than two decades. Consequently, the study of gamma-ray bursts has been isolated from the rest of astronomy. Scientists studying them have had only the laws of physics and the bursts themselves to guide them in attempting to solve the burst mystery. All of this changed dramatically with the discovery earlier this year of fading X-ray and optical sources in the arcminute-sized positional error boxes of several gamma-ray bursts. For the first time, temporal, as well as spatial, coincidence could be used to associate these X-ray and optical sources with the gamma-ray bursts. As a result, the odds are great that the fading X-ray and optical sources are counterparts of the bursts, and that the study of gamma-ray bursts has finally been connected with the rest of astronomy. In this talk, we describe the dramatic new information about the nature of gamma-ray bursts that the X-ray, optical, and radio observations of the fading sources have provided, and emphasize the implications that this information has for the distance scale to the bursts.

  11. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    OpenAIRE

    Balamurugan, A. M.; A. Sivasubramanian

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The...

  12. Bubbles and Monetary Policy: To Burst or not to Burst?

    OpenAIRE

    König, Philipp; POTHIER, David

    2015-01-01

    The question of whether monetary policy should target asset prices remains a contentious issue. Prior to the 2007/08 financial crisis, central banks opted for a wait-and-see approach, remaining passive during the build-up of asset price bubbles but actively seeking to stabilize prices and output after they burst. The macroeconomic and financial turbulence that followed the subprime housing bubble has led to a renewed debate concerning monetary policy’s role in maintaining financial stability....

  13. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    Science.gov (United States)

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  14. Intermittent bursts induced by double tearing mode reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Lai; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-06-15

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.

  15. Intermittent bursts induced by double tearing mode reconnection

    International Nuclear Information System (INIS)

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines

  16. Pulse Phase Dependence of the Magnetar Bursts

    Indian Academy of Sciences (India)

    Chetana Jain; Anjan Dutta; Biswajit Paul

    2007-12-01

    We report here results from a study of X-ray bursts from 3 magnetar candidates (SGR 1806–20, SGR 1900+14 and AXP 1E 2259+586). We have searched for a pulse phase dependence of the X-ray burst rate from these sources. X-ray light curves were obtained with the Proportional Counter Array on-board the Rossi X-ray Timing Explorer during the periods of intense burst activity in these sources. On detailed analysis of the three sources, we found a very significant burst rate for all pulsar phases. However, some locations appear to produce bursts slightly more often, rendering the non-isotropic distribution. Only in the case of SGR 1900+14, there is a clear pulse phase dependence of burst rate.

  17. Bursting for enhanced ablation of materials

    Science.gov (United States)

    Hendow, Sami; Rea, Edward; Kosa, Nadhir; Bengtsson, Magnus; Shakir, Sami

    2014-03-01

    A significant enhancement in the rate of material removal is demonstrated using a nanosecond-pulsed UV fiber laser in multi-pulsing burst mode, as compared to the case without bursting. Percussion drilling and scribing of thin-film and bulk material tests show that, in general, laser bursts with increased pulse count and reduced pulse spacing show higher rates of material removal. A considerable improvement in removal rate is demonstrated, when bursting is applied to scribing of mono-crystalline silicon (m-Si) and up to 30% in percussion drilling speed. Likewise, improved material removal is demonstrated for scribing of thin film of indium tin oxide (ITO) on glass or metal film on sapphire. Examples of material processing are given with and without bursting at similar experimental conditions of average power, scan speed, and burst/pulse energies. Experimental results included are for m-Si, ITO thin films on glass, and metal films on sapphire.

  18. United assembly algorithm for optical burst switching

    Institute of Scientific and Technical Information of China (English)

    Jinhui Yu(于金辉); Yijun Yang(杨教军); Yuehua Chen(陈月华); Ge Fan(范戈)

    2003-01-01

    Optical burst switching (OBS) is a promising optical switching technology. The burst assembly algorithm controls burst assembly, which significantly impacts performance of OBS network. This paper provides a new assembly algorithm, united assembly algorithm, which has more practicability than conventional algorithms. In addition, some factors impacting selections of parameters of this algorithm are discussed and the performance of this algorithm is studied by computer simulation.

  19. Ballerina - pirouettes in search of gamma bursts

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Lund, Niels; Pedersen, Henrik; Hjorth, J.

    1999-01-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty, Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are...... proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX....

  20. Bubble burst as jamming phase transition

    CERN Document Server

    Nishinari, Katsuhiro; Saito, Yukiko Umeno; Watanabe, Tsutomu

    2010-01-01

    Recently research on bubble and its burst attract much interest of researchers in various field such as economics and physics. Economists have been regarding bubble as a disorder in prices. However, this research strategy has overlooked an importance of the volume of transactions. In this paper, we have proposed a bubble burst model by focusing the transactions incorporating a traffic model that represents spontaneous traffic jam. We find that the phenomenon of bubble burst shares many similar properties with traffic jam formation by comparing data taken from US housing market. Our result suggests that the transaction could be a driving force of bursting phenomenon.

  1. Bursting behaviour in coupled Josephson junctions.

    Science.gov (United States)

    Hongray, Thotreithem; Balakrishnan, J; Dana, Syamal K

    2015-12-01

    We report an interesting bow-tie shaped bursting behaviour in a certain parameter regime of two resistive-capacitative shunted Josephson junctions, one in the oscillatory and the other in the excitable mode and coupled together resistively. The burst emerges in both the junctions and they show near-complete synchronization for strong enough couplings. We discuss a possible bifurcation scenario to explain the origin of the burst. An exhaustive study on the parameter space of the system is performed, demarcating the regions of bursting from other solutions. PMID:26723143

  2. Burst Fragmentation Model Based on Sequential Burst Allocation Algorithm for Mobile WiMAX

    OpenAIRE

    Zaid G. Ali; Prof. R. B. Ahmad; Dr. Abid Yahya

    2013-01-01

    the downlink Bandwidth resources of WiMAX are allocated by the burst allocation algorithm. The algorithm is responsible for calculating the appropriate location of a number of the smallest unit of bandwidth which is called the slot for all users within the downlink subframe in the form of bursts. Resource wastage in the form of unused and unallocated slots is a real common problem accompanies resource management in the burst allocation algorithms. This paper investigates the Sequential Burst ...

  3. Fast radio burst/gamma-ray burst cosmography

    International Nuclear Information System (INIS)

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DMIGM as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value and luminosity distance (D L(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  4. The IBR-2 test reactor

    International Nuclear Information System (INIS)

    Major design criteria, specifications and potential fields of application of the IBR-2 pulsed test reactor (now under construction in Dubna, USSR) are described. The pulsed power bursts will be due to fast periodic reactivity changes by a rotating reflector. The frequency of approximately 100 μs pulsed may be 5, 12.5 or 50 Hz. The IBR-2 reactor will be mostly profitable for slow neutron experiments when investigating solids, nuclei or neutrons themselves using spectroscopic methods. Due to the high peak flux of thermal neutrons (1016-1017 n/cm2xs) the reactor will be superior (for the sort of experiments) to the currently operating SM-2 and HFR high flux steady-state test reactors for many times

  5. Real burst traffic amplification in optically gain clamped amplifier

    OpenAIRE

    Ennser, Karin; Taccheo, Stefano; Careglio, Davide; Solé Pareta, Josep; Aracil Rico, Javier

    2008-01-01

    Optical burst amplification in a gain-stabilized amplifier is theoretically investigated using real burst traffic data. The results show that excellent performance are obtained for WDM transmission with negligible interplay due to burst arrival statistics.

  6. Cost-based burst dropping strategy in optical burst switching networks

    OpenAIRE

    Klusek, Bartlomiej; Murphy, John; Barry, Liam P.

    2005-01-01

    Optical burst switching (OBS) is a new paradigm for future all-optical networks. Intentional burst dropping is one of techniques used to achieve desired quality of service. In this paper we note that some bursts are more likely to cause contention. We propose a cost function that can be used to predict the likelihood that a given burst will interfere with other traffic, then we explain how, by using this information a new burst dropping strategy can be designed. We compare our method with a r...

  7. Coding Bounds for Multiple Phased-Burst Correction and Single Burst Correction Codes

    OpenAIRE

    Fong, Wai Han

    2011-01-01

    In this paper, two upper bounds on the achievable code rate of linear block codes for multiple phased-burst correction (MPBC) are presented. One bound is constrained to a maximum correctable cyclic burst length within every subblock, or equivalently a constraint on the minimum error free length or gap within every phased-burst. This bound, when reduced to the special case of a bound for single burst correction (SBC), is shown to be the Abramson bound when the cyclic burst length is less than ...

  8. The Case of the Disappearing Spindle Burst.

    Science.gov (United States)

    Tiriac, Alexandre; Blumberg, Mark S

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10-15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches-and their associated spindle bursts-occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  9. CT Burst Error Weight Enumerator of Array Codes

    OpenAIRE

    Irfan Siap

    2008-01-01

    Recently, CT burst errors originally dened for block codes havebeen generalized to CT burst errors for array codes [6]. In order to establish aRieger's type bound for array codes with respect to CT burst errors. Here, weintroduce a CT burst error weight enumerator whose coecients represent thenumber of CT burst errors of a particular weight. The method of obtainingthe CT burst error weight enumerator is obtained by generating function likeapproach and it does not involve solving equations as ...

  10. IMAGING DIAGNOSIS OF THORACOLUMBAR BURST FRACTURES

    Institute of Scientific and Technical Information of China (English)

    Li-yang Dai

    2004-01-01

    Objective To review imaging use in the diagnosis ofthoracolumbar burst fractures and to determine the diagnostic value of different imaging methods.Methods One hundred and fourteen patients with 120 thoracolumbar burst fractures were retrospectively reviewed. Plain radiographs were available in all cases; CT scans and MRI were obtained in 96 and 74 cases, respectively.Results A total of 27 burst fractures were misdiagnosed as other types of fractures on radiographs alone, and accounted for 22.5% of all fractures. The results indicated that plain radiographs often fail to delineate the pathological features of thoracolumbar burst fractures, leading to delay in diagnosis.Conclusion In regard to thoracolumbar injury diagnosis, burst fractures should be differentiated from compression fractures. CT should be routinely indicated and MRI examination, when necessary, may be simultaneously considered.

  11. Bright 30 THz Impulsive Solar Bursts

    CERN Document Server

    Kaufmann, P; Marcon, R; Kudaka, A S; Cabezas, D P; Cassiano, M M; Francile, C; Fernandes, L O T; Ramirez, R F Hidalgo; Luoni, M; Marun, A; Pereyra, P; de Souza, R V

    2015-01-01

    Impulsive 30 THz continuum bursts have been recently observed in solar flares, utilizing small telescopes with a unique and relatively simple optical setup concept. The most intense burst was observed together with a GOES X2 class event on October 27, 2014, also detected at two sub-THz frequencies, RHESSI X-rays and SDO/HMI and EUV. It exhibits strikingly good correlation in time and in space with white light flare emission. It is likely that this association may prove to be very common. All three 30 THz events recently observed exhibited intense fluxes in the range of 104 solar flux units, considerably larger than those measured for the same events at microwave and sub-mm wavelengths. The 30 THz burst emission might be part of the same spectral burst component found at sub-THz frequencies. The 30 THz solar bursts open a promising new window for the study of flares at their origin

  12. Spatiotemporal chaos from bursting dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Berenstein, Igal; De Decker, Yannick [Nonlinear Physical Chemistry Unit and Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Faculté des Sciences, Université libre de Bruxelles (ULB), Campus Plaine, C.P. 231, B-1050 Brussels (Belgium)

    2015-08-14

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators.

  13. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  14. Observing a Burst with Sunglasses

    Science.gov (United States)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the

  15. The Case of the Disappearing Spindle Burst

    Directory of Open Access Journals (Sweden)

    Alexandre Tiriac

    2016-01-01

    Full Text Available Sleep spindles are brief cortical oscillations at 10–15 Hz that occur predominantly during non-REM (quiet sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves; accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches—and their associated spindle bursts—occur exclusively during REM (active sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems.

  16. Bursting neurons and ultrasound avoidance in crickets

    Directory of Open Access Journals (Sweden)

    Gary eMarsat

    2012-07-01

    Full Text Available Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes –bursts– that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing –the auditory receptor- already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  17. Gamma-Ray Bursts: Jets and Energetics

    CERN Document Server

    Frail, D A

    2003-01-01

    The relativistic outflows from gamma-ray bursts are now thought to be narrowly collimated into jets. After correcting for this jet geometry there is a remarkable constancy of both the energy radiated by the burst and the kinetic energy carried by the outflow. Gamma-ray bursts are still the most luminous explosions in the Universe, but they release energies that are comparable to supernovae. The diversity of cosmic explosions appears to be governed by the fraction of energy that is coupled to ultra-relativistic ejecta.

  18. EXIST's Gamma-Ray Burst Sensitivity

    OpenAIRE

    Band, D. L.; Grindlay, J. E.; Hong, J.; Fishman, G.; Hartmann, D. H.; Garson III, A.; Krawczynski, H.; Barthelmy, S.; Gehrels, N.; Skinner, G.

    2007-01-01

    We use semi-analytic techniques to evaluate the burst sensitivity of designs for the EXIST hard X-ray survey mission. Applying these techniques to the mission design proposed for the Beyond Einstein program, we find that with its very large field-of-view and faint gamma-ray burst detection threshold, EXIST will detect and localize approximately two bursts per day, a large fraction of which may be at high redshift. We estimate that EXIST's maximum sensitivity will be ~4 times greater than that...

  19. The Arecibo Fast Radio Burst: Dense Circum-burst Medium

    CERN Document Server

    Kulkarni, S R; Neill, J D

    2015-01-01

    The nature of fast radio bursts (FRB) has been extensively debated. Here we investigate FRB121102, detected at Arecibo telescope and remarkable for its unusually large spectral index. After extensive study we conclude that the spectral index is caused by a nebula with free-free absorption. We find that putative nebula must lie beyond the Milky Way. We conclude that FRBs are of extra-galactic origin and that they arise in dense star-forming regions. The challenge with extra-galactic models is the the high volumetric rate of FRBs. This high rate allows us to eliminate all models of catastrophic stellar deaths. Hyper-giant flares from young magnetars emerge as the most likely progenitors. Some of the consequences are: (i) Intergalactic FRB models can be safely ignored. (ii) The rich ISM environment of young magnetars can result in significant contribution to DM, Rotation Measure (RM) and in some cases to significant free-free optical depth. (iii) The star-forming regions in the host galaxies can contribute signi...

  20. ESTIMATE OF BURSTING PRESSURE OF MILD STEEL PRESSURE VESSEL AND PRESENTATION OF BURSTING FORMULA

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuanxiang

    2006-01-01

    In order to get more precise bursting pressure formula of mild steel, hundreds of bursting experiments of mild steel pressure vessels such as Q235(Gr.D) and 20R(1020) are done. Based on statistical data of bursting pressure and modification of Faupel formula, a more precise modified formula is given out according to the experimental data. It is proved to be more accurate after examining other bursting pressure value presented in many references. This bursting formula is very accurate in these experiments using pressure vessels with different diameter and shell thickness.Obviously, this modified bursting formula can be used in mild steel pressure vessels with different diameter and thickness of shell.

  1. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    OpenAIRE

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L; Solt, Ken; Brown, Emery N.

    2013-01-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily ident...

  2. Directivity of low-frequency solar type 3 radio bursts

    International Nuclear Information System (INIS)

    The occurrence rate of type 3 solar bursts in the frequency range 4.9 MHz to 30 kHz was analyzed as a function of burst intensity and burst arrival direction. Results show that the occurrence rate of bursts falls off with increasing flux and the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the earth--sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction

  3. Long Burst Error Correcting Codes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long burst error mitigation is an enabling technology for the use of Ka band for high rate commercial and government users. Multiple NASA, government, and...

  4. Relativistic effects in gamma-ray bursts

    International Nuclear Information System (INIS)

    According to recent models of the sources of gamma-ray bursts the extremely energetic emission is caused by shells expanding with ultrarelativistic velocity. With the recent identification of optical sources at the positions of some gamma-ray bursts these ''fireball'' models have acquired an actuality that invites to use them as a motivating application when teaching special relativity. We demonstrate several relativistic effects associated with these models which are very pronounced due to the great velocity of the shell. For example a burst lasting for a month in the rest frame of an element of the shell lasts for a few seconds only, in the rest frame of our detector. It is shown how the observed properties of a burst are modified by aberration and the Doppler effect. The apparent luminosity as a function of time is calculated. Modifications due to the motion of the star away from the observer are calculated. (Author)

  5. FRBCAT: The Fast Radio Burst Catalogue

    CERN Document Server

    Petroff, E; Jameson, A; Keane, E F; Bailes, M; Kramer, M; Morello, V; Tabbara, D; van Straten, W

    2016-01-01

    Here we present a catalogue of known Fast Radio Burst (FRB) sources in the form of an online catalogue, FRBCAT. The catalogue includes information about the instrumentation used for the observations for each detected burst, the measured quantities from each observation, and model-dependent quantities derived from observed quantities. To aid in consistent comparisons of burst properties such as width and signal-to-noise ratios we have reprocessed all the bursts for which we have access to the raw data, with software which we make available. The originally derived properties are also listed for comparison. The catalogue is hosted online as a MySQL database which can also be downloaded in tabular or plain text format for off-line use. This database will be maintained for use by the community for studies of the FRB population as it grows.

  6. Bursts of intermediate ions in atmospheric air

    Science.gov (United States)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  7. Burst Fragmentation Model Based on Sequential Burst Allocation Algorithm for Mobile WiMAX

    Directory of Open Access Journals (Sweden)

    Zaid G. Ali

    2013-07-01

    Full Text Available the downlink Bandwidth resources of WiMAX are allocated by the burst allocation algorithm. The algorithm is responsible for calculating the appropriate location of a number of the smallest unit of bandwidth which is called the slot for all users within the downlink subframe in the form of bursts. Resource wastage in the form of unused and unallocated slots is a real common problem accompanies resource management in the burst allocation algorithms. This paper investigates the Sequential Burst Allocation (SBA that based on sequential slot allocation and burst fragmentation. An analytical model of frame utilization has been derived. Moreover, this paper presents criteria of burst fragmentation and investigates the effect of burst fragmentation to the allocation efficiency. It has been observed from the results that the SBA algorithm outperforms the Standard (ST algorithm in term of number of users and resource wastage reduction per frame. The research results illustrates that burst fragmentation can enhance the proportion of frame utilization with minor effect to the overhead size. As well as, the results are useful to be a heuristic guide line for MAC layer scheduler to decide the best burst size that can be used.

  8. Design of assembly control algorithm based on burst-size feedback for optical burst switching network

    Institute of Scientific and Technical Information of China (English)

    Minglei Fu; Zichun Le

    2009-01-01

    A novel assembly control algorithm named burst-size feedback adaptive assembly period(BFAAP)is proposed.The major difference between BFAAP and other similar adaptive assembly algorithms is that the control curve of BFAAP is dynamically adjusted according to the feedback of outgoing burst size.BFAAP is compared with two typical algorithms fixed assembly period(FAP)aild min-burst length max assembly period(MBMAP)in simulation in terms of burst size distribution and assembly period.Moreover,the transmission control protocol(TCP)performance over BFAAP is also considered and simulated.

  9. A Burst-by-Burst Adaptive Joint-Detection Based CDMA Speech Transceiver

    OpenAIRE

    How, HT; Liew, TH; Kuan, EL; Hanzo, L.

    2001-01-01

    A burst-by-burst adaptive speech transceiver is proposed, which can drop its source coding rate and speech quality under transceiver control in order to invoke a more error resilient modem mode amongst less favourable channel conditions. The novel, high-quality, Adaptive Multi-Rate (AMR) speech codec [5], operated at bit rates of 4.75 and 10.2 kbps and combined with sourcesensitivity-matched Redundant Residue Number Systems (RRNS) based channel codes. Burst-by-burst adaptive Joint-Detection b...

  10. Optimal Codes for the Burst Erasure Channel

    Science.gov (United States)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  11. Black Hole Lensing and Wave Bursts

    CERN Document Server

    Gogberashvili, Merab

    2016-01-01

    It is shown that close to a black hole horizon wave equations have real-valued exponentially time-dependent solutions and to investigate strong gravitational lensing we need to introduce an effective negative cosmological constant between the Schwarzschild and photon spheres. Then exponentially amplified reflected waves from this effective AdS space could explain properties of some gamma ray bursts, fast radio bursts and gravitational waves.

  12. Supernovae and gamma-ray bursts connection

    Energy Technology Data Exchange (ETDEWEB)

    Valle, Massimo Della [INAF-Napoli, Capodimonte Observatory, Salita Moiariello, 16, I-80131 Napoli (Italy); International Center for Relativistic Astrophysics Network, Piazzale della Repubblica 10, I-65122, Pescara (Italy)

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  13. Cosmological parametrization of $\\gamma$ ray burst models

    CERN Document Server

    Linder, E V

    1996-01-01

    Using three parametrizations of the gamma ray burst count data comparison is made to cosmological source models. While simple models can fit and faint end slope constraints, the addition of a logarithmic count range variable describing the curvature of the counts shows that models with no evolution or evolution power law in redshift with index less than 10 fail to satisfy simultaneously all three descriptors of the burst data. The cosmological source density that would be required for a fit is illustrated.

  14. Autaptic Connections Shift Network Excitability and Bursting

    OpenAIRE

    Wiles, Laura; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.; Meaney, David F.

    2016-01-01

    Network architecture forms a critical constraint on neuronal function. Here we examine the role of structural autapses, when a neuron synapses onto itself, in driving network-wide bursting behavior. Using a simple spiking model of neuronal activity, we study how autaptic connections affect activity patterns, and evaluate if neuronal degree or controllability are significant factors that affect changes in bursting from these autaptic connections. We observed that adding increasing numbers of a...

  15. Supernovae and gamma-ray bursts connection

    Science.gov (United States)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  16. Neutrinos from Gamma Ray Bursts

    CERN Document Server

    Mannheim, K

    2000-01-01

    The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. Thes...

  17. Gamma-ray Burst Cosmology

    CERN Document Server

    Wang, F Y; Liang, E W

    2015-01-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to $8.8\\times10^{54}$ erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it...

  18. Meteor burst communications improvement study

    Science.gov (United States)

    Peterson, David

    1993-07-01

    Two identical Meteor Burst Radio Terminals were developed, fabricated, and delivered to the Air Force. Each is controlled by a PC computer in a menu driven manner. The mode of operation is full duplex. The RF frequency range is 40 to 60 MHz with tuning increments of 25 KHz. Data rates are 4, 8, 16, 32, 64, 128, 256, and 512 kbps. Modulation is coherent Binary Phase Shift Keying (BPSK) and incoherent Differential Phase Shift Keying (DPSK). Protocol includes Automatic Repeat Request (ARQ) with source and destination addressing, message number, start of message, and end of message. Messages are packetized, and Reed Solomon (R-S) coding is an option. The ARQ is under the control of a Cyclic Redundancy Check Code (CRCC) which detects binary errors within each packet. The terminal is intended to increase meteor trail availability and data throughput by several orders of magnitude--by operating with new antennas that provide much higher gains without sacrificing meteor trail acquisition performance.

  19. Propofol and sevoflurane induce distinct burst suppression patterns in rats

    OpenAIRE

    Kenny, Jonathan D.; Westover, M. Brandon; Ching, ShiNung; Brown, Emery N.; Solt, Ken

    2014-01-01

    Burst suppression is an EEG pattern characterized by alternating periods of high-amplitude activity (bursts) and relatively low amplitude activity (suppressions). Burst suppression can arise from several different pathological conditions, as well as from general anesthesia. Here we review current algorithms that are used to quantify burst suppression, its various etiologies, and possible underlying mechanisms. We then review clinical applications of anesthetic-induced burst suppression. Final...

  20. Modeling gamma-ray bursts

    Science.gov (United States)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  1. A biomechanical study on burst mechanisms of plant fruit: stress analysis of pericarps before bursting.

    Science.gov (United States)

    Endo, Yasuhiro; Sakamoto, Jiro; Kashiwano, Yuki; Yokota, Hideo; Nakamura, Sakiko; Kinoshita, Eichiro

    2010-10-01

    Bursting of fruit is a very interesting biomechanical phenomenon because its mechanism is directly related to the plant's reproduction. A plant that produces fruit that bursts powerfully and spreads the seeds widely has the advantage of reproduction without relying on other mechanisms such as transportation of fruit by insects. The structures of many types of fruit have likely been optimized by evolution, although the structure itself appears rather simplistic. Strain energy is stored in each pericarp because of growth deformation, swelling or desiccation just before bursting. Throughout these changes, the mechanical stress of the pericarps is at equilibrium. At the instant of bursting, the stored strain energy is released very rapidly. Quick and wide motion of the pericarps in a certain direction is advantageous for throwing the seed a long distance. The motion and deformation of bursting pericarps depend on their tissue structure and mechanical stress condition just before the burst. We tracked the bursting motion by using a high-speed camera. Then we calculated the pre-burst stress generated in a pericarp of Impatiens by using the finite-element method. The boundary condition obtained by experiments using a high-speed video camera is given, and the stress was calculated using reverse deformation analysis. The stress distribution of the pericarp is effective in causing the pericarp motion to throw the seeds far away. PMID:20696416

  2. The Cosmic Gamma-Ray Bursts

    Science.gov (United States)

    Djorgovski, S. G.; Frail, D. A.; Kulkarni, S. R.; Sari, R.; Bloom, J. S.; Galama, T. J.; Harrison, F. A.; Price, P. A.; Fox, D.; Reichart, D. E.; Yost, S.; Berger, E.; Diercks, A.; Goodrich, R.; Chaffee, F.

    2002-12-01

    Cosmic γ-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean γ-ray energies after the beaming corrections are ~ 1051 erg. Bursts are associated with faint ( ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host galaxies span a range of luminosities and morphologies, but appear to be broadly typical for the normal, actively star-forming galaxy populations at comparable redshifts and magnitudes. Some of the challenges for the future include: the nature of the short bursts and possibly other types of bursts and transients; use of GRBs to probe the obscured star formation in the universe, and possibly as probes of the very early universe; and their detection as sources of high-energy particles and gravitational waves.

  3. Reactor Physics

    International Nuclear Information System (INIS)

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  4. Reactor Physics

    International Nuclear Information System (INIS)

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  5. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  6. An Intelligent Segmented Burst Assembly Mechanism in Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    XIE Yi-Yuan; ZHANG Jian-Guo

    2008-01-01

    We focus on the burst assembly mechanism and propose a new intelligent method in which the burst is assembled from several internet protocol (IP) packets in which the number of IP packets is changed according to the traffic load and the burst is segmented into several parts, called the ISOBS mechanism. The average burst assembly time of the ISOBS mechanism decreases as compared with the fixed-assembly-time and fixed-assembly-time-and-length mechanisms. The loss ratio decreases 50% as compared with the general optical burst switching (OBS) mechanism. The last segment can carry high quality of service (QOS) information. We can achieve that the loss ratio of the last segment is almost zero when the traffic load is less than 0.05. When the traffic load is 0.9, the loss ratio of the last segment is 0.0041. The ISOBS can support to transmit different QOS data.

  7. An Intelligent Segmented Burst Assembly Mechanism in Optical Burst Switching Networks

    International Nuclear Information System (INIS)

    We focus on the burst assembly mechanism and propose a new intelligent method in which the burst is assembled from several internet protocol (IP) packets in which the number of IP packets is changed according to the traffic load and the burst is segmented into several parts, called the ISOBS mechanism. The average burst assembly time of the ISOBS mechanism decreases as compared with the fixed-assembly-time and fixed-assembly-time-and-length mechanisms. The loss ratio decreases 50% as compared with the general optical burst switching (OBS) mechanism. The last segment can carry high quality of service (QOS) information. We can achieve that the loss ratio of the last segment is almost zero when the traffic load is less than 0.05. When the traffic load is 0.9, the loss ratio of the last segment is 0.0041. The ISOBS can support to transmit different QOS data. (fundamental areas of phenomenology (including applications))

  8. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  9. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  10. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  11. Experiment data report for Multirod Burst Test (MRBT) bundle B-6

    International Nuclear Information System (INIS)

    A reference source of MRBT bundle B-6 test data is presented with minimum interpretation. The primary objective of this 8 x 8 multirod burst test was to investigate cladding deformation in the alpha-plus-beta-Zircaloy temperature range under simulated light-water-reactor (LWR) loss-of-coolant accident (LOCA) conditions. B-6 test conditions simulated the adiabatic heatup (reheat) phase of an LOCA and produced very uniform temperature distributions. The fuel pin simulators were electrically heated (average linear power generation of 1.42 kW/m) and were slightly cooled with a very low flow (Re approx. 140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (3300C) to the burst temperature at a rate of 3.50C/s. The simulators burst in a very narrow temperature range, with an average of 9300C. Cladding burst strain ranged from 21 to 56%, with an average of 31%. Volumetric expansion over the heated length of the cladding ranged from 16 to 32%, with an average of 23%. 23 references

  12. Simulation study of beam ion loss due to Alfven eigenmode bursts

    International Nuclear Information System (INIS)

    Recurrent bursts of toroidicity-induced Alfven eigenmodes (TAE) are studied using a self-consistent simulation model. Bursts of beam ion losses observed in the neutral beam injection experiment at the Tokamak Fusion Test Reactor [K. L. Wong et al., Phys. Rev. Lett. 66, 1874 (1991)] are reproduced using the experimental parameters. It is found that synchronized TAE bursts take place at regular time intervals of 2.5 ms, which is fairly close to the experimental value of 2.2 ms. The stored beam energy saturates at 10% of that of the classical slowing-down distribution. This is consistent with an important experimental aspect that the beam confinement time is much shorter than the collisional slowing-down time. The stored beam energy drop associated with each burst has a modulation depth of 20% which is comparable to the inferred experimental value of 7%. This is the first simulation that reproduces all of these experimental aspects. The beam ion distribution hovers around a marginal stability state. Test particle analysis demonstrates that the disappearance of KAM surfaces in a coordinate system co-moving with each eigenmode leads to beam ion loss. (author)

  13. Sources of type III solar microwave bursts

    Science.gov (United States)

    Zhdanov, Dmitriy; Lesovoi, Sergey; Tokhchukova, Susanna

    2016-06-01

    Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT) is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4-8 GHz spectropolarimeter, and SSRT, simultaneously with extreme UV data, made it possible to localize sources of III type microwave drift bursts in August 10, 2011 event within the entire frequency band of burst occurrences, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5 and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to source sizes at other frequencies.

  14. Diagnostics From Three Rising Submillimeter Bursts

    CERN Document Server

    Zhou, Ai-Hua; Wang, Xin-Dong

    2015-01-01

    In the paper we investigate three novel rising submillimeter (THz) bursts occurred sequentially in a super-Active Region NOAA 10486. The average rising rate of the flux density above 200 GHz is only 20 sfu/GHz (corresponding spectral index $\\alpha$ of 1.6) for the THz spectral components of 2003 October 28 and November 4 bursts, while it can attain values of 235 sfu/GHz ($\\alpha$=4.8) for 2003 November 2 burst. The steeply rising THz spectrum can be produced by a population of high relativistic electrons with a low-energy cutoff of 1 MeV , while it only requires a low-energy cutoff of 30 keV for the two slowly rising THz bursts, via gyrosynchrotron (GS) radiation based on our numerical simulations of burst spectra in the magnetic dipole field case. The electron density variation is much larger in the THz source than that in microwave (MW) one. It is interesting that the THz source radius decreased by 20--50$\\%$ during the decay phase for the three events, but the MW one increased by 28$\\%$ for the 2003 Novemb...

  15. The Fermi Gamma-Ray Burst Monitor

    CERN Document Server

    Meegan, Charles; Bhat, P N; Bissaldi, Elisabetta; Briggs, Michael S; Connaughton, Valerie; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Hoover, Andrew S; van der Horst, Alexander J; von Kienlin, Andreas; Kippen, R Marc; Kouveliotou, Chryssa; McBreen, Sheila; Paciesas, W S; Preece, Robert; Steinle, Helmut; Wallace, Mark S; Wilson, Robert B; Wilson-Hodge, Colleen

    2009-01-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of Gamma-Ray Bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data exist. A secondary objective is to compute burst locations on-board to allow re-orientiong the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of twelve sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from ~8 keV to ~40 MeV over the full unocculted sky. The on-board trigger threshold is ~0.7 photons/cm2/s (50-300 keV, 1 s peak). GBM generates on-board triggers for ~250 GRBs per year.

  16. Swift: A Gamma Ray Bursts Explorer

    Science.gov (United States)

    Gehrels, Neil

    2003-01-01

    Swift is a NASA gamma-ray burst MIDEX mission that is in development for launch in December 2003. It is a multiwavelength transient observatory for GRB astronomy. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. It will also.perform a survey of the hard X-ray sky to a sensitivity level of -1 mCrab. A wide-field camera will detect more than a hundred GRBs per year to 5 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 70 sec by an autonomously controlled 'swift' spacecraft. For each burst, arcsec positions will be determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Measurements of redshift will be made for many of the bursts. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approximately 0.5 square meter) CdZnTe detector array. The hardware is currently in final stages of fabrication and initial stages of integration and test. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift.

  17. The Cosmic Gamma-Ray Bursts

    CERN Document Server

    Djorgovski, S G; Kulkarni, S R; Sari, R; Bloom, J S; Galama, T J; Harrison, F A; Price, P A; Fox, D; Reichart, D; Yost, S; Berger, E; Diercks, A H; Goodrich, R; Chaffee, F H

    2001-01-01

    Cosmic gamma-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean gamma-ray energies after the beaming corrections are ~ 10^51 erg. Bursts are associated with faint ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host gal...

  18. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels; Budtz-Jørgensen, Carl; Westergaard, Niels Jørgen Stenfeldt

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  19. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels;

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  20. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  1. On the bursting of gene products

    CERN Document Server

    Yvinec, Romain

    2011-01-01

    In this article we demonstrate that the so-called bursting production of molecular species during gene expression may be an artifact caused by low time resolution in experimental data collection and not an actual burst in production. We reach this conclusion through an analysis of a two-stage and binary model for gene expression, and demonstrate that in the limit when mRNA degradation is much faster than protein degradation they are equivalent. The negative binomial distribution is shown to be a limiting case of the binary model for fast "on to off" state transitions and high values of the ratio between protein synthesis and degradation rates. The gene products population increases by unity but multiple times in a time interval orders of magnitude smaller than protein half-life or the precision of the experimental apparatus employed in its detection. This rare-and-fast one-by-one protein synthesis has been interpreted as bursting.

  2. Unveiling the Secrets of Gamma Ray Bursts

    CERN Document Server

    Gomboc, A

    2012-01-01

    Gamma Ray Bursts (GRBs) are unpredictable and brief flashes of gamma rays that occur about once a day in random locations in the sky. Since gamma rays do not penetrate the Earth's atmosphere, they are detected by satellites, which automatically trigger ground-based telescopes for follow-up observations at longer wavelengths. In this introduction to Gamma Ray Bursts we review how building a multi-wavelength picture of these events has revealed that they are the most energetic explosions since the Big Bang and are connected with stellar deaths in other galaxies. However, in spite of exceptional observational and theoretical progress in the last 15 years, recent observations raise many questions which challenge our understanding of these elusive phenomena. Gamma Ray Bursts therefore remain one of the hottest topics in modern astrophysics.

  3. A mechanism for fast radio bursts

    CERN Document Server

    Romero, Gustavo E; Vieyro, Florencia L

    2015-01-01

    Fast radio bursts are mysterious transient sources likely located at cosmological distances. The derived brightness temperatures exceed by many orders of magnitude the self-absorption limit of incoherent synchrotron radiation, implying the operation of a coherent emission process. We propose a radiation mechanism for fast radio bursts where the emission arises from collisionless Bremsstrahlung in strong plasma turbulence excited by relativistic electron beams. We discuss possible astrophysical scenarios in which this process might operate. The emitting region is a turbulent plasma hit by a relativistic jet, where Langmuir plasma waves produce a concentration of intense electrostatic soliton-like regions (cavitons). The resulting radiation is coherent and, under some physical conditions, can be polarised and have a power-law distribution in energy. We obtain radio luminosities in agreement with the inferred values for fast radio bursts. The timescale of the radio flare in some cases can be extremely fast, of t...

  4. Bursting activity spreading through asymmetric interactions

    CERN Document Server

    Onaga, Tomokatsu

    2014-01-01

    People communicate with those who have the same background or share a common interest by using a social networking service (SNS). News or messages propagate through inhomogeneous connections in an SNS by sharing or facilitating additional comments. Such human activity is known to lead to endogenous bursting in the rate of message occurrences. We analyze a multi-dimensional self-exciting process to reveal dependence of the bursting activity on the topology of connections and the distribution of interaction strength on the connections. We determine the critical conditions for the cases where interaction strength is regulated at either the point of input or output for each person. In the input regulation condition, the network may exhibit bursting with infinitesimal interaction strength, if the dispersion of the degrees diverges as in the scale-free networks. In contrast, in the output regulation condition, the critical value of interaction strength, represented by the average number of events added by a single ...

  5. Localised Microwave Bursts During ELMs on MAST

    Directory of Open Access Journals (Sweden)

    Freethy Simon

    2015-01-01

    Full Text Available Bursts of microwave emission are observed during ELM events on the Mega Ampère Spherical Tokamak. In agreement with observations on other machines, these bursts are up to 3 orders of magnitude more intense than the thermal background, but are electron cyclotron in nature. The peak in microwave emission is ~20μ before the peak in midplane Dα emission. Using the Synthetic Aperture Microwave Imaging radiometer, we are able to demonstrate that these bursts are often highly spatially localised and preferentially occur at the tokamak midplane. It is hypothesised that the localisation is a result of Doppler resonance broadening for electron Bernstein waves and the high perpendicular electron energies could be the result of pitch angle scattering in high collisionality regions of the plasma.

  6. Variable protostellar accretion with episodic bursts

    CERN Document Server

    Vorobyov, Eduard I

    2015-01-01

    We present the latest development of the disk gravitational instability and fragmentation model, originally introduced by us to explain episodic accretion bursts in the early stages of star formation. Using our numerical hydrodynamics model with improved disk thermal balance and star-disk interaction, we computed the evolution of protostellar disks formed from the gravitational collapse of prestellar cores. In agreement with our previous studies, we find that cores of higher initial mass and angular momentum produce disks that are more favorable to gravitational instability and fragmentation, while a higher background irradiation and magnetic fields moderate the disk tendency to fragment. The protostellar accretion in our models is time-variable, thanks to the nonlinear interaction between different spiral modes in the gravitationally unstable disk, and can undergo episodic bursts when fragments migrate onto the star owing to the gravitational interaction with other fragments or spiral arms. Most bursts occur...

  7. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  8. Investigation of Primordial Black Hole Bursts Using Interplanetary Network Gamma-ray Bursts

    Science.gov (United States)

    Ukwatta, T. N.; Hurley, K.; MacGibbon, J. H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'shin, V. D.; Goldsten, J.; Boynton, W.; Kozyrev, A. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Connaughton, V.; Yamaoka, K.; Ohno, M.; Ohmori, N.; Feroci, M.; Frontera, F.; Guidorzi, C.; Cline, T.; Gehrels, N.; Krimm, H. A.; McTiernan, J.

    2016-07-01

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  9. On the bimodal distribution of gamma-ray bursts

    Science.gov (United States)

    Mao, Shude; Narayan, Ramesh; Piran, Tsvi

    1994-01-01

    Kouveliotou et al. recently confirmed that gamma-ray bursts are bimodal in duration. In this paper we compute the statistical properties of the short (less than or = 2 s) and long (greater than 2 s) bursts using a method of analysis that makes no assumption regarding the location of the bursts, whether in the Galaxy or at a cosmological distance. We find the 64 ms channel on Burst and Transient Source Experiment (BATSE) to be more sensitive to short bursts and the 1024 ms channel to be more sensitive to long bursts. We show that all the currently available data are consistent with the simple hypothesis that both short and long bursts have the same spatial distribution and that within each population the sources are standard candles. The rate of short bursts per unit volume is about 40% of the rate of long bursts. Although the durations of short and long gamma-ray bursts span several orders of magnitude and the total energy of a typical short burst is smaller than that of a typical long burst by a factor of about 20, surprisingly the peak luminosities of the two kinds of bursts are equal to within a factor of about 2.

  10. Burst investigation on zircaloy-4 claddings in inert environment

    International Nuclear Information System (INIS)

    Highlights: • Burst investigations on zircaloy-4 cladding in argon environment. • Clad wall displacement measurement. • Effect of internal overpressure and heating rate on burst parameters. • Semi-empirical correlation for burst stress has been proposed. - Abstract: An extensive burst investigation has been carried out on the zircaloy-4 claddings in an inert environment to simulate clad burst during a postulated loss-of-coolant-accident (LOCA) conditions. The parameters varied during the burst experiments were heating rate and internal overpressure. The temperature, internal overpressure and ballooning data were monitored online and recorded during the heating process of burst specimen. In addition, post-experiment measurements were also conducted on the burst specimen to determine various burst parameters–burst strains and burst stress. A semi-empirical correlation was developed to predict the burst stress for a given burst temperature. A reasonable agreement between the predicted and experimental data has been observed. The proposed correlation was also compared with available established correlation for steam environment

  11. Bursting Smoke as an Infrared Countermeasure

    Directory of Open Access Journals (Sweden)

    Amarjit Singh

    1998-07-01

    Full Text Available This paper describes the experimental setup for the evaluation of bursting smoke for anti-infrared role using SR-5000 spectroradiometer and a source of IR radiation (8-13 micrometer using cadmium-mercury-telluride (CMI detector cooled by liquid nitrogen. The particle size and shape of the powders used in the bursting smokes were determined microscopically using Carl Zeiss Jena Neophot- 21. Highest attenuation of 97 -lOO percent was produced for about 12 s using a mixture of bronze flakes and chaff, and for about 8 s using a mixture of bronze copper lined flakes, bronze flakes and chaff.

  12. The short gamma-ray burst revolution

    International Nuclear Information System (INIS)

    Swift, a dedicated gamma-ray burst (GRB) satellite with ultrarapid slewing capability, and a suite of ground-based (ESO) telescopes have recently achieved a major breakthrough: detecting the first afterglows of short-duration GRBs. The faintness of these afterglows and the diversity of old and young host galaxies lend support to the emerging 'standard model', in which they are created during the merging of two compact objects. However, the afterglow light-curve properties and possible high-redshift origin of some short bursts suggests that more than one progenitor type may be involved. (orig.)

  13. Threats in Optical Burst Switched Network

    Directory of Open Access Journals (Sweden)

    P. Siva Subramanian

    2011-05-01

    Full Text Available Optical network is a viable network for future communication, which transmits data at an average rate of 50Tb/s. Optical Burst Switching is a trusted mechanism used for Optical network. There is a good amount of research done in the area of security in Optical networks. In addition, the issues related to physical network security has been dealt with respect to Optical networks. Our proposed work is intend to find the possible security threats that may happen in Optical Burst Switched Networks and the counter measures are examined separately. The NS-2 simulator with modified OBS patch is used to verify and validate the proposed mechanism

  14. Exploratory depth-of-burst experiments

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, H.; Behrens, K. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany); Kuhl, A. [R and D Associates, Los Angeles, CA (United States)

    1991-12-12

    This report describes the first small-scale explosion experiments with aerated grout (i.e., YTONG). Apart from data referring to crater depth and volume versus depth of burst (DOB), isobaric DOB curves in the range of 1.5 psi {le} p {le} 15 psi were established. The comparison with previous HOB values shows that the ground range to a given overpressure is considerably reduced with increasing depth of burst. The authors plan to continue the airblast investigations with different types of soil materials.

  15. Spike Bursts from an Excitable Optical System

    Science.gov (United States)

    Rios Leite, Jose R.; Rosero, Edison J.; Barbosa, Wendson A. S.; Tredicce, Jorge R.

    Diode Lasers with double optical feedback are shown to present power drop spikes with statistical distribution controllable by the ratio of the two feedback times. The average time between spikes and the variance within long time series are studied. The system is shown to be excitable and present bursting of spikes created with specific feedback time ratios and strength. A rate equation model, extending the Lang-Kobayashi single feedback for semiconductor lasers proves to match the experimental observations. Potential applications to construct network to mimic neural systems having controlled bursting properties in each unit will be discussed. Brazilian Agency CNPQ.

  16. A Shotgun Model for $\\gamma$ Ray Bursts

    CERN Document Server

    Heinz, S

    1999-01-01

    We propose that gamma ray bursts (GRBs) are produced by a shower of heavy blobs running into circumstellar material at highly relativistic speeds. The gamma ray emission is produced in the shocks these bullets drive into the surrounding medium. The short term variability seen in GRBs is set by the slowing-down time of the bullets while the overall duration of the burst is set by the lifetime of the central engine. A requirement of this model is that the ambient medium be dense, consistent with a strong stellar wind. In contrast to other external shock scenarios, the efficiency of the shock can be close to unity.

  17. Processor Reformats Data For Transmission In Bursts

    Science.gov (United States)

    Steele, Glen F.

    1991-01-01

    Data-processor-and-buffer electronic system receives audio signals digitized in first standard format at relatively low data rate, rearranges data for transmission in bursts in second standard format at relatively high rate, stores second-format bursts, and releases them at higher rate upon request. Conceived for asynchronous, one-way transmission of digitized speech in outer-space communications, concept of system applied in other digital communication systems in which data transmitted from low-rate sources to high-rate sinks not synchronized with sources.

  18. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  19. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  20. SDSS Pre-Burst Observations of Recent Gamma-Ray Burst Fields

    CERN Document Server

    Cool, R J; Brinkmann, J; Eisenstein, D J; Hogg, D W; Schlegel, D J; Schneider, D P; Vanden Berk, Daniel E; Berk, Daniel E. Vanden; Blanton, Michael R.; Cool, Richard J.; Eisenstein, Daniel J.; Hogg, David W.; Schlegel, David J.; Schneider, Donald P.

    2006-01-01

    In this paper, we present Sloan Digital Sky Survey (SDSS) photometry and spectroscopy in the fields of 24 gamma-ray bursts (GRBs) observed by Swift, including bursts localized by Swift, HETE-2, and INTEGRAL, after December 2004. After this bulk release, we plan to provide individual releases of similar data shortly after the localization of future bursts falling in the SDSS survey area. These data provide a solid basis for the astrometric and photometric calibration of follow-up afterglow searches and monitoring. Furthermore, the images provided with this release will allow observers to find transient objects up to a magnitude fainter than possible with Digitized Sky Survey image comparisons.

  1. Research reactors

    International Nuclear Information System (INIS)

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world's research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted

  2. Reactor container

    International Nuclear Information System (INIS)

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  3. New Results on the Spectral Evolution of Magnetar Bright Bursts

    Science.gov (United States)

    Younes, George A.; Kouveliotou, C.; van der Horst, A.; GBM Magnetar Team

    2013-04-01

    Magnetars are isolated neutron stars characterized by long spin periods (2-12 s) and large spin down rates, implying a very strong magnetic field, B>10E14 G. Magnetars exhibit short bursts of hard X-/soft gamma-rays with luminosities ranging from 10E37 to 10E41 erg/s. The magnetar SGR J1550-5418 entered an extremely active bursting episode, starting on 2008 October 03 until 2009 April 17, during which Fermi Gamma-ray Burst Monitor (GBM) observed several hundred bursts from this source. Such wealth of bursts resulted in the largest catalog of detailed temporal and spectral results for SGR J1550-5418. Here, we discuss new results from time-resolved spectral analysis of the brightest bursts from this source. Our analysis, together with the comparison of our results with other magnetar bursts, enabled us to put strong constraints on the theories underlying the magnetar bursts emission mechanism.

  4. The Five Year Fermi/GBM Magnetar Burst Catalog

    Science.gov (United States)

    Collazzi, A. C.; Kouveliotou, C.; van der Horst, A. J.; Younes, G. A.; Kaneko, Y.; Göğüş, E.; Lin, L.; Granot, J.; Finger, M. H.; Chaplin, V. L.; Huppenkothen, D.; Watts, A. L.; von Kienlin, A.; Baring, M. G.; Gruber, D.; Bhat, P. N.; Gibby, M. H.; Gehrels, N.; McEnery, J.; van der Klis, M.; Wijers, R. A. M. J.

    2015-05-01

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550-5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  5. The Five Year Fermi/GBM Magnetar Burst Catalog

    CERN Document Server

    Collazzi, A C; van der Horst, A J; Younes, G A; Kaneko, Y; Gogus, E; Lin, L; Granot, J; Finger, M H; Chaplin, V L; Huppenkothen, D; Watts, A L; von Kienlin, A; Baring, M G; Gruber, D; Bhat, P N; Gibby, M H; Gehrels, N; McEnery, J; van der Klis, M; Wijers, R A M J

    2015-01-01

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here we present the Fermi/GBM magnetar catalog, giving the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from July 2008 to June 2013. We provide durations, spectral parameters for various models, fluences and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550-5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  6. Statistical properties of SGR 1806-20 bursts

    CERN Document Server

    Gogus, E; Kouveliotou, C; Van Paradijs, J; Briggs, M S; Duncan, R C; Thompson, C; Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa; Paradijs, Jan van; Briggs, Michael S.; Duncan, Robert C.; Thompson, Christopher

    2000-01-01

    We present statistics of SGR 1806-20 bursts, combining 290 events detectedwith RXTE/PCA, 111 events detected with BATSE and 134 events detected with ICE.We find that the fluence distribution of bursts observed with each instrumentare well described by power laws with indices 1.43, 1.76 and 1.67,respectively. The distribution of time intervals between successive bursts fromSGR 1806-20 is described by a lognormal function with a peak at 103 s. There isno correlation between the burst intensity and either the waiting times tillthe next burst or the time elapsed since the previous burst. In all thesestatistical properties, SGR 1806-20 bursts resemble a self-organized criticalsystem, similar to earthquakes and solar flares. Our results thus support thehypothesis that the energy source for SGR bursts is crustquakes due to theevolving, strong magnetic field of the neutron star, rather than any accretionor nuclear power.

  7. ESTIMATION OF THE BURST LENGTH IN OBS NETWORKS

    Directory of Open Access Journals (Sweden)

    Pallavi S.

    2014-05-01

    Full Text Available This paper presents an overview of the optical burst switching (OBS and discusses the major components. In OBS, the length of the burst arriving at a particular node is unknown, and hence, node design is very complex. In OBS first control, packet is transmitted and reserve the path as in circuit switching, thereafter, the data bursts is transmitted. In this paper, a poisson arrival of packets is considered and estimation is made on the size of the burst length. The results presented in the paper clearly reveal that, the very large burst length is un-common. Therefore, most of the times, very short or average length burst is expected. Therefore it is concluded in this paper, buffering of burst at the contending nodes is a good option which increases the throughput and reduces the average delay. Finally, the buffering in conjunction with deflection of bursts will provide very effective solution.

  8. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M.; Chakrabarty, D. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R. [CSPAR and Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Van der Horst, A. J. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, NL-1090-GE Amsterdam (Netherlands); Camero-Arranz, A.; Finger, M.; Paciesas, W. S. [Universities Space Research Association, Huntsville, AL 35805 (United States); Beklen, E. [Physics Department, Suleyman Demirel University, 32260 Isparta (Turkey); Von Kienlin, A. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, D-85748 Garching (Germany)

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 {+-} 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  9. The Fermi-GBM X-Ray Burst Monitor: Thermonuclear Bursts from 4U 0614+09

    Science.gov (United States)

    Linares, M.; Connaughton, V.; Jenke, P.; van der Horst, A. J.; Camero-Arranz, A.; Kouveliotou, C.; Chakrabarty, D.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Finger, M.; Paciesas, W. S.; Preece, R.; von Kienlin, A.; Wilson-Hodge, C. A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  10. IPN localizations of Konus short gamma-ray bursts

    CERN Document Server

    Pal'shin, V D; Svinkin, D S; Aptekar, R L; Golenetskii, S V; Frederiks, D D; Mazets, E P; Oleynik, P P; Ulanov, M V; Cline, T; Mitrofanov, I G; Golovin, D V; Kozyrev, A S; Litvak, M L; Sanin, A B; Boynton, W; Fellows, C; Harshman, K; Trombka, J; McClanahan, T; Starr, R; Goldsten, J; Gold, R; Rau, A; von Kienlin, A; Savchenko, V; Smith, D M; Hajdas, W; Barthelmy, S D; Cummings, J; Gehrels, N; Krimm, H; Palmer, D; Yamaoka, K; Ohno, M; Fukazawa, Y; Hanabata, Y; Takahashi, T; Tashiro, M; Terada, Y; Murakami, T; Makishima, K; Briggs, M S; Kippen, R M; Kouveliotou, C; Meegan, C; Fishman, G; Connaughton, V; Boer, M; Guidorzi, C; Frontera, F; Montanari, E; Rossi, F; Feroci, M; Amati, L; Nicastro, L; Orlandini, M; Monte, Del; Costa, E; Donnarumma, I; Evangelista, Y; Lapshov, I; Lazzarotto, F; Pacciani, L; Rapisarda, M; Soffitta, P; Di Cocco, G; Fuschino, F; Galli, M; Labanti, C; Marisaldi, M; Atteia, J -L; Vanderspek, R; Ricker, G

    2013-01-01

    Between the launch of the GGS Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 314 short-duration gamma-ray bursts (including 24 bursts which can be classified as short bursts with extended emission). During this period, the IPN consisted of up to eleven spacecraft, and using triangulation, the localizations of 276 bursts were obtained. We present the IPN localization data on these events.

  11. 47 CFR 90.250 - Meteor burst communications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  12. $\\gamma$-ray Burst Positions from the ASM on RXTE

    CERN Document Server

    Bradt, H V; Bradt, Hale V.; Smith, Donald A.

    1999-01-01

    The RXTE/ASM has detected and positioned 14 confirmed GRB bursts (at this writing, Jan. 1999) including six whose positions were comunicated to the community 2 to 32 hours after the burst. Two of these latter bursts led to measurements of optical red shifts but one, despite an easily detected x-ray afterglow, produced no detectable optical or radio afterglow.

  13. The position and polarization of Type III solar bursts

    Science.gov (United States)

    Dulk, G. A.; Suzuki, S.

    1980-01-01

    The position and polarization of Type III solar bursts in the range of 24-220 MHz are studied, with emphasis on the bursts continuing to frequencies lower than 24 MHz. Consideration is given to the statistics of burst polarization, the relation between polarization and source position, and brightness temperature, flux densities, and source sizes.

  14. Search for bursts in air shower data

    Science.gov (United States)

    Bruce, T. E. G.; Clay, R. W.; Dawson, B. R.; Protheroe, R. J.; Blair, D. G.; Cinquini, P.

    1985-01-01

    There have been reports in recent years of the possible observation of bursts in air shower data. If such events are truly of an astrophysical nature then, they represent an important new class of phemonenon since no other bursts have been observed above the MeV level. The spectra of conventional gamma ray bursts are unknown at higher energies but their observed spectra at MeV energies appear generally to exhibit a steepening in the higher MeV range and are thus unlikely to extrapolate to measurable fluxes at air shower energies. An attempt has been made to look for deviations from randomness in the arrival times of air showers above approx. 10 to the 14th power eV with a number of systems and results so far are presented here. This work will be continued for a substantial period of ime with a system capable of recording bursts with multiple events down to a spacing of 4 microns. Earlier data have also been searched for the possible association of air shower events with a glitch of the Vela pulsar.

  15. Fast Radio Bursts: Searches, Sensitivities & Implications

    CERN Document Server

    Keane, E F

    2016-01-01

    Fast radio bursts (FRBs) are millisecond-duration transient signals discovered over the past decade. Here we describe the scientific usefulness of FRBs, consider ongoing work at the Parkes telescope, and examine some relevant search sensitivity and completeness considerations. We also look ahead to the results from ongoing and future planned studies in the field.

  16. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 103 pc cm–3. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period

  17. Gamma-Ray Bursts and Cosmology

    Science.gov (United States)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  18. The Swift Gamma Ray Burst Mission

    Science.gov (United States)

    Gehrels, Neil

    2004-01-01

    Swift is an international mission managed by NASA as part of its MIDEX program. It is a multiwavelength transient observatory for GRB astronomy that will launch in 2004. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. A wide field gamma-ray camera will detect more than a hundred GRBs per year to 2-5 times fainter than BATSE. Sensitive narrow-field X-ray, and UV/optical telescopes will be pointed at the burst location in 20 to 75 sec by an autonomously controlled 'swift' spacecraft. For each burst, arcsec positions will be determined and optical/UV/x-ray/gamma-ray spectrophotometry performed. Measurements of redshift will be made for many of the bursts. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approx. 0.5 square meter) CdZnTe detector array. The instruments have now completed their fabrication phase and are integrated on the observatory for final testing. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift. The talk will describe the mission and its status and give a summary of our plans for GRB operations.

  19. The Swift Gamna-Ray Burst Mission

    Science.gov (United States)

    Gehrels, Neil

    2005-01-01

    Swift is a NASA Explorer mission that will be launched in late 2004. It is a multiwavelength observatory for transient astronomy. The goals of the mission are to determine the origin of gamma-ray bursts and their afterglows and use bursts to probe the early Universe. The mission will also perform a hard x-ray survey at the 1 milliCrab level and will continuously monitor the sky for transients. A wide-field gamma-ray camera will detect more than a hundred GRBs per year to 3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions will be determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. The instrumentation is a combination of existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (-0.5 square meter) CdZnTe detector array. The ground station in Malindi is contributed by the Italian Space Agency. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift.

  20. Neutrino Balls and Gamma-Ray Bursts

    CERN Document Server

    Holdom, B

    1994-01-01

    We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

  1. K+ channels and the microglial respiratory burst.

    Science.gov (United States)

    Khanna, R; Roy, L; Zhu, X; Schlichter, L C

    2001-04-01

    Microglial activation following central nervous system damage or disease often culminates in a respiratory burst that is necessary for antimicrobial function, but, paradoxically, can damage bystander cells. We show that several K+ channels are expressed and play a role in the respiratory burst of cultured rat microglia. Three pharmacologically separable K+ currents had properties of Kv1.3 and the Ca2+/calmodulin-gated channels, SK2, SK3, and SK4. mRNA was detected for Kv1.3, Kv1.5, SK2, and/or SK3, and SK4. Protein was detected for Kv1.3, Kv1.5, and SK3 (selective SK2 and SK4 antibodies not available). No Kv1.5-like current was detected, and confocal immunofluorescence showed the protein to be subcellular, in contrast to the robust membrane localization of Kv1.3. To determine whether any of these channels play a role in microglial activation, a respiratory burst was stimulated with phorbol 12-myristate 13-acetate and measured using a single cell, fluorescence-based dihydrorhodamine 123 assay. The respiratory burst was markedly inhibited by blockers of SK2 (apamin) and SK4 channels (clotrimazole and charybdotoxin), and to a lesser extent, by the potent Kv1.3 blocker agitoxin-2. PMID:11245596

  2. Burst Assembly Schemes and Performance Evaluation in Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    TANG Jian-jun; JI Yue-feng

    2004-01-01

    Several proposed assemble algorithms for Optical Burst Switching (OBS) network is described, and the feature relative merits is discussed and analyzed in this paper. The authors propose an assembly mechanism FAT where time threshold is fluctuating randomly to reduce continuous blocking rate. With network simulation, the basic performance of these assembly schemes is compared and analyzed. The results show that burst loss ratio and assembly delay of the proposed FAT mechanism is better than that of exist assemble mechanism.

  3. Improved adaptive-threshold burst assembly in optical burst switching networks

    Institute of Scientific and Technical Information of China (English)

    Jiuru Yang; Gang Wang; Shilou Jia

    2007-01-01

    An improved adaptive-threshold burst assembly algorithm is proposed to alleviate the limitation of conventional assembly schemes on data loss and delay. The algorithm will adjust the values of assembly factors according to variant traffic regions. And the simulation results show that, by using the adaptive-factor adaptive assembly scheme, the performance of networks is extensively enhanced in terms of burst loss probability and average queuing delay.

  4. Transient burst techniques and results of the examination for irradiated PNC316 steel

    International Nuclear Information System (INIS)

    In fast reactors, deformation behavior and failure strength of fuel cladding tubes (CTs) under loss of coolant flow (LOF) events are important evaluation items of reactor safeties. It has calculated that the primary temperature peak of CTs under such events reaches 720 .deg. C or more from 650 .deg. C in a short time, e.g. 2-3 seconds. Transient burst tests simulate this phenomenon, and they measure failure temperature of the CTs, as heating under a constant pressure. In this paper CTs behavior was evaluated during the primary phase of an LOF event and transient bust test were made for neutron irradiated PNC316 CTs. The CTs specimens were irradiated in the experimental fast reactor JOYO. Post irradiation examination (PIE) results for transient burst test specimens showed failure temperatures were between 930 and 1,030 .deg. C at a hoop stress of 98MPa. For higher hoop stresses, the rupture temperatures were lower. The failure temperatures of irradiated and un irradiated CTs were within 10% of the average measurement value at each hoop stress. The failure temperature of the irradiated CTs had no extreme degradation by comparison to the failure temperature of the un irradiated CTs

  5. Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in beta-cells

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2007-01-01

    cells are subjected to stochastic fluctuations in plasma membrane currents, which are likely to disturb the bursting mechanism and transform medium bursters into spikers or very fast bursters. We present a polynomial, minimal, phantom burster model and show that noise modifies the plateau fraction and......-called compound bursting can be converted to apparent slow bursting by noise, which could explain why compound bursting and mixed Ca oscillations are seen mainly in intact islets....

  6. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  7. Investigation of Primordial Black Hole Bursts using Interplanetary Network Gamma-ray Bursts

    CERN Document Server

    Ukwatta, T N; MacGibbon, J H; Svinkin, D S; Aptekar, R L; Golenetskii, S V; Frederiks, D D; Pal'shin, V D; Goldsten, J; Boynton, W; Fellows, C; Harshman, K; Mitrofanov, I G; Golovin, D V; Kozyrev, A S; Litvak, M L; Sanin, A B; Rau, A; Kienlin, A; Zhang, X; Briggs, M S; Connaughton, V; Meegan, C; Yamaoka, K; Fukazawa, Y; Ohno, M; Ohmori, N; Takahashi, T; Tashiro, M; Terada, Y; Murakami, T; Makishima, K; Feroci, M; Frontera, F; Guidorzi, C; Barthelmy, S; Cline, T; Gehrels, N; Cummings, J; Krimm, H A; Smith, D M; McTiernan, J

    2015-01-01

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating Primordial Black Holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the minimum distance to gamma-ray bursts using detections from widely separated spacecraft. We applied this method to constrain distances to a sample of 36 short duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10^13-10^18 cm (7-10^5 AU) range, consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming these bursts are real PBH events, we estimate for the first time lower limits ...

  8. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  9. X-Ray Observations of Gamma-Ray Burst Afterglows

    OpenAIRE

    Frontera, Filippo

    2004-01-01

    The discovery by the BeppoSAX satellite of X-ray afterglow emission from the gamma-ray burst which occurred on 28 February 1997 produced a revolution in our knowledge of the gamma-ray burst phenomenon. Along with the discovery of X-ray afterglows, the optical afterglows of gamma-ray bursts were discovered and the distance issue was settled, at least for long $\\gamma$-ray bursts. The 30 year mystery of the gamma-ray burst phenomenon is now on the way to solution. Here I rewiew the observationa...

  10. IGR J17254-3257, a new bursting neutron star

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.;

    2007-01-01

    Aims. The study of the observational properties of uncommonly long bursts from low luminosity sources is important when investigating the transition from a hydrogen - rich bursting regime to a pure helium regime and from helium burning to carbon burning as predicted by current burst theories. On a...... intermediate between pure He and mixed H/He burning. The long burst is the result of the accumulation of a thick He layer, while the short one is a prematurate H-triggered He burning burst at a slightly lower accretion rate....

  11. Gravitational-wave bursts with memory and experimental prospects

    International Nuclear Information System (INIS)

    The authors show that for any kind of detector the best way to search for a ''bursts with memory'' (BWM) gravitation wave is to integrate up the signal for an integration time tau-circumflex approx.= 1/fsub(opt), where fsub(opt) is the frequency at which the detector has optimal amplitude sensitivity to ordinary bursts (bursts with memory). In such a search the sensitivity to BWM with duration Δt < or approx. 1/fsub(opt) is independent of the burst duration Δt and is approximately equal to the sensitivity to ordinary bursts one cycle long with frequency fsub(opt). (author)

  12. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    OpenAIRE

    Vacek, J.; J. Chocholoušová

    2008-01-01

    Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps) to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the pot...

  13. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  14. Heterogeneous reactors

    International Nuclear Information System (INIS)

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author)

  15. Directivity of low frequency solar type III radio bursts

    International Nuclear Information System (INIS)

    The occurrence rate of type III solar bursts in the frequency range 4.9 MHz to 30 kHz is analyzed as a function of burst intensity and burst arrival direction. It is found that (a) the occurrence rate of bursts falls off with increasing flux, S, according to the power law Ssup(-1.5), and (b) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the Earth-Sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction. (Auth.)

  16. An Analysis of Burst Disc Pressure Instability

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Robinson; B. C. Odegard, Jr.; N. r. Moody; S. H. Goods

    2000-06-01

    During the development stage of the 1X Acorn burst disc, burst pressure test results exhibited an unexpected increase of 8 to 14% over times of 90--100 days from initial fabrication. This increase is a concern where design constraints require stability. The disc material, 316L stainless steel sheet, is formed to a dome-like geometry and scored to produce a thin-walled, high-strength ligament. The fracture events controlling burst occur in that ligament. Thus it has been characterized both for tensile properties and microstructure through nanoindentation, magnetic measurements, optical and transmission electron microscopy. These results compare favorably with finite element simulation of the properties of the ligament. The ligament exhibits a highly heterogeneous microstructure; its small volume and microstructural heterogeneity make it difficult to identify which microstructural feature controls fracture and hence burst pressure. Bulk mechanical test specimens were fabricated to emulate mid-ligament properties, and aged at both room and elevated temperatures to characterize and accelerate the temporal behavior of the burst disc. Property changes included yield and ultimate tensile strength increases, and fracture strain decreases with aging. Specimens were subjected to a reversion anneal identical to that given the burst disc to eliminate the martensite phase formed during rolling. Reversion-annealed samples exhibited no change in properties in room temperature or accelerated aging, showing that the reversion-anneal eliminated the aging phenomenon. Aging was analyzed in terms of diffusion controlled precipitate growth kinetics, showing that carbon migration to dislocations is consistent with the strength increases. A vacancy-assisted diffusion mechanism for carbon transport is proposed, giving rise to rapid aging, which replaces interstitial carbon diffusion until excess vacancies from deformation are consumed. Mechanical activation parameters in stress relaxation

  17. Fermi/GAMMA-RAY BURST MONITOR OBSERVATIONS OF SGR J0501+4516 BURSTS

    International Nuclear Information System (INIS)

    We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the gamma-ray burst monitor on board the Fermi Gamma-ray Space Telescope during 13 days of the source's activation in 2008 (August 22- September 3). We find that the T90 durations of the bursts can be fit with a log-normal distribution with a mean value of ∼123 ms. We also estimate for the first time event durations of soft gamma repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T90 values estimated in count space (following a log-normal distribution with a mean value of ∼124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two blackbody functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that Epeak decreases with energy flux (and fluence) to a minimum of ∼30 keV at F = 8.7 x 10-6 erg cm-2 s-1, increasing steadily afterward. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity, Liso, corresponding to these flux values is roughly similar for all sources (0.4-1.5 x 1040 erg s-1).

  18. The link between coherent burst oscillations, burst spectral evolution and accretion state in 4U 1728-34

    CERN Document Server

    Zhang, Guobao; Zamfir, Michael; Cumming, Andrew

    2015-01-01

    Coherent oscillations and the evolution of the X-ray spectrum during thermonuclear X-ray bursts in accreting neutron-star X-ray binaries have been studied intensively but separately. We analysed all the X-ray bursts of the source 4U 1728-34 with the Rossi X-ray Timing Explorer. We found that the presence of burst oscillations can be used to predict the behaviour of the blackbody radius during the cooling phase of the bursts. If a burst shows oscillations, during the cooling phase the blackbody radius remains more or less constant for ~2 - ~8s, whereas in bursts that do not show oscillations the blackbody radius either remains constant for more than ~2 - ~8s or it shows a rapid (faster than ~2s) decrease and increase. Both the presence of burst oscillations and the time-dependent spectral behaviour of the bursts are affected by accretion rate. We also found that the rise time and convexity of the bursts' light curve are different in bursts with and without oscillations in 4U 1728--34. Bursts with oscillations ...

  19. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  20. Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in beta-cells

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2007-01-01

    Pancreatic beta-cells show bursting electrical activity with a wide range of burst periods ranging from a few seconds, often seen in isolated cells, over tens of seconds (medium bursting), usually observed in intact islets, to several minutes. The phantom burster model [Bertram, R., Previte, J...... cells are subjected to stochastic fluctuations in plasma membrane currents, which are likely to disturb the bursting mechanism and transform medium bursters into spikers or very fast bursters. We present a polynomial, minimal, phantom burster model and show that noise modifies the plateau fraction and...... lowers the burst period dramatically in phantom bursters. It is therefore unlikely that slow bursting in single cells is driven by the slow phantom bursting mechanism, but could instead be driven by oscillations in glycolysis, which we show are stable to random ion channel fluctuations. Moreover, so...

  1. Are gamma-ray bursts cosmological?

    CERN Document Server

    Horvath, I

    2015-01-01

    Gamma-ray burst sources are distributed with a high level of isotropy, which is compatible with either a cosmological origin or an extended Galactic halo origin. The brightness distribution is another indicator used to characterize the spatial distribution in distance. In this paper the author discusses detailed fits of the BATSE gamma-ray burst peak-flux distributions with Friedmann models taking into account possible density evolution and standard candle luminosity functions. A chi-square analysis is used to estimate the goodness of the fits and the author derives the significance level of limits on the density evolution and luminosity function parameters. Cosmological models provide a good fit over a range of parameter space which is physically reasonable

  2. Coherence resonance in bursting neural networks

    Science.gov (United States)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J.

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal—a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  3. Environmental Effects of Gamma Ray Bursts

    International Nuclear Information System (INIS)

    Gamma rays bursts, coming from very massive stars, are the most powerful explosions in our Universe. Some authors have linked them to some of the climatic changes and consequent biological mass extinctions of the Phanerozoic eon. However, the consequences of their direct impact on primitive Earth, is today a hot topic of debate. On the other hand, it is usually assumed that they were more common in earlier stages of our galaxy. So it is important to evaluate its potential effects on terrestrial paleoenvironments. We outline some simple models to estimate their influence mainly on the primordial atmospheric chemistry of Earth and on the climate in general. To do that, we consider different scenarios where the atmospheric composition diverges substantially from the atmosphere today, and compute the evolution of principal chemical species under the intense radiational stress of a gamma ray burst. Furthermore, the possible impact on the isotopic composition, geochemistry and the biosphere are mentioned in general way

  4. The Supernova -- Gamma-Ray Burst Connection

    CERN Document Server

    Woosley, S E

    2006-01-01

    Observations show that at least some gamma-ray bursts (GRBs) happen simultaneously with core-collapse supernovae (SNe), thus linking by a common thread nature's two grandest explosions. We review here the growing evidence for and theoretical implications of this association, and conclude that most long-duration soft-spectrum GRBs are accompanied by massive stellar explosions (GRB-SNe). The kinetic energy and luminosity of well-studied GRB-SNe appear to be greater than those of ordinary SNe, but evidence exists, even in a limited sample, for considerable diversity. The existing sample also suggests that most of the energy in the explosion is contained in nonrelativistic ejecta (producing the supernova) rather than in the relativistic jets responsible for making the burst and its afterglow. Neither all SNe, nor even all SNe of Type Ibc produce GRBs. The degree of differential rotation in the collapsing iron core of massive stars when they die may be what makes the difference.

  5. Gamma-Ray Burst Prompt Emission

    CERN Document Server

    Zhang, Bing

    2014-01-01

    The origin of gamma-ray burst (GRB) prompt emission, bursts of gamma-rays lasting from shorter than one second to thousands of seconds, remains not fully understood after more than 40 years of observations. The uncertainties lie in several open questions in the GRB physics, including jet composition, energy dissipation mechanism, particle acceleration mechanism, and radiation mechanism. Recent broad-band observations of prompt emission with Fermi sharpen the debates in these areas, which stimulated intense theoretical investigations invoking very different ideas. I will review these debates, and argue that the current data suggest the following picture: A quasi-thermal spectral component originating from the photosphere of the relativistic ejecta has been detected in some GRBs. Even though in some cases (e.g. GRB 090902B) this component dominates the spectrum, in most GRBs, this component either forms a sub-dominant "shoulder" spectral component in the low energy spectral regime of the more dominant "Band" co...

  6. Plasma reactor

    OpenAIRE

    Molina Mansilla, Ricardo; Erra Serrabasa, Pilar; Bertrán Serra, Enric

    2008-01-01

    [EN] A plasma reactor that can operate in a wide pressure range, from vacuum and low pressures to atmospheric pressure and higher pressures. The plasma reactor is also able to regulate other important settings and can be used for processing a wide range of different samples, such as relatively large samples or samples with rough surfaces.

  7. Reactor physics

    International Nuclear Information System (INIS)

    Progress in research on reactor physics in 1997 at the Belgian Nuclear Research Centre SCK/CEN is described. Activities in the following four domains are discussed: core physics, ex-core neutron transport, experiments in Materials Testing Reactors, international benchmarks

  8. GAMMA-RAY BURSTS, NEW COSMOLOGICAL BEACONS

    Directory of Open Access Journals (Sweden)

    V. Avila-Reese

    2009-01-01

    Full Text Available Long Gamma-Ray Bursts (GRBs are the brightest electromagnetic explosions in the Universe, associated to the death of massive stars. As such, GRBs are potential tracers of the evolution of the cosmic massive star formation, metallicity, and Initial Mass Function. GRBs also proved to be appealing cosmological distance indicators. This opens a unique opportunity to constrain the cosmic expansion history up to redshifts 5-6. A brief review on both subjects is presented here.

  9. Downhole drilling network using burst modulation techniques

    Science.gov (United States)

    Hall; David R. , Fox; Joe

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  10. Identifying crucial parameter correlations maintaining bursting activity.

    Directory of Open Access Journals (Sweden)

    Anca Doloc-Mihu

    2014-06-01

    Full Text Available Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA to each of these four groups. PCA identified a set of three maximal conductances (leak current, [Formula: see text]Leak; a persistent K current, [Formula: see text]K2; and of a persistent Na+ current, [Formula: see text]P that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of [Formula: see text]Leak, [Formula: see text]K2, and [Formula: see text]P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.

  11. The Euclidean distribution of Fast Radio Bursts

    OpenAIRE

    Oppermann, Niels; Connor, Liam; Pen, Ue-Li

    2016-01-01

    We investigate whether current data on the distribution of observed flux densities of Fast Radio Bursts (FRBs) are consistent with a constant source density in Euclidean space. We use the number of FRBs detected in two surveys with different characteristics along with the observed signal-to-noise ratios of the detected FRBs in a formalism similar to a V/V_max-test to constrain the distribution of flux densities. We find consistency between the data and a Euclidean distribution. Any extension ...

  12. Gamma Ray Bursts and their Optical Counterparts

    International Nuclear Information System (INIS)

    Gamma Ray Bursts (GRB) have been discovered 38 years ago and still remain one of the most intriguing puzzles of astrophysics. In this paper we remind briefly the history of GRB studies and review the current experimental evidence with the emphasis on GRB optical counterparts. At the end we introduce '' π of the Sky '' project designed to catch prompt optical emission from GRB sources. (author)

  13. Gamma-ray bursts - a critical review

    International Nuclear Information System (INIS)

    We present a short general introduction into the field of gamma-ray bursts (GRBs) research, summarizing the past and the present status. We give an general view of the GRBs observations to date, both in the prompt emission phase as well as in the afterglow phase, and a brief primer into the theory, mainly in the frame-work of the fireball model. (authors)

  14. Fission product release in accidents in light water reactors

    International Nuclear Information System (INIS)

    The author deals with the three phases of release from the reactor core, from the reactor system, and finally from the containment. Particular interest is given to the release from the reactor core at temperatures which let the fuel rod cladding burst leading to meltdown of the fuel elements and evaporation from the core melt. The special case of the steam explosion with small nuclear fuel particles pouring out into an oxidating atmosphere is touched upon. The Rasmussen study is the basis of the statements. (orig./LH)

  15. The Swift Gamma-Ray Burst Mission

    CERN Document Server

    Gehrels, N; Burrows, D N; Chincarini, G L; Cominsky, L R; Giommi, P; Hurley, K C; Marshall, F E; Mason, K O; Mészáros, P; Nousek, J A; Roming, P W A; Wells, A A; White, N E; Team, Swift Science

    2004-01-01

    The Swift mission, scheduled for launch in early 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to determine the origin of GRBs; classify GRBs and search for new types; study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and use GRBs to study the early universe out to z>10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector; a narrow-field X-ray telescope; and a narrow-field UV/optical telescope. Redshift determin...

  16. Supercollapsars and their X-ray Bursts

    CERN Document Server

    Komissarov, S S

    2009-01-01

    The very first stars in the Universe can be very massive, frequently reaching $10^3M_\\odot$. If born in large numbers such massive stars can have strong impact on the subsequent star formation producing strong ionising radiation and contaminating the primordial gas with heavy elements. They would leave behind massive black holes that could act as seeds for growing supermassive black holes of active galactic nuclei. Given the anticipated fast rotation such stars would end their live as supermassive collapsars and drive powerful magnetically-dominated jets. In this letter we investigate the possibility of observing the bursts of high-energy emission similar to the Long Gamma Ray Bursts associated with normal collapsars. We show that during the collapse of supercollapsars, the Blandford-Znajek mechanism can extract up to $10^{56}$erg at a rate of few$\\times10^{52}$erg/s. Due to the higher intrinsic time scale and higher redshift the observed burst duration increases by a factor of $\\simeq 1000$ and can reach one...

  17. Radio flares from gamma-ray bursts

    CERN Document Server

    Kopac, D; Kobayashi, S; Virgili, F J; Harrison, R; Japelj, J; Guidorzi, C; Melandri, A; Gomboc, A

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later opt...

  18. Dihydroxyoctadecamonoenoate esters inhibit the neutrophil respiratory burst

    Indian Academy of Sciences (India)

    David Alan Thompson; Bruce D Hammock

    2007-03-01

    The leukotoxins [9(10)- and 12(13)-EpOME] are produced by activated inflammatory leukocytes such as neutrophils. High EpOME levels are observed in disorders such as acute respiratory distress syndrome and in patients with extensive burns. Although the physiological significance of the EpOMEs remains poorly understood, in some systems, the EpOMEs act as a protoxin, with their corresponding epoxide hydrolase metabolites, 9,10- and 12,13-DiHOME, specifically exerting toxicity. Both the EpOMEs and the DiHOMEs were also recently shown to have neutrophil chemotactic activity. We evaluated whether the neutrophil respiratory burst, a surge of oxidant production thought to play an important role in limiting certain bacterial and fungal infections, is modulated by members of the EpOME metabolic pathway. We present evidence that the DiHOMEs suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation.

  19. Gamma-Ray Burst Physics with GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  20. Bursting emission from B0611+22

    CERN Document Server

    Seymour, Andrew; Ridley, Josh

    2014-01-01

    Over the past decade it has become apparent that a class of `bursting pulsars' exist with the discovery of PSR J1752+2359 and PSR J1938+2213. In these pulsars, a sharp increase in the emission is observed that then tends to systematically drop-off from pulse-to-pulse. In this paper we describe the discovery of such a relationship in high-sensitivity observations of the young (characteristic age of 90,000 yrs) 0.33 s pulsar B0611+22 at both 327 MHz and 1400 MHz with the Arecibo radio telescope. While Nowakowski previously showed that B0611+22 has mode-switching properties, the data presented here show, for the first time, that this pulsar emits bursts with characteristic time-scales of several hundred seconds. At 327 MHz, the pulsar shows steady behaviour in one emission mode which is enhanced by bursting emission slightly offset in pulse phase from this steady emission. Contrastingly at 1400 MHz, the two modes appear to behave in a competing operation while still offset in phase. Using a fluctuation spectrum ...

  1. A Fast Radio Burst Host Galaxy

    CERN Document Server

    Keane, E F; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $\\sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be $z=0.492\\pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $\\Omega_{\\mathrm{IGM}}=4.9 \\pm 1.3\\%$, in agreement with the expectation from WMAP, and i...

  2. Composite-flywheel burst-containment study

    Energy Technology Data Exchange (ETDEWEB)

    Sapowith, A D; Handy, W E

    1982-04-08

    A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These area: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk. The flywheel materials for the disk are S-glass; the subcircular rim is Kevlar over S-glass. Test data on flywheel bursts and containment failures were analyzed. Recommendations are made for further testing.

  3. Burst fracture of the fifth lumber vertebra

    International Nuclear Information System (INIS)

    Objective: To investigate the stability of the fifth lumber vertebra after burst fracture. Methods: 7 patients with burst fracture of the fifth lumber vertebra were examined by X-ray and CT, and followed for 6-36 months. The changes of wedge index, lordosis, degree of spinal canal stenosis and neurological features were observed during the episode and followed up. Results: The three spinal column structure was disrupted in 6 of 7 patients. The anterior and mid columns were involved in 1 case. Spinal stenosis of first and second degrees was seen in 3 cases, and in one case, there was no spinal canal stenosis. Lower lumber motor-root deficits were found in 2 of 7 patients and resolved in follow up. There was no tendency of progressive collapse of the vertebral body and spinal stenosis. Conclusions: Burst fracture of the fifth lumber vertebra was specific, most of them were stable fractures, although two or three columns of the spine were disrupted and accompanied by spinal canal stenosis

  4. Prompt burst energetics experiments: fresh oxide/sodium series

    International Nuclear Information System (INIS)

    A series of in-pile experiments has been performed to provide information on thermal energy to work conversion under prompt burst excursion (PBE) conditions. These consisted of single pin tests using fresh uranium oxide or uranium carbide fuel in a capsule geometry, with either stagnant sodium or helium in the coolant channel. The experiments were irradiated with single or double pulses in the Annular Core Pulse Reactor (ACPR) to provide energy depositions up to 2900 J/g. This report covers the seven single and five double pulse UO2 sodium-in tests. Experimental data includes pressure and linear motion transducer histories, measured work-energy conversion efficiencies, and post-irradiation examination. Analysis includes derived work-energy conversion efficiencies (up to 0.54%), pin failure modeling, hydrodynamic analysis of pressure pulse propagation in the channel, and piston stopping effects. Initial pressure events in the single pulse experiments appear to be dominated by fuel vapor pressure. Definite fuel-coolant interactions were observed in several experiments, including some that were coincident with stopping of the linear motion transducer piston, suggesting a possible triggering effect by the deceleration pressure

  5. UWB multi-burst transmit driver for averaging receivers

    Science.gov (United States)

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  6. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  7. The Fermi-GBM X-ray burst monitor: thermonuclear bursts from 4U 0614+09

    CERN Document Server

    Linares, M; Jenke, P; van der Horst, A J; Camero-Arranz, A; Kouveliotou, C; Chakrabarty, D; Beklen, E; Bhat, P N; Briggs, M S; Finger, M; Paciesas, W; Preece, R; von Kienlin, A; Wilson-Hodge, C A

    2012-01-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the neutron star interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor (GBM) aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09, when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12+/-3 d (68% confidence interval) between March 2010 and March 2011, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 d (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations, and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bu...

  8. Upper-Bound Performance of a Wideband Burst-by-Burst Adaptive Modem

    OpenAIRE

    Wong, C. H.; Hanzo, L.

    1999-01-01

    In this contribution, adaptive modulation is applied in conjunction with a Decision Feedback Equalizer (DFE) in order to mitigate the effects of the slowly varying wideband multi-path Rayleigh fading channel. The upper-bound mean BER and Bits Per Symbol (BPS) performance of this scheme is determined by utilizing the pseudo-SNR at the output of the DFE, in order to switch the modulation schemes on a burst-by-burst basis. The performances of each individual modulation schemes and their amalgama...

  9. Implications of fast radio bursts for superconducting cosmic strings

    International Nuclear Information System (INIS)

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch

  10. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy......, trapped particle streams. These background events may simulate the count rate increases characteristic of cosmic gamma bursts. For 12 of the detected events, their true cosmic nature have been confirmed through consistent localizations of the burst sources based on several independent WATCH data sets. The...... derived positions of the bursts are reported. Additionally, most of the events have been confirmed by coincident detections with instruments on other spacecrafts. The features of two of the bursts and the results of searches for related events in the optical are described....

  11. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number of the...... known X-ray bursters are frequently observed by INTEGRAL, in particular in the frame of the Key Programmes. Taking advantage of the INTEGRAL instrumentation, an international collaboration led by the JEM-X team at the Danish National Space Institute has been monitoring the occurrence of uncommon burst...... events lasting more than a few minutes. Of special interest are exceptional X-ray bursts which duration about a few tens of minutes is intermediate between usual short bursts and hour long superbursts. The processes driving such long bursts are not yet fully understood: depending on the composition of...

  12. Power Density Spectra of $\\gamma$-Ray Bursts

    CERN Document Server

    Beloborodov, A M

    1999-01-01

    Power density spectra (PDSs) of long gamma-ray bursts provide useful information on GRBs, indicating their self-similar temporal structure. The best power-law PDSs are displayed by the longest bursts (T_90 > 100 s) in which the range of self-similar time scales covers more than 2 decades. Shorter bursts have apparent PDS slopes more strongly affected by statistical fluctuations. The underlying power law can then be reproduced with high accuracy by averaging the PDSs for a large sample of bursts. This power-law has a slope alpha\\approx -5/3 and a sharp break at 1 Hz. The power-law PDS provides a new sensitive tool for studies of gamma-ray bursts. In particular, we calculate the PDSs of bright bursts in separate energy channels. The PDS flattens in the hard channel (h\

  13. Experimental Evaluation of the Burst Pressure of Steam Generator Tube with Multiple Part-through-wall Cracks

    International Nuclear Information System (INIS)

    Since steam generator (SG) tube is a pressure boundary of pressurized water reactor (PWR), the maintaining integrity of SG tube is very important. However, various types of defect caused by a mechanical and chemical degradations have been observed in the SG tube. In particular, the outer diameter stress corrosion cracking (ODSCC) in the secondary side is a dominant type of defect, which can lead to leakage of primary coolant and burst of SG tube. Thus, the integrity evaluation of SG tubes with SCC is considered to be an important issue. A number of experimental and analytical studies have been conducted to evaluate burst pressure of SG tube with defects and proposed evaluation models. But, most of the models were developed based on single cracks, although SCC initiates and grows at multiple sites on the surface of SG tube. Therefore, this study carried out burst tests using SG tube specimens containing multiple part-trough-wall (PTW) flaws at room temperature (RT) and evaluated burst pressure of SG tubes with multiple PTW flaws. The burst tests were conducted on 56 specimens and burst pressures were obtained. Also, failure mode of SG tube with multiple flaws was investigated by examining the shape of crack and tearing from post-test specimens. The reduction was more pronounced for L=25.4mm than L=6.3mm and was more pronounced when three flaws were arranged than when two flaws were arranged. Burst pressure increased with increasing axial distance between flaws for collinear multiple flaws, whereas the pressure decreased and saturated with increasing circumferential distance between non-aligned multiple flaws. For SG tubes with parallel multiple flaws, the burst pressure was influenced by circumferential distance between flaws and length of flaws. When two flaws were parallel with circumferential distance of l1=1mm, the burst pressure was higher about 2% than that of single flaw for L=6.3mm, but it was lower about 7% than that of single flaw for L=25.4mm. Thus an

  14. Prestressed cast iron pressure vessels as burst-proof pressure vessels for innovative nuclear applications

    International Nuclear Information System (INIS)

    The amendment to the German Atomic Energy Act from July 28, 1994 requires that events 'whose occurrence is practically excluded by the measures against damages', i.e. events of the category residual risk, must not necessitate far reaching protective measures outside the plant. For a conventional reactor pressure vessel, the residual risk consists in the very small probability of a catastrophic failure (formation of a large fracture opening, bursting of the vessel). With a prestressed cast iron vessel (PCIV), the formation of a large fracture opening or bursting of the vessel, respectively, is impossible due to its design properties. Against this background the possibility of the use of this type of pressure vessel for lightwater reactors has been studied in the frame of a 'Working Group for Innovative Nuclear Technology', founded by different research institutes and industrial companies. Furthermore, it has been studied whether the use of the PCIV support the realization of a corecatcher system. The results are presented in this report. Already many years earlier, Siempelkamp has performed industrial development and Forschungszentrum Juelich related experimental and theoretical safety research for the PCIV as an innovative, bust-proof pressure vessel concept. This development of the PCIV as well as its safety properties are also presented in a conclusive manner. (orig.)

  15. Effects of process variables on the burst properties of the PHWR fuel clad tubes

    International Nuclear Information System (INIS)

    Zirconium alloy tubing is used to clad the natural uranium oxide fuel in nuclear reactors. The reliability of zircaloy fuel pin depends largely on the durability of cladding under pressure of fission gasses, thermal gradients and effects of neutron bombardments (embrittlements and swelling from irradiation). To ensure the largest possible service, it is necessary to scrupulously inspect the tubes to eliminate the manufacturing defects, which might cause their premature failure in nuclear reactors. Hence, metallurgical, chemical, and mechanical properties are evaluated carefully during hot working and cold working stages. The fuel cladding which is not subjected solely to axial stress, but to bi-axial stresses imposed on the cladding by pressurized coolant, by the thermal expansion of uranium dioxide fuel and at high burn up by fuels swelling. For stresses other than those produced by the pressurized coolant, the actual longitudinal to tangential stress ratio is a variable, depending on the fuel design. Since the stress ratio can have a significant effect on the mechanical properties and because of the anisotropic nature of zirconium alloys, proper assessments of the mechanical properties for fuel cladding can best be accomplished by a test which imposes a bi-axial stress on the tubing. Many ways of testing have been tried to assess the transverse properties. There are two main groups, burst tests and ring tests. The burst tests are used widely, because of the well defined testing conditions, while ring tests although simple are not so well accepted, because of inherently ambiguous conditions for plastic instability. (author)

  16. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  17. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  18. Nuclear reactors

    International Nuclear Information System (INIS)

    This draft chart contains graphical symbols from which the type of (nuclear) reactor can be seen. They will serve as illustrations for graphical sketches. Important features of the individual reactor types are marked out graphically. The user can combine these symbols to characterize a specific reactor type. The basic graphical symbol is a square with a point in the centre. Functional groups can be depicted for closer specification. If two functional groups are not clearly separated, this is symbolized by a dotted line or a channel. Supply and discharge lines for coolant, moderator and fuel are specified in accordance with DIN 2481 and can be further specified by additional symbols if necessary. The examples in the paper show several different reactor types. (orig./AK)

  19. Burst suppression electroencephalogram with mushroom poisoning, Amanita pantherina

    OpenAIRE

    Yuka Ogawa; Hiromasa Sato; Motoyoshi Yamamoto; Hiroyuki Tada; Takao Hashimoto

    2015-01-01

    We report on a patient with Amanita pantherina poisoning who showed a burst suppression pattern on electroencephalography during a comatose state. The patient recovered without sequelae a week after ingestion. Burst suppression pattern is defined as alternating bursts and periods of electrical silence, and it is associated with comatose states of various causes. The major toxins contained in A. pantherina are ibotenic acid, an excitatory amino acid at the glutamate receptors, and muscimol, an...

  20. Burst Fractures as a Result of Attempted Suicide by Jumping

    OpenAIRE

    Kim, Do Young; Choi, Hong June; Park, Jeong Yoon; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun; Jin, Byoung Ho

    2014-01-01

    Objective Jumping from high place for the purpose of suicide results in various damages to body area. A burst fracture of vertebrae is representative of them and we reviewed eight patients who were diagnosed with spinal burst fracture following suicide falling-down. The demographics, characteristics, performed operation, combined injuries, psychological past histories of the patients were analyzed. Methods A retrospective study was made of patients who are diagnosed with vertebral burst fract...

  1. Strain bursts in plastically deforming Molybdenum micro- and nanopillars

    OpenAIRE

    Zaiser, Michael; Schwerdtfeger, Jan; Schneider, Andreas; Frick, Carl; Clark, Blythe Gore; Gruber, Patric; Arzt, Eduard

    2009-01-01

    Abstract Plastic deformation of micron and sub-micron scale specimens is characterized by intermittent sequences of large strain bursts (dislocation avalanches) which are separated by regions of near-elastic loading. In the present investigation we perform a statistical characterization of strain bursts observed in stress-controlled compressive deformation of monocrystalline molybdenum micropillars. We characterize the bursts in terms of the associated elongation increments and pea...

  2. Detecting Pipe Bursts Using Heuristic and CUSUM Methods

    OpenAIRE

    Bakker, M.; Jung, D.; Vreeburg, J.; Van der Roer, M.; Lansey, K.; Rierveld, L.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst detection method, which continuously compares forecasted and measured values of the water demand. The forecasts of the water demand were generated by an adaptive water demand forecasting model. To test th...

  3. Full System Bifurcation Analysis of Endocrine Bursting Models

    OpenAIRE

    Rieß, Thorsten; Sherman, Arthur; Tsaneva-Atanasova, KT; Osinga, HM

    2010-01-01

    Plateau bursting is typical of many electrically excitable cells, such as endocrine cells that secrete hormones and some types of neurons that secrete neurotransmitters. Although in many of these cell types the bursting patterns are regulated by the interplay between voltage-gated calcium channels and calcium-sensitive potassium channels, they can be very different. For example, in insulin-secreting pancreatic β-cells, plateau bursting is characterized by well-defined spikes during the depola...

  4. Are designers making the most of new bursting disc devices

    International Nuclear Information System (INIS)

    Recent years have seen significant advances in the technology of bursting discs for protecting plants against excess pressure. The recently developed scored reverse buckling discs burst within an accuracy of +- 3 percent. Also the pressure can rise to 90 percent of the disc's minimum burst pressure without affecting its performance. It is argued that it would now be a desirable feature in modern PWRs to update rupture disc design. (author)

  5. Multifunctional reactors

    OpenAIRE

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much emphasis in research in the last decade. A survey is given of modern developments and the first successful applications on a large scale. It is explained why their application in many instances is ...

  6. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  8. Breeder reactors

    International Nuclear Information System (INIS)

    The reasons for the development of fast reactors are briefly reviewed (a propitious neutron balance oriented towards a maximum uranium burnup) and its special requirements (cooling, fissile material density and reprocessing) discussed. The three stages in the French program of fast reactor development are outlined with Rapsodie at Cadarache, Phenix at Marcoule, and Super Phenix at Creys-Malville. The more specific features of the program of research and development are emphasized: kinetics and the core, the fuel and the components

  9. Energy sources in gamma-ray burst models

    Science.gov (United States)

    Taam, Ronald E.

    1987-01-01

    The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

  10. Gamma-ray burst interaction with dense interstellar medium

    OpenAIRE

    Barkov, Maxim; Bisnovatyi-Kogan, Gennady

    2004-01-01

    Interaction of cosmological gamma ray burst radiation with the dense interstellar medium of host galaxy is considered. Gas dynamical motion of interstellar medium driven by gamma ray burst is investigated in 2D approximation for different initial density distributions of host galaxy matter and different total energy of gamma ray burst. The maximum velocity of motion of interstellar medium is $1.8\\cdot10^4$ km/s. Light curves of gamma ray burst afterglow are calculated for set of non homogeneo...

  11. Broad-band solar bursts of the spike type

    International Nuclear Information System (INIS)

    Observations of high-resolution dynamic spectra of solar broad-band spike bursts (BSB), consisting of the instantaneous brightening of the continuum in the entire spectrograph range of 175-235 MHz, are reported. In noise storms events of the BSB type are rarely encountered and have the form of individual bursts with an average duration of 0.1-0.2 sec or groups of such bursts connected with type III bursts at lower frequencies. Series of aperiodic BSB structures unconnected with type III bursts and observed together with one-second pulsations and fiber bursts, predominate in type IV bursts. In noise storms BSB bursts can be emitted by electrons accelerated instantaneously as a result of the reconnection of magnetic fields, both in a small source (about 10 to the 8th cm) with a broad velocity dispersion and in an extended source (about 5 x 10 to the 9th cm). Structures of the BSB type in type IV bursts may be the result of the scattering of Langmuir waves on whistlers in a large height range. 30 references

  12. Broad-band solar bursts of the spike type

    Energy Technology Data Exchange (ETDEWEB)

    Bakunin, L.M.; Chernov, G.P.

    1985-10-01

    Observations of high-resolution dynamic spectra of solar broad-band spike bursts (BSB), consisting of the instantaneous brightening of the continuum in the entire spectrograph range of 175-235 MHz, are reported. In noise storms events of the BSB type are rarely encountered and have the form of individual bursts with an average duration of 0.1-0.2 sec or groups of such bursts connected with type III bursts at lower frequencies. Series of aperiodic BSB structures unconnected with type III bursts and observed together with one-second pulsations and fiber bursts, predominate in type IV bursts. In noise storms BSB bursts can be emitted by electrons accelerated instantaneously as a result of the reconnection of magnetic fields, both in a small source (about 10 to the 8th cm) with a broad velocity dispersion and in an extended source (about 5 x 10 to the 9th cm). Structures of the BSB type in type IV bursts may be the result of the scattering of Langmuir waves on whistlers in a large height range. 30 references.

  13. The Fermi-GBM X-ray burst monitor

    Science.gov (United States)

    Linares, M.; Fermi GBM X-ray Burst Collaboration

    2010-12-01

    We discuss the first results of the Fermi-GBM all-sky search for X-ray bursts. The very large field of view and X-ray response of the Fermi-GBM make it a unique instrument to study rare, bright and short-lived X-ray bursts. We are performing a systematic search that exploits such capabilities. We present results on long/intermediate type I X-ray bursts, an unusual kind of thermonuclear bursts from accreting neutron stars, and show how Fermi-GBM is giving for the first time robust measurements of their recurrence time.

  14. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive...

  15. Observations of the structure of Type IIIb radio bursts

    International Nuclear Information System (INIS)

    The authors have observed short duration, narrow band Type IIIb radio bursts that occur just before the onset of a normal Type III burst. These observations were made with a multichannel radiometer with a center frequency of 25 MHz, time constant of 10 milliseconds and frequency resolution of 100 KHz. The average half power duration of a typical element of a Type III burst was determined. It was found to be very similar to the time profile of a normal Type III burst, i.e., sharp rise and exponential type decay. (Auth.)

  16. Percussion drilling of metals using bursts of nanosecond pulses.

    Science.gov (United States)

    Hendow, Sami T; Romero, Rosa; Shakir, Sami A; Guerreiro, Paulo T

    2011-05-23

    The effect of ns bursting on percussion drilling of metal is investigated experimentally and analytically, and compared with the efficiency and quality of drilling using single ns pulses. Key advantages are demonstrated, correlating well with the results from a thermal theoretical model. The 1064 nm bursts contain up to 14 pulses of various pulse widths and spacing, and at frequencies of tens of MHz within the burst. The individual pulses have pulse widths of 10 to 200 ns, and up to 12 kW peak power. Burst repetition frequency is single shot to 500 kHz. PMID:21643280

  17. Statistical properties of SGR 1900+14 bursts

    CERN Document Server

    Gogus, E; Kouveliotou, C; Van Paradijs, J; Briggs, M S; Duncan, R C; Thompson, C; Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa; Paradijs, Jan van; Briggs, Michael S.; Duncan, Robert C.; Thompson, Christopher

    1999-01-01

    We study the statistics of soft gamma repeater (SGR) bursts, using a data base of 187 events detected with BATSE and 837 events detected with RXTE PCA, all from SGR 1900+14 during its 1998-1999 active phase. We find that the fluence or energy distribution of bursts is consistent with a power law of index 1.66, over 4 orders of magnitude. This scale-free distribution resembles the Gutenberg-Richter Law for earthquakes, and gives evidence for self-organized criticality in SGRs. The distribution of time intervals between successive bursts from SGR 1900+14 is consistent with a log-normal distribution. There is no correlation between burst intensity and the waiting times till the next burst, but there is some evidence for a correlation between burst intensity and the time elapsed since the previous burst. We also find a correlation between the duration and the energy of the bursts, but with significant scatter. In all these statistical properties, SGR bursts resemble earthquakes and solar flares more closely than ...

  18. The First Swift BAT Gamma-Ray Burst Catalog

    OpenAIRE

    Sakamoto, T.; Barthelmy, S. D.; Barbier, L.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T. N.

    2007-01-01

    We present the first Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains bursts detected by the BAT between 2004 December 19 and 2007 June 16. This catalog (hereafter BAT1 catalog) contains burst trigger time, location, 90% error radius, duration, fluence, peak flux, and time averaged spectral parameters for each of 237 GRBs, as measured by the BAT. The BAT-determined position reported here is within 1.75' of the Swift X-ray Telescope (XRT)-determined position...

  19. Study on cosmic gamma bursts in the ''KONUS'' experiment

    International Nuclear Information System (INIS)

    Made are the investigations of cosmic gamma bursts with the help of the ''Konus'' apparatus, positioned on the ''Venera 11'' and ''Venera 12'' automatic interplanetary stations. 37 gamma bursts have been recorded in the energy range from 50 to 150 keV during the observation period from September to December 1978. Time profiles of bursts on 4, 9 and 24.11.1978 are presented. For the most events the time of burst increase and decrease constitute parts and units of seconds. Differential energy spectra are measured for all recorded bursts. In many cases the spectrum shape is similar to the grade one with the 1.5-2.3 index. In a graphical form built up are the integral distributions of gamma bursts appearence frequency in dependence on their intensity and maximum capacity in the burst peak. Galaxy coordinates of the 17-teen bursts, for which a simple localization is possible, are put on the celestial sphere map. The type of the integral distributions and the source distribution about the celestial sphere show that the gamma burst sources are whithin the Galaxy

  20. ESTIMATION OF THE BURST LENGTH IN OBS NETWORKS

    OpenAIRE

    Pallavi S.; M. Lakshmi

    2014-01-01

    This paper presents an overview of the optical burst switching (OBS) and discusses the major components. In OBS, the length of the burst arriving at a particular node is unknown, and hence, node design is very complex. In OBS first control, packet is transmitted and reserve the path as in circuit switching, thereafter, the data bursts is transmitted. In this paper, a poisson arrival of packets is considered and estimation is made on the size of the burst length. The results presented in the p...

  1. Emergent synchronous bursting of oxytocin neuronal network.

    Directory of Open Access Journals (Sweden)

    Enrico Rossoni

    Full Text Available When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes that are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells discharge asynchronously at 1-3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.

  2. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  3. Spectral Lag Evolution among -Ray Burst Pulses

    Indian Academy of Sciences (India)

    Lan-Wei Jia; Yun-Feng Liang; En-Wei Liang

    2014-09-01

    We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given emission episode, possibly due to the longer lasting emission in a lower energy band, and the spectral lag may not be an intrinsic parameter to discriminate the long and short GRBs.

  4. Gamma Ray Bursts in the HAWC Era

    CERN Document Server

    Mészáros, Peter; Murase, Kohta; Fox, Derek; Gao, He; Senno, Nicholas

    2015-01-01

    Gamma-Ray Bursts are the most energetic explosions in the Universe, and are among the most promising for detecting multiple non-electromagnetic signals, including cosmic rays, high energy neutrinos and gravitational waves. The multi-GeV to TeV gamma-ray range of GRB could have significant contributions from hadronic interactions, mixed with more conventional leptonic contributions. This energy range is important for probing the source physics, including overall energetics, the shock parameters and the Lorentz factor. We discuss some of the latest observational and theoretical developments in the field.

  5. Classification of Fermi Gamma-RAY Bursts

    CERN Document Server

    Horvath, I; Hakkila, J; Bagoly, Z; Preece, R D

    2015-01-01

    The Fermi GBM Catalog has been recently published. Previous classification analyses of the BATSE, RHESSI, BeppoSAX, and Swift databases found three types of gamma-ray bursts. Now we analyzed the GBM catalog to classify the GRBs. PCA and Multiclustering analysis revealed three groups. Validation of these groups, in terms of the observed variables, shows that one of the groups coincides with the short GRBs. The other two groups split the long class into a bright and dim part, as defined by the peak flux. Additional analysis is needed to determine whether this splitting is only a mathematical byproduct of the analysis or has some real physical meaning.

  6. The Birthplaces of Gamma-Ray Bursts

    CERN Document Server

    Young, P A; Young, Patrick A.

    2007-01-01

    We use population synthesis to construct distributions of gamma-ray bursts (GRBs) for different proposed progenitor models. We use a description of star formation that takes into account the evolution of metallicity with redshift and galaxy mass, the evolution of galaxy mass with redshift, and the star formation rate with galaxy mass and redshift. We compare predicted distributions with redshift and metallicity to observations of GRB host galaxies and find that the the simple models cannot produce the observed distributions, but that current theoretical models can reproduce the observations within some constraints on the fraction of fallback black holes that produce GRBs.

  7. Are Gamma-ray Bursts Universal?

    OpenAIRE

    Eichler, David; Levinson, Amir

    2006-01-01

    It is noted that the Liang-Zhang correlation can be accounted for with the viewing angle interpretation proposed earlier. The Ghirlanda correlation, recently generalized by Nava et al (2006) to a wind profile, can be accounted for by the viewing angle interpretation accordingly generalized to a wind profile. Most of the scatter in the spectra and time-integrated brightness in $\\gamma$-ray bursts (GRB) can thus be accounted for by variation in two parameters, 1) the viewing angle and 2) the je...

  8. Decay time of type III solar bursts

    International Nuclear Information System (INIS)

    Sixty-four Type III bursts that drifted to frequencies below 600 kHz between March 1968 and February 1970 were analyzed. Decay times were measured and combined with published data ranging up to about 200 MHz. By fitting power functions to the computed and observed decay times, and using the local plasma hypothesis, it was found that the ratio rho of computed to observed values varies with radiocentric radial distance according to a power function rho = 3r0.7. (U.S.)

  9. Burst-Mode Asynchronous Controllers on FPGA

    Directory of Open Access Journals (Sweden)

    Duarte L. Oliveira

    2008-01-01

    Full Text Available FPGAs have been mainly used to design synchronous circuits. Asynchronous design on FPGAs is difficult because the resulting circuit may suffer from hazard problems. We propose a method that implements a popular class of asynchronous circuits, known as burst mode, on FPGAs based on look-up table architectures. We present two conditions that, if satisfied, guarantee essential hazard-free implementation on any LUT-based FPGA. By doing that, besides all the intrinsic advantages of asynchronous over synchronous circuits, they also take advantage of the shorter design time and lower cost associated with FPGA designs.

  10. Prompt Emission Observations of Swift BAT Bursts

    Science.gov (United States)

    Barthelmy, Scott

    2009-01-01

    We review the prompt emission properties of Swift BAT gamma-ray bursts (GRBs). We present the global properties of BAT GRBs based on their spectral and temporal characteristics. The BAT T90 and T50 durations peak at 80 and 20 s, respectively. The peak energy (Epeak) of about 60% of BAT GRBs is very likely to be less than 1.00 keV. We also present the BAT characteristics of GRBs with soft spectra, so called Xray flashes (XRFs). We will compare the BAT GRBs and XRFs parameter distribution to the other missions.

  11. Thermal radiation from a nuclear weapon burst

    International Nuclear Information System (INIS)

    The different methods and correlations used to calculate the propagation of thermal radiation are reviewed and compared. A simple method to account for radiation enhancement by reflection from a superior cloud deck or snow cover, as well as attenuation of radiation by cloud cover below the burst is presented. The results show that the thermal reach may vary considerably. Additional calculation show that a significant fraction of the thermal energy may be incident after the arrival of the shock wave. Results for a range of weapon yields are presented, and the implications for blast-induced (secondary) fire starts are discussed

  12. Plasma bursts in deep penetration laser welding

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin

    Amsterdam: Elsevier, 2014, s. 1-1436. ISSN 1875-3892. [LANE 2014. International Conference on Photonic Technolgies /8./. Fürth (DE), 08.09.2014-11.09.2014] R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212; GA MŠk EE2.4.31.0016; GA MPO 2A-3TP1/113 Institutional support: RVO:68081731 Keywords : laser welding * plasma bursts * intensity oscillations * frequency analysis Subject RIV: BH - Optics, Masers, Lasers

  13. The repeating Fast Radio Burst FRB 121102: Multi-wavelength observations and additional bursts

    CERN Document Server

    Scholz, P; Hessels, J W T; Chatterjee, S; Cordes, J M; Kaspi, V M; Wharton, R S; Bassa, C G; Bogdanov, S; Camilo, F; Crawford, F; Deneva, J; van Leeuwen, J; Lynch, R; Madsen, E C; McLaughlin, M A; Mickaliger, M; Parent, E; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; Tendulkar, S P

    2016-01-01

    We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green Bank Telescope at 2 GHz, and one at 1.4 GHz at the Arecibo Observatory for a total of 17 bursts from this source. All have dispersion measures consistent with a single value ($\\sim559$ pc cm$^{-3}$) that is three times the predicted maximum Galactic value. The 2-GHz bursts have highly variable spectra like those at 1.4 GHz, indicating that the frequency structure seen across the individual 1.4 and 2-GHz bandpasses is part of a wideband process. X-ray observations of the FRB 121102 field with the Swift and Chandra observatories show at least one possible counterpart; however, the probability of chance superposition is high. A radio imaging observation of the field with the Jansky Very Large Array at 1.6 GHz yields a 5$\\sigma$ upper limit of 0.3 mJy on any point-source continuum emission. This upper limit, combined wit...

  14. The LOFT Burst Alert System and its Burst On-board Trigger

    DEFF Research Database (Denmark)

    Schanne, Stephane; Götz, Diego; Provost, Herve Le;

    2014-01-01

    year) and other transient sources, and to deliver their localization in less than 30 seconds to the observers, via a VHF antenna network. Real-time full resolution data download to ground being impossible, the real-time data processing is performed onboard by the LBOT (LOFT Burst On-board Trigger...

  15. The Second SWIFT Burst Alert Telescope (BAT) Gamma-Ray Burst Catalog

    Science.gov (United States)

    Sakamoto, T.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T. N.; Zhang, B.

    2012-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts. (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples.. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T(sub 90) and T(sub 50) durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs.

  16. Research reactors - an overview

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  17. Some Comments On Fast Radio Burst

    CERN Document Server

    Luan, Jing

    2014-01-01

    Fast Radio Bursts (FRBs) are single $\\mathrm{ms}$ radio pulses with dispersion measures (DM) ranging up to $\\sim 10^3\\mathrm{pc cm^{-3}}$. It has been proposed that they originate from galactic flare stars, and that their DMs come from propagation through the stellar corona. We disapprove this hypothesis by showing that free-free absorption would conceal any radio signal emitted from below the corona. It appears that FRBs come from extragalactic sources. FRB 110220 has a scattering tail of several $\\mathrm{ms}$ Propagation through the intergalactic plasma is unlikely to account for scattering of this magnitude unless the intergalactic magnetic field is as large as $2.4\\times 10^{-9}\\mathrm{G}$. This suggests that this burst originated in the central region of an external galaxy. Extrapolated to cosmological distances and sources sizes of order $c\\Delta t$, the electric fields of FRBs are strong in the sense that they would accelerate thermal electrons to relativistic energies in less than a nanosecond.

  18. $\\gamma$-Ray Bursts and Related Phenomena

    CERN Document Server

    Piran, T

    1999-01-01

    Gamma-ray bursts (GRBs) have puzzled astronomers since their accidental discovery in the sixties. The BATSE detector on the COMPTON-GRO satellite has been detecting one burst per day for the last six years. Its findings have revolutionized our ideas about the nature of these objects. They have shown that GRBs are at cosmological distances. This idea was accepted with difficulties at first. However, the recent discovery of an x-ray afterglow by the Italian/Dutch satellite BeppoSAX led to a detection of high red-shift absorption lines in the optical afterglow of GRB970508 and to a confirmation of its cosmological origin. The simplest and practically inevitable interpretation of these observations is that GRBs result from the conversion of the kinetic energy of ultra-relativistic particles flux to radiation in an optically thin region. The "inner engine" that accelerates the particles or generates the Poynting flux is hidden from direct observations. Recent studies suggest the ``internal-external'' model: intern...

  19. Gamma Ray Bursts Cook Book I: Formulation

    CERN Document Server

    Ziaeepour, Houri

    2008-01-01

    Since the suggestion of relativistic shocks as the origin of gamma-ray bursts (GRBs) in early 90's, the mathematical formulation of this process has stayed at phenomenological level. One of the reasons for the slow development of theoretical works in this domain has been the simple power-law behaviour of the afterglows hours or days after the prompt gamma-ray emission. Nowadays with the launch of the Swift satellite, gamma-ray bursts can be observed in multi-wavelength from a few tens of seconds after trigger onward. These observations have leaded to the discovery of features unexplainable by the simple formulation of the shocks and emission processes used up to now. But "devil is in details" and some of these features may be explained with a more detailed formulation of phenomena and without adhoc addition of new processes. Such a formulation is the goal of this work. We present a consistent formulation of the collision between two spherical relativistic shells. The model can be applied to both internal and ...

  20. Gamma Ray Bursts Cook Book II: Simulation

    CERN Document Server

    Ziaeepour, Houri

    2008-01-01

    In Paper I we presented a detailed formulation of the relativistic shocks and synchrotron emission in the context of Gamma-Ray Burst (GRB) physics. To see how well this model reproduces the observed characteristics of the GRBs and their afterglows, here we present the results of some simulations based on this model. They are meant to reproduce the prompt and afterglow emission in some intervals of time during a burst. We show that this goal is achieved for both short and long GRBs and their afterglows, at least for part of the parameter space. Moreover, these results are the evidence of the physical relevance of the two phenomenological models we have suggested in Paper I for the evolution of the "active region", the synchrotron emitting region in a shock. The dynamical active region model seems to reproduce the observed characteristics of prompt emissions better than the quasi-steady model which is more suitable for afterglows. Therefore these simulations confirm the arguments presented in Paper I about the ...

  1. The interplanetary gamma ray burst network

    Science.gov (United States)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  2. Fast Radio Bursts from Axion Stars

    CERN Document Server

    Iwazaki, Aiichi

    2014-01-01

    Axions are one of the most promising candidates of dark matter. The axions have been shown to form miniclusters with masses $\\sim 10^{-12}M_{\\odot}$ and to become dominant component of dark matter. These axion miniclusters condense to form axion stars. We show a possible origin of fast radio bursts ( FRBs ) by assuming the axion stars being dark matter: FRBs arise from the collisions between the axion stars and neutron stars. The FRBs are caused by the rapid conversion of the axions into electromagnetic fields under strong magnetic fields. Electric fields are induced on the axion stars under strong magnetic fields of neutron stars. The electric fields parallel to the magnetic fields oscillate with a frequency and make electrons in atmospheres of neutron stars coherently oscillate. Thus, the coherent radiations are emitted. The observed frequencies ( $\\sim 1.4$GHz ) of the bursts are given by the axion mass $m_a$ such as $m_a/2\\pi\\simeq 2.3\\,\\mbox{GHz}\\,\\big(m_a/10^{-5}\\mbox{eV}\\big)$. The frequency is affecte...

  3. Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Pe'er, Asaf

    2016-01-01

    A major breakthrough in our understanding of gamma-ray bursts (GRB) prompt emission physics occurred in the last few years, with the realization that a thermal component accompanies the over-all non-thermal prompt spectra. This thermal part is important by itself, as it provides direct probe of the physics in the innermost outflow regions. It further has an indirect importance, as a source of seed photons for inverse-Compton scattering, thereby it contributes to the non-thermal part as well. In this short review, we highlight some key recent developments. Observationally, although so far it was clearly identified only in a minority of bursts, there are indirect evidence that thermal component exists in a very large fraction of GRBs, possibly close to 100%. Theoretically, the existence of thermal component have a large number of implications as a probe of underlying GRB physics. Some surprising implications include its use as a probe of the jet dynamics, geometry and magnetization.

  4. Distribution of Gamma-Ray Bursts

    Science.gov (United States)

    Diaz Rodriguez, Mariangelly; Smith, M.; Tešic, G.

    2014-01-01

    Gamma-Ray Bursts (GRBs) are known to be bright, irregular flashes of gamma rays that typically last just a few seconds, believed to be caused by stellar collapse or the merger of a pair of compact objects. Through previous work, it has been found that GRBs are distributed roughly uniformly over the entire sky, rather than being confined to the relatively narrow band of the Milky Way. Using the Python programming language, we generated a model of GRBs over cosmological distances, based on current empirical GRB distributions. The grbsim python module uses the acceptance-rejection Monte Carlo method to simulate the luminosity and redshift of a large population of GRBs, including cosmological effects such as dark energy and dark matter terms that modify the large-scale structure of space-time. The results of running grbsim are demonstrated to match the distribution of GRBs observed by the Burst Alert Telescope on NASA’s Swift satellite. The grbsim module will subsequently be used to simulate gamma ray and neutrino events for the Astrophysical Multimessenger Observatory Network.

  5. Star bursts and giant HII regions

    International Nuclear Information System (INIS)

    Massive star formation bursts occur in a variety of galactic environments and can temporarily dominate the light output of a galaxy even when a relatively small proportion of its mass is involved. Inferences about their ages, the IMF and its dependence on chemical composition are still somewhat wobbly owing to an excess of unknowns, but certain things can be deduced from emission spectra of associated H II regions when due regard is paid to the effects of chemical composition and ionization parameter: In particular, largest ionization parameters and effective temperatures of exciting stars, at any given oxygen abundance, are anti-correlated with the abundance, and the second effect suggests an increasing proportion of more massive stars at lower abundances, although this is not yet satisfactorily quantified. A new blue compact galaxies could be very young, but it is equally possible that there is an older population of low surface brightness. Some giant H II regions may be self-polluted with nitrogen and helium due to winds from massive stars in the associated burst. (orig.)

  6. Reactor utilization

    International Nuclear Information System (INIS)

    In 1962, the RA reactor was operated almost three times more than in 1961, producing total of 25 555 MWh. Diagram containing comparative data about reactor operation for 1960, 1961, and 1962, percent of fuel used and U-235 burnup shows increase in reactor operation. Number of samples irradiated was 659, number of experiments done was 16. mean powered level was 5.93 MW. Fuel was added into the core twice during the reporting year. In fact the core was increased from 56 to 68 fuel channels and later to 84 fuel channels. Fuel was added to the core when the reactivity worth decreased to the minimum operation level due to burnup. In addition to this 5 central fuel channels were exchanged with fresh fuel in february for the purpose of irradiation in the VISA-2 channel

  7. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  8. The Most Remote Gamma-Ray Burst

    Science.gov (United States)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  9. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy, trap...

  10. 34 First Callisto solar burst spectrometer station in Greenland

    Science.gov (United States)

    Monstein, Christian

    2016-04-01

    In mid of March 2016 a new long wavelength station in Greenland was set into operation. It is a dual circular polarization, frequency agile solar radio burst spectrometer based on two Callisto spectrometers and the Long Wavelength Array antenna. During the commissioning phase several nice radio burst observations proved that the system works as expected.

  11. The WATCH solar X-ray burst catalogue

    DEFF Research Database (Denmark)

    Crosby, N.; Lund, Niels; Vilmer, N.; Sunyaev, R.

    1998-01-01

    The WATCH experiment aboard the GRANAT satellite provides observations of the Sun in the deka-keV range covering the years 1990 through mid-1992. An introduction to the experiment is given followed by an explanation of how the WATCH solar burst catalogue was created. The different parameters listed...... for each burst is given and are furthermore explained....

  12. Large tundra methane burst during onset of freezing

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Dlugokencky, Edward J.; Houweling, Sander; Ström, Lena; Tamstorf, Mikkel Peter; Christensen, Torben R.

    2008-01-01

    model simulations of global atmospheric methane concentrations indicate that the observed early winter emission burst improves the agreement between the simulated seasonal cycle and atmospheric data from latitudes north of 60N. Our findings suggest that permafrost-associated freeze-in bursts of methane...

  13. On the existence of optimum cyclic burst-correcting codes

    OpenAIRE

    1986-01-01

    It is shown that for each integer b >= 1 infinitely many optimum cyclic b-burst-correcting codes exist, i.e., codes whose length n, redundancy r, and burst-correcting capability b, satisfy n = 2^{r-b+1} - 1. Some optimum codes for b = 3, 4, and 5 are also studied in detail.

  14. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence of...

  15. The INTEGRAL view of intermediate long X-ray bursts

    DEFF Research Database (Denmark)

    CONCLUSIONS Most intermediate bursts are observed from low luminosity sources and are interpreted as long pure He bursts. If no H is accreted, they are consistent with the burning of a slowly accreted, thick He layer, in Ultra Compact X-ray Binaries (UCXB) where the donor star is probably a...

  16. Spike-type broad-band solar bursts

    International Nuclear Information System (INIS)

    High-resolution dynamical spectra of solar broad-band spike bursts (BSB) have been observed. They represent an instantaneous brightening of the continuum emission in the range 175-235 MHz. In the noise stoms the BSB-type events occur seldom and have the form of either individual bursts with the average lifetime of 0.1-0.2 s or the groups of such bursts, related with type 3 bursts at lower frequencies. In type 4 bursts, the series of nonperiodic structures of BSB predominate. They are not related with type 3 bursts, but are observed together with the second pulsations and fiber bursts. In the noise storms, the BSB can be excited by electrons instantaneously accelerated owing to the magnetic field reconnection. The group delay leads to a negative frequency drift approximately -600 MHz/s in small sources and positive drift approximately 300 MHz/s in the extended ones. Such a high drift velocity cannot compensate the moderate frequency drift associated with the exciter motion in the corona. The BSB-structure in type 4 bursts can be the result of scattering of the Langmuir waves on the whistlers in a large height interval

  17. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  18. Testing and Performance of UFFO Burst Alert & Trigger Telescope

    DEFF Research Database (Denmark)

    Rípa, Jakub; Bin Kim, Min; Lee, Jik;

    2014-01-01

    The Ultra-Fast Flash Observatory pathfinder (UFFO-p) is a new space mission dedicated to detect Gamma-Ray Bursts (GRBs) and rapidly follow their afterglows in order to provide early optical/ultraviolet measurements. A GRB location is determined in a few seconds by the UFFO Burst Alert & Trigger...

  19. Solar U- and J- radio bursts at the decameter waves

    Science.gov (United States)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Abranin, E. P.; Lecacheux, A.

    2010-01-01

    The results of the first observations of solar U- and J- bursts with the radiotelescope UTR-2 at the decameter wavelengths are reported. During 2003-2004 more than 50 J- bursts and only 7 U- bursts were registered. It is the first case of ground based observations of J- and U- bursts with turning frequencies below 25 MHz. For the first time the harmonic structure of J- bursts in the form of Jb-J pairs was found. The mean harmonic ratio appeared to be 1.8. Also a group of J-bursts with unusual Turning Frequency Drift (TFD) of -2 kHz/s was detected. Such TFD corresponds to the velocity of coronal loop elevation of about 60 km/s. Coronal loops with similar elevation velocities were also detected by SOHO-LASCO coronagraph in white light. The dynamic spectra of unusual U- and J- bursts are shown. Simplified model of the coronal loop in the form of semicircle was created on the base of the U- burst dynamic spectrum and the Newkirk coronal density model. With this loop model the linear velocity of the source along the loop, the height of the Turning Frequency point and the geometrical size of the loop were calculated.

  20. Ionospheric response to gamma ray bursts of cosmic origin

    International Nuclear Information System (INIS)

    The paper examines the limiting conditions under which is detectable, through the VLF phase-meter, a gamma-ray burst of cosmic origin like those recently observed by Vela spacecrafts. The discussion focuses on the flux density and burst duration and leads to a definition of the threshold needed for a measurable effect

  1. Periodic bursts of Jovian non-Io decametric radio emission.

    Science.gov (United States)

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  2. Nuclear reactors

    International Nuclear Information System (INIS)

    A nuclear reactor has a large prompt negative temperature coefficient of reactivity. A reactor core assembly of a plurality of fluid-tight fuel elements is located within a water-filled tank. Each fuel element contains a solid homogeneous mixture of 50-79 w/o zirconium hydride, 20-50 w/o uranium and 0.5-1.5 W erbium. The uranium is not more than 20 percent enriched, and the ratio of hydrogen atoms to zirconium atoms is between 1.5:1 and 7:1. The core has a long lifetime, E.G., at least about 1200 days

  3. Nuclear reactors

    International Nuclear Information System (INIS)

    In a liquid cooled nuclear reactor, the combination is described for a single-walled vessel containing liquid coolant in which the reactor core is submerged, and a containment structure, primarily of material for shielding against radioactivity, surrounding at least the liquid-containing part of the vessel with clearance therebetween and having that surface thereof which faces the vessel make compatible with the liquid, thereby providing a leak jacket for the vessel. The structure is preferably a metal-lined concrete vault, and cooling means are provided for protecting the concrete against reaching a temperature at which damage would occur. (U.S.)

  4. Taming desynchronized bursting with delays in the Macaque cortical network

    Institute of Scientific and Technical Information of China (English)

    Wang Qing-Yun; Murks Aleksandra; Perc Matja(z); Lu Qi-Shao

    2011-01-01

    Inhibitory coupled bursting Hindmarsh-Rose neurons are considered as constitutive units of the Macaque cortical network. In the absence of information transmission delay the bursting activity is desynchronized, giving rise to spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchroization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain.Moreover, it shows that the type of synchronous bursting is uniquely determined by the delay length, with the transitions from one type to the other occurring in a step-like manner depending on the delay. Interestingly, as the delay is tuned close to the transition points, the synchronization deteriorates, which implies the coexistence of different bursting attractors. These phenomena can be observed be different but fixed coupling strengths, thus indicating a new role for information transmission delays in realistic neuronal networks.

  5. Models for Gamma-Ray Burst Progenitors and Central Engines

    CERN Document Server

    Woosley, S E

    2011-01-01

    Most gamma-ray bursts are made during the deaths of massive stars. Here the environmental circumstances, stellar evolutionary paths, and explosion physics that might produce the bursts are reviewed. Neither of the two leading models - collapsar and millisecond magnetar - can be excluded, and both may operate in progenitor stars of different masses, metallicities, and rotation rates. Potential diagnostics are discussed and uncertainties highlighted. Both models are capable of producing a wide variety of transients whose properties vary with both stellar properties and viewing angle. Some of these are reviewed including the possibility of very long (days) low luminosity bursts, so far undiscovered, short hard bursts from massive stellar progenitors, and bursts from very massive Population III stars.

  6. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general. PMID:23630379

  7. Cosmology and the Subgroups of Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    A. Mészáros

    2011-01-01

    Full Text Available Both short and intermediate gamma-ray bursts are distributed anisotropically in the sky (Mészáros, A. et al. ApJ, 539, 98 (2000, Vavrek, R. et al. MNRAS, 391, 1 741 (2008. Hence, in the redshift range, where these bursts take place, the cosmological principle is in doubt. It has already been noted that short bursts should be mainly at redshifts smaller than one (Mészáros, A. et al. Gamma-ray burst: Sixth Huntsville Symp., AIP, Vol. 1 133, 483 (2009; Mészáros, A. et al. Baltic Astron., 18, 293 (2009. Here we show that intermediate bursts should be at redshifts up to three.

  8. First Results from the Swift Gamma Ray Burst Mission

    Science.gov (United States)

    Gehreis, Neil

    2005-01-01

    Swift is now in orbit after a beautiful launch on November 20, 2004. It is a multiwavelength observatory designed specifically to study the fascinating gamma-ray bursts. The goals are to determine the origin of bursts and use them to probe the early Universe. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. First results from the mission will be presented, including observations of bright GRBs, faint GRBs, short GRBs and a super-giant flare from the soft gamma repeater SGRl806-20.

  9. Do Gamma-Ray Bursts Come from the Oort Cloud?

    CERN Document Server

    Clarke, T E; Tremaine, S; Tremaine, adn S.

    1993-01-01

    We examine the possibility that gamma-ray bursts arise from sources in the Oort comet cloud, basing most of our arguments on accepted models for the formation and spatial distribution of the cloud. We identify three severe problems with such models: (1) There is no known mechanism for producing bursts that can explain the observed burst rate and energetics without violating other observational constraints. (2) The bright source counts cannot be reconciled with standard models for the phase-space distribution of objects in the Oort cloud. (3) The observed isotropy of the available burst data is inconsistent with the expected angular distribution of sources in the Oort cloud. We therefore assert that Oort cloud models of gamma-ray bursts are extremely implausible.

  10. Amplitude sorting of oscillatory burst signals by sampling

    Science.gov (United States)

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  11. Evaluating the risk of coal bursts in underground coal mines

    Institute of Scientific and Technical Information of China (English)

    Mark Christopher⇑; Gauna Michael

    2016-01-01

    Coal bursts involve the sudden, violent ejection of coal or rock into the mine workings. They are almost always accompanied by a loud noise, like an explosion, and ground vibration. Bursts are a particular haz-ard for miners because they typically occur without warning. Despite decades of research, the sources and mechanics of these events are not well understood, and therefore they are difficult to predict and control. Experience has shown, however, that certain geologic and mining factors are associated with an increased likelihood of a coal burst. A coal burst risk assessment consists of evaluating the degree to which these risk factors are present, and then identifying appropriate control measures to mitigate the hazard. This paper summarizes the U.S. and international experience with coal bursts, and describes the known risk factors in detail. It includes a framework that can be used to guide the risk assessment process.

  12. IDENTIFICATION OF BURSTING WATER MASER FEATURES IN ORION KL

    International Nuclear Information System (INIS)

    In 2011 February, a burst event of the H2O maser in Orion KL (Kleinmann-Low object) has started after a 13 year silence. This is the third time such phenomena has been detected in Orion KL, followed by the events in 1979-1985 and 1998. We have carried out astrometric observations of the bursting H2O maser features in Orion KL with the VLBI Exploration of Radio Astrometry (VERA), a Japanese very long baseline interferometry network dedicated for astrometry. The total flux of the bursting feature at the local standard of rest (LSR) velocity of 7.58 km s-1 reaches 4.4 x 104 Jy in 2011 March. The intensity of the bursting feature is three orders of magnitude larger than that of the same velocity feature in the quiescent phase in 2006. Two months later, another new feature appears at the LSR velocity of 6.95 km s-1 in 2011 May, separated by 12 mas north of the 7.58 km s-1 feature. Thus, the current burst occurs at two spatially different features. The bursting masers are elongated along the northwest-southeast direction as reported in the previous burst in 1998. We determine the absolute positions of the bursting features for the first time ever with a submilliarcsecond (mas) accuracy. Their positions are coincident with the shocked molecular gas called the Orion Compact Ridge. We tentatively detect the absolute proper motions of the bursting features toward the southwest direction. It is most likely that the outflow from the radio source I or another young stellar object interacting with the Compact Ridge is a possible origin of the H2O maser burst.

  13. Automatic recognition of type III solar radio bursts. Automated radio burst identification system method and first observations

    International Nuclear Information System (INIS)

    Complete text of publication follows. Because of the rapidly increasing role of technology, including complicated electronic systems, spacecraft, etc., modern society has become more vulnerable to a set of extraterrestrial influences (space weather) and requires continuous observation and forecasts of space weather. The major space weather events like solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can be used for a real-time space weather forecast. Coronal type III radio bursts are produced near the local electron plasma frequency and near its harmonic by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time, the typical duration of the coronal burst being about 1-3 s. This paper presents a new method developed to detect coronal type III bursts automatically and its implementation in a new Automated Radio Burst Identification System (ARBIS), which is working in real-time. The central idea of the implementation is to use the Radon transform for more objective detection of the bursts as approximately straight lines in dynamic spectra. Preliminary tests of the method with the use of the spectra obtained during 13 days show that the performance of the current implementation is quite high, ∼84%, while no false positives are observed and 23 events not listed previously are found. The first automatically detected coronal type III radio bursts are presented.

  14. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    In an improved reactor core for a high conversion BWR reactor, Pu-breeding type BWR type reactor, Pu-breeding type BWR type rector, FEBR type reactor, etc., two types of fuel assemblies are loaded such that fuel assemblies using a channel box of a smaller irradiation deformation ratio are loaded in a high conversion region, while other fuel assemblies are loaded in a burner region. This enables to suppress the irradiation deformation within an allowable limit in the high conversion region where the fast neutron flux is high and the load weight from the inside of the channel box due to the pressure loss is large. At the same time, the irradiation deformation can be restricted within an allowable limit without deteriorating the neutron economy in the burner region in which fast neutron flux is low and the load weight from the inside of the channel box is small since a channel box with smaller neutron absorption cross section or reduced wall thickness is charged. As a result, it is possible to prevent structural deformations such as swelling of the channel box, bending of the entire assemblies, bending of fuel rods, etc. (K.M.)

  16. A POSSIBLE CONNECTION BETWEEN FAST RADIO BURSTS AND GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    The physical nature of fast radio bursts (FRBs), a new type of cosmological transient discovered recently, is not known. It has been suggested that FRBs can be produced when a spinning supra-massive neutron star loses centrifugal support and collapses to a black hole. Here, we suggest that such implosions can happen in supra-massive neutron stars shortly (hundreds to thousands of seconds) after their births, and an observational signature of such implosions may have been observed in the X-ray afterglows of some long and short gamma-ray bursts (GRBs). Within this picture, a small fraction of FRBs would be physically connected to GRBs. We discuss possible multi-wavelength electromagnetic signals and gravitational wave signals that might be associated with FRBs, and propose an observational campaign to unveil the physical nature of FRBs. In particular, we strongly encourage a rapid radio follow-up observation of GRBs starting from 100 s after a GRB trigger

  17. Cosmic-Rays and Gamma Ray Bursts

    Science.gov (United States)

    Meli, A.

    2013-07-01

    Cosmic-rays are subatomic particles of energies ranging between a few eV to hundreds of TeV. These particles register a power-law spectrum, and it seems that most of them originate from astrophysical galactic and extragalactic sources. The shock acceleration in superalfvenic astrophysical plasmas, is believed to be the main mechanism responsible for the production of the non-thermal cosmic-rays. Especially, the importance of the very high energy cosmic-ray acceleration, with its consequent gamma-ray radiation and neutrino production in the shocks of the relativistic jets of Gamma Ray Bursts, is a favourable theme of study. I will discuss the cosmic-ray shock acceleration mechanism particularly focusing on simulation studies of cosmic-ray acceleration occurring in the relativistic shocks of GRB jets.

  18. Heliospheric Origin of $\\gamma$-Ray Bursts

    CERN Document Server

    Li Ti Pei

    1997-01-01

    Systematic variations of average observational characteristics and correlation properties between different parameters of gamma-ray bursts (GRBs) with time from 1991 April to 1994 September are revealed. It is hard to explain the observed long-term variability by variations of experimental conditions. The variability of GRB properties with the time scale of months to years, together with the similarity between GRBs, solar hard X-ray flares and terrestrial gamma-ray flashes, may indicate an origin of GRBs, at least partly, within the heliosphere. Large-voltage and high-temperature pinch plasma columns produced by disruptive electrical discharges in the outer heliosphere can generate hard X-ray and gamma-ray flashes with energy spectra and spectral evolution characters consistent with that observed in GRBs.

  19. The ``Christmas burst'' GRB 101225A revisited

    Science.gov (United States)

    Thöne, C. C.; de Ugarte Postigo, A.; Fryer, C. L.; Kann, D. A.

    2015-03-01

    Long GRBs are related to the death of massive stars and reveal themselves through synchrotron emission from highly relativistic jets. The `Christmas Burst' GRB 101225A was an exceptionally long GRB with a thermal afterglow, very different from the standard GRB. Initially, no spectroscopic redshift could be obtained and SED modeling yielded z=0.33. A plausible model was a He-NS star merger where the He-star had ejected part of its envelope in the common envelope phase during inspiral. The interaction between the jet and the previously ejected shell can explains the thermal emission. We obtained deep spectroscopy of the host galaxy which leads to a correction of the redshift to z=0.847. Despite the higher redshift, our model is still valid and theoretically better justified than the alternative suggestion of a blue supergiant progenitor proposed by Levan et al. (2014) for several ``ultra-long'' GRBs.

  20. Critical Test Of Gamma Ray Burst Theories

    CERN Document Server

    Dado, Shlomo

    2016-01-01

    Long and precise follow-up measurements of the X-ray afterglow (AG) of very intense gamma ray bursts (GRBs) provide a critical test of GRB afterglow theories. Here we show that the power-law decline with time of X-ray AG of GRB 130427A, the longest measured X-ray AG of an intense GRB with the Swift, Chandra and XMM Newton satellites, and of all other well measured late-time X-ray afterglow of intense GRBs, is that predicted by the cannonball (CB) model of GRBs from their measured spectral index, while it disagrees with that predicted by the widely accepted fireball (FB) models of GRBs.

  1. Super Luminous Supernova and Gamma Ray Bursts

    CERN Document Server

    Dado, Shlomo

    2012-01-01

    We use a simple analytical model to derive a closed form expression for the bolometric light-curve of super-luminus supernovae (SLSNe) powered by a plastic collision between the fast ejecta from ordinary core collapse supernovae (SNe) of type Ib/c and slower massive circum-stellar shells, ejected in major eruptions of their progenitor stars during the late stage of their life preceding their SN explosion. We demonstrate that this expression reproduces well the bolometric luminosity of SLSNe with and without an observed gamma ray burst (GRB), and requires only a modest amount ($M\\lsim 0.1\\,M_\\odot$) of radioactive $^{56}$Ni synthesized in the SN explosion in order to explain their late-time luminosity. Ordinary stripped-envelope SNe of type Ib/c, rather than 'hypernovae', can produce most of the SLSNe and long duration GRBs.

  2. The Gamma Ray Bursts Hubble diagram

    CERN Document Server

    Capozziello, S; Dainotti, M G; De Laurentis, M; Izzo, L; Perillo, M

    2011-01-01

    Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three different calibration methods based on the use of a fiducial LCDM model, on cosmographic parameters and on the local regression on SNeIa to calibrate the scaling relations proposed as an equivalent to the Phillips law to standardize GRBs finding any significant dependence. We then investigate the evolution of these parameters with the redshift to obtain any statistical improvement. Under this assumption, we then consider possible systematics effects on the HDs introduced by the calibration method, the averaging procedure and the homogeneity of the sample arguing against any significant bias.

  3. Gamma-Ray Bursts as Cosmological Tools

    CERN Document Server

    Petrosian, Vahe; Ryde, Felix

    2009-01-01

    In recent years there has been considerable activity in using gamma-ray bursts as cosmological probes for determining global cosmological parameters complementing results from type Ia supernovae and other methods. This requires a characteristics of the source to be a standard candle. We show that contrary to earlier indications the accumulated data speak against this possibility. Another method would be to use correlation between a distance dependent and a distance independent variable to measure distance and determine cosmological parameters as is done using Cepheid variables and to some extent Type Ia supernovae. Many papers have dealt with the use of so called Amati relation, first predicted by Lloyd, Petrosian and Mallozzi, or the Ghirlanda relation for this purpose. We have argued that these procedure involve many unjustified assumptions which if not true could invalidate the results. In particular, we point out that many evolutionary effects can affect the final outcome. In particular, we demonstrate th...

  4. The Euclidean distribution of fast radio bursts

    Science.gov (United States)

    Oppermann, Niels; Connor, Liam D.; Pen, Ue-Li

    2016-09-01

    We investigate whether current data on the distribution of observed flux densities of fast radio bursts (FRBs) are consistent with a constant source density in Euclidean space. We use the number of FRBs detected in two surveys with different characteristics along with the observed signal-to-noise ratios of the detected FRBs in a formalism similar to a V/Vmax-test to constrain the distribution of flux densities. We find consistency between the data and a Euclidean distribution. Any extension of this model is therefore not data-driven and needs to be motivated separately. As a byproduct we also obtain new improved limits for the FRB rate at 1.4 GHz, which had not been constrained in this way before.

  5. The Euclidean distribution of Fast Radio Bursts

    CERN Document Server

    Oppermann, Niels; Pen, Ue-Li

    2016-01-01

    We investigate whether current data on the distribution of observed flux densities of Fast Radio Bursts (FRBs) are consistent with a constant source density in Euclidean space. We use the number of FRBs detected in two surveys with different characteristics along with the observed signal-to-noise ratios of the detected FRBs in a formalism similar to a V/V_max-test to constrain the distribution of flux densities. We find consistency between the data and a Euclidean distribution. Any extension of this model is therefore not data-driven and needs to be motivated separately. As a byproduct we also obtain new improved limits for the FRB rate at 1.4 GHz, which had not been constrained in this way before.

  6. Directivity of X radiation of solar bursts

    International Nuclear Information System (INIS)

    To study the directivity of X radiation of solar bursts, the investigation into distributions of X-ray splashes over the range lambda=0.5-3 and 1-8 A in heliolongitudinal and intensity was carried on. The integral distribution of splashes in intensity has the exponential form with the exponent α approximately 1.1 and the bend on low intensities. In heliolongitudinal distribution the east-west asymmetry is observed. The absence of directivity of splash radiation is concluded on the basis of investigation of peculiarities of splash distribution functions in heliolongitude and intensity. The observed east-west asymmetry can't be connected with directivity, but is conditioned by probably by statistic fluctuations of the number of splashes

  7. High Energy Radiation from $\\gamma$ Ray Bursts

    CERN Document Server

    Dermer, C D; Dermer, Charles D.; Chiang, James

    1999-01-01

    Gamma-ray burst (GRB) engines are probed most intimately during the prompt gamma-ray luminous phase when the expanding blast wave is closest to the explosion center. Using GRBs 990123 and 940217 as guides, we briefly review observations of high-energy emission from GRBs and summarize some problems in GRB physics. \\gamma\\gamma transparency arguments imply relativistic beaming. The parameters that go into the external shock model are stated, and we show numerical simulation results of gamma-ray light curves from relativistic blast waves with different amounts of baryon loading. A distinct component due to the synchrotron self-Compton process produces significant emission at GeV and TeV energies. Predictions for spectral and temporal evolution at these energies are presented for a blast wave expanding into uniform surroundings. Observations of the slow decay of GeV-TeV radiation provide evidence for ultra-high energy cosmic ray acceleration in GRBs.

  8. Search for Gamma Ray Bursts at Chacaltaya

    CERN Document Server

    Vernetto, S

    2001-01-01

    A search for Gamma Ray Bursts in the GeV-TeV energy range has been performed by INCA, an air shower array working at 5200 m of altitude at the Chacaltaya Laboratory (Bolivia). The altitude of the detector and the use of the "single particle technique" allows to lower the energy threshold up to few GeVs. No significant signals are observed during the occurrence of 125 GRBs detected by BATSE, and the obtained upper limits on the energy fluence in the interval 1-1000(100) GeV range from 3.2(8.6) 10^-5 to 2.6(7.0) 10^-2 erg/cm^2 depending on the zenith angle of the events. These limits, thanks to the extreme altitude of INCA, are the lowest ever obtained in the sub-TeV energy region by a ground based esperiment.

  9. The Swift Burst and Transient Telescope (BAT)

    Science.gov (United States)

    Mushotzky, Richard

    2008-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 kev sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6324 atms/sq cm) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  10. Solution To The Gamma Ray Burst Mystery?

    CERN Document Server

    Dar, Arnon

    1996-01-01

    Photoexcitation and ionization of partially ionized heavy atoms in highly relativistic flows by interstellar photons, followed by their reemission in radiative recombination and decay, boost star-light into beamed $\\gamma$ rays along the flow direction. Repeated excitation/decay of highly relativistic baryonic ejecta from merger or accretion induced collapse of neutron stars in dense stellar regions (DSRs), like galactic cores, globular clusters and super star-clusters, can convert enough kinetic energy in such events in distant galaxies into cosmological gamma ray bursts (GRBs). The model predicts remarkably well all the main observed temporal and spectral properties of GRBs. Its success strongly suggests that GRBs are $\\gamma$ ray tomography pictures of DSRs in galaxies at cosmological distances with unprecedented resolution: A time resolution of $dt\\sim 1~ms$ in a GRB can resolve stars at a Hubble distance which are separated by only $D\\sim 10^{10}cm$. This is equivalent to the resolving power of an optica...

  11. Probing the Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    OpenAIRE

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies usually approximate the Swift trigger algorithm by a single detection threshold. However...

  12. Transcriptional burst frequency and burst size are equally modulated across the human genome

    OpenAIRE

    Dar, Roy D.; Razooky, Brandon S; Singh, Abhyudai; Trimeloni, Thomas V.; McCollum, James M.; Cox, Chris D.; Simpson, Michael L.; Weinberger, Leor S.

    2012-01-01

    Gene expression occurs either as an episodic process, characterized by pulsatile bursts, or as a constitutive process, characterized by a Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy to analyze 8,000 individual human genomic loci and find that at virtually...

  13. Supernova Early Warning in Daya Bay Reactor Neutrino Experiment

    OpenAIRE

    Hanyu Wei for the Daya Bay collaboration

    2013-01-01

    Providing an early warning of a galactic supernova using neutrino signals is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay reactor neutrino experiment, with a unique feature of multiple liquid scintillator detectors separated in space, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By deploying 8 Antineutrino Detectors (ADs) in three different experimental halls, we obtain a more powerful and prompt rejection of muon ...

  14. Gamma-ray bursts and collisionless shocks

    Science.gov (United States)

    Waxman, E.

    2006-12-01

    Particle acceleration in collisionless shocks is believed to be responsible for the production of cosmic-rays over a wide range of energies, from a few GeV to > 1020 eV, as well as for the non-thermal emission of radiation from a wide variety of high energy astrophysical sources. A theory of collisionless shocks based on first principles does not, however, exist. Observations of γ-ray burst (GRB) 'afterglows' provide a unique opportunity for diagnosing the physics of relativistic collisionless shocks. Most GRBs are believed to be associated with explosions of massive stars. Their 'afterglows', delayed low energy emission following the prompt burst of γ-rays, are well accounted for by a model in which afterglow radiation is due to synchrotron emission of electrons accelerated in relativistic collisionless shock waves driven by the explosion into the surrounding plasma. Within the framework of this model, some striking characteristics of collisionless relativistic shocks are implied. These include the generation of downstream magnetic fields with energy density exceeding that of the upstream field by ~8 orders of magnitude, the survival of this strong field at distances ~1010 skin-depths downstream of the shock and the acceleration of particles to a power-law energy spectrum, d log n/d logɛ ap -2, possibly extending to 1020 eV. I review in this talk the phenomenological considerations, based on which these characteristics are inferred, and the challenges posed to our current models of particle acceleration and magnetic field generation in collisionless shocks. Some recent theoretical results derived based on the assumption of a self-similar shock structure are briefly discussed. Invited review presented at the 33rd annual European Physical Society Conference, Rome, 2006.

  15. Does Twitter trigger bursts in signature collections?

    Directory of Open Access Journals (Sweden)

    Rui Yamaguchi

    Full Text Available INTRODUCTION: The quantification of social media impacts on societal and political events is a difficult undertaking. The Japanese Society of Oriental Medicine started a signature-collecting campaign to oppose a medical policy of the Government Revitalization Unit to exclude a traditional Japanese medicine, "Kampo," from the public insurance system. The signature count showed a series of aberrant bursts from November 26 to 29, 2009. In the same interval, the number of messages on Twitter including the keywords "Signature" and "Kampo," increased abruptly. Moreover, the number of messages on an Internet forum that discussed the policy and called for signatures showed a train of spikes. METHODS AND FINDINGS: In order to estimate the contributions of social media, we developed a statistical model with state-space modeling framework that distinguishes the contributions of multiple social media in time-series of collected public opinions. We applied the model to the time-series of signature counts of the campaign and quantified contributions of two social media, i.e., Twitter and an Internet forum, by the estimation. We found that a considerable portion (78% of the signatures was affected from either of the social media throughout the campaign and the Twitter effect (26% was smaller than the Forum effect (52% in total, although Twitter probably triggered the initial two bursts of signatures. Comparisons of the estimated profiles of the both effects suggested distinctions between the social media in terms of sustainable impact of messages or tweets. Twitter shows messages on various topics on a time-line; newer messages push out older ones. Twitter may diminish the impact of messages that are tweeted intermittently. CONCLUSIONS: The quantification of social media impacts is beneficial to better understand people's tendency and may promote developing strategies to engage public opinions effectively. Our proposed method is a promising tool to explore

  16. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during Its Most Prolific Activity

    Science.gov (United States)

    vanderHorst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Gogus, E,; Granot, J.; Watts, A. L.; Lin, L.; Bhat, P. N.; Bissaldi, E.; Chaplin, V. L.; Finger, M. H.; Gehrels, N.; Gibby, M. H.; Giles, M. M.; Goldstein, A.; Gruber, D.; Harding, A. K.; McEnery, J.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C.

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties.We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J15505418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E(sub peak) and the burst fluence and average flux. For the BB+BBfits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature.We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  17. SGR J1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Van der Horst, A. J.; Finger, M. H. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, C. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gorgone, N. M. [Connecticut College, New London, CT 06320 (United States); Kaneko, Y.; Goegues, E.; Lin, L. [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Guiriec, S.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A. [University of Alabama, Huntsville, CSPAR, Huntsville, AL 35805 (United States); Granot, J. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Watts, A. L. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Bissaldi, E.; Gruber, D. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, 85748 Garching (Germany); Gehrels, N.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gibby, M. H.; Giles, M. M., E-mail: A.J.VanDerHorst@uva.nl [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2012-04-20

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E{sub peak} and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  18. Closest Gamma Ray Burst Providing Scientists With Crucial Test for Burst Physics

    Science.gov (United States)

    2003-05-01

    The closest Gamma Ray Burst (GRB) yet known is providing astronomers with a rare opportunity to gain information vital to understanding these powerful cosmic explosions. Extremely precise radio-telescope observations already have ruled out one proposed mechanism for the bursts. "This is the closest and brightest GRB we've ever seen, and we can use it to decipher the physics of how these bursts work," said Greg Taylor of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Taylor worked with Dale Frail, also of the NRAO, along with Prof. Shri Kulkarni and graduate student Edo Berger of Caltech in studying a GRB detected on March 29, 2003. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. VLBA image of GRB 030329 VLBA IMAGE of GRB 030329 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) Taylor and Frail used the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and other radio telescopes to study the burst, known as GRB 030329. In a series of observations from April 1 to May 19, they determined the size of the expanding "fireball" from the burst and measured its position in the sky with great precision. At a distance of about 2.6 billion light-years, GRB 030329 is hardly next door. However, compared to other GRBs at typical distances of 8-10 billion light-years, it presents an easier target for study. "We only expect to see one burst per decade this close," said Frail. The precise measurement of the object's position allowed the scientists to show that one theoretical model for GRBs can be ruled out. This model, proposed in 2000, says that the radio-wave energy emitted by the GRB comes from "cannonballs" of material shot from the explosion at extremely high speeds. "The 'cannonball model' predicted that we should see the radio-emitting object move across the sky by a specific amount. We have not seen that motion," Taylor said. The currently standard "fireball model" of GRBs

  19. The Swift Burst Analyser I: BAT and XRT spectral and flux evolution of Gamma Ray Bursts

    CERN Document Server

    Evans, P A; Osborne, J P; O'Brien, P T; Page, K L; Markwardt, C B; Barthelmy, S D; Beardmore, A P; Burrows, D N; Pagani, C; Starling, R L C; Romano, P

    2010-01-01

    Context: Gamma Ray Burst models predict the broadband spectral evolution and the temporal evolution of the energy flux. In contrast, standard data analysis tools and data repositories provide count-rate data, or use single flux conversion factors for all of the data, neglecting spectral evolution. Aims: To produce Swift BAT and XRT light curves in flux units, where the spectral evolution is accounted for. Methods: We have developed software to use the hardness ratio information to track spectral evolution of GRBs, and thus to convert the count-rate light curves from the BAT and XRT instruments on Swift into accurate, evolution-aware flux light curves. Results: The Swift Burst Analyser website (http://www.swift.ac.uk/burst_analyser) contains BAT, XRT and combined BAT-XRT flux light curves in three energy regimes for all GRBs observed by the Swift satellite. These light curves are automatically built and updated when data become available, are presented in graphical and plain-text format, and are available for ...

  20. Strange Nonchaotic Bursting in A Quasiperiodially-Forced Hindmarsh-Rose Neuron

    CERN Document Server

    Lim, Woochang; 10.3938/jkps57.1356

    2011-01-01

    We study the transition from a silent state to a bursting state by varying the dc stimulus in the Hindmarsh-Rose neuron under quasiperiodic stimulation. For this quasiperiodically forced case, a new type of strange nonchaotic (SN) bursting state is found to occur between the silent state and the chaotic bursting state. This is in contrast to the periodically forced case where the silent state transforms directly to a chaotic bursting state. Using a rational approximation to the quasiperiodic forcing, the mechanism for the appearance of such an SN bursting state is investigated. Thus, a smooth torus (corresponding to a silent state) is found to transform to an SN bursting attractor through a phase-dependent subcritical period-doubling bifurcation. These SN bursting states, together with chaotic bursting states, are characterized in terms of the interburst interval, the bursting length, and the number of spikes in each burst. Both bursting states are found to be aperiodic complex ones. Consequently, aperiodic c...

  1. Full system bifurcation analysis of endocrine bursting models.

    Science.gov (United States)

    Tsaneva-Atanasova, Krasimira; Osinga, Hinke M; Riess, Thorsten; Sherman, Arthur

    2010-06-21

    Plateau bursting is typical of many electrically excitable cells, such as endocrine cells that secrete hormones and some types of neurons that secrete neurotransmitters. Although in many of these cell types the bursting patterns are regulated by the interplay between voltage-gated calcium channels and calcium-sensitive potassium channels, they can be very different. We investigate so-called square-wave and pseudo-plateau bursting patterns found in endocrine cell models that are characterized by a super- or subcritical Hopf bifurcation in the fast subsystem, respectively. By using the polynomial model of Hindmarsh and Rose (Proceedings of the Royal Society of London B 221 (1222) 87-102), which preserves the main properties of the biophysical class of models that we consider, we perform a detailed bifurcation analysis of the full fast-slow system for both bursting patterns. We find that both cases lead to the same possibility of two routes to bursting, that is, the criticality of the Hopf bifurcation is not relevant for characterizing the route to bursting. The actual route depends on the relative location of the full-system's fixed point with respect to a homoclinic bifurcation of the fast subsystem. Our full-system bifurcation analysis reveals properties of endocrine bursting that are not captured by the standard fast-slow analysis. PMID:20307553

  2. Gamma Ray Bursts and the Birth of Black Holes

    Science.gov (United States)

    Gehrels, Neil

    2009-01-01

    Black holes have been predicted since the 1940's from solutions of Einstein's general relativity field equation. There is strong evidence of their existence from astronomical observations, but their origin has remained an open question of great interest. Gamma-ray bursts may the clue. They are powerful explosions, visible to high redshift, and appear to be the birth cries of black holes. The Swift and Fermi missions are two powerful NASA observatories currently in orbit that are discovering how gamma-ray bursts work. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are tremendously luminous and are providing a new tool to study the high redshift universe. One Swift burst at z=8.3 is the most distant object known in the universe. The talk will present the latest gamma-ray burst results from Swift and Fermi and will highlight what they are teaching us about black holes and jet outflows.

  3. Radio fiber bursts and fast magnetoacoustic wave trains

    CERN Document Server

    Karlický, M; Jelínek, P

    2012-01-01

    We present a model for dm-fiber bursts that is based on assuming fast sausage magnetoacoustic wave trains that propagate along a dense vertical filament or current sheet. Eight groups of dm-fiber bursts that were observed during solar flares were selected and analyzed by the wavelet analysis method. To model these fiber bursts we built a semi-empirical model. We also did magnetohydrodynamic simulations of a propagation of the magnetoacoustic wave train in a vertical and gravitationally stratified current sheet. In the wavelet spectra of the fiber bursts computed at different radio frequencies we found the wavelet tadpoles, whose head maxima have the same frequency drift as the drift of fiber bursts. It indicates that the drift of these fiber bursts can be explained by the propagating fast sausage magnetoacoustic wave train. Using new semi-empirical and magnetohydrodynamic models with a simple radio emission model we generated the artificial radio spectra of the fiber bursts, which are similar to the observed ...

  4. BROADBAND SPECTRAL INVESTIGATIONS OF SGR J1550-5418 BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lin Lin; Goegues, Ersin; Kaneko, Yuki [Faculty of Engineering and Natural Sciences, Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I Tuzla, Istanbul 34956 (Turkey); Baring, Matthew G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Kouveliotou, Chryssa [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Van der Horst, Alexander; Watts, Anna L. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Gruber, David; Von Kienlin, Andreas [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, D-85748 Garching bei Mnchen (Germany); Younes, George [USRA, National Space Science and Technology Center, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Gehrels, Neil, E-mail: linlin@sabanciuniv.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-09-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  5. Broadband Spectral Investigations of SGR J1550-5418 Bursts

    Science.gov (United States)

    Lin, Lin; Goegues, Ersin; Baring, Matthew G.; Granot, Jonathan; Kouveliotou, Chryssa; Kaneko, Yuki; van der Horst, Alexander; Gruber, David; von Kienlin, Andreas; Younes, George; Watts, Anna L.; Gehrels, Neil

    2012-01-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  6. Analysis of initial Power Burst Facility severe fuel damage tests using MELCOR

    International Nuclear Information System (INIS)

    MELCOR is a fully integrated code that models the progression of severe accidents in light water reactors. It is being developed for the U.S. Nuclear Regulatory Commission (NRC) be Sandia National Laboratory and is designed to provide improved source term assessment capability in comparison with the currently used Source Term Code Package (STCP). Although the development work is ongoing, MELCOR can be used to analyze a variety of problems in both pressurized water reactors and boiling water reactors. Most of the validation efforts for MELCOR thus far have focused on experiments that involve ex-vessel phenomena. An area of major uncertainty in severe-accident assessment, and an area in which the current validation effort for MELCOR is weakest, relates to in-vessel phenomena. In particular, the heat-up, melting, relocation, and oxidation models in MELCOR need to be assessed. This would best be accomplished by comparing MELCOR calculated results of melt progression for an experiment to those of a more mechanistic code and STCP. The purpose of this paper is to describe a MELCOR simulation of the POWER BURST Facility (PBF) Severe Fuel Damage (SFD) Scoping and 1-1 Tests and to compare results with predictions from STCP and NRC's mechanistic code SCDAP

  7. First upper limits from LIGO on gravitational wave bursts

    OpenAIRE

    Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Allen, B.; R. Amin; Anderson, S; Anderson, W.; Araya, M; Armandula, H.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S; Balasubramanian, R.

    2004-01-01

    We report on a search for gravitational wave bursts using data from the first science run of the Laser Interferometer Gravitational Wave Observatory (LIGO) detectors. Our search focuses on bursts with durations ranging from 4 to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at a 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveform...

  8. Neutron Stars and Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  9. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  10. Gamma-ray bursts observed by the watch experiment

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren; Castro-Tirado, A. J.

    After two years in orbit the WATCH instruments on the GRANAT space observatory have localized seven gamma burst sources with better than 1° accuracy. In several cases, follow‐up observations with Schmidt telescopes have been made within a few days. Some of the bursts have also been detected by the...... distant space probes PVO and ULYSSES and there are, therefore, good prospects for obtaining much improved positions using the burst arrival times. The existence of the almost concurrent Schmidt plates could then become particularly interesting....

  11. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.;

    2008-01-01

    exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading......X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence of...

  12. The Etiology and Outcome Analysis of Neonatal Burst Suppression EEG

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lian; ZHOU Yanxia; XU Sanqing

    2007-01-01

    The neonatal burst suppression is a severe EEG pattern and always demonstrates serious damage of nerve system. But the outcome of these patients depends on the different etiology. A total of 256 cases of video EEG recordings were analyzed in order to summarize the etiology and outcome of burst suppression. The results showed that some patients in all 17 cases of burst suppression showed EEG improvement. The etiology was the dominant factor in long term outcome. It was sug-gested that effective video EEG monitoring is helpful for etiologic study and prognosis evaluation.

  13. The supernova/gamma-ray burst/jet connection

    OpenAIRE

    Hjorth, Jens,

    2013-01-01

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bi-polar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star while the 56Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper I summarise the observational status of ...

  14. Dissecting the Phase Response of a Model Bursting Neuron

    CERN Document Server

    Sherwood, William Erik

    2009-01-01

    We investigate the phase response properties of the Hindmarsh-Rose model of neuronal bursting using burst phase response curves (BPRCs) computed with an infinitesimal perturbation approximation and by direct simulation of synaptic input. The resulting BPRCs have a significantly more complicated structure than the usual Type I and Type II PRCs of spiking neuronal models, and they exhibit highly timing-sensitive changes in the number of spikes per burst that lead to large magnitude phase responses. We use fast-slow dissection and isochron calculations to analyze the phase response dynamics in both weak and strong perturbation regimes.

  15. Reactor container

    International Nuclear Information System (INIS)

    A reactor container has a suppression chamber partitioned by concrete side walls, a reactor pedestal and a diaphragm floor. A plurality of partitioning walls are disposed in circumferential direction each at an interval inside the suppression chamber, so that independent chambers in a state being divided into plurality are formed inside the suppression chamber. The partition walls are formed from the bottom portion of the suppression chamber up to the diaphragm floor to isolate pool water in a divided state. Operation platforms are formed above the suppression chamber and connected to an access port. Upon conducting maintenance, inspection or repairing, a pump is disposed in the independent chamber to transfer pool water therein to one or a plurality of other independent chambers to make it vacant. (I.N.)

  16. Reactor building

    International Nuclear Information System (INIS)

    The present invention concerns a structure of ABWR-type reactor buildings, which can increase the capacity of a spent fuel storage area at a low cost and improved earthquake proofness. In the reactor building, the floor of a spent fuel pool is made flat, and a depth of the pool water satisfying requirement for shielding is ensured. In addition, a depth of pool water is also maintained for a equipment provisionally storing pool for storing spent fuels, and a capacity for a spent fuel storage area is increased by utilizing surplus space of the equipment provisionally storing pool. Since the flattened floor of the spent fuel pool is flushed with the floor of the equipment provisionally storing pool, transfer of horizontal loads applied to the building upon occurrence of earthquakes is made smooth, to improve earthquake proofness of the building. (T.M.)

  17. Nuclear reactors

    International Nuclear Information System (INIS)

    Disclosed is a nuclear reactor cooled by a freezable liquid has a vessel for containing said liquid and comprising a structure shaped as a container, and cooling means in the region of the surface of said structure for effecting freezing of said liquid coolant at and for a finite distance from said surface for providing a layer of frozen coolant on and supported by said surface for containing said liquid coolant. In a specific example, where the reactor is sodium-cooled, the said structure is a metal-lined concrete vault, cooling is effected by closed cooling loops containing NaK, the loops extending over the lined surface of the concrete vault with outward and reverse pipe runs of each loop separated by thermal insulation, and air is flowed through cooling pipes embedded in the concrete behind the metal lining. 7 claims, 3 figures

  18. NEUTRONIC REACTORS

    Science.gov (United States)

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  19. Nuclear reactor

    International Nuclear Information System (INIS)

    The liquid metal (sodium) cooled fast breeder reactor has got fuel subassemblies which are bundled and enclosed by a common can. In order to reduce bending of the sides of the can because of the load caused by the coolant pressure the can has got a dodecagon-shaped crosssection. The surfaces of the can may be of equal width. One out of two surfaces may also be convex towards the center. (RW)

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    A detector having high sensitivity to fast neutrons and having low sensitivity to thermal neutrons is disposed for reducing influences of neutron detector signals on detection values of neutron fluxes when the upper end of control rod pass in the vicinity of the neutron flux detector. Namely, the change of the neutron fluxes is greater in the thermal neutron energy region while it is smaller in the fast neutron energy region. This is because the neutron absorbing cross section of B-10 used as neutron absorbers of control rods is greater in the thermal neutron region and it is smaller in the fast neutron region. As a result, increase of the neutron detection signals along with the local neutron flux change can be reduced, and detection signals corresponding to the reactor power can be obtained. Even when gang withdrawal of operating a plurality of control rods at the same time is performed, the reactor operation cycle can be measured accurately, thereby enabling to shorten the reactor startup time. (N.H.)

  1. Gamma-Ray Bursts 2012 Conference

    Science.gov (United States)

    It is a pleasure to announce the next combined Fermi/Swift GRB conference covering recent advances in all aspects of gamma-ray burst observations and theory. This conference will be held in Munich, Germany, on 7-11 May 2012, and follows similar previous combined Fermi/Swift meetings in Huntsville (Oct. 2008) and Annapolis (Nov. 2010). Gamma-ray bursts are the most energetic explosions in the Universe and are thought to be the birth signatures of black holes. This is an exciting time in the GRB field as various missions provide a wealth of new data on this still puzzling phenomenon. The Fermi misson provides unprecedented spectral coverage over 7 decades in energy, and among others discovered new spectral components which challenge our standard picture of the prompt emission. The Swift mission continuous to swiftly monitor and locate GRBs in multiple wavebands, providing the basis for all ground-based follow-up observations towards redshift measurements and afterglow and host property investigations. AGILE, INTEGRAL, Suzaku and Konus continue to provide crucial information on GRB properties, and the MAXI mission provides an all sky X-ray monitoring of transients. There is also growing capability for follow-up observations by ground-based telescopes at basically all wavelengths. Besides the classical optical/infrared/radio observations, searches are underway for TeV emission, neutrinos and gravitational waves. Moreover, new experiments are expected to have returned first data, among others POGO on the prompt polarization properties, UFFO on very early optical emission, or ALMA on sub-millimeter properties. And last but not least, the unexpected is bringing us child-like astonishments at least once per year with a "GRB-trigger" which turns out to be not related to GRBs. Complementing all these new observational results, a huge theoretical effort is underway to understand the GRB phenomenon and keep up with the constant new puzzles coming from the data. This conference

  2. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    In a BWR type nuclear reactor, the number of first fuel assemblies (uranium) loaded in a reactor core is smaller than that of second fuel assemblies (mixed oxide), the average burnup degree upon take-out of the first fuel assemblies is reduced to less than that of the second fuel assemblies, and the number of the kinds of the fuel rods constituting the first fuel assemblies is made smaller than that of the fuel rods constituting the second fuel assemblies. As a result, the variety of the plutonium enrichment degree is reduced to make the distribution of the axial enrichment degree uniform, thereby enabling to simplify the distribution of the enrichment degree. Then the number of molding fabrication steps for MOX fuel assemblies can be reduced, thereby enabling to reduce the cost for molding and fabrication. (N.H.)

  3. Alternative temporal classification of long Gamma Ray Bursts

    Science.gov (United States)

    Alejandro Vasquez, Nicolas; Baquero, Andres; Andrade, David

    2015-08-01

    In order to increase the understanding on Gamma Ray Bursts, many attempts of classification have been proposed. Starting with the canonical classification into long and short GRBs, alternative classifications taking into account the cosmological origin of GRBs have been analyzed. In the present work we propose an alternative classification based on two temporal estimators, the Auto Correlation Function (ACF) of the light curves and the emission time which considered the time where the bursts engine is active. The time estimators chosen reflects the internal evolution of the GRB and the internal structure. Using a sample of 61 bright GRBs detected by SWIFT satellite with known redshift, we proposed a bimodal distribution of long bursts. The two types of bursts have different internal structure suggesting different progenitors.

  4. Nonrelativistic phase in γ-ray burst afterglows

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The discovery of multiband afterglows definitely shows that most γ-ray bursts are of cosmological origin. γ-ray bursts are found to be one of the most violent explosive phenomena in the Universe, in which astonishing ultra-relativistic motions are involved.In this article, the multiband observational characteristics of γ-ray bursts and their afterglows are briefly reviewed. The standard model of γ-ray bursts, i.e. the fireball model, is described. Emphasis is then put on the importance of the nonrelativistic phase of afterglows. The concept of deep Newtonian phase is elaborated. A generic dynamical model applicable in both the relativistic and nonrelativistic phases is introduced. Based on these elaborations, the overall afterglow behaviors, from the very early stages to the very late stages, can be conveniently calculated.

  5. Burst statistics in Alcator C-Mod SOL turbulence

    International Nuclear Information System (INIS)

    Bursty fluctuations in the scrape-off layer (SOL) of Alcator C-Mod have been analyzed using gas puff imaging data. This reveals many of the same fluctuation properties as Langmuir probe measurements, including normal distributed fluctuations in the near SOL region while the far SOL plasma fluctuations are dominated by large amplitude bursts due to radial motion of blob-like structures. Conditional averaging reveals burst wave forms with a fast rise and slow decay and exponentially distributed burst amplitudes and waiting times. Based on this, a stochastic model of burst dynamics is constructed. The model predicts that fluctuation amplitudes should follow a Gamma distribution. This is shown to be a good description of the gas puff imaging data for a range of line-averaged densities

  6. WATCH observations of gamma ray bursts during 1990–1992

    DEFF Research Database (Denmark)

    Castro-Tirado, A.; Brandt, Søren; Lund, Niels; Lapshov, I. Y.; Terekhov, O.; Sunyaev, R. A.

    The first WATCH/GRANAT Gamma‐Ray Burst Catalogue comprises 70 events which have been detected by WATCH during the period December 1989–September 1992. 32 GRBs could be localized within a 3σ error radii of 1°. We have found a weak (2.2σ) clustering of these 32 bursts towards the Galactic Center....... However we conclude that there is no strong evidence of concentration of the bursts towards the Galactic Center or Plane. Around ∼10% of the 70 bursts showed x‐ray precursor or/and X‐ray tail. We discuss the possibility that two events, GRB 900126 and GRB 920311, would have been produced by the same...

  7. WATCH observations of gamma ray bursts during 1990–1992

    DEFF Research Database (Denmark)

    Castro-Tirado, A.; Brandt, Søren; Lund, Niels;

    1994-01-01

    . However we conclude that there is no strong evidence of concentration of the bursts towards the Galactic Center or Plane. Around ∼10% of the 70 bursts showed x‐ray precursor or/and X‐ray tail. We discuss the possibility that two events, GRB 900126 and GRB 920311, would have been produced by the same......The first WATCH/GRANAT Gamma‐Ray Burst Catalogue comprises 70 events which have been detected by WATCH during the period December 1989–September 1992. 32 GRBs could be localized within a 3σ error radii of 1°. We have found a weak (2.2σ) clustering of these 32 bursts towards the Galactic Center...

  8. Burst-Disk Device Simulates Effect Of Pyrotechnic Device

    Science.gov (United States)

    Rogers, James P.; Sexton, James H.

    1995-01-01

    Expendable disks substituted for costly pyrotechnic devices for testing actuators. Burst-disk device produces rush of pressurized gas similar to pyrotechnic device. Designed to reduce cost of testing pyrotechnically driven emergency actuators (parachute-deploying mechanisms in original application).

  9. Reactive and proactive routing in labelled optical burst switching networks

    OpenAIRE

    Klinkowski, Miroslaw; Careglio, Davide; Solé Pareta, Josep

    2009-01-01

    Optical burst switching architectures without buffering capabilities are sensitive to burst congestion. The existence of a few highly congested links may seriously aggravate the network throughput. Proper network routing may help in congestion reduction. The authors focus on adaptive routing strategies to be applied in labelled OBS networks, that is, with explicit routing paths. In particular, two isolated alternative routing algorithms that aim at network performance improvement because o...

  10. Estimating Redshifts for Long Gamma-Ray Bursts

    OpenAIRE

    Xiao, Limin; Schaefer, Bradley E.

    2009-01-01

    We are constructing a program to estimate the redshifts for GRBs from the original Swift light curves and spectra, aiming to get redshifts for the Swift bursts \\textit{without} spectroscopic or photometric redshifts. We derive the luminosity indicators from the light curves and spectra of each burst, including the lag time between low and high photon energy light curves, the variability of the light curve, the peak energy of the spectrum, the number of peaks in the light curve, and the minimu...

  11. Dark gamma-ray bursts: possible role of multiphoton processes

    CERN Document Server

    Perel'man, Mark E

    2009-01-01

    The absence of optical afterglow at some gamma-ray bursts (so called dark bursts) requires analyses of physical features of this phenomenon. It is shown that such singularity can be connected with multiphoton processes of frequencies summation in the Rayleigh- Jeans part of spectra, their pumping into higher frequencies. It can be registered most probably on young objects with still thin plasma coating, without further thermalization, i.e. soon after a prompt beginning of the explosive activity.

  12. Akustisch evozierte Potentiale mittlerer Latenz unter Burst Suppression EEG

    OpenAIRE

    Jochum, Sybille

    2007-01-01

    Akustisch evozierte Potentiale mittlerer Latenz (MLAEPs) und Elektroenzephalogramm (EEG) finden bei der Untersuchung der hypnotischen Komponente von Narkose seit langem Verwendung In dieser Studie wurde untersucht, inwiefern sehr tiefe Narkose mit dem Korrelat Burst Suppression im EEG mit Hilfe von MLAEPs erfasst werden kann. Hierfür wurde zunächst die Frage geklärt, ob MLAEPs unter Burst Suppression, hervorgerufen durch eine Propofol Monoanästhesie, vorhanden sind. Nachdem MLAEPs unter B...

  13. Real Life Science with Dandelions and Project BudBurst

    OpenAIRE

    Johnson, Katherine A.

    2016-01-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education

  14. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, K.H.; Bohr, Tomas; Jensen, M.H.; Olesen, P.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...... and left moving parts can be solved exactly. When this is supplemented by the approximate shock condition it is possible to find the symptotic form of the burst....

  15. Focused study of thermonuclear bursts on neutron stars

    DEFF Research Database (Denmark)

    Chenevez, Jérôme

    radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, Theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by Simbol X. A positive...... possible to differentiate between the potential interpretations of the X-ray bursts spectral features....

  16. Models for Gamma-Ray Burst Progenitors and Central Engines

    OpenAIRE

    Woosley, S E

    2011-01-01

    Most gamma-ray bursts are made during the deaths of massive stars. Here the environmental circumstances, stellar evolutionary paths, and explosion physics that might produce the bursts are reviewed. Neither of the two leading models - collapsar and millisecond magnetar - can be excluded, and both may operate in progenitor stars of different masses, metallicities, and rotation rates. Potential diagnostics are discussed and uncertainties highlighted. Both models are capable of producing a wide ...

  17. The Mesoscopic Modeling of Burst Suppression during Anesthesia

    OpenAIRE

    Liley, David T. J.; Walsh, Matthew

    2013-01-01

    The burst-suppression pattern is well recognized as a distinct feature of the mammalian electroencephalogram (EEG) waveform. Consisting of alternating periods of high amplitude oscillatory and isoelectric activity, it can be induced in health by deep anesthesia as well as being evoked by a range of pathophysiological processes that include coma and anoxia. While the electroencephalographic phenomenon and clinical implications of burst suppression have been studied extensively, the physiologic...

  18. EMISSION PATTERNS OF SOLAR TYPE III RADIO BURSTS: STEREOSCOPIC OBSERVATIONS

    International Nuclear Information System (INIS)

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /ΣIj (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of ∼2° and (2) bursts emitting into a wider cone with angular width spanning from ∼ – 100° to ∼100°. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  19. Survivability of meteor burst communication under adverse operating conditions.

    OpenAIRE

    Gates, Mark A.

    1992-01-01

    Approved for public release; distribution is unlimited This thesis is a study of the survivability and reliability issues associated with operating meteor burst communication systems under adverse conditions. Meteor burst communication relies on the phenomenon of reflecting radio waves off the ionized trails left by meteors as they enter the atmosphere and disintegrate. The system's rapid deployment capability, mobility, and operating characteristics make it ideal for disast...

  20. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  1. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education. PMID:27047605

  2. The RHESSI Satellite and Classes of Gamma-ray Bursts

    Czech Academy of Sciences Publication Activity Database

    Řípa, J.; Mészáros, A.; Hudec, René; Wigger, C.; Hajdas, W.

    Melville : American Institute of Physics , 2008 - (Galassi, M.; Palmer, D.; Fenimore, E.), s. 56-59 ISBN 978-0-7354-0533-2. ISSN 0094-243X. - (AIP Conference proceedings. 1000). [Gamma-Ray Bursts 2007. Santa Fe (US), 05.11.2007-09.11.2007] Institutional research plan: CEZ:AV0Z10030501 Keywords : gamma-ry bursts * RHESSI * BATSE Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. Burst suppression in sleep in a routine outpatient EEG

    Directory of Open Access Journals (Sweden)

    Ammar Kheder

    2014-01-01

    Full Text Available Burst suppression (BS is an electroencephalogram (EEG pattern that is characterized by brief bursts of spikes, sharp waves, or slow waves of relatively high amplitude alternating with periods of relatively flat EEG or isoelectric periods. The pattern is usually associated with coma, severe encephalopathy of various etiologies, or general anesthesia. We describe an unusual case of anoxic brain injury in which a BS pattern was seen during behaviorally defined sleep during a routine outpatient EEG study.

  4. Effects of galactic gamma rays bursts on planetary atmospheres

    International Nuclear Information System (INIS)

    We discuss the potential past incidence of a galactic gamma ray burst on Earth. Rough estimates for the relative frequencies of this kind of event are given, for the different eons of our planet's geological history. Additionally, we explore the effectiveness of the ozone layer of different paleo-atmospheres to shield the surface of the planet from the ultraviolet flash, which arises as a short-term effect after the incidence of a galactic gamma ray burst. (author)

  5. Nucleosynthesis in Gamma Ray Burst Accretion Disks

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason

    2003-01-01

    We follow the nuclear reactions that occur in the accretion disks of stellar mass black holes that are accreting at a very high rate, 0.01 to 1 solar masses per second, as is realized in many current models for gamma-ray bursts (GRBs). The degree of neutronization in the disk is a sensitive function of the accretion rate, black hole mass, Kerr parameter, and disk viscosity. For high accretion rates and low viscosity, material arriving at the black hole will consist predominantly of neutrons. This degree of neutronization will have important implications for the dynamics of the GRB producing jet and perhaps for the synthesis of the r-process. For lower accretion rates and high viscosity, as might be appropriate for the outer disk in the collapsar model, neutron-proton equality persists allowing the possible synthesis of 56Ni in the disk wind. 56Ni must be present to make any optically bright Type Ib supernova, and in particular those associated with GRBs.

  6. Reclassification of gamma-ray bursts

    CERN Document Server

    Balastegui, A; Ruiz-Lapuente, P; Balastegui, Andreu; Canal, Pilar Ruiz-Lapuente & Ramon

    2001-01-01

    We have applied two different automatic classifier algorithms to the BATSE Current GRB Catalog data and we obtain three different classes of GRBs. Our results confirm the existence of a third, intermediate class of GRBs, with mean duration \\sim 25-50 s, as deduced from a cluster analysis and from a neural network algorithm. Our analyses imply longer durations than those found by Mukherjee et al. (1998) and Horvath (1998), whose intermediate class had durations \\sim 2-10 s. From the neural network analysis no difference in hardness between the two longest classes is found, and from both methods we find that the intermediate-duration class constitutes the most homogeneous sample of GRBs in its space distribution while the longest-duration class constitutes the most inhomogeneous one with \\sim 0.1, being thus the deepest population of GRBs with z_max \\sim 10. The trend previously found in long bursts, of spatial inhomogeneity increasing with hardness, only holds for this new longest-duration class.

  7. Photon mass limits from fast radio bursts

    Science.gov (United States)

    Bonetti, Luca; Ellis, John; Mavromatos, Nikolaos E.; Sakharov, Alexander S.; Sarkisyan-Grinbaum, Edward K.; Spallicci, Alessandro D. A. M.

    2016-06-01

    The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on mγ. The dispersion measure (DM) of FRB 150418 is known to ∼ 0.1%, and there is a claim to have measured its redshift with an accuracy of ∼ 2%, but the strength of the constraint on mγ is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that mγ ≲ 1.8 ×10-14 eVc-2 (3.2 ×10-50 kg), if FRB 150418 indeed has a redshift z = 0.492 as initially reported. In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to mγ if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic contribution to the DM of an FRB, one with a lower redshift would provide greater sensitivity to mγ.

  8. Structured jets in gamma ray bursts

    International Nuclear Information System (INIS)

    The gamma ray bursts (GRBs) are some of the most powerful explosions in the Universe. Observationally, they are short and very intense pulses of photons in the keV-MeV range. The paradigm is that the gamma rays are emitted at cosmological distances when an ultra-relativistic energy flow is converted to radiation in an optically thin region. Evidence suggests that many of the GRBs originate from the relativistically moving matter beamed in the form of a conical jet. Probably, these jets are not uniform, but rather structured, the energy being distributed with internal angle as some function dependent on the angle between the jet symmetry axis and an arbitrary direction within the jet. Here we investigate the case in which the bulk Lorentz factor of the ejecta varies as a power-law with respect to the axis of the jet. Using a simple kinematical model, under certain assumptions, we can constraint the values of the power-law index. Also, we briefly discuss some important consequences of the jetted GRBs concept in the context of the general understanding of the phenomenon. (authors)

  9. Photon Mass Limits from Fast Radio Bursts

    CERN Document Server

    Bonetti, Luca; Mavromatos, Nikolaos E; Sakharov, Alexander S; Sarkisyan-Grinbaum, Edward K G; Spallicci, Alessandro D A M

    2016-01-01

    The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on $m_\\gamma$. The redshift of FRB 150418 has been measured to $\\sim 2$% and its dispersion measure (DM) is known to $\\sim 0.1$%, but the strength of the constraint on $m_\\gamma$ is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that $m_\\gamma \\lesssim 1.7 \\times 10^{-14}$ eV c$^{-2}$ ($4.6 \\times 10^{-50}$ kg). In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to $m_\\gamma$ if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic cont...

  10. An updated Gamma Ray Bursts Hubble diagram

    CERN Document Server

    Cardone, V F; Dainotti, M G

    2009-01-01

    Gamma ray bursts (GRBs) have recently attracted much attention as a possible way to extend the Hubble diagram to very high redshift. To this aim, the luminosity (or isotropic emitted energy) of a GRB at redshift z must be evaluated from a correlation with a distance independent quantity so that one can then solve for the luminosity distance D_L(z) and hence the distance modulus mu(z). Averaging over five different two parameters correlations and using a fiducial cosmological model to calibrate them, Schaefer (2007) has compiled a sample of 69 GRBs with measured mu(z) which has since then been widely used to constrain cosmological parameters. We update here that sample by many aspects. First, we add a recently found correlation for the X - ray afterglow and use a Bayesian inspired fitting method to calibrate the different GRBs correlations known insofar assuming a fiducial LCDM model in agreement with the recent WMAP5 data. Averaging over six correlations, we end with a new GRBs Hubble diagram comprising 83 ob...

  11. The Nature of Gamma Ray Burst Supernovae

    CERN Document Server

    Cano, Zach

    2012-01-01

    Gamma Ray Bursts (GRBs) and Supernovae (SNe) are among the brightest and most energetic physical processes in the universe. It is known that core-collapse SNe arise from the gravitational collapse and subsequent explosion of massive stars (the progen- itors of nearby core-collapse SNe have been imaged and unambiguously identified). It is also believed that the progenitors of long-duration GRBs (L-GRBs) are massive stars, mainly due to the occurrence and detection of very energetic core-collapse su- pernovae that happen both temporally and spatially coincident with most L-GRBs. However many outstanding questions regarding the nature of these events exist: How massive are the progenitors? What evolutionary stage are they at when they explode? Do they exist as single stars or in binary systems (or both, and to what fractions)? The work presented in this thesis attempts to further our understanding at the types of progenitors that give rise to long-duration GRB supernovae (GRB-SNe). This work is based on optical ...

  12. The SVOM gamma-ray burst mission

    CERN Document Server

    Cordier, B; Atteia, J -L; Basa, S; Claret, A; Daigne, F; Deng, J; Dong, Y; Godet, O; Goldwurm, A; Götz, D; Han, X; Klotz, A; Lachaud, C; Osborne, J; Qiu, Y; Schanne, S; Wu, B; Wang, J; Wu, C; Xin, L; Zhang, B; Zhang, S -N

    2015-01-01

    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the...

  13. Quark nova model for fast radio bursts

    Science.gov (United States)

    Shand, Zachary; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2016-05-01

    Fast radio bursts (FRBs) are puzzling, millisecond, energetic radio transients with no discernible source; observations show no counterparts in other frequency bands. The birth of a quark star from a parent neutron star experiencing a quark nova - previously thought undetectable when born in isolation - provides a natural explanation for the emission characteristics of FRBs. The generation of unstable r-process elements in the quark nova ejecta provides millisecond exponential injection of electrons into the surrounding strong magnetic field at the parent neutron star's light cylinder via β-decay. This radio synchrotron emission has a total duration of hundreds of milliseconds and matches the observed spectrum while reducing the inferred dispersion measure by approximately 200 cm‑3 pc. The model allows indirect measurement of neutron star magnetic fields and periods in addition to providing astronomical measurements of β-decay chains of unstable neutron rich nuclei. Using this model, we can calculate expected FRB average energies (∼ 1041 erg) and spectral shapes, and provide a theoretical framework for determining distances.

  14. Detecting fast radio bursts at decametric wavelengths

    CERN Document Server

    Rajwade, Kaustubh

    2016-01-01

    Fast radio bursts (FRBs) are highly dispersed, sporadic radio pulses that are likely extragalactic in nature. Here we investigate the constraints on the source population from surveys carried out at frequencies $<1$~GHz. All but one FRB has so far been discovered in the 1--2~GHz band, but new and emerging instruments look set to become valuable probes of the FRB population at sub-GHz frequencies in the near future. In this paper, we consider the impacts of free-free absorption and multi-path scattering in our analysis via a number of different assumptions about the intervening medium. We consider previous low frequency surveys alongwith an ongoing survey with the University of Technology digital backend for the Molonglo Observatory Synthesis Telescope (UTMOST) as well as future observations with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the Hydrogen Intensity and Real-Time Analysis Experiment (HIRAX). We predict that CHIME and HIRAX will be able to observe $\\sim$ 30 or more FRBs per da...

  15. THE SECOND SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG

    International Nuclear Information System (INIS)

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters, and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs, and S-GRBs with E.E. in the catalog are 89%, 8%, and 2%, respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX, and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T90 and T50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S-GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs and that the time-averaged E obspeak of the BAT GRBs peaks at 80 keV, which is significantly lower energy than those of the BATSE sample, which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that only 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. We see no obvious observed trend in the BAT T90 and the observed spectra with redshifts. The T90 and T

  16. Types of Nuclear Reactors

    International Nuclear Information System (INIS)

    The presentation is based on the following areas: Types of Nuclear Reactors, coolant, moderator, neutron spectrum, fuel type, pressurized water reactor (PWR), boiling water reactor (BWR) reactor pressurized heavy water (PHWR), gas-cooled reactor, RBMK , Nuclear Electricity Generation,Challenges in Nuclear Technology Deployment,EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR.

  17. Design and evaluation of an optimization based approach to multiple burst admission control for cdma2000

    OpenAIRE

    Lau, VKN; Kwok, YK

    2001-01-01

    In our recent study, we have formulated the burst admission control problem for wideband CDMA systems as an integer programming problem. In this paper, we propose and analyze the performance of a novel burst admission technique, called the multiple-burst admission-spatial dimension algorithm (MBA-SD) to judiciously allocate the previous channels in wideband CDMA systems to burst requests. Both the forward link and the reverse link burst requests are considered and the system is simulated by d...

  18. Burst firing is a neural code in an insect auditory system

    OpenAIRE

    Eyherabide, Hugo G.; Rokem, Ariel; Herz, Andreas V. M.; Samengo, Inés

    2008-01-01

    Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intr...

  19. Post-Launch Analysis of Swift's Gamma-Ray Burst Detection Sensitivity

    OpenAIRE

    Band, David L.

    2006-01-01

    The dependence of Swift's detection sensitivity on a burst's temporal and spectral properties shapes the detected burst population. Using simplified models of the detector hardware and the burst trigger system I find that Swift is more sensitive to long, soft bursts than CGRO's BATSE, a reference detector because of the large burst database it accumulated. Thus Swift has increased sensitivity in the parameter space region into which time dilation and spectral redshifting shift high redshift b...

  20. The Rapid Burster and its X-ray bursts: extremes of accretion and thermonuclear burning

    OpenAIRE

    Klis, van der, M.; Zand, in 't, J.J.M.; Watts, A.; Bagnoli, T.

    2015-01-01

    X-ray bursts originate from accreting neutron stars (NSs) in X-ray binaries (XRBs). They come in two flavours: thermonuclear bursts are due to the sudden runaway burning of the material accreted on the surface; accretion bursts signal a sudden change in the mass accretion rate, leading to enhanced emission in the innermost regions of the accretion flow. While thermonuclear bursts have been observed from 105 NSs as of writing, accretion bursts remain enigmatically confined to only two sources....

  1. Unsupervised Induction and $\\gamma$-Ray Burst Classification

    CERN Document Server

    Roiger, R J; Haglin, D J; Pendleton, G N; Mallozzi, R S; Roiger, Richard J.; Hakkila, Jon; Haglin, David J.; Pendleton, Geoffrey N.; Mallozzi, Robert S.

    2000-01-01

    We use ESX, a product of Information Acumen Corporation, to perform unsupervised learning on a data set containing 797 gamma-ray bursts taken from the BATSE 3B catalog. Assuming all attributes to be distributed logNormally, Mukherjee et al. (1998) analyzed these same data using a statistical cluster analysis. Utilizing the logarithmic values for T90 duration, total fluence, and hardness ratio HR321 their results showed the instances formed three classes. Class I contained long/bright/intermediate bursts, class II consisted of short/faint/hard bursts and class III was represented by intermediate/intermediate/soft bursts. When ESX was presented with these data and restricted to forming a small number of classes, the two classes found by previous standard techniques were determined. However, when ESX was allowed to form more than two classes, four classes were created. One of the four classes contained a majority of short bursts, a second class consisted of mostly intermediate bursts, and the final two classes w...

  2. Observation of a Metric Type N Solar Radio Burst

    CERN Document Server

    Kong, Xiangliang; Feng, Shiwei; Du, Guohui; Li, Chuanyang; Koval, Artem; Vasanth, V; Wang, Bing; Guo, Fan; Li, Gang

    2016-01-01

    Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter "N" in the radio dynamic spectrum and reveal a magnetic mirror effect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature ($>$10$^9$ K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations of the three branches at a given frequency increase gradually, may due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite sense of polarization. We also find that the sense of p...

  3. A Retroactive-Burst Framework for Automated Intrusion Response System

    Directory of Open Access Journals (Sweden)

    Alireza Shameli-Sendi

    2013-01-01

    Full Text Available The aim of this paper is to present an adaptive and cost-sensitive model to prevent security intrusions. In most automated intrusion response systems, response selection is performed locally based on current threat without using the knowledge of attacks history. Another challenge is that a group of responses are applied without any feedback mechanism to measure the response effect. We address these problems through retroactive-burst execution of responses and a Response Coordinator (RC mechanism, the main contributions of this work. The retroactive-burst execution consists of several burst executions of responses with, at the end of each burst, a mechanism for measuring the effectiveness of the applied responses by the risk assessment component. The appropriate combination of responses must be considered for each burst execution to mitigate the progress of the attack without necessarily running the next round of responses, because of the impact on legitimate users. In the proposed model, there is a multilevel response mechanism. To indicate which level is appropriate to apply based on the retroactive-burst execution, we get help from a Response Coordinator mechanism. The applied responses can improve the health of Applications, Kernel, Local Services, Network Services, and Physical Status. Based on these indexes, the RC gives a general overview of an attacker’s goal in a distributed environment.

  4. Identification of Bursting Water Maser Features in Orion KL

    CERN Document Server

    Hirota, Tomoya; Fujisawa, Kenta; Honma, Mareki; Kawaguchi, Noriyuki; Kim, Mi Kyoung; Kobayashi, Hideyuki; Imai, Hiroshi; Omodaka, Toshihiro; Katsunori,; Shibata, M; Shimoikura, Tomomi; Yonekura, Yoshinori

    2011-01-01

    In February 2011, a burst event of the H$_{2}$O maser in Orion KL (Kleinmann-Low object) has started after 13-year silence. This is the third time to detect such phenomena in Orion KL, followed by those in 1979-1985 and 1998. We have carried out astrometric observations of the bursting H$_{2}$O maser features in Orion KL with VERA (VLBI Exploration of Radio Astrometry), a Japanese VLBI network dedicated for astrometry. The total flux of the bursting feature at the LSR velocity of 7.58 km s$^{-1}$ reaches 4.4$\\times10^{4}$ Jy in March 2011. The intensity of the bursting feature is three orders of magnitudes larger than that of the same velocity feature in the quiescent phase in 2006. Two months later, another new feature appears at the LSR velocity of 6.95 km s$^{-1}$ in May 2011, separated by 12 mas north of the 7.58 km s$^{-1}$ feature. Thus, the current burst occurs at two spatially different features. The bursting masers are elongated along the northwest-southeast direction as reported in the previous burs...

  5. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts. PMID:26911781

  6. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities ∼10-2 counts cm-2 s-1, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, Rint, ranges over a factor of 25, Rint ∼ 3 x 10-3 to 8 x 10-2. In comparison, for the average of the 39 bursts without an EE component, the 2σ upper limit is Rint -4. These results suggest that a physical threshold effect operates near Rint ∼ few x 10-3 below which the EE component is not manifest.

  7. Gamma Ray Burst Discoveries with the Swift Mission

    Science.gov (United States)

    Gehrels, Neil

    2009-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  8. Narrowband frequency-drift structures in solar type IV bursts

    Science.gov (United States)

    Nishimura, Yukio; Ono, Takayuki; Tsuchiya, Fuminori; Misawa, Hiroaki; Kumamoto, Atsushi; Katoh, Yuto; Masuda, Satoshi; Miyoshi, Yoshizumi

    2013-12-01

    We have established the Zao Solar Radiospectrograph (ZSR), a new solar radio observation system, at the Zao observatory of Tohoku University, Japan. We observed narrowband fine structures with type IV bursts with ZSR on 2 and 3 November 2008. The observed fine structures are similar to fiber bursts in terms of the drift rates and the existence of emission and absorption stripes. Statistical analysis of the drift rates, however, shows that the observed fine structures are different from the ordinary fiber bursts as regards the sense and the magnitude of their drift rates. First, the observed drift rates include both positive and negative rates, whereas ordinary fiber bursts are usually characterized by negative drift rates. Second, the absolute values of the observed drift rates are tens of MHz s-1, whereas the typical drift rate of fiber bursts at 325 MHz is approximately -9 MHz s-1. In addition, all fine structures analyzed have narrow emission bands of less than 17 MHz. We also show that the observed narrowband emission features with drift rates of approximately 40 MHz s-1 can be interpreted as the propagation of whistler-mode waves, which is the same process as that underlying fiber bursts.

  9. Thermonuclear bursts from slowly and rapidly accreting neutron stars

    Science.gov (United States)

    Linares, Manuel

    2012-07-01

    Models of thermonuclear burning on accreting neutron stars predict different ignition regimes, depending mainly on the mass accretion rate per unit area. For more than three decades, testing these regimes observationally has met with only partial success. I will present recent results from the Fermi-GBM all-sky X-ray burst monitor, which is yielding robust measurements of recurrence time of rare and highly energetic thermonuclear bursts at the lowest mass accretion rates. I will also present RXTE observations of thermonuclear bursts at high mass accretion rates, including the discovery of millihertz quasi-periodic oscillations and several bursting regimes in a neutron star transient and 11 Hz X-ray pulsar. This unusual neutron star, with higher magnetic field and slower rotation than any other known burster, showed copious bursting activity when the mass accretion rate varied between 10% and 50% of the Eddington rate. I will discuss the role of fuel composition and neutron star spin in setting the burst properties of this system, and the possible implications for the rest of thermonuclear bursters.

  10. Gamma-ray burst spectral diagnostics in the GLAST era

    International Nuclear Information System (INIS)

    The spectra obtained above 100 MeV by the EGRET experiment aboard the Compton Gamma-Ray Observatory for a handful of gamma-ray bursts has given no indication of any spectral attenuation that might preclude detection of bursts at higher energies. With the discovery of optical afterglows and counterparts to bursts in the last few years, enabling the determination of significant redshifts for these sources, it is anticipated that profound spectral attenuation will arise in the GLAST energy band of 30 MeV-300 GeV for many if not most bursts. An important goal will be to discriminate between such extrinsic absorption, due to the cosmic infra-red background, and that which arises internally in GRBs. This paper explores expectations for the spectral properties in the GLAST band for bursts, in particular how attenuation of photons by pair creation internal to the source modifies the spectrum to produce distinctive signatures. The energy of spectral breaks and the associated spectral indices provide valuable information that can constrain the bulk Lorentz factor of the GRB outflow at a given time. Moreover, distinct temporal behavior is present for internal attenuation, and is easily distinguished from extrinsic absorption. These characteristics define palpable observational goals for both the GLAST mission and ground-based Cerenkov telescopes, and strongly impact the observability of bursts above 1 GeV

  11. Gamma Ray Burst Discoveries by the Swift Mission

    Science.gov (United States)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  12. Unusual Solar Radio Burst Observed at Decameter Wavelengths

    CERN Document Server

    Melnik, V N; Konovalenko, A A; Rucker, H O; Frantsuzenko, A V; Dorovskyy, V V; Panchenko, M; Stanislavskyy, A A

    2015-01-01

    An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range 16-28 MHz. The observed radio burst has some unusual properties, which are not typical for the other types of solar radio bursts. The frequency drift rate of it was positive (about 500 kHz s$^{-1}$) at frequencies higher than 22 MHz and negative (100 kHz s$^{-1}$) at lower frequencies. The full duration of this event varies from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reaches $\\approx 10^3$ s.f.u and its polarization does not exceed 10%. This burst has a fine frequency-time structure of unusual appearance. It consists of stripes with the frequency bandwidth 300-400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft are possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burs...

  13. Bursting of a bubble confined in between two plates

    Science.gov (United States)

    Murano, Mayuko; Kimono, Natsuki; Okumura, Ko

    2015-11-01

    Rupture of liquid thin films, driven by surface tension, has attracted interests of scientists for many years. It is also a daily phenomenon familiar to everyone in the form of the bursting of soap films. In recent years, many studies in confined geometries (e.g. in a Hele-Shaw cell) have revealed physical mechanisms of the dynamics of bubbles and drops. As for a liquid film sandwiched in between another liquid immiscible to the film liquid in the Hele-Shaw cell, it is reported that the thin film bursts at a constant speed and the speed depends on the viscosity of the surrounding liquid when the film is less viscous, although a rim is not formed at the bursting tip; this is because the circular symmetry of the hole in the bursting film is lost. Here, we study the bursting speed of a thin film sandwiched between air instead of the surrounding liquid in the Hele-Shaw cell to seek different scaling regimes. By measuring the bursting velocity and the film thickness of an air bubble with a high speed camera, we have found a new scaling law in viscous regime. This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

  14. The position and polarization of Type V solar bursts

    Science.gov (United States)

    Dulk, G. A.; Gary, D. E.; Suzuki, S.

    1980-01-01

    Observations of the position and polarization of Type V solar radio bursts and their preceding Type III bursts are presented. The polarization, frequency range, source position, source movement, source size and brightness temperature of the bursts were measured using a 24-220 MHz spectropolarimeter, an 8-8000 MHz spectrograph and a three-frequency radioheliograph. Type V radiation is frequently found to have the opposite sense of circular polarization from that of the preceding Type III burst, with a degree of polarization similar to that of harmonic Type III radiation. A reversal of polarization is not observed when the accompanying Type III burst has no fundamental-harmonic structure, or when the Type V radiation is poorly developed. Possible mechanisms for the reversal are examined, including opposite magnetic field directions in Type III and V bursts, changes in mode coupling and a change in the mode of emission from o-mode for Type III to x-mode for Type V, and conditions needed for the mode change which is considered the most likely mechanism, are determined.

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    A nuclear reactor is described in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assemblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters in the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters in the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance

  16. Nuclear research reactors

    International Nuclear Information System (INIS)

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.)

  17. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Cover gas spaces for primary coolant vessel, such as a reactor container, a pump vessel and an intermediate heat exchanger vessel are in communication with each other by an inverted U-shaped pressure conduit. A transmitter and a receiver are disposed to the pressure conduit at appropriate positions. If vibration frequencies (pressure vibration) from low frequency to high frequency are generated continuously from the transmitter to the inside of the communication pipe, a resonance phenomenon (air-column resonance oscillation) is caused by the inherent frequency or the like of the communication pipe. The frequency of the air-column resonance oscillation is changed by the inner diameter and the clogged state of the pipelines. Accordingly, by detecting the change of the air-column oscillation characteristics by the receiver, the clogged state of the flow channels in the pipelines can be detected even during the reactor operation. With such procedures, steams of coolants flowing entrained by the cover gases can be prevented from condensation and coagulation at a low temperature portion of the pipelines, otherwise it would lead clogging in the pipelines. (I.N.)

  19. The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years

    CERN Document Server

    Yu, Hoi-Fung; Greiner, Jochen; Bhat, P Narayana; Bissaldi, Elisabetta; Briggs, Michael S; Cleveland, William H; Connaughton, Valerie; Goldstein, Adam; von Kienlin, Andreas; Kouveliotou, Chryssa; Mailyan, Bagrat; Meegan, Charles A; Paciesas, William S; Rau, Arne; Roberts, Oliver J; Veres, Péter; Wilson-Hodge, Colleen; Zhang, Bin-Bin; van Eerten, Hendrik J

    2016-01-01

    We aim to obtain high-quality time-resolved spectral fits of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. We perform time-resolved spectral analysis with high temporal and spectral resolution of the brightest bursts observed by Fermi GBM in its first 4 years of mission. We present the complete catalog containing 1,491 spectra from 81 bursts with high spectral and temporal resolution. Distributions of parameters, statistics of the parameter populations, parameter-parameter and parameter-uncertainty correlations, and their exact values are obtained and presented as main results in this catalog. We report a criterion that is robust enough to automatically distinguish between different spectral evolutionary trends between bursts. We also search for plausible blackbody emission components and find that only 3 bursts (36 spectra in total) show evidence of a pure Planck function. It is observed that the averaged time-resolved low-energy power-law...

  20. SGR J1550-5418 bursts detected with the Fermi Gamma-ray Burst Monitor during its most prolific activity

    CERN Document Server

    van der Horst, A J; Gorgone, N M; Kaneko, Y; Baring, M G; Guiriec, S; Gogus, E; Granot, J; Watts, A L; Lin, L; Bhat, P N; Bissaldi, E; Chaplin, V L; Connaughton, V; Finger, M H; Gehrels, N; Gibby, M H; Giles, M M; Goldstein, A; Gruber, D; Harding, A K; Kaper, L; von Kienlin, A; van der Klis, M; McBreen, S; Mcenery, J; Meegan, C A; Paciesas, W S; Pe'er, A; Preece, R D; Ramirez-Ruiz, E; Rau, A; Wachter, S; Wilson-Hodge, C; Woods, P M; Wijers, R A M J

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in January 2009, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law with an exponential cutoff (Comptonized model), and two black-body functions (BB+BB). In the spectral fits with the Comptonized model we find a mean power-law index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlati...

  1. Thermodynamic order parameters and statistical-mechanical measures for characterization of the burst and spike synchronizations of bursting neurons

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2015-11-01

    We are interested in characterization of population synchronization of bursting neurons which exhibit both the slow bursting and the fast spiking timescales, in contrast to spiking neurons. Population synchronization may be well visualized in the raster plot of neural spikes which can be obtained in experiments. The instantaneous population firing rate (IPFR) R(t) , which may be directly obtained from the raster plot of spikes, is often used as a realistic collective quantity describing population behaviors in both the computational and the experimental neuroscience. For the case of spiking neurons, realistic thermodynamic order parameter and statistical-mechanical spiking measure, based on R(t) , were introduced in our recent work to make practical characterization of spike synchronization. Here, we separate the slow bursting and the fast spiking timescales via frequency filtering, and extend the thermodynamic order parameter and the statistical-mechanical measure to the case of bursting neurons. Consequently, it is shown in explicit examples that both the order parameters and the statistical-mechanical measures may be effectively used to characterize the burst and spike synchronizations of bursting neurons.

  2. The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years

    Science.gov (United States)

    Yu, Hoi-Fung; Preece, Robert D.; Greiner, Jochen; Narayana Bhat, P.; Bissaldi, Elisabetta; Briggs, Michael S.; Cleveland, William H.; Connaughton, Valerie; Goldstein, Adam; von Kienlin, Andreas; Kouveliotou, Chryssa; Mailyan, Bagrat; Meegan, Charles A.; Paciesas, William S.; Rau, Arne; Roberts, Oliver J.; Veres, Péter; Wilson-Hodge, Colleen; Zhang, Bin-Bin; van Eerten, Hendrik J.

    2016-04-01

    Aims: We aim to obtain high-quality time-resolved spectral fits of gamma-ray bursts observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Methods: We performed time-resolved spectral analysis with high temporal and spectral resolution of the brightest bursts observed by Fermi GBM in its first four years of mission. Results: We present the complete catalog containing 1491 spectra from 81 bursts with high spectral and temporal resolution. Distributions of parameters, statistics of the parameter populations, parameter-parameter and parameter-uncertainty correlations, and their exact values are obtained and presented as main results in this catalog. We report a criterion that is robust enough to automatically distinguish between different spectral evolutionary trends between bursts. We also search for plausible blackbody emission components and find that only three bursts (36 spectra in total) show evidence of a pure Planck function. It is observed that peak energy and the averaged, time-resolved power-law index at low energy are slightly harder than the time-integrated values. Time-resolved spectroscopic results should be used instead of time-integrated results when interpreting physics from the observed spectra. Tables A.1 and B.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A135

  3. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    International Nuclear Information System (INIS)

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω b f IGM, of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω b f IGM to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means

  4. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    Science.gov (United States)

    Connaughton, V.; Briggs, M. S.; Goldstein, A.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C. A.; Gibby, M. H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R. M.; Pelassa, V.; Xiong, S.; Yu, H.-F.; Bhat, P. N.; Burgess, J. M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M. M.; Guiriec, S.; van der Horst, A. J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B.-B.

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  5. The Third Swift Burst Alert Telescope Gamma-Ray Burst Catalog

    CERN Document Server

    Lien, Amy; Barthelmy, Scott D; Baumgartner, Wayne H; Cannizzo, John K; Chen, Kevin; Collins, Nicholas R; Cummings, Jay R; Gehrels, Neil; Krimm, Hans A; Markwardt, Craig B; Palmer, David M; Stamatikos, Michael; Troja, Eleonora; Ukwatta, T N

    2016-01-01

    To date, the Burst Alert Telescope (BAT) onboard Swift has detected ~ 1000 gamma-ray bursts (GRBs), of which ~ 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ~ 11 years up through GRB151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html. In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (~ 2% of the BAT GRBs) in this search with confirmed emi...

  6. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  7. Localization of Gamma-Ray Bursts using the Fermi Gamma-Ray Burst Monitor

    CERN Document Server

    Connaughton, V; Goldstein, A; Meegan, C A; Paciesas, W S; Preece, R D; Wilson-Hodge, C A; Gibby, M H; Greiner, J; Gruber, D; Jenke, P; Kippen, R M; Pelassa, V; Xiong, S; Yu, H -F; Bhat, P N; Burgess, J M; Byrne, D; Fitzpatrick, G; Foley, S; Giles, M M; Guiriec, S; van der Horst, A J; von Kienlin, A; McBreen, S; McGlynn, S; Tierney, D; Zhang, B -B

    2014-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.7 degree Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14 degrees. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y-axis better l...

  8. The LOFT Burst Alert System and its Burst On-board Trigger

    CERN Document Server

    Schanne, S; Provost, H Le; Château, F; Bozzo, E; Brandt, S

    2014-01-01

    The ESA M3 candidate mission LOFT (Large Observatory For x-ray Timing) has been designed to study strong gravitational fields by observing compact objects, such as black-hole binaries or neutron-star systems and supermassive black-holes, based on the temporal analysis of photons collected by the primary instrument LAD (Large Area Detector), sensitive to X-rays from 2 to 50 keV, offering a very large effective area (>10 m 2 ), but a small field of view ({\\o}{\\pi} sr), the WFM actually detects all types of transient sources, including Gamma-Ray Bursts (GRBs), which are of primary interest for a world-wide observers community. However, observing the quickly decaying GRB afterglows with ground-based telescopes needs the rapid knowledge of their precise localization. The task of the Loft Burst Alert System (LBAS) is therefore to detect in near- real-time GRBs (about 120 detections expected per year) and other transient sources, and to deliver their localization in less than 30 seconds to the observers, via a VHF a...

  9. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    International Nuclear Information System (INIS)

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis

  10. Results of the BREST-300 type reactor model fuel elements testing in the IGR reactor

    International Nuclear Information System (INIS)

    Testings of BREST-300 type fast reactor's model fuel elements with nitride fuel in the lead coolant in the central experimental channel of IGR reactor were carried out. In the testing the regime of non-controlled power burst was simulated. In the result of testing the seal failure of fuel elements with 2 % and 10 % 235U enrichment has been occurred, and fragmentation of the part of fuel pellets at interaction with coolant has been taken place. During the reactor testing the measurements and registration of experimental parameters (temperature of fuel, shell, coolant; pressure in fuel elements and testing ampoule; power release in the reactor) were conducted. The physical study of the 'fuel element - ampoule - reactor' was carried out, after-start-up spectrometric and material testing studies, calculated evaluation of temperature fields parameters in the testing ampoule were examined as well. Calculated and experimental values of breaking down specific power releases in the fuel are obtained. The assessment of both fuel fragmentation rate and it character is carried out. Distribution of fuel fragmentation within experimental ampoule volume is studied

  11. A review of gas-cooled reactor concepts for SDI (Strategic Defense Initiative) applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1989-08-01

    We have completed a review of multimegawatt gas-cooled reactor concepts proposed for SDI applications. Our study concluded that the principal reason for considering gas-cooled reactors for burst-mode operation was the potential for significant system mass savings over closed-cycle systems if open-cycle gas-cooled operation (effluent exhausted to space) is acceptable. The principal reason for considering gas-cooled reactors for steady-state operation is that they may represent a lower technology risk than other approaches. In the review, nine gas-cooled reactor concepts were compared to identify the most promising. For burst-mode operation, the NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor concept emerged as a strong first choice since its performance exceeds the anticipated operational requirements and the technology has been demonstrated and is retrievable. Although the NERVA derivative concepts were determined to be the lead candidates for the Multimegawatt Steady-State (MMWSS) mode as well, their lead over the other candidates is not as great as for the burst mode. 90 refs., 2 figs., 10 tabs.

  12. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  13. FERMI/Gamma-ray Burst Monitor upper limits assuming a magnetar origin for the repeating Fast Radio Burst source, FRB 121102

    Science.gov (United States)

    Younes, George; Kouveliotou, Chryssa; Huppenkothen, Daniela; Gogus, Ersin; Kaneko, Yuki; van der Horst, Alexander

    2016-03-01

    Spitler et al. (2016, 10.1038/nature17168) reported a repeating Fast Radio Burst source, FRB 121102, with a rate of about 3 bursts/hr. We searched the FERMI/Gamma-ray Burst Monitor (GBM) for possible gamma-ray counterparts for these events.

  14. Light Dawns on Dark Gamma-ray Bursts

    Science.gov (United States)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  15. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  16. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  17. MIRAX sensitivity for Gamma Ray Bursts

    Science.gov (United States)

    Sacahui, J. R.; Penacchioni, A. V.; Braga, J.; Castro, M. A.; D'Amico, F.

    2016-03-01

    In this work we present the detection capability of the MIRAX (Monitor e Imageador de RAios-X) experiment for Gamma-Ray Bursts (GRBs). MIRAX is an X-ray astronomy mission designed to perform a wide band hard X-ray (10-200 keV) survey of the sky, especially in the Galactic plane. With a total detection area of 169 cm2, large field of view (FoV, 20 ° × 20 °), angular resolution of 1°45‧ and good spectral and time resolution (∼8% at 60 keV, 10 μs), MIRAX will be optimized for the detection and study of transient sources, such as accreting neutron stars (NS), black holes (BH), Active Galactic Nuclei (AGNs), and both short and long GRBs. This is especially important because MIRAX is expected to operate in an epoch when probably no other hard X-ray wide-field imager will be active. We have performed detailed simulations of MIRAX GRB observations using the GEANT4 package, including the background spectrum and images of GRB sources in order to provide accurate predictions of the sensitivity for the expected GRB rate to be observed. MIRAX will be capable of detecting ∼44 GRBs per year up to redshifts of ∼4.5. The MIRAX mission will be able to contribute significantly to GRB science by detecting a large number of GRBs per year with wide band spectral response. The observations will contribute mainly to the part of GRB spectra where a thermal emission is predicted by the Fireball model. We also discuss the possibility of detecting GRB afterglows in the X-ray band with MIRAX.

  18. Fermi/GBM Observations of SGRJ0501 + 4516 Bursts

    Science.gov (United States)

    Lin, Lin; Kouveliotou, Chryssa; Baring, Matthew G.; van der Horst, Alexander J.; Guiriec, Sylvain; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; Preece, Robert; von Kienlin, Andreas; Chaplin, Vandiver; Watts, Anna L.; Wijers, Ralph A. M. J.; Zhang, Shuang Nan; Bhat, Narayan; Finger, Mark H.; Gehrels. Neil; Harding, Alice; Kaper, Lex; Kaspi, Victoria; Mcenery, Julie; Meegan, Charles A.; Wilson-Hodge, Colleen

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGRJ0501+4516, detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope during the 13 days of the source activation in 2008 (August 22 to September 3). We find that the T(sub 90) durations of the bursts can be fit with a log-normal distribution with a mean value of approx. 123 ms. We also estimate for the first time event durations of Soft Gamma Repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T(sub 90)s estimated in count space (following a log-normal distribution with a mean value of approx. 124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two black body functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E(sub peak) decreases with energy flux (and fluence) to a minimum of approx. 30 keV at F = 8.7 x 10(exp -6)erg/sq cm/s, increasing steadily afterwards. Two more sources exhibit a similar trend: SGRs J1550 - 5418 and 1806 - 20. The isotropic luminosity, L(sub iso), corresponding to these flux values is roughly similar for all sources (0.4 - l.5 x 10(exp 40) erg/s.

  19. Reactor container

    International Nuclear Information System (INIS)

    Purpose: To prevent shocks exerted on a vent head due to pool-swell caused within a pressure suppression chamber (disposed in a torus configuration around the dry well) upon loss of coolant accident in BWR type reactors. Constitution: The following relationship is established between the volume V (m3) of a dry well and the ruptured opening area A (m2) at the boundary expected upon loss of coolant accident: V >= 30340 (m) x A Then, the volume of the dry well is made larger than the ruptured open area, that is, the steam flow rate of leaking coolants upon loss of coolant accident to decrease the pressure rise in the dry well at the initial state where loss of coolant accident is resulted. Accordingly, the pressure of non-compressive gases jetted out from the lower end of the downcomer to the pool water is decreased to suppress the pool-swell. (Ikeda, J.)

  20. Burst Fractures as a Result of Attempted Suicide by Jumping

    Science.gov (United States)

    Kim, Do Young; Park, Jeong Yoon; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun; Jin, Byoung Ho

    2014-01-01

    Objective Jumping from high place for the purpose of suicide results in various damages to body area. A burst fracture of vertebrae is representative of them and we reviewed eight patients who were diagnosed with spinal burst fracture following suicide falling-down. The demographics, characteristics, performed operation, combined injuries, psychological past histories of the patients were analyzed. Methods A retrospective study was made of patients who are diagnosed with vertebral burst fracture from falling-down with the purpose of suicide admitted to department of neurosurgery of the author's hospital, covering the period between 2003 and 2012. Results Total eight patients were suicidal jumper. There were eleven vertebral burst fractures in eight patients and mean age was 26.5 years old. Seven patients already had psychological past history and there were various combined injuries except vertebrae burst fracture. The ankle fracture such as calcaneus, talus, navicular and malleolus was the most common injury and there were also various combined injury. Conclusion Suicidal jumper is different from incidental faller in some aspects because of different injury mechanism. For managing suicidal jumper, physician had to consider patients' age, affected site, psychiatric problem and combined injuries. Each department related to the injuries of patient have to cooperate each other with departments of psychiatry and rehabilitation from beginning to end.

  1. Ultrasound-modulated optical tomography with intense acoustic bursts

    Science.gov (United States)

    Zemp, Roger J.; Kim, Chulhong; Wang, Lihong V.

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  2. Estimating Redshifts for Long Gamma-Ray Bursts

    CERN Document Server

    Xiao, Limin

    2009-01-01

    We are constructing a program to estimate the redshifts for GRBs from the original Swift light curves and spectra, aiming to get redshifts for the Swift bursts \\textit{without} spectroscopic or photometric redshifts. We derive the luminosity indicators from the light curves and spectra of each burst, including the lag time between low and high photon energy light curves, the variability of the light curve, the peak energy of the spectrum, the number of peaks in the light curve, and the minimum rise time of the peaks. These luminosity indicators can each be related directly to the luminosity, and we combine their independent luminosities into one weighted average. Then with our combined luminosity value, the observed burst peak brightness, and the concordance redshift-distance relation, we can derive the redshift for each burst. In this paper, we test the accuracy of our method on 107 bursts with known spectroscopic redshift. The reduced $\\chi^2$ of our best redshifts ($z_{best}$) compared with known spectrosc...

  3. A Novel Experimental Technique to Simulate Pillar Burst in Laboratory

    Science.gov (United States)

    He, M. C.; Zhao, F.; Cai, M.; Du, S.

    2015-09-01

    Pillar burst is one type of rockburst that occurs in underground mines. Simulating the stress change and obtaining insight into the pillar burst phenomenon under laboratory conditions are essential for studying the rock behavior during pillar burst in situ. To study the failure mechanism, a novel experimental technique was proposed and a series of tests were conducted on some granite specimens using a true-triaxial strainburst test system. Acoustic emission (AE) sensors were used to monitor the rock fracturing process. The damage evolution process was investigated using techniques such as macro and micro fracture characteristics observation, AE energy evolution, and b value analysis and fractal dimension analysis of cracks on fragments. The obtained results indicate that stepped loading and unloading simulated the pillar burst phenomenon well. Four deformation stages are divided as initial stress state, unloading step I, unloading step II, and final burst. It is observed that AE energy has a sharp increase at the initial stress state, accumulates slowly at unloading steps I and II, and increases dramatically at peak stress. Meanwhile, the mean b values fluctuate around 3.50 for the first three deformation stages and then decrease to 2.86 at the final stage, indicating the generation of a large amount of macro fractures. Before the test, the fractal dimension values are discrete and mainly vary between 1.10 and 1.25, whereas after failure the values concentrate around 1.25-1.35.

  4. ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?

    International Nuclear Information System (INIS)

    The discovery of a number of gamma-ray bursts (GRBs) with duration exceeding 1000 s has opened the debate on whether these bursts form a new class of sources, the so-called ultra-long GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. Using the long GRB sample detected by Swift, we investigate the statistical properties of long GRBs and compare them with the ultra-long burst properties. We compute the burst duration of long GRBs using the start epoch of the so-called ''steep decay'' phase detected with Swift/XRT. We discuss also the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 s, for which a Wolf-Rayet star progenitor is usually invoked. Together with the presence of a thermal emission component we interpret this result as indication that the usual long GRB progenitor scenario cannot explain the extreme duration of ultra-long GRBs, their energetics, as well as the mass reservoir and size that can feed the central engine for such a long time

  5. On the bursting of linear polymer melts in inflation processes

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders

    2005-01-01

    Molten LLDPE and HDPE plates (thickness 2 mm) have been inflated into a circular cylinder (inner radius 31 mm) under isothermal conditions. Low deformation rates allow the plates to be inflated considerably into the cylinder, and at high inflation rates an early burst is observed. Axis-symmetric ......Molten LLDPE and HDPE plates (thickness 2 mm) have been inflated into a circular cylinder (inner radius 31 mm) under isothermal conditions. Low deformation rates allow the plates to be inflated considerably into the cylinder, and at high inflation rates an early burst is observed. Axis...... in order to investigate the stability of the inflations. It is shown that all of the inflations are hydrodynamically unstable, though the effect on the occurrence of the burst is limited. One exception is at slow inflation, where an unexpected burst may appear as a consequence of minute deviations...... from an ideal flat plate. All of the numerical calculations show quantitative agreement with the experiments for a wide range of experimental conditions. This strongly suggests that the initiation of the burst is a hydrodynamic phenomenon. The critical parameters in the inflation of molten linear...

  6. Bursts generate a non-reducible spike-pattern code

    Directory of Open Access Journals (Sweden)

    Hugo G Eyherabide

    2009-05-01

    Full Text Available On the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. Using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli. The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. We demonstrate that bursts with different spike counts encode different stimulus features, such that about 20% of the transmitted information corresponds to discriminating between different features, and the remaining 80% is used to allocate these features in time. In this spike-pattern code, the "what" and the "when" of the stimuli are encoded in the duration of each burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect similar findings also for other neural systems.

  7. Bursting oscillations, bifurcation and synchronization in neuronal systems

    International Nuclear Information System (INIS)

    Highlights: → We investigate bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. → Two types of fast-slow bursters are analyzed in detail. → We show the properties of some crucial bifurcation points. → Synchronization transition and the neural excitability are explored in the coupled bursters. - Abstract: This paper investigates bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. It is shown that for some appropriate parameters, the modified Morris-Lecar neuron can exhibit two types of fast-slow bursters, that is 'circle/fold cycle' bursting and 'subHopf/homoclinic' bursting with class 1 and class 2 neural excitability, which have different neuro-computational properties. By means of the analysis of fast-slow dynamics and phase plane, we explore bifurcation mechanisms associated with the two types of bursters. Furthermore, the properties of some crucial bifurcation points, which can determine the type of the burster, are studied by the stability and bifurcation theory. In addition, we investigate the influence of the coupling strength on synchronization transition and the neural excitability in two electrically coupled bursters with the same bursting type. More interestingly, the multi-time-scale synchronization transition phenomenon is found as the coupling strength varies.

  8. Broadband Spectral Investigations of SGR J1550-5418 Bursts

    CERN Document Server

    Lin, Lin; Baring, Matthew G; Granot, Jonathan; Kouveliotou, Chryssa; Kaneko, Yuki; van der Horst, Alexander; Gruber, David; von Kienlin, Andreas; Younes, George; Watts, Anna L; Gehrels, Neil

    2012-01-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT Windowed Timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5 - 200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT/GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbo...

  9. A Type II Radio Burst without a Coronal Mass Ejection

    CERN Document Server

    Su, W; Ding, M D; Chen, P F; Sun, J Q

    2015-01-01

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only with a C2.4 class flare and narrow jet. However, in the extreme-ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we find a wave-like structure that propagated at a speed of $\\sim$ 600 km s$^{-1}$ during the burst. The relationship between the type II radio burst and the wave-like structure is in particular explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure (DEM) method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The ...

  10. Frequency dependent characteristics of solar impulsive radio bursts

    International Nuclear Information System (INIS)

    An investigation was made of the impulsive radio bursts observed in the frequency range 0.245 to 35 GHz. Important results obtained are: (i) Simple type 1 bursts with intensities 0 to 10 f.u. and simple type 2 bursts with intensities 10 to 500 f.u. are predominant in the frequency ranges 1.415 to 4.995 GHz and 4.995 to 8.8 GHz, respectively; (ii) With maxima around 2.7 GHz and 4 GHz for the first and second types respectively, the durations of the radio bursts decrease gradually both towards lower and higher frequencies; (iii) As regards occurrences, the first type dominates in the southern solar hemisphere peaking around 8.8 GHz, whereas the second type favours the north with no well-defined maximum in any frequency; (iv) Both types prefer the eastern hemisphere, the peak occurrences being around 8.8 GHz and 5 GHz for the two successive types, respectively; (c) The spectra of impulsive radio bursts are generally of the inverted U-type with the maximum emission intensity between 5 and 15 GHz. (author)

  11. A Cautionary Note on Gamma Ray Burst Nearest Neighbor Statistics

    CERN Document Server

    Nowak, M A

    1993-01-01

    In this letter we explore the suggestion of Quashnock and Lamb (1993) that nearest neighbor correlations among gamma ray burst positions indicate the possibility of burst repetitions within various burst sub-classes. With the aid of Monte Carlo calculations we compare the observed nearest neighbor distributions with those expected from an isotropic source population weighted by the published BATSE exposure map. The significance of the results are assessed via the Kolmogorov-Smirnov (K-S) test, as well as by a comparison to Monte Carlo simulations. The K-S results are in basic agreement with those of Quashnock and Lamb. However, as Narayan and Piran (1993) point out, and the Monte Carlo calculations confirm, the K-S test overestimates the significance of the observed distributions. We compare the sensitivity of these results to both the definitions of the assumed burst sub-classes and the burst positional errors. Of the two, the positional errors are more significant and indicate that the results of Quashnock ...

  12. An internally consistent gamma ray burst time history phenomenology

    Science.gov (United States)

    Cline, T. L.

    1985-01-01

    A phenomenology for gamma ray burst time histories is outlined. Order of their generally chaotic appearance is attempted, based on the speculation that any one burst event can be represented above 150 keV as a superposition of similarly shaped increases of varying intensity. The increases can generally overlap, however, confusing the picture, but a given event must at least exhibit its own limiting characteristic rise and decay times if the measurements are made with instruments having adequate temporal resolution. Most catalogued observations may be of doubtful or marginal utility to test this hypothesis, but some time histories from Helios-2, Pioneer Venus Orbiter and other instruments having one-to several-millisecond capabilities appear to provide consistency. Also, recent studies of temporally resolved Solar Maximum Mission burst energy spectra are entirely compatible with this picture. The phenomenology suggested here, if correct, may assist as an analytic tool for modelling of burst processes and possibly in the definition of burst source populations.

  13. The First Swift BAT Gamma-Ray Burst Catalog

    Science.gov (United States)

    Sakamoto, T.; Barthelmy, S. D.; Barbier, L.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T. N.; Zhang, B.

    2007-01-01

    We present the first Swift Burst Alert Telescope (BAT) catalog of gamma ray bursts (GRBs), which contains bursts detected by the BAT between 2004 December 19 and 2007 June 16. This catalog (hereafter BAT1 catalog) contains burst trigger time, location, 90% error radius, duration, fluence, peak flux, and time averaged spectral parameters for each of 237 GRBs, as measured by the BAT. The BAT-determined position reported here is within 1.75' of the Swift X-ray Telescope (XRT)-determined position for 90% of these GRBs. The BAT T(sub 90) and T(sub 50) durations peak at 80 and 20 seconds, respectively. From the fluence-fluence correlation, we conclude that about 60% of the observed peak energies, E(sup obs)(sub peak) of BAT GRBs could be less than 100 keV. We confirm that GRB fluence to hardness and GRB peak flux to hardness are correlated for BAT bursts in analogous ways to previous missions' results. The correlation between the photon index in a simple power-law model and E(sup obs)(sub peak) is also confirmed. We also report the current status for the on-orbit BAT calibrations based on observations of the Crab Nebula.

  14. MARCH 2 simulation of the Power Burst Facility Severe Fuel Damage Scoping Test. Chapter 2

    International Nuclear Information System (INIS)

    A major portion of the NRC's experimental program on severe fuel damage is being performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory to obtain the data necessary to understand fuel behavior and coolability under severely degraded conditions. The first of a planned series of experiments, the PBF Severe Fuel Damage Scoping Test, was performed on October 29, 1982. This paper presents the results of a MARCH 2 simulation of this experiment. The MARCH (Meltdown Accident Response Characteristics) code describes the physical processes governing the progression of reactor meltdown accidents, from the initiating event through attack of the concrete basemat by the molten core debris. In the present context only the core and primary system aspects of MARCH are of concern. MARCH was originally developed as a tool for use in probabilistic risk assessments of reactors; with increasing interest in severe accident phenomenology, particularly following the accident at Three Mile Island Unit No. 2, versions of the MARCH code have found a variety of applications to phenomenological as well as regulatory issues. Since MARCH is a widely used code, this comparison of the MARCH core modeling with experimental data should be of interest to MARCH code users

  15. Study On Burst Location Technology under Steady-state in Water Distribution System

    Science.gov (United States)

    Liu, Xianpin; Li, Shuping; Wang, Shaowei; He, Fang; He, Zhixun; Cao, Guodong

    2010-11-01

    According to the characteristics of hydraulic information under the state of burst in water distribution system, to get the correlation of monitoring values and burst location and locate the position of burst on time by mathematical fitting. This method can effectively make use of the information of SCADA in water distribution system to active locating burst position. A new idea of burst location in water distribution systems to shorten the burst time, reduce the impact on urban water supply, economic losses and waste of water resources.

  16. Linking burst-only X-ray binary sources to faint X-ray transients

    OpenAIRE

    Campana, S.

    2009-01-01

    Burst-only sources are X-ray sources showing up only during short bursts but with no persistent emission (at least with the monitoring instrument which led to their discovery). These bursts have spectral characteristics consistent with thermonuclear (type I) burst from the neutron star surface, linking burst-only sources to neutron star X-ray binary transients. We have carried out a series of snapshot observations of the entire sample of burst-only sources with the Swift satellite. We found a...

  17. Improvement of pulsing operation performance in the Nuclear Safety Research Reactor (NSRR)

    International Nuclear Information System (INIS)

    The Nuclear Safety Research Reactor (NSRR) is one of the TRIGA-type research reactors widely used in the world, and has mainly been used for studying reactor fuel behaviour during postulated reactivity-initiated accidents (RIAs). Its limited pulsing operation capability, however, could produce only a power burst from low power level simulating an RIA event from essentially zero power level. A computerized automatic reactor control system was developed and installed in the NSRR to simulate a wide range of abnormal events in nuclear power plants. This digitalized reactor control system requires no manipulation of the control rods by reactor operators during the course of the pulsing operation. Using this fully automated operation system, a variety of power transients such as power ramping, power bursts from high power level, and so on were made possible with excellent stability and safety. The present modification work in the NSRR and its fruitful results indicate new possibilities in the utilization of the TRIGA type research reactor

  18. Probing the Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    CERN Document Server

    Lien, Amy; Gehrels, Neil; Palmer, David M; Barthelmy, Scott D; Graziani, Carlo; Cannizzo, John K

    2013-01-01

    The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we developed a program that is capable of simulating all the rate trigger criteria and mimicking the image trigger threshold. We use this program to search for the intrinsic GRB rate. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection ra...

  19. A search for fast radio bursts associated with gamma-ray bursts

    International Nuclear Information System (INIS)

    The detection of seven fast radio bursts (FRBs) has recently been reported. FRBs are short duration (∼1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involve highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within ∼140 s. The data were searched for pulses up to 5000 pc cm–3 in dispersion measure and pulse widths ranging from 640 μs to 25.60 ms. We did not detect any events ≥6σ. An in depth statistical analysis of our data shows that events detected above 5σ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.

  20. Revisiting the dispersion measure of fast radio bursts associated with gamma-ray burst afterglows

    International Nuclear Information System (INIS)

    Some fast radio bursts (FRBs) are expected to be associated with the afterglow emission of gamma-ray bursts (GRBs), while a short-lived, supermassive neutron star (NS) forms during the GRBs. I investigate the possible contributions to the dispersion measure (DM) of the FRBs from the GRB ejecta and the wind blown from the precollapsing NS. On the one hand, sometimes an internal X-ray plateau afterglow could be produced by the NS wind, which indicates that a great number of electron-positron pairs are carried by the wind. If the pair-generation radius satisfies a somewhat rigorous condition, the relativistic and dense wind would contribute a high DM to the associated FRB, which can be comparable to and even exceed the DM contributed by the intergalactic medium. On the other hand, if the wind only carries a Goldreich-Julian particle flux, its DM contribution would become negligible; meanwhile, the internal plateau afterglow would not appear. Alternatively, the FRB should be associated with a GRB afterglow produced by the GRB external shock, i.e., an energy-injection-caused shallow-decay afterglow or a normal single-power-law afterglow if the impulsive energy release of the GRB is high enough. In the latter case, the DM contributed by the high-mass GRB ejecta could be substantially important, in particular, for an environment of main-sequence stellar wind. In summary, a careful assessment on the various DM contributors could be required for the cosmological application of the expected FRB-GRB association. The future DM measurements of GRB-associated FRBs could provide a constraint on the physics of NS winds.

  1. The "Musical Emotional Bursts": a validated set of musical affect bursts to investigate auditory affective processing.

    Science.gov (United States)

    Paquette, Sébastien; Peretz, Isabelle; Belin, Pascal

    2013-01-01

    The Musical Emotional Bursts (MEB) consist of 80 brief musical executions expressing basic emotional states (happiness, sadness and fear) and neutrality. These musical bursts were designed to be the musical analog of the Montreal Affective Voices (MAV)-a set of brief non-verbal affective vocalizations portraying different basic emotions. The MEB consist of short (mean duration: 1.6 s) improvisations on a given emotion or of imitations of a given MAV stimulus, played on a violin (10 stimuli × 4 [3 emotions + neutral]), or a clarinet (10 stimuli × 4 [3 emotions + neutral]). The MEB arguably represent a primitive form of music emotional expression, just like the MAV represent a primitive form of vocal, non-linguistic emotional expression. To create the MEB, stimuli were recorded from 10 violinists and 10 clarinetists, and then evaluated by 60 participants. Participants evaluated 240 stimuli [30 stimuli × 4 (3 emotions + neutral) × 2 instruments] by performing either a forced-choice emotion categorization task, a valence rating task or an arousal rating task (20 subjects per task); 40 MAVs were also used in the same session with similar task instructions. Recognition accuracy of emotional categories expressed by the MEB (n:80) was lower than for the MAVs but still very high with an average percent correct recognition score of 80.4%. Highest recognition accuracies were obtained for happy clarinet (92.0%) and fearful or sad violin (88.0% each) MEB stimuli. The MEB can be used to compare the cerebral processing of emotional expressions in music and vocal communication, or used for testing affective perception in patients with communication problems. PMID:23964255

  2. The Musical Emotional Bursts: A validated set of musical affect bursts to investigate auditory affective processing.

    Directory of Open Access Journals (Sweden)

    Sébastien ePaquette

    2013-08-01

    Full Text Available The Musical Emotional Bursts (MEB consist of 80 brief musical executions expressing basic emotional states (happiness, sadness and fear and neutrality. These musical bursts were designed to be the musical analogue of the Montreal Affective Voices (MAV – a set of brief non-verbal affective vocalizations portraying different basic emotions. The MEB consist of short (mean duration: 1.6 sec improvisations on a given emotion or of imitations of a given MAV stimulus, played on a violin (n:40 or a clarinet (n:40. The MEB arguably represent a primitive form of music emotional expression, just like the MAV represent a primitive form of vocal, nonlinguistic emotional expression. To create the MEB, stimuli were recorded from 10 violinists and 10 clarinetists, and then evaluated by 60 participants. Participants evaluated 240 stimuli (30 stimuli x 4 [3 emotions + neutral] x 2 instruments by performing either a forced-choice emotion categorization task, a valence rating task or an arousal rating task (20 subjects per task; 40 MAVs were also used in the same session with similar task instructions. Recognition accuracy of emotional categories expressed by the MEB (n:80 was lower than for the MAVs but still very high with an average percent correct recognition score of 80.4%. Highest recognition accuracies were obtained for happy clarinet (92.0% and fearful or sad violin (88.0% each MEB stimuli. The MEB can be used to compare the cerebral processing of emotional expressions in music and vocal communication, or used for testing affective perception in patients with communication problems.

  3. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  4. Pellet bed reactor for multi-modal space power

    International Nuclear Information System (INIS)

    A review of forthcoming space power needs for both civil and military missions indicates that power requirements will be in tens of megawatts. It is envisioned that the electrical power requirements will be two-fold; long-duration low power will be needed for station keeping, communications and/or surveillance, while short-duration high power will be required for pulsed power devices. These power characteristics led to authors to propose a multi-modal space power reactor using a pellet bed design. Characteristics desired for such a multi-megawatt reactor power source are the following: standby, alert and pulsed power modes; high thermal output heat source (around 1000 MWt peak power); long lifetime standby power (10-30 yrs); high temperature output (1500-1750 K); rapid burst power transition; high reliability (>95%); and meets stringent safety requirements. The proposed pellet bed reactor concept is designed to satisfy these characteristics

  5. Cermet-fueled reactors for multimegawatt space power applications

    International Nuclear Information System (INIS)

    The cermet-fueled reactor has evolved as a potential power source for a broad range of multimegawatt space applications. In particular, the fast spectrum reactor concept can be used to deliver 10s of megawatts of electric power for continuous, long term, unattended operation, and 100s of megawatts of electric power for times exceeding several hundred seconds. The system can also be utilized with either a gas coolant in a Brayton power conversion cycle, or a liquid metal coolant in a Rankine power conversion cycle. Extensive testing of the cermet fuel element has demonstrated that the fuel is capable of operating at very high temperatures under repeated thermal cycling conditions, including transient conditions which approach the multimegawatt burst power requirements. The cermet fuel test performance is reviewed and an advanced cermet-fueled multimegawatt nuclear reactor is described in this paper

  6. Application Of Extreme Value Theory To Bursts Prediction

    Directory of Open Access Journals (Sweden)

    Abas bin Md Said

    2009-10-01

    Full Text Available Bursts and extreme events in quantities such as connection durations, file sizes, throughput, etc. may produce undesirable consequences in computer networks. Deterioration in the quality of service is a major consequence. Predicting these extreme events and burst is important. It helps in reserving the right resources for a better quality of service. We applied Extreme value theory (EVT to predict bursts in network traffic. We took a deeper look into the application of EVT by using EVT based Exploratory Data Analysis. We found that traffic is naturally divided into two categories, Internal and external traffic. The internal traffic follows generalized extreme value (GEV model with a negative shape parameter, which is also the same as Weibull distribution. The external traffic follows a GEV with positive shape parameter, which is Frechet distribution. These findings are of great value to the quality of service in data networks, especially when included in service level agreement as traffic descriptor parameters.

  7. Nanoemulsions obtained via bubble-bursting at a compound interface

    Science.gov (United States)

    Feng, Jie; Roché, Matthieu; Vigolo, Daniele; Arnaudov, Luben N.; Stoyanov, Simeon D.; Gurkov, Theodor D.; Tsutsumanova, Gichka G.; Stone, Howard A.

    2014-08-01

    Bursting of bubbles at an air/liquid interface is a familiar occurrence relevant to foam stability, cell cultures in bioreactors and ocean-atmosphere mass transfer. In the latter case, bubble-bursting leads to the dispersal of sea-water aerosols in the surrounding air. Here we show that bubbles bursting at a compound air/oil/water-with-surfactant interface can disperse submicrometre oil droplets in water. Dispersal results from the detachment of an oil spray from the bottom of the bubble towards water during bubble collapse. We provide evidence that droplet size is selected by physicochemical interactions between oil molecules and the surfactants rather than by hydrodynamics. We demonstrate the unrecognized role that this dispersal mechanism may play in the fate of the sea surface microlayer and of pollutant spills by dispersing petroleum in the water column. Finally, our system provides an energy-efficient route, with potential upscalability, for applications in drug delivery, food production and materials science.

  8. Keck Observations of 160 Gamma-Ray Burst Host Galaxies

    CERN Document Server

    Perley, Daniel A; Prochaska, Jason X

    2013-01-01

    We present a preliminary data release from our multi-year campaign at Keck Observatory to study the host galaxies of a large sample of Swift-era gamma-ray bursts via multi-color ground-based optical imaging and spectroscopy. With over 160 targets observed to date (and almost 100 host detections, most of which have not previously been reported in the literature) our effort represents the broadest GRB host survey to date. While targeting was heterogeneous, our observations span the known diversity of GRBs including short bursts, long bursts, spectrally soft GRBs (XRFs), ultra-energetic GRBs, X-ray faint GRBs, dark GRBs, SN-GRBs, and other sub-classes. We also present a preview of our database (currently available online via a convenient web interface) including a catalog of multi-color photometry, redshifts and line ID's. Final photometry and reduced imaging and spectra will be available in the near future.

  9. First upper limits from LIGO on gravitational wave bursts

    Energy Technology Data Exchange (ETDEWEB)

    B. Abbott et al.

    2004-03-09

    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h{sub rss}; typical sensitivities lie in the range h{sub rss} {approx} 10{sup -19} - 10{sup -17} strain/{radical}Hz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.

  10. First upper limits from LIGO on gravitational wave bursts

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A N; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S V; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, D; Barker-Patton, C; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff,S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Bland-Weaver, B; Bochner, B; Bogue, L; Bork, R G; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Brozek, S; Bullington, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Colacino, C N; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Davies, R; Daw, E; De Bra, D; Delker, T; DeSalvo, R; Dhurandhar, S V; Ding, H; Drever, R W P; Dupuis, R J; Ebeling, C; Edlund, J; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fallnich, C; Farnham, D; Fejer, M M; Fine, M; Finn, L S; Flanagan, E; Freise, A; Frey, R; Fritschel, P; Frolov, V; Fyffe, M; Ganezer, K S; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ingley, R; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, W W; Johnston, W; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Kloevekorn, P; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Lück, H B; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K O; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNamara, P; Mendell, G; Meshkov, S; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mours, B; Müller, G; Mukherjee, S; Myers, J; Nagano, S; Nash, T; Naundorf, H; Nayak, R; Newton, G; Nocera, F; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Papa, M A; Parameswariah, C; Parameshwaraiah, V; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Pratt, M; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Redding, D; Regehr, M W; Regimbau, T; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schofield, R; Schrempel, M; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seel, S; Sengupta, A S; Shapiro, C A; Shawhan, P S; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Skeldon, K D; Smith, J R; Smith, M; Smith, M R; Sneddon, P; Spero, R; Stapfer, G; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traeger, S; Traylor, G; Tyler, W; Ugolini, D W; Vallisneri, M; Van, M; Putten; Vass, S; Vecchio, A; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yoshida, S; Zawischa, I; Zhang, L; Zotov, N P; Zucker, M; Zweizig, J

    2004-01-01

    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h_{rss}; typical sensitivities lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.

  11. Size of the top jet drop produced by bubble bursting

    CERN Document Server

    Ghabache, Elisabeth

    2016-01-01

    As a bubble bursts at a liquid-air interface, a tiny liquid jet rises and can release the so-called \\textit{jet drops}. In this paper, the size of the top jet drop produced by a bubble bursting is investigated experimentally. We determine, and discuss, the first scaling law enabling the determination of the top jet drop size as a function of the corresponding mother bubble radius and the liquid properties (viscosity, surface tension, density), along with its regime of existence. Furthermore, in the aim of decoupling experimentally the effects of bubble collapse and jet dynamics on the drop detachment, we propose a new scaling providing the top drop size only as a function of the jet velocity and liquid parameters. In particular, this allows us to untangle the intricate roles of viscosity, gravity and surface tension in the \\textit{end-pinching} of the bubble bursting jet.

  12. Bursting Ca2+ Oscillations and Synchronization in Coupled Cells

    Institute of Scientific and Technical Information of China (English)

    JI Quan-Bao; LU Qi-Shao; Yang Zhuo-Qin; Duan Li-Xia

    2008-01-01

    A mathematical model proposed by Grubelnk et al. [Biophys. Chem. 94 (2001) 59] is employed to study the physiological role of mitochondria and the cytosolic proteins in generating complex Ca2+ oscillations. Intracellular bursting calcium oscillations of point-point, point cycle and two-folded limit cycle types are observed and explanations are given based on the fast/slow dynamical analysis, especially for point-cycle and two-folded limit cycle types, which have not been reported before. Furthermore, synchronization of coupled bursters of Ca2+oscillations via gap junctions and the effect of bursting types on synchronization of coupled cells are studied. It is argued that bursting oscillations of point-point type may be superior to achieve synchronization than that of point-cycle type.

  13. Rhythm dynamics of complex neuronal networks with mixed bursting neurons

    International Nuclear Information System (INIS)

    The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper. A quantitative characteristic, the width factor, is introduced to describe the rhythm dynamics of an individual neuron, and the average width factor is used to characterize the rhythm dynamics of a neuronal network. An r parameter is introduced to denote the ratio of the short bursting neurons in the network. Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network. The critical value of r is derived, and the neurons in the network always remain short bursting when the r ratio is larger than the critical value. (general)

  14. A review of solar type III radio bursts

    International Nuclear Information System (INIS)

    Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere. (mini-volume: solar radiophysics — recent results on observations and theories: invited reviews)

  15. Creep Burst Testing of a Woven Inflatable Module

    Science.gov (United States)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  16. Burst Pressure Prediction of Multiple Cracks in Pipelines

    International Nuclear Information System (INIS)

    Available industrial code such as ASME B1G, modified ASME B1G and DNV RP-F101 to assess pipeline defects appear more conservative for multiple crack like- defects than single crack-like defects. Thus, this paper presents burst pressure prediction of pipe with multiple cracks like defects. A finite element model was developed and the burst pressure prediction was compared with the available code. The model was used to investigate the effect of the distance between the cracks and the crack length. The coalescence diagram was also developed to evaluate the burst pressure of the multiple cracks. It was found as the distance between crack increases, the interaction effect comes to fade away and multiple cracks behave like two independent single cracks

  17. A universal energy distribution function for repeating fast radio bursts?

    CERN Document Server

    Lu, Wenbin

    2016-01-01

    Assuming: fast radio bursts (FRBs) are produced by neutron stars at cosmological distances; FRB rate tracks core-collapse supernova rate; and all FRBs repeat with a universal energy distribution function (EDF) dN/dE ~ E^(-beta) with a high-end cutoff at burst energy E_max. We find that observations so far are consistent with a universal EDF with a power-law index 1.5 30 and normalization N_0 < 2 per day; where N_0 is the integrated rate above the reference burst energy E_0 = 1.2e39 f_r^(-1) erg (f_r is the radio emission efficiency). Implications of such an EDF are discussed.

  18. Rhythm dynamics of complex neuronal networks with mixed bursting neurons

    Institute of Scientific and Technical Information of China (English)

    Lü Yong-Bing; Shi Xia; Zheng Yan-Hong

    2013-01-01

    The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper.A quantitative characteristic,the width factor,is introduced to describe the rhythm dynamics of an individual neuron,and the average width factor is used to characterize the rhythm dynamics of a neuronal network.An r parameter is introduced to denote the ratio of the short bursting neurons in the network.Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network.The critical value of r is derived,and the neurons in the network always remain short bursting when the r ratio is larger than the critical value.

  19. Numerical Simulations of Gamma-Ray Burst Explosions

    CERN Document Server

    Lazzati, Davide; López-Cámara, Diego

    2015-01-01

    Gamma-ray bursts are a complex, non-linear system that evolves very rapidly through stages of vastly different conditions. They evolve from scales of few hundred kilometers where they are very dense and hot to cold and tenuous on scales of parsecs. As such, our understanding of such a phenomenon can truly increase by combining theoretical and numerical studies adopting different numerical techniques to face different problems and deal with diverse conditions. In this review, we will describe the tremendous advancement in our comprehension of the bursts phenomenology through numerical modeling. Though we will discuss studies mainly based on jet dynamics across the progenitor star and the interstellar medium, we will also touch upon other problems such as the jet launching, its acceleration, and the radiation mechanisms. Finally, we will describe how combining numerical results with observations from Swift and other instruments resulted in true understanding of the bursts phenomenon and the challenges still lyi...

  20. Pulse-burst laser systems for fast Thomson scattering (invited)

    International Nuclear Information System (INIS)

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  1. X-ray spectra of bursting neutron stars

    International Nuclear Information System (INIS)

    The global properties of type-I x-ray bursts can be successfully accounted for by the thermonuclear shell flash model of accreting neutron stars. According to this model, the luminosity of a relatively large burst approaches to the Eddington luminosity. We calculate the atmospheric structure and the photon energy spectrum of x-ray bursting neutron star taking account of comptonization. From the x-ray spectrum, theoretical color temperature-luminosity diagram is obtained. Observational color temperature-luminosity diagram of x-ray burster is constructed using data of Japanese x-ray sutellite Tenma. Comparing our theoretical diagram with observational ones, we can estimate a mass-radius relation of neutron stars and distances to the galactic center. (Mori, K.)

  2. A novel optical burst switching architecture for high speed networks

    Institute of Scientific and Technical Information of China (English)

    Amit Kumar Garg; R. S. Kaler

    2008-01-01

    A novel optical burst switching (OBS) high speed network architecture has been proposed. To verify its feasibility and evaluate its performance, just-enough-time (JET) signaling has been considered as a high performance protocol. In the proposed architecture, to avoid burst losses, firstly, a short-priorconfirrnation-packet (SPCP) is sent over the control channel that simulates the events that the actual packet will experience. Once SPCP detects a drop at any of the intermediate nodes, the actual packet is not sent but the process repeats. In order to increase network utilization, cost effectiveness and to overcome some limitations of conventional OBS, inherent codes (e.g., orthogonal optical codes (OOC)),which are codified only in intensity, has been used. Through simulations, it shows that a decrease in burst loss probability, cost effectiveness and a gain in processing time are obtained when optical label processing is used as compared with electronic processing.

  3. Multirods burst tests under loss-of-coolant conditions

    International Nuclear Information System (INIS)

    In order to know the upper limit of coolant flow area restriction in a fuel assembly under loss-of-coolant accidents in LWRs, burst tests of fuel bundles were performed. Each bundle consisted of 49 rods(7x7 rods), and bursts were conducted in flowing steam. In some cases, 4 rods were replaced by control rods with guide tubes in a bundle. After the burst, the ballooning behavior of each rod and the degree of coolant flow area restriction in the bundle were measured. Ballooning behavior of rods and degree of coolant flow channel restriction in bundles with control rods were not different from those without control rods. The upper limit of coolant flow channel restriction under loss-of-coolant conditions was estimated to be about 80%. (author)

  4. Pulse-burst laser systems for fast Thomson scattering (invited).

    Science.gov (United States)

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned. PMID:21033868

  5. Survey of research reactors

    International Nuclear Information System (INIS)

    A survey of reasearch reactors based on the IAEA Nuclear Research Reactor Data Base (RRDB) was done. This database includes information on 273 operating research reactors ranging in power from zero to several hundred MW. From these 273 operating research reactors 205 reactors have a power level below 5 MW, the remaining 68 reactors range from 5 MW up to several 100 MW thermal power. The major reactor types with common design are: Siemens Unterrichtsreaktors, 1.2 Argonaut reactors, Slowpoke reactors, the miniature neutron source reactors, TRIGA reactors, material testing reactors and high flux reactors. Technical data such as: power, fuel material, fuel type, enrichment, maximum neutron flux density and experimental facilities for each reactor type as well as a description of their utilization in physics and chemistry, medicine and biology, academic research and teaching, training purposes (students and physicists, operating personnel), industrial application (neutron radiography, silicon neutron transmutation doping facilities) are provided. The geographically distribution of these reactors is also shown. As conclusions the author discussed the advantages (low capital cost, low operating cost, low burn up, simple to operate, safe, less restrictive containment and sitting requirements, versatility) and disadvantages (lower sensitivity for NAA, limited radioisotope production, limited use of neutron beams, limited access to the core, licensing) of low power research reactors. 24 figs., refs. 15, Tab. 1 (nevyjel)

  6. Department of reactor technology

    International Nuclear Information System (INIS)

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  7. RB reactor noise analysis

    International Nuclear Information System (INIS)

    Statistical fluctuations of reactivity represent reactor noise. Analysis of reactor noise enables determining a series of reactor kinetic parameters. Fluctuations of power was measured by ionization chamber placed next to the tank of the RB reactor. The signal was digitized by an analog-digital converter. After calculation of the mean power, 3000 data obtained by sampling were analysed

  8. Benchmark Development in Support of Generation-IV Reactor Validation (IRPhEP 2010 Handbook)

    International Nuclear Information System (INIS)

    The March 2010 edition of the International Reactor Physics Experiment Evaluation Project (IRPhEP) Handbook includes additional benchmark data that can be implemented in the validation of data and methods for Generation IV (GEN-IV) reactor designs. Evaluations supporting sodium-cooled fast reactor (SFR) efforts include the initial isothermal tests of the Fast Flux Test Facility (FFTF) at the Hanford Site, the Zero Power Physics Reactor (ZPPR) 10B and 10C experiments at the Idaho National Laboratory (INL), and the burn-up reactivity coefficient of Japan's JOYO reactor. An assessment of Russia's BFS-61 assemblies at the Institute of Physics and Power Engineering (IPPE) provides additional information for lead-cooled fast reactor (LFR) systems. Benchmarks in support of the very high temperature reactor (VHTR) project include evaluations of the HTR-PROTEUS experiments performed at the Paul Scherrer Institut (PSI) in Switzerland and the start-up core physics tests of Japan's High Temperature Engineering Test Reactor. The critical configuration of the Power Burst Facility (PBF) at the INL which used ternary ceramic fuel, U(18)O2-CaO-ZrO2, is of interest for fuel cycle research and development (FCR and D) and has some similarities to 'inert-matrix' fuels that are of interest in GEN-IV advanced reactor design. Two additional evaluations were revised to include additional evaluated experimental data, in support of light water reactor (LWR) and heavy water reactor (HWR) research; these include reactor physics experiments at Brazil's IPEN/MB-01 Research Reactor Facility and the French High Flux Reactor (RHF), respectively. The IRPhEP Handbook now includes data from 45 experimental series (representing 24 reactor facilities) and represents contributions from 15 countries. These experimental measurements represent large investments of infrastructure, experience, and cost that have been evaluated and preserved as benchmarks for the validation of methods and collection of data in

  9. CROSS-CURRENTS BETWEEN BIOLOGY AND MATHEMATICS: THE CODIMENSION OF PSEUDO-PLATEAU BURSTING.

    Science.gov (United States)

    Osinga, Hinke M; Sherman, Arthur; Tsaneva-Atanasova, Krasimira

    2012-08-01

    A great deal of work has gone into classifying bursting oscillations, periodic alternations of spiking and quiescence modeled by fast-slow systems. In such systems, one or more slow variables carry the fast variables through a sequence of bifurcations that mediate transitions between oscillations and steady states. A rigorous classification approach is to characterize the bifurcations found in the neighborhood of a singularity; a measure of the complexity of the bursting oscillation is then given by the smallest codimension of the singularities near which it occurs. Fold/homoclinic bursting, along with most other burst types of interest, has been shown to occur near a singularity of codimension three by examining bifurcations of a cubic Liénard system; hence, these types of bursting have at most codimension three. Modeling and biological considerations suggest that fold/homoclinic bursting should be found near fold/subHopf bursting, a more recently identified burst type whose codimension has not been determined yet. One would expect that fold/subHopf bursting has the same codimension as fold/homoclinic bursting, because models of these two burst types have very similar underlying bifurcation diagrams. However, no codimension-three singularity is known that supports fold/subHopf bursting, which indicates that it may have codimension four. We identify a three-dimensional slice in a partial unfolding of a doubly-degenerate Bodganov-Takens point, and show that this codimension-four singularity gives rise to almost all known types of bursting. PMID:22984340

  10. Leader neurons in population bursts of 2D living neural networks

    International Nuclear Information System (INIS)

    Eytan and Marom (2006 J. Neurosci. 26 8465-76) recently showed that the spontaneous bursting activity of rat neuron cultures includes 'first-to-fire' cells that consistently fire earlier than others. Here, we analyze the behavior of these neurons in long-term recordings of spontaneous activity of rat hippocampal and rat cortical neuron cultures from three different laboratories. We identify precursor events that may either subside ('aborted bursts') or can lead to a full-blown burst ('pre-bursts'). We find that the activation in the pre-burst typically has a first neuron ('leader'), followed by a localized response in its neighborhood. Locality is diminished in the bursts themselves. The long-term dynamics of the leaders is relatively robust, evolving with a half-life of 23-34 h. Stimulation of the culture alters the leader distribution, but the distribution stabilizes within about 1 h. We show that the leaders carry information about the identity of the burst, as measured by the signature of the number of spikes per neuron in a burst. The number of spikes from leaders in the first few spikes of a precursor event is furthermore shown to be predictive with regard to the transition into a burst (pre-burst versus aborted burst). We conclude that the leaders play a role in the development of the bursts and conjecture that they are part of an underlying sub-network that is excited first and then acts as a nucleation center for the burst

  11. The development of a burst criterion for Zircaloy fuel cladding under LOCA conditions

    International Nuclear Information System (INIS)

    A burst criterion model, which assumes that deformation is controlled by steady-state creep, has been developed for a thin-walled cladding, in this case Zircaloy-4, subjected to a differential pressure and high temperature. The creep equation is integrated to obtain a burst time at the singularity of the strain. Once that urst time is known, the burst temperature and burst pressure can be calculated from the known temperature and pressure histories. A further relationship between burst stress and burst temperature is used to calculate the burst strain. Comparison with measured burst data shows good agreement between theory and experiment. It was found that, if the heating rate is constant, the burst temperature increases with decreasing stress, and that, if the stress level is constant, the burst temperature increases with increasing heating rate. It was also found that anisotropy alters the burst temperature and burst strain, and that thest conditions in the α-Zr temperature range have no influence on the burst data. (orig.)

  12. New Canards Bursting and Canards Periodic-Chaotic Sequence

    Institute of Scientific and Technical Information of China (English)

    YOOER Chi-Feng; XU Jian-Xue; ZHANG Xin-Hua

    2009-01-01

    A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itself in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model. Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle.

  13. Dark Gamma-Ray Bursts in the Swift Era

    International Nuclear Information System (INIS)

    We propose a new method for the classification of optically dark gamma-ray bursts (GRBs), based on the X-ray and optical-to-X-ray spectral indices of GRB afterglows, and utilizing the spectral capabilities of Swift. This method depends less on model assumptions than previous methods, and can be used as a quick diagnostic tool to identify optically sub-luminous bursts. With this method we can also find GRBs that are extremely bright at optical wavelengths. We show that the previously suggested correlation between the optical darkness and the X-ray/gamma-ray brightness is merely an observational selection effect.

  14. Crowd Sensing Based Burst Computing of Events Using Social Media

    OpenAIRE

    Zheng Xu; Yunhuai Liu; Lin Mei; Hui Zhang; Chuanping Hu

    2015-01-01

    With the popularity of web, the internet is becoming a major information provider and poster of an event due to its real-time, open, and dynamic features. In this paper, crowd sensing based burst computation algorithm of a web event is developed in order to let the people know a web event clearly and help the social group or government process the events effectively. Different temporal features of web events are developed to provide the basics for the proposed computation algorithm. The burst...

  15. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Axelsson, M

    2015-01-01

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  16. Project BudBurst: People, Plants, and Climate Change

    Science.gov (United States)

    Henderson, S.; Ward, D.; Havens, K.; Gardiner, L. S.; Alaback, P.

    2010-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project BudBurst and will report on the results of the 2009 field campaign and discuss plans to expand Project BudBurst in 2010 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst co managed by the National Ecological Observatory Network and

  17. DETAILED CLASSIFICATION OF SWIFT 'S GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Earlier classification analyses found three types of gamma-ray bursts (short, long, and intermediate in duration) in the BATSE sample. Recent works have shown that these three groups are also present in the RHESSI and BeppoSAX databases. The duration distribution analysis of the bursts observed by the Swift satellite also favors the three-component model. In this paper, we extend the analysis of the Swift data with spectral information. We show, using the spectral hardness and duration simultaneously, that the maximum likelihood method favors the three-component against the two-component model. The likelihood also shows that a fourth component is not needed.

  18. Effects of Gamma Ray Bursts in Earth Biosphere

    CERN Document Server

    Martin, Osmel; Guimaraes, Mayrene; Penate, Liuba; Horvath, Jorge; Galante, Douglas

    2009-01-01

    We continue former work on the modeling of potential effects of Gamma Ray Bursts on Phanerozoic Earth. We focus on global biospheric effects of ozone depletion and show a first modeling of the spectral reduction of light by NO2 formed in the stratosphere. We also illustrate the current complexities involved in the prediction of how terrestrial ecosystems would respond to this kind of burst. We conclude that more biological field and laboratory data are needed to reach even moderate accuracy in this modeling

  19. Bursting transition in a linear self-exciting point process

    CERN Document Server

    Onaga, Tomokatsu

    2014-01-01

    Self-exciting point processes describe the manner in which every event facilitates the occurrence of succeeding events. By increasing excitability, the event occurrences start to exhibit bursts even in the absence of external stimuli. We revealed that the transition is uniquely determined by the average number of events added by a single event, $1-1/\\sqrt{2} \\approx 0.2929$, independently of the temporal excitation profile. We further extended the theory to multi-dimensional processes, to be able to incite or inhibit bursting in networks of agents.

  20. Energy bursts from deconfinement in high-mass twin stars

    CERN Document Server

    Alvarez-Castillo, D E; Blaschke, D; Haensel, P; Zdunik, L

    2015-01-01

    We estimate the energy reservoir available in the deconfinement phase transition induced collapse of a neutron star to its hybrid star mass twin on the "third family" branch, using a recent equation of state of dense matter. The available energy corresponding to the mass-energy difference between configurations is comparable with energies of the most violent astrophysical burst processes. An observational outcome of such a dynamical transition might be fast radio bursts, specifically a recent example of a FRB with a double-peak structure in its light curve.