WorldWideScience

Sample records for burst reactors supo

  1. Supo Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-14

    This report describes the continuation of the Computational Fluid Dynamics (CFD) model of the Supo cooling system described in the report, Supo Thermal Model Development1, by Cynthia Buechler. The goal for this report is to estimate the natural convection heat transfer coefficient (HTC) of the system using the CFD results and to compare those results to remaining past operational data. Also, the correlation for determining radiolytic gas bubble size is reevaluated using the larger simulation sample size. The background, solution vessel geometry, mesh, material properties, and boundary conditions are developed in the same manner as the previous report. Although, the material properties and boundary conditions are determined using the appropriate experiment results for each individual power level.

  2. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  3. Effects of loading reactivity at dynamic state on wave of neutrons in burst reactor

    International Nuclear Information System (INIS)

    Gao Hui; Liu Xiaobo; Fan Xiaoqiang

    2013-01-01

    Based on the point reactor model, the program for simulating the burst of reactors, including delay neutron, thermal feedback and reactivity of rod, was developed. The program proves to be suitable to burst reactor by experimental data. The program can describe the process of neutron-intensity change in burst reactors. With the program, the parameters of burst (wave of burst, power of peak and reactivity of reactor) under the condition of dynamic reactivity can be calculated. The calculated result demonstrates that the later the burst is initiated, the greater its power of peak and yield are and that the maximum yield coordinates with the yield under static state. (authors)

  4. The computerized reactor period measurement system for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  5. Computer measurement system of reactor period for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  6. Dosimetry characterization of the Godiva Reactor under burst conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hudson, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ward, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, C. [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Clark, L. [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Trompier, F. [Inst. for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses (France)

    2017-06-22

    A series of sixteen (16) burst irradiations were performed in May 2014, fifteen of which were part of an international collaboration to characterize the Godiva IV fast burst reactor at the National Criticality Experiments Research Center (NCERC). Godiva IV is a bare cylindrical assembly of approximately 65 kg of highly enriched uranium fuel (93.2% 235U metal alloyed with 1.5% molybdenum for strength) and is designed to perform controlled prompt critical excursions (Myers 2010, Goda 2013). Twelve of the irradiations were dedicated to neutron spectral measurements using a Bonner multiple sphere spectrometer. Three irradiations, with core temperature increases of 71.1°C, 136.9°C, and 229.9°C, were performed for generating comparative fluence data, establishing corrections for varying heights, testing linearity with burst temperature, and establishing gamma dose characteristics.

  7. Burst protected nuclear reactor plant with PWR

    International Nuclear Information System (INIS)

    Harand, E.; Michel, E.

    1978-01-01

    In the PWR, several integrated components from the steam raising unit and the main coolant pump are grouped around the reactor pressure vessel in a multiloop circuit and in a vertical arrangement. For safety reasons all primary circuit components and pipelines are situated in burst protection covers. To reduce the area of the plant straight tube steam raising units with forced circulation are used as steam raising units. The boiler pumps are connected to the vertical tubes and to the pressure vessel via double pipelines made as twin chamber pipes. (DG) [de

  8. Accident analysis for US fast burst reactors

    International Nuclear Information System (INIS)

    Paternoster, R.; Flanders, M.; Kazi, H.

    1994-01-01

    In the US fast burst reactor (FBR) community there has been increasing emphasis and scrutiny on safety analysis and understanding of possible accident scenarios. This paper summarizes recent work in these areas that is going on at the different US FBR sites. At this time, all of the FBR facilities have or in the process of updating and refining their accident analyses. This effort is driven by two objectives: to obtain a more realistic scenario for emergency response procedures and contingency plans, and to determine compliance with changing regulatory standards

  9. Burst shield for a pressurized nuclear-reactor core and method of operating same

    International Nuclear Information System (INIS)

    Beine, B.; Schilling, F.

    1976-01-01

    A pressurized nuclear-reactor core stands on a base up from which extends a cylindrical side wall formed of a plurality of hollow iron castings held together by circumferential and longitudinal prestressed elements. A cylindrical space between this shield and the core serves for inspection of the core and is normally filled with cast-iron segmental slabs so that if the core bursts pieces thrown out do not acquire any dangerous kinetic energy before engaging the burst shield. The top of the shield is removably secured to the side so that it can be moved out of the way periodically for removal of the filler slabs and inspection of the core. An anchor on the upper end of each longitudinal prestressing element bears against a sleeve pressing against the uppermost side element, and a nut engageable with this anchor is engageable down over the top to hold it in place, removal of this nut leaving the element prestressed in the side wall. 11 claims, 16 drawing figures

  10. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    International Nuclear Information System (INIS)

    Humbert, P.; Authier, N.; Richard, B.; Grivot, P.; Casoli, P.

    2012-01-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present the point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)

  11. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, P. [Commissariat a l' Energie Atomique CEA, Centre de Bruyeres-le-Chatel, 91297 Arpajon (France); Authier, N.; Richard, B.; Grivot, P.; Casoli, P. [Commissariat a l' Energie Atomique CEA, Centre de Valduc, 21120 Is-sur-Tille (France)

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present the point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)

  12. Sandia Pulse Reactor-IV Project

    International Nuclear Information System (INIS)

    Reuscher, J.A.

    1983-01-01

    Sandia National Laboratories has developed, designed and operated fast burst reactors for over 20 years. These reactors have been used for a variety of radiation effects programs. During this period, programs have required larger irradiation volumes primarily to expose complex electronic systems to postulated threat environments. As experiment volumes increased, a new reactor was built so that these components could be tested. The Sandia Pulse Reactor-IV is a logical evolution of the two decades of fast burst reactor development at Sandia

  13. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  14. Capabilities of the Power Burst Facility

    International Nuclear Information System (INIS)

    Spencer, W.A.; Jensen, A.M.; McCardell, R.K.

    1982-01-01

    The unique and diverse test capabilities of the Power Burst Facility (PBF) are described in this paper. The PBF test reactor, located at the Idaho National Engineering Laboratory, simulates normal, off-normal, and accident operating conditions of light water reactor fuel rods. An overview description is given, with specific detail on design and operating characteristics of the driver core, experiment test loop, fission product detection system, test train assembly facility, and support equipment which make the testing capability of the PBF so versatile

  15. Bursting in the Belousov-Zhabotinsky Reaction added with Phenol in a Batch Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cadena, Ariel; Agreda, Jesus, E-mail: jaagredab@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Barragan, Daniel [Escuela de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Medellin (Colombia)

    2013-12-01

    The classic Belousov-Zhabotinski reaction was modified by adding phenol as a second organic substrate that kinetically competes with the malonic acid in the reduction of Ce{sup 4+} to Ce{sup 3+} and in the removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and with a longer quiescent state, as a function of the initial phenol concentration increase. It was hypothesized that the bursting phenomenon can be explained introducing a redox cycle between the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis was experimentally and numerically tested and from the results it is possible to conclude that the bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by a p-di-hydroxy-benzene/p-benzoquinone redox cycle (author)

  16. Bursting in the Belousov-Zhabotinsky Reaction added with Phenol in a Batch Reactor

    International Nuclear Information System (INIS)

    Cadena, Ariel; Agreda, Jesus; Barragan, Daniel

    2013-01-01

    The classic Belousov-Zhabotinski reaction was modified by adding phenol as a second organic substrate that kinetically competes with the malonic acid in the reduction of Ce 4+ to Ce 3+ and in the removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and with a longer quiescent state, as a function of the initial phenol concentration increase. It was hypothesized that the bursting phenomenon can be explained introducing a redox cycle between the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis was experimentally and numerically tested and from the results it is possible to conclude that the bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by a p-di-hydroxy-benzene/p-benzoquinone redox cycle (author)

  17. Burst pressure and leak rate from fretted SG tubes

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2005-01-01

    Steam generator(SG) tubes of a pressurized water reactor(PWR) have suffered from various types of corrosion, such as pitting, wastage and stress corrosion cracking (SCC) on both the primary and secondary side. Recently, fretting/wear degradation at the tube support region has been reported in some Korean nuclear power plants. In order to prevent the primary coolant from leaking to the secondary side, the tubes are repaired by a sleeving or plugging. It is important to establish the repair criteria to assure a reactor integrity and yet maintain the plugging ratio within the limits needed for an efficient operation. The objective of the burst test is to obtain a relationship between the burst/leak rate and the shape of the fretted flaws machined with an electro discharge machining (EDM)

  18. High sensitivity neutron bursts detecting system

    International Nuclear Information System (INIS)

    Shyam, A.; Kaushik, T.C.; Srinivasan, M.; Kulkarni, L.V.

    1993-01-01

    Technique and instrumentation to detect multiplicity of fast neutrons, emitted in sharp bursts, has been developed. A bank of 16 BF 3 detectors, in an appropriate thermalising assembly, efficiency ∼ 16%, is used to detect neutron bursts. The output from this setup, through appropriate electronics, is divided into two paths. The first is directly connected to a computer controlled scalar. The second is connected to another similar scalar through a delay time unit (DTU). The DTU design is such that once it is triggered by a count pulse than it does not allow any counts to be recorded for a fixed dead time set at ∼ 100 μs. The difference in counts recorded directly and through DTU gives the total number of neutrons produced in bursts. This setup is being used to study lattice cracking, anomalous effects in solid deuterium systems and various reactor physics experiments. (author). 3 refs., 1 fig

  19. Nuclear reactions with 11C and 14sup>O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14sup>O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14sup>O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F

  20. Final Report for the Testing of the Y-12 Criticality Accident Alarm System Detectors at the Godiva IV Burst Reactor (IER-443)

    Energy Technology Data Exchange (ETDEWEB)

    Scorby, John C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hudson, Becka [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beller, Tim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haught, Chris [Y-12 National Security Complex, Oak Ridge, TN (United States); Woodrow, Christopher [Y-12 National Security Complex, Oak Ridge, TN (United States); Ward, Dann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Chris [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Clark, Leo [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom)

    2018-01-05

    This report documents the experimental conditions and final results for the performance testing of the Y-12 Criticality Accident Alarm System (CAAS) detectors at the Godiva IV Burst Reactor at the National Criticality Experimental Research Center (NCERC) at the Nevada National Security Site (NNSS). The testing followed a previously issued test plan and was conducted during the week of July 17, 2017, with completion on Thursday July 20. The test subjected CAAS detectors supplied by Y-12 to very intense and short duration mixed neutron and gamma radiation fields to establish compliance to maximum radiation and minimum pulse width requirements. ANSI/ANS- 8.3.1997 states that the “system shall be sufficiently robust as to actuate an alarm signal when exposed to the maximum radiation expected”, which has been defined at Y-12, in Documented Safety Analyses (DSAs), to be a dose rate of 10 Rad/s. ANSI/ANS-8.3.1997 further states that “alarm actuation shall occur as a result of a minimum duration transient” which may be assumed to be 1 msec. The pulse widths and dose rates provided by each burst during the test exceeded those requirements. The CAAS detectors all provided an immediate alarm signal and remained operable after the bursts establishing compliance to the requirements and fitness for re-deployment at Y-12.

  1. Bursting-protection configuration for cylindrical steam generators of pressurized water reactors

    International Nuclear Information System (INIS)

    Mutzl, J.

    1979-01-01

    The bursting-protection jacket consists of cylinder courses, being joined together in axial direction, and of a bottom and a cover, being connected by means of axial prestressing tendons. For absorption and transmission of the steam generator weight and the bursting forces the bottom consists of a conical shell, tapered towards the side of the steam generator, and a support ring supporting the bottom circle of the cone. This support ring is built in sandwich construction and is connected with the axial tendons. The conical shell may be reinforced by radial ribs. If a primary coolant pump is built in there is provided for a rocking bearing between its pump casing flange and the bottom. (DG) [de

  2. Intermittent bursts induced by double tearing mode reconnection

    Science.gov (United States)

    Wei, Lai; Wang, Zheng-Xiong

    2014-06-01

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.

  3. Intermittent bursts induced by double tearing mode reconnection

    International Nuclear Information System (INIS)

    Wei, Lai; Wang, Zheng-Xiong

    2014-01-01

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines

  4. Intermittent bursts induced by double tearing mode reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Lai; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-06-15

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.

  5. The behaviour of neutron bursts in matter

    International Nuclear Information System (INIS)

    Syros, C.

    1978-01-01

    An exact method is developed for solving the time-dependent linear transport equation for neutrons. The problem of finding the behaviour of neutron bursts in matter have been considered. The method leads to a new kind of perturbation theory applicable to the transport theoretical reactor dynamics. Applications of the theory are given for discontinuously or continuously distributed initial values of the neutron population. The boundary and initial conditions are exactly fulfilled. (author)

  6. Neutron stars as X-ray burst sources. II. Burst energy histograms and why they burst

    International Nuclear Information System (INIS)

    Baan, W.A.

    1979-01-01

    In this work we explore some of the implications of a model for X-ray burst sources where bursts are caused by Kruskal-Schwarzschild instabilities at the magnetopause of an accreting and rotating neutron star. A number of simplifying assumptions are made in order to test the model using observed burst-energy histograms for the rapid burster MXB 1730--335. The predicted histograms have a correct general shape, but it appears that other effects are important as well, and that mode competition, for instance, may suppress the histograms at high burst energies. An explanation is ventured for the enhancement in the histogram at the highest burst energies, which produces the bimodal shape in high accretion rate histograms. Quantitative criteria are given for deciding when accreting neutron stars are steady sources or burst sources, and these criteria are tested using the X-ray pulsars

  7. Epithermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Parsons, D.K.; Rushton, B.L.; Nigg, D.W.

    1990-01-01

    Nuclear design studies have been performed for two reactor-based epithermal neutron beams for cancer treatment by neutron capture therapy (NCT). An intermediate-intensity epithermal beam has been designed and implemented at the Brookhaven Medical Research Reactor (BMRR). Measurements show that the BMRR design predictions for the principal characteristics of this beam are accurate. A canine program for research into the biological effects of NCT is now under way at BMRR. The design for a high-intensity epithermal beam with minimal contamination from undesirable radiation components has been finalized for the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. This design will be implemented when it is determined that human NCT trials are advisable. The PBF beam will exhibit approximately an order of magnitude improvement in absolute epithermal flux intensity over that available in the BMRR, and its angular distribution and spectral characteristics will be more advantageous for NCT. The combined effects of beam intensity, angular distribution, spectrum, and contaminant level allow the desired tumor radiation dose to be delivered in much shorter times than are possible with the currently available BMRR beam, with a significant reduction (factor of 3 to 5) in collateral dose due to beam contaminants

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Scholz, M.

    1976-01-01

    An improvement of the accessibility of that part of a nuclear reactor serving for biological shield is proposed. It is intended to provide within the biological shield, distributed around the circumference of the reactor pressure vessel, several shielding chambers filled with shielding material, which are isolated gastight from the outside by means of glass panes with a given bursting strength. It is advantageous that, on the one hand, inspection and maintenance will be possible without great effort and, on the other, a large relief cross section will be at desposal if required. (UWI) [de

  9. Improvement of pulsing operation performance in the Nuclear Safety Research Reactor (NSRR)

    International Nuclear Information System (INIS)

    Kobayasi, S.; Ishijima, K.; Tanzawa, S.; Fujishiro, T.; Horiki, O.

    1990-01-01

    The Nuclear Safety Research Reactor (NSRR) is one of the TRIGA-type research reactors widely used in the world, and has mainly been used for studying reactor fuel behaviour during postulated reactivity-initiated accidents (RIAs). Its limited pulsing operation capability, however, could produce only a power burst from low power level simulating an RIA event from essentially zero power level. A computerized automatic reactor control system was developed and installed in the NSRR to simulate a wide range of abnormal events in nuclear power plants. This digitalized reactor control system requires no manipulation of the control rods by reactor operators during the course of the pulsing operation. Using this fully automated operation system, a variety of power transients such as power ramping, power bursts from high power level, and so on were made possible with excellent stability and safety. The present modification work in the NSRR and its fruitful results indicate new possibilities in the utilization of the TRIGA type research reactor

  10. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  11. Swift pointing and gravitational-wave bursts from gamma-ray burst events

    International Nuclear Information System (INIS)

    Sutton, Patrick J; Finn, Lee Samuel; Krishnan, Badri

    2003-01-01

    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar-mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. This requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based 'figure of merit' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts

  12. Applicability of modified burst test data to reactivity initiated accident

    Energy Technology Data Exchange (ETDEWEB)

    Yueh, K., E-mail: yuehky@hotmail.com

    2017-05-15

    A comprehensive irradiated cladding mechanical property dataset was generated by a recently developed modified burst test (MBT) under reactivity initiated accident (RIA) loading conditions [1,2]. The test data contains a wide range of test conditions that could bridge the gap between fast transient test reactor data (short pulse and/or low temperature) and prototypical commercial reactor conditions. This paper documents an evaluation performed to demonstrate the applicability of the MBT data to fuel cladding performance under RIA conditions. The current effort includes a comparison of calculated fuel cladding failure/burst strain for tests conducted at the Japan Atomic Energy Agency's (JAEA) Nuclear Safety Research Reactor (NSRR) to the MBT dataset, and an evaluation of potential mechanisms on how some NSRR tests survived beyond the cladding loading capacity. A simple shell model, coupled with temperature output from the Falcon fuel performance code, was used to calculate the fuel pellet thermal expansion of NSRR tests at the point of failure. The calculated fuel pellet thermal expansion correlates well directly with the MBT data at similar loading conditions. A 3-dimensional (3D) finite element analysis (FEA) model was used to evaluate fuel movement potential during a RIA. The evaluation indicates fuel relocation into the pellet chamfer and later into the dish is possible once a temperature threshold is reached before cladding failure and thus could significantly increase the fuel rod energy absorption capacity in a RIA event.

  13. Device for the burst protection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Daublebsky, P.

    1976-01-01

    The burst protection device has a hood over top and bottom of the pressure vessel with superimposed hinged supports lying in their turn against supporting rings which are connected with each other by vertical bracing. It is proposed to place an intermediate layer between hoods and vertical bracing absorbing thermal stresses, i.e. deforming plastically with gradually increasing pressure, but behaving like a rigid body in the case of shock loads. As a material lead e.g. is proposed. (UWI) [de

  14. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  15. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    A. M. Balamurugan

    2014-01-01

    Full Text Available The optical burst switching (OBS is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS. This paper deals with employing RC4 (stream cipher to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  16. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Science.gov (United States)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  17. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    International Nuclear Information System (INIS)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez; Universidade Federal de Pernambuco

    2017-01-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly "9"9Mo. Compare to multipurpose research reactors, an AHR dedicated for "9"9Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  18. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez, E-mail: milianperez89@gmail.com, E-mail: dmilian@instec.cu, E-mail: lorenapilar1109@gmail.com, E-mail: cabol@ufpe.br [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-11-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly {sup 99}Mo. Compare to multipurpose research reactors, an AHR dedicated for {sup 99}Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  19. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    International Nuclear Information System (INIS)

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Van der Horst, A. J.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-01-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  20. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  1. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  2. The genesis of period-adding bursting without bursting-chaos in the Chay model

    International Nuclear Information System (INIS)

    Yang Zhuoqin; Lu Qishao; Li Li

    2006-01-01

    According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to 7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence

  3. A repeating fast radio burst.

    Science.gov (United States)

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  4. Particle Bed Reactor scaling relationships

    International Nuclear Information System (INIS)

    Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

    1987-01-01

    Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized

  5. The genesis of period-adding bursting without bursting-chaos in the Chay model

    International Nuclear Information System (INIS)

    Yang Zhuoqin; Lu Qishao; Li Li

    2006-01-01

    According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to period-7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence

  6. INVESTIGATION OF PRIMORDIAL BLACK HOLE BURSTS USING INTERPLANETARY NETWORK GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, T. N. [Director' s Postdoctoral Fellow, Space and Remote Sensing (ISR-2), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); MacGibbon, J. H. [Department of Physics, University of North Florida, Jacksonville, FL 32224 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal' shin, V. D. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Goldsten, J. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Boynton, W. [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); Kozyrev, A. S. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 (Germany); Connaughton, V. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Yamaoka, K. [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558 (Japan); Ohno, M. [Department of Physics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohmori, N. [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki-shi, Miyazaki 889-2192 (Japan); Feroci, M. [INAF/IAPS-Roma, via Fosso del Cavaliere 100, I-00133, Roma (Italy); Frontera, F., E-mail: tilan@lanl.gov [Department of Physics and Earth Science, University of Ferrara, via Saragat 1, I-44122 Ferrara (Italy); and others

    2016-07-20

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10{sup 13}–10{sup 18} cm (7–10{sup 5} au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  7. Gamma Ray Bursts - Observations

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  8. Heterogeneity in Short Gamma-Ray Bursts

    Science.gov (United States)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  9. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Norris, Jay P.; Gehrels, Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of ∼2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (∼6x10 -10 erg cm -2 s -1 ) is ∼>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (∼60,000 s) is ∼30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  10. Prompt Burst Energetics in the oxide/sodium system

    International Nuclear Information System (INIS)

    Reil, K.O.; Young, M.F.

    1979-01-01

    A series of twelve Prompt Burst Energetics (PBE) experiments utilizing fresh uranium dioxide fuel pins in stagnant sodium coolant has been performed in Sandia Laboratories' Annular Core Pulse Reactor (ACPR). Results and analysis described in the paper include: observation of FCIs (pressures up to 32 MPa) in the UO 2 /Na system, some apparently triggered by small pressure transients (2 MPa); prediction of failure times via the pin model EXPAND; observed thermal-to-mechanical energy conversion ratios up to approximately 0.4%; and identification of potential reactivity effects caused by the pre- and post-failure motion of fuel

  11. BurstMem: A High-Performance Burst Buffer System for Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University, Auburn, Alabama; Oral, H Sarp [ORNL; Wang, Yandong [Auburn University, Auburn, Alabama; Settlemyer, Bradley W [ORNL; Atchley, Scott [ORNL; Yu, Weikuan [Auburn University, Auburn, Alabama

    2014-01-01

    The growth of computing power on large-scale sys- tems requires commensurate high-bandwidth I/O system. Many parallel file systems are designed to provide fast sustainable I/O in response to applications soaring requirements. To meet this need, a novel system is imperative to temporarily buffer the bursty I/O and gradually flush datasets to long-term parallel file systems. In this paper, we introduce the design of BurstMem, a high- performance burst buffer system. BurstMem provides a storage framework with efficient storage and communication manage- ment strategies. Our experiments demonstrate that BurstMem is able to speed up the I/O performance of scientific applications by up to 8.5 on leadership computer systems.

  12. Plan for IER-443 Testing of the Y-12 and AWE Criticality Accident Alarm System Detectors at the Godiva IV Burst Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scorby, J. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hickman, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hudson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garbett, S. [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Auld, G. [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Horrne, A. [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Beller, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haught, C. [Y-12 National Security Complex, Oak Ridge, TN (United States); Woodrow, C. [Y-12 National Security Complex, Oak Ridge, TN (United States); Ward, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-24

    This document provides the scope and details of the “Plan for Testing the Y-12 and AWE Criticality Accident Alarm System Detectors at the Godiva IV Burst Reactor”. Due to the relative simplicity of the testing goals, scope, and methodology, the NCSP Manager approved execution of the test when ready. No preliminary CED-1 or final design CED-2 reports were required or issued. The test will subject Criticality Accident Alarm System (CAAS) detectors supplied by Y- 12 and AWE to very intense and short duration mixed neutron and gamma radiation fields. The goals of the test will be to (1) substantiate functionality, for both existing and newly acquired Y- 12 CAAS detectors, and (2) the ability of the AWE detectors to provide quality temporal dose information after a hypothetical criticality accident. ANSI/ANS-8.3.1997 states that the “system shall be sufficiently robust as to actuate an alarm signal when exposed to the maximum radiation expected”, which has been defined at Y-12, in Documented Safety Analyses (DSAs), to be a dose rate of 10 Rad/s. ANSI/ANS-8.3.1997 further states that “alarm actuation shall occur as a result of a minimum duration transient” which may be assumed to be 1 msec. The pulse widths and dose rates which will be achieved in this test will exceed these requirements. Pulsed radiation fields will be produced by the Godiva IV fast metal burst reactor at the National Criticality Experimental Research Center (NCERC) at the Nevada National Security Site (NNSS). The magnitude of the pulses and the relative distances to the detectors will be varied to afford a wide range of radiation fluence and pulse widths. The magnitude of the neutron and gamma fields will be determined by reactor temperature rise to fluence and dose conversions which have been previously established through extensive measurements performed under IER-147. The requirements for CAAS systems to detect and alarm under a “minimum accident of concern” as well as other

  13. The composition of aerosols generated during a severe reactor accident: Experimental results from the Power Burst Facility Severe Fuel Damage Test 1-4

    International Nuclear Information System (INIS)

    Petti, D.A.; Hobbins, R.R.; Hagrman, D.L.

    1994-01-01

    Experimental results on fission product and aerosol release during the Power Burst Facility Severe Fuel Damages (SFD) Test 1-4 are examined to determine the composition of aerosols that would be generated during a severe reactor accident. The SFD 1-4 measured aerosol contained significant quantities of volatile fission products (VFPs) (cesium, iodine, tellurium), control materials (silver and cadmium), and structural materials (tin), indicating that fission product release, vaporization of control material, and release of tin from oxidized Zircaloy were all important aerosol sources. On average the aerosol composition is between one-quarter and one-half VFPs (especially cesium), with the remainder being control material (especially cadmium), and structural material (especially tin). Source term computer codes like CORSOR-M tend to overpredict the release of structural and control rod material relative to fission products by a factor of between 2 and 15 because the models do not account for relocation of molten control, fuel, and structural material during the degradation process, which tends to reduce the aerosol source. The results indicate that the aerosol generation in a severe reactor accident is intimately linked to the core degradation process. They recommend that these results be used to improve the models in source term computer codes

  14. THE WHITE SANDS MISSILE RANGE PULSED REACTOR FACILITY, MAY 1963

    Energy Technology Data Exchange (ETDEWEB)

    Long, Robert L.; Boor, R. A.; Cole, W. M.; Elder, G. E.

    1963-05-15

    A brief statement of the mission of the White Sands Missile Range Nuclear Effects Laboratory is given. The new Nuclear Effects Laboratory Facility is described. This facility consists of two buildings-a laboratory and a reactor building. The White Sands Missile Range bare critical assembly, designated as the MoLLY-G, is described. The MoLLY-G, an unreflected, unmoderated right circular cylinder of uranium-molybdenum alloy designed for pulsed operation, will have a maximum burst capability of approximately 2 x 10/sup 17/ fissions with a burst width of 50 microseconds. The reactor construction and operating procedures are described. As designed, the MoLLY-G will provide an intense source of pulsed neutron and gamma radiation for a great variety of experimental and test arrangements. (auth)

  15. A search for optical bursts from the repeating fast radio burst FRB 121102

    Science.gov (United States)

    Hardy, L. K.; Dhillon, V. S.; Spitler, L. G.; Littlefair, S. P.; Ashley, R. P.; De Cia, A.; Green, M. J.; Jaroenjittichai, P.; Keane, E. F.; Kerry, P.; Kramer, M.; Malesani, D.; Marsh, T. R.; Parsons, S. G.; Possenti, A.; Rattanasoon, S.; Sahman, D. I.

    2017-12-01

    We present a search for optical bursts from the repeating fast radio burst FRB 121102 using simultaneous observations with the high-speed optical camera ULTRASPEC on the 2.4-m Thai National Telescope and radio observations with the 100-m Effelsberg Radio Telescope. A total of 13 radio bursts were detected, but we found no evidence for corresponding optical bursts in our 70.7-ms frames. The 5σ upper limit to the optical flux density during our observations is 0.33 mJy at 767 nm. This gives an upper limit for the optical burst fluence of 0.046 Jy ms, which constrains the broad-band spectral index of the burst emission to α ≤ -0.2. Two of the radio pulses are separated by just 34 ms, which may represent an upper limit on a possible underlying periodicity (a rotation period typical of pulsars), or these pulses may have come from a single emission window that is a small fraction of a possible period.

  16. Cosmic gamma bursts

    International Nuclear Information System (INIS)

    Ehstulin, I.V.

    1980-01-01

    A brief consideration is being given to the history of cosmic gamma burst discovery and modern knowledge of their properties. The time dependence of gamma bursts is described and their possible sources are discussed

  17. Detection circuit for gamma-ray burst

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Yamagami, Takamasa; Mori, Kunishiro; Uchiyama, Sadayuki.

    1982-01-01

    A new gamma-ray burst detection system is described. The system was developed as an environmental monitor of an accelerator, and can be used as the burst detection system. The system detects the arrival time of burst. The difference between the arrival times detected at different places will give information on the burst source. The frequency of detecting false burst was estimated, and the detection limit under the estimated frequency of false burst was also calculated. Decision whether the signal is false or true burst was made by the statistical treatment. (Kato, T.)

  18. Gamma-ray burst models.

    Science.gov (United States)

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  19. Solar microwave bursts - A review

    Science.gov (United States)

    Kundu, M. R.; Vlahos, L.

    1982-01-01

    Observational and theoretical results on the physics of microwave bursts that occur in the solar atmosphere are reviewed. Special attention is given to the advances made in burst physics over the last few years with the great improvement in spatial and time resolution, especially with instruments like the NRAO three-element interferometer, the Westerbork Synthesis Radio Telescope, and more recently the Very Large Array. Observations made on the preflare build-up of an active region at centimeter wavelengths are reviewed. Three distinct phases in the evolution of cm bursts, namely the impulsive phase, the post-burst phase, and the gradual rise and fall, are discussed. Attention is also given to the flux density spectra of centimeter bursts. Descriptions are given of observations of fine structures with temporal resolution of 10-100 ms in the intensity profiles of cm-wavelength bursts. High spatial resolution observations are analyzed, with special reference to the one- and two-dimensional maps of cm burst sources.

  20. Optical observations of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Hjorth, J.; Pian, E.; Fynbo, J.P.U.

    2004-01-01

    We briefly review the status and recent progress in the field of optical observations of gamma-ray burst afterglows. We will focus on the fundamental observational evidence for the relationship between gamma-ray bursts and the final evolutionary phases of massive stars. In particular, we will address (i) gamma-ray burst host galaxies, (ii) optically dark gamma-ray burst afterglows, (iii) the gamma-ray burst-supernova connection, and (iv) the relation between X-ray flashes, gamma-ray bursts, and supernovae

  1. Solar Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  2. Concept and basic performance of an in-pile experimental reactor for fast breeder reactors using fast driver core

    International Nuclear Information System (INIS)

    Obara, Toru; Sekimoto, Hiroshi

    1997-01-01

    The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors. (author)

  3. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    International Nuclear Information System (INIS)

    Gu Hua-Guang; Chen Sheng-Gen; Li Yu-Ye

    2015-01-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. (paper)

  4. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  5. Analysis of historic bursts and burst detection in water supply areas of different size

    NARCIS (Netherlands)

    Bakker, M.; Trietsch, E.A.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Pipe bursts in water distribution networks lead to water losses and a risk of damaging the urban environment. We studied hydraulic data and customer contact records of 44 real bursts for a better understanding of the phenomena. We found that most bursts were reported to the water company shortly

  6. Burst protection for reactor pressure vessels using a hinged support bearing

    International Nuclear Information System (INIS)

    Michel, E.; Maritsch, F.

    1976-01-01

    The invention deals with a simplification of the design and manufacture and the way of controlling a hinged support bearing used as burst protection. The pure pressure load of the, e.g., 32 hinged supports distributed along the circumference of the pressure vessel head is achieved in the braced state with little control effort by a pure rotating motion caused pneumatically or hydraulically. The hinged supports are inclined by about 45 0 upwards/outwards in the braced state and with their cap-shaped head and foot are selflocking by pivoted between a supporting structure, firmly connected with the building, and a fishing ring. (TK) [de

  7. Fermi/GAMMA-RAY BURST MONITOR OBSERVATIONS OF SGR J0501+4516 BURSTS

    International Nuclear Information System (INIS)

    Lin Lin; Zhang Shuangnan; Kouveliotou, Chryssa; Baring, Matthew G.; Van der Horst, Alexander J.; Finger, Mark H.; Guiriec, Sylvain; Preece, Robert; Chaplin, Vandiver; Bhat, Narayan; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; Von Kienlin, Andreas; Watts, Anna L.; Wijers, Ralph A. M. J.; Gehrels, Neil; Harding, Alice

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the gamma-ray burst monitor on board the Fermi Gamma-ray Space Telescope during 13 days of the source's activation in 2008 (August 22- September 3). We find that the T 90 durations of the bursts can be fit with a log-normal distribution with a mean value of ∼123 ms. We also estimate for the first time event durations of soft gamma repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T 90 values estimated in count space (following a log-normal distribution with a mean value of ∼124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two blackbody functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E peak decreases with energy flux (and fluence) to a minimum of ∼30 keV at F = 8.7 x 10 -6 erg cm -2 s -1 , increasing steadily afterward. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity, L iso , corresponding to these flux values is roughly similar for all sources (0.4-1.5 x 10 40 erg s -1 ).

  8. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  9. Observations of short gamma-ray bursts.

    Science.gov (United States)

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events.

  10. X-ray bursts: Observation versus theory

    Science.gov (United States)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  11. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  12. Solar Drift-Pair Bursts

    Science.gov (United States)

    Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.

    2017-08-01

    In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.

  13. Coupled structure-fluid analysis for a PWR burst protection design

    International Nuclear Information System (INIS)

    Huber, A.; Hofmann, H.

    1977-01-01

    The burst protection designed to withstand hypothetical ruptures which might occur in certain components of the primary circuit including RPV (reactor pressure vessel) rupture mainly consists of cylindrical concrete vessels for the RPV and the steam generators and steel tubing for the primary pipes. A hypothetical RPV failure will result in direct excitation of single components and will lead to complex interactions between all components of the protecting structures, the primary loop, reactor core, core support structures and the coolant. The overall investigations to determine the magnitude of deformations and stresses are summaized. Economical aspects with respect to the investigations are treated biefly. The coupled structure-fluid analysis of the core and core support structure due to horizontal and vertical RPV failure will be presented in detail. Assumptions for the RPV failure modes include vertical, horizontal and screw-shaped rupture of the RPV, the detachment of RPV nozzle as well as other types of failure. On the basis of the failure modes, types of credible extremal load conditions were estimated. For vertical RPV failure modes, loads were applied to a global beam-model consisting of burst protection and primary loop structures. Nonlinear coupling between structural parts was taken into account. The nonsymmetric boundary conditions were taken into account by Fourier-expansion in circumferential direction. The mathematical solution is based on the governing equations for pressure wave propagation in fluids and vibrations in solids. Horizontal rupture of the RPV was assumed to occur in the welding connecting spherical bottom and cylinder. Inertia terms of the fluid were incorporated in the equations of the system

  14. 30 CFR 57.3461 - Rock bursts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  15. The Drift Burst Hypothesis

    OpenAIRE

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    2016-01-01

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the...

  16. Prestressed cast iron pressure vessels as burst-proof pressure vessels for innovative nuclear applications

    International Nuclear Information System (INIS)

    Froehling, W.; Boettcher, A.; Bounin, D.; Steinwarz, W.; Geiss, M.; Trauth, M.

    2000-01-01

    The amendment to the German Atomic Energy Act from July 28, 1994 requires that events 'whose occurrence is practically excluded by the measures against damages', i.e. events of the category residual risk, must not necessitate far reaching protective measures outside the plant. For a conventional reactor pressure vessel, the residual risk consists in the very small probability of a catastrophic failure (formation of a large fracture opening, bursting of the vessel). With a prestressed cast iron vessel (PCIV), the formation of a large fracture opening or bursting of the vessel, respectively, is impossible due to its design properties. Against this background the possibility of the use of this type of pressure vessel for lightwater reactors has been studied in the frame of a 'Working Group for Innovative Nuclear Technology', founded by different research institutes and industrial companies. Furthermore, it has been studied whether the use of the PCIV support the realization of a corecatcher system. The results are presented in this report. Already many years earlier, Siempelkamp has performed industrial development and Forschungszentrum Juelich related experimental and theoretical safety research for the PCIV as an innovative, bust-proof pressure vessel concept. This development of the PCIV as well as its safety properties are also presented in a conclusive manner. (orig.) [de

  17. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  18. UWB dual burst transmit driver

    Science.gov (United States)

    Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  19. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  20. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.; Ho, Pin-Han; Wu, Bin; Tapolcai, Janos; Shihada, Basem

    2011-01-01

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  1. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  2. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Connaughton, V.; Briggs, M.S.; Goldstein, A.; Meegan, C.A.; Paciesas, W.S.; Preece, R.D.; Wilson-Hodge, C.A.; Gibby, M.H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R.M.; Pelassa, V.; Xiong, S.; Yu, H-F.; Bhat, P.N.; Burgess, J.M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M.M.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B..B.

    2015-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the

  3. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments using equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.

  4. X-Ray Bursts from NGC 6652

    Science.gov (United States)

    Morgan, Edward

    The possibly transient X-ray Source in the globular cluster NGC 6652 has been seen by BeppoSax and the ASM on RXTE to undergo X-ray bursts, possibly Type I. Very little is known about this X-ray source, and confirmation of its bursts type-I nature would identify it as a neutron star binary. Type I bursts in 6 other sources have been shown to exhibit intervals of millisecond ocsillation that most likely indicate the neutron star spin period. Radius-expansion bursts can reveal information about the mass and size of the neutron star. We propose to use the ASM to trigger an observation of this source to maximize the probability of catching a burst in the PCA.

  5. Transitions to Synchrony in Coupled Bursting Neurons

    Science.gov (United States)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  6. Transitions to synchrony in coupled bursting neurons

    International Nuclear Information System (INIS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony

  7. The Second SWIFT Burst Alert Telescope (BAT) Gamma-Ray Burst Catalog

    Science.gov (United States)

    Sakamoto, T.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2012-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts. (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples.. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T(sub 90) and T(sub 50) durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs.

  8. Stimulus induced bursts in severe postanoxic encephalopathy.

    Science.gov (United States)

    Tjepkema-Cloostermans, Marleen C; Wijers, Elisabeth T; van Putten, Michel J A M

    2016-11-01

    To report on a distinct effect of auditory and sensory stimuli on the EEG in comatose patients with severe postanoxic encephalopathy. In two comatose patients admitted to the Intensive Care Unit (ICU) with severe postanoxic encephalopathy and burst-suppression EEG, we studied the effect of external stimuli (sound and touch) on the occurrence of bursts. In patient A bursts could be induced by either auditory or sensory stimuli. In patient B bursts could only be induced by touching different facial regions (forehead, nose and chin). When stimuli were presented with relatively long intervals, bursts persistently followed the stimuli, while stimuli with short intervals (encephalopathy can be induced by external stimuli, resulting in stimulus-dependent burst-suppression. Stimulus induced bursts should not be interpreted as prognostic favourable EEG reactivity. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  10. Simulation of pulsed accidental energy release in a reactor core

    International Nuclear Information System (INIS)

    Ryshanskii, V.A.; Ivanov, A.G.; Uskov, A.A.

    1995-01-01

    At the present time the strength of the load-bearing members of VVER and fast reactors during a hypothetical accident is ordinarily investigated in model experiments [1]. A power burst during an accident is simulated by a nonnuclear exothermal reaction in water, which simulates the coolant and fills the model. The problem is to make the correct choice of the simulator of the accidental energy burst as an effective (i.e., sufficiently high working capacity) source of dangerous loads, corresponding to the conditions of an accident. What factors and parameters determine the energy release? The answers to these questions are contradictory

  11. Neutrino burst identification in underground detectors

    International Nuclear Information System (INIS)

    Fulgione, W.; Mengotti-Silva, N.; Panaro, L.

    1996-01-01

    We discuss the problem of neutrino burst identification in underground ν-telescopes. First the usual statistical analysis based on the time structure of the events is reviewed, with special attention to the statistical significance of burst candidates. Next, we propose a second level analysis that can provide independent confirmation of burst detection. This exploits the spatial distribution of the single events of a burst candidate, and uses the formalism of the entropy of information. Examples of both techniques are shown, based on the LVD experiment at Gran Sasso. (orig.)

  12. Swift: A gamma ray burst MIDEX

    International Nuclear Information System (INIS)

    Barthelmy, Scott

    2001-01-01

    Swift is a first of its kind multiwavelength transient observatory for gamma-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of gamma-ray bursts and their afterglows as well as using bursts to probe the early Universe. Swift will also perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field gamma-ray detector, will detect ∼1 gamma-ray burst per day with a sensitivity 5 times that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location in 20 to 70 seconds to determine 0.3-5.0 arcsec positions and perform optical, UV, and X-ray spectrophotometry. On-board measurements of redshift will also be done for hundreds of bursts. Swift will incorporate superb, low-cost instruments using existing flight-spare hardware and designs. Strong education/public outreach and follow-up programs will help to engage the public and astronomical community. Swift has been selected by NASA for development and launch in late 2003

  13. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during Its Most Prolific Activity

    Science.gov (United States)

    vanderHorst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Gogus, E,; Granot, J.; Watts, A. L.; Lin, L.; hide

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties.We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J15505418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E(sub peak) and the burst fluence and average flux. For the BB+BBfits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature.We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  14. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    of the accreted material, these bursts may be explained by either the unstable burning of a large pile of mixed hydrogen and helium, or the ignition of a thick pure helium layer. Long duration bursts are particularly expected at very low accretion rates and make possible to study the transition from a hydrogen......Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number......-rich bursting regime to a pure helium regime. Moreover, a handful of long bursts have shown, before the extended decay phase, an initial spike similar to a normal short X-ray burst. Such twofold bursts might be a sort of link between short and super-bursts, where the premature ignition of a carbon layer could...

  15. Bursting synchronization in scale-free networks

    International Nuclear Information System (INIS)

    Batista, C.A.S.; Batista, A.M.; Pontes, J.C.A. de; Lopes, S.R.; Viana, R.L.

    2009-01-01

    Neuronal networks in some areas of the brain cortex present the scale-free property, i.e., the neuron connectivity is distributed according to a power-law, such that neurons are more likely to couple with other already well-connected ones. Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Some pathological conditions are related with the synchronization of the bursting activity in a weak sense, meaning the adjustment of the bursting phase due to coupling. Hence it has been proposed that an externally applied time-periodic signal be applied in order to control undesirable synchronized bursting rhythms. We investigated this kind of intervention using a two-dimensional map to describe neurons with spiking-bursting activity in a scale-free network.

  16. BATSE/OSSE Rapid Burst Response

    National Research Council Canada - National Science Library

    Matz, S. M; Grove, J. E; Johnson, W. N; Kurfess, J. D; Share, G. H; Fishman, G. J; Meegan, Charles A

    1995-01-01

    ...) slew the OSSE detectors to burst locations determined on-board by BATSE. This enables OSSE to make sensitive searches for prompt and delayed post-burst line and continuum emission above 50 keV...

  17. Some polarization features of solar microwave bursts

    Energy Technology Data Exchange (ETDEWEB)

    Uralov, A M; Nefed' ev, V P [AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln

    1977-01-01

    Consequences of the thermal microwave burst model proposed earlier have been considered. According to the model the centimeter burst is generated at the heat propagation to the upper atmosphere. The polarization features of the burst are explained: a change of the polarization sign in a frequency range, a rapid change of the polarization sign in the development of a burst at a fixed frequency, a lack of time coincidence of the moments of the burst maximum of the polarization and of the total flux. From the model the consequences are obtained, which are still not confirmed by experiment. An ordinary-type wave prevails in the burst radiation, in the course of which the polarization degree falls on the ascending branch of bursts development. At the change of the polarization sign at the fixed frequency prior to the sign change an ordinary-type wave should be present in excess and later an extreordinary type wave.

  18. Gamma Ray Bursts-Afterglows and Counterparts

    Science.gov (United States)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  19. SGR J1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Van der Horst, A. J.; Finger, M. H. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, C. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gorgone, N. M. [Connecticut College, New London, CT 06320 (United States); Kaneko, Y.; Goegues, E.; Lin, L. [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Guiriec, S.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A. [University of Alabama, Huntsville, CSPAR, Huntsville, AL 35805 (United States); Granot, J. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Watts, A. L. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Bissaldi, E.; Gruber, D. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, 85748 Garching (Germany); Gehrels, N.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gibby, M. H.; Giles, M. M., E-mail: A.J.VanDerHorst@uva.nl [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2012-04-20

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E{sub peak} and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  20. Results of gap conductance tests in the power burst facility

    International Nuclear Information System (INIS)

    Garner, R.W.; Sparks, D.T.

    1977-01-01

    Light water reactor (LWR) fuel rod behavior studies are being conducted by the Thermal Fuels Behavior Program of EG and G Idaho, Inc. These studies are being performed under contract to the Energy Research and Development Adminstration at the Idaho National Engineering Laboratory (INEL), as part of the Nuclear Regulatory Commission's Water Reactor Safety Research Fuel Behavior Program. Experimental data for verification of analytical models developed to predict light water nuclear fuel rod behavior under normal and postulated accident conditions are being obtained from a variety of in-reactor and out-of-reactor experiments. This paper summarizes the results of tests performed in the Power Burst Facility (PBF) to obtain data from which the thermal response, gap conductance, and stored energy of LWR fuel rods can be determined. Primary objectives of the PBF gap conductance test program are (a) to obtain data on a variety of pressurized water reactor (PWR) and boiling water reactor (BWR) fuel rod designs, under a wide range of operating conditions, from which gap conductance values can be determined and (b) to evaluate experimentally the power oscillation method for measuring the gap conductance and thermal response of a fresh or burned LWR fuel rod. Tests have been performed with both irradiated and unirradiated PWR-type fuel and with fresh BWR-type fuel rods. Some PWR rod test results are described, and the thermal response data from BWR rod tests are discussed in greater detail. Comparisons are made of gap conductance values determined by the tests with analytically calculated values using the Fuel Rod Analysis Program-Transient (FRAP-T) computer code. These comparisons provide insight into both the experimental measurements methods and the validity of the gap conductance models

  1. The safety characteristics of the HTR 500 reactor plant

    International Nuclear Information System (INIS)

    Wachholz, W.

    1987-01-01

    The HTR is a reactor having a passive safety. It is equipped with the usual active engineered safety systems in simplified form. Due to its inherent safety characteristics and the burst-safe prestressed concrete reactor vessel activity containment is ensured even without the effect of active safety systems. Even in the event of extremely hypothetical accidents the effect on the environment is low enough so that evacuation or relocation of the population is not required. Therefore large-scale damage of agricultural land and industrially used areas is safely ruled out. Thus the site selection for this type of reactor is not restricted i.e. an HTR can be constructed near industrial and urban center. (author)

  2. THE FIVE YEAR FERMI/GBM MAGNETAR BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Collazzi, A. C. [SciTec, Inc., 100 Wall Street, Princeton, NJ 08540 (United States); Kouveliotou, C.; Horst, A. J. van der; Younes, G. A. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Kaneko, Y.; Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Lin, L. [François Arago Centre, APC, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris (France); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 43537 (Israel); Finger, M. H. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Chaplin, V. L. [School of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, TN 37232 (United States); Huppenkothen, D. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Watts, A. L. [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Kienlin, A. von [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H., E-mail: acollazzi@scitec.com [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2015-05-15

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550–5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  3. Fokker-Planck simulations of knock-on electron runaway avalanche and bursts in tokamaks

    International Nuclear Information System (INIS)

    Chiu, S.C.; Rosenbluth, M.N.; Harvey, R.W.; Chan, V.S.

    1998-01-01

    The avalanche of runaway electrons in an ohmic tokamak plasma triggered by knock-on collisions of traces of energetic electrons with the bulk electrons is simulated by the bounce averaged Fokker-Planck code, CQL3D. It is shown that even when the electric field is small for the production of Dreicer runaways, the knock-on collisions can produce significant runaway electrons in a fraction of a second at typical reactor parameters. The energy spectrum of these knock-on runaways has a characteristic temperature. The growth rate and temperature of the runaway distribution are determined and compared with theory. In simulations of pellet injection into high temperature plasmas, it is shown that a burst of Dreicer runaways may also occur depending on the cooling rate due to the pellet injection. Implications of these phenomena on disruption control in reactor plasmas are discussed. (author)

  4. Hierarchic Analysis Method to Evaluate Rock Burst Risk

    Directory of Open Access Journals (Sweden)

    Ming Ji

    2015-01-01

    Full Text Available In order to reasonably evaluate the risk of rock bursts in mines, the factors impacting rock bursts and the existing grading criterion on the risk of rock bursts were studied. By building a model of hierarchic analysis method, the natural factors, technology factors, and management factors that influence rock bursts were analyzed and researched, which determined the degree of each factor’s influence (i.e., weight and comprehensive index. Then the grade of rock burst risk was assessed. The results showed that the assessment level generated by the model accurately reflected the actual risk degree of rock bursts in mines. The model improved the maneuverability and practicability of existing evaluation criteria and also enhanced the accuracy and science of rock burst risk assessment.

  5. Observation of gamma-ray bursts with GINGA

    International Nuclear Information System (INIS)

    Murakami, Toshio; Fujii, Masami; Nishimura, Jun

    1989-01-01

    Gamma-ray Burst Detector System (GBD) on board the scientific satellite 'GINGA' which was launched on Feb. 5, 1987, was realized as an international cooperation between ISAS and LANL. It has recorded more than 40 Gamma-Ray Burst candidates during 20 months observation. Although many observational evidences were accumulated in past 20 years after the discovery of gamma-ray burst by LANL scientists, there are not enough evidence to determine the origin and the production mechanism of the gamma-ray burst. GBD consists of a proportional counter and a NaI scintillation counter so that it became possible to observe energy spectrum of the gamma-ray burst with high energy resolution over wide range of energy (1.5-380 keV) together with high time resolution. As the result of observation, the following facts are obtained: (1) A large fraction of observed gamma-ray bursts has a long X-ray tail after the harder part of gamma-ray emission has terminated. (2) Clear spectral absorption features with harmonic in energy was observed in some of the energy spectrum of gamma-ray bursts. These evidences support the hypothesis that the strongly magnetized neutron star is the origin of gamma-ray burst. (author)

  6. Swift Burst Alert Telescope (BAT) Instrument Response

    International Nuclear Information System (INIS)

    Parsons, A.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Hullinger, D.; Krimm, H.; Markwardt, C.; Tueller, J.; Fenimore, E.; Palmer, D.; Sato, G.; Takahashi, T.; Nakazawa, K.; Okada, Y.; Takahashi, H.; Suzuki, M.; Tashiro, M.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts, and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. This paper describes the spectral models and the ground calibration experiments used to determine the BAT response to an accuracy suitable for gamma-ray burst studies

  7. Fast Reactor Safety Research Program. Quarterly report, January--March 1976

    International Nuclear Information System (INIS)

    1976-07-01

    Progress is summarized in the following study areas: (1) prompt burst excursion, (2) post-accident heat removal (PAHR) debris bed, (3) fuel motion detection, (4) PAHR molten pool behavior, (5) equation-of-state high-temperature fuel vapor data, and (6) fuel motion detection equipment for the upgraded Annular Core Pulsed Reactor

  8. Dark gamma-ray bursts

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  9. BURST AND OUTBURST CHARACTERISTICS OF MAGNETAR 4U 0142+61

    Energy Technology Data Exchange (ETDEWEB)

    Göğüş, Ersin; Chakraborty, Manoneeta; Kaneko, Yuki [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Lin, Lin [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Roberts, Oliver J. [School of Physics, University College Dublin, Stillorgan Road, Belfield, Dublin 4 (Ireland); Gill, Ramandeep; Granot, Jonathan [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ranana 43537 (Israel); Horst, Alexander J. van der; Kouveliotou, Chryssa; Younes, George [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Watts, Anna L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE Amsterdam (Netherlands); Baring, Matthew [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Huppenkothen, Daniela [Center for Data Science, New York University, 726 Broadway, 7th Floor, NY 10003 (United States)

    2017-01-20

    We have compiled the most comprehensive burst sample from magnetar 4U 0142+61, comprising 27 bursts from its three burst-active episodes in 2011, 2012 and the latest one in 2015 observed with Swift /Burst Alert Telescope and Fermi /Gamma-ray Burst Monitor. Bursts from 4U 0142+61 morphologically resemble typical short bursts from other magnetars. However, 4U 0142+61 bursts are less energetic compared to the bulk of magnetar bursts. We uncovered an extended tail emission following a burst on 2015 February 28, with a thermal nature, cooling over a timescale of several minutes. During this tail emission, we also uncovered pulse peak phase aligned X-ray bursts, which could originate from the same underlying mechanism as that of the extended burst tail, or an associated and spatially coincident but different mechanism.

  10. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  11. Study of the consequences of the rupture of a pressure tube in the tank of a gas-cooled, heavy-water moderated reactor

    International Nuclear Information System (INIS)

    Hareux, F.; Roche, R.; Vrillon, B.

    1964-01-01

    Bursting of a pressure tube in the tank of a heavy water moderated-gas cooled reactor is an accident which has been studied experimentally about EL-4. A first test (scale 1) having shown that the burst of a tube does not cause the rupture of adjacent tubes, tests on the tank resistance have been undertaken with a very reduced scale model (1 to 10). It has been found that the tank can endure many bursts of tube without any important deformation. Transient pressure in the tank is an oscillatory weakened wave, the maximum of which (pressure peak) has been the object of a particular experimental study. It appears that the most important parameters which affect the pressure peak are; the pressure of the gas included in the bursting pressure tube, the volume of this gas, the mass of air included in the tank and the nature of the gas. A general method to calculate the pressure peak value in reactor tanks has been elaborated by direct application of experimental data. (authors) [fr

  12. Self-regulation of turbulence bursts and transport barriers

    International Nuclear Information System (INIS)

    Floriani, E; Ciraolo, G; Ghendrih, Ph; Sarazin, Y; Lima, R

    2013-01-01

    The interplay between turbulent bursts and transport barriers is analyzed with a simplified model of interchange turbulence in magnetically confined plasmas. The turbulent bursts spread into the transport barriers and, depending on the competing magnitude of the burst and stopping capability of the barrier, can burn through. Simulations of two models of transport barriers are presented: a hard barrier where interchange turbulence modes are stable in a prescribed region and a soft barrier with external plasma biasing. The response of the transport barriers to the non-linear perturbations of the turbulent bursts, addressed in a predator–prey approach, indicates that the barriers monitor an amplification factor of the turbulent bursts, with amplification smaller than one for most bursts and, in some cases, amplification factors that can significantly exceed unity. The weak barriers in corrugated profiles and magnetic structures, as well as the standard barriers, are characterized by these transmission properties, which then regulate the turbulent burst transport properties. The interplays of barriers and turbulent bursts are modeled as competing stochastic processes. For different classes of the probability density function (PDF) of these processes, one can predict the heavy tail properties of the bursts downstream from the barrier, either exponential for a leaky barrier, or with power laws for a tight barrier. The intrinsic probing of the transport barriers by the turbulent bursts thus gives access to the properties of the barriers. The main stochastic variables are the barrier width and the spreading distance of the turbulent bursts within the barrier, together with their level of correlation. One finds that in the case of a barrier with volumetric losses, such as radiation or particle losses as addressed in our present simulations, the stochastic model predicts a leaky behavior with an exponential PDF of escaping turbulent bursts in agreement with the simulation

  13. The γ-ray burst-detection system of SPI

    International Nuclear Information System (INIS)

    Lichti, G.G.; Georgii, R.; Kienlin, A. von; Schoenfelder, V.; Wunderer, C.; Jung, H.-J.; Hurley, K.

    2000-01-01

    The determination of precise locations of γ-ray bursts is a crucial task of γ-ray astronomy. Although γ-ray burst locations can be obtained nowadays from single experiments (BATSE, COMPTEL, BeppoSax) the location of bursts via triangulation using the interplanetary network is still important because not all bursts will be located precisely enough by these single instruments. In order to get location accuracies down to arcseconds via triangulation one needs long baselines. At the beginning of the next decade several spacecrafts which explore the outer planetary system (the Mars-Surveyor-2001 Orbiter and probably Ulysses) will carry γ-ray burst instruments. INTEGRAL as a near-earth spacecraft is the ideal counterpart for these satellites. The massive anticoincidence shield of the INTEGRAL-spectrometer SPI allows the measurement of γ-ray bursts with a high sensitivity. Estimations have shown that with SPI some hundred γ-ray bursts per year on the 5σ level can be measured. This is equivalent to the BATSE sensitivity. We describe the γ-ray burst-detection system of SPI, present its technical features and assess the scientific capabilities

  14. Balloon observation of gamma-ray burst

    International Nuclear Information System (INIS)

    Nishimura, Jun; Fujii, Masami; Yamagami, Takamasa; Oda, Minoru; Ogawara, Yoshiaki

    1978-01-01

    Cosmic gamma-ray burst is an interesting high energy astrophysical phenomenon, but the burst mechanism has not been well understood. Since 1975, long duration balloon flight has been conducted to search for gamma-ray bursts and to determine the source locations. A rotating cross-modulation collimator was employed to determine the locations of sources, and four NaI(Tl) scintillation counters were employed to detect hard X-ray with energy from 20 to 200 keV. The balloon light was performed at altitude of 8.3 mb from September 28, 1977, and the observation time of 79 hours was achieved. In this experiment, the monitor counter was not mounted. The count increase was observed at 16 h 22 m 31 s JST on October 1, 1977. The event disappeared after 1 sec. The total flux is estimated to be 1.6 x 10 -6 erg/cm 2 sec at the top of the atmosphere. When this event was observed, the solar-terrestrial environment was also quiet. Thus, this event was attributed to a small gamma-ray burst. Unfortunately, the duration of the burst was so short that the position of the burst source was not able to be determined. (Yoshimori, M.)

  15. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  16. Frequency of fast, narrow γ-ray bursts

    International Nuclear Information System (INIS)

    Norris, J.P.; Maryland Univ., College Park; Cline, T.L.; Desai, U.D.; Teegarden, B.J.

    1984-01-01

    The paper describes the existence of two γ-ray burst populations detected by the ISEE-3 experiment. Data from the distribution of 123 Venera 13 and 14 events (60 detected by both spacecraft) also suggests two γ-ray burst populations in each experiment sample, the domains separated with a minimum near 1 or 2 s. The authors point out that the results of the Goddard ISEE-3 γ-ray burst spectrometer actually enhance the appearance of two burst populations suggested in the Venera data. (author)

  17. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  18. Throughput Estimation Method in Burst ACK Scheme for Optimizing Frame Size and Burst Frame Number Appropriate to SNR-Related Error Rate

    Science.gov (United States)

    Ohteru, Shoko; Kishine, Keiji

    The Burst ACK scheme enhances effective throughput by reducing ACK overhead when a transmitter sends sequentially multiple data frames to a destination. IEEE 802.11e is one such example. The size of the data frame body and the number of burst data frames are important burst transmission parameters that affect throughput. The larger the burst transmission parameters are, the better the throughput under error-free conditions becomes. However, large data frame could reduce throughput under error-prone conditions caused by signal-to-noise ratio (SNR) deterioration. If the throughput can be calculated from the burst transmission parameters and error rate, the appropriate ranges of the burst transmission parameters could be narrowed down, and the necessary buffer size for storing transmit data or received data temporarily could be estimated. In this paper, we present a method that features a simple algorithm for estimating the effective throughput from the burst transmission parameters and error rate. The calculated throughput values agree well with the measured ones for actual wireless boards based on the IEEE 802.11-based original MAC protocol. We also calculate throughput values for larger values of the burst transmission parameters outside the assignable values of the wireless boards and find the appropriate values of the burst transmission parameters.

  19. Optimal Codes for the Burst Erasure Channel

    Science.gov (United States)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  20. Gamma-Ray Bursts: 4th Huntsville Symposium. Proceedings

    International Nuclear Information System (INIS)

    Meegan, C.A.; Preece, R.D.; Koshut, T.M.

    1998-01-01

    These proceedings represent papers presented at the Fourth Huntsville Gamma-Ray Bursts Symposium held in September, 1997 in Huntsville, Alabama, USA. This conference occurred at a crucial time in the history of the gamma-ray burst research. In early 1997, 30 years after the detection of the first gamma-ray burst by the Vela satellites, counterparts to bursts were finally detected at optical and radio wavelengths. The symposium attracted about 200 scientists from 16 countries. Some of the topics discussed include gamma-ray burst spectra, x-ray observations, optical observations, radio observations, host galaxies, shocks and afterglows and models of gamma-ray bursts. There were 183 papers presented, out of these, 16 have been abstracted for the Energy Science and Technology database

  1. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  2. Gamma-ray burst observations: the present situation

    International Nuclear Information System (INIS)

    Vedrenne, G.

    1984-01-01

    Recent results in gamma ray burst investigations concerning the spectral variability on a short time scale, precise locations, and the discovery of optical flashes in gamma ray burst positions on archival plates are presented. The implications of optical and X-ray observations of gamma ray burst error boxes are also discussed. 72 references

  3. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  4. Fine structure in fast drift storm bursts

    International Nuclear Information System (INIS)

    McConnell, D.; Ellis, G.R.A.

    1981-01-01

    Recent observations with high time resolution of fast drift storm (FDS) solar bursts are described. A new variety of FDS bursts characterised by intensity maxima regularly placed in the frequency domain is reported. Possible interpretations of this are mentioned and the implications of the short duration of FDS bursts are discussed. (orig.)

  5. Bursting neurons and ultrasound avoidance in crickets

    Directory of Open Access Journals (Sweden)

    Gary eMarsat

    2012-07-01

    Full Text Available Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes –bursts– that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing –the auditory receptor- already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  6. AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS

    International Nuclear Information System (INIS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-01-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ∼1000 km s -1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ∼80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  7. NICER Eyes on Bursting Stars

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    What happens to a neutron stars accretion disk when its surface briefly explodes? A new instrument recently deployed at the International Space Station (ISS) is now watching bursts from neutron stars and reporting back.Deploying a New X-Ray MissionLaunch of NICER aboard a Falcon 9 rocket in June 2017. [NASA/Tony Gray]In early June of 2017, a SpaceX Dragon capsule on a Falcon 9 rocket launched on a resupply mission to the ISS. The pressurized interior of the Dragon contained the usual manifest of crew supplies, spacewalk equipment, and vehicle hardware. But the unpressurized trunk of the capsule held something a little different: the Neutron star Interior Composition Explorer (NICER).In the two weeks following launch, NICER was extracted from the SpaceX Dragon capsule and installed on the ISS. And by the end of the month, the instrument was already collecting its first data set: observations of a bright X-ray burst from Aql X-1, a neutron star accreting matter from a low-mass binary companion.Impact of BurstsNICERs goal is to provide a new view of neutron-star physics at X-ray energies of 0.212 keV a window that allows us to explore bursts of energy that neutron stars sometimes emit from their surfaces.Artists impression of an X-ray binary, in which a compact object accretes material from a companion star. [ESA/NASA/Felix Mirabel]In X-ray burster systems, hydrogen- and helium-rich material from a low-mass companion star piles up in an accretion disk around the neutron star. This material slowly funnels onto the neutron stars surface, forming a layer that gravitationally compresses and eventually becomes so dense and hot that runaway nuclear fusion ignites.Within seconds, the layer of material is burned up, producing a burst of emission from the neutron star that outshines even the inner regions of the hot accretion disk. Then more material funnels onto the neutron star and the process begins again.Though we have a good picture of the physics that causes these bursts

  8. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2008-01-01

    of exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading...... up to such long bursts. Depending on the composition of the accreted material, these bursts may be explained by either the unstable burning of a large pile of mixed hydrogen and helium, or the ignition of a thick pure helium layer. Intermediate long bursts are particularly expected to occur at very...

  9. Determination of crystal and molecular structures of two complexes resulting from the reaction between bis (diethyl muconate) monocarbonyliron and monodentate nitrogenated heterocyclic ligands, by X-ray diffractometry

    International Nuclear Information System (INIS)

    Inumaru, A.T.

    1983-01-01

    The crystal structures of (diethylmuconate) (quinoline) dicarbonyliron and (diethyl muconate) (pyrazine) dicarbonyliron have been determined from diffractometric X-ray data using the heavy atom method. (Diethyl muconate) (quinoline) dicarbonyliron. C 21 H 21 O 6 NFe. Crystal system: triclinic; space group P1 sup(-); a=7.766(2), b=9.664(2), c=14.917(2)A sup(o), α=84.12(2), β=74.99(2), γ=76.54(2) sup(o), V=1050.6(5)A sup(o) 3 , Z=2, D sub(c)=1.382 Mg m -3 , lambda(M sub(o) K sub(α))=0.71073A sup(o), μ(M sub(o) K sub(α))=0.78mm -1 . The final R-factor was 0.058 for 1589 reflections with I>3σ(I). (Diethyl muconate) (pyrazine) dicarbonyliron. C 16 H 18 O 6 N 2 Fe. Crystal system: monoclinic; space group P2 1 /C; a=10.390(2), b=19.754(4), c=9.051(2)A sup(o), β=108.27(2) sup(o), V=1764(1)A sup(o) 3 , Z=4, D sub(c)=1.469 Mg m -3 , lambda(M sub(o) K sub(α))=0.71073A sup(o), μ(M sub(o) K sub(α))=0.98mm -1 . The final R-factor was 0.066 for 967 reflections with I>3σ(I). In both compunds the Fe sup(o) atom is penta coordinated in the form of a quadrangular pyramid, being that the nitrogen atom occupies the apical position in the pyrazine complex and one of the basal positions in the quinolinecase. (Author) [pt

  10. Observation of cosmic gamma ray burst by Hinotori

    International Nuclear Information System (INIS)

    Okudaira, Kiyoaki; Yoshimori, Masato; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma ray detecor (SGR) on Hinotori has no collimator, and the collimator of a hard X-ray monitor is not effective for gamma ray with energy more than 100 KeV. Accordingly, the detection system can detect cosmic gamma ray burst, and two bursts were observed. The first burst was detected on February 28, 1981, and the source of the burst was in the direction of 81 degree from Venus. The time profile and the spectrum were observed. In July 21, 1981, the second burst was detected. The time profile obtained with the SGR was compared with those of PVO (Pioneer Venus Orbiter) and LASL-ISEE. The time difference among the data of time profiles indicated that the source of the burst was not the sun. The spectrum was also measured. (Kato, T.)

  11. Advances in gamma-ray burst astronomy

    International Nuclear Information System (INIS)

    Cline, T.L.; Desai, U.D.

    1976-01-01

    Work at Goddard is presently being carried out in three major areas of gamma-ray burst research: (1) A pair of simultaneously operating 0.8-m 2 burst detectors were successfully balloon-borne at locations 800 miles apart on 9 May, 1975, each to atmospheric depths of 3 to 4 g cm -2 , for a 20-h period of coincident data coverage. This experiment investigates the size spectrum of bursts in the 10 -7 to 10 -6 erg cm -2 size region where dozens of events per day are expected on a -1.5 index integral power-law extrapolation. Considerable separation in latitude was used to avoid possible atmospheric and auroral secondary effects. Its results are not yet available. (2) A deep-space burst detector, the first spacecraft instrument built specifically for gamma-ray burst studies, was recently successfully integrated into the Helios-B space probe. Its use at distances of up to 2 AU will make possible the first high-resolution directional study of gamma-ray burst source locations. Similar modifications to several other space vehicles are also being prepared. (3) The gamma-ray instrument on the IMP-7 satellite is presently the most sensitive burst detector still operating in orbit. Its results have shown that all measured event-average energy spectra are consistent with being alike. Using this characteristic spectrum to select IMP-7 candidate events of smaller size than those detected using other spacecraft in coincidence, a size spectrum is constructed which fits the -1.5 index power law down to 2.5 x 10 -5 erg cm -2 per event, at an occurrence rate of about once per month. (Auth.)

  12. Study on cosmic gamma bursts in the ''KONUS'' experiment

    International Nuclear Information System (INIS)

    Mazets, E.P.; Golenetskij, S.V.; Il'inskij, V.N.; Panov, V.N.; Aptekar', R.L.; Gur'yan, Yu.A.; Sokolov, I.A.; Sokolova, Z.Ya.; Kharitonova, T.V.

    1979-01-01

    Made are the investigations of cosmic gamma bursts with the help of the ''Konus'' apparatus, positioned on the ''Venera 11'' and ''Venera 12'' automatic interplanetary stations. 37 gamma bursts have been recorded in the energy range from 50 to 150 keV during the observation period from September to December 1978. Time profiles of bursts on 4, 9 and 24.11.1978 are presented. For the most events the time of burst increase and decrease constitute parts and units of seconds. Differential energy spectra are measured for all recorded bursts. In many cases the spectrum shape is similar to the grade one with the 1.5-2.3 index. In a graphical form built up are the integral distributions of gamma bursts appearence frequency in dependence on their intensity and maximum capacity in the burst peak. Galaxy coordinates of the 17-teen bursts, for which a simple localization is possible, are put on the celestial sphere map. The type of the integral distributions and the source distribution about the celestial sphere show that the gamma burst sources are whithin the Galaxy

  13. A Novel QKD-based Secure Edge Router Architecture Design for Burst Confidentiality in Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-06-01

    The Optical Burst Switching (OBS) is an emergent result to the technology issue that could achieve a viable network in future. They have the ability to meet the bandwidth requisite of those applications that call for intensive bandwidth. The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. The concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution and quality of service (QoS). This paper proposes a framework based on QKD based secure edge router architecture design to provide burst confidentiality. The QKD protocol offers high level of confidentiality as it is indestructible. The design architecture was implemented in FPGA using diverse models and the results were taken. The results show that the proposed model is suitable for real time secure routing applications of the Optical burst switched networks.

  14. 3rd Interplanetary Network Gamma-Ray Burst Website

    Science.gov (United States)

    Hurley, Kevin

    1998-05-01

    We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.

  15. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hurley, K.; Briggs, M. S.; Kippen, R. M.; Kouveliotou, C.; Fishman, G.; Meegan, C.; Cline, T.; Trombka, J.; McClanahan, T.; Boynton, W.; Starr, R.; McNutt, R.; Boer, M.

    2011-01-01

    We present Interplanetary Network localization information for 343 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) between the end of the 4th BATSE catalog and the end of the Compton Gamma-Ray Observatory (CGRO) mission, obtained by analyzing the arrival times of these bursts at the Ulysses, Near Earth Asteroid Rendezvous (NEAR), and CGRO spacecraft. For any given burst observed by CGRO and one other spacecraft, arrival time analysis (or t riangulation ) results in an annulus of possible arrival directions whose half-width varies between 11 arcsec and 21 0 , depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the area of a factor of 20. When all three spacecraft observe a burst, the result is an error box whose area varies between 1 and 48,000 arcmin 2 , resulting in an average reduction of the BATSE error circle area of a factor of 87.

  16. Dynamic encoding of natural luminance sequences by LGN bursts.

    Directory of Open Access Journals (Sweden)

    Nicholas A Lesica

    2006-07-01

    Full Text Available In the lateral geniculate nucleus (LGN of the thalamus, visual stimulation produces two distinct types of responses known as tonic and burst. Due to the dynamics of the T-type Ca(2+ channels involved in burst generation, the type of response evoked by a particular stimulus depends on the resting membrane potential, which is controlled by a network of modulatory connections from other brain areas. In this study, we use simulated responses to natural scene movies to describe how modulatory and stimulus-driven changes in LGN membrane potential interact to determine the luminance sequences that trigger burst responses. We find that at low resting potentials, when the T channels are de-inactivated and bursts are relatively frequent, an excitatory stimulus transient alone is sufficient to evoke a burst. However, to evoke a burst at high resting potentials, when the T channels are inactivated and bursts are relatively rare, prolonged inhibitory stimulation followed by an excitatory transient is required. We also observe evidence of these effects in vivo, where analysis of experimental recordings demonstrates that the luminance sequences that trigger bursts can vary dramatically with the overall burst percentage of the response. To characterize the functional consequences of the effects of resting potential on burst generation, we simulate LGN responses to different luminance sequences at a range of resting potentials with and without a mechanism for generating bursts. Using analysis based on signal detection theory, we show that bursts enhance detection of specific luminance sequences, ranging from the onset of excitatory sequences at low resting potentials to the offset of inhibitory sequences at high resting potentials. These results suggest a dynamic role for burst responses during visual processing that may change according to behavioral state.

  17. Low-Frequency Type III Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Gopalswamy, Nat; Makela, Pertti

    2010-01-01

    We analyzed the coronal mass ejections (CMEs), flares, and type 11 radio bursts associated with a set of six low frequency (15 min) normally used to define these bursts. All but one of the type III bursts was not associated with a type 11 burst in the metric or longer wavelength domains. The burst without type 11 burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 min) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs were of similar speeds and the flares are also of similar size and duration. This study suggests that the type III burst duration may not be a good indicator of an SEP event.

  18. Sandia Pulsed Reactor Facility (SPRF) calculator-assisted pulse analysis and display system

    International Nuclear Information System (INIS)

    Estes, B.F.; Berry, D.T.

    1980-02-01

    Two solid-metal fast burst type reactors (SPR II and SPR III) are operated at the Sandia Pulsed Reactor Facility. Since startup of the reactors, oscilloscope traces have been used to record (by camera) the pulse (power) shape while log N systems have measured initial reactor period. Virtually no other pulse information is available. A decision was made to build a system that could collect the basic input data available from the reactor - fission chambers, photodiodes, and thermocouples - condition the signals and output the various parameters such as power, energy, temperature, period and lifetime on hard copy that would provide a record for operations personnel as well as the experimenter. Because the reactors operate in short time frames - pulse operation - it is convenient to utilize the classical Nordheim-Fuchs approximation of the diffusion equation to describe reactor behavior. This report describes the work performed to date in developing the calculator system and analytical models for computing the desired parameters

  19. New decoding methods of interleaved burst error-correcting codes

    Science.gov (United States)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  20. Flash photoionization of gamma-ray burst environments

    Science.gov (United States)

    Band, David L.; Hartmann, Dieter H.

    1992-01-01

    The H-alpha line emission that a flash-photoionized region emits is calculated. Archival transients, as well as various theoretical predictions, suggest that there may be significant ionizing flux. The limits on the line flux which might be observable indicate that the density must be fairly high for the recombination radiation to be observable. The intense burst radiation is insufficient to melt the dust which will be present in such a dense medium. This dust may attenuate the observable line emission, but does not attenuate the ionizing radiation before it ionizes the neutral medium surrounding the burst source. The dust can also produce a light echo. If there are indeed gamma-ray bursts in dense clouds, then it is possible that the burst was triggered by Bondi-Hoyle accretion from the dense medium, although it is unlikely on statistical grounds that all bursts occur in clouds.

  1. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  2. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international...... collaboration lead by the JEM-X team at the Danish National Space Center has proposed to exploit the improved sensitivity of the INTEGRAL instruments to investigate the observational properties and physics up to high energies of exceptional burst events lasting between a few tens of minutes and several hours....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive data...

  3. Cermet-fueled reactors for multimegawatt space power applications

    International Nuclear Information System (INIS)

    Cowan, C.L.; Armijo, J.S.; Kruger, G.B.; Palmer, R.S.; Van Hoomisson, J.E.

    1988-01-01

    The cermet-fueled reactor has evolved as a potential power source for a broad range of multimegawatt space applications. In particular, the fast spectrum reactor concept can be used to deliver 10s of megawatts of electric power for continuous, long term, unattended operation, and 100s of megawatts of electric power for times exceeding several hundred seconds. The system can also be utilized with either a gas coolant in a Brayton power conversion cycle, or a liquid metal coolant in a Rankine power conversion cycle. Extensive testing of the cermet fuel element has demonstrated that the fuel is capable of operating at very high temperatures under repeated thermal cycling conditions, including transient conditions which approach the multimegawatt burst power requirements. The cermet fuel test performance is reviewed and an advanced cermet-fueled multimegawatt nuclear reactor is described in this paper

  4. Frequency chirping during a fishbone burst

    International Nuclear Information System (INIS)

    Marchenko, V.S.; Reznik, S.N.

    2011-01-01

    It is shown that frequency chirping during fishbone activity can be attributed to the reactive torque exerted on the plasma during the instability burst, which slows down plasma rotation inside the q = 1 surface and reduces the mode frequency in the lab frame. Estimates show that the peak value of this torque can exceed the neutral beam torque in modern tokamaks. The simple line-broadened quasilinear burst model (Berk et al 1995 Nucl. Fusion 35 1661), properly adapted for the fishbone case, is capable of reproducing the key features of the bursting mode. (letter)

  5. Simulating X-ray bursts during a transient accretion event

    Science.gov (United States)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  6. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts ( 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  7. Near stellar sources of gamma-ray bursts

    OpenAIRE

    Luchkov, B. I.; Markin, P. D.

    2012-01-01

    Correlation analysis of gamma-ray burst coordinates and nearby stars, registered on 2008-2011, revealed 5 coincidences with angular accuracy better than 0.1 degree. The random probability is $7\\times 10^{-7}$, so evidencing that coincident stars are indeed gamma-ray burst sources. The proposed method should be continued in order to provide their share in common balance of cosmic gamma-ray bursts.

  8. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  9. Cosmology and the Subgroups of Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    A. Mészáros

    2011-01-01

    Full Text Available Both short and intermediate gamma-ray bursts are distributed anisotropically in the sky (Mészáros, A. et al. ApJ, 539, 98 (2000, Vavrek, R. et al. MNRAS, 391, 1 741 (2008. Hence, in the redshift range, where these bursts take place, the cosmological principle is in doubt. It has already been noted that short bursts should be mainly at redshifts smaller than one (Mészáros, A. et al. Gamma-ray burst: Sixth Huntsville Symp., AIP, Vol. 1 133, 483 (2009; Mészáros, A. et al. Baltic Astron., 18, 293 (2009. Here we show that intermediate bursts should be at redshifts up to three.

  10. Type III Radio Burst Duration and SEP Events

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Xie, H.

    2010-01-01

    Long-duration (>15 min), low-frequency (25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).

  11. Eddington-limited X-Ray Bursts as Distance Indicators. I. Systematic Trends and Spherical Symmetry in Bursts from 4U 1728-34

    Science.gov (United States)

    Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.

    2003-06-01

    We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.

  12. Detection of burst cans in the reactors cooled by gaseous phase; Detection des ruptures de gaine dans les reacteurs refroidis par phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Labeyrie, J; Roguin, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    In a nuclear reactor including the bars or plates cooled by a gaseous fluid, burst risks to occur in the sheath assuring the tightness separation between the cooling gas and the fissile materials. It is necessary to be able to detect the formation of these cracks as possible in order to avoid all risk of fission products release or any reaction of uranium to the contact of the refrigerating gas. It is however the increase of the radioactivity in the cooling gas due to the scattering of the fission products that permits to signal the apparition of a crack or to follow its evolution. It is possible to detect cracks of the order of the square millimeter. In this report, we will detail the principle and the realization of a device used for the surveillance of a natural uranium reactor cooled by air circulation. (M.B.) [French] Dans un reacteur nucleaire comportant des barres ou des plaques refroidies par un fluide gazeux des fissures risquent de se produire dans les gaines assurant la separation etanche entre le gaz de refroidissement et les materiaux fissiles. II est necessaire de pouvoir detecter la formation de ces fissures des que possible afin d'eviter tout risque de liberation de produits de fission ou de reaction de l'uranium au contact du gaz refrigerant. C'est cependant l'augmentation de la radioactivite du gaz de refroidissement due a la dispersion des produits de fission qui permet de signaler l'apparition d'une fissure ou de suivre son evolution. On peut ainsi detecter des fissures de l'ordre du millimetre carre. Dans ce rapport, nous detaillerons le principe et la realisation d'un appareil utilise pour la surveillance d'un reacteur a uranium naturel refroidi par circulation d'air. (M.B.)

  13. Bursts from the very early universe

    International Nuclear Information System (INIS)

    Silk, J.; Stodolsky, L.

    2006-01-01

    Bursts of weakly interacting particles such as neutrinos or even more weakly interacting particles such as wimps and gravitons from the very early universe would offer a much deeper 'look back time' to early epochs than is possible with photons. We consider some of the issues related to the existence of such bursts and their detectability. Characterizing the burst rate by a probability P per Hubble four-volume we find, for events in the radiation-dominated era, that the natural unit of description is the present intensity of the CMB times P. The existence of such bursts would make the observation of phenomena associated with very early times in cosmology at least conceptually possible. One might even hope to probe the transplanckian epoch if complexes more weakly interacting than the graviton can exist. Other conceivable applications include the potential detectability of the formation of 'pocket universes' in a multiverse

  14. Light Dawns on Dark Gamma-ray Bursts

    Science.gov (United States)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  15. Advanced methods for nuclear reactor gas laser coupling

    International Nuclear Information System (INIS)

    Miley, G.H.; Verdeyen, J.T.

    1978-06-01

    Research is described that led to the discovery of three nuclear-pumped lasers (NPLs) using mixtures of Ne--N 2 , He--Hg, and He or Ne with CO or CO 2 . The Ne--N 2 NPL was the first laser obtained with modest neutron fluxes from a TRIGA reactor (vs fast burst reactors used elsewhere in such work), the He--Hg NPL was the first visible nuclear-pumped laser, while the Ne--CO and He--CO 2 lasers are the first to provide energy storage on a millisecond time scale. Important potential applications of NPLs include coupling and power transmission from remote power stations such as nuclear plants in satellites and neutron-feedback operation of inertial confinement fusion plants

  16. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  17. THE FERMI –GBM THREE-YEAR X-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A. [CSPAR, SPA University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Connaughton, V.; Camero-Arranz, A.; Finger, M. H. [Universities Space Research Association, Huntsville, AL 35805 (United States); Beklen, E. [Department of Physics, Suleyman Demirel University, 32260, Isparta (Turkey); Wilson-Hodge, C. A. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  18. Discovery of the short gamma-ray burst GRB 050709.

    Science.gov (United States)

    Villasenor, J S; Lamb, D Q; Ricker, G R; Atteia, J-L; Kawai, N; Butler, N; Nakagawa, Y; Jernigan, J G; Boer, M; Crew, G B; Donaghy, T Q; Doty, J; Fenimore, E E; Galassi, M; Graziani, C; Hurley, K; Levine, A; Martel, F; Matsuoka, M; Olive, J-F; Prigozhin, G; Sakamoto, T; Shirasaki, Y; Suzuki, M; Tamagawa, T; Vanderspek, R; Woosley, S E; Yoshida, A; Braga, J; Manchanda, R; Pizzichini, G; Takagishi, K; Yamauchi, M

    2005-10-06

    Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.

  19. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the continuous-time Itô semi-martingale model in such a way that the fundamental arbitrage-free property is preserved......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  20. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    Directory of Open Access Journals (Sweden)

    Shan-chao Hu

    2017-01-01

    Full Text Available Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-induced stress and microseismic signals before the occurrence of fault-slip rock burst are proposed, and multiparameter integrated early warning methods including mining-induced stress and energy are established. Finally, pressure relief methods targeting large-diameter boreholes and coal seam infusion are presented in accordance with the occurrence mechanism of fault-slip rock burst. The research results have been successfully applied in working faces 2310 of the Suncun Coal Mine, and the safety of the mine has been enhanced. These research results improve the theory of fault-slip rock burst mechanisms and provide the basis for prediction and forecasting, as well as pressure relief, of fault-slip rock bursts.

  1. Limits of the memory coefficient in measuring correlated bursts

    Science.gov (United States)

    Jo, Hang-Hyun; Hiraoka, Takayuki

    2018-03-01

    Temporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.e., memory coefficient and burst size distribution. Here a burst size denotes the number of events in a bursty train detected for a given time window. Empirical analyses have revealed that the larger memory coefficient tends to be associated with the heavier tail of the burst size distribution. In particular, empirical findings in human activities appear inconsistent, such that the memory coefficient is close to 0, while burst size distributions follow a power law. In order to comprehend these observations, by assuming the conditional independence between consecutive interevent times, we derive the analytical form of the memory coefficient as a function of parameters describing interevent time and burst size distributions. Our analytical result can explain the general tendency of the larger memory coefficient being associated with the heavier tail of burst size distribution. We also find that the apparently inconsistent observations in human activities are compatible with each other, indicating that the memory coefficient has limits to measure the correlated bursts.

  2. Relativistic effects in gamma-ray bursts

    International Nuclear Information System (INIS)

    Eriksen, Erik; Groen, Oeyvind

    1999-01-01

    According to recent models of the sources of gamma-ray bursts the extremely energetic emission is caused by shells expanding with ultrarelativistic velocity. With the recent identification of optical sources at the positions of some gamma-ray bursts these ''fireball'' models have acquired an actuality that invites to use them as a motivating application when teaching special relativity. We demonstrate several relativistic effects associated with these models which are very pronounced due to the great velocity of the shell. For example a burst lasting for a month in the rest frame of an element of the shell lasts for a few seconds only, in the rest frame of our detector. It is shown how the observed properties of a burst are modified by aberration and the Doppler effect. The apparent luminosity as a function of time is calculated. Modifications due to the motion of the star away from the observer are calculated. (Author)

  3. Bursts from the very early universe

    Energy Technology Data Exchange (ETDEWEB)

    Silk, J. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Stodolsky, L. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: les@mppmu.mpg.de

    2006-07-27

    Bursts of weakly interacting particles such as neutrinos or even more weakly interacting particles such as wimps and gravitons from the very early universe would offer a much deeper 'look back time' to early epochs than is possible with photons. We consider some of the issues related to the existence of such bursts and their detectability. Characterizing the burst rate by a probability P per Hubble four-volume we find, for events in the radiation-dominated era, that the natural unit of description is the present intensity of the CMB times P. The existence of such bursts would make the observation of pheno associated with very early times in cosmology at least conceptually possible. One might even hope to probe the transplanckian epoch if complexes more weakly interacting than the graviton can exist. Other conceivable applications include the potential detectability of the formation of 'pocket universes' in a multiverse.

  4. Different types of bursting calcium oscillations in non-excitable cells

    International Nuclear Information System (INIS)

    Perc, Matjaz; Marhl, Marko

    2003-01-01

    In the paper different types of bursting Ca 2+ oscillations are presented. We analyse bursting behaviour in four recent mathematical models for Ca 2+ oscillations in non-excitable cells. Separately, regular, quasi-periodic, and chaotic bursting Ca 2+ oscillations are classified into several subtypes. The classification is based on the dynamics of separated fast and slow subsystems, the so-called fast-slow burster analysis. For regular bursting Ca 2+ oscillations two types of bursting are specified: Point-Point and Point-Cycle bursting. In particular, the slow passage effect, important for the Hopf-Hopf and SubHopf-SubHopf bursting subtypes, is explained by local divergence calculated for the fast subsystem. Quasi-periodic bursting Ca 2+ oscillations can be found in only one of the four studied mathematical models and appear via a homoclinic bifurcation with a homoclinic torus structure. For chaotic bursting Ca 2+ oscillations, we found that bursting patterns resulting from the period doubling root to chaos considerably differ from those appearing via intermittency and have to be treated separately. The analysis and classification of different types of bursting Ca 2+ oscillations provides better insight into mechanisms of complex intra- and intercellular Ca 2+ signalling. This improves our understanding of several important biological phenomena in cellular signalling like complex frequency-amplitude signal encoding and synchronisation of intercellular signal transduction between coupled cells in tissue

  5. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    International Nuclear Information System (INIS)

    Rosenthal, Murray Wilford

    2009-01-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  6. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  7. Bright x-ray flares in gamma-ray burst afterglows.

    Science.gov (United States)

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  8. Implications of fast radio bursts for superconducting cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yun-Wei [Institute of Astrophysics, Central China Normal University, 152 Luoyu Road, Wuhan 430079 (China); Cheng, Kwong-Sang [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Shiu, Gary; Tye, Henry, E-mail: yuyw@phy.ccnu.edu.cn, E-mail: hrspksc@hku.hk, E-mail: shiu@ust.hk, E-mail: iastye@ust.hk [Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  9. Implications of fast radio bursts for superconducting cosmic strings

    International Nuclear Information System (INIS)

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry

    2014-01-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch

  10. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  11. Pellet bed reactor for multi-modal space power

    International Nuclear Information System (INIS)

    Buden, D.; Williams, K.; Mast, P.; Mims, J.

    1987-01-01

    A review of forthcoming space power needs for both civil and military missions indicates that power requirements will be in the tens of megawatts. The electrical power requirements are envisioned to be twofold: long-duration lower power levels will be needed for station keeping, communications, and/or surveillance; short-duration higher power levels will be required for pulsed power devices. These power characteristics led to the proposal of a multi-modal space power reactor using a pellet bed design. Characteristics desired for such a multimegawatt reactor power source are standby, alert, and pulsed power modes; high-thermal output heat source (approximately 1000 MWt peak power); long lifetime station keeping power (10 to 30 years); high temperature output (1500 K to 1800 K); rapid-burst power transition; high reliability (above 95 percent); and stringent safety standards compliance. The proposed pellet bed reactor is designed to satisfy these characteristics

  12. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  13. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  14. Sources of type III solar microwave bursts

    Directory of Open Access Journals (Sweden)

    Zhdanov D.A.

    2016-06-01

    Full Text Available Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4–8 GHz spectropolarimeter, and SSRT, simultaneously with EUV data, made it possible to localize sources of III type microwave bursts in August 10, 2011 event within the entire frequency band of burst occurrence, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates, whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to those at other frequencies.

  15. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  16. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  17. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  18. Ballerina - pirouettes in search of gamma bursts

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Lund, Niels; Pedersen, Henrik

    1999-01-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty, Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are propo...... are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX....

  19. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and

  20. Chimera states in bursting neurons

    OpenAIRE

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2015-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e. disorder), coherent, chimera and multi-chimera states. Surprisingly, we find that chimera and multi-chimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is i...

  1. US Army Nuclear Burst Detection System (NBDS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1980-07-01

    The Nuclear Burst Detection System (NBDS) was developed to meet the Army requirements of an unattended, automatic nuclear burst reporting system. It provides pertinent data for battlefield commanders on a timely basis with high reliability

  2. X-ray bursts from GX 17+2: a new approach

    International Nuclear Information System (INIS)

    Sztajno, M.; Langmeier, A.; Truemper, J.; Pietsch, W.; Paradijs, J. van; Lewin, W.H.G.; Massachusetts Inst. of Tech., Cambridge

    1986-01-01

    The detection of two X-ray bursts from GX 17+2 is reported; a short one (lasting about 10s), and a long one (which lasted about 5 min). These bursts reached a maximum intensity of only about 40 per cent above the persistent flux level. Like previous long bursts observed from GX 17+2 the long burst showed little softening during its decay, and it is difficult at first glance to classify it as either a type 1 or a type 2 burst. Following the recent results of two of the authors a time-dependent spectral analysis of these bursts has been made. (author)

  3. Cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Hurley, K.

    1989-01-01

    This paper reviews the essential aspects of the gamma-ray burst (GRB) phenomenon, with emphasis on the more recent results. GRBs are introduced by their time histories, which provide some evidence for a compact object origin. The energy spectra of bursts are presented and they are seen to demonstrate practically unambiguously that the origin of some GRBs involves neutron stars. Counterpart searches are reviewed briefly and the statistical properties of bursters treated. This paper presents a review of the three known repeating bursters (the Soft Gamma Repeaters). Extragalactic and galactic models are discussed and future prospects are assessed

  4. Leader neurons in population bursts of 2D living neural networks

    International Nuclear Information System (INIS)

    Eckmann, J-P; Zbinden, Cyrille; Jacobi, Shimshon; Moses, Elisha; Marom, Shimon

    2008-01-01

    Eytan and Marom (2006 J. Neurosci. 26 8465-76) recently showed that the spontaneous bursting activity of rat neuron cultures includes 'first-to-fire' cells that consistently fire earlier than others. Here, we analyze the behavior of these neurons in long-term recordings of spontaneous activity of rat hippocampal and rat cortical neuron cultures from three different laboratories. We identify precursor events that may either subside ('aborted bursts') or can lead to a full-blown burst ('pre-bursts'). We find that the activation in the pre-burst typically has a first neuron ('leader'), followed by a localized response in its neighborhood. Locality is diminished in the bursts themselves. The long-term dynamics of the leaders is relatively robust, evolving with a half-life of 23-34 h. Stimulation of the culture alters the leader distribution, but the distribution stabilizes within about 1 h. We show that the leaders carry information about the identity of the burst, as measured by the signature of the number of spikes per neuron in a burst. The number of spikes from leaders in the first few spikes of a precursor event is furthermore shown to be predictive with regard to the transition into a burst (pre-burst versus aborted burst). We conclude that the leaders play a role in the development of the bursts and conjecture that they are part of an underlying sub-network that is excited first and then acts as a nucleation center for the burst

  5. Impulsive EUV bursts observed in C IV with OSO-8

    International Nuclear Information System (INIS)

    Grant Athay, R.; White, O.R.; Lites, B.W.

    1980-01-01

    Time sequences of profiles of the lambda 1548 line of C IV containing 51 EUV bursts observed in or near active regions are analyzed to determine the brightness. Doppler shift and line broadening characteristics of the bursts. The bursts have mean lifetimes of approximately 150s, and mean increases in brightness at burst maximum of four-fold as observed with a field of view of 2'' x 20''. Mean burst diameters are estimated to be 3'', or smaller. All but three of the bursts show Doppler shift with velocities sometimes exceeding 75 km s -1 ; 31 are dominated by red shifts and 17 are dominated by blue shifts. Approximately half of the latter group have red-shifted precursors. We interpret the bursts as prominence material, such as surges and coronal rain, moving through the field of view of the spectrometer. (orig.)

  6. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    OpenAIRE

    Hu, Shan-chao; Tan, Yun-liang; Ning, Jian-guo; Guo, Wei-Yao; Liu, Xue-sheng

    2017-01-01

    Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-i...

  7. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Jing; Goldreich, Peter, E-mail: jingluan@caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-04-20

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10{sup 3} pc cm{sup –3}. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period.

  8. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Luan, Jing; Goldreich, Peter

    2014-01-01

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10 3 pc cm –3 . Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period

  9. IDENTIFICATION OF BURSTING WATER MASER FEATURES IN ORION KL

    International Nuclear Information System (INIS)

    Hirota, Tomoya; Honma, Mareki; Kim, Mi Kyoung; Kobayashi, Hideyuki; Shibata, Katsunori M.; Tsuboi, Masato; Fujisawa, Kenta; Kawaguchi, Noriyuki; Imai, Hiroshi; Omodaka, Toshihiro; Shimoikura, Tomomi; Yonekura, Yoshinori

    2011-01-01

    In 2011 February, a burst event of the H 2 O maser in Orion KL (Kleinmann-Low object) has started after a 13 year silence. This is the third time such phenomena has been detected in Orion KL, followed by the events in 1979-1985 and 1998. We have carried out astrometric observations of the bursting H 2 O maser features in Orion KL with the VLBI Exploration of Radio Astrometry (VERA), a Japanese very long baseline interferometry network dedicated for astrometry. The total flux of the bursting feature at the local standard of rest (LSR) velocity of 7.58 km s -1 reaches 4.4 x 10 4 Jy in 2011 March. The intensity of the bursting feature is three orders of magnitude larger than that of the same velocity feature in the quiescent phase in 2006. Two months later, another new feature appears at the LSR velocity of 6.95 km s -1 in 2011 May, separated by 12 mas north of the 7.58 km s -1 feature. Thus, the current burst occurs at two spatially different features. The bursting masers are elongated along the northwest-southeast direction as reported in the previous burst in 1998. We determine the absolute positions of the bursting features for the first time ever with a submilliarcsecond (mas) accuracy. Their positions are coincident with the shocked molecular gas called the Orion Compact Ridge. We tentatively detect the absolute proper motions of the bursting features toward the southwest direction. It is most likely that the outflow from the radio source I or another young stellar object interacting with the Compact Ridge is a possible origin of the H 2 O maser burst.

  10. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah

    2015-09-01

    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  11. Thalamic neuron models encode stimulus information by burst-size modulation.

    Science.gov (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  12. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  13. The effect of oxygen on the failure of reactor fuel sheaths during a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Ferner, J.; Rosinger, H.E.

    1983-09-01

    The failure model for Zircaloy-4 reactor fuel sheaths was used to study the effect of steam oxidation on sheath burst strain. The model, in the form of a computer program called BURST-3, was used to calculate burst strain for a Zircaloy-4 sheath under arbitrary pressure and temperature sequences in an oxidizing (steam) atmosphere. In particular, BURST-3 was used in a parametric study to predict the sheath behaviour in steam as compared to an inert atmosphere, the effect of heating rate, and the effect of circumferential temperature variations on burst strain. It was found that fuel sheath oxidation, which decreases burst strain, becomes increasingly important with increasing temperature and/or time. An effective oxygen concentration of greater than 0.27 wt. percent will cause the sheath to fail with a negligible strain. The hottest region of a sheath will have the highest oxygen concentration, the largest localized strain, and will be the site of failure. The model predictions were compared to experimental data in the range 900 to 1600 K. Agreement between theory and experiment for all three heating rates (5, 25, and 100 K.s -1 ) was very good

  14. ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?

    Energy Technology Data Exchange (ETDEWEB)

    Boër, M.; Gendre, B. [CNRS-ARTEMIS, Boulevard de l' Observatoire, CS 34229, 06304 Nice Cedex 4 (France); Stratta, G., E-mail: michel.boer@unice.fr [Università degli Studi di Urbino Carlo Bo, I-61029 Urbino (Italy)

    2015-02-10

    The discovery of a number of gamma-ray bursts (GRBs) with duration exceeding 1000 s has opened the debate on whether these bursts form a new class of sources, the so-called ultra-long GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. Using the long GRB sample detected by Swift, we investigate the statistical properties of long GRBs and compare them with the ultra-long burst properties. We compute the burst duration of long GRBs using the start epoch of the so-called ''steep decay'' phase detected with Swift/XRT. We discuss also the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 s, for which a Wolf-Rayet star progenitor is usually invoked. Together with the presence of a thermal emission component we interpret this result as indication that the usual long GRB progenitor scenario cannot explain the extreme duration of ultra-long GRBs, their energetics, as well as the mass reservoir and size that can feed the central engine for such a long time.

  15. Galactic distribution of X-ray burst sources

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Hoffman, J.A.; Doty, J.; Clark, G.W.; Swank, J.H.; Becker, R.H.; Pravdo, S.H.; Serlemitsos, P.J.

    1977-01-01

    It is stated that 18 X-ray burst sources have been observed to date, applying the following definition for these bursts - rise times of less than a few seconds, durations of seconds to minutes, and recurrence in some regular pattern. If single burst events that meet the criteria of rise time and duration, but not recurrence are included, an additional seven sources can be added. A sky map is shown indicating their positions. The sources are spread along the galactic equator and cluster near low galactic longitudes, and their distribution is different from that of the observed globular clusters. Observations based on the SAS-3 X-ray observatory studies and the Goddard X-ray Spectroscopy Experiment on OSO-9 are described. The distribution of the sources is examined and the effect of uneven sky exposure on the observed distribution is evaluated. It has been suggested that the bursts are perhaps produced by remnants of disrupted globular clusters and specifically supermassive black holes. This would imply the existence of a new class of unknown objects, and at present is merely an ad hoc method of relating the burst sources to globular clusters. (U.K.)

  16. On Burst Detection and Prediction in Retweeting Sequence

    Science.gov (United States)

    2015-05-22

    We conduct a comprehensive empirical analysis of a large microblogging dataset collected from the Sina Weibo and report our observations of burst...whether and how accurate we can predict bursts using classifiers based on the extracted features. Our empirical study of the Sina Weibo data shows the...feasibility of burst prediction using appropriately extracted features and classic classifiers. 1 Introduction Microblogging, such as Twitter and Sina

  17. LAT Onboard Science: Gamma-Ray Burst Identification

    International Nuclear Information System (INIS)

    Kuehn, Frederick; Hughes, Richard; Smith, Patrick; Winer, Brian; Bonnell, Jerry; Norris, Jay; Ritz, Steven; Russell, James

    2007-01-01

    The main goal of the Large Area Telescope (LAT) onboard science program is to provide quick identification and localization of Gamma Ray Bursts (GRB) onboard the LAT for follow-up observations by other observatories. The GRB identification and localization algorithm will provide celestial coordinates with an error region that will be distributed via the Gamma ray burst Coordinate Network (GCN). We present results that show our sensitivity to bursts as characterized using Monte Carlo simulations of the GLAST observatory. We describe and characterize the method of onboard track determination and the GRB identification and localization algorithm. Onboard track determination is considerably different than in the on-ground case, resulting in a substantially altered point spread function. The algorithm contains tunable parameters which may be adjusted after launch when real bursts characteristics at very high energies have been identified

  18. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  19. Multifrequency Observations of Gamma-Ray Burst

    OpenAIRE

    Greiner, J.

    1995-01-01

    Neither a flaring nor a quiescent counterpart to a gamma-ray burst has yet been convincingly identified at any wavelength region. The present status of the search for counterparts of classical gamma-ray bursts is given. Particular emphasis is put on the search for flaring counterparts, i.e. emission during or shortly after the gamma-ray emission.

  20. Gamma Ray Bursts and the Birth of Black Holes

    Science.gov (United States)

    Gehrels, Neil

    2009-01-01

    Black holes have been predicted since the 1940's from solutions of Einstein's general relativity field equation. There is strong evidence of their existence from astronomical observations, but their origin has remained an open question of great interest. Gamma-ray bursts may the clue. They are powerful explosions, visible to high redshift, and appear to be the birth cries of black holes. The Swift and Fermi missions are two powerful NASA observatories currently in orbit that are discovering how gamma-ray bursts work. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are tremendously luminous and are providing a new tool to study the high redshift universe. One Swift burst at z=8.3 is the most distant object known in the universe. The talk will present the latest gamma-ray burst results from Swift and Fermi and will highlight what they are teaching us about black holes and jet outflows.

  1. Observational properties of cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Mazets, E.P.

    1986-01-01

    A brief overview of the major observational results obtained in gamma-ray burst studies is presented. Also discussed is to what extent the thermonuclear model, which appears at present to be the most plausible, can account for the observed properties of the bursts. The investigation of gamma-ray bursts should cover observations of the time histories of events, energy spectra, and their variablility, source localization, and inspection of the localization regions during the active and quiescent phases of the source in other wavelengths, as well as, evaluation of the statistical distributions of the data obtained

  2. Hydraulic burst tests at elevated temperatures on Zircaloy cladding from fuel rods irradiated in the Winfrith SGHWR

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.

    1980-09-01

    Closed-end hydraulic burst tests have been carried out at 613K on lengths of cladding cut from fuel rods that had been irradiated in the SGHWR to 25 n/m 2 . The effects of reactor exposure on the mechanical properties of the Zircaloy cladding, initially in the stress-relieved and fully recrystallised conditions, have been evaluated from measurements of the 0.2% proof stress, the ultimate burst stress, the total circumferential elongation and the reduction in wall thickness at fracture. It is shown that after irradiation, the measured strength properties of stress-relieved cladding remained higher than for that in the fully recrystallised condition, although the large differences observed before irradiation were considerably reduced. The irradiation-induced increase in proof stress measured during these tests was compared with US results from uniaxial tensile tests and, after correcting for the effect of stress-ratio, it is concluded that close agreement exists between the two sets of data for Zircaloy in the fully recrystallised condition. In contrast, the agreement for stress-relieved Zircaloy is less good, although the maximum increase in proof stress after high neutron doses for this material is similar for data from the two sources. After irradiation, the ductility of fully recrystallised Zircaloy remained higher than that of stress-relieved material and there was no evidence to suggest that a serious loss of ductility had occurred for Zircaloy in either condition of heat-treatment as a result of reactor exposure. (author)

  3. Heuristic burst detection method using flow and pressure measurements

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Roer, Van de M.; Rietveld, L.C.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst

  4. IGR J17254-3257, a new bursting neutron star

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2007-01-01

    Aims. The study of the observational properties of uncommonly long bursts from low luminosity sources is important when investigating the transition from a hydrogen - rich bursting regime to a pure helium regime and from helium burning to carbon burning as predicted by current burst theories. On ...

  5. The development of a burst criterion for zircaloy fuel cladding under LOCA conditions

    International Nuclear Information System (INIS)

    Neitzel, H.J.; Rossinger, H.E.

    1980-02-01

    A burst criterion model, which assumes that deformation is controlled by steady-state creep, has been developed for a thin-walled cladding, in this case Zircaloy-4, subjected to a differential pressure and high temperature. The creep equation is integrated to obtain a burst time at the singularity of the strain. Once the burst time is known, the burst temperature and burst pressure can be calculated from the known temperature and pressure histories. A further relationship between burst stress and burst temperature is used to calculate the burst strain. Comparison with measured burst data shows good agreement between theory and experiment was found that, if the heating rate is constant, the burst temperature increases with decreasing stress, and that, if the stress level is constant, the burst temperature increases with increasing heating rate. It was also found that anisotropy alters the burst temperature and burst strain, and that test conditions in the α-Zr temperature range have no influence on the burst data. (auth)

  6. Bursts generate a non-reducible spike-pattern code

    Directory of Open Access Journals (Sweden)

    Hugo G Eyherabide

    2009-05-01

    Full Text Available On the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. Using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli. The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. We demonstrate that bursts with different spike counts encode different stimulus features, such that about 20% of the transmitted information corresponds to discriminating between different features, and the remaining 80% is used to allocate these features in time. In this spike-pattern code, the "what" and the "when" of the stimuli are encoded in the duration of each burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect similar findings also for other neural systems.

  7. Internally consistent gamma ray burst time history phenomenology

    International Nuclear Information System (INIS)

    Cline, T.L.

    1985-01-01

    A phenomenology for gamma ray burst time histories is outlined. Order of their generally chaotic appearance is attempted, based on the speculation that any one burst event can be represented above 150 keV as a superposition of similarly shaped increases of varying intensity. The increases can generally overlap, however, confusing the picture, but a given event must at least exhibit its own limiting characteristic rise and decay times if the measurements are made with instruments having adequate temporal resolution. Most catalogued observations may be of doubtful or marginal utility to test this hypothesis, but some time histories from Helios-2, Pioneer Venus Orbiter and other instruments having one-to several-millisecond capabilities appear to provide consistency. Also, recent studies of temporally resolved Solar Maximum Mission burst energy spectra are entirely compatible with this picture. The phenomenology suggested here, if correct, may assist as an analytic tool for modelling of burst processes and possibly in the definition of burst source populations

  8. What can NuSTAR do for X-ray bursts?

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Tomsick, John; Chakrabarty, Deepto

    2012-01-01

    burning are ejected in the burst expansion wind. We have investigated the possibility of observing with NuSTAR some X-ray bursters selected for their high burst rate and trend to exhibit so-called superexpansion bursts. Our main ambition is to detect the photoionization edges associated with the ejected...

  9. Effect of wear on the burst strength of l-80 steel casing

    International Nuclear Information System (INIS)

    Irawan, S; Bharadwaj, A M; Temesgen, B; Karuppanan, S; Abdullah, M Z B

    2015-01-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis. (paper)

  10. Bubble bursting at an interface

    Science.gov (United States)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  11. The development of a burst criterion for Zircaloy fuel cladding under LOCA conditions

    International Nuclear Information System (INIS)

    Neitzel, H.J.; Rosinger, H.E.

    1980-10-01

    A burst criterion model, which assumes that deformation is controlled by steady-state creep, has been developed for a thin-walled cladding, in this case Zircaloy-4, subjected to a differential pressure and high temperature. The creep equation is integrated to obtain a burst time at the singularity of the strain. Once that urst time is known, the burst temperature and burst pressure can be calculated from the known temperature and pressure histories. A further relationship between burst stress and burst temperature is used to calculate the burst strain. Comparison with measured burst data shows good agreement between theory and experiment. It was found that, if the heating rate is constant, the burst temperature increases with decreasing stress, and that, if the stress level is constant, the burst temperature increases with increasing heating rate. It was also found that anisotropy alters the burst temperature and burst strain, and that thest conditions in the α-Zr temperature range have no influence on the burst data. (orig.) [de

  12. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    Science.gov (United States)

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve

  13. Voltage interval mappings for an elliptic bursting model

    OpenAIRE

    Wojcik, Jeremy; Shilnikov, Andrey

    2013-01-01

    We employed Poincar\\'e return mappings for a parameter interval to an exemplary elliptic bursting model, the FitzHugh-Nagumo-Rinzel model. Using the interval mappings, we were able to examine in detail the bifurcations that underlie the complex activity transitions between: tonic spiking and bursting, bursting and mixed-mode oscillations, and finally, mixed-mode oscillations and quiescence in the FitzHugh-Nagumo-Rinzel model. We illustrate the wealth of information, qualitative and quantitati...

  14. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  15. Observation of L-bursts of Jupiter decameter waves

    International Nuclear Information System (INIS)

    Imai, Kazumasa; Tomisawa, Ichiro

    1978-01-01

    The Jupiter decameter waves are the only information source which can be obtained on the earth for the investigation of dynamics concerning the generation of plasma waves in the magnetosphere of Jupiter. The emission of Jupiter decameter waves is modulated by the satellite Io considerably. It is observed that the emission of decameter waves fluctuated much in course of time. The duration time of bursts is 1 to 10 sec and 1 to 50 msec for L-bursts and S-bursts, respectively. The simultaneous observations were conducted at two locations from August, 1977, and at three locations from December, 1977, for searching the source of L-bursts. The relation between the appearance frequency of L-bursts and S-bursts and Io phase and system 3 longitude is explained. The observation points were Sugadaira, Chofu and Toyokawa, The minimum detectable flux density by the wave receiving network is 10 -21 W/m 2 .Hz. Concerning the observed results, the locations of observed events on the Io phase and the system 3 longitude are shown. The analytical results on the L-bursts of the main source and the early source are explained, taking ten events. The analysed dynamic cross-correlation and the spectrum analysis of the decameter intensity are shown. The relation between the origin and the emission mechanism was investigated, considering the observed data and the evaluation mentioned above for the main source and early source, and the clue was obtained to solve the riddle of emission mechanism. (Nakai, Y.)

  16. Detection of gamma-ray bursts from Andromeda

    International Nuclear Information System (INIS)

    Bulik, Tomasz; Coppi, Paolo S.; Lamb, Donald Q.

    1996-01-01

    If gamma-ray bursts originate in a corona around the Milky Way, it should also be possible to detect them from a similar corona around Andromeda. Adopting a simple model of high velocity neutron star corona, we evaluate the ability of instruments on existing missions to detect an excess of bursts toward Andromeda. We also calculate the optimal properties of an instrument designed to detect such an excess. We find that if the bursts radiate isotropically, an experiment with a sampling distance d max > or approx. 500 kpc could detect a significant excess of bursts in the direction of Andromeda in a few years of observation. If the radiation is beamed along the neutron star's direction of motion, an experiment with d max > or approx. 800 kpc would detect such an excess in a similar amount of time, provided that the width of the beam is greater than 10 deg. Lack of an excess toward Andromeda would therefore be compelling evidence that the bursts are cosmological in origin if made by an instrument at least 50 times more sensitive than BATSE, given current constraints on Galactic corona models. Comparisons with detailed dynamical calculations of the spatial distribution of high velocity neutron stars in the coronae around the Milky Way and Andromeda confirm these conclusions

  17. Scientific Applications Performance Evaluation on Burst Buffer

    KAUST Repository

    Markomanolis, George S.

    2017-10-19

    Parallel I/O is an integral component of modern high performance computing, especially in storing and processing very large datasets, such as the case of seismic imaging, CFD, combustion and weather modeling. The storage hierarchy includes nowadays additional layers, the latest being the usage of SSD-based storage as a Burst Buffer for I/O acceleration. We present an in-depth analysis on how to use Burst Buffer for specific cases and how the internal MPI I/O aggregators operate according to the options that the user provides during his job submission. We analyze the performance of a range of I/O intensive scientific applications, at various scales on a large installation of Lustre parallel file system compared to an SSD-based Burst Buffer. Our results show a performance improvement over Lustre when using Burst Buffer. Moreover, we show results from a data hierarchy library which indicate that the standard I/O approaches are not enough to get the expected performance from this technology. The performance gain on the total execution time of the studied applications is between 1.16 and 3 times compared to Lustre. One of the test cases achieved an impressive I/O throughput of 900 GB/s on Burst Buffer.

  18. Physical characterization of the Skua fast burst assembly

    International Nuclear Information System (INIS)

    Paternoster, R.; Bounds, J.; Sanchez, R.; Miko, D.

    1994-01-01

    In this paper we discuss the system design and ongoing efforts to characterize the machine physics and operating properties of the Skua fast burst assembly. The machine is currently operating up to prompt critical while we await approval for super-prompt burst operations. Efforts have centered on characterizing neutron kinetic properties, comparing calculated and measured temperature coefficients and power distributions, improving the burst reproducibility, examining the site-wide dose characteristics, and fitting the machine with cooling and filtration systems

  19. Multi-Index Monitoring and Evaluation on Rock Burst in Yangcheng Mine

    Directory of Open Access Journals (Sweden)

    Yunliang Tan

    2015-01-01

    Full Text Available Based on the foreboding information monitoring of the energy released in the developing process of rock burst, prediction system for rock burst can be established. By using microseismic method, electromagnetic radiation method, and drilling bits method, rock burst in Yangcheng Mine was monitored, and a system of multi-index monitoring and evaluation on rock burst was established. Microseismic monitoring and electromagnetic radiation monitoring were early warning method, and drilling bits monitoring was burst region identification method. There were three identifying indexes: silence period in microseismic monitoring, rising period of the intensity, and rising period of pulse count in electromagnetic radiation monitoring. If there is identified burst risk in the workface, drilling bits method was used to ascertain the burst region, and then pressure releasing methods were carried out to eliminate the disaster.

  20. Preliminary reactor physics calculations for Exxon LWR fuel testing in the power burst facility

    International Nuclear Information System (INIS)

    Olson, W.O.; Nigg, D.W.

    1981-05-01

    The PFB reactor is being considered as an irradiation facility to test LWR fuel rods for Exxon Nuclear Company. Requested test conditions are 18 kW/ft axial peak steady state power in 2.5% initial enrichment, 20,000 MWd/Tu exposed rods. Multigroup transport theory calculations (S/sub n/ and Monte Carlo) showed that this was unattainable in the standard PBF test loop. Thus, a flux multiplier was developed in the form of a Zr-2-clad 0.15-inch thick cylindrical shell of 35% enriched, 88% T.D. UO 2 replacing the flow divider, surrounding the rod within the in-pile tube in PFB. With this flux multiplier installed and assuming an average water density of 0.86 g/cm 3 within the test loop, a Figure of Merit (FOM) for a single-rod test assembly of 0.86 kW/ft-MW +- 5% (at 95% confidence level) was calculated. This FOM is the axial peak linear test rod power per megawatt of reactor power. A reactor power of about 21 megawatts will therefore be required to supply the requested linear test rod axial peak heating rate of 18 kW/ft

  1. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    International Nuclear Information System (INIS)

    Burns, Eric; Briggs, Michael S.; Connaughton, Valerie; Zhang, Bin-Bin; Lien, Amy; Goldstein, Adam; Pelassa, Veronique; Troja, Eleonora

    2016-01-01

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors

  2. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Eric; Briggs, Michael S. [University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Connaughton, Valerie [Universities Space Research Association, Science and Technology Institute, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Zhang, Bin-Bin [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Lien, Amy [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Goldstein, Adam [NASA Postdoctoral Program, Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pelassa, Veronique [Smithsonian Astrophysical Observatory, P.O. Box 97, Amado, AZ 85645 (United States); Troja, Eleonora, E-mail: eb0016@uah.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-20

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors.

  3. Swift-BAT: The First Year of Gamma-Ray Burst Detections

    Science.gov (United States)

    Krimm, Hans A.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift has been detecting gamma-ray bursts (GRBs) since Dec. 17,2004 and automated burst alerts have been distributed since Feb. 14,2005. Since commissioning the BAT has triggered on more than 100 GRBs, nearly all of which have been followed up by the narrow-field instruments on Swift through automatic repointing, and by ground and other satellite telescopes after rapid notification. Within seconds of a trigger the BAT produces and relays to the ground a position good to three arc minutes and a four channel light curve. A full ten minutes of event data follows on subsequent ground station passes. The burst archive has allowed us to determine ensemble burst parameters such as fluence, peak flux and duration. An overview of the properties of BAT bursts and BAT'S performance as a burst monitor will be presented in this talk. BAT is a coded aperture imaging system with a wide (approx.2 sr) field of view consisting of a large coded mask located 1 m above a 5200 cm2 array of 32.768 CdZnTe detectors. All electronics and other hardware systems on the BAT have been operating well since commissioning and there is no sign of any degradation on orbit. The flight and ground software have proven similarly robust and allow the real time localization of all bursts and the rapid derivation of burst light curves, spectra and spectral fits on the ground.

  4. Frequency dependent characteristics of solar impulsive radio bursts

    International Nuclear Information System (INIS)

    Das, T.K.; Das Gupta, M.K.

    1983-01-01

    An investigation was made of the impulsive radio bursts observed in the frequency range 0.245 to 35 GHz. Important results obtained are: (i) Simple type 1 bursts with intensities 0 to 10 f.u. and simple type 2 bursts with intensities 10 to 500 f.u. are predominant in the frequency ranges 1.415 to 4.995 GHz and 4.995 to 8.8 GHz, respectively; (ii) With maxima around 2.7 GHz and 4 GHz for the first and second types respectively, the durations of the radio bursts decrease gradually both towards lower and higher frequencies; (iii) As regards occurrences, the first type dominates in the southern solar hemisphere peaking around 8.8 GHz, whereas the second type favours the north with no well-defined maximum in any frequency; (iv) Both types prefer the eastern hemisphere, the peak occurrences being around 8.8 GHz and 5 GHz for the two successive types, respectively; (c) The spectra of impulsive radio bursts are generally of the inverted U-type with the maximum emission intensity between 5 and 15 GHz. (author)

  5. Ion burst event in the earth's dayside magnetosheath

    International Nuclear Information System (INIS)

    Paschalidis, N.P.; Krimigis, S.M.; Sibeck, D.G.; McEntire, R.W.; Zanetti, L.J.; Sarris, E.T.; Christon, S.P.

    1991-01-01

    The MEPA instrument on the AMPTE/CCE Spacecraft provided ion angular distributions as rapidly as every 6 sec for H, He, and O at energies of 10 keV to 2 MeV in the dayside magnetosheath within 8.75 R E , the CCE apogee. In this report the authors discuss a burst of energetic particles in the subsolar magnetosheath and its association with rapid changes in the local magnetic field direction in such a way that the magnetic field connected the spacecraft to the magnetopause during the enhancement. They find that magnetosheath angular distributions outside the burst peaked at 90 degree pitch angles, whereas during the burst they exhibited field aligned streaming either parallel or antiparallel to the magnetic field combined with a clear earthward gradient. The clear earthward gradients at E ≥ 10 KeV, the streaming, and the slope change in the burst-time magnetosheath spectrum at ∼10 KeV suggest magnetospheric source for the burst-time ≥ 10 KeV ions and heated solar wind for E < 10 KeV

  6. Fuzzy correlations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Linder, E.V.; Blumenthal, G.R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated. 16 refs

  7. Accelerating Science with the NERSC Burst Buffer Early User Program

    Energy Technology Data Exchange (ETDEWEB)

    Bhimji, Wahid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Debbie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romanus, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutgers Univ., New Brunswick, NJ (United States); Paul, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ovsyannikov, Andrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bryson, Matt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Correa, Joaquin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lockwood, Glenn K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsulaia, Vakho [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Farrell, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gursoy, Doga [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Daley, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beckner, Vince [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Van Straalen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wright, Nicholas J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, none [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide variety of scientific computing applications. The use-cases of the Burst Buffer at NERSC are therefore also considerable and diverse. We describe here performance measurements and lessons learned from the Burst Buffer Early User Program at NERSC, which selected a number of research projects to gain early access to the Burst Buffer and exercise its capability to enable new scientific advancements. To the best of our knowledge this is the first time a Burst Buffer has been stressed at scale by diverse, real user workloads and therefore these lessons will be of considerable benefit to shaping the developing use of Burst Buffers at HPC centers.

  8. Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression

    KAUST Repository

    Kuwahara, Hiroyuki

    2015-11-04

    A main source of gene expression noise in prokaryotes is translational bursting. It arises from efficient translation of mRNAs with low copy numbers, which makes the production of protein copies highly variable and pulsatile. To obtain analytical solutions, previous models to capture this noise source had to assume translation to be initiation-limited, representing the burst size by a specific type of a long-tail distribution. However, there is increasing evidence suggesting that the initiation is not the rate-limiting step in certain settings, for example, under stress conditions. Here, to overcome the limitations imposed by the initiation-limited assumption, we present a new analytical approach that can evaluate biological consequences of the protein burst size with a general distribution. Since our new model can capture the contribution of other factors to the translational noise, it can be used to analyze the effects of gene expression noise in more general settings. We used this new model to analytically analyze the connection between the burst size and the stability of gene expression processes in various settings. We found that the burst size with different distributions can lead to quantitatively and qualitatively different stability characteristics of protein abundance and can have non-intuitive effects. By allowing analysis of how the stability of gene expression processes changes based on various distributions of translational noise, our analytical approach is expected to enable deeper insights into the control of cell fate decision-making, the evolution of cryptic genetic variations, and fine-tuning of gene circuits.

  9. The sample of INTEGRAL SPI-ACS gamma-ray bursts

    International Nuclear Information System (INIS)

    Rau, A.; Kienlin, A. von; Licht, G.G.; Hurley, K.

    2005-01-01

    The anti-coincidence system of the spectrometer on board INTEGRAL is operated as a nearly omni directional gamma-ray burst detector above ∼ 75 KeV. During the elapsed mission time 324 burst candidates were detected. As part of the 3rd Interplanetary Network of gamma-ray detectors the cosmic origin of 115 burst was confirmed. Here we present a preliminary analysis of the SPI-ACS gamma-ray burst sample. In particular we discuss the origin of a significant population of short events (duration < 0.2 s) and a possible method for a flux calibration of the data

  10. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  11. Gamma Ray Burst Discoveries by the Swift Mission

    Science.gov (United States)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  12. Gamma Ray Burst Discoveries by the Swift Mission

    Science.gov (United States)

    Gehrels, Neil

    2006-04-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled ``swift'' spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  13. Recent achievements in the field of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lu Tan; Dai Zigao

    2001-01-01

    Recent progresses in the field of gamma-ray bursts is briefly introduced. Gamma-ray bursts are the most energetic explosion since the Big Bang of the universe. Within a few tens of seconds, the energy released in gamma-ray bursts could be several hundred times larger than that released form the sun in its whole life (about 10 billion years). The authors will first briefly discuss the observational facts, based on which the authors will discuss the standard fireball model, the dynamical behavior and evolution of gamma-ray bursts and their afterglows. Then, various observational phenomena that contradict the standard model are given and the importance of these post-standard effects are pointed out. The questions related to the energy source of gamma-ray bursts are still unanswered, and other important questions also remain to be solved

  14. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    Science.gov (United States)

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  15. Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California

    Science.gov (United States)

    Wu, Chunquan; Guyer, Robert; Shelly, David R.; Trugman, D.; Frank, William; Gomberg, Joan S.; Johnson, P.

    2015-01-01

    Tectonic tremor (TT) and low-frequency earthquakes (LFEs) have been found in the deeper crust of various tectonic environments globally in the last decade. The spatial-temporal behaviour of LFEs provides insight into deep fault zone processes. In this study, we examine recurrence times from a 12-yr catalogue of 88 LFE families with ∼730 000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault (SAF) in central California. We apply an automatic burst detection algorithm to the LFE recurrence times to identify the clustering behaviour of LFEs (LFE bursts) in each family. We find that the burst behaviours in the northern and southern LFE groups differ. Generally, the northern group has longer burst duration but fewer LFEs per burst, while the southern group has shorter burst duration but more LFEs per burst. The southern group LFE bursts are generally more correlated than the northern group, suggesting more coherent deep fault slip and relatively simpler deep fault structure beneath the locked section of SAF. We also found that the 2004 Parkfield earthquake clearly increased the number of LFEs per burst and average burst duration for both the northern and the southern groups, with a relatively larger effect on the northern group. This could be due to the weakness of northern part of the fault, or the northwesterly rupture direction of the Parkfield earthquake.

  16. Arachidonic acid triggers an oxidative burst in leukocytes

    Directory of Open Access Journals (Sweden)

    Pompeia C.

    2003-01-01

    Full Text Available The change in cellular reducing potential, most likely reflecting an oxidative burst, was investigated in arachidonic acid- (AA stimulated leukocytes. The cells studied included the human leukemia cell lines HL-60 (undifferentiated and differentiated into macrophage-like and polymorphonuclear-like cells, Jurkat and Raji, and thymocytes and macrophages from rat primary cultures. The oxidative burst was assessed by nitroblue tetrazolium reduction. AA increased the oxidative burst until an optimum AA concentration was reached and the burst decreased thereafter. In the leukemia cell lines, optimum concentration ranged from 200 to 400 µM (up to 16-fold, whereas in rat cells it varied from 10 to 20 µM. Initial rates of superoxide generation were high, decreasing steadily and ceasing about 2 h post-treatment. The continuous presence of AA was not needed to stimulate superoxide generation. It seems that the NADPH oxidase system participates in AA-stimulated superoxide production in these cells since the oxidative burst was stimulated by NADPH and inhibited by N-ethylmaleimide, diphenyleneiodonium and superoxide dismutase. Some of the effects of AA on the oxidative burst may be due to its detergent action. There apparently was no contribution of other superoxide-generating systems such as xanthine-xanthine oxidase, cytochromes P-450 and mitochondrial electron transport chain, as assessed by the use of inhibitors. Eicosanoids and nitric oxide also do not seem to interfere with the AA-stimulated oxidative burst since there was no systematic effect of cyclooxygenase, lipoxygenase or nitric oxide synthase inhibitors, but lipid peroxides may play a role, as indicated by the inhibition of nitroblue tetrazolium reduction promoted by tocopherol.

  17. The velocities of type II solar radio bursts

    International Nuclear Information System (INIS)

    Tlamicha, A.; Karlicky, M.

    1976-01-01

    A list is presented of type II radio bursts identified at Ondrejov between January 1973 and December 1974 in the frequency range of the dynamic spectrum 70 to 810 MHz. The velocities of shock waves in the individual cases of type II bursts are given using the fourfold Newkirk model. Some problems associated with type II radio bursts and with the propagation of the shock wave into the interplanetary space and into the region of the Earth are also discussed. (author)

  18. The LASL gamma-ray burst astronomy program

    International Nuclear Information System (INIS)

    Klebesadel, R.W.; Evans, W.D.; Laros, J.G.

    1981-01-01

    Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEF-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses. (orig.)

  19. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence...

  20. Gamma ray bursts: Current status of observations and theory

    International Nuclear Information System (INIS)

    Meegan, C.A.

    1990-04-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed

  1. Infrared and X-ray bursts from the rapid burster

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Chitre, S.M.

    1979-01-01

    Studies on sudden bursts from the cosmic X-ray sources are reported. The processes occuring from the rise in luminosity of an x-ray source to its collapse are described. Records of the x-ray burst from the globular cluster NGC 6624 and the 'Rapid Burster' are shown. The Infra-red bursts from the Rapid Burster are also explained. (A.K.)

  2. THE SECOND SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG

    International Nuclear Information System (INIS)

    Sakamoto, T.; Baumgartner, W. H.; Cummings, J. R.; Krimm, H. A.; Barthelmy, S. D.; Gehrels, N.; Markwardt, C. B.; Parsons, A. M.; Tueller, J.; Fenimore, E. E.; Palmer, D. M.; Sato, G.; Stamatikos, M.; Ukwatta, T. N.; Zhang, B.

    2011-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters, and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs, and S-GRBs with E.E. in the catalog are 89%, 8%, and 2%, respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX, and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T 90 and T 50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S-GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs and that the time-averaged E obs peak of the BAT GRBs peaks at 80 keV, which is significantly lower energy than those of the BATSE sample, which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that only 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. We see no obvious observed trend in the BAT T 90 and the observed spectra with redshifts. The T 90

  3. On the Nature of the Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Kyung-Ai Hong

    1987-12-01

    Full Text Available Review of the γ-ray burst phenomena are presented. History of the γ-ray bursts, characteristics, and three radiation mechanisms of thermal bremsstrahlung, thermal synchrotron, and inverse Compton scattering processes are considered.

  4. Unusual X-ray burst profiles from 4U/MXB 1636-53

    Science.gov (United States)

    Sztajno, M.; Truemper, J.; Pietsch, W.; Van Paradijs, J.; Stollman, G.

    1985-01-01

    During a one day Exosat observation eight X-ray bursts from 4U/MXB 1636-53 are observed. Four of these were very unusual. Their peak fluxes were relatively low, and they showed a distinct double peak in their bolometric flux profiles. These new double-peaked bursts are unexplained by presently available models of X-ray bursts. It is possible that the energy release in these bursts proceeds in two 'steps'. The burst profiles are not the result of an expansion and subsequent contraction of the photosphere of the neutron star. Thus, they are very different from previously observed bursts which do show a double peak in certain energy ranges but not in their bolometric flux profiles; these are satisfactorily explained in terms of photospheric radius expansion and contraction. The anticorrelation between the apparent blackbody radius and blackbody temperature is discussed in terms of the nonPlanckian character of burst spectra and it is concluded that the model calculations reported by London, Taam, and Howard in 1984 give a reasonable first-order description of the observed apparent radius changes in X-ray bursts.

  5. Caramel, uranium oxide fuel plates for water cooled reactors

    International Nuclear Information System (INIS)

    Bussy, Pierre; Delafosse, Jacques; Lestiboudois, Guy; Cerles, J.-M.; Schwartz, J.-P.

    1979-01-01

    The fuel is composed of thin plates assembled parallel to each other to form bundles or assemblies. Each plate is composed of a pavement of uranium oxide pellets, insulated from each other by a zircaloy cladding. The 235 U enrichment does not exceed 8%. The range of uses for this fuel extends from electric power generating reactors to irradiation reactors for research work. A parametric study in test loops has made it possible to determine the operating limits of this thick fuel, without bursting. The resulting diagram gives the permissible power densities, with and without cycling for specific burn-ups beyond 50,000 MWd/t. The thinnest plates were also irradiated in total in the form of advance assemblies irradiated in the core of the OSIRIS pile prior to its transformation. This transformation and the operation of this reactor with a core of 'Caramel' elements is the main trial experiment of this fuel [fr

  6. DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS

    International Nuclear Information System (INIS)

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-01-01

    We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the ν e signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ∼30% for Hyper-Kamiokande (Hyper-K) and ∼60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ∼3 ms at 7 kpc, in DUNE to ∼2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ∼2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the ν e breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state

  7. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  8. On burst-and-coast swimming performance in fish-like locomotion

    International Nuclear Information System (INIS)

    Chung, M-H

    2009-01-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  9. On burst-and-coast swimming performance in fish-like locomotion.

    Science.gov (United States)

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  10. Characteristics of shock-associated fast-drift kilometric radio bursts

    Science.gov (United States)

    Macdowall, R. J.; Kundu, M. R.; Stone, R. G.

    1987-01-01

    The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper unambiguous SA event criteria are established for the purpose of statistically comparing SA events with conventional kilometric type III bursts. Applying these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval, it is found that more than 70 percent of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity.

  11. Gamma-ray bursts observed by the watch experiment

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren; Castro-Tirado, A. J.

    1991-01-01

    After two years in orbit the WATCH instruments on the GRANAT space observatory have localized seven gamma burst sources with better than 1° accuracy. In several cases, follow‐up observations with Schmidt telescopes have been made within a few days. Some of the bursts have also been detected...... by the distant space probes PVO and ULYSSES and there are, therefore, good prospects for obtaining much improved positions using the burst arrival times. The existence of the almost concurrent Schmidt plates could then become particularly interesting....

  12. Gamma-ray burst theory after Swift.

    Science.gov (United States)

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  13. Interaction function of coupled bursting neurons

    International Nuclear Information System (INIS)

    Shi Xia; Zhang Jiadong

    2016-01-01

    The interaction functions of electrically coupled Hindmarsh–Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. (paper)

  14. Type III bursts in interplanetary space - Fundamental or harmonic?

    Science.gov (United States)

    Dulk, G. A.; Steinberg, J. L.; Hoang, S.

    1984-01-01

    ISEE-3 spacecraft observation of 120 relatively simple, isolated bursts in the 30-1980 kHz range are the basis of the present study of Type III bursts in the solar wind. Several characteristics are identified for many of these bursts which imply that the mode of emission changes from predominantly fundamental plasma radiation during the rise phase to predominantly second harmonic during decay. The fundamental emission begins in time coincidence with the start of Langmuir waves, confirming the conventional belief in these waves' causation of Type III bursts. Attention is given to the characteristics of fundamental components, by comparison to harmonics, at km-wavelengths.

  15. A polarized fast radio burst at low Galactic latitude

    OpenAIRE

    Petroff, E.; Kasliwal, M.; Ravi, V.

    2017-01-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm^(−3), a pulse duration of 2.8 ^(+1.2)_(−0.5)ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7 ^(+0.2)_(−0.1) Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found t...

  16. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    Science.gov (United States)

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  18. Stress Effects on Stop Bursts in Five Languages

    Directory of Open Access Journals (Sweden)

    Marija Tabain

    2016-11-01

    Full Text Available This study examines the effects of stress on the stop burst in five languages differing in number of places of articulation, as reflected in burst duration, spectral centre of gravity, and ­spectral standard deviation. The languages studied are English (three places of articulation /p t k/, the Indonesian language Makasar (four places /p t c k/, and the Central Australian languages ­Pitjantjatjara, Warlpiri (both five places /p t ʈ c k/, and Arrernte (six places /p t̪ t ʈ c k/. We find that languages differ in how they manifest stress on the consonant, with Makasar not ­showing any effect of stress at all, and Warlpiri showing an effect on burst duration, but not on the ­spectral measures. For the other languages, the velar /k/ has a “darker” quality (i.e., lower spectral centre of gravity, and/or a less diffuse spectrum (i.e., lower standard deviation under stress; while the alveolar /t/ has a “lighter” quality under stress. In addition, the dental /t̪/ has a more diffuse spectrum under stress. We suggest that this involves enhancement of the features [grave] and [diffuse] under stress, with velars being [+grave] and [–diffuse], alveolars being [–grave], and dentals being [+diffuse]. We discuss the various possible spectral effects of enhancement of these features. Finally, in the languages with five or six places of articulation, the stop burst is longer only for the palatal /c/ and the velar /k/, which have intrinsically long burst durations, and not for the anterior coronals /t̪ t ʈ/, which have intrinsically short burst durations. We suggest that in these systems, [burst duration] is a feature that separates these two groups of consonants.

  19. Fermi/GBM Observations of SGRJ0501 + 4516 Bursts

    Science.gov (United States)

    Lin, Lin; Kouveliotou, Chryssa; Baring, Matthew G.; van der Horst, Alexander J.; Guiriec, Sylvain; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; hide

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGRJ0501+4516, detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope during the 13 days of the source activation in 2008 (August 22 to September 3). We find that the T(sub 90) durations of the bursts can be fit with a log-normal distribution with a mean value of approx. 123 ms. We also estimate for the first time event durations of Soft Gamma Repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T(sub 90)s estimated in count space (following a log-normal distribution with a mean value of approx. 124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two black body functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E(sub peak) decreases with energy flux (and fluence) to a minimum of approx. 30 keV at F = 8.7 x 10(exp -6)erg/sq cm/s, increasing steadily afterwards. Two more sources exhibit a similar trend: SGRs J1550 - 5418 and 1806 - 20. The isotropic luminosity, L(sub iso), corresponding to these flux values is roughly similar for all sources (0.4 - l.5 x 10(exp 40) erg/s.

  20. Polarization of a periodic solar microwave burst

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1976-09-01

    No fluctuations in polarization have been found during a 7 GHz solar burst showing 17s periodic pulses in intensity. Polarization effects can be produced by the propagation media in the active centre, which are not affected directly by the burst source, but situated more deeply than the observed heights at that microwave frequency.

  1. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  2. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  3. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  4. BACODINE/3rd Interplanetary Network burst localization

    International Nuclear Information System (INIS)

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.

    1996-01-01

    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs

  5. Gamma-ray bursts from black hole accretion disks

    International Nuclear Information System (INIS)

    Strong, I.B.

    1975-01-01

    The suggestion was first made more than a year ago that gamma-ray bursts might originate in the neighborhood of black holes, based on some rather circumstantial evidence linking Cygnus X-1, the prime black-hole candidate, with two of the then-known gamma-ray bursts. Since then additional evidence makes the idea still more plausible. The evidence is summarized briefly, a physical model for production of gamma-ray bursts is given, and several of the more interesting consequences of such an origin are pointed out. (orig.) [de

  6. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  7. Evaluation of effective energy deposition in test fuel during power burst experiment in NSRR

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Inabe, Teruo

    1982-01-01

    In an inpile experiment to study the fuel behavior under reactivity-initiated accident conditions, it is of great importance to understand the time-dependent characteristics of the energy deposited in the test fuel by burst power. The evaluation of the time-dependent energy deposition requires the knowledge of the fission rates and energy deposition per fission in the test fuel, both as a function of time. In the present work, the authors attempted to evaluate the relative fission rate change in the test fuel subjected to the power burst testing in the NSRR through the measurements and analyses of the fission power changes in the NSRR. Utilizing a micro fission chamber and a conventional larger fission chamber, they successfully measured the reactor fission power change ranging over a dozen of decades in magnitude and a thousand seconds in time. The measured power transient agreed quite well with calculated results. In addition, the time-dependent energy deposition per fission in the test fuel including the energy contribution from the driver core was analytically evaluated. The analyses indicate that the energy of about 175 MeV/fission is promptly deposited in the test fuel and that the additional energy of about 11 MeV is deposited afterwards. Finally the fractions of energy deposited in the test fuel until various times after power burst were determined by coupling the time-dependent relative fissions and energy deposition per fission in the test fuel. The prompt energy deposition ranges from about 50 to 80% of the total energy deposition for the reactivity insertion between 1.5 and 4.7 $, and the remaining is the delayed energy deposition. (author)

  8. Slit-burst testing of cold-worked Zr-2.5 wt.% Nb pressure tubing for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Barrie, J.N.; Zink, R.J.

    1978-12-01

    This report documents the available data on critical crack length of cold-worked Zr-2.5 wt.% Nb pressure tubing in CANDU reactors. In particular, it includes data for tubing removed from the Pickering 3 and 4 reactors. (author)

  9. V/V(max) test applied to SMM gamma-ray bursts

    Science.gov (United States)

    Matz, S. M.; Higdon, J. C.; Share, G. H.; Messina, D. C.; Iadicicco, A.

    1992-01-01

    We have applied the V/V(max) test to candidate gamma-ray bursts detected by the Gamma-Ray Spectrometer (GRS) aboard the SMM satellite to examine quantitatively the uniformity of the burst source population. For a sample of 132 candidate bursts identified in the GRS data by an automated search using a single uniform trigger criterion we find average V/V(max) = 0.40 +/- 0.025. This value is significantly different from 0.5, the average for a uniform distribution in space of the parent population of burst sources; however, the shape of the observed distribution of V/V(max) is unusual and our result conflicts with previous measurements. For these reasons we can currently draw no firm conclusion about the distribution of burst sources.

  10. Ablation of silicon with bursts of femtosecond laser pulses

    Science.gov (United States)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  11. A polarized fast radio burst at low Galactic latitude

    Science.gov (United States)

    Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller, R.; Andreoni, I.; Bailes, M.; Barr, E. D.; Bernard, S. R.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Champion, D.; Chandra, P.; Cooke, J.; Dhillon, V. S.; Farnes, J. S.; Hardy, L. K.; Jaroenjittichai, P.; Johnston, S.; Kasliwal, M.; Kramer, M.; Littlefair, S. P.; Macquart, J. P.; Mickaliger, M.; Possenti, A.; Pritchard, T.; Ravi, V.; Rest, A.; Rowlinson, A.; Sawangwit, U.; Stappers, B.; Sullivan, M.; Tiburzi, C.; van Straten, W.; ANTARES Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Vizzoca, A.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. De Los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schulz, A.; Schüssler, F.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Walt, D. J. Van Der; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-08-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found to be 43 ± 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m-2 (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, γ-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.

  12. Diagnostics from three rising submillimeter bursts

    International Nuclear Information System (INIS)

    Zhou, Ai-Hua; Li, Jian-Ping; Wang, Xin-Dong

    2016-01-01

    In this paper we investigate three novel rising submillimeter (THz) bursts that occurred sequentially in Super Active Region NOAA 10486. The average rising rate of the flux density above 200 GHz is only 20 sfu GHz −1 (corresponding to spectral index α of 1.6) for the THz spectral components of the 2003 October 28 and November 4 bursts, but it attained values of 235 sfu GHz −1 (α = 4.8) in the 2003 November 2 burst. The steeply rising THz spectrum can be produced by a population of highly relativistic electrons with a low-energy cutoff of 1 MeV, but it only requires a low-energy cutoff of 30 keV for the two slowly rising THz bursts, via gyrosynchrotron (GS) radiation based on our numerical simulations of burst spectra in the magnetic dipole field case. The electron density variation is much larger in the THz source than in the microwave (MW) source. It is interesting that the THz source radius decreased by 20%–50% during the decay phase for the three events, but the MW source increased by 28% for the 2003 November 2 event. In the paper we will present a formula that can be used to calculate the energy released by ultrarelativistic electrons, taking the relativistic correction into account for the first time. We find that the energy released by energetic electrons in the THz source exceeds that in the MW source due to the strong GS radiation loss in the THz range, although the modeled THz source area is 3–4 orders smaller than the modeled MW source one. The total energies released by energetic electrons via the GS radiation in radio sources are estimated, respectively, to be 5.2 × 10 33 , 3.9 × 10 33 and 3.7 × 10 32 erg for the October 28, November 2 and 4 bursts, which are 131, 76 and 4 times as large as the thermal energies of 2.9 × 10 31 , 2.1 × 10 31 and 5.2 × 10 31 erg estimated from soft X-ray GOES observations. (paper)

  13. Properties of gamma-ray burst time profiles using pulse decomposition analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.

    2000-02-08

    The time profiles of many gamma-ray bursts consist of distinct pulses, which offers the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse shape parameters. This pulse decomposition analysis has previously been performed on a small sample of bright long bursts using binned data from BATSE, which comes in several data types, and on a sample of short bursts using the BATSE Time-Tagged Event (TTE) data type. The authors have developed an interactive pulse-fitting program using the phenomenological pulse model of Norris, et. al. and a maximum-likelihood fitting routine. They have used this program to analyze the Time-to-Spill (TTS) data for all bursts observed by BATSE up through trigger number 2000, in all energy channels for which TTS data is available. They present statistical information on the attributes of pulses comprising these bursts, including relations between pulse characteristics through the course of a burst. They carry out simulations to determine the biases that their procedures may introduce. They find that pulses tend to have shorter rise times than decay times, and tend to be narrower and peak earlier at higher energies. They also find that pulse brightness, pulse width, and pulse hardness ratios do not evolve monotonically within bursts, but that the ratios of pulse rise times to decay times tends to decrease with time within bursts.

  14. Effects of recent modeling developments in prompt burst hypothetical core disruptive accident calculations

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Abramson, P.B.

    1978-01-01

    The main objective of the development of multifield, multicomponent thermohydrodynamic computer codes is the detailed study of hypothetical core disruptive accidents (HCDAs) in liquid-metal fast breeder reactors. The main contributions such codes are expected to make are the inclusion of detailed modeling of the relative motion of liquid and vapor (slip), the inclusion of modeling of nonequilibrium/nonsaturation thermodynamics, and the use of more detailed neutronics methods. Scoping studies of the importance of including these phenomena performed with the parametric two-field, two-component coupled neutronic/thermodynamic/hydrodynamic code FX2-TWOPOOL indicate for the prompt burst portion of an HCDA that: (1) Vapor-liquid slip plays a relatively insignificant role in establishing energetics, implying that analyses that do not model vapor-liquid slip may be adequate. Furthermore, if conditions of saturation are assumed to be maintained, calculations that do not permit vapor-liquid slip appear to be conservative. (2) The modeling of conduction-limited fuel vaporization and condensation causes the energetics to be highly sensitive to variations in the droplet size (i.e., in the parametric values) for the sizes of interest in HCDA analysis. Care must therefore be exercised in the inclusion of this phenomenon in energetics calculations. (3) Insignificant differences are observed between the use of space-time kinetics (quasi-static diffusion theory) and point kinetics, indicating again that point kinetics is normally adequate for analysis of the prompt burst portion of an HCDA. (4) No significant differences were found to result from assuming that delayed neutron precursors remain stationary where they are created rather than assuming that they move together with fuel. (5) There is no need for implicit coupling between the neutronics and the hydrodynamics/thermodynamics routines, even outside the prompt burst portion

  15. Intrinsic and cosmological signatures in gamma-ray burst time profiles: Time dilation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.

    2000-02-08

    The time profiles of many gamma-ray bursts consist of distinct pulses, which offers the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse shape parameters. The authors have used a pulse decomposition procedure to analyze the Time-to-Spill (TTS) data for all bursts observed by BATSE up through trigger number 2000, in all energy channels for which TTS data is available. The authors obtain amplitude, rise and decay timescales, a pulse shape parameter, and the fluencies of individual pulses in all of the bursts. The authors investigate the correlations between brightness measures (amplitude and fluence) and timescale measures (pulse width and separation) which may result from cosmological time dilation of bursts, or from intrinsic properties of burst sources or from selection effects. The effects of selection biases are evaluated through simulations. The correlations between these parameters among pulses within individual bursts give a measure of the intrinsic effects while the correlations among bursts could result both from intrinsic and cosmological effects. The authors find that timescales tend to be shorter in bursts with higher peak fluxes, as expected from cosmological time dilation effects, but also find that there are non-cosmological effects contributing to this inverse correlation. The authors find that timescales tend to be longer in bursts with higher total fluences, contrary to what is expected from cosmological effects. The authors also find that peak fluxes and total fluences of bursts are uncorrelated, indicating that they cannot both be good distance indicators for bursts.

  16. Fast Radio Burst/Gamma-Ray Burst Cosmography

    Science.gov (United States)

    Gao, He; Li, Zhuo; Zhang, Bing

    2014-06-01

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM_{IGM} as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value \\lt {DM_IGM} (z)\\gt and luminosity distance (D L(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate \\lt {DM_IGM} (z)\\gt using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  17. Fast radio burst/gamma-ray burst cosmography

    International Nuclear Information System (INIS)

    Gao, He; Zhang, Bing; Li, Zhuo

    2014-01-01

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM IGM as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value and luminosity distance (D L (z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  18. Fast radio burst/gamma-ray burst cosmography

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He; Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States); Li, Zhuo, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: zhuo.li@pku.edu.cn [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China)

    2014-06-20

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM{sub IGM} as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value and luminosity distance (D {sub L}(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  19. Detection of pseudo gamma-ray bursts of long duration

    International Nuclear Information System (INIS)

    Frontera, F.; Fuligni, F.; Morelli, E.; Pizzichini, G.; Ventura, G.

    1981-01-01

    It is known that the counting rate of both Na I and Cs I hard X-ray detectors can have intense enhancements of brief (< 1 s) duration, which appear like very short cosmic gamma-ray bursts but probably are due to phosphorescence in the detector itself. Unfortunately, this problem is not limited to short bursts. We present here three much longer (up to 80 s) pseudo-gamma-ray bursts observed during a transatlantic balloon flight. We conclude that detections of gamma-ray bursts (and probably also of hard X-ray source flares) based only on a rate increase by a single scintillator should always be confirmed by at least one other instrument. (orig.)

  20. A Fast Radio Burst Host Galaxy

    OpenAIRE

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in...

  1. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Wei; Zhang, Bing, E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2014-03-10

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω {sub b} f {sub IGM}, of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω {sub b} f {sub IGM} to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means.

  2. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    International Nuclear Information System (INIS)

    Deng, Wei; Zhang, Bing

    2014-01-01

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω b f IGM , of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω b f IGM to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means

  3. Frequency Chirping during a Fishbone Burst

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, V.; Reznik, S., E-mail: march@kinr.kiev.ua [Institute for Nuclear Research, Kyiv (Ukraine)

    2012-09-15

    Full text: It is shown that gradual (more than a factor of two, in some cases - down to zero in the lab frame) reduction of the mode frequency (the so called frequency chirping) can be attributed to the reactive torque exerted on the plasma during the fishbone instability burst, which slows down the plasma rotation inside the q = 1 surface and reduces the mode frequency in the lab frame, while frequency in the plasma frame remains constant. This torque arises due to imbalance between the power transfered to the mode by energeric ions and the power of the mode dissipation by thermal species. Estimates show that the peak value of this torque exceeds the neutral beam torque in modern tokamaks and in ITER. The line-broadened quasilinear burst model, properly adapted for the fishbone case, is capable of reproducing the key features of the bursting mode. (author)

  4. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  5. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Ding Jianlin; Liang Lihua; Wang Yujia

    2006-01-01

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  6. Bursting of a bubble confined in between two plates

    Science.gov (United States)

    Murano, Mayuko; Kimono, Natsuki; Okumura, Ko

    2015-11-01

    Rupture of liquid thin films, driven by surface tension, has attracted interests of scientists for many years. It is also a daily phenomenon familiar to everyone in the form of the bursting of soap films. In recent years, many studies in confined geometries (e.g. in a Hele-Shaw cell) have revealed physical mechanisms of the dynamics of bubbles and drops. As for a liquid film sandwiched in between another liquid immiscible to the film liquid in the Hele-Shaw cell, it is reported that the thin film bursts at a constant speed and the speed depends on the viscosity of the surrounding liquid when the film is less viscous, although a rim is not formed at the bursting tip; this is because the circular symmetry of the hole in the bursting film is lost. Here, we study the bursting speed of a thin film sandwiched between air instead of the surrounding liquid in the Hele-Shaw cell to seek different scaling regimes. By measuring the bursting velocity and the film thickness of an air bubble with a high speed camera, we have found a new scaling law in viscous regime. This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

  7. A POSSIBLE CONNECTION BETWEEN FAST RADIO BURSTS AND GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Zhang, Bing

    2014-01-01

    The physical nature of fast radio bursts (FRBs), a new type of cosmological transient discovered recently, is not known. It has been suggested that FRBs can be produced when a spinning supra-massive neutron star loses centrifugal support and collapses to a black hole. Here, we suggest that such implosions can happen in supra-massive neutron stars shortly (hundreds to thousands of seconds) after their births, and an observational signature of such implosions may have been observed in the X-ray afterglows of some long and short gamma-ray bursts (GRBs). Within this picture, a small fraction of FRBs would be physically connected to GRBs. We discuss possible multi-wavelength electromagnetic signals and gravitational wave signals that might be associated with FRBs, and propose an observational campaign to unveil the physical nature of FRBs. In particular, we strongly encourage a rapid radio follow-up observation of GRBs starting from 100 s after a GRB trigger

  8. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Cyburt, R. H.; Keek, L.; Schatz, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Amthor, A. M. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Heger, A.; Meisel, Z.; Smith, K. [Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824 (United States); Johnson, E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  9. Postillumination burst of carbon dioxide in crassalacean Acid metabolism plants.

    Science.gov (United States)

    Crews, C E; Vines, H M; Black, C C

    1975-04-01

    Immediately following exposure to light, a postillumination burst of CO(2) has been detected in Crassulacean acid metabolism plants. A detailed study with pineapple (Ananas comosus) leaves indicates that the postillumination burst changes its amplitude and kinetics during the course of a day. In air, the postillumination burst in pineapple leaves generally is exhibited as two peaks. The postillumination burst is sensitive to atmospheric CO(2) and O(2) concentrations as well as to the light intensity under which plants are grown. We propose that the CO(2) released in the first postillumination burst peak is indicative of photorespiration since it is sensitive to either O(2) or CO(2) concentration while the second CO(2) evolution peak is likely due to decarboxylation of organic acids involved in Crassulacean acid metabolism.In marked contrast to other higher plants, the postillumination burst in Crassulacean acid metabolism plants can be equal to or greater than the rate of photosynthesis. Photosynthesis in pineapple leaves also varies throughout a day. Both photosynthesis and the postillumination burst have a daily variation which apparently is a complex function of degree of leaf acidity, growth light intensity, ambient gas phase, and the time a plant has been exposed to a given gas.

  10. Burst mode trigger of STEREO in situ measurements

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Curtis, D.; Schroeder, P.

    2013-06-01

    Since the launch of the STEREO spacecraft, the in situ instrument suites have continued to modify their burst mode trigger in order to optimize the collection of high-cadence magnetic field, solar wind, and suprathermal electron data. This report reviews the criteria used for the burst mode trigger and their evolution with time. From 2007 to 2011, the twin STEREO spacecraft observed 236 interplanetary shocks, and 54% of them were captured by the burst mode trigger. The capture rate increased remarkably with time, from 30% in 2007 to 69% in 2011. We evaluate the performance of multiple trigger criteria and investigate why some of the shocks were missed by the trigger. Lessons learned from STEREO are useful for future missions, because the telemetry bandwidth needed to capture the waveforms of high frequency but infrequent events would be unaffordable without an effective burst mode trigger.

  11. Multi-Index Monitoring and Evaluation on Rock Burst in Yangcheng Mine

    OpenAIRE

    Tan, Yunliang; Yin, Yanchun; Gu, Shitan; Tian, Zhiwei

    2015-01-01

    Based on the foreboding information monitoring of the energy released in the developing process of rock burst, prediction system for rock burst can be established. By using microseismic method, electromagnetic radiation method, and drilling bits method, rock burst in Yangcheng Mine was monitored, and a system of multi-index monitoring and evaluation on rock burst was established. Microseismic monitoring and electromagnetic radiation monitoring were early warning method, and drilling bits moni...

  12. An origin for short gamma-ray bursts unassociated with current star formation.

    Science.gov (United States)

    Barthelmy, S D; Chincarini, G; Burrows, D N; Gehrels, N; Covino, S; Moretti, A; Romano, P; O'Brien, P T; Sarazin, C L; Kouveliotou, C; Goad, M; Vaughan, S; Tagliaferri, G; Zhang, B; Antonelli, L A; Campana, S; Cummings, J R; D'Avanzo, P; Davies, M B; Giommi, P; Grupe, D; Kaneko, Y; Kennea, J A; King, A; Kobayashi, S; Melandri, A; Meszaros, P; Nousek, J A; Patel, S; Sakamoto, T; Wijers, R A M J

    2005-12-15

    Two short (gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

  13. Physics and engineering aspects of the EBT reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bettis, E.S.; Hedrick, C.L.; Santoro, R.T.; Watts, H.L.; Yeh, H.T.

    1977-01-01

    The ELMO Bumpy Torus (EBT) reactor has the advantage of high-β, steady-state operation. The first reactor study based on the EBT confinement concept was initiated in 1976. It provided the required starting point for continued assessment of the validity of the concept. A new design based on the present physics understanding, practical design approaches, and present and near-term technologies has been established. One of the important factors in an EBT reactor is the large aspect ratio (large toroidal major radius as well). This leads to a power plant with a comparatively large total energy output, usually in the range of 2000-6000 MW(th) for a conventional neutron wall loading of 1-2 MW/m 2 (the high value of β in an EBT device provides a net cost per unit energy roughly equal to or somewhat less than that for a Tokamak system). The large aspect ratio also provides very simple engineering and design requirements because of good access and small force loading asymmetries. Another important factor is the steady-state operation. In an EBT system, less power handling, energy storage, and filtering equipment will be needed. An EBT reactor is less likely to be subject to thermal and mechanical fatigue than reactors with large pulsed magnetic fields and short bursts of fusion power. The details of the key design elements and critical scientific and technology factors which are substantially different from other fusion reactor approaches are described

  14. Soudan 2 muons in coincidence with BATSE bursts

    International Nuclear Information System (INIS)

    DeMuth, D.M.; Marshak, M.L.; Wagner, G.L.

    1994-01-01

    We explore the possibilities of statistically significant temporal and spatial coincidences between underground muons at Soudan 2 and Gamma Ray Bursts at the GRO-BATSE detector. Our search uses data from the April 91 to March 92 BATSE burst catalog to seek correlations within a 100 second window of coincidence. Sixteen of 180 BATSE triggers have temporally and spatially coincident muons in the Soudan 2 detector. We estimate the chance probability of each coincidence assuming the null hypothesis on the basis of a study of the multiplicities of spatially coincident muons observed over a two day period centered on the time of burst

  15. Bursting Smoke as an Infrared Countermeasure

    OpenAIRE

    Amarjit Singh; P. J. Kamale; S. A. Joshi; L. K. Bankar

    1998-01-01

    This paper describes the experimental setup for the evaluation of bursting smoke for anti-infrared role using SR-5000 spectroradiometer and a source of IR radiation (8-13 micrometer) using cadmium-mercury-telluride (CMI) detector cooled by liquid nitrogen. The particle size and shape of the powders used in the bursting smokes were determined microscopically using Carl Zeiss Jena Neophot- 21. Highest attenuation of 97 -lOO percent was produced for about 12 s using a mixture of bronze fl...

  16. Nature of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Ventura, J.

    1983-01-01

    Observational evidence suggests that gamma ray bursts have a local galactic origin involving neutron stars. In this light we make a critical review of physics of the thermonuclear runaway model placing emphasis on self-consistency. We further show that some of the proposed models can be observationally excluded in the light of existing data from the Einstein Observatory. The possibility of gamma bursts arising in low mass binaries is finally discussed in the light of evolutionary scenarios leading to low luminosity systems

  17. Bursting oscillations, bifurcation and synchronization in neuronal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haixia [School of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang Qingyun, E-mail: drwangqy@gmail.com [Department of Dynamics and Control, Beihang University, Beijing 100191 (China); Lu Qishao [Department of Dynamics and Control, Beihang University, Beijing 100191 (China)

    2011-08-15

    Highlights: > We investigate bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. > Two types of fast-slow bursters are analyzed in detail. > We show the properties of some crucial bifurcation points. > Synchronization transition and the neural excitability are explored in the coupled bursters. - Abstract: This paper investigates bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. It is shown that for some appropriate parameters, the modified Morris-Lecar neuron can exhibit two types of fast-slow bursters, that is 'circle/fold cycle' bursting and 'subHopf/homoclinic' bursting with class 1 and class 2 neural excitability, which have different neuro-computational properties. By means of the analysis of fast-slow dynamics and phase plane, we explore bifurcation mechanisms associated with the two types of bursters. Furthermore, the properties of some crucial bifurcation points, which can determine the type of the burster, are studied by the stability and bifurcation theory. In addition, we investigate the influence of the coupling strength on synchronization transition and the neural excitability in two electrically coupled bursters with the same bursting type. More interestingly, the multi-time-scale synchronization transition phenomenon is found as the coupling strength varies.

  18. Spikes matter for phase-locked bursting in inhibitory neurons

    Science.gov (United States)

    Jalil, Sajiya; Belykh, Igor; Shilnikov, Andrey

    2012-03-01

    We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.045201 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike interactions. We reveal the role of spikes in generating multiple phase-locked states and demonstrate that this multistability is generic by analyzing diverse models of bursting networks with various fast inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, and the Purkinje neuron model.

  19. Polarimetry of the Fast Radio Burst Source FRB121102

    Science.gov (United States)

    Michilli, Daniele; Seymour, Andrew; Hessels, Jason W. T.; Spitler, Laura; Gajjar, Vishal; Archibald, Anne; Bower, Geoffrey C.; Chatterjee, Shami; Cordes, Jim; Gourdji, Kelly; Heald, George; Kaspi, Victoria; Law, Casey; Sobey, Charlotte

    2018-01-01

    Fast radio bursts (FRBs) are millisecond-duration radio flashes of presumably extragalactic origin. FRB121102 is the only FRB known to repeat and the only one with a precise localization. It is co-located with a persistent radio source inside a star-forming region in a dwarf galaxy at z=0.2. While the persistent source is compatible with either a low-luminosity accreting black hole or a very energetic nebula and supernova remnant, the source of the bursts is still a mystery. We present new bursts from FRB121102 detected at relatively high radio frequencies of ~5GHz. These observations allow us to investigate the polarization properties of the bursts, placing new constraints on the environment of FRB121102.

  20. Recent results from the gamma-ray burst studies in the KONUS experiment

    International Nuclear Information System (INIS)

    Mazets, E.P.; Golenetskii, S.V.

    1981-01-01

    Observations of 85 gamma bursts by the KONUS instruments on the Venera 11 and Venera 12 spacecraft in the period September 1978 to May 1979 inclusive have provided proof of a galactic localization of the gamma-burst sources based on an analysis of the log N-log S plot and the revealed anisotropy in the angular distribution of sources over the celestial sphere. Evaluation of the energy released in the sources yields 10 40 -10 41 erg. There apparently exist several types of gamma bursts differing in time profile, duration and shape of their energy spectrum. In some cases, extensive evolution of the energy spectrum is observed during a burst. The discovery of a flaring X-ray pulsar in Dorado has provided the first observational evidence for a connection of gamma bursts with neutron stars. Repeated short bursts from this source have revealed for the first time the recurrent features of this phenomenon. Repeated bursts have been detected from one more source in the short burst class. The data obtained thus far impose a number of restrictions on the applicability of many theoretical suggestions concerning the nature of the gamma bursts. The most plausible model for the gamma-burst source appears to be a binary with a neutron star with strongly non-stationary accretion involving, possibly, non-stationary thermonuclear fusion of matter falling onto the surface of a degenerate star. (orig.)

  1. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem; El-Ferik, Sami; Ho, Pin-Han

    2013-01-01

    congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets

  2. Very high-energy gamma rays from gamma-ray bursts.

    Science.gov (United States)

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  3. FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG

    Science.gov (United States)

    2014-06-01

    is normalized to π. The proposed burst-mode architecture is written in VHDL and verified using Modelsim. The VHDL design is implemented on a Xilinx...Document Number: SET 2014-0043 412TW-PA-14298 FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG June 2014 Final Report Test...To) 9/11 -- 8/14 4. TITLE AND SUBTITLE FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG 5a. CONTRACT NUMBER: W900KK-11-C-0032 5b

  4. A New Clue in the Mystery of Fast Radio Bursts

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    The origin of the mysterious fast radio bursts has eluded us for more than a decade. With the help of a particularly cooperative burst, however, scientists may finally be homing in on the answer to this puzzle.A Burst RepeatsThe host of FRB 121102 is placed in context in this Gemini image. [Gemini Observatory/AURA/NSF/NRC]More than 20 fast radio bursts rare and highly energetic millisecond-duration radio pulses have been observed since the first was discovered in 2007. FRB 121102, however, is unique in its behavior: its the only one of these bursts to repeat. The many flashes observed from FRB 121102 allowed us for the first time to follow up on the burst and hunt for its location.Earlier this year, this work led to the announcement that FRB 121102s host galaxy has been identified: a dwarf galaxy located at a redshift of z = 0.193 (roughly 3 billion light-years away). Now a team of scientists led by Cees Bassa (ASTRON, the Netherlands Institute for Radio Astronomy) has performed additional follow-up to learn more about this host and what might be causing the mysterious flashes.Hubble observation of the host galaxy. The object at the bottom right is a reference star. The blue ellipse marks the extended diffuse emission of the galaxy, the red circle marks the centroid of the star-forming knot, and the white cross denotes the location of FRB 121102 ad the associated persistent radio source. [Adapted from Bassa et al. 2017]Host ObservationsBassa and collaborators used the Hubble Space Telescope, the Spitzer Space Telecsope, and the Gemini North telecsope in Hawaii to obtain optical, near-infrared, and mid-infrared observations of FRB 121102s host galaxy.The authors determined that the galaxy is a dim, irregular, low-metallicity dwarf galaxy. Its resolved, revealing a bright star-forming region roughly 4,000 light-years across in the galaxys outskirts. Intriguingly, the persistent radio source associated with FRB 121102 falls directly within that star-forming knot

  5. Burst protection device for largely cylindrical steam raising units, preferably of pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Mutzl, J.

    1978-01-01

    This burst protection device controls forces to be expected in an accident by resolving them into axial (vertical) and radial (horizontal) components, which are taken by a large number of elements stressed in tension. The steam raising unit is surrounded by a containment, but remains easily accessible. The containment consists of a steel jacket, lid and floor. Several cylindrical sections above one another form the steel jacket, which surrounds the steam raising unit with an intermediate insulating layer of concrete. The insulating concrete cylinder is of several times the thickness of the steel jacket, and also consists of cylindrical sections. An outer supporting ring for the lid and floor of the containment have outside diameters which project beyond the jacket. Prestressed circumferential vertical tension ropes between the supporting ring and floor take any additional tensional forces. The lid is domed with downward curvature towards the upper boiler dome. Internal bursting forces produce compressive stresses in the lid, which thus pass along its outside diameter into the surrounding ring. The lid, which is devided along one diameter, makes dismantling and access to the boiler easy even with a central steam pipe going upwards. The floor of the burst protection is also the floor of the steam raising unit. It is of several times the thickness of the tube floor, which, with its spacing above the floor forms the usual inlet and outlet space for the reactor cooling water. The main coolant pump installed there is driven by an external motor through a floor penetration. (HP) [de

  6. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  7. Analysis of Burst Observations by GLAST's LAT Detector

    International Nuclear Information System (INIS)

    Band, David L.; Digel, Seth W.

    2004-01-01

    Analyzing data from GLAST's Large Area Telescope (LAT) will require sophisticated techniques. The PSF and effective area are functions of both photon energy and the position in the field-of-view. During most of the mission the observatory will survey the sky continuously, and thus, the LAT will detect each count from a source at a different detector orientation; each count requires its own response function! The likelihood as a function of celestial position and photon energy will be the foundation of the standard analysis techniques. However, the 20 MeV-300 GeV emission at the time of the ∼ 100 keV burst emission (timescale of ∼ 10 s) can be isolated and analyzed because essentially no non-burst counts are expected within a PSF radius of the burst location during the burst. Both binned and unbinned (in energy) spectral fitting will be possible. Longer timescale afterglow emission will require the likelihood analysis that will be used for persistent sources

  8. Analyses of resource reservation schemes for optical burst switching networks

    Science.gov (United States)

    Solanska, Michaela; Scholtz, Lubomir; Ladanyi, Libor; Mullerova, Jarmila

    2017-12-01

    With growing demands of Internet Protocol services for transmission capacity and speed, the Optical Burst Switching presents the solution for future high-speed optical networks. Optical Burst Switching is a technology for transmitting large amounts of data bursts through a transparent optical switching network. To successfully transmit bursts over OBS network and reach the destination node, resource reservation schemes have to be implemented to allocate resources and configure optical switches for that burst at each node. The one-way resource reservation schemes and the performance evaluation of reservation schemes are presented. The OBS network model is performed using OMNeT++ simulation environment. During the reservation of network resources, the optical cross-connect based on semiconductor optical amplifier is used as the core node. Optical switches based on semiconductor optical amplifiers are a promising technology for high-speed optical communication networks.

  9. On the Directivity of Low-Frequency Type IV Radio Bursts

    Science.gov (United States)

    Gopalswamy, N.; Akiyama, S.; Makela, P.; Yashiro, S.; Cairns, I. H.

    2016-01-01

    An intense type IV radio burst was observed by the STEREO Behind (STB) spacecraft located about 144 deg. behind Earth. The burst was associated with a large solar eruption that occurred on the backside of the Sun (N05E151) close to the disk center in the STB view. The eruption was also observed by the STEREO Ahead (STA) spacecraft (located at 149 deg. ahead of Earth) as an eruption close to the west limb (N05W60) in that view. The type IV burst was complete in STB observations in that the envelope reached the lowest frequency and then receded to higher frequencies. The burst was partial viewed from STA, revealing only the edge coming down to the lowest frequency. The type IV burst was not observed at all near Earth because the source was 61 deg. behind the east limb. The eruption was associated with a low-frequency type II burst observed in all three views, although it was not very intense. Solar energetic particles were also observed at both STEREOs and at SOHO, suggesting that the shock was much extended, consistent with the very high speed of the CME (2048 km/s). These observations suggest that the type IV emission is directed along a narrow cone above the flare site. We confirm this result statistically using the type IV bursts of solar cycle 23.

  10. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  11. A study of the temporal and spectral characteristics of gamma ray bursts

    International Nuclear Information System (INIS)

    Norris, J.

    1983-05-01

    Gamma-ray burst data obtained from the ISEE-3 Gamma Ray Burst Spectrometer and the Solar Maximum Mission's Hard X-ray Burst Spectrometer (HXRBS) were analyzed to yield information on burst temporal and spectral characteristics. A Monte Carlo approach was used to simulate the HXRBS response to candidate spectral models. At energies above about 100 keV, the spectra are well fit by exponential forms. At lower energies, 30 keV to 60 keV, depressions below the model continua are apparent in some bursts. The depressions are not instrumental or data-reduction artifacts. The event selection criterion of the ISEE-3 experiment is based on the time to accumulate a present number of photons rather than the photon count per unit time and is consequently independent of event duration for a given burst intensity, unlike most conventional systems. As a result, a significantly greater percentage of fast, narrow events have been detected. The ratio of count rates from two ISEE-3 detectors indicates that bursts with durations or aprox. one second have much softer spectra than longer bursts

  12. Results of using engineering and technological measures for rock burst prevention. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, A P; Nechaev, A V; Khmara, O I

    1980-01-01

    The paper evaluates methods for rock burst forecasting and rock burst prevention used in the Donbass, Kuzbass, Karaganda and Pechora basins. Forecasting methods are based on measuring the initial velocity of gas flow from test boreholes and/or quantity ratio of drillings leaving a test borehole and monitoring seismoacoustic signals. Number of working faces at which each of the methods for rock burst forecasting is used is given. Methods for rock burst prevention are comparatively evaluated: explosive fracturing of rocks in seam roof or seam floor, fluid injection (water and surfactants), drilling destressing boreholes, cutting destressing slots using cutting machines or water jets, mining protective coal seams first for reducing rock burst hazard in protected coal seams, using narrow web coal cutter loaders, remote control of coal cutters at working faces with extremely high rock burst hazard, using mining schemes which reduce rock burst hazards (e.g. long pillar mining system). From 1976 to 1979 number of rock bursts in underground coal mines in the USSR decreased by 5 times in comparison to the period 1961 to 1965. (3 refs.) (In Russian)

  13. High repetition rate burst-mode spark gap

    International Nuclear Information System (INIS)

    Faltens, A.; Reginato, L.; Hester, R.; Chesterman, A.; Cook, E.; Yokota, T.; Dexter, W.

    1978-01-01

    Results are presented on the design and testing of a pressurized gas blown spark gap switch capable of high repetition rates in a burst mode of operation. The switch parameters which have been achieved are as follows: 220-kV, 42-kA, a five pulse burst at 1-kHz, 12-ns risetime, 2-ns jitter at a pulse width of 50-ns

  14. The many phases of gamma-ray burst afterglows

    NARCIS (Netherlands)

    Leventis, K.

    2013-01-01

    Gamma-ray bursts are the brightest sources in the universe. Their afterglows have been observed for about 15 years now, and their study has greatly advanced our understanding of these, mysterious until recently, events. In a way, gamma-ray bursts can be seen as huge cosmic bombs which convert

  15. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    International Nuclear Information System (INIS)

    Elgart, Vlad; Jia, Tao; Fenley, Andrew T; Kulkarni, Rahul

    2011-01-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

  16. The Fermi Gamma-ray Burst Monitor Instrument

    International Nuclear Information System (INIS)

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-01-01

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing γ-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view (≥8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.

  17. Localised Microwave Bursts During ELMs on MAST

    Directory of Open Access Journals (Sweden)

    Freethy Simon

    2015-01-01

    Full Text Available Bursts of microwave emission are observed during ELM events on the Mega Ampère Spherical Tokamak. In agreement with observations on other machines, these bursts are up to 3 orders of magnitude more intense than the thermal background, but are electron cyclotron in nature. The peak in microwave emission is ~20μ before the peak in midplane Dα emission. Using the Synthetic Aperture Microwave Imaging radiometer, we are able to demonstrate that these bursts are often highly spatially localised and preferentially occur at the tokamak midplane. It is hypothesised that the localisation is a result of Doppler resonance broadening for electron Bernstein waves and the high perpendicular electron energies could be the result of pitch angle scattering in high collisionality regions of the plasma.

  18. BudBurst Buddies: A New Tool for Engaging the Youngest Citizen Scientists

    Science.gov (United States)

    Gardiner, L. S.; Henderson, S.; Ward, D.

    2010-12-01

    BudBurst Buddies (www.budburstbuddies.org) introduces elementary school age children to the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a new part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies newly developed resources. BudBurst Buddies is a part of Project BudBurst, a national citizen science program coordinated by the National Ecological Observatory Network (NEON) and the Chicago Botanic Garden. Funding for this resource was provided by NEON, NSF, NASA, and the National Geographic Education Foundation.

  19. Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    Science.gov (United States)

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously own GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568 +825 -1429 GRBs per year that are beamed toward us in the whole universe.

  20. Spatial variation in automated burst suppression detection in pharmacologically induced coma.

    Science.gov (United States)

    An, Jingzhi; Jonnalagadda, Durga; Moura, Valdery; Purdon, Patrick L; Brown, Emery N; Westover, M Brandon

    2015-01-01

    Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients undergoing medically induced coma. The ability to automatically identify periods of EEG suppression and compactly summarize the depth of coma using the burst suppression probability (BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature however does not explicitly account for the potential variation in burst suppression parameters across different scalp locations. In this study we analyzed standard 19-channel EEG recordings from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst suppression as medical treatment for refractory seizures. We found that although burst suppression is generally considered a global phenomenon, BSP obtained using a previously validated algorithm varies systematically across different channels. A global representation of information from individual channels is proposed that takes into account the burst suppression characteristics recorded at multiple electrodes. BSP computed from this representative burst suppression pattern may be more resilient to noise and a better representation of the brain state of patients. Multichannel data integration may enhance the reliability of estimates of the depth of medical coma.

  1. Method of separation of celestial gamma-ray bursts from solar flares

    International Nuclear Information System (INIS)

    Chuang, K.W.; White, R.S.; Klebesadel, R.W.; Laros, J.G.

    1991-01-01

    We recently discovered 217 ''new'' celestial gamma-ray burst candidates from the ''new'' burst search of the PVO real time data base. 1 The burst search covered the time period from September 1978 to July 1988. Sixty were confirmed by at lest on other spacecraft, e.g., ISEE-3, V-11, V-12, etc. None triggered the PVO high time resolution memory. In this paper we describe a new algorithm based ont eh relationship between time width T w and hardness ratio HR, to distinguish cosmic gamma-ray bursts from solar flares without knowing the directions of the events. The criteria for identification as a gamma-ray burst candidate are: If T ww ≤a then HR≥bT w , or T w >a then HR>c. Otherwise, the event is a solar flare candidate. Here, a, b, and c are parameter which differ for different gamma-ray burst detectors. For PVO, a=18.8 s, b=(1.38/18.8) s -1 , and c=1.38. This algorithm was tested with 83 triggered and 60 nontriggered confirmed gamma-ray burst and 30 confirmed solar flares from PVO

  2. Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells

    International Nuclear Information System (INIS)

    Jones, D.P.; Holliday, J.E.; Larson, L.D.

    1998-07-01

    This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures

  3. BALLERINA - Pirouettes in search of gamma burst sources

    International Nuclear Information System (INIS)

    Brandt, Soeren; Lund, Niels

    1999-01-01

    The cosmological origin of gamma-ray bursts (GRBs) has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large variability in properties, which have been indicated by the first handful of events. We are proposing BALLERINA, a small satellite to provide accurate gamma burst positions at a rate an order of magnitude larger than from Beppo-SAX. On the experimental side, it remains a challenge to ensure the earliest detection of the X-ray afterglow. The mission proposed here allows for the first time systematic studies of the soft X-ray emission in the time interval from only a few minutes after the onset of the burst to a few hours later. In addition to positions of GRBs with accuracy better than 1'reported to the ground within a few minutes of the burst, essential for follow-up work, BALLERINA will on its own provide observations in an uncharted region of parameter space. Secondary objectives of the BALLERINA mission includes observations of the earliest phases of the outbursts of X-ray novae and other X-ray transients. BALLERINA is one of four missions currently under study for the Danish Small Satellite Program. The selection will be announced in 1999 for a planned launch in 2002-2003

  4. Heating of aluminum by SPR-III burst

    International Nuclear Information System (INIS)

    Judd, S.V.

    1987-01-01

    Real time temperature measurements were made on an aluminum cylinder exposed to radiation bursts at SPR-III at neutron levels from 10 11 cm -2 to 4.5 x 10 14 cm -2 . Precision thermistors and high speed A/D converters were used to measure temperature with .0025 degree C resolution at 20ms intervals following the burst. Temperature data is presented as a function of neutron fluence

  5. Detection Techniques of Microsecond Gamma-Ray Bursts Using Ground-based Telescopes

    International Nuclear Information System (INIS)

    Krennrich, F.; Le Bohec, S.; Weekes, T. C.

    2000-01-01

    Gamma-ray observations above 200 MeV are conventionally made by satellite-based detectors. The EGRET detector on the Compton Gamma Ray Observatory has provided good sensitivity for the detection of bursts lasting for more than 200 ms. Theoretical predictions of high-energy gamma-ray bursts produced by quantum mechanical decay of primordial black holes (Hawking) suggest the emission of bursts on shorter timescales. The final stage of a primordial black hole results in a burst of gamma rays, peaking around 250 MeV and lasting for 1/10 of a microsecond or longer depending on particle physics. In this work we show that there is an observational window using ground-based imaging Cerenkov detectors to measure gamma-ray burst emission at energies E>200 MeV. This technique, with a sensitivity for bursts lasting nanoseconds to several microseconds, is based on the detection of multiphoton-initiated air showers. (c) (c) 2000. The American Astronomical Society

  6. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem

    2013-04-01

    FAST TCP is important for promoting data-intensive applications since it can cleverly react to both packet loss and delay for detecting network congestion. This paper provides a continuous time model and extensive stability analysis of FAST TCP congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets from a single round is dropped. Second, it shows that FAST TCP is vulnerable to burst delay and fails to detect network congestion due to the little variation of round-trip time, thus unstable. Finally it shows that introducing extra delays by implementing burst retransmission stabilizes FAST TCP over OBS. The paper proves that FAST TCP is not stable over barebone OBS. However, it is locally, exponentially, and asymptotically stable over OBS with burst retransmission.

  7. Project BudBurst: Continental-scale citizen science for all seasons

    Science.gov (United States)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  8. Burst Mode Composite Photography for Dynamic Physics Demonstrations

    Science.gov (United States)

    Lincoln, James

    2018-01-01

    I am writing this article to raise awareness of burst mode photography as a fun and engaging way for teachers and students to experience physics demonstration activities. In the context of digital photography, "burst mode" means taking multiple photographs per second, and this is a feature that now comes standard on most digital…

  9. Reliability of COPVs Accounting for Margin of Safety on Design Burst

    Science.gov (United States)

    Murthy, Pappu L.N.

    2012-01-01

    In this paper, the stress rupture reliability of Carbon/Epoxy Composite Overwrapped Pressure Vessels (COPVs) is examined utilizing the classic Phoenix model and accounting for the differences between the design and the actual burst pressure, and the liner contribution effects. Stress rupture life primarily depends upon the fiber stress ratio which is defined as the ratio of stress in fibers at the maximum expected operating pressure to actual delivered fiber strength. The actual delivered fiber strength is calculated using the actual burst pressures of vessels established through burst tests. However, during the design phase the actual burst pressure is generally not known and to estimate the reliability of the vessels calculations are usually performed based upon the design burst pressure only. Since the design burst is lower than the actual burst, this process yields a much higher value for the stress ratio and consequently a conservative estimate for the reliability. Other complications arise due to the fact that the actual burst pressure and the liner contributions have inherent variability and therefore must be treated as random variables in order to compute the stress rupture reliability. Furthermore, the model parameters, which have to be established based on stress rupture tests of subscale vessels or coupons, have significant variability as well due to limited available data and hence must be properly accounted for. In this work an assessment of reliability of COPVs including both parameter uncertainties and physical variability inherent in liner and overwrap material behavior is made and estimates are provided in terms of degree of uncertainty in the actual burst pressure and the liner load sharing.

  10. Different Types of X-Ray Bursts from GRS 1915+105 and Their Origin

    Science.gov (United States)

    Yadav, J. S.; Rao, A. R.; Agrawal, P. C.; Paul, B.; Seetha, S.; Kasturirangan, K.

    1999-06-01

    We report X-ray observations of the Galactic X-ray transient source GRS 1915+105 with the pointed proportional counters of the Indian X-ray Astronomy Experiment (IXAE) onboard the Indian satellite IRS-P3, which show remarkable richness in temporal variability. The observations were carried out on 1997 June 12-29 and August 7-10, in the energy range of 2-18 keV and revealed the presence of very intense X-ray bursts. All the observed bursts have a slow exponential rise, a sharp linear decay, and broadly can be put in two classes: irregular and quasi-regular bursts in one class, and regular bursts in the other. The regular bursts are found to have two distinct timescales and to persist over extended durations. There is a strong correlation between the preceding quiescent time and the burst duration for the quasi-regular and irregular bursts. No such correlation is found for the regular bursts. The ratio of average flux during the burst time to the average flux during the quiescent phase is high and variable for the quasi-regular and irregular bursts, while it is low and constant for the regular bursts. We present a comprehensive picture of the various types of bursts observed in GRS 1915+105 in the light of the recent theories of advective accretion disks. We suggest that the peculiar bursts that we have seen are characteristic of the change of state of the source. The source can switch back and forth between the low-hard state and the high-soft state near critical accretion rates in a very short timescale, giving rise to the irregular and quasi-regular bursts. The fast timescale for the transition of the state is explained by invoking the appearance and disappearance of the advective disk in its viscous timescale. The periodicity of the regular bursts is explained by matching the viscous timescale with the cooling timescale of the postshock region. A test of the model is presented using the publicly available 13-60 keV RXTE/PCA data for irregular and regular bursts

  11. Classifying LISA gravitational wave burst signals using Bayesian evidence

    International Nuclear Information System (INIS)

    Feroz, Farhan; Graff, Philip; Hobson, Michael P; Lasenby, Anthony; Gair, Jonathan R

    2010-01-01

    We consider the problem of characterization of burst sources detected by the Laser Interferometer Space Antenna (LISA) using the multi-modal nested sampling algorithm, MultiNest. We use MultiNest as a tool to search for modelled bursts from cosmic string cusps, and compute the Bayesian evidence associated with the cosmic string model. As an alternative burst model, we consider sine-Gaussian burst signals, and show how the evidence ratio can be used to choose between these two alternatives. We present results from an application of MultiNest to the last round of the Mock LISA Data Challenge, in which we were able to successfully detect and characterize all three of the cosmic string burst sources present in the release data set. We also present results of independent trials and show that MultiNest can detect cosmic string signals with signal-to-noise ratio (SNR) as low as ∼7 and sine-Gaussian signals with SNR as low as ∼8. In both cases, we show that the threshold at which the sources become detectable coincides with the SNR at which the evidence ratio begins to favour the correct model over the alternative.

  12. BudBurst Buddies: Introducing Young Citizen Scientists to Plants and Environmental Change

    Science.gov (United States)

    Ward, D.; Gardiner, L. S.; Henderson, S.

    2011-12-01

    As part of Project BudBurst, the BudBurst Buddies recently moved to the National Ecological Network (NEON) as part of its Education and Public Engagement efforts. The BudBurst Buddies (www.budburstbuddies.org) were created to engage elementary school age children in the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Hundreds of young students have participated in the inaugural year of BudBurst Buddies. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. The program was recently highlighted by education staff at the New York Hall of Science and numerous classrooms have been implementing this resource as part of their curriculum. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies resources including a new implementation guide and will also share feedback from the first year of implementation.

  13. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    Science.gov (United States)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  14. Operational experiences with automated acoustic burst classification by neural networks

    International Nuclear Information System (INIS)

    Olma, B.; Ding, Y.; Enders, R.

    1996-01-01

    Monitoring of Loose Parts Monitoring System sensors for signal bursts associated with metallic impacts of loose parts has proved as an useful methodology for on-line assessing the mechanical integrity of components in the primary circuit of nuclear power plants. With the availability of neural networks new powerful possibilities for classification and diagnosis of burst signals can be realized for acoustic monitoring with the online system RAMSES. In order to look for relevant burst signals an automated classification is needed, that means acoustic signature analysis and assessment has to be performed automatically on-line. A back propagation neural network based on five pre-calculated signal parameter values has been set up for identification of different signal types. During a three-month monitoring program of medium-operated check valves burst signals have been measured and classified separately according to their cause. The successful results of the three measurement campaigns with an automated burst type classification are presented. (author)

  15. The voice conveys specific emotions: evidence from vocal burst displays.

    Science.gov (United States)

    Simon-Thomas, Emiliana R; Keltner, Dacher J; Sauter, Disa; Sinicropi-Yao, Lara; Abramson, Anna

    2009-12-01

    Studies of emotion signaling inform claims about the taxonomic structure, evolutionary origins, and physiological correlates of emotions. Emotion vocalization research has tended to focus on a limited set of emotions: anger, disgust, fear, sadness, surprise, happiness, and for the voice, also tenderness. Here, we examine how well brief vocal bursts can communicate 22 different emotions: 9 negative (Study 1) and 13 positive (Study 2), and whether prototypical vocal bursts convey emotions more reliably than heterogeneous vocal bursts (Study 3). Results show that vocal bursts communicate emotions like anger, fear, and sadness, as well as seldom-studied states like awe, compassion, interest, and embarrassment. Ancillary analyses reveal family-wise patterns of vocal burst expression. Errors in classification were more common within emotion families (e.g., 'self-conscious,' 'pro-social') than between emotion families. The three studies reported highlight the voice as a rich modality for emotion display that can inform fundamental constructs about emotion.

  16. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    Science.gov (United States)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III

  17. Relationship between type III-V radio and hard X-ray bursts

    International Nuclear Information System (INIS)

    Stewart, R.T.

    1978-01-01

    Type III-V radio bursts are found to be closely associated with impulsive hard X-ray bursts. Probably 0.1% to 1% of the fast electrons in the X-ray source region escape to heights >0.1 solar radii in the corona and excite the type III-V burst. (Auth.)

  18. The double rotor neutron monochromator facility at the ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Gwaily, S.E.; Hamouda, I.

    1983-01-01

    A double rotor neutron monochromator recently installed in front of one of the ET-RR-1 reactor horizontal channels is described. The system consists of two rotors, suspended in magnetic field, spinning at speeds up to 16000 rpm with a constant phase angle relative to each producing bursts of monochromatic neutrons at the sample. Each of the rotors, 32 cm in diameter and 27 Kg in weight, has two slits to produce two neutron bursts per revolution. The slits are with radius of curvature 65.65 cm and 7 x 10 sq.mm cross-sectional area. The jitters of the phase between the rotors were measured at different rotation rates and were found not to exceed +- 1.5 μsec. The transmission function of one rotor system was measured and found to be in agreement with that theoretically predicted. (Auth.)

  19. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  20. Investigating the Hydrolysis Reactions of a Chemical Warfare Agent Surrogate. A Systematic Study using 1H, 13C, 17sup>O, 19F, 31P, and 35Cl NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Brendan W. [West Virginia Univ., Morgantown, WV (United States)

    2015-07-24

    During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous (31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nuclei such as 1H, 13C, 17sup>O, and 35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.

  1. Peculiarities of frequency dependence of type 3 solar radio bursts duration

    International Nuclear Information System (INIS)

    Tsybko, Ya.G.

    1989-01-01

    From the averaged data of type 3 bursts at the fixed frequencies in the range 12.5-25 MHz and out of this limit it is concluded that there exist two branges of the burst duration dependence on the frequency. This splitting allows to distinguish bursts occurring at the fundamental and the second harmonics of the plasma frequency decreasing with height in the solar corona. The type 3b radiation is characterized by a separate diagram of the mean duration versus frequency of the stria-bursts at the fundamental harmonic

  2. Burst-suppression is reactive to photic stimulation in comatose children with acquired brain injury

    DEFF Research Database (Denmark)

    Nita, Dragos A.; Moldovan, Mihai; Sharma, Roy

    2016-01-01

    reactivity. We quantified reactivity by measuring the change in the burst ratio (fraction of time in burst) following photic stimulation. Results: Photic stimulation evoked bursts in all patients, resulting in a transient increase in the burst ratio, while the mean heart rate remained unchanged......Objective: Burst-suppression is an electroencephalographic pattern observed during coma. In individuals without known brain pathologies undergoing deep general anesthesia, somatosensory stimulation transiently increases the occurrence of bursts. We investigated the reactivity of burst......-suppression in children with acquired brain injury. Methods: Intensive care unit electroencephalographic monitoring recordings containing burst-suppression were obtained from 5 comatose children with acquired brain injury of various etiologies. Intermittent photic stimulation was performed at 1 Hz for 1 min to assess...

  3. Fokker-Planck simulation study of Alfven eigenmode burst

    International Nuclear Information System (INIS)

    Todo, Y.; Watanabe, T.; Park, Hyoung-Bin; Sato, T.

    2001-01-01

    Recurrent bursts of toroidicity-induced Alfven eigenmodes (TAEs) are reproduced with a Fokker-Planck-magnetohydrodynamic simulation where a fast-ion source and slowing down are incorporated self-consistently. The bursts take place at regular time intervals and the behaviors of all the TAEs are synchronized. The fast-ion transport due to TAE activity spatially broadens the classical fast-ion distribution and significantly reduces its peak value. Only a small change of the distribution takes place with each burst, leading to loss of a small fraction of the fast ions. The system stays close to the marginal stability state established through the interplay of the fast-ion source, slowing down, and TAE activity. (author)

  4. Analysis of the Swift Gamma-Ray Bursts duration

    International Nuclear Information System (INIS)

    Horvath, I.; Veres, P.; Balazs, L. G.; Kelemen, J.; Bagoly, Z.; Tusnady, G.

    2008-01-01

    Two classes of gamma-ray bursts have been identified in the BATSE catalogs characterized by durations shorter and longer than about 2 seconds. There are, however, some indications for the existence of a third type of burst. Swift satellite detectors have different spectral sensitivity than pre-Swift ones for gamma-ray bursts. Therefore it is worth to reanalyze the durations and their distribution and also the classification of GRBs. Using The First BAT Catalog the maximum likelihood estimation was used to analyzed the duration distribution of GRBs. The three log-normal fit is significantly (99.54% probability) better than the two for the duration distribution. Monte-Carlo simulations also confirm this probability (99.2%).

  5. Recent progress in the detection of bursts in the canning in French reactors

    International Nuclear Information System (INIS)

    Goupil, J.; Grenon, M.; Raffailhac, J.; Roguin, A.

    1959-01-01

    electronic system provide a specific signal of the fission products which is then marked on a recorder. In a case where the activity threshold is exceeded, the cell involved is isolated from the prospection system and taker, over by a 'follow-up' detector which follows the evolution of the crack. A year of working on the pile G 1 , which is cooled by air at atmospheric pressure, has made it possible to obtain results on the operation of the canning-burst detection appliance, which has led us to perfect the original device by installing an 'evolution-meter' of the type described above for G 3 . The reactor EL 3 , cooled by heavy water, uses a detection system based on the measurement by GM counters of the activity of the fission gases carried by diluted helium into the heavy water, then extracted by hydro-cyclones. The selectivity of the system gives it a low sensitivity to parasite activities, and an excellent performance. (author) [fr

  6. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    International Nuclear Information System (INIS)

    Bagchi, Manjari

    2017-01-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  7. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Manjari, E-mail: manjari@imsc.res.in [The Institute of Mathematical Sciences (IMSc-HBNI), 4th Cross Road, CIT Campus, Taramani, Chennai 600113 (India)

    2017-04-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  8. Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-driven Convection

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [X-ray Astrophysics Laboratory, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771 (United States); Heger, A., E-mail: laurens.keek@nasa.gov [Monash Center for Astrophysics, School of Physics and Astronomy, Monash University, Victoria, 3800 (Australia)

    2017-06-20

    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of ∼30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.

  9. Detection of bursts in neuronal spike trains by the mean inter-spike interval method

    Institute of Scientific and Technical Information of China (English)

    Lin Chen; Yong Deng; Weihua Luo; Zhen Wang; Shaoqun Zeng

    2009-01-01

    Bursts are electrical spikes firing with a high frequency, which are the most important property in synaptic plasticity and information processing in the central nervous system. However, bursts are difficult to identify because bursting activities or patterns vary with phys-iological conditions or external stimuli. In this paper, a simple method automatically to detect bursts in spike trains is described. This method auto-adaptively sets a parameter (mean inter-spike interval) according to intrinsic properties of the detected burst spike trains, without any arbitrary choices or any operator judgrnent. When the mean value of several successive inter-spike intervals is not larger than the parameter, a burst is identified. By this method, bursts can be automatically extracted from different bursting patterns of cultured neurons on multi-electrode arrays, as accurately as by visual inspection. Furthermore, significant changes of burst variables caused by electrical stimulus have been found in spontaneous activity of neuronal network. These suggest that the mean inter-spike interval method is robust for detecting changes in burst patterns and characteristics induced by environmental alterations.

  10. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods

    Science.gov (United States)

    Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming

    2016-11-01

    For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.

  11. Prompt burst energetics experiments: fresh oxide/sodium series

    International Nuclear Information System (INIS)

    Reil, K.O.; Young, M.F.

    1978-08-01

    A series of in-pile experiments has been performed to provide information on thermal energy to work conversion under prompt burst excursion (PBE) conditions. These consisted of single pin tests using fresh uranium oxide or uranium carbide fuel in a capsule geometry, with either stagnant sodium or helium in the coolant channel. The experiments were irradiated with single or double pulses in the Annular Core Pulse Reactor (ACPR) to provide energy depositions up to 2900 J/g. This report covers the seven single and five double pulse UO 2 sodium-in tests. Experimental data includes pressure and linear motion transducer histories, measured work-energy conversion efficiencies, and post-irradiation examination. Analysis includes derived work-energy conversion efficiencies (up to 0.54%), pin failure modeling, hydrodynamic analysis of pressure pulse propagation in the channel, and piston stopping effects. Initial pressure events in the single pulse experiments appear to be dominated by fuel vapor pressure. Definite fuel-coolant interactions were observed in several experiments, including some that were coincident with stopping of the linear motion transducer piston, suggesting a possible triggering effect by the deceleration pressure

  12. Spike and burst coding in thalamocortical relay cells.

    Directory of Open Access Journals (Sweden)

    Fleur Zeldenrust

    2018-02-01

    Full Text Available Mammalian thalamocortical relay (TCR neurons switch their firing activity between a tonic spiking and a bursting regime. In a combined experimental and computational study, we investigated the features in the input signal that single spikes and bursts in the output spike train represent and how this code is influenced by the membrane voltage state of the neuron. Identical frozen Gaussian noise current traces were injected into TCR neurons in rat brain slices as well as in a validated three-compartment TCR model cell. The resulting membrane voltage traces and spike trains were analyzed by calculating the coherence and impedance. Reverse correlation techniques gave the Event-Triggered Average (ETA and the Event-Triggered Covariance (ETC. This demonstrated that the feature selectivity started relatively long before the events (up to 300 ms and showed a clear distinction between spikes (selective for fluctuations and bursts (selective for integration. The model cell was fine-tuned to mimic the frozen noise initiated spike and burst responses to within experimental accuracy, especially for the mixed mode regimes. The information content carried by the various types of events in the signal as well as by the whole signal was calculated. Bursts phase-lock to and transfer information at lower frequencies than single spikes. On depolarization the neuron transits smoothly from the predominantly bursting regime to a spiking regime, in which it is more sensitive to high-frequency fluctuations. The model was then used to elucidate properties that could not be assessed experimentally, in particular the role of two important subthreshold voltage-dependent currents: the low threshold activated calcium current (IT and the cyclic nucleotide modulated h current (Ih. The ETAs of those currents and their underlying activation/inactivation states not only explained the state dependence of the firing regime but also the long-lasting concerted dynamic action of the two

  13. Observations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Strong, I.B.; Klebesadel, R.W.; Evans, W.D.

    1975-01-01

    Observational data on gamma-ray bursts are reviewed. Information is grouped into temporal properties, energy fluxes and spectral properties, and directions and distributions of the sources in space. (BJG)

  14. Thermonuclear model for γ-ray bursts

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1981-01-01

    The evolution of magnetized neutron stars with field strengths of approx. 10 12 gauss that are accreting mass onto kilometer-sized polar regions at a rate of approx. 13 M 0 yr -1 is examined. Based on the results of one-dimensional calculations, one finds that stable hydrogen burning, mediated by the hot CNO-cycle, will lead to a critical helium mass in the range 10 20 to 10 22 g km -2 . Owing to the extreme degeneracy of the electron gas providing pressure support, helium burning occurs as a violent thermonuclear runaway which may propagate either as a convective deflagration (Type I burst) or as a detonation wave (Type II burst). Complete combustion of helium into 56 Ni releases from 10 38 to 10 40 erg km -2 and pushes hot plasma with β > 1 above the surface of the neutron star. Rapid expansion of the plasma channels a substantial fraction of the explosion energy into magnetic field stress. Spectral properties are expected to be complex with emission from both thermal and non-thermal processes. The hard γ-outburst of several seconds softens as the event proceeds and is followed by a period, typically of several minutes duration, of softer x-ray emission as the subsurface ashes of the thermonuclear explosion cool. In this model, most γ-ray bursts currently being observed are located at a distance of several hundred parsecs and should recur on a timescale of months to centuries with convective deflagrations (Type I bursts) being the more common variety. An explanation for Jacobson-like transients is also offered

  15. Are There Multiple Populations of Fast Radio Bursts?

    Science.gov (United States)

    Palaniswamy, Divya; Li, Ye; Zhang, Bing

    2018-02-01

    The repeating FRB 121102 (the “repeater”) shows repetitive bursting activities and was localized in a host galaxy at z = 0.193. On the other hand, despite dozens of hours of telescope time spent on follow-up observations, no other fast radio bursts (FRBs) have been observed to repeat. Yet, it has been speculated that the repeater is the prototype of FRBs, and that other FRBs should show similar repeating patterns. Using the published data, we compare the repeater with other FRBs in the observed time interval (Δt)–flux ratio (S i /S i+1) plane. We find that whereas other FRBs occupy the upper (large S i /S i+1) and right (large Δt) regions of the plane due to the non-detections of other bursts, some of the repeater bursts fall into the lower left region of the plot (short interval and small flux ratio) excluded by the non-detection data of other FRBs. The trend also exists even if one only selects those bursts detectable by the Parkes radio telescope. If other FRBs were similar to the repeater, our simulations suggest that the probability that none of them have been detected to repeat with the current searches would be ∼(10‑4–10‑3). We suggest that the repeater is not representative of the entire FRB population, and that there is strong evidence of more than one population of FRBs.

  16. Long gamma-ray bursts and core-collapse supernovae have different environments.

    Science.gov (United States)

    Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E

    2006-05-25

    When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.

  17. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Burgay, M.; Possenti, A. [INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Esposito, P.; Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Israel, G. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Kerr, M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J. [CSIRO Astronomy and Space Science, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Scholz, P., E-mail: archibald@astro.utoronto.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada)

    2017-11-10

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.

  18. Fast drift kilometric radio bursts and solar proton events

    Science.gov (United States)

    Cliver, E. W.; Kahler, S. W.; Cane, H. V.; Mcguire, R. E.; Vonrosenvinge, T. T.; Stone, R. G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times 20 min (median duration approximately 35 min).

  19. Fast drift kilometric radio bursts and solar proton events

    International Nuclear Information System (INIS)

    Cliver, E.W.; Kahler, S.W.; Cane, H.V.; Mcguire, R.E.; Vonrosenvinge, T.T.; Stone, R.G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times of approx. 20 min (median duration approximately 35 min)

  20. Impulsive EUV bursts observed in C IV with OSO-8. [UV solar spectra

    Science.gov (United States)

    Athay, R. G.; White, O. R.; Lites, B. W.; Bruner, E. C., Jr.

    1980-01-01

    Time sequences of profiles of the 1548 A line of C IV containing 51 EUV bursts observed in or near active regions are analyzed to determine the brightness, Doppler shift and line broadening characteristics of the bursts. The bursts have mean lifetimes of approximately 150 s, and mean increases in brightness at burst maximum of four-fold as observed with a field of view of 2 x 20 arc sec. Mean burst diameters are estimated to be 3 arc sec, or smaller. All but three of the bursts show Doppler shifts with velocities sometimes exceeding 75 km/s; 31 are dominated by red shifts and 17 are dominated by blue shifts. Approximately half of the latter group have red-shifted precursors. The bursts are interpreted as prominence material, such as surges and coronal rain, moving through the field of view of the spectrometer.

  1. Burst-mode manipulation of magnonic vortex crystals

    Science.gov (United States)

    Hänze, Max; Adolff, Christian F.; Weigand, Markus; Meier, Guido

    2015-03-01

    The manipulation of polarization states in 4 ×4 vortex crystals using sinusoidal magnetic field bursts is investigated by means of a broadband ferromagnetic-resonance setup. Magnetic field excitation with the proper amplitude and frequency allows tuning different polarization states, which are observed in the measured absorption spectra. The variation of the sinusoidal burst width consecutively identifies the time scale of the underlying process. A memorylike polarization state writing process is demonstrated on the submicrosecond time scale.

  2. Statistical analysis of fast hard X-ray bursts by SMM observations and microwave bursts by ground-based observations

    Science.gov (United States)

    Li, Chun-Sheng; Jiang, Shu-Ying

    1986-01-01

    In order to understand the relationship between fast hard X-ray bursts (HXRB) and microwave bursts (MWB), data were used from the following publications: NASA Technical Memorandum 84998; Solar Geological Data (1980 to 1983); monthly report of Solar Radio Emission; and NASA and NSF: Solar Geophysical Data (1980 to 1983). For analyzing individual events, the criterion of the same event for HXRB and MWB is determined by peak time difference. There is a good linear correlation between the physical parameter of HXRB and MWB.

  3. Seismic activity and environment protection in rock burst areas

    International Nuclear Information System (INIS)

    Travnicek, L.; Holecko, J.; Knotek, S.

    1993-01-01

    The significance is pointed out of seismic activity caused by mining activities in rock burst areas of the Ostrava-Karvinna district. The need is emphasized of the monitoring of the seismic activity at the Czech-Poland border as needed by the Two-party international committee for exploitation of coal supplies on the common border. The adverse effect of rock burst on the surface is documented by examples provided by the Polish party. The technique is described of investigating the DPB seismic polygon, allowing to evaluate the adverse impact of rock burst on the environment. (author) 1 fig., 8 refs

  4. Interpretation of the polarization structure of microwave bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.; Vlahos, L.

    1979-01-01

    High-spatial-resolution (a few seconds of arc) observations of microwave bursts have demonstrated that only the impulsive phase of the burst is polarized; one observes only one polarity in the burst source if it is weak (Alissandrakis and Kundu) and both polarities if it is intense (Enome et al.). These results are interpreted in terms of an asymmetrical bipolar field structure of the loop in which the energetic electrons responsible for the radiation are contained. The role of unequal field strengths at the feet of the loop on the number of electrons trapped and their pitch angle distribution are discussed in a specific model. Computations of the polarized intensity originating from each foot of the loop seem to be consistent with the observations at present available

  5. Burst Pressure Prediction of Multiple Cracks in Pipelines

    International Nuclear Information System (INIS)

    Razak, N A; Alang, N A; Murad, M A

    2013-01-01

    Available industrial code such as ASME B1G, modified ASME B1G and DNV RP-F101 to assess pipeline defects appear more conservative for multiple crack like- defects than single crack-like defects. Thus, this paper presents burst pressure prediction of pipe with multiple cracks like defects. A finite element model was developed and the burst pressure prediction was compared with the available code. The model was used to investigate the effect of the distance between the cracks and the crack length. The coalescence diagram was also developed to evaluate the burst pressure of the multiple cracks. It was found as the distance between crack increases, the interaction effect comes to fade away and multiple cracks behave like two independent single cracks

  6. Extragalactic dispersion measures of fast radio bursts

    International Nuclear Information System (INIS)

    Xu, Jun; Han, J. L.

    2015-01-01

    Fast radio bursts show large dispersion measures, much larger than the Galactic dispersion measure foreground. Therefore, they evidently have an extragalactic origin. We investigate possible contributions to the dispersion measure from host galaxies. We simulate the spatial distribution of fast radio bursts and calculate the dispersion measures along the sightlines from fast radio bursts to the edge of host galaxies by using the scaled NE2001 model for thermal electron density distributions. We find that contributions to the dispersion measure of fast radio bursts from the host galaxy follow a skew Gaussian distribution. The peak and the width at half maximum of the dispersion measure distribution increase with the inclination angle of a spiral galaxy, to large values when the inclination angle is over 70°. The largest dispersion measure produced by an edge-on spiral galaxy can reach a few thousand pc cm −3 , while the dispersion measures from dwarf galaxies and elliptical galaxies have a maximum of only a few tens of pc cm −3 . Notice, however, that additional dispersion measures of tens to hundreds of pc cm −3 can be produced by high density clumps in host galaxies. Simulations that include dispersion measure contributions from the Large Magellanic Cloud and the Andromeda Galaxy are shown as examples to demonstrate how to extract the dispersion measure from the intergalactic medium. (paper)

  7. The Gamma-Ray Burst ToolSHED is Open for Business

    Science.gov (United States)

    Giblin, Timothy W.; Hakkila, Jon; Haglin, David J.; Roiger, Richard J.

    2004-09-01

    The GRB ToolSHED, a Gamma-Ray Burst SHell for Expeditions in Data-Mining, is now online and available via a web browser to all in the scientific community. The ToolSHED is an online web utility that contains pre-processed burst attributes of the BATSE catalog and a suite of induction-based machine learning and statistical tools for classification and cluster analysis. Users create their own login account and study burst properties within user-defined multi-dimensional parameter spaces. Although new GRB attributes are periodically added to the database for user selection, the ToolSHED has a feature that allows users to upload their own burst attributes (e.g. spectral parameters, etc.) so that additional parameter spaces can be explored. A data visualization feature using GNUplot and web-based IDL has also been implemented to provide interactive plotting of user-selected session output. In an era in which GRB observations and attributes are becoming increasingly more complex, a utility such as the GRB ToolSHED may play an important role in deciphering GRB classes and understanding intrinsic burst properties.

  8. THE THIRD SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Lien, Amy; Baumgartner, Wayne H.; Cannizzo, John K.; Collins, Nicholas R.; Krimm, Hans A.; Troja, Eleonora [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sakamoto, Takanori [Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258 (Japan); Barthelmy, Scott D.; Cummings, Jay R.; Gehrels, Neil; Markwardt, Craig B. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Chen, Kevin [Department of Physics, University of California, Berkeley, 366 LeConte Hall MC 7300, Berkeley, CA 9472 (United States); Palmer, David M.; Ukwatta, T. N. [Space and Remote Sensing (ISR-2), Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Stamatikos, Michael [Department of Physics, Department of Astronomy and Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210 (United States)

    2016-09-20

    To date, the Burst Alert Telescope (BAT) onboard Swift has detected ∼1000 gamma-ray bursts (GRBs), of which ∼360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ∼11 years up through GRB 151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html. In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (∼2% of the BAT GRBs) in this search with confirmed emission beyond ∼1000 s of event data, and only two GRBs (GRB 100316D and GRB 101024A) with detections in the survey data prior to the starting of event data.

  9. A search for dispersed radio bursts in archival Parkes Multibeam Pulsar Survey data

    Science.gov (United States)

    Bagchi, Manjari; Nieves, Angela Cortes; McLaughlin, Maura

    2012-10-01

    A number of different classes of potentially extra-terrestrial bursts of radio emission have been observed in surveys with the Parkes 64-m radio telescope, including 'rotating radio transients', the 'Lorimer burst' and 'perytons'. Rotating radio transients are radio pulsars which are best detectable in single-pulse searches. The Lorimer burst is a highly dispersed isolated radio burst with properties suggestive of extragalactic origin. Perytons share the frequency-swept nature of the rotating radio transients and Lorimer burst, but unlike these events appear in all 13 beams of the Parkes multibeam receiver and are probably a form of peculiar radio frequency interference. In order to constrain these and other radio source populations further, we searched the archival Parkes Multibeam Pulsar Survey data for events similar to any of these. We did not find any new rotating radio transients or bursts like the Lorimer burst. We did, however, discover four peryton-like events. Similar to the perytons, these four bursts are highly dispersed, detected in all 13 beams of the Parkes multibeam receiver, and have pulse widths between 20 and 30 ms. Unlike perytons, these bursts are not associated with atmospheric events like rain or lightning. These facts may indicate that lightning was not responsible for the peryton phenomenon. Moreover, the lack of highly dispersed celestial signals is the evidence that the Lorimer burst is unlikely to belong to a cosmological source population.

  10. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  11. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  12. Cosmic Ray induced Neutron and Gamma-Ray bursts in a Lead Pile

    International Nuclear Information System (INIS)

    Chapline, G; Hagmann, C; Kerr, P; Snyderman, N J; Wurtz, R

    2007-01-01

    The neutron background is created primarily by cosmic rays interactions. Of particular interest for SNM detection is an understanding of burst events that resemble fission chains. We have been studying the interaction of cosmic rays with a lead pile that is efficient at creating neutron bursts from cosmic ray interactions. The neutron burst size depends on the configuration of the lead. We have found that the largest bursts appear to have been created by primaries of energy over 100 GeV that have had a diffractive interaction with the atmosphere. The large events trigger muon coincidence paddles with very high efficiency, and the resulting interactions with the lead pile can create over 10, 000 neutrons in a burst

  13. On the possibility of highest energy cosmic rays bursts and their correlation with gamma rays bursts e.g. March 5th, 1979 event

    International Nuclear Information System (INIS)

    Drukier, K.

    1982-01-01

    The avalanche production of magnetic monopoles is possible in neutron stars. Big part of the magnetic field energy can be used to accelerate a pulse of 10 30 monopoles to the energy E > approximately 10 17 eV. Thus the neutron stars may be ''point'' sources of bursts of highest energy Cosmic Rays. The emission of brehmsstrahlung photons by these highly relativistic monopoles would be seen as X and gamma bursts. This ''exotic'' model for March 5th, 1979 event, predicts that it has been followed by burst of highest energy Cosmic Rays coming from the direction of LMC supernovae remanent N49

  14. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  15. Are we observing Lorentz violation in gamma ray bursts?

    International Nuclear Information System (INIS)

    Pavlopoulos, Theodore G.

    2005-01-01

    From recent observations of gamma-ray bursts (GRBs), it appears that spectral time lags between higher-energy gamma rays photons and lower-energy photons vary with energy difference and time (distance) traveled. These lags appear to be smaller for the most luminous (close) bursts but larger for the fainter (farther away) bursts. From this observation, it has been suggested that it might be possible to determine the distance (L) these bursts have traveled from these time lags alone, without performing any red-shift measurements. These observed spreads (dispersion) of high-energy electromagnetic pulses of different energies with time contradict the special theory of relativity (STR). However, extended theories (ET) of the STR have been developed that contain a dispersive term, predicting the above observations. An example of such an ET is presented, allowing us to derive a relationship between time lags of gamma rays of different energies and distance L traveled from their origin. In addition, this theory predicts the origin of X-ray flashes

  16. The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses

    Science.gov (United States)

    Masurkar, Arjun V.; Chen, Wei R.

    2015-01-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089

  17. Relative clock verifies endogenous bursts of human dynamics

    Science.gov (United States)

    Zhou, Tao; Zhao, Zhi-Dan; Yang, Zimo; Zhou, Changsong

    2012-01-01

    Temporal bursts are widely observed in many human-activated systems, which may result from both endogenous mechanisms like the highest-priority-first protocol and exogenous factors like the seasonality of activities. To distinguish the effects from different mechanisms is thus of theoretical significance. This letter reports a new timing method by using a relative clock, namely the time length between two consecutive events of an agent is counted as the number of other agents' events appeared during this interval. We propose a model, in which agents act either in a constant rate or with a power-law inter-event time distribution, and the global activity either keeps unchanged or varies periodically vs. time. Our analysis shows that the bursts caused by the heterogeneity of global activity can be eliminated by setting the relative clock, yet the bursts from real individual behaviors still exist. We perform extensive experiments on four large-scale systems, the search engine by AOL, a social bookmarking system —Delicious, a short-message communication network, and a microblogging system —Twitter. Seasonality of global activity is observed, yet the bursts cannot be eliminated by using the relative clock.

  18. Ksub(L)sup(o) - Ksub(S)sup(o) transmission regeneration of hydrogen

    International Nuclear Information System (INIS)

    1976-04-01

    The final results of the Ksub(L)sup(o) - Ksub(S)sup(o) transmission regeneration amplitude on hydrogen in the momentum range 14-50 GeV measured at the Serpukhov 70 GeV accelerator is presented. The data analysis shows that the module of the modified regeneration amplitude decreases with increasing momentum. The amplitude phase is energy-independent and its mean value is phi 21 sup(o)= -132sup(o)+-5sup(o). In comparison with different theoretical models preference should be given to the model which takes into account only the ω and rho contribution to the amplitude. (Sz.N.Z.)

  19. Dependence of X-Ray Burst Models on Nuclear Masses

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, H.; Ong, W.-J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2017-08-01

    X-ray burst model predictions of light curves and the final composition of the nuclear ashes are affected by uncertain nuclear masses. However, not all of these masses are determined experimentally with sufficient accuracy. Here we identify the remaining nuclear mass uncertainties in X-ray burst models using a one-zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated—a typical mixed H/He burst with a limited rapid proton capture process (rp-process) and an extreme mixed H/He burst with an extended rp-process. When allowing for a 3 σ variation, only three remaining nuclear mass uncertainties affect the light-curve predictions of a typical H/He burst ({sup 27}P, {sup 61}Ga, and {sup 65}As), and only three additional masses affect the composition strongly ({sup 80}Zr, {sup 81}Zr, and {sup 82}Nb). A larger number of mass uncertainties remain to be addressed for the extreme H/He burst, with the most important being {sup 58}Zn, {sup 61}Ga, {sup 62}Ge, {sup 65}As, {sup 66}Se, {sup 78}Y, {sup 79}Y, {sup 79}Zr, {sup 80}Zr, {sup 81}Zr, {sup 82}Zr, {sup 82}Nb, {sup 83}Nb, {sup 86}Tc, {sup 91}Rh, {sup 95}Ag, {sup 98}Cd, {sup 99}In, {sup 100}In, and {sup 101}In. The smallest mass uncertainty that still impacts composition significantly when varied by 3 σ is {sup 85}Mo with 16 keV uncertainty. For one of the identified masses, {sup 27}P, we use the isobaric mass multiplet equation to improve the mass uncertainty, obtaining an atomic mass excess of −716(7) keV. The results provide a roadmap for future experiments at advanced rare isotope beam facilities, where all the identified nuclides are expected to be within reach for precision mass measurements.

  20. Properties of gamma-ray burst progenitor stars.

    Science.gov (United States)

    Kumar, Pawan; Narayan, Ramesh; Johnson, Jarrett L

    2008-07-18

    We determined some basic properties of stars that produce spectacular gamma-ray bursts at the end of their lives. We assumed that accretion of the outer portion of the stellar core by a central black hole fuels the prompt emission and that fall-back and accretion of the stellar envelope later produce the plateau in the x-ray light curve seen in some bursts. Using x-ray data for three bursts, we estimated the radius of the stellar core to be approximately (1 - 3) x 10(10) cm and that of the stellar envelope to be approximately (1 - 2) x 10(11) cm. The density profile in the envelope is fairly shallow, with rho approximately r(-2) (where rho is density and r is distance from the center of the explosion). The rotation speeds of the core and envelope are approximately 0.05 and approximately 0.2 of the local Keplerian speed, respectively.

  1. Burst fracture of the fifth lumber vertebra

    International Nuclear Information System (INIS)

    Cao Hetao; Hu Zhenmin; Shi Yuxin

    1999-01-01

    Objective: To investigate the stability of the fifth lumber vertebra after burst fracture. Methods: 7 patients with burst fracture of the fifth lumber vertebra were examined by X-ray and CT, and followed for 6-36 months. The changes of wedge index, lordosis, degree of spinal canal stenosis and neurological features were observed during the episode and followed up. Results: The three spinal column structure was disrupted in 6 of 7 patients. The anterior and mid columns were involved in 1 case. Spinal stenosis of first and second degrees was seen in 3 cases, and in one case, there was no spinal canal stenosis. Lower lumber motor-root deficits were found in 2 of 7 patients and resolved in follow up. There was no tendency of progressive collapse of the vertebral body and spinal stenosis. Conclusions: Burst fracture of the fifth lumber vertebra was specific, most of them were stable fractures, although two or three columns of the spine were disrupted and accompanied by spinal canal stenosis

  2. Burst fracture of the fifth lumber vertebra

    Energy Technology Data Exchange (ETDEWEB)

    Hetao, Cao; Zhenmin, Hu; Yuxin, Shi [Affiliated Hosptial of Nantong Medical College, JS, Nantong (China). Dept. of Radiology

    1999-04-01

    Objective: To investigate the stability of the fifth lumber vertebra after burst fracture. Methods: 7 patients with burst fracture of the fifth lumber vertebra were examined by X-ray and CT, and followed for 6-36 months. The changes of wedge index, lordosis, degree of spinal canal stenosis and neurological features were observed during the episode and followed up. Results: The three spinal column structure was disrupted in 6 of 7 patients. The anterior and mid columns were involved in 1 case. Spinal stenosis of first and second degrees was seen in 3 cases, and in one case, there was no spinal canal stenosis. Lower lumber motor-root deficits were found in 2 of 7 patients and resolved in follow up. There was no tendency of progressive collapse of the vertebral body and spinal stenosis. Conclusions: Burst fracture of the fifth lumber vertebra was specific, most of them were stable fractures, although two or three columns of the spine were disrupted and accompanied by spinal canal stenosis

  3. Rock burst prevention at steep seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, G D

    1988-09-01

    At steep shield longwalls one method of preventing rock bursts is to avoid sharp angles during working. Stress in coal and rock body that appears when steep seams are worked where rock bursts occur at corners of set-up entries is discussed. The dynamic interaction between gas and rock pressure is assessed. Maintains that in order to avoid rock bursts at these places it is necessary to turn the protruding coal wall by 20-30 degrees towards the coal body to divert the action of shift forces. At the same time the face should also be inclined (by 10-15 degrees) to move the zones of increased stress away from the corner into the coal and rock body. Stress at workings with round cross-sections is 3-4 times lower than at square cross-sections. Recommendations are given that concern shearer loader operation (semi-spherical shape of the face), borehole drilling and water injection. Initial distance of 10-15 m between boreholes is suggested. 3 refs.

  4. Testing and Performance of UFFO Burst Alert & Trigger Telescope

    DEFF Research Database (Denmark)

    Rípa, Jakub; Bin Kim, Min; Lee, Jik

    2014-01-01

    The Ultra-Fast Flash Observatory pathfinder (UFFO-p) is a new space mission dedicated to detect Gamma-Ray Bursts (GRBs) and rapidly follow their afterglows in order to provide early optical/ultraviolet measurements. A GRB location is determined in a few seconds by the UFFO Burst Alert & Trigger t...

  5. The first gamma-ray bursts in the universe

    International Nuclear Information System (INIS)

    Mesler, R. A.; Pihlström, Y. M.; Whalen, Daniel J.; Smidt, Joseph; Fryer, Chris L.; Lloyd-Ronning, N. M.

    2014-01-01

    Gamma-ray bursts (GRBs) are the ultimate cosmic lighthouses, capable of illuminating the universe at its earliest epochs. Could such events probe the properties of the first stars at z ∼ 20, the end of the cosmic Dark Ages? Previous studies of Population III (Pop III) GRBs only considered explosions in the diffuse relic H II regions of their progenitors or bursts that are far more energetic than those observed to date. However, the processes that produce GRBs at the highest redshifts likely reset their local environments, creating much more complicated structures than those in which relativistic jets have been modeled so far. These structures can greatly affect the luminosity of the afterglow and hence the redshift at which it can be detected. We have now simulated Pop III GRB afterglows in H II regions, winds, and dense shells ejected by the star during the processes that produce the burst. We find that GRBs with E iso,γ = 10 51 -10 53 erg will be visible at z ≳ 20 to the next generation of near infrared and radio observatories. In many cases, the environment of the burst, and hence progenitor type, can be inferred from the afterglow light curve. Although some Pop III GRBs are visible to Swift and the Very Large Array now, the optimal strategy for their detection will be future missions like the proposed EXIST and JANUS missions with large survey areas and onboard X-ray and infrared telescopes that can track their near-infrared flux from the moment of the burst, thereby identifying their redshifts.

  6. Indication to distinguish the burst region of coal gas from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Jian-yuan Cheng; Hong-wei Tang; Lin Xu; Yan-fang Li [China Coal Research Institute, Xi' an (China). Xi' an Research Institute

    2009-09-15

    The velocity of an over-burst coal seam is about 1/3 compared to a normal coal seam based on laboratory test results. This can be considered as a basis to confirm the area of coal and gas burst by seismic exploration technique. Similarly, the simulation result of the theoretical seismic model shows that there is obvious distinction between over-burst coal and normal coal based on the coal reflection's travel-time, energy and frequency. The results from the actual seismic data acquired in the coal and gas over-burst cases is consistent with that of the laboratory and seismic modeling; that is, in the coal and gas burst region, seismic reflection travel time is delayed, seismic amplitude is weakened and seismic frequency is reduced. Therefore, it can be concluded that seismic exploration technique is promising for use in distinguishing coal and gas over-burst regions based on the variation of seismic reflection travel time, amplitude and frequency. 7 refs., 6 figs.

  7. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  8. Burst firing enhances neural output correlation

    Directory of Open Access Journals (Sweden)

    Ho Ka eChan

    2016-05-01

    Full Text Available Neurons communicate and transmit information predominantly through spikes. Given that experimentally observed neural spike trains in a variety of brain areas can be highly correlated, it is important to investigate how neurons process correlated inputs. Most previous work in this area studied the problem of correlation transfer analytically by making significant simplifications on neural dynamics. Temporal correlation between inputs that arises from synaptic filtering, for instance, is often ignored when assuming that an input spike can at most generate one output spike. Through numerical simulations of a pair of leaky integrate-and-fire (LIF neurons receiving correlated inputs, we demonstrate that neurons in the presence of synaptic filtering by slow synapses exhibit strong output correlations. We then show that burst firing plays a central role in enhancing output correlations, which can explain the above-mentioned observation because synaptic filtering induces bursting. The observed changes of correlations are mostly on a long time scale. Our results suggest that other features affecting the prevalence of neural burst firing in biological neurons, e.g., adaptive spiking mechanisms, may play an important role in modulating the overall level of correlations in neural networks.

  9. Detection of bursts in extracellular spike trains using hidden semi-Markov point process models.

    Science.gov (United States)

    Tokdar, Surya; Xi, Peiyi; Kelly, Ryan C; Kass, Robert E

    2010-08-01

    Neurons in vitro and in vivo have epochs of bursting or "up state" activity during which firing rates are dramatically elevated. Various methods of detecting bursts in extracellular spike trains have appeared in the literature, the most widely used apparently being Poisson Surprise (PS). A natural description of the phenomenon assumes (1) there are two hidden states, which we label "burst" and "non-burst," (2) the neuron evolves stochastically, switching at random between these two states, and (3) within each state the spike train follows a time-homogeneous point process. If in (2) the transitions from non-burst to burst and burst to non-burst states are memoryless, this becomes a hidden Markov model (HMM). For HMMs, the state transitions follow exponential distributions, and are highly irregular. Because observed bursting may in some cases be fairly regular-exhibiting inter-burst intervals with small variation-we relaxed this assumption. When more general probability distributions are used to describe the state transitions the two-state point process model becomes a hidden semi-Markov model (HSMM). We developed an efficient Bayesian computational scheme to fit HSMMs to spike train data. Numerical simulations indicate the method can perform well, sometimes yielding very different results than those based on PS.

  10. X-Ray Reflection and an Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L.; Strohmayer, T. E. [X-ray Astrophysics Laboratory, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771 (United States); Iwakiri, W.; Serino, M. [MAXI team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States); Zand, J. J. M. in’t, E-mail: laurens.keek@nasa.gov [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2017-02-10

    Thermonuclear X-ray bursts from accreting neutron stars power brief but strong irradiation of their surroundings, providing a unique way to study accretion physics. We analyze MAXI /Gas Slit Camera and Swift /XRT spectra of a day-long flash observed from IGR J17062-6143 in 2015. It is a rare case of recurring bursts at a low accretion luminosity of 0.15% Eddington. Spectra from MAXI , Chandra , and NuSTAR observations taken between the 2015 burst and the previous one in 2012 are used to determine the accretion column. We find it to be consistent with the burst ignition column of 5×10{sup 10} g cm{sup −2}, which indicates that it is likely powered by burning in a deep helium layer. The burst flux is observed for over a day, and decays as a straight power law: F ∝ t {sup −1.15}. The burst and persistent spectra are well described by thermal emission from the neutron star, Comptonization of this emission in a hot optically thin medium surrounding the star, and reflection off the photoionized accretion disk. At the burst peak, the Comptonized component disappears, when the burst may dissipate the Comptonizing gas, and it returns in the burst tail. The reflection signal suggests that the inner disk is truncated at ∼10{sup 2} gravitational radii before the burst, but may move closer to the star during the burst. At the end of the burst, the flux drops below the burst cooling trend for 2 days, before returning to the pre-burst level.

  11. Quasi-periodic oscillations in short recurring bursts of the soft gamma repeater J1550–5418

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, D.; D' Angelo, C.; Watts, A. L.; Heil, L.; Van der Klis, M.; Van der Horst, A. J. [Astronomical Institute " Anton Pannekoek," University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Kouveliotou, C. [Astrophysics Office, ZP 12, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Göğüş, E.; Kaneko, Y. [SabancıUniversity, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Lin, L. [François Arago Centre, APC, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris (France); Von Kienlin, A. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Younes, G., E-mail: D.Huppenkothen@uva.nl [NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

    2014-06-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. The scarcity of giant flares makes a search for QPOs in the shorter, far more numerous bursts from soft gamma repeaters (SGRs) desirable. In Huppenkothen et al., we developed a Bayesian method for searching for QPOs in short magnetar bursts, taking into account the effects of the complicated burst structure, and have shown its feasibility on a small sample of bursts. Here we apply the same method to a much larger sample from a burst storm of 286 bursts from SGR J1550–5418. We report a candidate signal at 260 Hz in a search of the individual bursts, which is fairly broad. We also find two QPOs at ∼93 Hz, and one at 127 Hz, when averaging periodograms from a number of bursts in individual triggers, at frequencies close to QPOs previously observed in magnetar giant flares. Finally, for the first time, we explore the overall burst variability in the sample and report a weak anti-correlation between the power-law index of the broadband model characterizing aperiodic burst variability and the burst duration: shorter bursts have steeper power-law indices than longer bursts. This indicates that longer bursts vary over a broader range of timescales and are not simply longer versions of the short bursts.

  12. Synchronization of bursting neurons with a slowly varying d. c. current

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Mondal, Argha

    2017-01-01

    Highlights: • To examine synchronization, noisy chemical and electrical coupling have been considered for a coupled bursting M-L neurons. • Bursting presents the precursor to spike synchronization and coupling strength increases the locking between neurons (anti phase and in phase). • The stability of synchronization is established via similarity function. • The necessary condition to occur CS state is observed using master stability function. • A network of four M-L neurons is considered to observe the synchronization. - Abstract: Bursting of neuronal firing is an interesting dynamical consequences depending on fast/slow dynamics. Certain cells in different brain regions produce spike-burst activity. We study such firing activity and its transitions to synchronization using identical as well as non-identical coupled bursting Morris-Lecar (M-L) neurons. Synchronization of different firing activity is a multi-time-scale phenomenon and burst synchronization presents the precursor to spike synchronization. Chemical synapses are one of the dynamical means of information processing between neurons. Electrical synapses play a major role for synchronous activity in a certain network of neurons. Synaptically coupled neural cells exhibit different types of synchronization such as in phase or anti-phase depending on the nature and strength of coupling functions and the synchronization regimes are analyzed by similarity functions. The sequential transitions to synchronization regime are examined by the maximum transverse Lyapunov exponents. Synchronization of voltage traces of two types of planar bursting mechanisms is explored for both kind of synapses under realistic conditions. The noisy influence effects on the transmission of signals and strongly acts to the firing activity (such as periodic firing and bursting) and integration of signals for a network. It has been examined using the mean interspike interval analysis. The transition to synchronization states of

  13. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

    Directory of Open Access Journals (Sweden)

    Fikret Emre eKapucu

    2012-06-01

    Full Text Available In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC, exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI histograms. Moreover, the algorithm calculates interspike interval thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  14. Endogenous GABA and Glutamate Finely Tune the Bursting of Olfactory Bulb External Tufted Cells

    Science.gov (United States)

    Hayar, Abdallah; Ennis, Matthew

    2008-01-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic γ-aminobutyric acid (GABA) and glutamate receptors. Blocking GABAA receptors increased—whereas blocking ionotropic glutamate receptors decreased—the number of spikes/burst without changing the interburst frequency. The GABAA agonist (isoguvacine, 10 μM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb. PMID:17567771

  15. Multirods burst tests under loss-of-coolant conditions

    International Nuclear Information System (INIS)

    Kawasaki, S.; Uetsuka, H.; Furuta, T.

    1983-01-01

    In order to know the upper limit of coolant flow area restriction in a fuel assembly under loss-of-coolant accidents in LWRs, burst tests of fuel bundles were performed. Each bundle consisted of 49 rods(7x7 rods), and bursts were conducted in flowing steam. In some cases, 4 rods were replaced by control rods with guide tubes in a bundle. After the burst, the ballooning behavior of each rod and the degree of coolant flow area restriction in the bundle were measured. Ballooning behavior of rods and degree of coolant flow channel restriction in bundles with control rods were not different from those without control rods. The upper limit of coolant flow channel restriction under loss-of-coolant conditions was estimated to be about 80%. (author)

  16. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    International Nuclear Information System (INIS)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Leak-before-break experience in CANDU reactors

    International Nuclear Information System (INIS)

    Price, E.G.; Moan, G.D.; Coleman, C.E.

    1988-01-01

    In the Canada deuterium uranium (CANDU) reactor, each of the ∼ 400 hot pressure tubes containing the fuel bundles and the pressurized heat transport water is surrounded and insulated from the cold moderator by a calandria tube. The pressure tubes are made from cold-worked Zr-2.5 Nb with a minimum wall thickness of 4.19 mm, and the calandria tubes are made from annealed Zircaloy-2 with a minimum wall thickness of 1.37 mm. The annulus between these two tubes contains an inert gas. Leak-before-break has developed into an operational tool in CANDU reactors to prevent unstable failure of pressure tubes. A procedure for leak detection and reactor response has been developed from the use of the annulus gas, whose dew point is measured to ascertain if leaks have crept into the annulus. The characteristics of the crack are used to establish the response time for leak detection. The reactor is required to be shut down before the length of the slowly growing crack has reached the critical stage. This critical crack length, determined using slit burst tests on tubes, is the crack length at which the crack growth becomes unstable. The most likely crack growth mechanism is delayed hydride cracking. This mechanism requires three conditions to occur simultaneously: the material must be sensitive to delayed hydride cracking; zirconium hydrides must be present in the material; and the tensile stress must be sufficiently great

  18. ESTIMATION OF BURSTS LENGTH AND DESIGN OF A FIBER DELAY LINE BASED OBS ROUTER

    Directory of Open Access Journals (Sweden)

    RICHA AWASTHI

    2017-03-01

    Full Text Available The demand for higher bandwidth is increasing day by day and this ever growing demand cannot be catered to with current electronic technology. Thus new communication technology like optical communication needs to be used. In the similar context OBS (optical burst switching is considered as next generation data transfer technology. In OBS information is transmitted in forms of optical bursts of variable lengths. However, contention among the bursts is a major problem in OBS system, and for contention resolution defection routing is mostly preferred. However, deflection routing increases delay. In this paper, it is shown that the arrival of very large bursts is rare event, and for moderate burst length the buffering of contending burst can provide very effective solution. However, in case of arrival of large bursts deflection can be used.

  19. Observation of solar radio bursts using swept-frequency radiospectrograph in 20 - 40 MHz band

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Oya, Hiroshi.

    1987-01-01

    A new station for the observation of solar decametric radio bursts has been developed at Miyagi Vocational Training College in Tsukidate, Miyagi, Japan. Using the swept frequency radiospectrograph covering a frequency range from 20 MHz to 40 MHz within 200 msec, with bandwidth of 30 kHz, the radio outbursts from the sun have been currently monitored with colored dynamic spectrum display. After July 1982, successful observations provide the data which include all types of solar radio bursts such as type I, II, III, IV and V in the decametric wavelength range. In addition to these typical radio bursts, rising tone bursts with fast drift rate followed by strong type III bursts and a series of bursts repeating rising and falling tone bursts with slow drift rate have been observed. (author)

  20. The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.

    Science.gov (United States)

    Masurkar, Arjun V; Chen, Wei R

    2012-02-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Intermediate long X-ray bursts from the ultra-compact binary candidate SLX1737-282

    DEFF Research Database (Denmark)

    Falanga, M.; Chenevez, Jérôme; Cumming, A.

    2008-01-01

    . The observed intermediate long burst properties from SLX 1737-282 are consistent with helium ignition at the column depth of 5-8 × 109 g cm-2 and a burst energy release of 1041 erg. The apparent recurrence time of ≃86 days between the intermediate long bursts from SLX 1737-282 suggests a regime of unstable...... bursts. Methods: Up to now only four bursts, all with duration between ≃15{-}30 min, have been recorded for SLX 1737-282. The properties of three of these intermediate long X-ray bursts observed by INTEGRAL are investigated and compared to other burster sources. The broadband spectrum of the persistent...

  2. Possibility of detecting magnetospheric radio bursts from Uranus and Neptune

    International Nuclear Information System (INIS)

    Kennel, C.F.; Maggs, J.E.

    1976-01-01

    It is known that Earth, Jupiter and Saturn are sources of intense sporadic bursts of electromagnetic radiation, known as magnetospheric radio bursts. These bursts are here described. It is thought that the similarities in the power flux spectra, together with the burst occurrence patterns, suggest a common physical origin for these bursts in all three planets. The common mechanism may be noise amplification by field aligned currents, since it has been shown that the Earth's MRBs are associated with bright auroral arcs that involve intense field aligned currents. Such currents result from the interaction of the solar wind with the magnetosphere and should be a general feature of the interaction between the solar wind and planetary magnetospheres. If MRBs are produced by solar wind-magnetosphere interaction their total radiated power might scale with the solar wind input into the magnetosphere, and it has been suggested that the frequency of emission scales with the polar magnetic field strength of a planet. The intensity of MRBs is here scaled to the solar wind input and the frequency of emission to the polar field strength with a view to estimating the possibility of detecting MRBs from Uranus and Neptune. It is found that scaling of MRB power to the solar wind-magnetosphere dissipation power is probably a reasonable hypothesis. It is suggested that detection of MRB bursts from Uranus and Neptune might be a reasonable radioastronomy objective on future missions to the outer Solar System. (U.K.)

  3. Modelling and analysis of a compensator burst after a check valve slam with the pressure surge code DYVRO mod. 3

    International Nuclear Information System (INIS)

    Neuhaus, Thorsten; Schaffrath, Andreas

    2009-01-01

    In this contribution the analysis and calculation of a compensator burst after a pump start and check valve slam with the pressure surge code DYVRO mod. 3 are presented. The compensator burst occurred in the essential service water system (ESWS) of a pressurized water reactor (PWR) in a deviant operation mode. Due to lack of knowledge about the causes a systematic investigation has been performed by TUV NORD SysTec GmbH and Co. KG. The following scenario was identified as most likely: Because of maintenance a heat exchanger was shut off from the ESWS by a closed valve. Due to the hydrostatic pressure profile air had been sucked in through this leaky closed valve forming an air bubble. After the pump start the water was accelerated against the closed valve where the air bubble was compressed. The subsequent backflow resulted in a fast closing of a check valve and a pressure surge that caused the compensator burst. Calculations have been performed with the self developed and validated pressure surge computer code DYVRO mod. 3. The present paper is focussed on the modelling of the pipe system, the pump, the check valve and the behaviour of the air bubble as well as the simulation of the incident. The calculated maximum pressure in the ESWS is above 3 MPa, which is approx. four times higher than the design pressure of 0.7 MPa. This pressure increase has led most likely to the abrupt compensator failure. (author)

  4. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    Science.gov (United States)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  5. VERY HIGH ENERGY OBSERVATIONS OF GAMMA-RAY BURSTS WITH STACEE

    International Nuclear Information System (INIS)

    Jarvis, A.; Ong, R. A.; Ball, J.; Carson, J. E.; Zweerink, J.; Williams, D. A.; Aune, T.; Covault, C. E.; Driscoll, D. D.; Fortin, P.; Mukherjee, R.; Gingrich, D. M.; Hanna, D. S.; Kildea, J.; Lindner, T.; Mueller, C.; Ragan, K.

    2010-01-01

    Gamma-ray bursts (GRBs) are the most powerful explosions known in the universe. Sensitive measurements of the high-energy spectra of GRBs can place important constraints on the burst environments and radiation processes. Until recently, there were no observations during the first few minutes of GRB afterglows in the energy range between 30 GeV and ∼1 TeV. With the launch of the Swift GRB Explorer in late 2004, GRB alerts and localizations within seconds of the bursts became available. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) was a ground-based, gamma-ray telescope with an energy threshold of ∼150 GeV for sources at zenith. At the time of Swift's launch, STACEE was in a rare position to provide >150 GeV follow-up observations of GRBs as fast as three minutes after the burst alert. In addition, STACEE performed follow-up observations of several GRBs that were localized by the HETE-2 and INTEGRAL satellites. Between 2002 June and 2007 July, STACEE made follow-up observations of 23 GRBs. Upper limits are placed on the high-energy gamma-ray fluxes from 21 of these bursts.

  6. An Artificial Intelligence Classification Tool and Its Application to Gamma-Ray Bursts

    Science.gov (United States)

    Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Giblin, Timothy; Paciesas, William S.; Pendleton, Geoffrey N.; Mallozzi, Robert S.

    2004-01-01

    Despite being the most energetic phenomenon in the known universe, the astrophysics of gamma-ray bursts (GRBs) has still proven difficult to understand. It has only been within the past five years that the GRB distance scale has been firmly established, on the basis of a few dozen bursts with x-ray, optical, and radio afterglows. The afterglows indicate source redshifts of z=1 to z=5, total energy outputs of roughly 10(exp 52) ergs, and energy confined to the far x-ray to near gamma-ray regime of the electromagnetic spectrum. The multi-wavelength afterglow observations have thus far provided more insight on the nature of the GRB mechanism than the GRB observations; far more papers have been written about the few observed gamma-ray burst afterglows in the past few years than about the thousands of detected gamma-ray bursts. One reason the GRB central engine is still so poorly understood is that GRBs have complex, overlapping characteristics that do not appear to be produced by one homogeneous process. At least two subclasses have been found on the basis of duration, spectral hardness, and fluence (time integrated flux); Class 1 bursts are softer, longer, and brighter than Class 2 bursts (with two second durations indicating a rough division). A third GRB subclass, overlapping the other two, has been identified using statistical clustering techniques; Class 3 bursts are intermediate between Class 1 and Class 2 bursts in brightness and duration, but are softer than Class 1 bursts. We are developing a tool to aid scientists in the study of GRB properties. In the process of developing this tool, we are building a large gamma-ray burst classification database. We are also scientifically analyzing some GRB data as we develop the tool. Tool development thus proceeds in tandem with the dataset for which it is being designed. The tool invokes a modified KDD (Knowledge Discovery in Databases) process, which is described as follows.

  7. Numerical Assessment of the Influences of Gas Pressure on Coal Burst Liability

    Directory of Open Access Journals (Sweden)

    Haochen Zhao

    2018-01-01

    Full Text Available When coal mines exploit deep seams with high-gas content, risks are encountered due to the additional high likelihood of rock bursting potential problems. The bursts of coal pillars usually lead to severe fatalities, injuries, and destruction of property, including impeding access to active mine workings underground. The danger exists given that conditions in the already highly brittle coal material can be exacerbated by high stress and high gas pressure conditions. It is thus critical to develop methods that improve current understanding about bursting liability, and techniques to forecast or prevent coal bursting in underground coal mines. This study uses field data from a deep coal mine, and numerical modeling to investigate the effects of gas pressure and mechanical compressive stresses on coal bursting liability in high gas content coal seams. The bursting energy index is adopted to determine the coal bursting liability under high gas pressure conditions. The adopted methodology uses a two-staged approach comprising investigating the influence of gas pressure on the bursting liability of coal pillar, and the influence of the gas pressure on the resulting pillar failure mode. Based on numerical simulations of coal pillars, correlations are observed between the magnitudes of gas pressures and the bursting energy index. Irrespective of pillar size, failure time is shortest when the gas pressure achieves a threshold value between 50 kPa to 70 kPa. At 50 kPa, the value of the BEI increases by 50% going from the 4 m pillar to the 6 m pillar. The value of the BEI increases by 43% going from the 6 m high pillar to the 8 m high pillar at 50 kPa. When pillars fail there is a degree of stress relief leading to a reduction in bursting liability. The results suggest that before 50 kPa, pillar failure is largely due to mechanical loading. After 50 kPa, pillar failure is largely due to excessive gas pressures.

  8. A search for spectral lines in gamma-ray bursts using TGRS

    International Nuclear Information System (INIS)

    Kurczynski, P.; Palmer, D.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Madden, N. W.; Pehl, R. H.

    1998-01-01

    We present the results of an ongoing search for narrow spectral lines in gamma-ray burst data. TGRS, the Transient Gamma-Ray Spectrometer aboard the Wind satellite is a high energy-resolution Ge device. Thus it is uniquely situated among the array of space-based, burst sensitive instruments to look for line features in gamma-ray burst spectra. Our search strategy adopts a two tiered approach. An automated 'quick look' scan searches spectra for statistically significant deviations from the continuum. We analyzed all possible time accumulations of spectra as well as individual spectra for each burst. Follow-up analysis of potential line candidates uses model fitting with F-test and χ 2 tests for statistical significance

  9. GRB 090926A AND BRIGHT LATE-TIME FERMI LARGE AREA TELESCOPE GAMMA-RAY BURST AFTERGLOWS

    International Nuclear Information System (INIS)

    Swenson, C. A.; Roming, P. W. A.; Vetere, L.; Kennea, J. A.; Maxham, A.; Zhang, B. B.; Zhang, B.; Schady, P.; Holland, S. T.; Kuin, N. P. M.; Oates, S. R.; De Pasquale, M.; Page, K. L.

    2010-01-01

    GRB 090926A was detected by both the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. Swift follow-up observations began ∼13 hr after the initial trigger. The optical afterglow was detected for nearly 23 days post trigger, placing it in the long-lived category. The afterglow is of particular interest due to its brightness at late times, as well as the presence of optical flares at T0+10 5 s and later, which may indicate late-time central engine activity. The LAT has detected a total of 16 gamma-ray bursts; nine of these bursts, including GRB 090926A, also have been observed by Swift. Of the nine Swift-observed LAT bursts, six were detected by UVOT, with five of the bursts having bright, long-lived optical afterglows. In comparison, Swift has been operating for five years and has detected nearly 500 bursts, but has only seen ∼30% of bursts with optical afterglows that live longer than 10 5 s. We have calculated the predicted gamma-ray fluence, as would have been seen by the Burst Alert Telescope (BAT) on board Swift, of the LAT bursts to determine whether this high percentage of long-lived optical afterglows is unique, when compared to BAT-triggered bursts. We find that, with the exception of the short burst GRB 090510A, the predicted BAT fluences indicate that the LAT bursts are more energetic than 88% of all Swift bursts and also have brighter than average X-ray and optical afterglows.

  10. ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)

    2016-07-20

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  11. Reactor shell model response to inner loading with impulses of various origin and duration

    International Nuclear Information System (INIS)

    Ryzhanskij, V.A.; Ivanov, A.G.; Uskov, A.A.; Kharlamov, M.V.; Novikov, V.V.; Pozharskij, A.N.

    1994-01-01

    The reaction of reactor vessel mockup towards internal pulsed loading simulating emergency nuclear power release burst is experimentally studied. Four types of non-nuclear pulsed power release sources are used in the experiments. It is revealed that the nature and duration of power release pulse affect greatly its efficiency. A semi-empirical formula describing the interrelation between power release efficiency and duration depending on its nature is derived. 11 refs., 1 tab., 3 figs

  12. Radon and rock bursts in deep mines

    International Nuclear Information System (INIS)

    Bulashevich, Yu.P.; Utkin, V.I.; Yurkov, A.K.; Nikolaev, V.V.

    1996-01-01

    Variation fields of radon concentration in time to ascertain stress-strain state of the North Ural bauxite mines have been studied. It is shown that dynamic changes in the stress-strain state of the rocks prior to the rock burst bring about variations in radon concentration in the observation wells. Depending on mutual positioning of the observation points and the rock burst epicenter, the above-mentioned variations differ in principle, reduction of radon concentration in the near zone and its increase in the far zone are observed [ru

  13. Dense magnetized plasma associated with a fast radio burst.

    Science.gov (United States)

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  14. SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS

    International Nuclear Information System (INIS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Arai, K.; Araya, M. C.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Anderson, W. G.; Amariutei, D.; Arain, M. A.; Amin, R. S.; Antonucci, F.

    2011-01-01

    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely ∼1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10 44 erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band- and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10 44 d 2 1 erg and 1.4 x 10 47 d 2 1 erg, respectively, where d 1 = (d 0501 )/1 kpc and d 0501 is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.

  15. Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey

    NARCIS (Netherlands)

    Spitler, L.G.; Cordes, J.M.; Hessels, J.W.T.; Lorimer, D.R.; McLaughlin, M.A.; Chatterjee, S.; Crawford, F.; Deneva, J.S.; Kaspi, V.M.; Wharton, R.S.; Allen, B.; Bogdanov, S.; Brazier, A.; Camilo, F.; Freire, P.C.C.; Jenet, F.A.; Karako-Argaman, C.; Knispel, B.; Lazarus, P.; Lee, K.J.; van Leeuwen, J.; Lynch, R.; Ransom, S.M.; Scholz, P.; Siemens, X.; Stairs, I.H.; Stovall, K.; Swiggum, J.K.; Venkataraman, A.; Zhu, W.W.; Aulbert, C.; Fehrmann, H.

    2014-01-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities

  16. Nuclear Physical Uncertainties in Modeling X-Ray Bursts

    Science.gov (United States)

    Regis, Eric; Amthor, A. Matthew

    2017-09-01

    Type I x-ray bursts occur when a neutron star accretes material from the surface of another star in a compact binary star system. For certain accretion rates and material compositions, much of the nuclear material is burned in short, explosive bursts. Using a one-dimensional stellar model, Kepler, and a comprehensive nuclear reaction rate library, ReacLib, we have simulated chains of type I x-ray bursts. Unfortunately, there are large remaining uncertainties in the nuclear reaction rates involved, since many of the isotopes reacting are unstable and have not yet been studied experimentally. Some individual reactions, when varied within their estimated uncertainty, alter the light curves dramatically. This limits our ability to understand the structure of the neutron star. Previous studies have looked at the effects of individual reaction rate uncertainties. We have applied a Monte Carlo method ``-simultaneously varying a set of reaction rates'' -in order to probe the expected uncertainty in x-ray burst behaviour due to the total uncertainty in all nuclear reaction rates. Furthermore, we aim to discover any nonlinear effects due to the coupling between different reaction rates. Early results show clear non-linear effects. This research was made possible by NSF-DUE Grant 1317446, BUScholars Program.

  17. Bursting pressure of autofrettaged cylinders with inclined external cracks

    International Nuclear Information System (INIS)

    Seifi, Rahman; Babalhavaeji, Majid

    2012-01-01

    Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn’t any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: ► Modified J-Integral can be used for study of autofrettaged cracked cylinders. ► External axial cracks reduce considerably the pressure capacity of cylinders. ► External circumferential cracks have not considerable effects on bursting pressure. ► Autofrettage has contrary effects on external crack in compared with internal crack.

  18. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  19. A search for dispersed radio bursts in archival Parkes Multibeam Pulsar Survey data

    OpenAIRE

    Bagchi, Manjari; Nieves, Angela Cortes; McLaughlin, Maura

    2012-01-01

    A number of different classes of potentially extra-terrestrial bursts of radio emission have been observed in surveys with the Parkes 64m radio telescope, including "Rotating Radio Transients", the "Lorimer burst" and "perytons". Rotating Radio Transients are radio pulsars which are best detectable in single-pulse searches. The Lorimer burst is a highly dispersed isolated radio burst with properties suggestive of extragalactic origin. Perytons share the frequency-swept nature of the Rotating ...

  20. The Mechanism behind Erosive Bursts in Porous Media

    Science.gov (United States)

    Jaeger, Robin; Mendoza, Miller; Herrmann, Hans

    2017-11-01

    We implemented a new model based on the Lattice Boltzmann method to simulate erosion and deposition in suspension flows through porous media. Using this model we show that the cause of erosive bursts in filtration experiments is the re-opening of clogged pores when the pressure difference between two opposite sites of the pore surpasses a certain threshold. We perform numerical simulations and find excellent agreement to experimental results when comparing shape and size distribution of pressure loss jumps, which are the direct result of erosive bursts. Furthermore, we find that erosive bursts only occur for pressure gradient thresholds within the range of two critical values, independent on how the flow is driven. We believe that our findings provide a better understanding of sudden sand production in oil wells and breakthrough in filtration. European Research Council (ERC) Advanced Grant 319968-FlowCCS.

  1. Creep Burst Testing of a Woven Inflatable Module

    Science.gov (United States)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  2. Bifurcation structure of a model of bursting pancreatic cells

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Lading, B.; Yanchuk, S.

    2001-01-01

    . The transition from this structure to the so-called period-adding structure is found to involve a subcritical period-doubling bifurcation and the emergence of type-III intermittency. The period-adding transition itself is not smooth but consists of a saddle-node bifurcation in which (n + 1)-spike bursting...... behavior is born, slightly overlapping with a subcritical period-doubling bifurcation in which n-spike bursting behavior loses its stability.......One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic P-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other...

  3. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Directory of Open Access Journals (Sweden)

    Maya Kaufman

    Full Text Available Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity, followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  4. Long-term Relationships between Cholinergic Tone, Synchronous Bursting and Synaptic Remodeling

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A.; Ziv, Noam E.

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited. PMID:22911726

  5. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A; Ziv, Noam E

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  6. Gamma-ray bursts: astrophysical puzzle of the century

    International Nuclear Information System (INIS)

    Hudec, R.

    1998-01-01

    An overview is given of the problems of gamma-ray bursts /GRB/. As GRB became one of the greatest mysteries in modern astrophysics, this field of astrophysics is a subject of intensive research. The article covers some topical aspects of experiments related to the indentification of gamma-ray bursts. The preparation and results of experiments in the Astronomical Institute of the Academy of Sciences of the Czech Republic are described. (Z.J.)

  7. Observation of a very weak gamma ray burst

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.; Vialetto, G.

    1982-01-01

    In this paper we report the detection of a very faint burst detected in the hard X-ray range. The burst, having a peak intensity of approx.=7 x 10 - 9 erg/cm 2 s in the 20-120 KeV range has been detected by means two of the four detectors on board the HXR-81 balloon borne hard X-ray telescope (POKER) during a transmediterranean flight devoted to a sky survey. (orig./WL)

  8. The application of coronal scattering measurements to solar radio bursts

    International Nuclear Information System (INIS)

    Bradford, H.M.

    1980-01-01

    The interpretation of ground based observations of solar 'plasma frequency' radio bursts has been hampered in the past by an insufficient knowledge of coronal scattering by density inhomogeneities close to the Sun. Calculations based on measuurements of the angular broadening of natural radio sources, and Woo's 1975 measurement of the angular broadening of the telemetry carrier by Helios I near occultation (Woo, 1978), indicate that plasma frequency solar bursts should undergo considerable scattering, at least near the maximum of the sunspot cycle. The calculated displacements of the apparent positions of the bursts are about equal to the observed displacements which have been attributed to the bursts occurring in dense streamers. In order to obtain more scattering data close to the Sun, interferometer measurements of the angular broadening of spacecraft signals are planned, and the important contribution which could be made with large dishes is discussed. (Auth.)

  9. Background determination for the neutron-neutron scattering experiment at the reactor YAGUAR

    Energy Technology Data Exchange (ETDEWEB)

    Muzichka, A.Yu. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Furman, W.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Krylov, A.R. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Chernukhin, Yu.I. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Kandiev, Ya.Z. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crawford, B.E. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S.L. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States)]. E-mail: sstephen@gettysburg.edu; Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2007-06-01

    The motivation and design is outlined for the experiment to measure the neutron-neutron singlet scattering length directly with thermal neutrons at the pulsed reactor YAGUAR. A statistical accuracy of 3% can be reached, though achieving the goal of an overall accuracy of 3-5% for the nn-scattering length depends on the background level. Possible sources of background are discussed in depth and the results of extensive modeling of the background are presented. Measurements performed at YAGUAR to test these background calculations are described. The experimental results indicate an anticipated background level up to 30% relative to the expected nn effect at the maximal energy burst of the reactor. The conclusion is made that the nn experiment at YAGUAR is feasible to produce the first directly measured value for the neutron-neutron scattering length.

  10. Spiking and bursting patterns of fractional-order Izhikevich model

    Science.gov (United States)

    Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha

    2018-03-01

    Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.

  11. QUASI-PERIODIC OSCILLATIONS AND BROADBAND VARIABILITY IN SHORT MAGNETAR BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; Van der Horst, Alexander J.; Van der Klis, Michiel [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090-GE Amsterdam (Netherlands); Kouveliotou, Chryssa [Office of Science and Technology, ZP12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Goegues, Ersin [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Granot, Jonathan [The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Vaughan, Simon [X-Ray and Observational Astronomy Group, University of Leicester, Leicester LE1 7RH (United Kingdom); Finger, Mark H., E-mail: D.Huppenkothen@uva.nl [Universities Space Research Association, Huntsville, AL 35805 (United States)

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  12. HUBBLE STAYS ON TRAIL OF FADING GAMMA-RAY BURST FIREBALL

    Science.gov (United States)

    2002-01-01

    A Hubble Space Telescope image of the fading fireball from one of the universe's most mysterious phenomena, a gamma-ray burst. Though the visible component has faded to 1/500th its brightness (27.7 magnitude) from the time it was first discovered by ground- based telescopes last March (the actual gamma-ray burst took place on February 28), Hubble continues to clearly see the fireball and discriminated a surrounding nebulosity (at 25th magnitude) which is considered a host galaxy. The continued visibility of the burst, and the rate of its fading, support theories that the light from a gamma-ray burst is an expanding relativistic (moving near the speed of light) fireball, possibly produced by the collision of two dense objects, such as an orbiting pair of neutron stars. If the burst happened nearby, within our own galaxy, the resulting fireball should have had only enough energy to propel it into space for a month. The fact that this fireball is still visible after six months means the explosion was truly titanic and, to match the observed brightness, must have happened at the vast distances of galaxies. The energy released in a burst, which can last from a fraction of a second to a few hundred seconds, is equal to all of the Sun's energy generated over its 10 billion year lifetime. The false-color image was taken Sept. 5, 1997 with the Space Telescope Imaging Spectrograph. Credit: Andrew Fruchter (STScI), Elena Pian (ITSRE-CNR), and NASA

  13. Gamma ray burst source locations with the Ulysses/Compton/PVO Network

    International Nuclear Information System (INIS)

    Cline, T.L.; Hurley, K.C.; Boer, M.; Sommer, M.; Niel, M.; Fishman, G.J.; Kouveliotou, C.; Meegan, C.A.; Paciesas, W.S.; Wilson, R.B.; Laros, J.G.; Klebesadel, R.W.

    1991-01-01

    The new interplanetary gamma-ray burst network will determine source fields with unprecedented accuracy. The baseline of the Ulysses mission and the locations of Pioneer-Venus Orbiter and of Mars Observer will ensure precision to a few tens of arc seconds. Combined with the event phenomenologies of the Burst and Transient Source Experiment on Compton Observatory, the source locations to be achieved with this network may provide a basic new understanding of the puzzle of gamma ray bursts

  14. Radio and X-ray observations of a multiple impulsive solar burst with high time resolution

    International Nuclear Information System (INIS)

    Kosugi, T.

    1981-01-01

    A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of serveral subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of approx. equal to0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are << 1 s, and approx. equal to1 s and approx. equal to3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model. (orig.)

  15. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  16. Nanolensed Fast Radio Bursts

    Science.gov (United States)

    Eichler, David

    2017-12-01

    It is suggested that fast radio bursts can probe gravitational lensing by clumpy dark matter objects that range in mass from 10-3 M ⊙-102 M ⊙. They may provide a more sensitive probe than observations of lensings of objects in the Magellanic Clouds, and could find or rule out clumpy dark matter with an extended mass spectrum.

  17. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.

    Science.gov (United States)

    Yang, Yan; Cui, Yihui; Sang, Kangning; Dong, Yiyan; Ni, Zheyi; Ma, Shuangshuang; Hu, Hailan

    2018-02-14

    The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.

  18. The Fermi-GBM Gamma-Ray Burst Catalogs: The First Six Years

    Directory of Open Access Journals (Sweden)

    Bissaldi E.

    2017-01-01

    Full Text Available Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM has triggered and located on average approximately two gamma-ray bursts (GRBs every three days. Here we present the main results from the latest two catalogs provided by the Fermi-GBM science team, namely the third GBM GRB catalog [1] and the first GBM time-resolved spectral catalog [2]. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected bursts. It comprises 1405 triggers identified as GRBs. For each one, location and main characteristics of the prompt emission, the duration, the peak flux and the fluence are derived. The GBM time-resolved spectral catalog presents high-quality time-resolved spectral analysis with high temporal and spectral resolution of the brightest bursts observed by Fermi GBM in a shorter period than the former catalog, namely four years. It comprises 1491 spectra from 81 bursts. Distributions of parameters, statistics of the parameter populations, parameter-parameter and parameter-uncertainty correlations, and their exact values are obtained.

  19. On-off intermittency and coherent bursting in stochastically-driven coupled maps

    International Nuclear Information System (INIS)

    Metta, Sabino; Provenzale, Antonello; Spiegel, Edward A.

    2010-01-01

    On-off intermittency is a phase space mechanism for bursting in dynamical systems. Here we recall how the simple example of a logistic map with a time-dependent control parameter, considered as a dynamical variable of the system, gives rise to bursting or on-off behavior. We show that, for a given realization of the driver, a stochastically driven logistic map in the on-off intermittent regime always converges to the same temporal dynamics, independently of initial conditions. In that sense, the map is not chaotic. We then explore the behavior of two coupled on-off logistic maps, each driven by a separate random process, and show that, for a wide range of coupling strengths, bursting becomes at least partially coherent. The bursting coherence has a smooth dependence on the coupling parameter and no sharp transition from coherence to incoherence is detected. In the system of two coupled on-off maps studied here, coherent bursting is rooted in the behavior during off phases when the mapped coordinates take on extremely small values.

  20. No supernovae detected in two long-duration gamma-ray bursts.

    Science.gov (United States)

    Watson, D; Fynbo, J P U; Thöne, C C; Sollerman, J

    2007-05-15

    There is strong evidence that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GRB. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long-duration GRBs are different. No SN emission accompanied the long-duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRB 060505, the burst was localized to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB 060505, the location of the burst within its host, all imply a massive stellar origin. The absence of an SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.

  1. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    Science.gov (United States)

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  2. Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited

    Directory of Open Access Journals (Sweden)

    N. Khélifi

    2012-01-01

    Full Text Available Ocean Drilling Program (ODP Site 982 provided a key sediment section at Rockall Plateau for reconstructing northeast Atlantic paleoceanography and monitoring benthic δ18sup>O stratigraphy over the late Pliocene to Quaternary onset of major Northern Hemisphere glaciation. A renewed hole-specific inspection of magnetostratigraphic reversals and the addition of epibenthic δ18sup>O records for short Pliocene sections in holes 982A, B, and C, crossing core breaks in the δ18sup>O record published for Hole 982B, now imply a major revision of composite core depths. After tuning to the orbitally tuned reference record LR04, the new composite δ18sup>O record results in a hiatus, where the Kaena magnetic subchron might have been lost, and in a significant age reduction for all proxy records by 130 to 20 ky over the time span 3.2–2.7 million years ago (Ma. Our study demonstrates the general significance of reliable composite-depth scales and δ18sup>O stratigraphies in ODP sediment records for generating ocean-wide correlations in paleoceanography. The new concept of age control makes the late Pliocene trends in SST (sea surface temperature and atmospheric pCO2 at Site 982 more consistent with various paleoclimate trends published from elsewhere in the North Atlantic.

  3. The host galaxy of a fast radio burst

    OpenAIRE

    Keane, E. F.; Jencson, J.; Kasliwal, Mansi M.

    2016-01-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty i...

  4. Type III radio bursts in a flaming structure

    International Nuclear Information System (INIS)

    Karlicky, M.; Tlamicha, A.

    1977-01-01

    An interpretation is presented of the burst of 3.7.1974. The slowly drifting, fine structure in this type III burst is evidence of the existence of very fast, spatially extensive processes in the corona. The concept is presented of a rapidly varying, magnetohydrodynamically unstable, flaming structure of the magnetic field and, using this model, the intensities were computed of the magnetic field at certain altitudes and at two moments differing by 1.4 s. (author)

  5. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    International Nuclear Information System (INIS)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.; Steinkirch, Marina von; Calder, Alan C.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  6. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Steinkirch, Marina von; Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  7. 76 FR 28460 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Rock Burst...

    Science.gov (United States)

    2011-05-17

    ... for OMB Review; Comment Request; Rock Burst Control Plan--Pertains to Underground Metal and Nonmetal... develop a rock burst plan within 90 days after a rock burst has been experienced. Stress data are normally... Administration (MSHA) sponsored information collection request (ICR) titled, ``Burst Control Plan--Pertains to...

  8. A novel implementation of TCP Vegas for optical burst switched networks

    KAUST Repository

    Shihada, Basem; Zhang, Qiong; Ho, Pin-Han; Jue, Jason P.

    2010-01-01

    TCP performance over bufferless Optical Burst Switched (OBS) networks could be significantly degraded due to the misinterpretation of network congestion status (referred to as false congestion detection). It has been reported that burst

  9. Spike Bursts from an Excitable Optical System

    Science.gov (United States)

    Rios Leite, Jose R.; Rosero, Edison J.; Barbosa, Wendson A. S.; Tredicce, Jorge R.

    Diode Lasers with double optical feedback are shown to present power drop spikes with statistical distribution controllable by the ratio of the two feedback times. The average time between spikes and the variance within long time series are studied. The system is shown to be excitable and present bursting of spikes created with specific feedback time ratios and strength. A rate equation model, extending the Lang-Kobayashi single feedback for semiconductor lasers proves to match the experimental observations. Potential applications to construct network to mimic neural systems having controlled bursting properties in each unit will be discussed. Brazilian Agency CNPQ.

  10. US DOE Idaho national laboratory reactor decommissioning

    International Nuclear Information System (INIS)

    Szilagyi, Andrew

    2012-01-01

    The United States Department of Energy (DOE) primary contractor, CH2M-WG Idaho was awarded the cleanup and deactivation and decommissioning contract in May 2005 for the Idaho National Lab (INL). The scope of this work included dispositioning over 200 Facilities and 3 Reactors Complexes (Engineering Test Reactor (ETR), Materials Test Reactor (MTR) and Power Burst Facility (PBF) Reactor). Two additional reactors were added to the scope of the contract during the period of performance. The Zero Power Physics Reactor (ZPPR) disposition was added under a separate subcontractor with the INL lab contractor and the Experimental Breeder Reactor II (EBR-II) disposition was added through American Recovery and Reinvestment Act (ARRA) Funding. All of the reactors have been removed and disposed of with the exception of EBR-II which is scheduled for disposition approximately March of 2012. A brief synopsis of the 5 reactors is provided. For the purpose of this paper the ZPPR reactor due to its unique design as compared to the other four reactors, and the fact that is was relatively lightly contaminated and irradiated will not be discussed with the other four reactors. The ZPPR reactor was readily accessible and was a relatively non-complex removal as compared to the other reactors. Additionally the EBR-II reactor is currently undergoing D and D and will have limited mention in this paper. Prior to decommissioning the reactors, a risk based closure model was applied. This model exercised through the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Non-Time Critical Removal Action (NTCRA) Process which evaluated several options. The options included; No further action - maintain as is, long term stewardship and monitoring (mothball), entombment in place and reactor removal. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, beryllium, sodium (passivated and elemental), PCB oils and electrical components, lead

  11. Study on spontaneous bursts of high voltage slow wave activities in electroencephalograms of the aged

    International Nuclear Information System (INIS)

    Yoshida, Ryoichi; Otomo, Eiichi

    1985-01-01

    100 EEGs with bursts of high voltage slow wave activities (bursts) were found in 1150 of aged subjects sixty years and over. In these cases computerized cranial tomography (CT) examinations were carried out within 60 days of EEG recordings and CT findings (bursts CTs) were compared with those of 100 cases without bursts (control CTs). Another 100 consecutive CTs of cases with matched the age and the disease were used as the control. The results were as follows: 1) In bursts CTs, the incidence of normal findings was only 7%, while it was 18% in control CTs. The difference was statistically significant (p<0.001). 2) Brain atrophy was remarkable in bursts CTs. In bursts CT, the incidence of brain atrophy showed more than minor degree was 89%, while it was 64% in control CTs. The difference was statistically significant (p<0.001). 3) The incidences of periventricular lucency (PVL), enlargement of the inferior and posterior horn of the lateral ventricle, basal ganglia calcification observed on CT were significantly higher (55%, 39%, 12%) in bursts CTs than in control CTs (p<0.01, p<0.01, p<0.05). 4) The incidence of focal lesions was lower in bursts CTs than in control CTs. In paticular, large lesions were recognized in only 3% of bursts CTs, whereas those were noted in 15% of control CTs. The difference was statistically significant (p<0.01). 5) Small lesions were recognized in 21% of neurological normal patients with bursts, while they were found in 5% of these of control CTs. 6) Frontal and thalamic lesions were found more frequently in bursts CTs (26%, 13%) than in control CTs (21%, 8%), but the difference was not statistically significant. 7) The correlation between the side showing high voltage of bursts and the side with lesions observed on CT was good. In this way, it may be conceivable that appearance of bursts is not due to only focal lesions but results from generalized brain disfunction, such as aging and others. (author)

  12. Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise

    International Nuclear Information System (INIS)

    Chatterji, Shourov; Lazzarini, Albert; Stein, Leo; Sutton, Patrick J.; Searle, Antony; Tinto, Massimo

    2006-01-01

    The sensitivity of current searches for gravitational-wave bursts is limited by non-Gaussian, nonstationary noise transients which are common in real detectors. Existing techniques for detecting gravitational-wave bursts assume the output of the detector network to be the sum of a stationary Gaussian noise process and a gravitational-wave signal. These techniques often fail in the presence of noise nonstationarities by incorrectly identifying such transients as possible gravitational-wave bursts. Furthermore, consistency tests currently used to try to eliminate these noise transients are not applicable to general networks of detectors with different orientations and noise spectra. In order to address this problem we introduce a fully coherent consistency test that is robust against noise nonstationarities and allows one to distinguish between gravitational-wave bursts and noise transients in general detector networks. This technique does not require any a priori knowledge of the putative burst waveform

  13. Two-phase X-ray burst from GX 3+1 observed by INTEGRAL

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.F.; Brandt, Søren

    2006-01-01

    INTEGRAL detected on August 31, 2004, an unusual thermonuclear X-ray burst from the low-mass X-ray binary GX 3 3+1. Its duration was 30 min, which is between the normal burst durations for this source (less than or similar to 10 s) and the superburst observed in 1998 ( several hours). We see...... emission up to 30 keV energy during the first few seconds of the burst where the bolometric peak luminosity approaches the Eddington limit. This peculiar burst is characterized by two distinct phases: an initial short spike of similar to 6 s consistent with being similar to a normal type I X-ray burst...... in the present case); and 3) limited carbon burning at an unusually shallow depth triggered by unstable helium ignition. Though none of these provide a satisfactory description of this uncommon event, the former one seems the most probable....

  14. Improvement of burst-mode control of piezoelectric transformer based DC/DC converter

    International Nuclear Information System (INIS)

    Vasic, Dejan; Liu, Yuan-Ping; Costa, François; Schwander, Denis; Wu, Wen-Jong

    2013-01-01

    Burst-mode operation is adopted sometimes in piezoelectric transformer based converters for two major purposes: (1) to achieve voltage regulation in DC/DC converters and (2) to achieve dimming control in backlight inverters. Burst-mode control enables the converter to operate at a constant switching frequency as well as to maintain good efficiency at light load conditions. However, in practice, the piezoelectric transformer cannot instantly stop vibrating in the burst-mode due to its high quality factor. The delay in the output voltage change resulting from this behavior influences the accuracy of the regulation. This paper proposes a control strategy to make the piezoelectric transformer stop more quickly so as to enhance the accuracy of burst-mode control. The proposed method only modifies the control signal of the burst-mode driving circuit. The proposed control strategy is verified by experiments in a step-down 9 W DC/DC converter. (paper)

  15. A direct localization of a fast radio burst and its host.

    Science.gov (United States)

    Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J

    2017-01-04

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  16. Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BASTE

    Science.gov (United States)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadus, Jan; Briggs, Michael S.; Wilson, C. A.; Deal, Kim; Harmon, B. A.; Fishman, G. J.; Lewin, W. H. G.; Kommers, J.

    1999-01-01

    One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on BATSE (Burst and Transient Source Experiment) observations of both the persistent and burst emission for this second outburst and draw comparisons with the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux, and burst fluence were all reduced in amplitude by a factor of approximately 1.7. Despite these differences, the two outbursts were very similar with respect to the burst occurrence rate, the durations and spectra of bursts, the absence of spectral evolution during bursts, and the evolution of the ratio alpha of average persistent to burst luminosity. Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.

  17. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2015-01-01

    Full Text Available Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structure in burst-prone ground, and confirms the rock burst prevention criterion of the Composite Rock-Bolt Bearing Structure. According to the rock burst prevention criterion, the amount of the influence on rock burst prevention ability from the surrounding rock parameters and bolt support parameters is discussed.

  18. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  19. Observation of an ionospheric disturbance caused by a gamma-ray burst

    International Nuclear Information System (INIS)

    Fishman, G.J.; Inan, U.S.

    1988-01-01

    We report a first observation of an ionospheric disturbance from a gamma-ray burst. The burst, GB830801, occurred at 22:14:18 UT on 1 August 1983 and was one of the strongest ever observed. The total fluence was 2 x 10 -3 erg cm -2 , most of which occurred in the first 4 s of the burst. Simultaneously, a change was observed in the amplitude of a very-low-frequency (VLF) radio signal from a transmitter in Rugby, England, monitored at Palmer Station, Antarctica, indicative of an ionospheric disturbance. Weaker disturbances were also recorded at the same receiving site on signals from VLF stations in Annapolis, Maryland and Lualualei, Hawaii. The times of the burst and the disturbances are coincident within the 10-s resolution of the VLF recording system. (author)

  20. Characteristics of coronal mass ejections associated with solar frontside and backside metric type II bursts

    International Nuclear Information System (INIS)

    Kahler, S.W.; Cliver, E.W.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Michels, D.J.

    1985-01-01

    We compare fast (v> or =500 km s -1 ) coronal mass ejections (CME's) with reported metric type II bursts to study the properties of CME's associated with coronal shocks. We confirm an earlier report of fast frontside CME's with no associated metric type II bursts and calculate that 33 +- 15% of all fast frontside CME's are not associated with such bursts. Faster CME's are more likely to be associated with type II bursts, as expected from the hypothesis of piston-driven shocks. However, CME brightness and associated peak 3-cm burst intensity are also important factors, as might be inferred from the Wagner and MacQueen (1983) view of type II shocks decoupled from associated CME's. We use the equal visibility of solar frontside and backside CME's to deduce the observability of backside type II bursts. We calculate that 23 +- 7% of all backside type II bursts associated with fast CME's can be observed at the earth and that 13 +- 4% of all type II bursts originate in backside flares. CME speed again is the most important factor in the observability of backside type II bursts

  1. Manual evaluation of residual curarization using double burst stimulation

    DEFF Research Database (Denmark)

    Drenck, N E; Ueda, N; Olsen, Niels Vidiendal

    1989-01-01

    Double burst stimulation (DBS) is a new mode of stimulation developed to reveal residual neuromuscular blockade under clinical conditions. The stimulus consists of two short bursts of 50 Hz tetanic stimulation, separated by 750 ms, and the response to the stimulation is two short muscle contracti......Double burst stimulation (DBS) is a new mode of stimulation developed to reveal residual neuromuscular blockade under clinical conditions. The stimulus consists of two short bursts of 50 Hz tetanic stimulation, separated by 750 ms, and the response to the stimulation is two short muscle...... contractions. Fade in the response results from neuromuscular blockade as with train-of-four stimulation (TOF). The authors compared the sensitivity of DBS and TOF in the detection of residual neuromuscular blockade during clinical anaesthesia. Fifty-two healthy patients undergoing surgery were studied...... with DBS than with TOF, regardless of the TOF ratio level. Absence of fade with TOF implied a 48% chance of considerable residual relaxation as compared with 9% when fade was absent with DBS. The results demonstrate that DBS is more sensitive than TOF in the manual detection of residual neuromuscular...

  2. VERITAS OBSERVATIONS OF GAMMA-RAY BURSTS DETECTED BY SWIFT

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Aliu, E.; Errando, M.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Connolly, M. P.; Christiansen, J. L.; Ciupik, L.; Cui, W.; Duke, C.; Falcone, A.

    2011-01-01

    We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t –1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.

  3. Swift Burst Alert Telescope Data Products and Analysis Software

    International Nuclear Information System (INIS)

    Krimm, Hans A.; Barbier, Louis M.; Barthelmy, Scott D.; Cummings, Jay R.; Gehrels, Neil; Parsons, Ann M.; Tueller, Jack; Fenimore, Edward E.; Palmer, David M.; Hullinger, Derek D.; Markwardt, Craig B.

    2004-01-01

    The Burst Alert Telescope (BAT) on the Swift gamma-ray burst mission serves as the GRB trigger for Swift as well as a sensitive imaging telescope for the energy range of 15-150 keV. All BAT data products will be available to the astronomical community along with a complete set of analysis tools. Gamma-ray burst data products include rapid discovery messages delivered immediately via the GRB Coordinates Network, and event-by-event data from which light curves and spectra of the burst are generated. During nominal operations, the instrument provides accumulated survey histograms with 5-minute time sampling and appropriate energy resolution. These survey accumulations are analyzed in a pipeline to detect new sources and derive light curves of known sources. The 5-minute surveys will also be combined to produce the BAT all sky hard X-ray survey. In addition, the instrument accumulates high time resolution light curves of the brightest BAT sources in multiple energy bands, which are merged into a source light curve database on the ground. The BAT science data products and analysis tools will be described in this paper

  4. Bursting pressure of autofrettaged cylinders with inclined external cracks

    Energy Technology Data Exchange (ETDEWEB)

    Seifi, Rahman, E-mail: rseifi@basu.ac.ir [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Babalhavaeji, Majid [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2012-01-15

    Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn't any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: Black-Right-Pointing-Pointer Modified J-Integral can be used for study of autofrettaged cracked cylinders. Black-Right-Pointing-Pointer External axial cracks reduce considerably the pressure capacity of cylinders. Black-Right-Pointing-Pointer External circumferential cracks have not considerable effects on bursting pressure. Black-Right-Pointing-Pointer Autofrettage has contrary effects on external crack in compared with internal crack.

  5. Hydrodynamics of burst swimming fish larvae; a conceptual model approach

    NARCIS (Netherlands)

    Verhagen, J.H.G.

    2004-01-01

    Burst swimming of fish larvae is analysed from a hydrodynamic point of view. A picture of the expected flow pattern is presented based on information in literature on unsteady-flow patterns around obstacles in the intermediate Reynolds number region. It is shown that the acceleration stage of burst

  6. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  7. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    Science.gov (United States)

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. A polarized fast radio burst at low Galactic latitude

    NARCIS (Netherlands)

    Petroff, E.; van Haren, H.; The ANTARES Collaboration; The H.E.S.S. Collaboration

    2017-01-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm−3, a pulse duration of 2.8+1.2−0.5 ms, and a measured peak flux density assuming that

  9. Structural bursts produced by high energy muons in the rock

    International Nuclear Information System (INIS)

    Honda, K.; Takahashi, T.; Teramoto, Y.; Higashi, S.; Ozaki, S.

    1975-01-01

    Lateral structures of bursts produced by high energy muons in the rock have been observed at a depth 30 mw. e. underground by use of two layers of proportional counters. The running times were 7940 hr. The number of structural bursts observed, which have two cores in the both layers ( 1 >= 200, N 2 >= 20 particles) is 110, 1.6% of total events. These structural bursts have two types; 1) incident directions of two cores are parallel, 2) two cores intersect in the rock within 2 m above the roof of the tunnel. The events of this 2) type have large transverse momentum. (orig.) [de

  10. Bursting star formation and the overabundance of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma fluxes but due to the distance, all of them are beyond the reach of present-day detectors, except probably 30 Dor

  11. THE SECOND KONUS- WIND CATALOG OF SHORT GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Svinkin, D. S.; Frederiks, D. D.; Aptekar, R. L.; Golenetskii, S. V.; Pal' shin, V. D.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg, 194021 (Russian Federation); Cline, T. L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States)

    2016-05-01

    In this catalog, we present the results of a systematic study of 295 short gamma-ray bursts (GRBs) detected by Konus- Wind (KW) from 1994 to 2010. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with three model functions, the total energy fluences, and the peak energy fluxes of the bursts. We discuss evidence found for an additional power-law spectral component and the presence of extended emission in a fraction of the KW short GRBs. Finally, we consider the results obtained in the context of the Type I (merger-origin)/Type II (collapsar-origin) classifications.

  12. Six Years of Gamma Ray Burst Observations with BeppoSAX

    OpenAIRE

    Frontera, Filippo

    2004-01-01

    I give a summary of the prompt X-/gamma-ray detections of Gamma Ray Bursts (GRBs) with the BeppoSAX satellite and discuss some significant results obtained from the study of the prompt emission of these GRBs obtained with the BeppoSAX Gamma Ray Burst Monitor and Wide Field Cameras.

  13. Optical Follow-Up of Gamma-Ray Bursts Observed by WATCH

    DEFF Research Database (Denmark)

    Castro-Tirado, A.; Brandt, Søren; Lund, Niels

    1994-01-01

    44 Gamma‐Ray Bursts have been localized by the WATCH experiments on GRANAT and EURECA. For some of them, Schmidt plates were taken within days after the burst. In other cases, time‐correlated plates were found in some of the main astronomical archives. No obvious optical counterpart has been found...

  14. Burst mode composite photography for dynamic physics demonstrations

    Science.gov (United States)

    Lincoln, James

    2018-05-01

    I am writing this article to raise awareness of burst mode photography as a fun and engaging way for teachers and students to experience physics demonstration activities. In the context of digital photography, "burst mode" means taking multiple photographs per second, and this is a feature that now comes standard on most digital cameras—including the iPhone. Sometimes the images are composited to imply motion from a series of still pictures. By analyzing the time between the photos, students can measure rates of velocity and acceleration of moving objects. Some of these composite photographs have already shown up in the AAPT High School Physics Photo Contest. In this article I discuss some ideas for using burst mode photography in the iPhone and provide a discussion of how to edit these photographs to create a composite image. I also compare the capabilities of the iPhone and GoPro cameras in creating these photographic composites.

  15. Effective preemptive scheduling scheme for optical burst-switched networks with cascaded wavelength conversion consideration

    Science.gov (United States)

    Gao, Xingbo

    2010-03-01

    We introduce a new preemptive scheduling technique for next-generation optical burst switching (OBS) networks considering the impact of cascaded wavelength conversions. It has been shown that when optical bursts are transmitted all optically from source to destination, each wavelength conversion performed along the lightpath may cause certain signal-to-noise deterioration. If the distortion of the signal quality becomes significant enough, the receiver would not be able to recover the original data. Accordingly, subject to this practical impediment, we improve a recently proposed fair channel scheduling algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in OBS environments. In our scheme, the dynamic priority associated with each burst is based on a constraint threshold and the number of already conducted wavelength conversions among other factors for this burst. When contention occurs, a new arriving superior burst may preempt another scheduled one according to their priorities. Extensive simulation results have shown that the proposed scheme further improves fairness and achieves burst loss reduction as well.

  16. Prediction and control of rock burst of coal seam contacting gas in deep mining

    Energy Technology Data Exchange (ETDEWEB)

    En-yuan Wang; Xiao-fei Liu; En-lai Zhao; Zhen-tang Liu [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-06-15

    By analyzing the characteristics and the production mechanism of rock burst that goes with abnormal gas emission in deep coal seams, the essential method of eliminating abnormal gas emission by eliminating the occurrence of rock burst or depressing the magnitude of rock burst was considered. The No.237 working face in Nanshan coal mine was selected as the typical working face contacting gas in deep mining; aimed at this working face, a system of rock burst prediction and control for coal seam contacting gas in deep mining was established using the three-dimensional distinct element code software 3DEC. This system includes three parts: (1) regional prediction of rock burst hazard before mining; (2) local prediction of rock burst hazard during mining; and (3) rock burts control by an electromagnetic radiation method and specific drilling method. 8 refs., 4 figs., 1 tab.

  17. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    Science.gov (United States)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  18. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.

    2015-09-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.

  19. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    International Nuclear Information System (INIS)

    Duffin, R T; White, S M; Ray, P S; Kaiser, M L

    2015-01-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena. (paper)

  20. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  1. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  2. Westerly Wind Bursts: a Synoptic-Dynamic Study

    Science.gov (United States)

    Hartten, Leslie Marie

    This research examines the synoptic and climatological settings of westerly wind bursts (WWBs) during the 1980s and the dynamical processes active during them. Probabilities of strong westerly and easterly 1000 mb winds over the western equatorial Pacific are presented. Westerlies exhibit a clear annual cycle, appearing in the north in July, moving southeastward as the year progresses, and disappearing by June. Conditional probabilities, dependent on the value of the SOI, show that strong westerlies are more likely and more geographically extensive when the SOI is low, especially from July through January. A newly developed two-dimensional classification scheme qualitatively describes the near-surface synoptic flow of almost 90% of the 131 WWBs identified during the decade. Only 8% of the WWBs are described by the pattern involving twin cyclonic circulations straddling the equator. The trades, tropical cyclones, and the southeast Asian monsoon are all at times linked to WWBs, and the synoptic patterns often contain a significant barotropic component. Breaks in WWB activity are well correlated with a cooler than normal western Pacific warm pool. However, near-equatorial WWBs do not show a good correlation with the Madden-Julian Oscillation. Four near-equatorial WWBs are examined in detail. All are associated with broad cross-equatorial flow; two also have a cyclonic circulation poleward of the westerlies. Anticyclonic relative vorticity equatorward of the burst displaces the zero line of absolute vorticity, eta, into the burst hemisphere. In the three Southern Hemisphere cases, horizontal advection in a region extending from north of New Guinea east-southeast toward the dateline is crucial to the generation and maintenance of the eta pattern. Vorticity stretching associated with convection helps maintain a tight gradient of eta near and poleward of the burst, but also drives the eta = 0 line back towards the equator as the burst ends. In the Northern Hemisphere case

  3. Final Report for File System Support for Burst Buffers on HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohror, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-27

    Distributed burst buffers are a promising storage architecture for handling I/O workloads for exascale computing. As they are being deployed on more supercomputers, a file system that efficiently manages these burst buffers for fast I/O operations carries great consequence. Over the past year, FSU team has undertaken several efforts to design, prototype and evaluate distributed file systems for burst buffers on HPC systems. These include MetaKV: a Key-Value Store for Metadata Management of Distributed Burst Buffers, a user-level file system with multiple backends, and a specialized file system for large datasets of deep neural networks. Our progress for these respective efforts are elaborated further in this report.

  4. Identifying crucial parameter correlations maintaining bursting activity.

    Directory of Open Access Journals (Sweden)

    Anca Doloc-Mihu

    2014-06-01

    Full Text Available Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA to each of these four groups. PCA identified a set of three maximal conductances (leak current, [Formula: see text]Leak; a persistent K current, [Formula: see text]K2; and of a persistent Na+ current, [Formula: see text]P that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of [Formula: see text]Leak, [Formula: see text]K2, and [Formula: see text]P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.

  5. Stimulation of auroral kilometric radiation by type III solar radio bursts

    International Nuclear Information System (INIS)

    Calvert, W.

    1981-01-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers

  6. The Bursting Pulsar GRO J1744-28: the Slowest Transitional Pulsar?

    Science.gov (United States)

    Court, J. M. C.; Altamirano, D.; Sanna, A.

    2018-04-01

    GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of oppurtunity to test our understanding of these systems in an entirely unexplored physical regime.

  7. TRIO: Burst Buffer Based I/O Orchestration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University; Oral, H Sarp [ORNL; Pritchard, Michael [Auburn University; Wang, Bin [Auburn University; Yu, Weikuan [Auburn University

    2015-01-01

    The growing computing power on leadership HPC systems is often accompanied by ever-escalating failure rates. Checkpointing is a common defensive mechanism used by scientific applications for failure recovery. However, directly writing the large and bursty checkpointing dataset to parallel filesystem can incur significant I/O contention on storage servers. Such contention in turn degrades the raw bandwidth utilization of storage servers and prolongs the average job I/O time of concurrent applications. Recently burst buffer has been proposed as an intermediate layer to absorb the bursty I/O traffic from compute nodes to storage backend. But an I/O orchestration mechanism is still desired to efficiently move checkpointing data from bursty buffers to storage backend. In this paper, we propose a burst buffer based I/O orchestration framework, named TRIO, to intercept and reshape the bursty writes for better sequential write traffic to storage severs. Meanwhile, TRIO coordinates the flushing orders among concurrent burst buffers to alleviate the contention on storage server bandwidth. Our experimental results reveal that TRIO can deliver 30.5% higher bandwidth and reduce the average job I/O time by 37% on average for data-intensive applications in various checkpointing scenarios.

  8. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy, trap...

  9. Burst Mode ASIC-Based Modem

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  10. Lateralization of noise-burst trains based on onset and ongoing interaural delays.

    Science.gov (United States)

    Freyman, Richard L; Balakrishnan, Uma; Zurek, Patrick M

    2010-07-01

    The lateralization of 250-ms trains of brief noise bursts was measured using an acoustic pointing technique. Stimuli were designed to assess the contribution of the interaural time delay (ITD) of the onset binaural burst relative to that of the ITDs in the ongoing part of the train. Lateralization was measured by listeners' adjustments of the ITD of a pointer stimulus, a 50-ms burst of noise, to match the lateral position of the target train. Results confirmed previous reports of lateralization dominance by the onset burst under conditions in which the train is composed of frozen tokens and the ongoing part contains multiple ambiguous interaural delays. In contrast, lateralization of ongoing trains in which fresh noise tokens were used for each set of two alternating (left-leading/right-leading) binaural pairs followed the ITD of the first pair in each set, regardless of the ITD of the onset burst of the entire stimulus and even when the onset burst was removed by gradual gating. This clear lateralization of a long-duration stimulus with ambiguous interaural delay cues suggests precedence mechanisms that involve not only the interaural cues at the beginning of a sound, but also the pattern of cues within an ongoing sound.

  11. The origin of cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Van den Bergh, S.

    1983-01-01

    The positions of 46 γ-ray burst sources on the sky are used to show that the majority of these objects either originate in very distant regions with redshifts > or approx. 30 000 km s -1 or within < or approx. 0.5β of the Sun; where β is the scale-height of the parent population perpendicular to the galactic disc. An origin of the majority of γ-ray bursts in the more distant parts of the galactic disc, the galactic nuclear bulge, the Virgo supercluster, in galaxies with msub(pg) < 18 and rich in Abell clusters of distance classes 0 to 4 is excluded by the data. (orig.)

  12. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  13. LFlGRB: Luminosity function of long gamma-ray bursts

    Science.gov (United States)

    Paul, Debdutta

    2018-04-01

    LFlGRB models the luminosity function (LF) of long Gamma Ray Bursts (lGRBs) by using a sample of Swift and Fermi lGRBs to re-derive the parameters of the Yonetoku correlation and self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. The GRB formation rate is modeled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass.

  14. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  15. Compact solar UV burst triggered in a magnetic field with a fan-spine topology

    Science.gov (United States)

    Chitta, L. P.; Peter, H.; Young, P. R.; Huang, Y.-M.

    2017-09-01

    Context. Solar ultraviolet (UV) bursts are small-scale features that exhibit intermittent brightenings that are thought to be due to magnetic reconnection. They are observed abundantly in the chromosphere and transition region, in particular in active regions. Aims: We investigate in detail a UV burst related to a magnetic feature that is advected by the moat flow from a sunspot towards a pore. The moving feature is parasitic in that its magnetic polarity is opposite to that of the spot and the pore. This comparably simple photospheric magnetic field distribution allows for an unambiguous interpretation of the magnetic geometry leading to the onset of the observed UV burst. Methods: We used UV spectroscopic and slit-jaw observations from the Interface Region Imaging Spectrograph (IRIS) to identify and study chromospheric and transition region spectral signatures of said UV burst. To investigate the magnetic topology surrounding the UV burst, we used a two-hour-long time sequence of simultaneous line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) and performed data-driven 3D magnetic field extrapolations by means of a magnetofrictional relaxation technique. We can connect UV burst signatures to the overlying extreme UV (EUV) coronal loops observed by the Atmospheric Imaging Assembly (AIA). Results: The UV burst shows a variety of extremely broad line profiles indicating plasma flows in excess of ±200 km s-1 at times. The whole structure is divided into two spatially distinct zones of predominantly up- and downflows. The magnetic field extrapolations show a persistent fan-spine magnetic topology at the UV burst. The associated 3D magnetic null point exists at a height of about 500 km above the photosphere and evolves co-spatially with the observed UV burst. The EUV emission at the footpoints of coronal loops is correlated with the evolution of the underlying UV burst. Conclusions: The magnetic field around the null point is sheared by

  16. Dendritic calcium activity precedes inspiratory bursts in preBotzinger complex neurons

    DEFF Research Database (Denmark)

    Del Negro, Christopher A; Hayes, John A; Rekling, Jens C

    2011-01-01

    to evoke a Ca(2+)-activated inward current that contributes to inspiratory burst generation. We measured Ca(2+) transients by two-photon imaging dendrites while recording neuronal somata electrophysiologically. Dendritic Ca(2+) accumulation frequently precedes inspiratory bursts, particularly at recording...

  17. A review of gamma ray bursts

    CERN Document Server

    Rees, Martin J

    2000-01-01

    Gamma-ray bursts, an enigma for more than 25 years, are now coming into focus. They involve extraordinary power outputs, and highly relativistic dynamics. The 'trigger' involves stellar-mass compact objects. The most plausible progenitors, ranging from neutron star binary mergers to collapsars (sometimes called 'hypernovae') eventually lead to the formation of a black hole with a torus of hot neutron-density material around it, the extractable energy being up to 10 sup 5 sup 4 ergs. Magnetic fields may exceed 10 sup 1 sup 5 G and particles may be accelerated up to > or approx. 10 sup 2 sup 0 eV. Details of the afterglow may be easier to understand than the initial trigger. Bursts at very high redshift can be astronomically-important as probes of the distant universe.

  18. The Average Temporal and Spectral Evolution of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Fenimore, E.E.

    1999-01-01

    We have averaged bright BATSE bursts to uncover the average overall temporal and spectral evolution of gamma-ray bursts (GRBs). We align the temporal structure of each burst by setting its duration to a standard duration, which we call T left-angleDurright-angle . The observed average open-quotes aligned T left-angleDurright-angle close quotes profile for 32 bright bursts with intermediate durations (16 - 40 s) has a sharp rise (within the first 20% of T left-angleDurright-angle ) and then a linear decay. Exponentials and power laws do not fit this decay. In particular, the power law seen in the X-ray afterglow (∝T -1.4 ) is not observed during the bursts, implying that the X-ray afterglow is not just an extension of the average temporal evolution seen during the gamma-ray phase. The average burst spectrum has a low-energy slope of -1.03, a high-energy slope of -3.31, and a peak in the νF ν distribution at 390 keV. We determine the average spectral evolution. Remarkably, it is also a linear function, with the peak of the νF ν distribution given by ∼680-600(T/T left-angleDurright-angle ) keV. Since both the temporal profile and the peak energy are linear functions, on average, the peak energy is linearly proportional to the intensity. This behavior is inconsistent with the external shock model. The observed temporal and spectral evolution is also inconsistent with that expected from variations in just a Lorentz factor. Previously, trends have been reported for GRB evolution, but our results are quantitative relationships that models should attempt to explain. copyright copyright 1999. The American Astronomical Society

  19. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Observations have revealed that long bursts, with recorded afterglow, tend to reside in the star forming regions of normal galaxies. Moreover, GRB 980425 ... observer is negligible due to the special relativistic time dilation. However, because of deceleration, eventually Γ−1 > θj and thereafter, sideways expansion becomes.

  20. Supporting differentiated quality of service in optical burst switched networks

    Science.gov (United States)

    Zhou, Bin; Bassiouni, Mostafa A.

    2006-01-01

    We propose and evaluate two new schemes for providing differentiated services in optical burst switched (OBS) networks. The two new schemes are suitable for implementation in OBS networks using just-in-time (JIT) or just-enough-time (JET) scheduling protocols. The first scheme adjusts the size of the search space for a free wavelength based on the priority level of the burst. A simple equation is used to divide the search spectrum into two parts: a base part and an adjustable part. The size of the adjustable part increases as the priority of the burst becomes higher. The scheme is very easy to implement and does not demand any major software or hardware resources in optical cross-connects. The second scheme reduces the dropping probability of bursts with higher priorities through the use of different proactive discarding rates in the network access station (NAS) of the source node. Our extensive simulation tests using JIT show that both schemes are capable of providing tangible quality of service (QoS) differentiation without negatively impacting the throughput of OBS networks.