WorldWideScience

Sample records for burst prompt emission

  1. Prompt Emission Observations of Swift BAT Bursts

    Science.gov (United States)

    Barthelmy, Scott

    2009-01-01

    We review the prompt emission properties of Swift BAT gamma-ray bursts (GRBs). We present the global properties of BAT GRBs based on their spectral and temporal characteristics. The BAT T90 and T50 durations peak at 80 and 20 s, respectively. The peak energy (Epeak) of about 60% of BAT GRBs is very likely to be less than 1.00 keV. We also present the BAT characteristics of GRBs with soft spectra, so called Xray flashes (XRFs). We will compare the BAT GRBs and XRFs parameter distribution to the other missions.

  2. Physics of Gamma-Ray Bursts Prompt Emission

    CERN Document Server

    Pe'er, Asaf

    2015-01-01

    In recent years, our understanding of gamma-ray bursts (GRB) prompt emission has been revolutionized, due to a combination of new instruments, new analysis methods and novel ideas. In this review, I describe the most recent observational results and the current theoretical interpretation. Observationally, a major development is the rise of time-resolved spectral analysis. These led to (I) identification of a distinguished high energy component, with GeV photons often seen at a delay; and (II) firm evidence for the existence of a photospheric (thermal) component in a large number of bursts. These results triggered many theoretical efforts aimed at understanding the physical conditions in the inner jet regions from which the prompt photons are emitted, as well as the spectral diversity observed. I highlight some areas of active theoretical research. These include: (I) understanding the role played by magnetic fields in shaping the dynamics of GRB outflow and spectra; (II) understanding the microphysics of kinet...

  3. SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Ackermann, M.; Berghaus, P. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M.; Arguelles, C.; BenZvi, S. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Anderson, T.; Arlen, T. C. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Auffenberg, J. [Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Tjus, J. Becker [Fakultät für Physik and Astronomie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); and others

    2015-05-20

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than ∼1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  4. Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2014-01-01

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino was found in coincidence with one of the 506 observed bursts, consistent with the expectation from atmospheric backgrounds. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than $\\sim1\\%$ of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  5. Comptonization signatures in the prompt emission of gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Frontera, F.; Farinelli, R.; Dichiara, S.; Guidorzi, C.; Titarchuk, L. [Dipartimento di Fisicae Scienze della Terra, Università di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Amati, L.; Landi, R., E-mail: frontera@fe.infn.it [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2013-12-20

    We report results of a systematic study of the broadband (2-2000 keV) time-resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras (WFCs) on board the BeppoSAX satellite and the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory. The main goal of this paper is to test spectral models of the GRB prompt emission that have recently been proposed. In particular, we test a recent photospheric model proposed, i.e., blackbody plus power law, the addition of a blackbody emission to the Band function in the cases in which this function does not fit the data, and a recent Comptonization model. By considering the few spectra for which the simple Band function does not provide a fully acceptable fit to the data, we find a statistically significant better fit by adding a blackbody to this function only in one case. We confirm earlier results found fitting the BATSE spectra alone with a blackbody plus power law. Instead, when the BATSE GRB spectra are joined to those obtained with WFCs (2-28 keV), this model becomes unacceptable in most time intervals in which we subdivide the GRB light curves. We find instead that the Comptonization model is always acceptable, even in the few cases in which the Band function is inconsistent with the data. We discuss the implications of these results.

  6. Polarization of prompt and afterglow emission of Gamma-Ray Bursts

    CERN Document Server

    Covino, Stefano

    2016-01-01

    Gamma-ray bursts and their afterglows are thought to be produced by an ultra-relativistic jet. One of the most important open questions is the outflow composition: the energy may be carried out from the central source either as kinetic energy (of baryons and/or pairs), or in electromagnetic form (Poynting flux). While the total observable flux may be indistinguishable in both cases, its polarization properties are expected to differ markedly. The prompt emission and afterglow polarization are also a powerful diagnostic of the jet geometry. Again, with subtle and hardly detectable differences in the output flux, we have distinct polarization predictions. In this review we briefly describe the theoretical scenarios that have been developed following the observations, and the now large observational datasets that for the prompt and the afterglow phases are available. Possible implications of polarimetric measurements for quantum gravity theory testing are discussed, and future perspectives for the field briefly ...

  7. A common stochastic process rules gamma-ray burst prompt emission and X-ray flares

    CERN Document Server

    Guidorzi, C; Frontera, F; Margutti, R; Baldeschi, A; Amati, L

    2015-01-01

    Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt gamma-rays. However, the physical mechanism that leads to the complex temporal distribution of gamma-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over 4 decades with index ~2 and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (>=8) gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1 sigma Gaussian confidence). These results are consistent with a simple interpretation: an hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same pro...

  8. On the sharpness of gamma-ray burst prompt emission spectra

    CERN Document Server

    Yu, Hoi-Fung; Greiner, Jochen; Sari, Re'em; Bhat, P Narayana; von Kienlin, Andreas; Paciesas, William S; Preece, Robert D

    2015-01-01

    We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1,113 spectra being analysed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrot...

  9. AN UPSCATTERING SPECTRAL FORMATION MODEL FOR THE PROMPT EMISSION OF GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Titarchuk, Lev; Farinelli, Ruben; Frontera, Filippo [Dipartimento di Fisica, Universita di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Amati, Lorenzo, E-mail: titarchuk@fe.infn.it, E-mail: ltitarch@gmu.edu, E-mail: lev@milkyway.gsfc.nasa.gov [INAF-IASF Bologna, Via Gobetti 101, 40129 Bologna (Italy)

    2012-06-20

    We propose a model for the spectral formation of gamma-ray burst (GRB) prompt emission, where the phenomenological Band function is usually applied to describe this emission. We suggest that the GRB prompt emission is mainly a result of two upscattering processes. The first process is the Comptonization of relatively cold soft photons of the star off electrons of a hot shell of plasma of temperature T{sub e} of the order of 10{sup 9} K (or kT{sub e} {approx} 100 keV) that moves subrelativistically with the bulk velocity V{sub b} substantially less than the speed of light c. In this phase, the Comptonization parameter Y is high and the interaction between a blackbody-like soft seed photon population and hot electrons leads to formation of a saturated Comptonization spectrum modified by the subrelativistic bulk outflow. The second process is an upscattering of the previously Comptonized spectrum by the plasma outflow once it becomes relativistic. This process gives rise to the high-energy power-law (PL) component above the peak in the EF(E) diagram where F(E) is the energy flux. The latter process can be described by a convolution of the Comptonized spectrum with a broken-PL Green function. Possible physical scenarios for this second upscattering process are discussed. In the framework of our model, we give an interpretation of the Amati relation between the intrinsic spectral peak photon energy and radiated energy or luminosity, and we propose a possible explanation of the GRB temporal variability.

  10. Towards a Unified Model for the Gamma-Ray Burst Prompt Emission

    Science.gov (United States)

    Guiriec, Sylvain

    2015-08-01

    We suggest here to replace the historical spectral model (Band function) for the Gamma-Ray Burst (GRB) prompt emission (keV-MeV energy regime) with a new one. We show that the complex GRB spectral shapes are well described with a combination of three separate components: (i) a thermal-like component that we interpret as emission from the GRB jet photosphere, (ii) a non-thermal component that we interpret as synchrotron radiation from charged particles propagating and accelerated within the GRB jet, and (iii) a second non-thermal component that is not always present or detectable and which is most likely of inverse Compton origin. The smooth evolution of all three components during the burst duration reinforces the validity of this new model. Detailed studies of the evolution of these components provide insights on the nature and composition of GRB jets as well as on their magnetic fields. Moreover, this new model enables a new luminosity-hardness relation based on the first non-thermal component showing that GRBs may be standard candles. If statistically confirmed, this relation will be used to (i) constrain the mechanisms powering GRB jets, (ii) estimate GRB distances, (iii) probe the early Universe, and (iv) constrain the cosmological parameters in complement to the Type Ia SNe sample. I will present this new model using analysis of GRBs detected with various observatories and instruments such as Fermi and CGRO/BATSE. I will discuss here the striking similarities of GRB spectral shapes as well as the possible universality of the proposed luminosity-hardness relation in the context of the new model.

  11. THE PHOTOSPHERIC RADIATION MODEL FOR THE PROMPT EMISSION OF GAMMA-RAY BURSTS: INTERPRETING FOUR OBSERVED CORRELATIONS

    International Nuclear Information System (INIS)

    We show that the empirical Ep-L, Γ-L, Ep-Γ, and η-barγ-Ep correlations (where L is the time-averaged luminosity of the prompt emission, Ep is the spectral peak energy, Γ is the bulk Lorentz factor, and η-barγ is the emission efficiency of gamma-ray bursts, GRBs) are well consistent with the relations between the analogous parameters predicted in the photospheric radiation model of the prompt emission of GRBs. The time-resolved thermal radiation of GRB 090902B does follow the Ep-L and Γ-L correlations. A reliable interpretation of the four correlations in alternative models is still lacking. These may point toward a photospheric origin of prompt emission of some GRBs.

  12. Delayed onset and fast rise of prompt optical-UV emission from gamma-ray bursts in molecular clouds

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hong Cui; Zhuo Li; Li-Ping Xin

    2013-01-01

    Observations imply that long γ-ray bursts (GRBs) originate from the explosions of massive stars,therefore they may occur in the molecular clouds where their progenitors were born.We show that the prompt optical-UV emission from GRBs may be delayed due to dust extinction,which can explain the observed optical delayed on-set and fast rise in GRB 080319B well.The density and the size of the molecular cloud around GRB 080319B are roughly constrained to be ~ 103 cm-3 and ~ 8 pc,respectively.We also investigate other GRBs with prompt optical-UV data,and find similar values of the densities and sizes of the local molecular clouds.Future observations of prompt optical-UV emission from GRBs on a timescale of subseconds,e.g.by UFFO-Pathfinder and SVOM-GWAC,will provide more evidence and probes of the local environments of GRBs.

  13. Constraining Magnetization of Gamma-Ray Bursts Outflows using Prompt Emission Fluence

    CERN Document Server

    Pe'er, Asaf

    2016-01-01

    I consider here acceleration and heating of relativistic outflow by local magnetic energy dissipation process in Poynting flux dominated outflow. Adopting the standard assumption that the reconnection rate scales with the Alfven speed, I show here that the fraction of energy dissipated as thermal photons cannot exceed (13 \\hat \\gamma -14)^{-1} = 30% (for adiabatic index \\hat \\gamma = 4/3) of the kinetic energy at the photosphere. Even in the most radiatively efficient scenario, the energy released as non-thermal photons during the prompt phase is at most equal to the kinetic energy of the outflow. These results imply that calorimetry of the kinetic energy that can be done during the afterglow phase, could be used to constrain the magnetization of gamma-ray bursts (GRB) outflows.

  14. Prompt Ultraviolet-to-Soft X-Ray Emission of Gamma-Ray Bursts: Application to GRB 031203?

    CERN Document Server

    Li, Z; Li, Zhuo; Song, Li-Ming

    2004-01-01

    We discuss the prompt emission of GRBs, allowing for $\\gamma\\gamma$ pair production and synchrotron self-absorption. The observed hard spectra suggest heavy pair-loading in GRBs. The re-emission of the generated pairs results in the energy transmission from high-energy gamma-rays to long-wavelength radiation. Due to strong self-absorption, the synchrotron radiation by pairs is in optically thick regime. Thus, the re-emission would appear as a thermal-like spectral bump in the extreme-ultraviolet/soft X-ray band, other than the peak from the main burst. Recently, the prompt soft X-ray emission of GRB 031203 was detected thanks to the discovery of a delayed dust echo, and it seems to be consistent with the model prediction of a double-peak structure. The confirmation of the thermal-like feature and the double-peak structure by observation would indicate that the dominant radiation mechanism in GRBs is synchrotron rather than inverse-Compton radiation.

  15. Pair loading in Gamma-Ray Burst Fireball And Prompt Emission From Pair-Rich Reverse Shock

    CERN Document Server

    Li, Z; Lu, T; Song, L M; Li, Zhuo

    2003-01-01

    Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic winds/fireballs to avoid the "compactness problem". However, the most energetic photons in GRBs may still suffer from $\\gamma-\\gamma$ absorption leading to electron/positron pair production in the winds/fireballs. We show here that in a wide range of model parameters, the resulting pairs may dominate those electrons associated with baryons. Later on, the pairs would be carried into a reverse shock so that a shocked pair-rich fireball may produce a strong flash at lower frequencies, i.e. in the IR band, in contrast with optical/UV emission from a pair-poor fireball. The IR emission would show a 5/2 spectral index due to strong self-absorption. Rapid responses to GRB triggers in the IR band would detect such strong flashes. The future detections of many IR flashes will infer that the rarity of prompt optical/UV emissions is in fact due to dust obscuration in the star formation regions.

  16. Prompt and Delayed High-Energy Emission from Cosmological $\\gamma$-Ray Bursts

    CERN Document Server

    Böttcher, M

    1999-01-01

    In the cosmological blast-wave model for gamma ray bursts (GRBs), high energy (> 10 GeV) gamma-rays are produced either through Compton scattering of soft photons by ultrarelativistic electrons, or as a consequence of the acceleration of protons to ultrahigh energies. We describe the spectral and temporal characteristics of high energy gamma-rays produced by both mechanisms, and discuss how these processes can be distinguished through observations with low-threshold Cherenkov telescopes or GLAST. We propose that Compton scattering of starlight photons by blast wave electrons can produce delayed flares of GeV -- TeV radiation.

  17. Luminosity correlations for gamma-ray bursts and implications for their prompt and afterglow emission mechanisms

    CERN Document Server

    Sultana, Joseph; Fukumura, Keigo

    2012-01-01

    We present the relation between the ($z-$ and $k-$corrected) spectral lags, $\\tau$, for the standard \\textit{Swift} energy bands 50-100 keV and 100-200 keV and the peak isotropic luminosity, $L_{\\mathrm{iso}}$ (a relation reported first by Norris et al.), for a subset of 12 long \\textit{Swift} GRBs taken from a recent study of this relation by Ukwatta et al. The chosen GRBs are also a subset of the Dainotti et al. sample, a set of {\\em Swift} GRBs of known redshift, employed in establishing a relation between the (GRB frame) luminosity, $L_X$, of the shallow (or constant) flux portion of the typical XRT GRB-afterglow light curve and the (GRB frame) time of transition to the normal decay rate, $T_{\\mathrm{brk}}$. We also present the $L_X-T_{\\mathrm{brk}}$ relation using only the bursts common in the two samples. The two relations exhibit a significant degree of correlation ($\\rho = -0.65$ for the $L_{\\mathrm{iso}}-\\tau$ and $\\rho = -0.88$ for the $L_{X} - T_{\\mathrm{brk}}$ relation) and have surprisingly simil...

  18. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Mette [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Watson, Darach, E-mail: mef4@hi.is, E-mail: darach@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  19. Prompt Ultraviolet-to-Soft-X-Ray Emission of Gamma-Ray Bursts: Application to GRB 031203?

    OpenAIRE

    Li, Zhuo; Song, Li-Ming

    2004-01-01

    We discuss the prompt emission of GRBs, allowing for $\\gamma\\gamma$ pair production and synchrotron self-absorption. The observed hard spectra suggest heavy pair-loading in GRBs. The re-emission of the generated pairs results in the energy transmission from high-energy gamma-rays to long-wavelength radiation. Due to strong self-absorption, the synchrotron radiation by pairs is in optically thick regime, showing a thermal-like spectral bump in the extreme-ultraviolet/soft X-ray band, other tha...

  20. Spectral Properties of Prompt Emission of Four Short Gamma-Ray Bursts Observed by the Suzaku-WAM and the Konus-Wind

    CERN Document Server

    Ohno, Masanori; Takahashi, Takuya; Yamaoka, Kazutaka; Sugita, Satoshi; Pal'shin, Valentin; Sakamoto, Takanori; Sato, Goro; Hurley, Kevin; Frederiks, Dmitry; Oleynik, Philipp; Ulanov, Mikhail; Tashiro, Makoto; Urata, Yuji; Onda, Kaori; Tamagawa, Toru; Terada, Yukikatsu; Suzuki, Motoko; Soojing, Hong

    2008-01-01

    We have performed a joint analysis of prompt emission from four bright short gamma-ray bursts (GRBs) with the Suzaku-WAM and the Konus-Wind experiments. This joint analysis allows us to investigate the spectral properties of short-duration bursts over a wider energy band with a higher accuracy. We find that these bursts have a high E$_{\\rm peak}$, around 1 MeV and have a harder power-law component than that of long GRBs. However, we can not determine whether these spectra follow the cut-off power-law model or the Band model. We also investigated the spectral lag, hardness ratio, inferred isotropic radiation energy and existence of a soft emission hump, in order to classify them into short or long GRBs using several criteria, in addition to the burst duration. We find that all criteria, except for the existence of the soft hump, support the fact that our four GRB samples are correctly classified as belonging to the short class. In addition, our broad-band analysis revealed that there is no evidence of GRBs wit...

  1. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    CERN Document Server

    Ziaeepour, Houri

    2011-01-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron, Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emission. We also extend the previous formulation by considering the presence of a precessing external magnetic field. Our simulations reproduce light curves of real GRBs and variety of spectral slopes at E > E_peak observed by the Fermi-LAT. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energ...

  2. Follow the BAT: Monitoring Swift BAT FoV for Prompt Optical Emission from Gamma-ray Bursts

    CERN Document Server

    Ukwatta, T N; Dhuga, K S; Gehrels, N

    2011-01-01

    We investigate the feasibility of implementing a system called 'Follow the BAT' that will coordinate ground-based robotic optical and near infrared (NIR) telescopes to monitor the Swift BAT field-of-view (FoV). The system will optimize the monitoring locations in the BAT FoV based on individual robotic telescopes' location, FoV, sensitivity and local weather conditions. The aim is to perform coordinated BAT FoV monitoring by professional as well as amateur astronomers around the world. The scientific goal of the proposed system is to facilitate detection of prompt optical and NIR emission from GRBs, especially from short duration GRBs. We have performed a Monte Carlo simulation to investigate the feasibility of the project.

  3. Toward a Unified Model for the Broadband Prompt Emission of Gamma Ray Bursts & a New Luminosity-Hardness Relation for Cosmology

    Science.gov (United States)

    Guiriec, Sylvain

    2016-07-01

    We suggest here to replace the historical spectral model (Band function) for the Gamma-Ray Burst (GRB) prompt emission (keV-MeV energy regime) with a new one. We show that the complex GRB spectral shapes are well described with a combination of three separate components: (i) a thermal-like component that we interpret as emission from a non-dissipative GRB jet photosphere, (ii) a non-thermal component that we interpret either as synchrotron radiation from charged particles propagating and accelerated within the GRB jet or as a dissipative photosphere, and (iii) a second non-thermal component that is not always present or detectable and which extends from optical up to hard gamma-rays. The smooth evolution of all three components during the burst duration reinforces the validity of this new model. Detailed studies of the evolution of these components provide insights on the nature and composition of GRB jets as well as on their magnetic fields. Moreover, this new model enables a new luminosity-hardness relation based on the first non-thermal component that may establish GRBs as standard candles. If statistically confirmed, this relation will be used to (i) constrain the mechanisms powering GRB jets, (ii) estimate GRB distances, (iii) probe the early Universe, and (iv) constrain the cosmological parameters in complement to the Type Ia SNe sample. I will present this new model using analysis of GRBs detected with various observatories and instruments such as Fermi, CGRO/BATSE and more recently Swift. I will discuss here the striking similarities of GRB spectral shapes as well as the possible universality of the proposed luminosity-hardness relation in the context of the new model.

  4. Prompt Emission Properties of Swift GRBs

    Science.gov (United States)

    Sakamoto, T.; Barthelmy, S.; Baumgartner, W.; Cummings, J.; Fenimore, E.; Gehrels, N.; Krimm, H.; Markwardt, Craig B.; Palmer, D.; Parsons, A.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T.

    2010-01-01

    We present the results from the second Swift BAT catalog of 476 gamma-ray bursts, which contains bursts detected by the BAT between 2004 December 19 and 2009 December 21. In addition to the spectral and temporal parameters extracted from the first BAT GRB catalog, 3324 time-resolved spectra have been extracted and analyzed. We show and discuss 1) the duration distribution, 2) the hardness of short GRBs, 3) Epeak distribution, 4) the line of death problem and 5) an additional power-law component in the prompt emission spectrum.

  5. The ECLAIRs micro-satellite for multi-wavelength studies of gamma-ray burst prompt emission

    CERN Document Server

    Schanne, S; Barret, D; Basa, S; Boër, M; Cordier, B; Daigne, F; Ealet, A; Goldoni, P; Klotz, A; Limousin, O; Mandrou, P; Mochkovitch, R; Paltani, S; Paul, J; Petitjean, P; Pons, R; Skinner, G K

    2004-01-01

    The cosmological revolution of 1997 has established that (at least long duration) gamma-ray bursts (GRB) are among the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations for astrophysical studies of GRB and for their possible use as cosmological probes. It is expected to be the only space borne GRB trigger available for ground based robotic telescopes operational at that time. This paper presents the ECLAIRs project and its status. An X/gamma-ray camera onboard ECLAIRs with a wide field of view of 2 sr, will detect ~100 GRB/yr in the 4-50 keV energy range, localize the GRB with a precision of ~10 arcmin on the sky, and transmit this information to the ground in near real-time, as a GRB trigger for ground based optical telescopes. Inspired by the INTEGRAL imager IBIS, it is based on a CdTe detection plane covering 1000 cm^2, placed 35 cm below a coded mask. An optical camera, sensitive to mag...

  6. A Revised Analysis of Gamma Ray Bursts' prompt efficiencies

    CERN Document Server

    Beniamini, Paz; Piran, Tsvi

    2016-01-01

    The prompt Gamma-Ray Bursts' (GRBs) efficiency is an important clue on the emission mechanism producing the $\\gamma$-rays. Previous estimates of the kinetic energy of the blast waves, based on the X-ray afterglow luminosity $L_X$, suggested that this efficiency is large, with values above 90\\% in some cases. This poses a problem to emission mechanisms and in particular to the internal shocks model. These estimates are based, however, on the assumption that the X-ray emitting electrons are fast cooling and that their Inverse Compton (IC) losses are negligible. The observed correlations between $L_X$ (and hence the blast wave energy) and $E_{\\gamma\\rm ,iso}$, the isotropic equivalent energy in the prompt emission, has been considered as observational evidence supporting this analysis. It is reasonable that the prompt gamma-ray energy and the blast wave kinetic energy are correlated and the observed correlation corroborates, therefore, the notion $L_X$ is indeed a valid proxy for the latter. Recent findings sugg...

  7. A revised analysis of gamma-ray bursts' prompt efficiencies

    Science.gov (United States)

    Beniamini, Paz; Nava, Lara; Piran, Tsvi

    2016-09-01

    The prompt gamma-ray bursts' (GRBs) efficiency is an important clue on the emission mechanism producing the γ-rays. Previous estimates of the kinetic energy of the blast waves, based on the X-ray afterglow luminosity LX, suggested that this efficiency is large, with values above 90 per cent in some cases. This poses a problem to emission mechanisms and in particular to the internal shocks model. These estimates are based, however, on the assumption that the X-ray emitting electrons are fast cooling and that their Inverse Compton (IC) losses are negligible. The observed correlations between LX (and hence the blast wave energy) and Eγ, iso, the isotropic equivalent energy in the prompt emission, has been considered as observational evidence supporting this analysis. It is reasonable that the prompt gamma-ray energy and the blast wave kinetic energy are correlated and the observed correlation corroborates, therefore, the notion LX is indeed a valid proxy for the latter. Recent findings suggest that the magnetic field in the afterglow shocks is significantly weaker than was earlier thought and its equipartition fraction, ɛB, could be as low as 10-4 or even lower. Motivated by these findings we reconsider the problem, taking now IC cooling into account. We find that the observed LX - Eγ, iso correlation is recovered also when IC losses are significant. For small ɛB values the blast wave must be more energetic and we find that the corresponding prompt efficiency is significantly smaller than previously thought. For example, for ɛB ˜ 10-4 we infer a typical prompt efficiency of ˜15 per cent.

  8. Gamma Ray Burst engine activity within the quark nova scenario: Prompt emission, X-ray Plateau, and sharp drop-off

    OpenAIRE

    Staff, Jan; Niebergal, Brian; Ouyed, Rachid

    2007-01-01

    We present a three-stage model for a long GRB inner engine to explain the prompt gamma ray emission, and interpret recent Swift satellite observations of early X-ray afterglow plateaus followed by a sharp drop off or a shallow power law decay. The three stages involves a neutron star phase, a quark star (QS) and a black hole phase as described in Staff et al. (2007). We find that the QS stage allows for more energy to be extracted from neutron star to QS conversion as well as from ensuing acc...

  9. The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum

    Science.gov (United States)

    Kazanas, Demos; Mastichiadis, A.

    2008-01-01

    The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.

  10. Confronting GRB prompt emission with a model for subphotospheric dissipation

    CERN Document Server

    Ahlgren, Björn; Nymark, Tanja; Ryde, Felix; Pe'er, Asaf

    2015-01-01

    The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. Here we fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data we span a physically motivated part of the model's parameter space and create DREAM ($\\textit{Dissipation with Radiative Emission as A table Model}$), a table model for ${\\scriptsize XSPEC}$. We show that this model can describe different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We suggest that the main difference between these two types of bursts is the optical depth at the dissipatio...

  11. An anisotropic minijets model for the GRB prompt emission

    CERN Document Server

    Duran, Rodolfo Barniol; Giannios, Dimitrios

    2015-01-01

    In order to explain rapid light curve variability in the context of gamma-ray bursts (GRBs) and jets from active galactic nuclei (AGNs), several authors have proposed the existence of "blobs" or "minijets" that move with relativistic speed relative to the main flow of the jet. Here we consider the possibility that these minijets, instead of being isotropically distributed in the co-moving frame of the jet, form primarily perpendicular to the direction of the flow. This anisotropic collection of minijets yields two robust features. First, the main burst of emission is significantly delayed compared with the isotropic case. This delay allows for the peak of the afterglow emission to appear during the prompt emission, in contrast to the simplest isotropic model, where the afterglow peak appears at or after the end of the main burst. Second, the flux decline following the end of the main burst of emission will be steeper than the isotropic case. We find that these two features are realized in the case of GRBs: 1....

  12. Study on Prompt NOx Emission in Boilers

    Institute of Scientific and Technical Information of China (English)

    ZhongB.J.; RoslyakovP.V.

    1996-01-01

    Experimental and theoretical investigation of prompt nitrogen oxides emission in flame of different gaseous fuels were carried out with purpose of minimizing total NOx yield.The effect of the following factors was determined:air excess from 0.3 to 1.1,flame temperature,heating flame rate,fuel content,It was found that ,if air excess was less than 0.65,some prompt NOx converted to N2 in consequence of reacting with hydrocarbon radicals.

  13. Prompt burst energetics experiments: fresh oxide/sodium series

    International Nuclear Information System (INIS)

    A series of in-pile experiments has been performed to provide information on thermal energy to work conversion under prompt burst excursion (PBE) conditions. These consisted of single pin tests using fresh uranium oxide or uranium carbide fuel in a capsule geometry, with either stagnant sodium or helium in the coolant channel. The experiments were irradiated with single or double pulses in the Annular Core Pulse Reactor (ACPR) to provide energy depositions up to 2900 J/g. This report covers the seven single and five double pulse UO2 sodium-in tests. Experimental data includes pressure and linear motion transducer histories, measured work-energy conversion efficiencies, and post-irradiation examination. Analysis includes derived work-energy conversion efficiencies (up to 0.54%), pin failure modeling, hydrodynamic analysis of pressure pulse propagation in the channel, and piston stopping effects. Initial pressure events in the single pulse experiments appear to be dominated by fuel vapor pressure. Definite fuel-coolant interactions were observed in several experiments, including some that were coincident with stopping of the linear motion transducer piston, suggesting a possible triggering effect by the deceleration pressure

  14. Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Pe'er, Asaf

    2016-01-01

    A major breakthrough in our understanding of gamma-ray bursts (GRB) prompt emission physics occurred in the last few years, with the realization that a thermal component accompanies the over-all non-thermal prompt spectra. This thermal part is important by itself, as it provides direct probe of the physics in the innermost outflow regions. It further has an indirect importance, as a source of seed photons for inverse-Compton scattering, thereby it contributes to the non-thermal part as well. In this short review, we highlight some key recent developments. Observationally, although so far it was clearly identified only in a minority of bursts, there are indirect evidence that thermal component exists in a very large fraction of GRBs, possibly close to 100%. Theoretically, the existence of thermal component have a large number of implications as a probe of underlying GRB physics. Some surprising implications include its use as a probe of the jet dynamics, geometry and magnetization.

  15. Swift captures the spectrally evolving prompt emission of GRB 070616

    CERN Document Server

    Starling, R L C; Willingale, R; Page, K L; Osborne, J P; De Pasquale, M; Nakagawa, Y E; Kuin, N P M; Onda, K; Norris, J P; Ukwatta, T N; Kodaka, N; Burrows, D N; Kennea, J A; Page, M J; Perri, M; Markwardt, C B

    2007-01-01

    The origins of Gamma-ray Burst prompt emission are currently not well understood and in this context long, well-observed events are particularly important to study. We present the case of GRB 070616, analysing the exceptionally long-duration multipeaked prompt emission, and later afterglow, captured by all the instruments on-board Swift and by Suzaku WAM. The high energy light curve remained generally flat for several hundred seconds before going into a steep decline. Spectral evolution from hard to soft is clearly taking place throughout the prompt emission, beginning at 285 s after the trigger and extending to 1200 s. We track the movement of the spectral peak energy, whilst observing a softening of the low energy spectral slope. The steep decline in flux may be caused by a combination of this strong spectral evolution and the curvature effect. We investigate origins for the spectral evolution, ruling out a superposition of two power laws and considering instead an additional component dominant during the l...

  16. Radiative Mechanisms in GRB Prompt Emission

    Science.gov (United States)

    Pe'er, A.

    2013-07-01

    Motivated by the Fermi gamma-ray space telescope results, in recent years immense efforts were given to understanding the mechanism that leads to the prompt emission observed. The failure of the optically thin emission models (synchrotron and synchrotron self Compton) increased interest in alternative models. Optically thick models, while having several advantages, also face difficulty in capturing several key observables. Theoretical efforts are focused in two main directions: (1) mechanisms that act to broaden the Planck spectrum; and (2) combining the optically thin and optically thick models to a hybrid model that could explain the key observables.

  17. Radiative Mechanisms in GRB prompt emission

    CERN Document Server

    Pe'er, Asaf

    2013-01-01

    Motivated by the Fermi gamma-ray space telescope results, in recent years immense efforts were given to understanding the mechanism that leads to the prompt emission observed. The failure of the optically thin emission models (synchrotron and synchrotron self Compton) increased interest in alternative models. Optically thick models, while having several advantages, also face difficulty in capturing several key observables. Theoretical efforts are focused in two main directions: (1) mechanisms that act to broaden the Planck spectrum; and (2) combining the optically thin and optically thick models to a hybrid model that could explain the key observables.

  18. Using Swift observations of prompt and afterglow emission to classify GRBs

    CERN Document Server

    O'Brien, P T

    2007-01-01

    We present an analysis of early BAT and XRT data for 107 gamma--ray bursts (GRBs) observed by the Swift satellite. We use these data to examine the behaviour of the X-ray light curve and propose a classification scheme for GRBs based on this behaviour. As found for previous smaller samples, the earliest X-ray light curve can be well described by an exponential which relaxes into a power law, often with flares superimposed. The later emission is well fit using a similar functional form and we find that these two functions provide a good description of the entire X-ray light curve. For the prompt emission, the transition time between the exponential and the power law gives a well-defined timescale, T_p, for the burst duration. We use T_p, the spectral index of the prompt emission, beta_p, and the prompt power law decay index, alpha_p to define four classes of burst: short, slow, fast and soft. Bursts with slowly declining emission have spectral and temporal properties similar to the short bursts despite having ...

  19. Simulation of Prompt Emission from GRBs with a Photospheric Component and its Detectability By GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Battelino, Milan; Ryde, Felix; /Stockholm Observ.; Omodei, Nicola; /INFN, Pisa; Longo, Francesco; /U. Trieste /INFN, Trieste

    2011-11-29

    The prompt emission from gamma-ray bursts (GRBs) still requires a physical explanation. Studies of time-resolved GRB spectra, observed in the keV-MeV range, show that a hybrid model consisting of two components, a photospheric and a non-thermal component, in many cases fits bright, single-pulsed bursts as well as, and in some instances even better than, the Band function. With an energy coverage from 8 keV up to 300 GeV, GLAST will give us an unprecedented opportunity to further investigate the nature of the prompt emission. In particular, it will give us the possibility to determine whether a photospheric component is the determining feature of the spectrum or not. Here we present a short study of the ability of GLAST to detect such a photospheric component in the sub-MeV range for typical bursts, using simulation tools developed within the GLAST science collaboration.

  20. Observations of the Prompt Gamma-Ray Emission of GRB 070125

    CERN Document Server

    Bellm, Eric C; Pal'shin, Valentin; Yamaoka, Kazutaka; Bandstra, Mark E; Boggs, Steven E; Hong, Soojing; Kodaka, Natsuki; Kozyrev, A S; Litvak, M L; Mitrofanov, I G; Nakagawa, Yujin E; Ohno, Masanori; Onda, Kaori; Sanin, A B; Sugita, Satoshi; Tashiro, Makoto; Tretyakov, V I; Urata, Yuji; Wigger, Claudia

    2007-01-01

    The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and Swift-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is $1.75 \\times 10^{-4}$ erg/cm$^2$ (20 keV-10 MeV). Using the spectroscopic redshift z = 1.547, we find that the burst is consistent with the Amati $E_{peak,i}-E_{iso}$ and the Ghirlanda $E_{peak,i}-E_\\gamma$ correlations.

  1. Prompt emission of GRB 121217A from gamma-rays to the NIR

    CERN Document Server

    Elliott, J; Schmidl, S; Greiner, J; Gruber, D; Oates, S; Kobayashi, S; Zhang, B; Cummings, J R; Filgas, R; Gehrels, N; Grupe, D; Kann, D A; Klose, S; Krühler, T; Guelbenzu, A Nicuesa; Rau, A; Rossi, A; Siegel, M; Schady, P; Sudilovsky, V; Tanga, M; Varela, K

    2013-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, often fit with empirical functions. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray Burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, covering an energy range of 0.001 keV to 100 keV. We determine a photometric redshift of z=3.1+/-0.1 with a line-of-sight extinction of A_V~0 mag, utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma~250 and an emission radius of...

  2. Limits on prompt, dispersed radio pulses from gamma-ray bursts

    CERN Document Server

    Bannister, Keith W; Gaensler, Bryan M; Reynolds, John E

    2012-01-01

    We have searched for prompt radio emission from nine Gamma Ray Bursts (GRBs) with a 12 m telescope at 1.4 GHz, with a time resolution of 64 us to 1 s. We detected single dispersed radio pulses with significances >6 sigma in the few minutes following two GRBs. The dispersion measures of both pulses are well in excess of the expected Galactic values, and the implied rate is incompatible with known sources of single dispersed pulses. The arrival times of both pulses also coincide with breaks in the GRB X-ray light curves. A null trial and statistical arguments rule out random fluctuations as the origin of these pulses with >95% and 97% confidence, respectively, although a simple population argument supports a GRB origin with confidence of only 2%. We caution that we cannot rule out RFI as the origin of these pulses. If the single pulses are not related to the GRBs we set an upper limit on the flux density of radio pulses emitted between 200 to 1800 s after a GRB of 1.27 w^{-1/2} Jy, where 64 us 1 s) variations. ...

  3. Limits on Prompt, Dispersed Radio Pulses from Gamma-Ray Bursts

    Science.gov (United States)

    Bannister, K. W.; Murphy, T.; Gaensler, B. M.; Reynolds, J. E.

    2012-09-01

    We have searched for prompt radio emission from nine gamma-ray bursts (GRBs) with a 12 m telescope at 1.4 GHz, with a time resolution of 64 μs to 1 s. We detected single dispersed radio pulses with significances >6σ in the few minutes following two GRBs. The dispersion measures of both pulses are well in excess of the expected Galactic values, and the implied rate is incompatible with known sources of single dispersed pulses. The arrival times of both pulses also coincide with breaks in the GRB X-ray light curves. A null trial and statistical arguments rule out random fluctuations as the origin of these pulses with >95% and ~97% confidence, respectively, although a simple population argument supports a GRB origin with confidence of only 2%. We caution that we cannot rule out radio frequency interference (RFI) as the origin of these pulses. If the single pulses are not related to the GRBs, we set an upper limit on the flux density of radio pulses emitted between 200 and 1800 s after a GRB of 1.27w -1/2 Jy, where 6.4 × 10-5 s 1 s) variations. These limits are some of the most constraining at high time resolution and GHz frequencies in the early stages of the GRB phenomenon.

  4. The prompt GRB high energy emission from internal shocks: synchrotron vs inverse Compton component

    International Nuclear Information System (INIS)

    We performed a detailed calculation of gamma-ray burst (GRB) prompt emission in the framework of the internal shock scenario, focusing on the high energy (GeV) bands. In order to follow the evolution of the ultrarelativistic inhomogeneous wind, we combined a model for the dynamics of internal shocks with a detailed calculation of the radiative processes occurring in the shocked medium. We present the resulting synthetic GRB light curves and spectra. We show the spectral evolution that can be expected for different sets of microphysics parameters and parameters of the dynamical evolution, and how the relative importance of synchrotron and inverse Compton components is varying during a burst.

  5. The observable effects of a photospheric component on GRB's and XRF's prompt emission spectrum

    OpenAIRE

    Pe'er, Asaf; Mészáros, Peter; Rees, Martin J.

    2005-01-01

    A thermal radiative component is likely to accompany the first stages of the prompt emission of Gamma-ray bursts (GRB's) and X-ray flashes (XRF's). We analyze the effect of such a component on the observable spectrum, assuming that the observable effects are due to a dissipation process occurring below or near the thermal photosphere. We consider both the internal shock model and a 'slow heating' model as possible dissipation mechanisms. For comparable energy densities in the thermal and the ...

  6. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays; a New Type of Standard Candle

    CERN Document Server

    Guiriec, S; Hartmann, D H; Granot, J; Asano, K; Meszaros, P; Gill, R; Gehrels, N; McEnery, J

    2016-01-01

    The origin of prompt emission from gamma ray bursts remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB gamma-ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.

  7. The Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRB 080319B

    Science.gov (United States)

    Stamatikos, Michael; Ukwatta, Tilan N.; Sakamoto, Takanori; Dhuga, Kalvir S.; Toma, Kenji; Pe'Er, Asaf; Mészáros, Peter; Band, David L.; Norris, Jay P.; Barthelmy, Scott D.; Gehrels, Neil

    2009-05-01

    We report on observations of correlated behavior between the prompt γ-ray and optical emission from GRB 080319B, which confirm that (i) they occurred within the same astrophysical source region and (ii) their respective radiation mechanisms were dynamically coupled. Our results, based upon a new cross-correlation function (CCF) methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt γ-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic γ-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV γ-rays and the optical emission observed by TORTORA (extrinsic optical/γ-ray spectral lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, the rise and decline of prompt optical emission at ~T+10+/-1 sec and ~T+50+/-1 sec, respectively, both coincide with discontinuities in the hard to soft evolution of the photon index for a power law fit to 15-150 keV Swift-BAT data at ~T+8+/-2 sec and ~T+48+/-1 sec. These spectral energy changes also coincide with intervals whose time-resolved spectral lag values are consistent with zero, at ~T+12+/-2 sec and ~T+50+/-2 sec. These results, which are robust across heuristic permutations of Swift-BAT energy channels and varying temporal bin resolution, have also been corroborated via independent analysis of Konus-Wind data. This potential discovery may provide the first observational evidence for an implicit connection between spectral lags and GRB emission mechanisms in the context of canonical fireball phenomenology. Future work includes exploring a subset of bursts with prompt optical emission to probe the unique or ubiquitous nature of this result.

  8. Simultaneous optical/gamma-ray observations of GRB 121217's prompt emission

    CERN Document Server

    Elliott, J; Schmidl, S; Greiner, J; Gruber, D; Oates, S; Kobayashi, S; Zhang, B; Cummings, J R; Filgas, R; Gehrels, N; Grupe, D; Kann, D A; Klose, S; Krühler, T; Guelbenzu, A Nicuesa; Rau, A; Rossi, A; Siegel, M; Schady, P; Sudilovsky, V; Tanga, M; Varela, K

    2013-01-01

    Since the advent of the Swift satellite it has been possible to obtain precise localisations of GRB positions of sub-arcsec accuracy within seconds, facilitating ground-based robotic telescopes to automatically slew to the target within seconds. This has yielded a plethora of observational data for the afterglow phase of the GRB, but the quantity of data (<2 keV) covering the initial prompt emission still remains small. Only in a handful of cases has it been possible obtain simultaneous coverage of the prompt emission in a multi-wavelength regime (gamma-ray to optical), as a result of: observing the field by chance prior to the GRB (e.g. 080319B/naked-eye burst), long-prompt emission (e.g., 080928, 110205A) or triggered on a pre-cursor (e.g., 041219A, 050820A, 061121). This small selection of bursts have shown both correlated and uncorrelated gamma-ray and optical light curve behaviour, and the multi-wavelength emission mechanism remains far from resolved (i.e. single population synchrotron self-Component,...

  9. The observable effects of a photospheric component on GRB's and XRF's prompt emission spectrum

    CERN Document Server

    Peér, A; Rees, Martin J; Pe'er, Asaf; M\\'esz\\'aros, Peter; Rees, Martin J.

    2005-01-01

    A thermal radiative component is likely to accompany the first stages of the prompt emission of Gamma-ray bursts (GRB's) and X-ray flashes (XRF's). We analyze the effect of such a component on the observable spectrum, assuming that the observable effects are due to a dissipation process occurring below or near the thermal photosphere. We consider both the internal shock model and a 'slow heating' model as possible dissipation mechanisms. For comparable energy densities in the thermal and the leptonic component, the dominant emission mechanism is Compton scattering. This leads to a nearly flat energy spectrum (\

  10. Prompt Emission in Fission Induced with Fast Neutrons

    Science.gov (United States)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  11. Modelling of reaction cross sections and prompt neutron emission

    Science.gov (United States)

    Hambsch, F.-J.; Tudora, A.; Oberstedt, S.

    2010-10-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  12. Modelling of reaction cross sections and prompt neutron emission

    OpenAIRE

    Oberstedt S.; Tudora A.; Hambsch F.-J.

    2010-01-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  13. Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared

    Science.gov (United States)

    Elliott, J.; Yu, H.-F.; Schmidl, S.; Greiner, J.; Gruber, D.; Oates, S.; Kobayashi, S.; Zhang, B.; Cummings, J. R.; Filgas, R.; Gehrels, N.

    2014-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, which is often fit with empirical functions, such as the Band function. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, which cover an energy range of 5 orders of magnitude (10(exp -3) keV to 100 keV). We determine a photometric redshift of z = 3.1 +/- 0.1 with a line-of-sight with little or no extinction (AV approx. 0 mag) utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma(sub 0) approx. 250 and an emission radius of R emission broadband spectral energy distribution is well fit with a broken power law with beta1 = -0.3 +/- 0.1 and beta2 = 0.6 +/- 0.1 that has a break at E = 6.6 +/- 0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of Ea emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of approx. 100. This suggests an afterglow component is dominating the emission. We present GRB 121217A, one of the few GRBs that has multi-wavelength observations of the prompt-emission period and shows that it can be understood with a synchrotron radiation model. However, due to the complexity of the GRB's emission, other mechanisms that result in Band-like spectra cannot be ruled out.

  14. There is a short gamma-ray burst prompt phase at the beginning of each long one

    CERN Document Server

    Calderone, G; Ghisellini, G; Bernardini, M G; Campana, S; Covino, S; D'Avanzo,; D'Elia, V; Melandri, A; Salvaterra, R; Sbarufatti, B; Tagliaferri, G

    2014-01-01

    We compare the prompt intrinsic spectral properties of a sample of short Gamma--ray Burst (GRB) with the first 0.3 seconds (rest frame) of long GRBs observed by Fermi/GBM. We find that short GRBs and the first part of long GRBs lie on the same E_p--E_iso correlation, that is parallel to the relation for the time averaged spectra of long GRBs. Moreover, they are indistinguishable in the E_p--L_iso plane. This suggests that the emission mechanism is the same for short and for the beginning of long events, and both short and long GRBs are very similar phenomena, occurring on different timescales. If the central engine of a long GRB would stop after ~0.3 * (1+z) seconds the resulting event would be spectroscopically indistinguishable from a short GRB.

  15. A New Derivation of GRB Jet Opening Angles from the Prompt Gamma-Ray Emission

    CERN Document Server

    Goldstein, Adam; Briggs, Michael S; van der Horst, Alexander J; McBreen, Sheila; Kouveliotou, Chryssa; Connaughton, Valerie; Paciesas, William S; Meegan, Charles A; Bhat, P N; Bissaldi, Elisabetta; Burgess, J Michael; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald J; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa; Giles, Misty; Greiner, Jochen; Gruber, David; Guiriec, Sylvain; von Kienlin, Andreas; Kippen, Marc; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen

    2011-01-01

    The jet opening angle of gamma-ray bursts (GRBs) is an important parameter for determining the characteristics of the progenitor, and the information contained in the opening angle gives insight into the relativistic outflow and the total energy that is contained in the burst. Unfortunately, a confident inference of the jet opening angle usually requires broadband measurement of the afterglow of the GRB, from the X-ray down to the radio and from minutes to days after the prompt gamma-ray emission, which may be difficult to obtain. For this reason, very few of all detected GRBs have constrained jet angles. We present an alternative approach to derive jet opening angles from the prompt emission of the GRB, given that the GRB has a measurable Epeak and fluence, and which does not require any afterglow measurements. We present the distribution of derived jet opening angles for the first two years of the Fermi Gamma-ray Burst Monitor (GBM) operation, and we compare a number of our derived opening angles to the rep...

  16. A Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRBs?

    CERN Document Server

    Stamatikos, Michael; Sakamoto, Takanori; Dhuga, Kalvir S

    2008-01-01

    We report on observations of correlated behavior between the prompt gamma-ray and optical emission from GRB 080319B, which (i) strongly suggest that they occurred within the same astrophysical source region and (ii) indicate that their respective radiation mechanisms were most likely dynamically coupled. Our preliminary results, based upon a new cross-correlation function (CCF) methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt gamma-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic gamma-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV gamma-rays and the optical emission observed by TORTORA (extrinsic optical/gamma-ray spectral lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, prompt optical emission is nested within intervals of (a) trivial intrinsic gamma-ray spectral lag (~T+12+-2 and ~T+50+...

  17. The Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRB 080319B

    CERN Document Server

    Stamatikos, Michael; Sakamoto, Takanori; Dhuga, Kalvir S; Toma, Kenji; Pe'er, Asaf; Meszaros, Peter; Band, David L; Norris, Jay P; Barthelmy, Scott D; Gehrels, Neil

    2009-01-01

    We report on observations of correlated behavior between the prompt gamma-ray and optical emission from GRB 080319B, which confirm that (i) they occurred within the same astrophysical source region and (ii) their respective radiation mechanisms were dynamically coupled. Our results, based upon a new CCF methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt gamma-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic gamma-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV gamma-rays and the optical emission observed by TORTORA (extrinsic optical/gamma-ray spectral lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, the rise and decline of prompt optical emission at ~T+10+/-1 sec and ~T+50+/-1 sec, respectively, both coincide with discontinuities in the hard to soft evolution of the photon index for a power ...

  18. Modelling of reaction cross sections and prompt neutron emission

    Directory of Open Access Journals (Sweden)

    Oberstedt S.

    2010-10-01

    Full Text Available Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f and 237Np(n, f both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  19. A Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRBs?

    Science.gov (United States)

    Stamatikos, Michael; Ukwatta, Tilan N.; Sakamoto, Taka; Dhuga, Kalvir S.

    2008-10-01

    We report on observations of correlated behavior between the prompt γ-ray and optical emission from GRB 080319B, which (i) strongly suggest that they occurred within the same astrophysical source region and (ii) indicate that their respective radiation mechanisms were most likely dynamically coupled. Our preliminary results, based upon a new cross-correlation function (CCF) methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt γ-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic γ-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV γ-rays and the optical emission observed by TORTORA (extrinsic γ-ray/optical lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, prompt optical emission is nested within intervals of both (a) trivial intrinsic γ-ray spectral lag (~T+12+/-2 and ~T+50+/-2 sec) with (b) discontinuities in the hard to soft evolution of the photon index for a power law fit to 15-150 keV Swift-BAT data (~T+8+/-2 and ~T+48+/-1 sec), both of which coincide with the rise (~T+10+/-1 sec) and decline (~T+50+/-1 sec) of prompt optical emission. This potential discovery, robust across heuristic permutations of BAT energy channels and varying temporal bin resolution, provides the first observational evidence for an implicit connection between spectral lag and the dynamics of shocks in the context of canonical fireball phenomenology.

  20. Toward an Understanding of GRB Prompt Emission Mechanism. I. The Origin of Spectral Lags

    Science.gov (United States)

    Uhm, Z. Lucas; Zhang, Bing

    2016-07-01

    Despite decades of investigations, the physical mechanism that powers the bright prompt γ-ray emission from gamma-ray bursts (GRBs) is still not identified. One important observational clue that still has not been properly interpreted is the existence of time lags of broad light curve pulses in different energy bands, referred to as “spectral lags.” Here, we show that the traditional view invoking the high-latitude emission “curvature effect” of a relativistic jet cannot account for spectral lags. Rather, the observed spectral lags demand the sweep of a spectral peak across the observing energy band in a specific manner. The duration of the broad pulses and inferred typical Lorentz factor of GRBs require that the emission region be in an optically thin emission region far from the GRB central engine. We construct a simple physical model invoking synchrotron radiation from a rapidly expanding outflow. We show that the observed spectral lags appear naturally in our model light curves given that (1) the gamma-ray photon spectrum is curved (as observed), (2) the magnetic field strength in the emitting region decreases with radius as the region expands in space, and (3) the emission region itself undergoes rapid bulk acceleration as the prompt γ-rays are produced. These requirements are consistent with a Poynting-flux-dominated jet abruptly dissipating magnetic energy at a large distance from the engine.

  1. Prompt, early, and afterglow optical observations of five gamma-ray bursts (GRBs 100901A, 100902A, 100905A, 100906A, and 101020A)

    CERN Document Server

    Gorbovskoy, E S; Lipunov, V M; Kornilov, V G; Belinski, A A; Shatskiy, N I; Tyurina, N V; Kuvshinov, D A; Balanutsa, P V; Chazov, V V; Kuznetsov, A; Zimnukhov, D S; Kornilov, M V; Sankovich, A V; Krylov, A; Ivanov, K I; Chvalaev, O; Poleschuk, V A; Konstantinov, E N; Gress, O A; Yazev, S A; Budnev, N M; Krushinski, V V; Zalozhnich, I S; Popov, A A; Tlatov, A G; Parhomenko, A V; Dormidontov, D V; Sennik, V; Yurkov, V V; Sergienko, Yu P; Varda, D; Kudelina, I P; Castro-Tirado, A J; Gorosabel, J; Sánchez--Ramírez, R; Jelinek, M; Tello, J C

    2011-01-01

    We present results of the prompt, early, and afterglow optical observations of five gamma-ray bursts, GRBs 100901A, 100902A, 100905A, 100906A, and 101020A, made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II net), the 1.5-m telescope of Sierra-Nevada Observatory, and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before cessation of gamma-ray emission, at 113 s and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted with two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. More detailed analysis of GRB 100901A and GRB 100906A supplemented by Swift data provides the following results and indicates different origins of the prompt optical radiation in the two bursts. The light curves patterns and spectral distributions suggest a common production site of the pr...

  2. A Deep Search for Prompt Radio Emission from the Short GRB 150424A With The Murchison Widefield Array

    CERN Document Server

    Kaplan, D L; Bannister, K W; Bell, M E; Croft, S D; Murphy, T; Tingay, S J; Wayth, R B; Williams, A

    2015-01-01

    We present a search for prompt radio emission associated with the short-duration gamma-ray burst (GRB) 150424A using the Murchison Widefield Array (MWA) at frequencies from 80-133 MHz. Our observations span delays of 23 s-30 min after the GRB, corresponding to dispersion measures of 100-7700 pc/cm^3. We see no excess flux in images with timescales of 4 s, 2 min, or 30 min, and set a 3 sigma flux density limit of 3.0 Jy at 132 MHz on the shortest timescales: some of the most stringent limits to date on prompt radio emission from any type of GRB. We use these limits to constrain a number of proposed models for coherent emission from short-duration GRBs, although we show that our limits are not particularly constraining for fast radio bursts because of reduced sensitivity for this pointing. Finally, we discuss the prospects for using the MWA to search for prompt radio emission from gravitational wave transients and find that while the flux density and luminosity limits are likely to be very constraining, the lat...

  3. GeV emission from Gamma Ray Bursts: a radiative fireball?

    CERN Document Server

    Ghisellini, G; Nava, L

    2009-01-01

    We study the emission observed at energies >100 MeV of 11 Gamma Ray Bursts (GRBs) detected by the Fermi Large Area Telescope (LAT) until October 2009. The GeV emission has three main properties: (i) its duration is longer than the duration of the softer emission detected by the Gamma Burst Monitor (GBM) onboard Fermi; (ii) its spectrum is consistent with F(v) propto v^(-1) and does not show strong spectral evolution; (iii) for the brighest bursts, the flux detected by the LAT decays as a power law with a typical slope: t^(-1.5). We argue that the observed >0.1 GeV flux can be interpreted as afterglow emission shortly following the start of the prompt emission as seen at smaller frequencies. The decay slope is what expected if the fireball emission is produced in the radiative regime, i.e. all dissipated energy is radiated away. We also argue that the detectability in the GeV energy range depends on the bulk Lorentz factor Gamma of the bursts, being strongly favoured in the case of large Gamma. This implies th...

  4. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    International Nuclear Information System (INIS)

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at ∼1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at ∼1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However, a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.

  5. A comprehensive statistical analysis of Swift X-ray light-curves: the prompt-afterglow connection in Gamma-Ray Bursts

    CERN Document Server

    Margutti, Raffaella; Bernardini, M G; Chincarini, G

    2012-01-01

    We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs), with more than 650 GRBs. Two questions drive this effort: (1) Does the X-ray emission retain any kind of memory of the prompt phase? (2) Where is the dividing line between long and short GRBs? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs, but are interestingly characterized by very similar intrinsic absorption. Our analysis reveal the existence of a number of relations that link the X-ray to prompt parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. Here we concentrate on a 3-parameter (E_pk-Egamma,iso-E_X,iso) scaling that is shared by the GRB class as a whole (short GRBs, long GRBs and X-ray Flashes -XRFs): interpreted in terms of emission efficiency, this scaling may imply that GRBs with high $E_{\\rm{pk}}$ are more efficient during their prompt emission.

  6. Short Gamma-Ray Bursts with Extended Emission

    Science.gov (United States)

    Norris, J. P.; Bonnell, J. T.

    2005-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike- like emission comprising an otherwise short burst. Using the large BATSE sample with time-tagged event (TTE) data, we show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above approx. 25 keV. This is behavior is nearly ubiquitous for the 260 bursts with T(sub 90) less than 2s where the BATSE TTE data type completely included the initial spike: Their spectral lags measured between the 25-50 keV and 100-300 energy ranges are consistent with zero in 90-95% of the cases, with most outliers probably representing the tail of the long burst class. We also analyze a small sample of "short" BATSE bursts - those with the most fluent, intense extended emission. The same lack of evolution on the pulse timescale obtains for the extended emission in the brighter bursts where significant measurements can be made. One possible inference is that both emission components may arise in the same region. We also show that the dynamic range in the ratio of peak intensities, spike : extended, is at least approx. l0(exp 3), and that for some bursts, the extended emission is only a factor of 2-5 lower. However, for our whole sample the total counts fluence of the extended component equals or exceeds that in the spike by a factor of several.

  7. Early polarization observations of the optical emission of gamma-ray bursts: GRB150301B and GRB150413A

    CERN Document Server

    Gorbovskoy, E S; Buckley, D; Kornilov, V G; Balanutsa, P V; Tyurina, N V; Kuznetsov, A S; Kuvshinov, D A; Gorbunov, I A; Vlasenko, D; Popova, E; Chazov, V V; Potter, S; Kotze, M; Kniazev, A; Gress, O A; Budnev, N M; Ivanov, K I; Yazev, S A; Tlatov, A G; Senik, V A; Dormidontov, D V; Parhomenko, A V; Krushinski, V V; Zalozhnich, I S; Castro-Tirado, R Alberto; Sanchez-Ramrez, R; Sergienko, Yu P; Gabovich, A; Yurkov, V V; Levato, H; Saffe, C; Mallamaci, C; Lopez, C; Podest, F

    2015-01-01

    We report early optical linear polarization observations of two gamma-ray bursts made with the MASTER robotic telescope network. We found the minimum polar- ization for GRB150301B to be 8% at the beginning of the initial stage, whereas we detected no polarization for GRB150413A either at the rising branch or after the burst reached the power-law afterglow stage. This is the earliest measurement of the polarization (in cosmological rest frame) of gamma-ray bursts. The primary intent of the paper is to discover optical emission and publish extremely rare (unique) high- quality light curves of the prompt optical emission of gamma-ray bursts during the non-monotonic stage of their evolution. We report that our team has discovered the optical counterpart of one of the bursts, GRB150413A.

  8. Soft X-ray observation of the prompt emission of GRB 100418A

    Science.gov (United States)

    Imatani, Ritsuko; Tomida, Hiroshi; Nakahira, Satoshi; Kimura, Masashi; Sakamoto, Takanori; Arimoto, Makoto; Morooka, Yoshitaka; Yonetoku, Daisuke; Kawai, Nobuyuki; Tsunemi, Hiroshi

    2016-06-01

    We have observed the prompt emission of GRB 100418A from its beginning captured by the MAXI SSC (0.7-7 keV) on board the International Space Station followed by the Swift XRT (0.3-10 keV) observation. The light curve can be fitted by a combination of a power-law component and an exponential component (the decay constant is 31.6 ± 1.6 s). The X-ray spectrum is well expressed by the Band function with Ep ≤ 8.3 keV. This is the brightest gamma-ray burst showing a very low value of Ep. It satisfies the Yonetoku relation (Ep-Lp). It is also consistent with the Amati relation (Ep-Eiso) within a 2.5σ level.

  9. Late Time Emission of Prompt Fission Gamma Rays

    CERN Document Server

    Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B

    2016-01-01

    The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...

  10. A hint to the origin of the extended emission in LAT GRBs: the relation between LAT luminosity and prompt energetics

    CERN Document Server

    Nava, L; Omodei, N; Ghisellini, G; Ghirlanda, G; Celotti, A; Longo, F; Desiante, R

    2013-01-01

    We consider the 0.1-10 GeV rest frame light curves of 10 GRBs detected by LAT and with known redshift. In all cases the emission persists after the prompt has faded away. This extended emission decays in time as a power-law. The decay slope is similar among different bursts, while the normalization spans more than 2 decades. However, when the LAT luminosity is normalized to the 1 keV-10 MeV energetics of the prompt emission E_iso all light curves become consistent with having the same normalization, i.e. they cluster. At each given time the ratio between the LAT luminosity and the prompt energetics is narrowly distributed. We argue that this result is expected in the external shock scenario and it strengthens the interpretation of the GeV emission in terms of radiation from external shocks. In this context, we derive limits on the distribution of epsilon_e (the fraction of the shock energy that goes into electrons) and eta (the efficiency of the mechanism producing the prompt).

  11. Towards an understanding of GRB prompt emission mechanism: I. The origin of spectral lags

    CERN Document Server

    Uhm, Z Lucas

    2015-01-01

    Despite decades of investigations, the physical mechanism that powers the bright prompt $\\gamma$-ray emission from gamma-ray bursts (GRBs) is still not identified. One important observational clue that remains not properly interpreted so far is the existence of time lags of broad light curve pulses in different energy bands, named "spectral lags". Here we show that the traditional "kinematic" view invoking the high-latitude emission "curvature effect" of a relativistic jet cannot account for spectral lags. Rather, the observed spectral lags demand the sweep of a spectral peak across the observing energy band in a specific manner. The duration of the broad pulses and inferred typical Lorentz factor of GRBs require that the emission region is in an optically thin emission region far from the GRB central engine. We construct a simple physical model invoking synchrotron radiation from a rapidly expanding outflow. We show that the observed spectral lags appear naturally in our model light-curves given that (1) the...

  12. GRB 090727 and gamma-ray bursts with early time optical emission

    CERN Document Server

    Kopac, D; Gomboc, A; Japelj, J; Mundell, C G; Guidorzi, C; Melandri, A; Bersier, D; Cano, Z; Smith, R J; Steele, I A; Virgili, F J

    2013-01-01

    We present a multi-wavelength analysis of gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2-m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early time optical emission in GRB 090727 and instead conclude that the early time optical flash likely corresponds to emission from an internal dissipation processes. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early time optical emission shows sharp and steep beha...

  13. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Axelsson, M

    2015-01-01

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  14. Periodic bursts of Jovian non-Io decametric radio emission.

    Science.gov (United States)

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  15. Short Gamma-Ray Bursts with Extended Emission

    CERN Document Server

    Norris, J P; Bonnell, Jerry T.; Norris, Jay P.

    2006-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike-like emission. We show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above ~ 25 keV. This behavior is nearly ubiquitous for the 260 bursts with T90 < 2 s, where the BATSE TTE data completely included the initial spike. The same signature obtains for one HETE-2 and six Swift/BAT short bursts. Analysis of a small sample of "short" BATSE bursts with the most intense extended emission shows that the same lack of evolution on the pulse timescale obtains for the ex...

  16. A lingering non-thermal component in the GRB prompt emission: predicting GeV emission from the MeV spectrum

    CERN Document Server

    Basak, Rupal

    2013-01-01

    The high energy GeV emission of gamma-ray bursts (GRBs), detected by \\emph{Fermi}/LAT, has a significantly different morphology compared to the lower energy MeV emission, detected by \\emph{Fermi}/GBM. Though the late time GeV emission is believed to be synchrotron radiation produced via an external shock, this emission as early as the prompt phase is puzzling. Meaningful connection between these two emissions can be drawn only by an accurate description of the prompt MeV spectrum. We perform a time-resolved spectroscopy of the GBM data of long GRBs having significant GeV emission, using a model consisting of 2 blackbodies and a power-law. We examine in detail the evolution of the spectral components and found that GRBs having high GeV emission (GRB 090902B and GRB 090926A) have a delayed onset of the power-law component, in the GBM spectrum, which lingers at the later part of the prompt emission. This behaviour mimics the flux evolution in LAT. In contrast, bright GBM GRBs with an order of magnitude lower GeV...

  17. The anatomy of a long gamma-ray burst: a simple classification scheme for the emission mechanism(s)

    CERN Document Server

    Bégué, Damien

    2016-01-01

    Ultra-relativistic motion and efficient conversion of kinetic energy to radiation are required by gamma-ray burst (GRB) observations, yet they are difficult to simultaneously achieve. Three leading mechanisms have been proposed to explain the observed emission emanating from GRB outflows: radiation from either relativistic internal or external shocks, or thermal emission from a photosphere. Previous works were dedicated to independently treating these three mechanisms and arguing for a sole, unique origin of the prompt emission of gamma-ray bursts. In contrast, herein, we first explain why all three models are valid mechanisms and that a contribution from each of them is expected in the prompt phase. Additionally, we show that a single parameter, the dimensionless entropy of the GRB outflow, determines which mechanism contributes the most to the emission. More specifically, internal shocks dominate for low values of the dimensionless entropy, external shocks for intermediate values and finally, photospheric e...

  18. The puzzling case of GRB 990123: prompt emission and broad-band afterglow modeling

    CERN Document Server

    Corsi, A; Kuulkers, E; Amati, L; Antonelli, L A; Costa, E; Feroci, M; Frontera, F; Guidorzi, C; Heise, J; Zand, J; Maiorano, E; Montanari, E; Nicastro, L; Pian, E; Soffitta, P

    2005-01-01

    We report on BeppoSAX simultaneous X- and gamma-ray observations of the bright GRB 990123. We present the broad-band spectrum of the prompt emission, including optical, X- and gamma-rays, confirming the suggestion that the emission mechanisms at low and high frequencies must have different physical origins. In the framework of the standard fireball model, we discuss the X-ray afterglow observed by the NFIs and its hard X-ray emission up to 60 keV several hours after the burst, detected for about 20 ks by the PDS. Considering the 2-10 keV and optical light curves, the 0.1-60 keV spectrum during the 20 ks in which the PDS signal was present and the 8.46 GHz upper limits, we find that the multi-wavelength observations cannot be readily accommodated by basic afterglow models. While the temporal and spectral behavior of the optical afterglow is possibly explained by a synchrotron cooling frequency between the optical and the X-ray energy band during the NFIs observations, in X-rays this assumption only accounts fo...

  19. The hard X-ray shortages prompted by the clock bursts in GS 1826--238

    CERN Document Server

    Long, Ji; YuPeng, Chen; Shuang-Nan, Zhang; Diego, Torres F; Peter, Kretschmar; Jian, Li

    2013-01-01

    We report on a study of GS 1826--238 using all available {\\it RXTE} observations, concentrating on the behavior of the hard X-rays during type-I bursts. We find a hard X-ray shortage at 30--50 keV promoted by the shower of soft X-rays coming from type-I bursts. This shortage happens with a time delay after the peak of the soft flux of 3.6 $\\pm$ 1.2 seconds.The behavior of hard X-rays during bursts indicates cooling and reheating of the corona, during which a large amount of energy is required. We speculate that this energy originates from the feedback of the type-I bursts to the accretion process, resulting in a rapid temporary increase of the accretion rate.

  20. Scattered emission from a relativistic outflow and its application to gamma-ray bursts

    Science.gov (United States)

    Shen, R.-F.; Barniol Duran, R.; Kumar, P.

    2008-03-01

    We investigate a scenario of photon scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the gamma-ray bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, ~1052-1056 erg. The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or become part of the prompt emission depending on the delay of the ejection of the shell.

  1. Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector.

    Science.gov (United States)

    Abbasi, R; Abdou, Y; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K-H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Gross, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülss, J-P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K-H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Niessen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-04-01

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18)  eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence. PMID:21561178

  2. Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts

    CERN Document Server

    Shao, L; Mirabal, N

    2007-01-01

    We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs). We find that the echo emission can provide an alternative way of understanding X-ray shallow decays and jet breaks. In particular, a shallow decay followed by a "normal" decay and a further rapid decay of X-ray afterglows can be together explained as being due to the echo from prompt X-ray emission scattered by dust grains in a massive wind bubble around a GRB progenitor. We also introduce an extra temporal break in the X-ray echo emission. By fitting the afterglow light curves, we can measure the locations of the massive wind bubbles, which will bring us closer to finding the mass loss rate, wind velocity, and the age of the progenitors prior to the GRB explosions.

  3. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities ∼10-2 counts cm-2 s-1, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, Rint, ranges over a factor of 25, Rint ∼ 3 x 10-3 to 8 x 10-2. In comparison, for the average of the 39 bursts without an EE component, the 2σ upper limit is Rint -4. These results suggest that a physical threshold effect operates near Rint ∼ few x 10-3 below which the EE component is not manifest.

  4. Is GeV Emission from Gamma-Ray Bursts of External Shock Origin?

    CERN Document Server

    Maxham, Amanda; Zhang, Bing

    2011-01-01

    Recent observations of Gamma-Ray Bursts (GRBs) by the Fermi Large Area Telescope (LAT) revealed a power law decay feature of the high energy emission (above 100 MeV), which led to the suggestion that it originates from a (probably radiative) external shock. We analyze four GRBs (080916C, 090510, 090902B and 090926A) jointly detected by Fermi LAT and Gamma-ray Burst Monitor (GBM), which have high quality lightcurves in both instrument energy bands. Using the MeV prompt emission (GBM) data, we can record the energy output from the central engine as a function of time. Assuming a constant radiative efficiency, we are able to track energy accumulation in the external shock using our internal/external shell model code. By solving for the early evolution of both an adiabatic and a radiative blastwave, we calculate the high energy emission lightcurve in the LAT band and compare it with the observed one for each burst. The late time LAT light curves after T90 can be well fit by the model. However, due to continuous e...

  5. From a Better Understanding of GRB Prompt Emission to a New Type of Standard Candles?

    Science.gov (United States)

    Guiriec, Sylvain

    2016-07-01

    Recent results revealed the simultaneous existence of multiple components in the prompt emission of gamma-ray bursts (GRBs) leading to a unified spectro-temporal model for the broadband spectrum from the optical regime up to higher gamma rays. Unexpectedly, we discovered a relation intrinsic to one specific component of this model: its luminosity is strongly and tightly correlated to its spectral break energy. This new luminosity-hardness relation has the same index for all GRBs when fitted to a power law. In addition, this relation seems to have the same normalization for all GRBs; therefore, this is a promising and physically motivated tool that may establish GRBs as cosmological standard candles. During this presentation, I will introduce this new relation, which might eventually be used to (i) estimate GRB distances, (ii) to support searches for gravitational waves and cosmic high-energy neutrinos, and (iii) constrain the cosmological parameters. I will give a few examples of GRB redshift estimates using this relation and I will show why this new result cannot solely be explain by instrumental selection effects and/or measurement/analysis biases.

  6. Prompt emission from tidal disruptions of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Laguna P.

    2012-12-01

    Full Text Available We present a qualitative picture of prompt emission from tidal disruptions of white dwarfs (WD by intermediate mass black holes (IMBH. The smaller size of an IMBH compared to a supermassive black hole and a smaller tidal radius of a WD disruption lead to a very fast event with high peak luminosity. Magnetic field is generated in situ following the tidal disruption, which leads to effective accretion. Since large-scale magnetic field is also produced, geometrically thick super-Eddington inflow leads to a relativistic jet. The dense jet possesses a photosphere, which emits quasi-thermal radiation in soft X-rays. The source can be classified as a long low-luminosity gamma-ray burst (ll-GRB. Tidal compression of a WD causes nuclear ignition, which is observable as an accompanying supernova. We suggest that GRB060218 and SN2006aj is such a pair of ll-GRB and supernova. We argue that in a flux-limited sample the disruptions of WDs by IMBHs are more frequent then the disruptions of other stars by IMBHs.

  7. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    Science.gov (United States)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  8. Investigating Prompt Fission Neutron Emission from 235U(n,f in the Resolved Resonance Region

    Directory of Open Access Journals (Sweden)

    Göök Alf

    2016-01-01

    Full Text Available Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  9. Total prompt γ-ray emission in fission

    Science.gov (United States)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henserson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2016-06-01

    The total prompt γ-ray energy distributions for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV ‒ 100 keV, and the spontaneous fission of 252Cf were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ~ 20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied. This raises serious concern on the validity of the mean total prompt γ-ray energy obtained from the product of mean values for both prompt γ-ray energy and multiplicity.

  10. Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-01-01

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if GRBs are responsible for the observed cosmic-ray flux above $10^{18}$ eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from $p \\gamma$-interactions in the prompt phase of the GRB fireball, and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

  11. On the origin of GeV emission in gamma-ray bursts

    CERN Document Server

    Beloborodov, Andrei M; Vurm, Indrek

    2013-01-01

    The most common progenitors of gamma-ray bursts (GRBs) are massive stars with strong stellar winds. We show that the GRB blast wave in the wind should emit a bright GeV flash. It is produced by inverse Compton scattering of the prompt MeV radiation (emitted at smaller radii) which streams through the external blast wave. Some of the prompt photons are scattered and many scattered photons convert to electron-positron pairs. The inverse-Compton flash is bright due to the huge e+- enrichment of the medium. GeV emission generated by this mechanism lasts much longer than the prompt GRB because of a broader angular distribution of scattered photons. At late times, the blast wave switches to normal synchrotron-self-Compton cooling. The mechanism is demonstrated by a detailed transfer simulation. The observed prompt MeV radiation is taken as an input of the simulation; we use GRB 080916C as an example. The result reproduces the GeV flash observed by the Fermi telescope. It explains the delayed onset, the steep rise, ...

  12. Klein-Nishina effects on the high-energy afterglow emission of gamma-ray bursts

    CERN Document Server

    Wang, Xiang-Yu; Li, Zhuo; Wu, Xue-Feng; Dai, Zi-Gao

    2009-01-01

    Extended high-energy(>100MeV) gamma-ray emission that lasts much longer than the prompt sub-MeV emission has been detected from quite a few gamma-ray bursts (GRBs) by Fermi Large Area Telescope (LAT) recently. A plausible scenario is that this emission is the afterglow synchrotron emission produced by electrons accelerated in the forward shocks. In this scenario, the electrons that produce synchrotron high-energy emission also undergo inverse-Compton (IC) loss and the IC scattering with the synchrotron photons should be in the Klein-Nishina regime. Here we study effects of the Klein-Nishina scattering on the high-energy synchrotron afterglow emission. We find that, at early times the Klein-Nishina suppression effect on those electrons that produce the high-energy emission is usually strong and therefore their inverse-Compton loss is small with a Compton parameter Y < a few for a wide range of parameter space. This leads to a relatively bright synchrotron afterglow at high energies that can be detected by F...

  13. The anatomy of a long gamma-ray burst: a simple classification scheme for the emission mechanism(s).

    Science.gov (United States)

    Bégué, Damien; Burgess, Michael

    2016-07-01

    Ultra-relativistic motion and efficient conversion of kinetic energy to radiation are required by gamma-ray burst (GRB) observations, yet they are difficult to simultaneously achieve. Three leading mechanisms have been proposed to explain the observed emission emanating from GRB outflows: radiation from either relativistic internal or external shocks, or thermal emission from a photosphere. Previous works were mechanisms and arguing for a sole, unique origin of the prompt emission of gamma-ray bursts. In contrast, herein, we first explain why all three models are valid mechanisms and that a contribution from each of them is expected in the prompt phase. Additionally, we show that a single parameter, the dimensionless entropy of the GRB outflow, determines which mechanism contributes the most to the emission. More specifically, internal shocks dominate for low values of the dimensionless entropy, external shocks for intermediate values and finally, photospheric emission for large values. We present a unified framework for the emission mechanisms of GRBs with easily testable predictions for each process.

  14. Panchromatic observations of the textbook GRB 110205A: constraining physical mechanisms of prompt emission and afterglow

    CERN Document Server

    Zheng, W; Sakamoto, T; Beardmore, A P; Pasquale, M; Wu, X F; Gorosabel, J; Urata, Y; Sugita, S; Zhang, B; Pozanenko, A; Nissinen, M; Sahu, D K; Im, M; Ukwatta, T N; Andreev, M; Klunko, E; Volnova, A; Akerlof, C W; Anto, P; Barthelmy, S D; Breeveld, A; Carsenty, U; Castillo-Carri'on, S; Castro-Tirado, A J; Chester, M M; Chuang, C J; Cunniffe, R; Postigo, A; Duffard, R; Flewelling, H; Gehrels, N; Guver, T; Guziy, S; Hentunen, V P; Huang, K Y; Jelínek, M; Koch, T S; Kub'anek, P; Kuin, P; McKay, T A; Mottola, S; Oates, S R; O'Brien, P; Page, M J; Pandey, S B; Pulgar, C; Rujopakarn, W; Rykoff, E; Salmi, T; S'anchez-Ramírez, R; Schaefer, B E; Sergeev, A; Sonbas, E; Sota, A; Tello, J C; Yamaoka, K; Yost, S A; Yuan, F

    2011-01-01

    We present a comprehensive analysis of a bright, long duration (T90 ~ 257 s) GRB 110205A at redshift z= 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb and BOOTES telescopes when the GRB was still radiating in the gamma-ray band. Nearly 200 s of observations were obtained simultaneously from optical, X-ray to gamma-ray, which makes it one of the exceptional cases to study the broadband spectral energy distribution across 6 orders of magnitude in energy during the prompt emission phase. By fitting the time resolved prompt spectra, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard GRB synchrotron emission model in the fast cooling regime. Although the prompt optical emission is brighter than the extrapolation of the best fit X/gamma-ray spectra, it traces the gamma-ray light curve shape, suggesting a relation to the prompt high energy emission. The synchrotron + SSC scenario is disfavored by the data, but the models i...

  15. A Blind Search for Prompt Gamma-ray Counterparts of Fast Radio Bursts with Fermi-LAT Data

    CERN Document Server

    Yamasaki, Shotaro; Kawanaka, Norita

    2016-01-01

    Fast Radio Bursts (FRBs) are a mysterious flash phenomenon detected in radio wavelengths with a duration of only a few milliseconds, and they may also have prompt gamma-ray flashes. Here we carry out a blind search for msec-duration gamma-ray flashes using the 7-year Fermi Large Area Telescope (Fermi-LAT) all-sky gamma-ray data. About 100 flash candidates are detected, but after removing those associated with bright steady point sources, we find no flash events at high Galactic latitude region (|b|>20 deg). Events at lower latitude regions are consistent with statistical flukes originating from the diffuse gamma-ray background. From these results, we place an upper limit on the GeV gamma-ray to radio flux ratio of FRBs as xi \\equiv (nu L_nu)_gamma / (nu L_nu)_radio < 10^8, depending on the assumed FRB rate evolution. This limit is comparable with the largest value found for pulsars, though xi of pulsars is distributed in a wide range. We also compare this limit with the spectral energy distribution of the ...

  16. A blind search for prompt gamma-ray counterparts of fast radio bursts with Fermi-LAT data

    Science.gov (United States)

    Yamasaki, Shotaro; Totani, Tomonori; Kawanaka, Norita

    2016-08-01

    Fast radio bursts (FRBs) are a mysterious flash phenomenon detected in radio wavelengths with a duration of only a few milliseconds, and they may also have prompted gamma-ray flashes. Here, we carry out a blind search for ms-duration gamma-ray flashes using the 7-yr Fermi Large Area Telescope all-sky gamma-ray data. About 100 flash candidates are detected, but after removing those associated with bright steady point sources, we find no flash events at high Galactic latitude region (|b| > 20°). Events at lower latitude regions are consistent with statistical flukes originating from the diffuse gamma-ray background. From these results, we place an upper limit on the GeV gamma-ray to radio flux ratio of FRBs as ξ ≡ (νLν)γ/(νLν)radio ≲ (4.2-12) × 107, depending on the assumed FRB rate evolution index β = 0-4 [cosmic FRB rate ΦFRB ∝ (1 + z)β]. This limit is comparable with the largest value found for pulsars, though ξ of pulsars is distributed in a wide range. We also compare this limit with the spectral energy distribution of the 2004 giant flare of the magnetar SGR 1806-20.

  17. The prompt-afterglow connection in Gamma-Ray Bursts: a comprehensive statistical analysis of Swift X-ray light-curves

    CERN Document Server

    Margutti, R; Bernardini, M G; Chincarini, G; Pasotti, F; Guidorzi, C; Angelini, L; Burrows, D N; Capalbi, M; Evans, P A; Gehrels, N; Kennea, J; Mangano, V; Moretti, A; Nousek, J; Osborne, J P; Page, K L; Perri, M; Racusin, J; Romano, P; Sbarufatti, B; Stafford, S; Stamatikos, M

    2012-01-01

    We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs), collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time scales and the energetics of the different light-curve phases, with the final aim of distinguishing between competing models. Variability episodes superimposed on smooth light-curve decays are also studied and their properties constrained. Two fundamental questions drive this effort: i) Does the X-ray emission retain any kind of "memory" of the prompt gamma-ray phase? ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by very similar intrinsic absorption. We furthermore reveal the existence of a nu...

  18. The multi-step prompt particle emission from fission fragments

    International Nuclear Information System (INIS)

    The purpose of this work is the study of non-equilibrium high-energy gamma emission from 252 Cf. In the framework of the formalism of statistical multi-step compound processes in nuclear reactions. A relation was found between the shape of the high-energy part of the gamma spectrum and different mechanisms of excitation of the fission fragments. Agreement with experimental data for different groups of fission fragments was obtained. The analysis of the experimental high-energy part of gamma spectra yields information about the mechanism of excitation of fission fragments. The influence of dissipation of the deformation excess on intrinsic excitation of fission fragments was studied. (authors)

  19. Precise measurement of prompt photon emission for carbon ion therapy

    CERN Document Server

    Agodi, C; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Voena, C

    2011-01-01

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments is still a matter of research. A possible technique exploits the information provided by single photon emission from nuclear decays induced by the irradiation. This paper reports the measurements of the spectrum and rate of such photons produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud of INFN, Catania, with a Poly-methyl methacrylate target. The differential production rate for photons with energy E > 2 MeV and emitted at 90 degree is found to be $dN_{\\gamma}/(dN_C d\\Omega)=(2.92\\pm 0.19)\\times 10^{-2}$sr$^{-1}$.

  20. Statistical Properties of Multiple Optical Emission Components in Gamma-Ray Bursts and Implications

    Science.gov (United States)

    Liang, En-Wei; Li, Liang; Tang, Qing-Wen; Chen, Jie-Min; Zhang, Bing

    2013-01-01

    Well-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are complied from the literature. Multiple optical emission components are extracted with power-law function fits to these lightcurves. We present a systematical analysis for statistical properties and their relations to prompt gamma-ray emission and X-ray afterglow for each component. We show that peak luminosity in the prompt and late flares are correlated and the evolution of the peak luminosity may signal the evolution of the accretion rate. No tight correlation between the shallow decay phase/plateau and prompt gamma-ray emission is found. Assuming that they are due to a long-lasting wind injected by a compact object, we show that the injected behavior favors the scenarios of a long-lasting wind powered by a Poynting flux from a black hole via the Blandford-Znajek mechanism fed by fall-back mass or by the spin-down energy release of a magnetar after the main burst episode. The peak luminosity of the afterglow onset is tightly correlated with Eγ,iso, and it is dimmer as peaking later. Assuming that the onset bump is due to the fireball deceleration by the external medium, we examine the Γ0 - Eγ,iso relation and find that it is confirmed with the current sample. Optical re-brightening is observed in 30 GRBs in our sample. It shares the same relation between the width and the peak time as found in the onset bump, but no clear correlation between LR,p and Eγ,iso similar to that observed for the onset bumps is found. Although its peak luminosity also decays with time, the slope is much shallower than that of the onset peak, as is the case for the onset bumps. We get L∝ t-1 p, being consistent with off-axis observations to an expanding external fireball in a wind-like circum medium. Therefore, the late re-brightening may signal another jet component. Mixing of different emission components may be the reason for the observed chromatic breaks of the shallow decay segment in different energy bands.

  1. Gamma Ray Burst reverse shock emission in early radio afterglows

    CERN Document Server

    Resmi, Lekshmi

    2016-01-01

    Reverse shock (RS) emission from Gamma Ray Bursts is an important tool in investigating the nature of the ejecta from the central engine. If the ejecta magnetization is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would give important contribution to early afterglow light curves. In the radio band, synchrotron self-absorption may suppress early RS emission, and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band for different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both reverse and forward shocks. We calculate the ratio between the reverse to forward shock flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS e...

  2. Hard burst emission from the soft gamma repeater SGR 1900+14

    NARCIS (Netherlands)

    P.M. Woods; C. Kouveliotou; J. van Paradijs; M.S. Briggs; K. Hurley; E. Göğüş; R.D. Preece; T.W. Giblin; C. Thompson; R.C. Duncan

    1999-01-01

    We present evidence for burst emission from SGR 1900+14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is

  3. Thermal Emissions Spanning the Prompt and the Afterglow Phase of the Ultra-long GRB 130925A

    CERN Document Server

    Basak, Rupal

    2015-01-01

    GRB 130925A is an ultra-long GRB, and it shows clear evidences for a thermal emission in the soft X-ray data of \\emph{Swift}/XRT ($\\sim0.5$\\,keV), lasting till the X-ray afterglow phase. Due to the long duration of the GRB, the burst could be studied in hard X-rays with high-resolution focusing detectors (\\emph{NuSTAR}). The blackbody temperature, as measured by the \\emph{Swift}/XRT, shows a decreasing trend till the late phase (Piro et al. 2014) whereas the high-energy data reveals a significant blackbody component during the late epochs at an order of magnitude higher temperature ($\\sim5$\\,keV), as compared to the contemporaneous low energy data (Bellm et al. 2014). We resolve this apparent contradiction by demonstrating that a model with two black bodies and a power-law (2BBPL) is consistent with the data right from the late prompt emission to the afterglow phase. Both the blackbodies show a similar cooling behaviour upto the late time. We invoke a structured jet, having a fast spine and a slower sheath la...

  4. Line emission from $\\gamma$-ray burst environments

    CERN Document Server

    Böttcher, M

    1999-01-01

    The time and angle dependent line and continuum emission from a dense torus around a cosmological gamma-ray burst source is simulated, taking into account photoionization, collisional ionization, recombination, and electron heating and cooling due to various processes. The importance of the hydrodynamical interaction between the torus and the expanding blast wave is stressed. Due to the rapid deceleration of the blast wave as it interacts with the dense torus, the material in the torus will be illuminated by a drastically different photon spectrum than observable through a low-column-density line of sight, and will be heated by the hydrodynamical interaction between the blast wave and the torus. A model calculation to reproduce the Fe K-alpha line emission observed in the X-ray afterglow of GRB 970508 is presented. The results indicate that ~ 10^{-4} solar masses of iron must be concentrated in a region of less than 10^{-3} pc. The illumination of the torus material due to the hydrodynamic interaction of the ...

  5. The diversity of progenitors and emission mechanisms for ultra-long bursts

    CERN Document Server

    Gendre, B; Atteia, J L; Basa, S; Boer, M; Coward, D M; Cutini, S; D'Elia, V; Howell, E J; Klotz, A; Oates, S; De Pasquale, M; Piro, L

    2013-01-01

    GRB 111209A is the longest ever recorded burst. This burst was detected by Swift and Konus-Wind, and we obtained TOO time from XMM-Newton as well as prompt data from TAROT. We made a common reduction using data from these instruments together with other ones. This allows for the first time a precise study at high signal-to-noise ratio of the prompt to afterglow transition. We show that several mechanisms are responsible of this phase. In its prompt phase, we show that its duration is longer than 20 000 seconds. This, combined with the fact that the burst fluence is among the top 5% of what is observed for other events, makes this event extremely energetic. We discuss the possible progenitors that could explain the extreme duration properties of this burst as well as its spectral properties. We present evidences that this burst belong to a new, previously unidentified, class of GRBs. The most probable progenitor of this new class is a low metalicity blue super-giant star. We show that selection effects could p...

  6. Evidence of polarisation in the prompt gamma-ray emission from GRB 930131 and GRB 960924

    CERN Document Server

    Willis, D R; Bird, A J; Clark, D J; Dean, A J; McConnell, M L; Moran, L; Shaw, S E; Sguera, V

    2005-01-01

    The true nature of the progenitor to GRBs remains elusive; one characteristic that would constrain our understanding of the GRB mechanism considerably is gamma-ray polarimetry measurements of the initial burst flux. We present a method that interprets the prompt GRB flux as it Compton scatters off the Earth's atmosphere, based on detailed modelling of both the Earth's atmosphere and the orbiting detectors. The BATSE mission aboard the \\textit{CGRO} monitored the whole sky in the 20 keV - 1 MeV energy band continuously from April 1991 until June 2000. We present the BATSE Albedo Polarimetry System (BAPS), and show that GRB 930131 and GRB 960924 provide evidence of polarisation in their prompt flux that is consistent with degrees of polarisation of $\\Pi>35$% and $\\Pi>50$% respectively. While the evidence of polarisation is strong, the method is unable to strongly constrain the degree of polarisation beyond a systematics based estimation. Hence the implications on GRB theory are unclear, and further measurements...

  7. Monte Carlo simulations of prompt-gamma emission during carbon ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Le Foulher, F.; Bajard, M.; Chevallier, M.; Dauvergne, D.; Henriquet, P.; Ray, C.; Testa, E.; Testa, M. [Universite de Lyon 1, F-69003 Lyon (France); IN2P3/CNRS, UMR 5822, Institut de Physique Nucleaire de Lyon, F-69622 Villeurbanne (France); Freud, N.; Letang, J. M. [Laboratoire de Controles Non Destructifs Par Rayonnements Ionisants, INSA-Lyon, F-69621 Villeurbanne cedex (France); Karkar, S. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Plescak, R.; Schardt, D. [Gesellschaft fur Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)

    2009-07-01

    Monte Carlo simulations based on the Geant4 tool-kit (version 9.1) were performed to study the emission of secondary prompt gamma-rays produced by nuclear reactions during carbon ion-beam therapy. These simulations were performed along with an experimental program and instrumentation developments which aim at designing a prompt gamma-ray device for real-time control of hadron therapy. The objective of the present study is twofold: first, to present the features of the prompt gamma radiation in the case of carbon ion irradiation; secondly, to simulate the experimental setup and to compare measured and simulated counting rates corresponding to various experiments. For each experiment, we found that simulations overestimate prompt gamma-ray detection yields by a factor of 12. Uncertainties in fragmentation cross sections and binary cascade model cannot explain such discrepancies. The so-called 'photon evaporation' model is therefore questionable and its modification is currently in progress. (authors)

  8. Activity from Magnetar Candidate 4U 0142+61: Bursts and Emission Lines

    CERN Document Server

    Gavriil, Fotis P; Kaspi, Victoria M

    2007-01-01

    After 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months. During the active phase, several bursts were detected, and many aspects of the X-ray emission changed. We report on the discovery of six X-ray bursts, the first ever seen from this AXP in ~10 years of Rossi X-ray Timing Explorer (RXTE) monitoring. All the bursts occurred in the interval between 2006 April 6 and 2007 February 7. The bursts had the canonical fast rise slow decay profiles characteristic of SGR/AXP bursts. The burst durations ranged from 8-3x10^3 s as characterized by T90,these are very long durations even when compared to the broad T90 distributions of other bursts from SGRs and AXPs. The first five burst spectra are well modeled by simple blackbodies, with temperature kT ~2-6 keV. However, the sixth burst had a complicated spectrum consisting of at least three emission lines with possible additional emission and absorption lines. The most significant feature was...

  9. Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B

    CERN Document Server

    Guiriec, Sylvain; Briggs, Michael S; Burgess, Michael; Ryde, Felix; Daigne, Frédéric; Mészáros, Peter; Goldstein, Adam; McEnery, Julie; Omodei, Nicola; Bhat, P N; Bissaldi, Elisabetta; Camero-Arranz, Ascensión; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald; Foley, Suzanne; Gibby, Melissa; Giles, Misty M; Greiner, Jochen; Gruber, David; von Kienlin, Andreas; Kippen, Marc; Kouveliotou, Chryssa; McBreen, Sheila; Meegan, Charles A; Paciesas, William; Preece, Robert; Rau, Arne; Tierney, Dave; van der Horst, Alexander J; Wilson-Hodge, Colleen

    2010-01-01

    Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor (GBM) find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a very significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process, or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.

  10. On the energy dependence of the persistent and bursting emission in GX 17+2

    Science.gov (United States)

    Stiele, Holger; Yu, Wenfei

    2015-08-01

    In neutron star X-ray binaries X-ray bursts related to thermonuclear events on the surface of the neutron star (so-called type-I bursts) are observed. The Z-source GX 17+2 is known to show thermonuclear bursts on short (about 10s) and long (> 100s) time scales. Based on RXTE data, Kuulkers et al. (2002) showed that during bursts in GX 17+2 persistent black-body emission is present.Here we present the results of our study of XMM-Newton observations of GX 17+2. XMM-Newton data allow us to cover energies below 3 keV that are not accessible to RXTE, and they provide a higher energy resolution compared to RXTE data. From our XMM-Newton study we can confirm the presence of persistent black-body emission during X-ray bursts. Furthermore, we studied the evolution of the burst in narrow energy bands and investigated the spectral evolution of the bursting emission during decay. We discuss the implications of our findings on the origin of the persistent and bursting emission.

  11. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation

    International Nuclear Information System (INIS)

    Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP-BIC-HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close. (paper)

  12. Off-axis emission of short gamma-ray bursts and the detectability of electromagnetic counterparts of gravitational wave detected binary mergers

    CERN Document Server

    Lazzati, Davide; Morsony, Brian J; Workman, Jared C

    2016-01-01

    We present calculations of the wide angle emission of short-duration gamma-ray bursts from compact binary merger progenitors. Such events are expected to be localized by their gravitational wave emission, fairly irrespective of the orientation of the angular momentum vector of the system, along which the gamma-ray burst outflow is expected to propagate. We show that both the prompt and afterglow emission are dim and challenging to detect for observers lying outside of the cone within which the relativistic outflow is propagating. If the jet initially propagates through a baryon contaminated region surrounding the merger site, however, a hot cocoon forms around it. The cocoon subsequently expands quasi-isotropically producing its own prompt emission and external shock powered afterglow. We show that the cocoon afterglow peaks a few hours to a few days after the burst and is detectable for up to a few weeks at all wavelengths. For a significant fraction of the gravitationally-detected neutron-star-binary merger...

  13. Evidence for Post-Quiescent, High-Energy Emission from Gamma-Ray Burst 990104

    OpenAIRE

    Wren, D. N.; Bertsch, D. L.; Ritz, S.

    2002-01-01

    It is well known that high-energy emission (MeV-GeV) has been observed in a number of gamma-ray bursts, and temporally-extended emission from lower energy gamma rays through radio wavelengths is well established. An important observed characteristic of some bursts at low energy is quiescence: an initial emission followed by a quiet period before a second (postquiescent) emission. Evidence for significant high-energy, postquiescent emission has been lacking. Here we present evidence for high-e...

  14. Very Bright Prompt and Reverse Shock Emission of GRB 140512A

    CERN Document Server

    Huang, Xiao-Li; Yi, Shuang-Xi; Zhong, Shu-Qing; Qiu, Yu-Lei; Deng, Jin-Song; Wei, Jian-Yan; Liang, En-Wei

    2016-01-01

    We report our observations of very bright prompt optical and reverse shock (RS) optical emission of GRB 140512A and analyze its multi-wavelength data observed with the {\\em Swift} and {\\em Fermi} missions. It is found that the joint optical-X-ray-gamma-ray spectrum with our first optical detection (R=13.09 mag) at $T_0+136$ seconds during the second episode of the prompt gamma-rays can be fit by a single power-law with index $-1.32\\pm 0.01$. Our empirical fit to the afterglow lightcurves indicates that the observed bright optical afterglow with R=13.00 mag at the peak time is consistent with predictions of the RS and forward shock (FS) emission of external shock models. Joint optical-X-ray afterglow spectrum is well fit with an absorbed single power-law, with an index evolving with time from $-1.86\\pm 0.01$ at the peak time to $-1.57\\pm 0.01$ at late epoch, which could be due to the evolution of the ratio of the RS to FS emission fluxes. We fit the lightcurves with standard external models, and derive the phy...

  15. AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Burgess, J.; Preece, Robert D. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ryde, Felix; Axelsson, Magnus [Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm (Sweden); Veres, Peter; Mészáros, Peter [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Connaughton, Valerie; Briggs, Michael; Bhat, P. N.; Pelassa, Veronique [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Pe' er, Asaf [Physics Department, University College Cork, Cork (Ireland); Iyyani, Shabnam [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Baring, Matthew G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne [University College Dublin, Belfield, Dublin 4 (Ireland); Kocevski, Daniel; Omodei, Nicola [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Paciesas, William S., E-mail: jmichaelburgess@gmail.com, E-mail: rob.preece@nasa.gov, E-mail: felix@particle.kth.se, E-mail: veres@gwu.edu, E-mail: npp@astro.psu.edu [Universities Space Research Association, Huntsville, AL 35805 (United States); and others

    2014-04-01

    Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal γ-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, E {sub p} and kT, of these two components are correlated via the relation E {sub p}∝T {sup α} which varies from GRB to GRB. We present an interpretation in which the value of the index α indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  16. An Observed Correlation Between Thermal and Non-Thermal Emission in Gamma-Ray Bursts

    CERN Document Server

    Burgess, J Michael; Ryde, Felix; Veres, Peter; Meszaros, Peter; Connaughton, Valerie; Briggs, Michael; Pe'er, Asaf; Iyyani, Shabnam; Goldstein, Adam; Axelsson, Magnus; Baring, Matthew G; Bhat, P N; Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne; Kocevski, Daniel; Omodei, Nicola; Paciesas, William S; Pelassa, Veronique; Kouveliotou, Chryssa; Xiong, Shaolin; Yu, Hoi-Fung; Zhang, Binbin; Zhu, Sylvia

    2014-01-01

    Recent observations by the $Fermi$ Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some Gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal $\\gamma$-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, $E_{\\rm p}$ and $kT$, of these two components are correlated via the relation $E_{\\rm p} \\propto T^{\\alpha}$ which varies from GRB to GRB. We present an interpretation in which the value of index $\\alpha$ indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  17. A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments

    Directory of Open Access Journals (Sweden)

    Litaize O.

    2013-03-01

    Full Text Available The prompt fission gamma spectra and multiplicities are investigated through the Monte Carlo code FIFRELIN which is developed at the Cadarache CEA research center. Knowing the fully accelerated fragment properties, their de-excitation is simulated through a cascade of neutron, gamma and/or electron emissions. This paper presents the recent developments in the FIFRELIN code and the results obtained on the spontaneous fission of 252Cf. Concerning the decay cascades simulation, a fully Hauser-Feshbach model is compared with a previous one using a Weisskopf spectrum for neutron emission. A particular attention is paid to the treatment of the neutron/gamma competition. Calculations lead using different level density and gamma strength function models show significant discrepancies of the slope of the gamma spectra at high energy. The underestimation of the prompt gamma spectra obtained regardless our de-excitation cascade modeling choice is discussed. This discrepancy is probably linked to an underestimation of the post-neutron fragments spin in our calculation.

  18. CONSTRAINTS ON THE EMISSION MODEL OF THE 'NAKED-EYE BURST' GRB 080319B

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Abeysekara, A. U.; Linnemann, J. T. [Department of Physics and Astronomy, Michigan State University, 3245 BioMedical Physical Sciences Building, East Lansing, MI 48824 (United States); Allen, B. T.; Chen, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Aune, T. [Santa Cruz Institute for Particle Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Berley, D.; Goodman, J. A. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Christopher, G. E.; Kolterman, B. E.; Mincer, A. I. [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); DeYoung, T. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Dingus, B. L.; Hoffman, C. M. [Group P-23, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ellsworth, R. W. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Gonzalez, M. M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, D.F., Mexico 04510 (Mexico); Granot, J. [Open University of Israel, 1 University Road, POB 808, Ra' anana 43537 (Israel); Hays, E.; McEnery, J. E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Huentemeyer, P. H. [Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States); and others

    2012-07-10

    On 2008 March 19, one of the brightest gamma-ray bursts (GRBs) ever recorded was detected by several ground- and space-based instruments spanning the electromagnetic spectrum from radio to gamma rays. With a peak visual magnitude of 5.3, GRB 080319B was dubbed the 'naked-eye' GRB, as an observer under dark skies could have seen the burst without the aid of an instrument. Presented here are results from observations of the prompt phase of GRB 080319B taken with the Milagro TeV observatory. The burst was observed at an elevation angle of 47 Degree-Sign . Analysis of the data is performed using both the standard air shower method and the scaler or single-particle technique, which results in a sensitive energy range that extends from {approx}5 GeV to >20 TeV. These observations provide the only direct constraints on the properties of the high-energy gamma-ray emission from GRB 080319B at these energies. No evidence for emission is found in the Milagro data, and upper limits on the gamma-ray flux above 10 GeV are derived. The limits on emission between {approx}25 and 200 GeV are incompatible with the synchrotron self-Compton model of gamma-ray production and disfavor a corresponding range (2 eV-16 eV) of assumed synchrotron peak energies. This indicates that the optical photons and soft ({approx}650 keV) gamma rays may not be produced by the same electron population.

  19. Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14

    Science.gov (United States)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadijs, Jan; Briggs, Michael S.; Hurley, Kevin; Gogus, Ersin; Preece, Robert D.; Giblin, Timothy W.; Thompson, Christopher; Duncan, Robert C.

    1999-01-01

    We present evidence for burst emission from SGR 1900 + 14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of approximately > 10(exp 11) between these bursts from SGR 1900 + 14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

  20. Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14.

    Science.gov (United States)

    Woods; Kouveliotou; van Paradijs J; Briggs; Hurley; Göğüş; Preece; Giblin; Thompson; Duncan

    1999-12-10

    We present evidence for burst emission from SGR 1900+14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer ( approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of greater, similar1011 between these bursts from SGR 1900+14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

  1. The emission of Gamma Ray Bursts as a test-bed for modified gravity

    Directory of Open Access Journals (Sweden)

    S. Capozziello

    2015-11-01

    Full Text Available The extreme physical conditions of Gamma Ray Bursts can constitute a useful observational laboratory to test theories of gravity where very high curvature regimes are involved. Here we propose a sort of curvature engine capable, in principle, of explaining the huge energy emission of Gamma Ray Bursts. Specifically, we investigate the emission of radiation by charged particles non-minimally coupled to the gravitational background where higher order curvature invariants are present. The coupling gives rise to an additional force inducing a non-geodesic motion of particles. This fact allows a strong emission of radiation by gravitationally accelerated particles. As we will show with some specific model, the energy emission is of the same order of magnitude of that characterizing the Gamma Ray Burst physics. Alternatively, strong curvature regimes can be considered as a natural mechanism for the generation of highly energetic astrophysical events. Possible applications to cosmology are discussed.

  2. Investigating signatures of cosmological time dilation in duration measures of prompt gamma-ray burst light curves

    CERN Document Server

    Littlejohns, O M

    2014-01-01

    We study the evolution with redshift of three measures of gamma-ray burst (GRB) duration ($T_{\\rm 90}$, $T_{\\rm 50}$ and $T_{\\rm R45}$) in a fixed rest frame energy band for a sample of 232 Swift/BAT detected GRBs. Binning the data in redshift we demonstrate a trend of increasing duration with increasing redshift that can be modelled with a power-law for all three measures. Comparing redshift defined subsets of rest-frame duration reveals that the observed distributions of these durations are broadly consistent with cosmological time dilation. To ascertain if this is an instrumental effect, a similar analysis of Fermi/GBM data for the 57 bursts detected by both instruments is conducted, but inconclusive due to small number statistics. We then investigate under-populated regions of the duration redshift parameter space. We propose that the lack of low-redshift, long duration GRBs is a physical effect due to the sample being volume limited at such redshifts. However, we also find that the high-redshift, short d...

  3. Soft X-ray Observation of the Prompt Emission of GRB100418A

    CERN Document Server

    Imatani, Ritsuko; Nakahira, Satoshi; Kimura, Masashi; Sakamoto, Takanori; Arimoto, Makoto; Morooka, Yoshitaka; Yonetoku, Daisuke; Kawai, Nobuyuki; Tsunemi, Hiroshi

    2015-01-01

    We have observed the prompt emission of GRB100418A, from its beginning by the MAXI/SSC (0.7-7 keV) on board the International Space Station followed by the Swift/XRT (0.3-10 keV) observation. The light curve can be fitted by a combination of a power law component and an exponential component (decay constant is $31.6\\pm 1.6$). The X-ray spectrum is well expressed by the Band function with $E_{\\rm p}\\leq$8.3 keV. This is the brightest GRB showing a very low value of $E_{\\rm p}$. It is also consistent with the Yonetoku-relation ($E_{\\rm p}$-$L_{\\rm p}$) while it is not clear with the Amati-relation ($E_{\\rm p}$-$E_{\\rm iso}$).

  4. Even–odd effects in prompt emission of spontaneously fissioning even–even Pu isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tudora, A., E-mail: anabellatudora@hotmail.com [University of Bucharest, Faculty of Physics, Bucharest Magurele, POB MG-11, R-76900 (Romania); Hambsch, F.-J. [EC-JRC Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440, Geel (Belgium); Giubega, G.; Visan, I. [University of Bucharest, Faculty of Physics, Bucharest Magurele, POB MG-11, R-76900 (Romania)

    2015-01-15

    The available experimental Y(A,TKE) data for {sup 236,238,240,242,244}Pu(SF) together with the Zp model prescription with appropriate parameters allows the investigation of even–odd effects in fragment distributions. The size of the global even–odd effect in Y(Z) is decreasing from {sup 244}Pu(SF) to {sup 236}Pu(SF) confirming the general observation of a decrease of the even–odd effect with the fissility parameter. Charge polarizations (ΔZ) and root-mean squares (rms) as a function of A of {sup 236–244}Pu(SF) were obtained for the first time. In the asymmetric fission region both ΔZ(A) and rms(A) exhibit oscillations with a periodicity of about 5 mass units due to the even–odd effects. The total average charge deviations 〈ΔZ〉 (obtained by averaging ΔZ(A) over the experimental Y(A) distribution) are of about |0.5| for all studied Pu(SF) systems. The comparison of the calculated ΔZ(A) and rms(A) of {sup 240}Pu(SF) with those of {sup 239}Pu(n{sub th},f) reported by Wahl shows an in-phase oscillation with a higher amplitude in the case of {sup 240}Pu(SF), confirming the higher even–odd effect in the case of SF. As in the previously studied cases ({sup 233,235}U(n{sub th},f), {sup 239}Pu(n{sub th},f), {sup 252}Cf(SF)) the even–odd effects in the prompt emission of {sup 236–244}Pu(SF) are mainly due to the Z even–odd effects in fragment distributions and charge polarizations and the N even–odd effects in the average neutron separation energies from fragments 〈Sn〉. The size of the global N even–odd effect in 〈Sn〉 is decreasing with the fissility parameter, being higher for the Pu(SF) systems compared to the previously studied systems. The prompt neutron multiplicities as a function of Z, ν(Z), exhibit sawtooth shapes with a visible staggering for asymmetric fragmentations. The size of the global Z even–odd effect in ν(Z) exhibits a decreasing trend with increasing fissility. The average prompt neutron multiplicities as a

  5. Extended calibration range for prompt photon emission in ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, F. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Boehlen, T.T.; Chin, M.P.W. [CERN, Geneva (Switzerland); Collamati, F. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Faccini, R., E-mail: riccardo.faccini@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Ferrari, A. [CERN, Geneva (Switzerland); Lanza, L. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Mancini-Terracciano, C. [CERN, Geneva (Switzerland); Dipartimento di Fisica, Università Roma Tre, Roma (Italy); Marafini, M. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Mattei, I. [Dipartimento di Fisica, Università Roma Tre, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Morganti, S. [INFN Sezione di Roma, Roma (Italy); Ortega, P.G. [CERN, Geneva (Switzerland); Patera, V. [Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Piersanti, L. [Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Russomando, A. [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Sala, P.R. [INFN Sezione di Milano, Milano (Italy); and others

    2014-05-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.

  6. Extended calibration range for prompt photon emission in ion beam irradiation

    International Nuclear Information System (INIS)

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported

  7. Extended calibration range for prompt photon emission in ion beam irradiation

    CERN Document Server

    Bellini, F

    2014-01-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum.This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is report...

  8. Prompt emission from GRB 150915A in the GeV energy range detected at ground by the New-Tupi detector

    CERN Document Server

    Augusto, C R A; de Oliveira, M N; Nepomuceno, A A; Kopenkin, V; Sinzi, T

    2016-01-01

    Since 2014, a new detector (New-Tupi) consisting of four plastic scintillators ($150 \\times 75 \\times 5 cm^3$) placed in pairs and located in Niteroi, Rio de Janeiro, Brazil, has been used for the search of transient solar events and photomuons from gamma-ray bursts (GRBs). On September 15, 2015, at 21:18:24 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 150915A (trigger 655721). The GRB light curve shows a weak complex structure of long duration $T_{90}=164.7 \\pm 49.7 $ sec, and a fluence in the 15-150 keV band of $8.0 \\pm 1.8 \\times 10^{-7}erg/cm^2$. GRB 150915A was fortuitously located in the field of view of the New-Tupi detector, and a search for prompt emission in the GeV energy range is presented here. The analysis was made using the "scaler" or "single-particle" technique. The New-Tupi detector registered a muon excess peak of 6.1s duration with a signal significance $6.9\\sigma$, the signal was within the T90 duration of the Swift BAT GRB, with an estimated fluence $4.8 \\times 10^...

  9. Future research program on prompt γ-ray emission in nuclear fission

    Science.gov (United States)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  10. Future research program on prompt γ-ray emission in nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, S.; Hambsch, F.J. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Billnert, R. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Lebois, M.; Wilson, J.N. [Institut de Physique Nucleaire Orsay, Orsay (France); Oberstedt, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Ossolution Consulting, Oerebro (Sweden)

    2015-12-15

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions {sup 235}U(n{sub th}, f), {sup 239}Pu(n{sub th},f) and {sup 252}Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of {sup 235}U and {sup 239}Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on {sup 235}U and {sup 241}Pu as well as for the spontaneous fission of {sup 252}Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on {sup 238}U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on {sup 235,238}U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies. (orig.)

  11. Thermal-neutron-capture prompt-gamma emission spectra of representative coals. [1. 5 to 11 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Herzenberg, C L; Olson, I K

    1981-12-01

    Prompt gamma ray emission spectra have been calculated from 1.5 to 11 MeV for a wide range of coal compositions exposed to a thermal neutron flux. These include contributions to the spectra from all of the major and minor elements present in the coals. Characteristics of the spectra are discussed and correlated with the coal compositions.

  12. Clustering of LAT light curves: a clue to the origin of high-energy emission in Gamma-Ray Bursts

    CERN Document Server

    Nava, L; Omodei, N; Ghisellini, G; Ghirlanda, G; Celotti, A; Longo, F; Desiante, R; Duran, R Barniol

    2014-01-01

    The physical origin of the >0.1 GeV emission detected from Gamma-Ray Bursts (GRBs) by the Fermi satellite has not yet been completely understood. In this work we consider the GeV light curves of ten GRBs with measured redshift detected by the Fermi-LAT. These light curves are characterised by a long-lived ($\\gtrsim10^2$ seconds) emission, whose luminosity decays in time as a power-law. While the decay rate is similar for all GRBs (i.e. $L_{LAT}\\propto t^{-1.2}$), the normalisation spans about two orders of magnitude in luminosity. However, after re-normalising the luminosities to the prompt energetics $E_{iso}$ the light curves overlap. We consider the scenario in which the temporally extended LAT emission is dominated by synchrotron radiation from electrons accelerated at the forward external shock. According to this model, at high-energies (i.e. above the typical synchrotron frequencies) a small dispersion of the $E_{iso}$-normalised light curves is expected. The fact that the LAT temporally extended emissi...

  13. PHOTOSPHERIC EMISSION AS THE DOMINANT RADIATION MECHANISM IN LONG-DURATION GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 3321 Sterling Hall, 475 N. Charter Street, Madison WI 53706-1582 (United States); Margutti, Raffaella [Harvard-Smithsonian Center for Astrophysics, ITC, 60 Garden Street, Cambridge, MA 02138 (United States); Begelman, Mitchell C. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309-0440 (United States)

    2013-03-10

    We present the results of a set of numerical simulations of long-duration gamma-ray burst jets associated with massive, compact stellar progenitors. The simulations extend to large radii and allow us to locate the region in which the peak frequency of the advected radiation is set before the radiation is released at the photosphere. Light curves and spectra are calculated for different viewing angles as well as different progenitor structures and jet properties. We find that the radiation released at the photosphere of matter-dominated jets is able to reproduce the observed Amati and energy-Lorentz factor correlations. Our simulations also predict a correlation between the burst energy and the radiative efficiency of the prompt phase, consistent with observations.

  14. Modelling Random Coincidences in Positron Emission Tomography by Using Singles and Prompts: A Comparison Study

    Science.gov (United States)

    2016-01-01

    Random coincidences degrade the image in Positron Emission Tomography, PET. To compensate for their degradation effects, the rate of random coincidences should be estimated. Under certain circumstances, current estimation methods fail to provide accurate results. We propose a novel method, “Singles–Prompts” (SP), that includes the information conveyed by prompt coincidences and models the pile–up. The SP method has the same structure than the well-known “Singles Rate” (SR) approach. Hence, SP can straightforwardly replace SR. In this work, the SP method has been extensively assessed and compared to two conventional methods, SR and the delayed window (DW) method, in a preclinical PET scenario using Monte–Carlo simulations. SP offers accurate estimates for the randoms rates, while SR and DW tend to overestimate the rates (∼10%, and 5%, respectively). With pile-up, the SP method is more robust than SR (but less than DW). At the image level, the contrast is overestimated in SR-corrected images, +16%, while SP produces the correct value. Spill–over is slightly reduced using SP instead of SR. The DW images values are similar to those of SP except for low-statistic scenarios, where DW behaves as if randoms were not compensated for. In particular, the contrast is reduced, −16%. In general, the better estimations of SP translate into better image quality. PMID:27603143

  15. Ultraviolet OH prompt emission in the innermost coma of 103P/Hartley 2

    Science.gov (United States)

    La Forgia, F.; A'Hearn, M.; Lazzarin, M.; Magrin, S.; Bertini, I.; Pajola, M.; Barbieri, C.; Kueppers, M.

    2014-07-01

    The hyperactive Jupiter-family comet 103P/Hartley 2, the target of the EPOXI mission, has been visited on 4 November 2010 at a distance of 694 km, when it was at 1.064 au from the Sun. Spectral observations of the ambient coma show that H_2O is enhanced from the central waist, while CO_2 and icy grains seem to be coming out mainly from the two lobes [1,2]. Visible observations in the OH filter of the MRI camera onboard EPOXI have been used to investigate the distribution of the OH daughter species in the coma. These data reveal an evident radial structure in the very inner coma below 35 km from the nucleus (see Figure), appearing to be coming directly from the nucleus, in the region of the central waist. This is in agreement with the water distribution found by [1]. The OH resonance fluorescence emission band at 308.5 nm, caused by the transition A^2Σ-X^2Π (0,0), has been used indeed for years as a tracer of water parent molecules. Nevertheless, even for the active Sun, the OH fluorescence lifetime is about 10^{5} s, suggesting that it is not expected to be observed so close to the nucleus. OH has been found to cause prompt emission (PE) at both IR and UV wavelengths and has been tentatively detected in a few comets [3-6]. We report theoretical computations showing a strong possibility that the innermost OH structure observed in the MRI images of Hartley 2 could possibly be associated with OH ultraviolet PE.

  16. Nonlinear Wave Interactions as Emission Process of Type II Radio Bursts

    OpenAIRE

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-01-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a CME foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam driven modes, which yield interaction products at both fundamental and harmonic...

  17. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    Science.gov (United States)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to

  18. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    Directory of Open Access Journals (Sweden)

    Hambsch F.-J.

    2016-01-01

    Full Text Available In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL of the OECD/Nuclear Energy Agency (NEA. In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC. Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  19. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    Science.gov (United States)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  20. Average Emissivity Curve of Batse Gamma-Ray Bursts with Different Intensities

    Science.gov (United States)

    Mitrofanov, Igor G.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.

    1999-01-01

    Six intensity groups with approximately 150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anticorrelation is found with good statistical significance during the average back slopes of bursts. A stretch factor approximately 2 is found between the 150 dimmest bursts, with peak flux less than 0.45 photons/sq cm.s, and the 147 brightest bursts, with peak flux greater than 4.1 photons/sq cm.s. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for bursts with decreasing peak flux from greater than 4.1 photons/sq cm.s down to 0.7 photons/sq cm.s, the magnitude of the stretching factor is less than approximately 1.4 and is therefore inconsistent with stretching factor of back slope.

  1. Discovery of Quasi-Periodic Oscillations in the Recurrent Burst Emission from SGR 1806-20

    CERN Document Server

    El-Mezeini, Ahmed M

    2010-01-01

    We present evidence for Quasi-Periodic Oscillations (QPOs) in the recurrent outburst emission from the soft gamma repeater SGR 1806-20 using NASA's Rossi X-ray Timing Explorer (RXTE) observations. By searching a sample of 30 bursts for timing signals at the frequencies of the QPOs discovered in the 2004 December 27 giant flare from the source, we find three QPOs at 84, 103, and 648 Hz in three different bursts. The first two QPOs lie within $\\sim$ 1$\\: \\sigma$ from the 92 Hz QPO detected in the giant flare. The third QPO lie within $\\sim$ 9$\\: \\sigma$ from the 625 Hz QPO also detected in the same flare. The detected QPOs are found in bursts with different durations, morphologies, and brightness, and are vindicated by Monte Carlo simulations, which set a lower limit confidence interval $\\geq 4.3 \\sigma$. We also find evidence for candidate QPOs at higher frequencies in other bursts with lower statistical significance. The fact that we can find evidence for QPOs in the recurrent bursts at frequencies relatively...

  2. Analytical computation of prompt gamma ray emission and detection for proton range verification.

    Science.gov (United States)

    Sterpin, E; Janssens, G; Smeets, J; Vander Stappen, François; Prieels, D; Priegnitz, Marlen; Perali, Irene; Vynckier, S

    2015-06-21

    A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either (12)C, (14)N, (16)O, (31)P or (40)Ca, with 10% of (1)H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the

  3. Analytical computation of prompt gamma ray emission and detection for proton range verification

    Science.gov (United States)

    Sterpin, E.; Janssens, G.; Smeets, J.; Vander Stappen, François; Prieels, D.; Priegnitz, Marlen; Perali, Irene; Vynckier, S.

    2015-06-01

    A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either 12C, 14N, 16O, 31P or 40Ca, with 10% of 1H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the profiles

  4. Prompt Optical Detection of GRB 050401 with ROTSE-IIIa

    CERN Document Server

    Rykoff, E S; Krimm, H A; Aharonian, F; Akerlof, C W; Alatalo, K; Ashley, M C B; Barthelmy, S D; Gehrels, N; Guver, T; Horns, D; Kiziloglu, U; McKay, T A; Ozel, M; Phillips, A; Quimby, R M; Rujopakarn, W; Schaefer, B E; Smith, D A; Swan, H F; Vestrand, W T; Wheeler, J C; Wren, J

    2005-01-01

    The ROTSE-IIIa telescope at Siding Spring Observatory, Australia, detected prompt optical emission from Swift GRB 050401. In this letter, we present observations of the early optical afterglow, first detected by the ROTSE-IIIa telescope 33 s after the start of gamma-ray emission, contemporaneous with the brightest peak of this emission. This GRB was neither exceptionally long nor bright. This is the first prompt optical detection of a GRB of typical duration and luminosity. We find that the early afterglow decay does not deviate significantly from the power-law decay observable at later times, and is uncorrelated with the prompt gamma-ray emission. We compare this detection with the other two GRBs with prompt observations, GRB 990123 and GRB 041219a. All three bursts exhibit quite different behavior at early times.

  5. Reevaluation of the average prompt neutron emission multiplicity (nubar) values from fission of uranium and transuranium nuclides

    International Nuclear Information System (INIS)

    In response to a need of the safeguards community, we have begun an evaluation effort to upgrade the recommended values of the prompt neutron emission multiplicity distribution, P/sub nu/ and its average value, nubar. This paper will report on progress achieved thus far. The evaluation of the uranium, plutonium, americium and curium nuclide's nubar values will be presented. The recommended values will be given and discussed. 61 references

  6. Emission of Type II Radio Bursts – Single-Beam Versus Two-Beam Scenario

    OpenAIRE

    Ganse, U.; Kilian, P.; Vainio, R.; Spanier, F.

    2012-01-01

    The foreshock region of a CME shock front, where shock accelerated electrons form a beam population in the otherwise quiescent plasma is generally assumed to be the source region of type II radio bursts. Nonlinear wave interaction of electrostatic waves excited by the beamed electrons are the prime candidates for the radio waves' emission. To address the question whether a single, or two counterpropagating beam populations are a requirement for this process, we have conducted 2.5D particle in...

  7. The Second SWIFT Burst Alert Telescope (BAT) Gamma-Ray Burst Catalog

    Science.gov (United States)

    Sakamoto, T.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T. N.; Zhang, B.

    2012-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts. (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples.. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T(sub 90) and T(sub 50) durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs.

  8. A model of so-called "Zebra" emissions in solar flare radio burst continua

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2011-09-01

    Full Text Available A simple mechanism for the generation of electromagnetic "Zebra" pattern emissions is proposed. "Zebra" bursts are regularly spaced narrow-band radio emissions on the otherwise broadband radio continuum emitted by the active solar corona. The mechanism is based on the generation of an ion-ring distribution in a magnetic mirror geometry in the presence of a properly directed field-aligned electric potential field. Such ion-rings or ion-conics are well known from magnetospheric observations. Under coronal conditions they may become weakly relativistic. In this case the ion-cyclotron maser generates a number of electromagnetic ion-cyclotron harmonics which modulate the electron maser emission. The mechanism is capable of switching the emission on and off or amplifying it quasi-periodically which is a main feature of the observations.

  9. Accelerating Compact Object Mergers in Triple Systems with the Kozai Resonance: A Mechanism for "Prompt'' Type Ia Supernovae, Gamma-Ray Bursts, and Other Exotica

    CERN Document Server

    Thompson, Todd A

    2010-01-01

    The mechanism of Type Ia supernovae and gamma-ray bursts (GRBs) is unknown, but a subset of both may be due to white dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers, respectively. A general problem with this picture is the production of binaries with semi-major axes small enough to merge via gravitational wave (GW) emission in significantly less than the Hubble time (t_H), and thus accommodate the observation that these events closely follow episodes of star formation in time. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, hierarchical triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and dramatically reducing its GW merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t_merge < t_H. I find that Chandrasehkar mass binaries with P as large as ~300 days can in fact merge in < t_H if they contai...

  10. Stepwise Filter Correlation Method and Evidence of Superposed Variability Components in GRB Prompt Emission Lightcurves

    OpenAIRE

    Gao, He; Zhang, Bin-Bin; Zhang, Bing

    2011-01-01

    Gamma-ray bursts (GRBs) have variable lightcurves. Although most models attribute the observed variability to one physical origin (e.g. central engine activity, clumpy circumburst medium, relativistic turbulence), some models invoke two physically distinct variability components. We develop a method, namely, the stepwise filter correlation (SFC) method, to decompose the variability components in a GRB lightcurve. Based on a low-pass filter technique, we progressively filter the high frequency...

  11. Analysis of the Prompt Optical Emission of the Naked-Eye GRB 080319B

    CERN Document Server

    Bartolini, C; Guarnieri, A; Piccioni, A; Beskin, G; Bondar, S; Karpov, S; Molinari, E

    2009-01-01

    We present the observed/intrinsic optical parameters and the variability analysis of the Naked-Eye Burst, GRB 080319B, observed by the TORTORA wide-field optical monitoring system. The event is extreme not only in observed properties but also intrinsically: it is the most luminous event ever recorded at optical wavelengths. The temporal properties suggest short-lived periodic activities of the internal engine. This is the fastest optically variable source detected at cosmological distances.

  12. Scattered Emission from A Relativistic Outflow and Its Application to Gamma-Ray Bursts

    CERN Document Server

    Shen, R -F; Kumar, P

    2007-01-01

    We investigate a scenario of photons scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of: the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and Inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the Gamma-Ray Bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a c...

  13. Upper limits on the high-energy emission from gamma-ray bursts observed by AGILE-GRID

    Science.gov (United States)

    Longo, F.; Moretti, E.; Nava, L.; Desiante, R.; Olivo, M.; Del Monte, E.; Rappoldi, A.; Fuschino, F.; Marisaldi, M.; Giuliani, A.; Cutini, S.; Feroci, M.; Costa, E.; Pittori, C.; Tavani, M.; Argan, A.; Barbiellini, G.; Bulgarelli, A.; Caraveo, P.; Cardillo, M.; Cattaneo, P. W.; Chen, A. W.; D'Ammando, F.; Di Cocco, G.; Donnarumma, I.; Evangelista, Y.; Ferrari, A.; Fiorini, M.; Galli, M.; Gianotti, F.; Giusti, M.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Mereghetti, S.; Morselli, A.; Pacciani, L.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pilia, M.; Prest, M.; Pucella, G.; Rapisarda, M.; Rubini, A.; Sabatini, S.; Soffitta, P.; Striani, E.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Vittorini, V.; Zanello, D.; Antonelli, L. A.; Colafrancesco, S.; Giommi, P.; Santolamazza, P.; Verrecchia, F.; Lucarelli, F.; Salotti, L.

    2012-11-01

    Context. The detection and the characterization of the highenergy emission component from individual gamma-ray bursts (GRBs) is one of the key science objectives of the currently operating gamma-ray satellite AGILE, launched in April 2007. In its first two years of operation AGILE detected three GRBs with photons of energy larger than 30 MeV. One more GRB was detected in AGILE third operation year, while operating in spinning mode. Aims: For the 64 other GRBs localized during the period July 2007 to October 2009 in the field of view of the AGILE Gamma-Ray Imaging Detector (GRID), but not detected by this instrument, we estimate the count and flux upper limits on the GRB high energy emission in the AGILE-GRID energy band (30 MeV-3 GeV). Methods: To calculate the count upper limits, we adopted a Bayesian approach. The flux upper limits are derived using several assumptions on the high-energy spectral behavior. For 28 GRBs with available prompt spectral information, a flux upper limit and the comparison with the expected flux estimated from spectral extrapolation of the Band spectrum to the 30 MeV-3 GeV band are provided. Moreover, upper limits on the flux under the assumption of an extra power law component dominating the 30 MeV-3 GeV band are calculated for all GRBs and considering four different values for the spectral photon index. Finally, we performed a likelihood upper limit on the possible delayed emission up to 1 h after the GRB. Results: The estimated flux upper limits range between 1 × 10-4 and ~2 × 10-2 photons cm-2 s-1 and generally lie above the flux estimated from the extrapolation of the prompt emission in the 30 MeV-3 GeV band. A notable case is GRB 080721, where the AGILE-GRID upper limit suggests a steeper spectral index or the presence of a cut-off in the high energy part of the Band prompt spectrum. The four GRBs detected by AGILE-GRID show high-energy (30 MeV-3 GeV) to low-energy (1 keV-10 MeV) fluence ratios similar to those estimated in this

  14. Isotope identification capabilities using time resolved prompt gamma emission from epithermal neutrons

    International Nuclear Information System (INIS)

    We present a concept of integrated measurements for isotope identification which takes advantage of the time structure of spallation neutron sources for time resolved γ spectroscopy. Time resolved Prompt Gamma Activation Analysis (T-PGAA) consists in the measurement of gamma energy spectrum induced by the radioactive capture as a function of incident neutron Time Of Flight (TOF), directly related with the energy of incident neutrons. The potential of the proposed concept was explored on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (U.K.). Through this new technique we show an increase in the sensitivity to specific elements of archaeometric relevance, through incident neutron energy selection in prompt γ spectra for multicomponent samples. Results on a standard bronze sample are presented

  15. Study of temporal evolution of emission spectrum in a steeply rising submillimeter burst

    International Nuclear Information System (INIS)

    The temporal evolution of a spectrum during a steeply rising submillimeter (THz) burst that occurred on 2003 November 2 was investigated in detail for the first time. Observations show that the flux density of the THz spectrum increased steeply with frequency above 200 GHz. Their average rising rates reached a value of 235 sfu GHz−1 (corresponding to spectral index α of 4.8) during the burst. The flux densities reached about 4 000 and 70 000 sfu at 212 and 405 GHz at the maximum phase, respectively. The emissions at 405 GHz maintained such a continuous high level that they largely exceeded the peak values of the microwave (MW) spectra during the main phase. Our studies suggest that only energetic electrons with a low-energy cutoff of ∼1 MeV and number density of ∼106–108 cm−3 can produce such a strong and steeply rising THz component via gyrosynchrotron radiation based on numerical simulations of burst spectra in the case of a nonuniform magnetic field. The electron number density N, derived from our numerical fits to the THz temporal evolution spectra, increased substantially from 8 × 106 to 4 × 108 cm−3, i.e., the N value increased 50 times during the rise phase. During the decay phase it decreased to 7 × 107 cm−3, i.e., it decreased by about five times from the maximum phase. The total electron number decreased an order of magnitude from the maximum phase to the decay phase. Nevertheless, the variation in amplitude of N is only about one time in the MW emission source during this burst, and the total electron number did not decrease but increased by about 20% during the decay phase. Interestingly, we find that the THz source radius decreased by about 24% while the MW source radius, on the contrary, increased by 28% during the decay phase. (paper)

  16. FERMI DETECTION OF DELAYED GeV EMISSION FROM THE SHORT GAMMA-RAY BURST 081024B

    International Nuclear Information System (INIS)

    We report on the detailed analysis of the high-energy extended emission from the short gamma-ray burst (GRB) 081024B detected by the Fermi Gamma-ray Space Telescope. Historically, this represents the first clear detection of temporal extended emission from a short GRB. The light curve observed by the Fermi Gamma-ray Burst Monitor lasts approximately 0.8 s whereas the emission in the Fermi Large Area Telescope lasts for about 3 s. Evidence of longer lasting high-energy emission associated with long bursts has been already reported by previous experiments. Our observations, together with the earlier reported study of the bright short GRB 090510, indicate similarities in the high-energy emission of short and long GRBs and open the path to new interpretations.

  17. Comparing different energy partitions at scission used in prompt emission model codes GEF and Point-by-Point

    Science.gov (United States)

    Tudora, A.; Hambsch, F.-J.; Visan, I.; Giubega, G.

    2015-08-01

    Different methods to partition the total excitation energy (TXE) of fully accelerated fragments, presently used in prompt emission calculations include different assumptions about what is happening at scission. In fact the energy partition takes place at scission or even before scission, depending on the physical assumptions supporting the models used in different methods of TXE partition. The paper discusses two TXE partition methods in which the amount of energy to be shared (at scission and before scission, respectively) is very different. These methods (based on different principles and physical considerations) are: A. The method used in the Point-by-Point (PbP) treatment of prompt emission in which the available excitation energy at scission is shared between complementary nascent fragments. The amount of energy to be shared is sufficiently high to consider the nascent fragments in the Fermi-gas regime of the level density. B. The method used in the GEF code, in which the intrinsic energy before scission is shared between pre-nascent fragments according to the "energy sorting mechanism". This sorting mechanism is based on the assumption of level densities in the constant temperature regime, only. This is supported by the low amount of the shared intrinsic energy in the case of thermal and low energy neutron induced fission. Taking into account that the principles and physical considerations of any TXE partition method are independent on the way to treat the prompt emission (i.e. deterministically as in the PbP model or probabilistically by Monte-Carlo as in the code GEF) the methods A and B are applied to the same fission fragment range (built as in the PbP treatment). Extreme hypotheses are made for the fragment level densities on which the partitions are based (only in the Fermi-gas regime or only in the constant temperature regime). The results are compared with the energy partition obtained with fragment level densities described by the composite Gilbert

  18. Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  19. Gamma-Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Mészáros, Péter

    2012-08-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  20. Gamma Ray Bursts

    CERN Document Server

    Gehrels, Neil; 10.1126/science.1216793

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day, last typically 10s of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  1. A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. II. AFTERGLOW ONSET AND LATE RE-BRIGHTENING COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Liang Enwei; Li Liang; Liang Yunfeng; Tang Qingwen; Chen Jiemin; Lu Ruijing; Lue Lianzhong [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Gao He; Zhang, Bing; Lue Houjun [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States); Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Yi Shuangxi; Dai Zigao [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang Jin; Wei Jianyan, E-mail: lew@gxu.edu.cn, E-mail: zhang@physics.unlv.edu [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-09-01

    We continue our systematic statistical study of various components of gamma-ray burst (GRB) optical light curves. We decompose the early onset bump and the late re-brightening bump with empirical fits and analyze their statistical properties. Among the 146 GRBs that have well-sampled optical light curves, the onset and re-brightening bumps are observed in 38 and 26 GRBs, respectively. It is found that the typical rising and decaying slopes for both the onset and re-brightening bumps are {approx}1.5 and {approx} - 1.15, respectively. No early onset bumps in the X-ray band are detected to be associated with the optical onset bumps, while an X-ray re-brightening bump is detected for half of the re-brightening optical bumps. The peak luminosity is anti-correlated with the peak time L{sub p}{proportional_to}t{sub p}{sup -1.81{+-}0.32} for the onset bumps and L{sub p}{proportional_to}t{sub p}{sup -0.83{+-}0.17} for the re-brightening bumps. Both L{sub p} and the isotropic energy release of the onset bumps are correlated with E{sub {gamma},iso}, whereas no similar correlation is found for the re-brightening bumps. These results suggest that the afterglow onset bumps are likely due to the deceleration of the GRB fireballs. Taking the onset bumps as probes for the properties of the fireballs and their ambient medium, we find that the typical power-law index of the relativistic electrons is 2.5 and the medium density profile behaves as n{proportional_to}r {sup -1} within the framework of the synchrotron external shock models. With the medium density profile obtained from our analysis, we also confirm the correlation between the initial Lorentz factor ({Gamma}{sub 0}) and E{sub iso,{gamma}} in our previous work. The jet component that produces the re-brightening bump seems to be on-axis and independent of the prompt emission jet component. Its typical kinetic energy budget would be about one order of magnitude larger than the prompt emission component, but with a lower {Gamma

  2. High-energy emission from bright gamma-ray bursts using Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Bissaldi, Elisabetta

    2010-05-25

    Among the scientific objectives of one of the present NASA missions, the Fermi Gamma-ray Space Telescope (FGST), is the study of gamma-ray bursts (GRBs). Fermi's payload comprises two science instruments, the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM). GBM was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of the LAT instrument into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs has been determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. The GBM detectors have been calibrated from 10 keV to 17.5 MeV using various gamma sources, and the detector response has been derived by simulations over the entire energy range (8 keV to 40 MeV) using GEANT. The GBM instrument has been operating successfully in orbit since June 11, 2008. The total trigger count from the time GBM triggering was enabled in July 2008 through December 2009 is 655, and about 380 of these triggers were classified as GRBs. Moreover, GBM detected several bursts in common with the LAT. These amazing detections mainly fulfill the primary science goal of GBM, which is the joint analysis of spectra and time histories of GRBs observed by both Fermi instruments. For every trigger, GBM provides near-real time on-board burst locations to permit repointing of the spacecraft and to obtain LAT observations of delayed emission from bursts. GBM and LAT refined locations are rapidly disseminated to the scientific community, often permitting extensive multiwavelength follow-up observations by NASA's Swift mission or other space- based observatories, and by numerous ground-based telescopes, thus allowing redshift determinations. Calculations of LAT upper limits are

  3. High-energy emission from bright gamma-ray bursts using Fermi

    International Nuclear Information System (INIS)

    Among the scientific objectives of one of the present NASA missions, the Fermi Gamma-ray Space Telescope (FGST), is the study of gamma-ray bursts (GRBs). Fermi's payload comprises two science instruments, the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM). GBM was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of the LAT instrument into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs has been determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. The GBM detectors have been calibrated from 10 keV to 17.5 MeV using various gamma sources, and the detector response has been derived by simulations over the entire energy range (8 keV to 40 MeV) using GEANT. The GBM instrument has been operating successfully in orbit since June 11, 2008. The total trigger count from the time GBM triggering was enabled in July 2008 through December 2009 is 655, and about 380 of these triggers were classified as GRBs. Moreover, GBM detected several bursts in common with the LAT. These amazing detections mainly fulfill the primary science goal of GBM, which is the joint analysis of spectra and time histories of GRBs observed by both Fermi instruments. For every trigger, GBM provides near-real time on-board burst locations to permit repointing of the spacecraft and to obtain LAT observations of delayed emission from bursts. GBM and LAT refined locations are rapidly disseminated to the scientific community, often permitting extensive multiwavelength follow-up observations by NASA's Swift mission or other space- based observatories, and by numerous ground-based telescopes, thus allowing redshift determinations. Calculations of LAT upper limits are mainly based

  4. Startup of Plasma Current in J-TEXT Tokamak Prompted by the Hα Line Emission Criterion

    Institute of Scientific and Technical Information of China (English)

    GAO Li; ZHUANG Ge; HU Xiwei; ZHANG Ming

    2009-01-01

    An Hα line-emission detection system was developed on the joint texas experimental tokamak (J-TEXT), which is used to determine the Hα emission level during the gas breakdown and hereafter to control the startup of the plasma current. The detector consists of an Hα in-terference filter, a focusing lens, a photodiode and a preamplifier. In the J-TEXT operation, the Hα emission is taken as a monitor signal which is highly sensitive to the generation of a plasma.Furthermore, the power supply control system using the above signal as an input is capable of de-termining whether and when to fire the Ohmic heating capacitor banks, which are applied to drive the plasma current ramp-up. The experimental results confirm that the Hα emission criterion is acceptable for controlling the plasma current promotion in the J-TEXT tokamak.

  5. Afterglow emission from pair-loaded blast waves in gamma-ray bursts

    CERN Document Server

    Beloborodov, A M

    2005-01-01

    The MeV radiation front of gamma-ray bursts creates copious e+- pairs as it propagates through an ambient medium. The created pairs enrich the leptonic component of the medium by a large factor at distances R < R_load ~ 10^{16} cm from the burst center. The following blast wave sweeps up the pair-rich medium and then emits the observed afterglow radiation. We find that the afterglow has a "memory" of e+- loading outside R_load. The e+- pairs remain in the swept-up material and slowly cool down by emitting synchrotron radiation. They are likely to dominate the blast-wave emission in IR, optical, and UV bands during the first minutes of the observed afterglow. The expected e+- radiation is described by a simple formula, which is derived analytically and checked by numerical integration of synchrotron emission over the blast material; a suitable Lagrangian formalism is developed for such calculations. The main signature of e+- radiation is its flat ("white") spectrum in a broad range of frequencies from IR to...

  6. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045

    Science.gov (United States)

    Lin, Lin; Kouveliotou, Chryssa; Gogus, Ersin; van der Horst, Alexander J.; Watts, Anna L.; Baring, Matthew G.; Kaneko, Yuki; Wijers, Ralph A. M. J.; Woods, Peter M.; Barthelmy, Scott; Burgess, J. Michael; Chaplin, Vandiver; Gehrels, Neil; Goldstein, Adam; Granot, Jonathan; Guiriec, Sylvain; Mcenery, Julie; Preece, Robert D.; Tierney, David; van der Klis, Michiel; von Kienlin, Andreas; Zhang, Shuang Nan

    2011-01-01

    SWift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18 - 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 1038 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in IE 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  7. Individual cochlear delays measured with tone-burst-evoked otoacoustic emissions

    DEFF Research Database (Denmark)

    Pigasse, Gilles; Harte, James; Dau, Torsten

    Methods to estimate cochlear delay in humans have been traditionally based on either phase-derived group delays from otoacoustic emissions (OAEs), or auditory brainstem responses (ABR). These methods demonstrate large variability in cochlear delay estimates, and are derived from across subject...... averages. This work aims to assess the individual variability in cochlear delay. Tone-burst evoked otoacoustic emissions (TBOAEs) are used in this study to estimate cochlear delay. The OAE is analysed by separating the non-linear components of cochlear origin, and the linear reflection in the time domain...... with previous studies. However, care must be taken when comparing the results of previous studies. This is due to an ambiguity in the time domain regarding the true onset point of the OAE, and hence the derived cochlear travelling wave latency. The inter-subject variability explains the discrepancy observed...

  8. A Deep Search for Prompt Radio Emission from Thermonuclear Supernovae with the Very Large Array

    CERN Document Server

    Chomiuk, Laura; Chevalier, Roger A; Bruzewski, Seth; Foley, Ryan J; Parrent, Jerod; Strader, Jay; Badenes, Carles; Fransson, Claes; Kamble, Atish; Margutti, Raffaella; Rupen, Michael P; Simon, Joshua D

    2015-01-01

    Searches for circumstellar material around Type Ia supernovae (SNe Ia) are one of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here we report radio observations for SNe Ia and their lower-luminosity thermonuclear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt (delta t <~ 1 yr) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as a SN Ia with remarkably deep radio limits and excellent temporal coverage (six epochs, spanning 5--216 days after explosion, yielding Mdot/v_w <~ 5 x 10^-9 M_sun/yr / (100 km/s), assuming epsilon_B = 0.1 and epsilon_e = 0.1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal an...

  9. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    Directory of Open Access Journals (Sweden)

    Zhengzhao Liang

    2013-01-01

    Full Text Available To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE and far infrared (FIR techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE was calculated to predict the tunnel rock burst. The results showed that the vertical stress enhanced the stability of the tunnel, and the tunnels with higher confining pressure demonstrated a more abrupt and strong rock burst. Abnormal temperature changes around the wall were observed prior to the rock burst of the tunnel. Analysis of the AE events showed that a sudden drop and then a quiet period could be considered as the precursors to forecast the rock burst hazard. Statistical analysis indicated that rock fragment spalling occurred earlier than the abnormal temperature changes, and the abnormal temperature occurred earlier than the descent of the AE b-value. The analysis indicated that the temperature changes were more sensitive than the AE b-value changes to predict the tunnel rock bursts.

  10. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  11. Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity

    Science.gov (United States)

    Fatuzzo, Marco; Melia, Fulvio

    1993-01-01

    Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.

  12. T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

    Science.gov (United States)

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2011-05-01

    Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10-5. The upper limit for the asymmetry coefficient has been set to | D n | < 6 × 10-5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10-5. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10-4, while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.

  13. Colliding neutron stars Gravitational waves, neutrino emission, and $\\gamma$-ray bursts

    CERN Document Server

    Ruffert, M; Ruffert, Maximilian

    1998-01-01

    Three-dimensional hydrodynamical simulations are presented for the direct head-on or off-center collision of two neutron stars, employing a basically Newtonian PPM code but including the emission of gravitational waves and their back-reaction on the hydrodynamical flow. A physical nuclear equation of state is used that allows us to follow the thermodynamical evolution of the stellar matter and to compute the emission of neutrinos. Predicted gravitational wave signals, luminosities and waveforms, are presented. The models are evaluated for their implications for gamma-ray burst scenarios. We find an extremely luminous outburst of neutrinos with a peak luminosity of more than 4E54 erg/s for several milliseconds. This leads to an efficiency of about 1% for the annihilation of neutrinos with antineutrinos, corresponding to an average energy deposition rate of more than 1E52 erg/s and a total energy of about 1E50 erg deposited in electron-positron pairs around the collision site within 10ms. Although these numbers...

  14. Polarisation studies of the prompt gamma-ray emission from GRB 041219a using the Spectrometer aboard INTEGRAL

    CERN Document Server

    McGlynn, S; Dean, A J; Hanlon, L; McBreen, S; Willis, D R; McBreen, B; Bird, A J; Foley, S

    2007-01-01

    The spectrometer aboard INTEGRAL, SPI, has the capability to detect the signature of polarised emission from a bright gamma-ray source. GRB 041219a is the most intense burst localised by INTEGRAL and is an ideal candidate for such a study. Polarisation can be measured using multiple events scattered into adjacent detectors because the Compton scatter angle depends on the polarisation of the incoming photon. A search for linear polarisation in the most intense pulse of duration 66 seconds and in the brightest 12 seconds of GRB 041219a was performed in the 100-350keV, 100-500keV and 100keV-1MeV energy ranges. The multiple event data from the spectrometer was analysed and compared with the predicted instrument response obtained from Monte-Carlo simulations using the GEANT 4 INTEGRAL mass model. The chi^2 distribution between the real and simulated data as a function of the percentage polarisation and polarisation angle was calculated for all three energy ranges. The degree of linear polarisation in the brightest...

  15. A Scenario for the Fine Structures of Solar Type IIIb Radio Bursts Based on the Electron Cyclotron Maser Emission

    CERN Document Server

    Wang, C B

    2015-01-01

    A scenario based on the electron cyclotron maser emission is proposed for the fine structures of solar radio emission in the present discussion. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro-frequency by ultra low frequency waves, which is a key parameter for excitation of the electron cyclotron maser instability, may lead to the intermittent emission of radio waves. As an example, the explanation of the observed fine-structure components in the solar type IIIb burst is discussed in detail. Three primary issues of the type IIIb bursts are addressed: 1) what is the physical mechanism that results in the intermittent emission elements that form a chain in the dynamic spectrum of type IIIb bursts, 2) what causes the split pair (or double stria) and the triple stria, 3) why in the events of fundamental-harmonic pair emission there is only IIIb-III, but IIIb-IIIb or III-IIIb cases are very rarely observed.

  16. Gamma Ray Bursts and their Optical Counterparts

    International Nuclear Information System (INIS)

    Gamma Ray Bursts (GRB) have been discovered 38 years ago and still remain one of the most intriguing puzzles of astrophysics. In this paper we remind briefly the history of GRB studies and review the current experimental evidence with the emphasis on GRB optical counterparts. At the end we introduce '' π of the Sky '' project designed to catch prompt optical emission from GRB sources. (author)

  17. Gamma-ray bursts - a critical review

    International Nuclear Information System (INIS)

    We present a short general introduction into the field of gamma-ray bursts (GRBs) research, summarizing the past and the present status. We give an general view of the GRBs observations to date, both in the prompt emission phase as well as in the afterglow phase, and a brief primer into the theory, mainly in the frame-work of the fireball model. (authors)

  18. Potential Fuel Loadings, Fire Ignitions, and Smoke Emissions from Nuclear Bursts in Megacities

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-12-01

    We consider the effects of "small" nuclear detonations in modern "megacities," focusing on the possible extent of fire ignitions, and the properties of corresponding smoke emissions. Explosive devices in the multi-kiloton yield range are being produced by a growing number of nuclear states (Toon et al., 2006), and such weapons may eventually fall into the hands of terrorists. The numbers of nuclear weapons that might be used in a regional conflict, and their potential impacts on population and infrastructure, are discussed elsewhere. Here, we estimate the smoke emissions that could lead to widespread environmental effects, including large-scale climate anomalies. We find that low-yield weapons, which emerging nuclear states have been stockpiling, and which are likely to be targeted against cities in a regional war, can generate up to 100 times as much smoke per kiloton of yield as the high-yield weapons once associated with a superpower nuclear exchange. The fuel loadings in modern cities are estimated using a variety of data, including extrapolations from earlier detailed studies. The probability of ignition and combustion of fuels, smoke emission factors and radiative properties, and prompt scavenging and dispersion of the smoke are summarized. We conclude that a small regional nuclear war might generate up to 5 teragrams of highly absorbing particles in urban firestorms, and that this smoke could initially be injected into the middle and upper troposphere. These results are used to develop smoke emission scenarios for a climate impact analysis reported by Oman et al. (2006). Uncertainties in the present smoke estimates are outlined. Oman, L., A. Robock, G. L. Stenchikov, O. B. Toon, C. Bardeen and R. P. Turco, "Climatic consequences of regional nuclear conflicts," AGU, Fall 2006. Toon, O. B., R. P. Turco, A. Robock, C. Bardeen, L. Oman and G. L. Stenchikov, "Consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism," AGU, Fall

  19. A new method of determining the initial size and Lorentz factor of gamma-ray burst fireballs using a thermal emission component

    CERN Document Server

    Peér, A; Wijers, R A M J; Mészáros, P; Rees, M J; Pe'er, Asaf; Ryde, Felix; Wijers, Ralph A.M.J.; M\\'esz\\'aros, Peter; Rees, Martin J.

    2007-01-01

    In recent years there is increasing evidence for a thermal component in the gamma- and X-ray spectrum of the prompt emission phase in gamma-ray bursts. The temperature and flux of the thermal component show a characteristic break in the temporal behavior after few seconds. We show here, that measurements of the temperature and flux of the thermal component at early times (before the break) allow the determination of the values of two of the least restricted fireball model parameters: the size at the base of the flow and the outflow bulk Lorentz factor. Relying on the thermal emission component only, this measurement is insensitive to the inherent uncertainties of previous estimates of the bulk motion Lorentz factor. We give specific examples of the use of this method: for GRB970828 at redshift z=0.9578, we show that the physical size at the base of the flow is r_0 = (3.3+-2.1)*10^8 cm and the Lorentz factor of the flow is \\Gamma = 305+-28, and for GRB990510 at z=1.619, r_0=(1.9+-2.0)*10^8 cm and \\Gamma=384+-7...

  20. Prompt neutron emission multiplicity distributions and average values, ν-bar, at 2200 meter per second for the fissile nuclides

    International Nuclear Information System (INIS)

    The prompt neutron emission multiplicity distribution, Pν, is of interest for methods of self-calibration and for auto-correlation to assay fissionable material for nuclear safeguards. ν-bar, the average value of Pν, is of interest at neutron thermal energies since it is related to the neutron multiplication factor and it is used as a normalizing point for energy dependent values of ν-bar. Values of Pν and ν-bar have been determined at the standard neutron energy of 0.0253 ev for the neutron induced fission of the four fissile nuclides, 233,235U, and 239,241Pu. Revised ν-bar values have been obtained by re-evaluating ν-bar experiments measured at 2200 meter/second relative to the ν-bar from the spontaneous fission of 252Cf. These revised values of ν-bar have been used to renormalize the measured Pν values. The revised values of ν-bar are all about 1/4 % to 1/2 % smaller than the corresponding values of ENDF/B-V. (author)

  1. Detecting prompt gamma emission during proton therapy: the effects of detector size and distance from the patient

    Science.gov (United States)

    Polf, Jerimy C.; Mackin, Dennis; Lee, Eunsin; Avery, Stephen; Beddar, Sam

    2014-05-01

    Recent studies have suggested that the characteristics of prompt gammas (PGs) emitted from excited nuclei during proton therapy are advantageous for determining beam range during treatment delivery. Since PGs are only emitted while the beam is on, the feasibility of using PGs for online treatment verification depends greatly on the design of highly efficient detectors. The purpose of this work is to characterize how PG detection changes as a function of distance from the patient as a means of guiding the design and usage of clinical PG imaging detectors. Using a Monte Carlo model (GEANT4.9.4) we studied the detection rate (PGs per incident proton) of a high purity germanium detector for both the total PG emission and the characteristic 6.13 MeV PG emission from 16O emitted during proton irradiation. The PG detection rate was calculated as a function of distance from the isocenter of the proton treatment nozzle for: (1) a water phantom irradiated with a proton pencil beam and (2) a prostate patient irradiated with a scanning beam proton therapy treatment field (lateral field size: ˜6 cm × 6 cm, beam range: 23.5 cm). An analytical expression of the PG detection rate as a function of distance from isocenter, detector size, and proton beam energy was then developed. The detection rates were found to be 1.3 × 10-6 for oxygen and 3.9 × 10-4 for the total PG emission, respectively, with the detector placed 11 cm from isocenter for a 40 MeV pencil beam irradiating a water phantom. The total PG detection rate increased by ˜85 ± 3% for beam energies greater than 150 MeV. The detection rate was found to be approximately 2.1 × 10-6 and 1.7 × 10-3 for oxygen and total PG emission, respectively, during delivery of a single pencil beam during a scanning beam treatment for prostate cancer. The PG detection rate as a function of distance from isocenter during irradiation of a water phantom with a single proton pencil beam was described well by the model of a point source

  2. The full curvature effect expected in early X-ray afterglow emission of gamma-ray bursts

    OpenAIRE

    Qin, Y. -P.

    2008-01-01

    We explore the influence of the full curvature effect on the flux of early X-ray afterglow of gamma-ray bursts (GRBs) in cases when the spectrum of the intrinsic emission is a power-law. We find that the well-known $t^{-(2+\\beta)}$ curve is present only when the intrinsic emission is extremely short or the emission arises from an exponential cooling. The time scale of this curve is independent of the Lorentz factor. The resulting light curve would contain two phases when the intrinsic emissio...

  3. Particle-In-Cell, self-consistent electromagnetic wave emission simulations of type III radio bursts

    CERN Document Server

    Tsiklauri, David

    2010-01-01

    High-resolution, 1.5D Particle-in-Cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to earth is considered, for which four cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e. by setting the beam pitch angle. In the case of zero pitch angle, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave nois...

  4. Accelerating Compact Object Mergers in Triple Systems with the Kozai Resonance: A Mechanism for "Prompt" Type Ia Supernovae, Gamma-Ray Bursts, and Other Exotica

    Science.gov (United States)

    Thompson, Todd A.

    2011-11-01

    White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t H), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t merge tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t merge tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.

  5. Towards a Better Understanding of the GRB Phenomenon: a New Model for GRB Prompt Emission and its effects on the New Non-Thermal L$_\\mathrm{i}^\\mathrm{NT}$-E$_\\mathrm{peak,i}^\\mathrm{rest,NT}$ relation

    CERN Document Server

    Guiriec, S; Daigne, F; Zhang, B; Hascoet, R; Nemmen, R; Thompson, D; Bhat, N; Gehrels, N; Gonzalez, M; Kaneko, Y; McEnery, J; Mochkovitch, R; Racusin, J; Ryde, F; Sacahui, J; Unsal, A

    2015-01-01

    We reanalyze the prompt emission of two of the brightest Fermi GRBs (080916C and 090926A) with a new model composed of 3 components: (i) a thermal-like component--approximated with a black body (BB)--interpreted as the jet photosphere emission of a magnetized relativistic outflow, (ii) a non-thermal component--approximated with a Band function--interpreted as synchrotron radiation in an optically thin region above the photosphere either from internal shocks or magnetic field dissipation, and (iii) an extra power law (PL) extending from low to high energies likely of inverse Compton origin, even though it remains challenging. Through fine-time spectroscopy down to the 100 ms time scale, we follow the smooth evolution of the various components. From this analysis the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst durati...

  6. A Burst to See

    Science.gov (United States)

    2008-04-01

    On 19 March, Nature was particularly generous and provided astronomers with the wealth of four gamma-ray bursts on the same day. But that was not all: one of them is the most luminous object ever observed in the Universe. Despite being located in a distant galaxy, billions of light years away, it was so bright that it could have been seen, for a brief while, with the unaided eye. ESO PR Photo 08a/08 ESO PR Photo 08a/08 The REM Telescope and TORTORA Camera Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. It is now widely accepted that the majority of the gamma-ray bursts signal the explosion of very massive, highly evolved stars that collapse into black holes. Gamma-ray bursts, which are invisible to our eyes, are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This 'afterglow' fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness. The gamma-ray burst GRB 080319B was detected by the NASA/STFC/ASI Swift satellite. "It was so bright that it almost blinded the Swift instruments for a while," says Guido Chincarini, Italian principal investigator of the mission. A bright optical counterpart was soon identified in the Boötes Constellation (the "Bear Driver" or "Herdsman"). A host of ground-based telescopes reacted promptly to study this new object in the sky. In particular, the optical emission was detected by a few wide-field cameras on telescopes that constantly monitor a large fraction of the sky, including the TORTORA camera in symbiosis with the 0.6-m REM telescope located at La Silla

  7. T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Danilyan, G. V. [Institute for Theoretical and Experimental Physics (Russian Federation); Klenke, J. [Forschungs-Neutronenquelle Heinz Meier-Leibnitz (FRM II) (Germany); Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B. [Institute for Theoretical and Experimental Physics (Russian Federation)

    2011-05-15

    Study of the T-odd three-vector correlation in the emission of prompt neutrons from {sup 235}U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 Multiplication-Sign 10{sup -5}. The upper limit for the asymmetry coefficient has been set to vertical bar D{sub n} vertical bar < 6 Multiplication-Sign 10{sup -5} at 99% confidence level, whereas for ternary fission correlation coefficient D{sub {alpha}} = (170{+-}20) Multiplication-Sign 10{sup -5}. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5 Degree-Sign to the fission axis, the correlation coefficient was found to be (1.57 {+-} 0.20) Multiplication-Sign 10{sup -4}, while at the angle of 67.5 Degree-Sign it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt {gamma}-rays.

  8. A Characteristic Wind Signature in Prompt GRB Afterglows

    CERN Document Server

    Kobayashi, S; Zhang, B; Kobayashi, Shiho; Meszaros, Peter; Zhang, Bing

    2004-01-01

    We discuss the self-absorption effects in the prompt emission from the reverse shock in GRB afterglows that occur in the wind environment of a massive stellar progenitor. We point out that the higher self-absorption frequency in a wind environment implies a hump in the reverse shock emission spectrum and a more complex optical/IR light curve behavior than previously thought. We discuss a possible new diagnostic to test for the presence of a wind environment, and to provide constraints on the progenitor wind mass loss and the burst parameters.

  9. Observational Signatures of High-Energy Emission during the Shallow Decay Phase of Gamma-Ray Burst X-Ray Afterglows

    Science.gov (United States)

    Yu, Y. W.; Liu, X. W.; Dai, Z. G.

    2007-12-01

    The widely existing shallow decay phase of the X-ray afterglows of gamma-ray bursts (GRBs) is generally accepted to be due to long-lasting energy injection. The outflows carrying the injecting energy, based on the component that is dominant in energy, fall into two possible types: baryon-dominated and lepton-dominated ones. The former type of outflow could be ejecta that is ejected during the prompt phase of a GRB and consists of a series of baryonic shells with a distribution of Lorentz factors, and the latter type could be an electron-positron pair wind that is driven by the postburst central engine. We here provide a unified description for the dynamics of fireballs based on these two types of energy injection and calculate the corresponding high-energy photon emission by considering synchrotron radiation and inverse Compton scattering (including synchrotron self-Compton and combined inverse Compton) of electrons. We find that, in the two energy-injection models, there is a plateau (even a hump) in high-energy light curves during the X-ray shallow decay phase. In particular, a considerable fraction of the injecting energy in the lepton-dominated model can be shared by the long-lasting reverse shock since it is relativistic. Furthermore, almost all of the energy of the reverse shock is carried by leptons, and thus, the inverse Compton emission is enhanced dramatically. Therefore, this model predicts more significant high-energy afterglow emission than the baryon-dominated model. We argue that these observational signatures would be used to discriminate between different energy-injection models in the upcoming Gamma-Ray Large Area Space Telescope (GLAST) era.

  10. The ultra-long GRB 111209A - II. Prompt to afterglow and afterglow properties

    CERN Document Server

    Stratta, G; Atteia, J L; Boër, M; Coward, D M; De Pasquale, M; Howell, E; Klotz, A; Oates, S; Piro, L

    2013-01-01

    The "ultra-long" Gamma Ray Burst GRB 111209A at redshift z=0.677, is so far the longest GRB ever observed, with rest frame prompt emission duration of ~4 hours. In order to explain the bursts exceptional longevity, a low metallicity blue supergiant progenitor has been invoked. In this work, we further investigate this peculiar burst by performing a multi-band temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus Wind, XMM-Newton, TAROT as well as from other ground based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: i) an unprecedented large optical delay of 410+/-50 s is measured between the peak epochs of a marked flare observed also in gamma-rays after about 2 ks from the first Swift/BAT trigger; ii) if the optical and X-ray/gamma-ray photons during the prompt emission share a common origin, as suggested by their similar tempor...

  11. CGRO/BATSE Data Support the New Paradigm for GRB Prompt Emission and the New L$_{i}^{nTh}$-E$_{peak,i}^{nTh,rest}$ relation

    CERN Document Server

    Guiriec, S; Sacahui, J R; Kouveliotou, C; Gehrels, N; McEnery, J

    2015-01-01

    The paradigm for GRB prompt emission is changing. Since early in the CGRO era, the empirical Band function has been considered a good description of the keV-MeV spectra although its shape is very often inconsistent with the predictions of the pure synchrotron emission scenarios. We have recently established a new observational model analyzing data of the NASA Fermi Gamma-ray Space Telescope. In this model, GRB prompt emission is a combination of three main emission components: (i) a thermal-like component that we interpreted so far as the jet photosphere emission, (ii) a non-thermal component that we interpreted so far as synchrotron radiation, and (iii) an additional non-thermal (cutoff) power-law most likely of inverse Compton origin. In this article we reanalyze some of the bright GRBs observed with CGRO/BATSE with the new model, namely GRBs 941017, 970111 and 990123. We conclude that BATSE data are fully consistent with the recent results obtained with Fermi: some bright BATSE GRBs exhibit three separate ...

  12. Expected characteristics of the subclass of Supernova Gamma-ray Bursts (S-GRBs)

    OpenAIRE

    Bloom, J. S.; Kulkarni, S.R.; Harrison, F.; T. Prince; Phinney, E. S.; Frail, D. A.

    1998-01-01

    The spatial and temporal coincidence between the gamma-ray burst (GRB) 980425 and supernova (SN) 1998bw has prompted speculation that there exists a class of GRBs produced by SNe (``S-GRBs''). Robust arguments for the existence of a relativistic shock have been presented on the basis of radio observations. A physical model based on the radio observations lead us to propose the following characteristics of supernovae GRBs (S-GRBs): 1) prompt radio emission and implied brightness temperature ne...

  13. EVIDENCE FOR A PHOTOSPHERIC COMPONENT IN THE PROMPT EMISSION OF THE SHORT GRB 120323A AND ITS EFFECTS ON THE GRB HARDNESS-LUMINOSITY RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Guiriec, S.; McEnery, J.; Gehrels, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Daigne, F.; Hascoeet, R.; Mochkovitch, R. [Institut d' Astrophysique de Paris UMR 7095 Universite Pierre et Marie Curie-Paris 06 (France); CNRS 98 bis bd Arago, F-75014 Paris (France); Vianello, G. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ryde, F. [Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Kouveliotou, C. [Office of Science and Technology, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Xiong, S.; Bhat, P. N.; Burgess, J. M. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S.; McGlynn, S. [UCD School of Physics, University College Dublin, Dublin 4 (Ireland); Gruber, D., E-mail: sylvain.guiriec@nasa.gov [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2013-06-10

    The short GRB 120323A had the highest flux ever detected with the Gamma-Ray Burst Monitor on board the Fermi Gamma-Ray Space Telescope. Here we study its remarkable spectral properties and their evolution using two spectral models: (1) a single emission component scenario, where the spectrum is modeled by the empirical Band function (a broken power law), and (2) a two-component scenario, where thermal (a Planck-like function) emission is observed simultaneously with a non-thermal component (a Band function). We find that the latter model fits the integrated burst spectrum significantly better than the former, and that their respective spectral parameters are dramatically different: when fit with a Band function only, the E{sub peak} of the event is unusually soft for a short gamma-ray burst (GRB; 70 keV compared to an average of 300 keV), while adding a thermal component leads to more typical short GRB values (E{sub peak} {approx} 300 keV). Our time-resolved spectral analysis produces similar results. We argue here that the two-component model is the preferred interpretation for GRB 120323A based on (1) the values and evolution of the Band function parameters of the two component scenario, which are more typical for a short GRB, and (2) the appearance in the data of a significant hardness-intensity correlation, commonly found in GRBs, when we employee two-component model fits; the correlation is non-existent in the Band-only fits. GRB 110721A, a long burst with an intense photospheric emission, exhibits the exact same behavior. We conclude that GRB 120323A has a strong photospheric emission contribution, observed for the first time in a short GRB. Magnetic dissipation models are difficult to reconcile with these results, which instead favor photospheric thermal emission and fast cooling synchrotron radiation from internal shocks. Finally, we derive a possibly universal hardness-luminosity relation in the source frame using a larger set of GRBs (L{sub i}{sup Band

  14. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils

    DEFF Research Database (Denmark)

    Hansen, Mette; Clough, Tim J.; Elberling, Bo

    2014-01-01

    emissions is poorly studied for agricultural systems. The overall N2O dynamics during flooding of an agricultural soil and the effect of pH and NO3− concentration has been investigated based on a combination of the use of microsensors, stable isotope techniques, KCl extractions and modelling. This study...... within the soil. The magnitude of the emissions are, not surprisingly, positively correlated with the soil NO3− concentration but also negatively correlated with liming (neutral pH). The redox potential of the soil is found to influence N2O accumulation as the production and consumption of N2O occurs...... in narrow redox windows where the redox range levels are negatively correlated with the pH. This study highlights the potential importance of N2O bursts associated with flooding and infers that annual N2O emission estimates for tilled agricultural soils that are temporarily flooded will be underestimated...

  15. Broadband study of GRB 091127: a sub-energetic burst at higher redshift?

    CERN Document Server

    Troja, E; Guidorzi, C; Norris, J P; Panaitescu, A; Kobayashi, S; Omodei, N; Brown, J C; Burrows, D N; Evans, P A; Gehrels, N; Marshall, F E; Mawson, N; Melandri, A; Mundell, C G; Oates, S R; Pal'shin, V; Preece, R D; Racusin, J L; Steele, I A; Tanvir, N R; Vasileiou, V; Wilson-Hodge, C; Yamaoka, K

    2012-01-01

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z=0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low energy release, soft spectrum and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  16. Afterglow emission from pair-loaded blast waves in gamma-ray bursts

    OpenAIRE

    Beloborodov, Andrei M.

    2005-01-01

    The MeV radiation front of gamma-ray bursts creates copious e+- pairs as it propagates through an ambient medium. The created pairs enrich the leptonic component of the medium by a large factor at distances R < R_load ~ 10^{16} cm from the burst center. The following blast wave sweeps up the pair-rich medium and then emits the observed afterglow radiation. We find that the afterglow has a "memory" of e+- loading outside R_load. The e+- pairs remain in the swept-up material and slowly cool dow...

  17. The Decay of Optical Emission Form the Gamma-Ray Burst GRB 970228

    Science.gov (United States)

    Galama, T.; Groot, P. J.; vanParadijs, J.; Kouvellotou, C.; Robinson, C. R.; Fishmans, G. J.; Meegan, C. A.; Sahu, K. C.; Livio, M.; Petro, L.

    1997-01-01

    The origin of gamma-ray bursts has been one of the great unsolved mysteries in high-energy astrophysics for almost 30 years. The recent discovery of fading sources at X-ray and optical wave-lengths coincident with the location of the gamma-ray burst GRB970228 therefore provides an unprecedented opportunity to probe the nature of these high-energy events. The optical counterpart appears to be a transient point source embedded in a region of extended nebulosity, the latter having been tentatively identified as a high-redshift galaxy. This would seem to favour models that place gamma-ray bursts at cosmological distances, although a range of mechanisms for producing the bursts is still allowed. A crucial piece of information for distinguishing between such models is how the brightness of the optical counterpart evolves with time. Here we re-evaluate the existing photometry of the optical counterpart of GRB970228 to construct an optical light curve for the transient event. We find that between 21 hours and six days after the burst, the R-band brightness decreased by a factor of approx. 50, with any subsequent decrease in brightness occurring at a much slower rate. As the point source faded, it also became redder. The initial behaviour of the source appears to be consistent with the 'fireball' model, in which the burst results from the merger of two neutron stars, but the subsequent decrease in the rate of fading may prove harder to explain. The gamma-ray burst of 28 February 1997, detected with the Gamma-Ray Burst Monitor on board the BeppoSAX satellite, and located with an approx. 3 feet radius position with the Wide Field Camera on the same satellite, was the first for which a fading X-ray and optical counterpart were discovered. The optical Counterpart was discovered from a comparison of V- and I-band images taken with the William Herschel Telescope (WHT) on February 28.99 UT, and the Isaac Newton Telescope (INT; V band) and the WHT (I band) on March 8.8 uT.

  18. Afterglow emission in Gamma-Ray Bursts: I. Pair-enriched ambient medium and radiative blast waves

    CERN Document Server

    Nava, L; Ghisellini, G; Celotti, A; Ghirlanda, G

    2012-01-01

    Forward shocks caused by the interaction between a relativistic blast wave and the circum-burst medium are thought to be responsible for the afterglow emission in Gamma-Ray Bursts (GRBs). We consider the hydrodynamics of a spherical relativistic blast wave expanding into the surrounding medium and we generalize the standard theory in order to account for several effects that are generally ignored. In particular, we consider the role of adiabatic and radiative losses on the hydrodynamical evolution of the shock, under the assumption that the cooling losses are fast. Our model can describe adiabatic, fully radiative and semi-radiative blast waves, and can describe the effects of a time-varying radiative efficiency. The equations we present are valid for arbitrary density profiles, and also for a circum-burst medium enriched with electron-positron pairs. The presence of pairs enhances the fraction of shock energy gained by the leptons, thus increasing the importance of radiative losses. Our model allows to study...

  19. MODELING PHOTODISINTEGRATION-INDUCED TeV PHOTON EMISSION FROM LOW-LUMINOSITY GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuewen [Physics Department, Sichuan University, Chengdu 610065 (China); Wu Xuefeng; Lu Tan, E-mail: astrolxw@gmail.com, E-mail: xfwu@pmo.ac.cn, E-mail: t.lu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-05-15

    Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like {gamma}-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.

  20. Failed Gamma-Ray Bursts: Thermal UV/Soft X-ray Emission Accompanied by Peculiar Afterglows

    CERN Document Server

    Xu, M; Huang, Y -F; Lee, S -H

    2011-01-01

    We show that the photospheres of "failed" Gamma-Ray Bursts (GRBs), whose bulk Lorentz factors are much lower than 100, can be outside of internal shocks. The resulting radiation from the photospheres is thermal and bright in UV/Soft X-ray band. The photospheric emission lasts for about one thousand seconds with luminosity about several times 10^46 erg/s. These events can be observed by current and future satellites. It is also shown that the afterglows of failed GRBs are peculiar at the early stage, which makes it possible to distinguish failed GRBs from ordinary GRBs and beaming-induced orphan afterglows.

  1. EDGE: Explorer of diffuse emission and gamma-ray burst explosions

    DEFF Research Database (Denmark)

    Piro, L; den Herder, J W; Ohashi, T;

    2009-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosion...

  2. EDGE: Explorer of diffuse emission and gamma-ray burst explosions

    DEFF Research Database (Denmark)

    Den Herder, J.W.; Hermsen, W.; Hoevers, H.;

    2007-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE1 will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galax...

  3. Analysis of two scenarios for the early optical emission of the gamma-ray burst afterglows 990123 and 021211

    Science.gov (United States)

    Panaitescu, A.; Kumar, P.

    2004-09-01

    The optical light curves of gamma-ray burst (GRB) afterglows 990123 and 021211 exhibit a steep decay at 100-600 s after the burst, the decay becoming slower after about 10 min. We investigate two scenarios for the fast decaying early optical emission of these GRB afterglows. In the reverse-forward shock scenario, this emission arises in the reverse shock crossing the GRB ejecta, the mitigation of the light-curve decay occurring when the forward shock emission overtakes that from the reverse shock. Both a homogeneous and wind-like circumburst medium are considered. In the wind-bubble scenario, the steeply decaying, early optical emission arises from the forward shock interacting with a r-2 bubble, with a negligible contribution from the reverse shock, the slower decay starting when the blast wave reaches the bubble termination shock and enters a homogeneous region of the circumburst medium. We determine the shock microphysical parameters, ejecta kinetic energy and circumburst density, which accommodate the radio and optical measurements of the GRB afterglows 990123 and 021211. We find that, for a homogeneous medium, the radio and optical emissions of the afterglow 990123 can be accommodated by the reverse-forward shock scenario if the microphysical parameters behind the two shocks differ substantially. A wind-like circumburst medium also allows the reverse-forward shock scenario to account for the radio and optical properties of the afterglows 990123 and 021211, but the required wind densities are at least 10 times smaller than those of Galactic Wolf-Rayet stars. The wind-bubble scenario requires a variation of the microphysical parameters when the afterglow fireball reaches the wind termination shock, which seems a contrived feature.

  4. The nature of the outflow in gamma-ray bursts

    CERN Document Server

    Kumar, P; Panaitescu, A; Willingale, R; O'Brien, P; Burrows, D; Cummings, J; Gehrels, N; Holland, S; Pandey, S B; Vanden Berk, D E; Zane, S

    2007-01-01

    The Swift satellite has enabled us to follow the evolution of gamma-ray burst (GRB) fireballs from the prompt gamma-ray emission to the afterglow phase. The early x-ray and optical data obtained by telescopes aboard the Swift satellite show that the source for prompt gamma-ray emission, the emission that heralds these bursts, is short lived and that its source is distinct from that of the ensuing, long-lived afterglow. Using these data, we determine the distance of the gamma-ray source from the center of the explosion. We find this distance to be 1e15-1e16 cm for most bursts and we show that this is within a factor of ten of the radius of the shock-heated circumstellar medium (CSM) producing the x-ray photons. Furthermore, using the early gamma-ray, x-ray and optical data, we show that the prompt gamma-ray emission cannot be produced in internal shocks, nor can it be produced in the external shock; in a more general sense gamma-ray generation mechanisms based on shock physics have problems explaining the GRB ...

  5. Gamma-ray bursts and Population III stars

    CERN Document Server

    Toma, Kenji; Bromm, Volker

    2016-01-01

    Gamma-ray bursts (GRBs) are ideal probes of the epoch of the first stars and galaxies. We review the recent theoretical understanding of the formation and evolution of the first (so-called Population III) stars, in light of their viability of providing GRB progenitors. We proceed to discuss possible unique observational signatures of such bursts, based on the current formation scenario of long GRBs. These include signatures related to the prompt emission mechanism, as well as to the afterglow radiation, where the surrounding intergalactic medium might imprint a telltale absorption spectrum. We emphasize important remaining uncertainties in our emerging theoretical framework.

  6. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sánchez-Losa, A; Sapienza, P; Schnabel, J; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúniga, J

    2013-01-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV--PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  7. Radio emissions from pulsar companions : a refutable explanation for galactic transients and fast radio bursts

    OpenAIRE

    Mottez, Fabrice; Zarka, Philippe

    2014-01-01

    The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources, of unknown origin but extremely energetic. We propose here a new explanation - not requiring an extreme release of energy - involving a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. We investigate a theory of radio waves associated to such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving...

  8. GRB Prompt Optical Observations by Master and Lomonosov

    Science.gov (United States)

    Gorbovskoy, Evgeny

    We present the results of the prompt, early and afterglow optical observations of five γ-ray bursts (GRBs): GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A. These observations were made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II Net), the 1.5-m telescope of the Sierra Nevada Observatory and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before the cessation of γ-ray emission, at 113 and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted in two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. A more detailed analysis of GRB 100901A and GRB 100906A, supplemented by Swift data, provides the following results and indicates different origins for the prompt optical radiation in the two bursts. The light-curve patterns and spectral distributions suggest that there is a common production site for the prompt optical and high-energy emission in GRB 100901A. The results of the spectral fits for GRB 100901A in the range from optical to X-ray favour power-law energy distributions and a consistent value of the optical extinction in the host galaxy. GRB 100906A produced a smoothly peaking optical light curve, suggesting that the prompt optical radiation in this GRB originated in a front shock. This is supported by a spectral analysis. We have found that the Amati and Ghirlanda relations are satisfied for GRB 100906A. We obtain an upper limit on the value of the optical extinction on the host of GRB 100906A. Also we consider prompt observation of dark gamma ray bursts for which on very widefield cameras MASTER-VWF and MASTER-II telescopes upper limits were received. We represent SHOCK experiment onboard the spacecraft Lomonosov.

  9. Neutrino emission from high-energy component gamma-ray bursts

    CERN Document Server

    Becker, Julia K; O'Murchadha, Aongus; Olivo, Martino

    2010-01-01

    Gamma-ray bursts have the potential to produce the particle energies (up to $10^{21}$\\,eV) and the energy budget ($10^{44}\\, \\rm{erg\\, yr^{-1}\\, Mpc^{-3}}$) to accommodate the spectrum of the highest energy cosmic rays; on the other hand, there is no observational evidence that they accelerate hadrons. The Fermi GST recently observed two bursts that exhibit a power-law high-energy extension of the typical (Band) photon spectrum that extends to $\\sim 30$ GeV. On the basis of fireball phenomenology we argue that they, along with GRB941017 observed by EGRET in 1994, show indirect evidence for considerable baryon loading. Since the detection of neutrinos is the only unambiguous way to establish that GRBs accelerate protons, we use two methods to estimate the neutrino flux produced when they interact with fireball photons to produce charged pions and neutrinos. While the number of events expected from the Fermi bursts detected to date is small, we conclude that an event like GRB941017 will be detected by the IceCu...

  10. Suppression of the Early Optical Afterglow of Gamma-Ray Bursts

    CERN Document Server

    Roming, P W A; Fox, D B; Zhang, B; Liang, E; Mason, K O; Rol, E; Burrows, D N; Blustin, A J; Boyd, P T; Brown, P; Holland, S T; McGowan, K; Landsman, W B; Page, K L; Rhoads, J E; Rosen, S R; Barthelmy, S D; Breeveld, A A; Cucchiara, A; De Pasquale, M; Fenimore, E E; Gehrels, N; Gronwall, C; Grupe, D; Goad, M R; Ivanushkina, M; James, C; Kennea, J A; Kobayashi, S; Mangano, V; Mészáros, P; Morgan, A N; Nousek, J A; Osborne, J P; Palmer, D M; Poole, T; Still, M D; Tagliaferri, G; Zane, S

    2005-01-01

    Recent observations of gamma-ray bursts (GRBs) are providing prompt few-arcminute gamma-ray localizations, rapid few-arcsecond X-ray positions, and rapid and extensive follow-up in the X-ray, UV, optical, and radio bands. Thirteen of these bursts include extraordinary optical upper limits at very early epochs after the burst, in marked contrast to the bright optical flashes previously believed to be the norm. Although host extinction can explain the properties of some bursts, and the natural range of burst energies and distances can explain some others, comparison of our optical, X-ray, and gamma-ray data sets reveals that these considerations alone cannot explain the full diversity of the burst population. Instead, one or more mechanisms must act to suppress the optical flash and provide a significantly enhanced efficiency of the prompt gamma-ray emission for some bursts. One possibility is that a fraction of the burst population is powered by Poynting flux-dominated outflows, resulting in a very inefficient...

  11. Investigating the impact of optical selection effects on observed rest frame prompt GRB properties

    CERN Document Server

    Turpin, Damien; Dezalay, Jean-Pascal; Atteia, Jean-Luc; Klotz, Alain; Dornic, Damien

    2016-01-01

    Measuring gamma-ray burst (GRB) properties in their rest-frame is crucial to understand the physics at work in gamma-ray bursts. This can only be done for GRBs with known redshift. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases in the distribution of rest-frame properties of the prompt emission. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well measured prompt emission. 76 of them have a measure of redshift and 14 have no redshift. We estimate their optical brightness with their R magnitude measured two hours after the trigger and compare the rest frame prompt properties of different classes of GRB afterglow brightness. We find that the optical brightness of GRBs in our sample is mainly driven by their intrinsic afterglow luminosity. We show that GRBs with low and high afterglow optical fluxes have similar Epi , Eiso , Liso , indicating that the rest-frame distributions co...

  12. How Else Can We Detect Fast Radio Bursts?

    Science.gov (United States)

    Lyutikov, Maxim; Lorimer, Duncan R.

    2016-06-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15–20 mag with an expected optical detection rate of about 0.1 hr‑1, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  13. How Else Can We Detect Fast Radio Bursts?

    Science.gov (United States)

    Lyutikov, Maxim; Lorimer, Duncan R.

    2016-06-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15-20 mag with an expected optical detection rate of about 0.1 hr-1, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  14. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    Science.gov (United States)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  15. Beat-type Langmuir wave emissions associated with a type III solar radio burst: Evidence of parametric decay

    Science.gov (United States)

    Hospodarsky, G. B.; Gurnett, D. A.

    1995-01-01

    Recent measurements from the plasma wave instrument on the Galileo spacecraft have shown that Langmuir waves observed in conjunction with a type III solar radio burst contain many beat-type waveforms, with beat frequencies ranging from about 150 to 650 Hz. Strong evidence exists that the beat pattern is produced by two closely spaced narrowband components. The most likely candidates for these two waves are a beam-generated Langmuir wave and an oppositely propagating Langmuir wave produced by parametric decay. In the parametric decay process, nonlinear interactions cause the beam-driven Langmuir wave to decay into a Langmuir wave and a low-frequency ion sound wave. Comparisons of the observed beat frequency are in good agreement with theoretical predictions for a three-wave parametric decay process. Weak low-frequency emissions are also sometimes observed at the predicted frequency of the ion sound wave.

  16. Relative timing of solar prompt. gamma. -ray line and X-ray emission produced by flare accelerated ions and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hulot, E.; Vilmer, N.; Trottet, G.

    1988-09-25

    SMM and Hinotori observations show that the peak time of the ..gamma..-ray emission is sometimes delayed with respect to the one of the hard X-ray flux. Such delays may be interpreted either as an evidence of a two step acceleration process of electrons and ions or as the result of the partial trapping and/or propagation of the particles from the acceleration region to the interaction site. Here we focus on the latter hypothesis and present some preliminary calculations of the time dependent transport of energetic ions. Preliminary estimates of the 4.4 MeV line emission are used to discuss the relative timing of Hard X-ray and ..gamma..-ray emissions. One difficulty with the preliminary model discussed here is that the number of ions involved in the ..gamma..-ray line production is very large. Nevertheless, for reasonable parameters, a good agreement is found between observed and expected delays.

  17. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    Science.gov (United States)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  18. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    CERN Document Server

    Campana, S; D'Avanzo, P; Ghirlanda, G; Melandri, A; Pescalli, A; Salafia, O S; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2016-01-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an...

  19. Gamma Ray Bursts Cook Book II: Simulation

    CERN Document Server

    Ziaeepour, Houri

    2008-01-01

    In Paper I we presented a detailed formulation of the relativistic shocks and synchrotron emission in the context of Gamma-Ray Burst (GRB) physics. To see how well this model reproduces the observed characteristics of the GRBs and their afterglows, here we present the results of some simulations based on this model. They are meant to reproduce the prompt and afterglow emission in some intervals of time during a burst. We show that this goal is achieved for both short and long GRBs and their afterglows, at least for part of the parameter space. Moreover, these results are the evidence of the physical relevance of the two phenomenological models we have suggested in Paper I for the evolution of the "active region", the synchrotron emitting region in a shock. The dynamical active region model seems to reproduce the observed characteristics of prompt emissions better than the quasi-steady model which is more suitable for afterglows. Therefore these simulations confirm the arguments presented in Paper I about the ...

  20. Transient optical emission from the error box of the gamma-ray burst of 28 February 1997

    DEFF Research Database (Denmark)

    van Paradijs, J.; Groot, P.J.; Galama, T.;

    1997-01-01

    For almost a quarter of a century(1), the origin of gamma-ray bursts-brief, energetic bursts of high-energy photons-has remained unknown. The detection of a counterpart at another wavelength has long been thought to be a key to understanding the nature of these bursts (see, for example, ref. 2), ...

  1. The Use of the BAT Instrument on SWIFT for the Detection of Prompt Gamma-Ray Emission from Novae

    Science.gov (United States)

    Skinner, Gerry; Senziani, Fabio; Jean, Pierre; Hernanz, Margarita

    2007-01-01

    Gamma-rays are expected to be emitted during and immediately following a nova explosion due to the annihilation of positrons emitted by freshly produced short-lived radioactive isotopes. The expected gammaray emission is relatively short-lived and as nova explosions are unpredictable, the best chance of detecting the gamma-rays is with n wide field instrument. At the time when the flux is expected to rcach its peak, most of the gamma-ray production is at depths such that the photons suffer several Compton scatterings before escaping, degrading their energy down to the hard X-ray band (10s of keV). SWIFT/BAT is a very wide field coded mask instrument working in the energy band 14-190 keV and so is very well suited to the search for such gamma-rays. A retrospective search is being made in the BAT data for evidence for gamma-ray emission from the direction of novae at around the time of their explosion. So far the only positive detection is of RS Ophiuchi and in this case the emission is probably due to shock heating.

  2. Colliding neutron stars --- Gravitational waves, neutrino emission, and gamma-ray bursts

    OpenAIRE

    Ruffert, Maximilian; Janka, H. -Thomas

    1998-01-01

    Three-dimensional hydrodynamical simulations are presented for the direct head-on or off-center collision of two neutron stars, employing a basically Newtonian PPM code but including the emission of gravitational waves and their back-reaction on the hydrodynamical flow. A physical nuclear equation of state is used that allows us to follow the thermodynamical evolution of the stellar matter and to compute the emission of neutrinos. Predicted gravitational wave signals, luminosities and wavefor...

  3. Subphotospheric neutrinos from gamma-ray bursts: the role of neutrons.

    Science.gov (United States)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2013-09-27

    Relativistic outflows with neutrons inevitably lead to inelastic collisions, and resulting subphotospheric γ rays may explain prompt emission of γ-ray bursts. In this model, hadronuclear, quasithermal neutrinos in the 10-100 GeV range should be generated, and they may even have a high-energy tail by neutron-proton-converter or shock acceleration mechanisms. We demonstrate the importance of dedicated searches with DeepCore+IceCube, though such analyses have not been performed. Successful detections enable us to discriminate among prompt emission mechanisms, probe the jet composition, and see roles of relativistic neutrons as well as effects of cosmic-ray acceleration. PMID:24116764

  4. Evidence for a Photospheric Component in the Prompt Emission of the Short GRB120323A and its Effects on the GRB Hardness-Luminosity Relation

    CERN Document Server

    Guiriec, S; Hascoët, R; Vianello, G; Mochkovitch, R; Ryde, F; Kouveliotou, C; Xiong, S; Bhat, P N; Foley, S; Grüber, D; Burgess, J M; McGlynn, S; McEnery, J; Gehrels, N

    2012-01-01

    The short GRB 120323A had the highest flux ever detected with the Fermi/GBM. Here we study its remarkable spectral properties and their evolution using two spectral models: (i) a single emission component scenario, where the spectrum is modeled by the empirical Band function, and (ii) a two component scenario, where thermal (Planck-like) emission is observed simultaneously with a non-thermal component (a Band function). We find that the latter model fits the integrated burst spectrum significantly better than the former, and that their respective spectral parameters are dramatically different: when fit with a Band function only, the Epeak of the event is unusually soft for a short GRB, while adding a thermal component leads to more typical short GRB values. Our time-resolved spectral analysis produces similar results. We argue here that the two-component model is the preferred interpretation for GRB 120323A, based on: (i) the values and evolution of the Band function parameters of the two component scenario, ...

  5. Radio emissions from pulsar companions : a refutable explanation for galactic transients and fast radio bursts

    CERN Document Server

    Mottez, Fabrice

    2014-01-01

    The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources, of unknown origin but extremely energetic. We propose here a new explanation - not requiring an extreme release of energy - involving a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. We investigate a theory of radio waves associated to such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals in order to see if they could originate from pulsar-orbiting bodies. The analysis is based on the theory of Alfv\\'en wings: for a body immersed in a pulsar wind, a system of two stationary Alfv\\'en waves is attached to the body, provided that the wind is highly magnetized. When destabilized through plasma instabilities, Alfv\\'en wings can be the locus of strong radio sources convected with the pulsar wind. Assuming a cyclotron mase...

  6. INTEGRAL and XMM-Newton observations of the weak gamma-ray burst GRB 030227

    DEFF Research Database (Denmark)

    Mereghetti, S.; Gotz, D.; Tiengo, A.;

    2003-01-01

    We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led to the disco......We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led...... to the discovery of X-ray and optical afterglows. GRB 030227 had a duration of about 20 s and a peak flux of similar to1.1 photons cm(-2) s(-1) in the 20-200 keV energy range. The time-averaged spectrum can be fitted by a single power law with photon index similar to2, and we find some evidence for a hard......-to-soft spectral evolution. The X-ray afterglow has been detected starting only 8 hr after the prompt emission, with a 0.2-10 keV flux decreasing as t(-1) from 1.3 x 10(-12) to 5 x 10(-13) ergs cm(-2) s(-1). The afterglow spectrum is well described by a power law with photon index modified by a 1.94 +/- 0...

  7. Vlasov-Maxwell, self-consistent electromagnetic wave emission simulations of type III solar radio bursts

    CERN Document Server

    Tsiklauri, David

    2010-01-01

    1.5D Vlasov-Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the solar physics context. The simulations mimic the plasma emission mechanism and Larmor drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. When density gradient is removed (i.e. when plasma becomes stable to Larmor-drift instability) and a $low$ density, super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, plasma emission mechanism generates non-esc...

  8. Analysis of minor elements in steel by coincidence method in deuteron-induced prompt gamma-ray emission (D-PIGE)

    International Nuclear Information System (INIS)

    Among the factors affecting the sensitivity of PIGE method (particle-induced prompt gamma-ray emission) frequently discussed in the literature, the background in the γ-ray spectrum holds a prominent place. In this work the limits of detection of minor elements in a standard steel sample (Euronorm rm No. 085/1) irradiated with 5 MeV deuterons have been determined by the regular d-PIGE method and with the selection of the (d,n) reaction channel by measuring γ--n coincidences following the reaction steel + deuterons. This approach has resulted in a significant improvement of the sensitivity of the analysis, reducing the background in prompt gamma ray spectrum by eliminating the γ--rays observed in the singular spectrum which arises from the reaction channels (d, d'), (d, γ), (d, p), (d, 3 He), (d, α) and (d, t). From the singular spectrum we could establish the presence of the elements S, Pb, Mo, Co, V, P, O, Si, Zn, Mn, Cu, Sb, C, Al, N, As, Ti and Fe. The γ--n coincidence spectrum, obtained as a result of the selection of the γ- transitions via the reaction channel (d, n), is substantially different from the singular γ--spectrum, exhibiting γ- lines of rather high intensity to be used in the analyses on a reduced background. The coincidence spectrum shows lines from S, Mo, Co, Zn, Si, Mn, V, Sb, Ti, As, Ni, Cr, P, O, Al, Cu and Fe. We also made a comparative study with the published results using 5.5 MeV protons as projectiles. While for a given energy of the protons not all the elements of interest lead to a (p, n) reaction (C, O, P, S, Si etc.), most of the (d, n) reactions are exoergic. On the other side, the identification of the elements is more difficult in the case of deuterons. (authors)

  9. Implications for Understanding Short Gamma-Ray Bursts Detected by {\\it Swift}

    CERN Document Server

    Shao, Lang; Fan, Yi-Zhong; Zhang, Fu-Wen; Jin, Zhi-Ping; Wei, Da-Ming

    2011-01-01

    In an effort to understand the puzzle of classifying Gamma-Ray Bursts (GRBs), we have a systematic study of {\\it Swift} GRBs and investigate several issues on short GRBs. Though short GRBs have a short ($\\lesssim2$ s) prompt duration as monitored by {\\it Swift} Burst Alert Telescope (BAT), the composite light curves including both the prompt and afterglow emission suggest that most of them have a similar radiative feature as the long GRBs. Besides, some well-studied short GRBs might also have an intrinsically long prompt duration, which renders them a type of short GRB imposters. Genuine short GRBs might be rare so that to discriminate the observed short GRBs is, not surprisingly, troublesome. In particular, the observational biases in the host identification and redshift measurement of GRBs should be taken with great caution. The redshift distribution which has been proposed to be different for long and short GRBs might have been strongly affected by the measurement methods.

  10. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles

    Institute of Scientific and Technical Information of China (English)

    Fiammetta Alagna; Mario Kallenbach; Andrea Pompa; Francesca De Marchis; Rosa Rao; Ian T Baldwin; Gustavo Bonaventure; y Luciana Baldoni

    2016-01-01

    Olive fly (Bactrocera oleae R.) is the most harmful insect pest of olive (Olea europaea L.) which strongly affects fruits and oil production. Despite the expanding economic importance of olive cultivation, up to now, only limited information on plant responses to B. oleae is available. Here, we demonstrate that olive fruits respond to B. oleae attack by producing changes in an array of different defensive compounds including phytohormones, volatile organic com-pounds (VOCs), and defense proteins. Bactrocera oleae-infested fruits induced a strong ethylene burst and transcript levels of several putative ethylene-responsive transcription factors became significantly upregulated. Moreover, infested fruits induced significant changes in the levels of 12-oxo-phytodienoic acid and C12 derivatives of the hydroperoxide lyase. The emission of VOCs was also changed quantitatively and qualitatively in insect-damaged fruits, indicating that B. oleae larval feeding can specifically affect the volatile blend of fruits. Finally, we show that larval infestation maintained high levels of trypsin protease inhibitors in ripe fruits, probably by affecting post-transcriptional mechanisms. Our results pro-vide novel and important information to understand the response of the olive fruit to B. oleae attack;information that can shed light onto potential new strategies to combat this pest.

  11. Relating the variability of tone-burst otoacoustic emission and auditory brainstem response latencies to the underlying cochlear mechanics

    Science.gov (United States)

    Verhulst, Sarah; Shera, Christopher A.

    2015-12-01

    Forward and reverse cochlear latency and its relation to the frequency tuning of the auditory filters can be assessed using tone bursts (TBs). Otoacoustic emissions (TBOAEs) estimate the cochlear roundtrip time, while auditory brainstem responses (ABRs) to the same stimuli aim at measuring the auditory filter buildup time. Latency ratios are generally close to two and controversy exists about the relationship of this ratio to cochlear mechanics. We explored why the two methods provide different estimates of filter buildup time, and ratios with large inter-subject variability, using a time-domain model for OAEs and ABRs. We compared latencies for twenty models, in which all parameters but the cochlear irregularities responsible for reflection-source OAEs were identical, and found that TBOAE latencies were much more variable than ABR latencies. Multiple reflection-sources generated within the evoking stimulus bandwidth were found to shape the TBOAE envelope and complicate the interpretation of TBOAE latency and TBOAE/ABR ratios in terms of auditory filter tuning.

  12. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles.

    Science.gov (United States)

    Alagna, Fiammetta; Kallenbach, Mario; Pompa, Andrea; De Marchis, Francesca; Rao, Rosa; Baldwin, Ian T; Bonaventure, Gustavo; Baldoni, Luciana

    2016-04-01

    Olive fly (Bactrocera oleae R.) is the most harmful insect pest of olive (Olea europaea L.) which strongly affects fruits and oil production. Despite the expanding economic importance of olive cultivation, up to now, only limited information on plant responses to B. oleae is available. Here, we demonstrate that olive fruits respond to B. oleae attack by producing changes in an array of different defensive compounds including phytohormones, volatile organic compounds (VOCs), and defense proteins. Bactrocera oleae-infested fruits induced a strong ethylene burst and transcript levels of several putative ethylene-responsive transcription factors became significantly upregulated. Moreover, infested fruits induced significant changes in the levels of 12-oxo-phytodienoic acid and C12 derivatives of the hydroperoxide lyase. The emission of VOCs was also changed quantitatively and qualitatively in insect-damaged fruits, indicating that B. oleae larval feeding can specifically affect the volatile blend of fruits. Finally, we show that larval infestation maintained high levels of trypsin protease inhibitors in ripe fruits, probably by affecting post-transcriptional mechanisms. Our results provide novel and important information to understand the response of the olive fruit to B. oleae attack; information that can shed light onto potential new strategies to combat this pest.

  13. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles.

    Science.gov (United States)

    Alagna, Fiammetta; Kallenbach, Mario; Pompa, Andrea; De Marchis, Francesca; Rao, Rosa; Baldwin, Ian T; Bonaventure, Gustavo; Baldoni, Luciana

    2016-04-01

    Olive fly (Bactrocera oleae R.) is the most harmful insect pest of olive (Olea europaea L.) which strongly affects fruits and oil production. Despite the expanding economic importance of olive cultivation, up to now, only limited information on plant responses to B. oleae is available. Here, we demonstrate that olive fruits respond to B. oleae attack by producing changes in an array of different defensive compounds including phytohormones, volatile organic compounds (VOCs), and defense proteins. Bactrocera oleae-infested fruits induced a strong ethylene burst and transcript levels of several putative ethylene-responsive transcription factors became significantly upregulated. Moreover, infested fruits induced significant changes in the levels of 12-oxo-phytodienoic acid and C12 derivatives of the hydroperoxide lyase. The emission of VOCs was also changed quantitatively and qualitatively in insect-damaged fruits, indicating that B. oleae larval feeding can specifically affect the volatile blend of fruits. Finally, we show that larval infestation maintained high levels of trypsin protease inhibitors in ripe fruits, probably by affecting post-transcriptional mechanisms. Our results provide novel and important information to understand the response of the olive fruit to B. oleae attack; information that can shed light onto potential new strategies to combat this pest. PMID:25727685

  14. A Comprehensive Study of Gamma-Ray Burst Optical Emission: III. Brightness Distributions and Luminosity Functions of Optical Afterglows

    CERN Document Server

    Wang, Xiang-Gao; Li, Liang; Lu, Rui-Jing; Wei, Jian-Yan; Zhang, Bing

    2013-01-01

    We continue our systematic statistical study on optical afterglow data of gamma-ray bursts (GRBs). We present the apparent magnitude distributions of early optical afterglows at different epochs (t= 10^2 s, t = 10^3 s, and 1 hour) for the optical lightcurves of a sample of 93 GRBs (the global sample), and for sub-samples with an afterglow onset bump or a shallow decay segment. For the onset sample and shallow decay sample we also present the brightness distribution at the peak time t_{p} and break time t_{b}, respectively. All the distributions can be fit with Gaussian functions. We further perform Monte Carlo simulations to infer the luminosity function of GRB optical emission at the rest-frame time 10^3 seconds, t_{p}, and t_{b}, respectively. Our results show that a single power-law luminosity function is adequate to model the data, with indices -1.40+/-0.10, -1.06+/- 0.16, and -1.54\\+/- 0.22, respectively. Based on the derived rest-frame 10^3 s luminosity function, we generate the intrinsic distribution o...

  15. A MAD Model for Gamma-Ray Burst Variability

    CERN Document Server

    ,

    2016-01-01

    We present a model for the temporal variability of long gamma-ray bursts during the prompt phase (the highly variable first 100 seconds or so), in the context of a magnetically arrested disk (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disk. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a characteristic timescale defined by the free fall time in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and timescales, and compare them to gamma-ray burst observations. In particular, we show how this model can reproduce the characteristic one second time scale that emerges from various analyses of the prompt emission light curve. We also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and...

  16. High energy emission of GRB 130821A: Constraining the density profile of the circum-burst medium as well as the initial Lorentz factor of the outflow

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yun-Feng; Zhou, Bei; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming [Key laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Tam, Pak-Hin Thomas, E-mail: phtam@phys.nthu.edu.tw [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-02-01

    GRB 130821A was detected by Fermi-GBM/LAT, Konus-WIND, SPI-ACS/INTEGRAL, RHESSI and Mars Odyssey-HEND. Although the data of GRB 130821A are very limited, we show in this work that the high energy γ-ray emission (i.e., above 100 MeV) alone imposes tight constraint on the density profile of the circum-burst medium as well as the initial Lorentz factor of the outflow. The temporal behavior of the high energy γ-ray emission is consistent with the forward shock synchrotron radiation model, and the circum-burst medium likely has a constant-density profile. The Lorentz factor is about a few hundred, similar to other bright GRBs.

  17. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1

    NARCIS (Netherlands)

    T. Krühler; D. Malesani; J.P.U. Fynbo; O.E. Hartoog; J. Hjorth; P. Jakobsson; D.A. Perley; A.. Rossi; P. Schady; S. Schulze; N.R. Tanvir; S.D. Vergani; K. Wiersema; P.M.J. Afonso; J. Bolmer; Z. Cano; S. Covino; V. D’Elia; A. de Ugarte Postigo; R. Filgas; M. Friis; J.F. Graham; J. Greiner; P. Goldoni; A. Gomboc; F. Hammer; J. Japelj; D.A. Kann; L. Kaper; S. Klose; A.J. Levan; G. Leloudas; B. Milvang-Jensen; A. Nicuesa Guelbenzu; E. Palazzi; E. Pian; S. Piranomonte; R. Sánchez-Ramírez; S. Savaglio; J. Selsing; G. Tagliaferri; P.M. Vreeswijk; D.J. Watson; D. Xu

    2015-01-01

    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1

  18. WIDGET: System Performance and GRB Prompt Optical Observations

    CERN Document Server

    Urata, Yuji; Tamagawa, Toru; Usui, Fumihiko; Kuwahara, Makoto; Lin, Hungmiao; Kageyama, Shoichi; Iwakiri, Wataru; Sugasahara, Takako; Takahara, Kazuki; Kodaka, Natsuki; Abe, Keiichi; Masuno, Keisuke; Onda, Kaori

    2010-01-01

    The WIDeField telescope for Gamma-ray burst Early Timing (WIDGET) is used for a fully automated, ultra-wide-field survey aimed at detecting the prompt optical emission associated with Gamma-ray Bursts (GRBs). WIDGET surveys the HETE-2 and Swift/BAT pointing directions covering a total field of view of 62 degree x 62 degree every 10 secounds using an unfiltered system. This monitoring survey allows exploration of the optical emission before the gamma-ray trigger. The unfiltered magnitude is well converted to the SDSS r' system at a 0.1 mag level. Since 2004, WIDGET has made a total of ten simultaneous and one pre-trigger GRB observations. The efficiency of synchronized observation with HETE-2 is four times better than that of Swift. There has been no bright optical emission similar to that from GRB 080319B. The statistical analysis implies that GRB080319B is a rare event. This paper summarizes the design and operation of the WIDGET system and the simultaneous GRB observations obtained with this instrument.

  19. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the \\ANTARES neutrino telescope

    CERN Document Server

    Adrian-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsasser, D; Enzenhofer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geisselsoeder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernàndez-Rey, J J; Hoessl, J; Hofestadt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kadler, M; Kalekin, O; Katz, U; Kiessling, D; Kooijman, P; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lefèvre, D; Leonora, E; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Muller, C; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schussler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tonnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing pro?les are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.

  20. High Energy Radiation from $\\gamma$ Ray Bursts

    CERN Document Server

    Dermer, C D; Dermer, Charles D.; Chiang, James

    1999-01-01

    Gamma-ray burst (GRB) engines are probed most intimately during the prompt gamma-ray luminous phase when the expanding blast wave is closest to the explosion center. Using GRBs 990123 and 940217 as guides, we briefly review observations of high-energy emission from GRBs and summarize some problems in GRB physics. \\gamma\\gamma transparency arguments imply relativistic beaming. The parameters that go into the external shock model are stated, and we show numerical simulation results of gamma-ray light curves from relativistic blast waves with different amounts of baryon loading. A distinct component due to the synchrotron self-Compton process produces significant emission at GeV and TeV energies. Predictions for spectral and temporal evolution at these energies are presented for a blast wave expanding into uniform surroundings. Observations of the slow decay of GeV-TeV radiation provide evidence for ultra-high energy cosmic ray acceleration in GRBs.

  1. Delayed X-Ray Afterglows from Obscured Gamma-Ray Bursts in Star-Forming Regions

    OpenAIRE

    Meszaros, P.; Gruzinov, A.

    2000-01-01

    For Gamma-Ray Bursts occurring in dense star-forming regions, the X-ray afterglow behavior minutes to days after the trigger may be dominated by the small-angle scattering of the prompt X-ray emission off dust grains. We give a simple illustrative model for the X-ray light curves at different X-ray energies, and discuss possible implications. A bump followed by a steeper decay in soft X-rays is predicted for bursts which are heavily obscured in the optical.

  2. X-ray Flashes or soft Gamma-ray Bursts? The case of the likely distant XRF 040912

    CERN Document Server

    Stratta, G; Butler, N; Atteia, J L; Gendre, B; Pelangeon, A; Malacrino, F; Mellier, Y; Kann, D A; Klose, S; Zeh, A; Masetti, N; Palazzi, E; Gorosabel, J; Castro-Tirado, A J; De Postigo, A U; Jelinek, M; Cepa, J; Castaneda, H; Martínez-Delgado, D; Boër, M; Braga, J; Crew, G; Donaghy, T Q; Dezalay, J P; Doty, J; Fenimore, E E; Galassi, M; Graziani, C; Jernigan, J G; Kawai, N; Lamb, D Q; Levine, A; Manchanda, J; Martel, F; Matsuoka, M; Nakagawa, Y; Olive, J F; Pizzichini, G; Prigozhin, G Y; Ricker, G; Sakamoto, T; Shirasaki, Y; Sugita, S; Suzuki, M; Takagishi, K; Tamagawa, T; Vanderspek, R; Villasenor, J; Woosley, S E; Yamauchi, M; Yoshida, A

    2006-01-01

    In this work, we present a multi-wavelength study of XRF 040912, aimed at measuring its distance scale and the intrinsic burst properties. We performed a detailed spectral and temporal analysis of both the prompt and the afterglow emission and we estimated the distance scale of the likely host galaxy. We then used the currently available sample of XRFs with known distance to discuss the connection between XRFs and classical Gamma-ray Bursts (GRBs). We found that the prompt emission properties unambiguously identify this burst as an XRF, with an observed peak energy of E_p=17+/-13 keV and a burst fluence ratio S(2-30keV)/S(30-400keV)>1. A non-fading optical source with R~24 mag and with an apparently extended morphology is spatially consistent with the X-ray afterglow, likely the host galaxy. XRF 040912 is a very dark burst since no afterglow optical counterpart is detected down to R>25 mag (3 sigma limiting magnitude) at 13.6 hours after the burst. The host galaxy spectrum detected from 3800A to 10000A, shows...

  3. Magnetar Bursts

    Science.gov (United States)

    Kouveliotou, Chryssa

    2014-01-01

    The Fermi/Gamma-ray Burst Monitor (GBM) was launched in June 2008. During the last five years the instrument has observed several hundreds of bursts from 8 confirmed magnetars and 19 events from unconfirmed sources. I will discuss the results of the GBM magnetar burst catalog, expand on the different properties of their diverse source population, and compare these results with the bursting activity of past sources. I will then conclude with thoughts of how these properties fit the magnetar theoretical models.

  4. Limits on optical polarization during the prompt phase of GRB 140430A

    CERN Document Server

    Kopac, D; Japelj, J; Arnold, D M; Steele, I A; Guidorzi, C; Dichiara, S; Kobayashi, S; Gomboc, A; Harrison, R M; Lamb, G P; Melandri, A; Smith, R J; Virgili, F J; Castro-Tirado, A J; Gorosabel, J; Jarvinen, A; Sanchez-Ramirez, R; Oates, S R; Jelinek, M

    2015-01-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt $\\gamma$-ray emission was still ongoing. In this paper, we present densely sampled (10-second temporal resolution) early optical light curves in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical light curve cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1$\\sigma$). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternativ...

  5. Modeling gamma-ray bursts

    Science.gov (United States)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  6. Gamma Ray Bursts Cook Book I: Formulation

    CERN Document Server

    Ziaeepour, Houri

    2008-01-01

    Since the suggestion of relativistic shocks as the origin of gamma-ray bursts (GRBs) in early 90's, the mathematical formulation of this process has stayed at phenomenological level. One of the reasons for the slow development of theoretical works in this domain has been the simple power-law behaviour of the afterglows hours or days after the prompt gamma-ray emission. Nowadays with the launch of the Swift satellite, gamma-ray bursts can be observed in multi-wavelength from a few tens of seconds after trigger onward. These observations have leaded to the discovery of features unexplainable by the simple formulation of the shocks and emission processes used up to now. But "devil is in details" and some of these features may be explained with a more detailed formulation of phenomena and without adhoc addition of new processes. Such a formulation is the goal of this work. We present a consistent formulation of the collision between two spherical relativistic shells. The model can be applied to both internal and ...

  7. A MAD model for gamma-ray burst variability

    Science.gov (United States)

    Lloyd-Ronning, Nicole M.; Dolence, Joshua C.; Fryer, Christopher L.

    2016-09-01

    We present a model for the temporal variability of long gamma-ray bursts (GRBs) during the prompt phase (the highly variable first 100 s or so), in the context of a magnetically arrested disc (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disc. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a characteristic time-scale defined by the free-fall time in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and time-scales, and compare them to GRB observations. In particular, we show how this model can reproduce the characteristic one second time-scale that emerges from various analyses of the prompt emission light curve. We also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse.

  8. Gamma-ray burst spectra

    Science.gov (United States)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  9. Quark-Nova Explosion inside a Collapsar: Application to Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Rachid Ouyed

    2009-01-01

    Full Text Available If a quark-nova occurs inside a collapsar, the interaction between the quark-nova ejecta (relativistic iron-rich chunks and the collapsar envelope leads to features indicative of those observed in Gamma Ray Bursts. The quark-nova ejecta collides with the stellar envelope creating an outward moving cap (Γ∼ 1–10 above the polar funnel. Prompt gamma-ray burst emission from internal shocks in relativistic jets (following accretion onto the quark star becomes visible after the cap becomes optically thin. Model features include (i precursor activity (optical, X-ray, γ-ray, (ii prompt γ-ray emission, and (iii afterglow emission. We discuss SN-less long duration GRBs, short hard GRBs (including association and nonassociation with star forming regions, dark GRBs, the energetic X-ray flares detected in Swift GRBs, and the near-simultaneous optical and γ-ray prompt emission observed in GRBs in the context of our model.

  10. INTEGRAL detects an X-ray burst from SAX J1747.0-2853 with no detectable persistent emission

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Brandt, Søren Kristian; Kuulkers, Erik;

    2009-01-01

    A new season of observations for the INTEGRAL Galactic Bulge monitoring (see ATel #438) has started on 2009 Feb. 21st. During the latest observation between 2009 Feb 25 13:21 and 17:02 (UT) a type I X-ray burst from SAX J1747.0-2853 (1A 1743-288, aka GX .2-0.2) was detected by JEM-X at UT 14:50:5...

  11. Deceleration of a Relativistic, Photon-Rich Shell: End of Preacceleration, Damping of MHD Turbulence, and the Emission Mechanism of Gamma-Ray Bursts

    CERN Document Server

    Thompson, C

    2005-01-01

    (Abridged) We consider the interaction of a relativistically-moving shell, composed of thermal photons, a reversing magnetic field and a small admixture of charged particles, with a dense Wolf-Rayet wind. Pair creation in this wind material, and the associated pre-acceleration, defines a characteristic radiative compactness at the point where the reverse shock has completed its passage back through the shell. We argue that the prompt gamma-ray emission is triggered by this external braking, at an optical depth ~1 to electron scattering. Torsional MHD waves, excited by the forced reconnection of the reversing magnetic field, carry a fluctuating current, and are damped at high frequencies by the electrostatic acceleration of electrons and positrons. We show that inverse Compton radiation by the accelerated charges is stronger than their synchrotron emission, and is beamed along the magnetic field. Thermal radiation that is advected out from the base of the jet cools the particles. The observed relation between ...

  12. Searches for T-odd correlations in the emission of prompt neutrons in the polarized-neutron-induced fission of 235U nuclei

    Science.gov (United States)

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2010-07-01

    The results of an experiment aimed at searches for formally T-odd correlations in the angular distribution of prompt neutrons from the fission of 235U nuclei are presented. The experiment was performed in the MEPHISTO polarized cold-neutron beam from the Munich FRMII reactor. The correlation coefficient proved to be (-3.5 ± 3.4) × 10-5 for a three-vector correlation (TRI effect) and (-5.0 ± 3.4) × 10-5 for a five-vector correlation (ROT effect). This means that no significant effects were discovered within the measurement errors. A comparison with the analogous effects in the ternary fission of 235U nuclei was performed. The values of the corresponding correlations in the angular distribution of prompt fission gamma rays were refined.

  13. Prompt Neutrons from Fission

    International Nuclear Information System (INIS)

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  14. Anomalies in low-energy Gamma-Ray Burst spectra with the Fermi Gamma-Ray Burst Monitor

    CERN Document Server

    Tierney, Dave; Preece, Robert D; Fitzpatrick, Gerard; Foley, Suzanne; Guiriec, Sylvain; Bissaldi, Elisabetta; Briggs, Michael S; Burgess, J Michael; Connaughton, Valerie; Goldstein, Adam; Greiner, Jochen; Gruber, David; Kouveliotou, Chryssa; McGlynn, Sinead; Paciesas, William S; Pelassa, Veronique; von Kienlin, Andreas

    2013-01-01

    A Band function has become the standard spectral function used to describe the prompt emission spectra of gamma-ray bursts (GRBs). However, deviations from this function have previously been observed in GRBs detected by BATSE and in individual GRBs from the \\textit{Fermi} era. We present a systematic and rigorous search for spectral deviations from a Band function at low energies in a sample of the first two years of high fluence, long bursts detected by the \\textit{Fermi} Gamma-Ray Burst Monitor (GBM). The sample contains 45 bursts with a fluence greater than 2$\\times10^{-5}$ erg / cm$^{2}$ (10 - 1000 keV). An extrapolated fit method is used to search for low-energy spectral anomalies, whereby a Band function is fit above a variable low-energy threshold and then the best fit function is extrapolated to lower energy data. Deviations are quantified by examining residuals derived from the extrapolated function and the data and their significance is determined via comprehensive simulations which account for the ...

  15. Synchrotron emission in GRBs observed by Fermi: Its limitations and the role of the photosphere

    CERN Document Server

    Iyyani, S; Burgess, J M; Pe'er, A; egué, D B\\'

    2015-01-01

    It has been suggested that the prompt emission in gamma-ray bursts consists of several components giving rise to the observed spectral shape. Here we examine a sample of the 8 brightest, single pulsed {\\it Fermi} bursts whose spectra are modelled by using synchrotron emission as one of the components. Five of these bursts require an additional photospheric component (blackbody). In particular, we investigate the inferred properties of the jet and the physical requirements set by the observed components for these five bursts, in the context of a baryonic dominated outflow, motivated by the strong photospheric component. We find similar jet properties for all five bursts: the bulk Lorentz factor decreases monotonously over the pulses and lies between 1000 and 100. This evolution is robust and can neither be explained by a varying radiative efficiency nor a varying magnetisation of the jet assuming the photosphere radius is above the coasting radius. Such a behaviour challenges several dissipation mechanisms, e....

  16. Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. I. Emission-Line Diagnostics

    CERN Document Server

    Weaver, K A; Mushotzky, R F; Kraemer, S; Engle, K; Malumuth, E; Tueller, J; Markwardt, C; Berghea, C T; Dudik, R P; Winter, L M; Armus, L

    2010-01-01

    We compare mid-infrared emission-line properties, from high-resolution Spitzer spectra of a hard X-ray (14 -- 195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 micron, [Ne II] 12.81 micron, [Ne III] 15.56 micron and [Ne V] 14.32/24.32 micron, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, however six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compare the mid-infrared emission-lines in the BAT AGNs with those from published studies of ULIRGs, PG QSOs, star-forming galaxies and LINERs. We find that the BAT AGN sample fall into a distinctive region when comparing the [Ne III]/[Ne II] and the ...

  17. HOW TO SWITCH A GAMMA-RAY BURST ON AND OFF THROUGH A MAGNETAR

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, M. G.; Campana, S.; Ghisellini, G.; D' Avanzo, P.; Covino, S.; Ghirlanda, G.; Melandri, A.; Fugazza, D.; Sbarufatti, B.; Tagliaferri, G. [INAF-Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Burlon, D. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Salvaterra, R. [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Vergani, S. D. [GEPI-Observatoire de Paris, CNRS UMR 8111, Univ. Paris-Diderot, 5 Place Jules Jannsen, F-92190 Meudon (France); D' Elia, V. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (RM) (Italy)

    2013-09-20

    One of the most elusive features of gamma-ray bursts (GRBs) is the sporadic emission prior to the main prompt event observed in at least ∼15% of cases. These precursors have spectral and temporal properties similar to the main prompt emission, and smaller, but comparable, energetics. They are separated from the main event by a quiescent time that may be extremely long, and, in some cases, more than one precursor has been observed in the same burst. Precursors are still a puzzle: despite many attempts, none of the proposed models can account for all the observed features. Based on the complete sample of bright long GRBs observed by Swift (BAT6), we propose a new scenario for which precursors are explained by assuming that the central GRB engine is a newly born magnetar. In this model the precursor and the prompt emission arise from accretion of matter onto the surface of the magnetar. The accretion process can be halted by the centrifugal drag exerted by the rotating magnetosphere onto the infalling matter, allowing for multiple precursors and very long quiescent times.

  18. HOW TO SWITCH A GAMMA-RAY BURST ON AND OFF THROUGH A MAGNETAR

    International Nuclear Information System (INIS)

    One of the most elusive features of gamma-ray bursts (GRBs) is the sporadic emission prior to the main prompt event observed in at least ∼15% of cases. These precursors have spectral and temporal properties similar to the main prompt emission, and smaller, but comparable, energetics. They are separated from the main event by a quiescent time that may be extremely long, and, in some cases, more than one precursor has been observed in the same burst. Precursors are still a puzzle: despite many attempts, none of the proposed models can account for all the observed features. Based on the complete sample of bright long GRBs observed by Swift (BAT6), we propose a new scenario for which precursors are explained by assuming that the central GRB engine is a newly born magnetar. In this model the precursor and the prompt emission arise from accretion of matter onto the surface of the magnetar. The accretion process can be halted by the centrifugal drag exerted by the rotating magnetosphere onto the infalling matter, allowing for multiple precursors and very long quiescent times

  19. How to switch on and off a Gamma-ray burst through a magnetar

    CERN Document Server

    Bernardini, Maria Grazia; Ghisellini, Gabriele; D'Avanzo, Paolo; Burlon, Davide; Covino, Stefano; Ghirlanda, Giancarlo; Melandri, Andrea; Salvaterra, Ruben; Vergani, Susanna D; D'Elia, Valerio; Fugazza, Dino; Sbarufatti, Boris; Tagliaferri, Gianpiero

    2013-01-01

    One of the most elusive features of Gamma Ray Bursts (GRBs) is the sporadic emission prior to the main prompt event observed in at least ~15% of cases. These precursors have spectral and temporal properties similar to the main prompt emission, and smaller, but comparable, energetics. They are separated from the main event by a quiescent time that may be extremely long and, in some cases, more than one precursor has been observed in the same burst. Precursors are still a puzzle: despite many attempts none of the proposed models can account for all the observed features. Based on the complete sample of bright long GRBs observed by Swift (BAT6), we show that precursors are naturally explained if the central GRB engine is a newly born magnetar. In this model the precursor and the prompt emission arise from accretion of matter onto the surface of the magnetar. The accretion process can be halted by the centrifugal drag exerted by the rotating magnetosphere onto the in--falling matter, allowing for multiple precurs...

  20. The weak INTEGRAL bursts GRB040223 and GRB040624: an emerging population of dark afterglows

    CERN Document Server

    Filliatre, P; D'Avanzo, P; De Luca, A; Gotz, D; McGlynn, S; McBreen, S; Fugazza, D; Antonelli, A; Campana, S; Chincarini, G; Cucchiara, A; Valle, M D; Foley, S; Goldoni, P; Hanlon, L; Israel, G; McBreen, B; Mereghetti, S; Stella, L; Tagliaferri, G

    2005-01-01

    We report here gamma-ray, X-ray and near-infrared observations of GRB040223 along with gamma-ray and optical observations of GRB040624. GRB040223 was detected by INTEGRAL close to the Galactic plane and GRB040624 at high Galactic latitude. Analyses of the prompt emission detected by the IBIS instrument on INTEGRAL are presented for both bursts. The two GRBs have long durations, slow pulses and are weak. The gamma-ray spectra of both bursts are best fit with steep power-laws, implying they are X-ray rich. GRB040223 is among the weakest and longest of INTEGRAL GRBs. The X-ray afterglow of this burst was detected 10 hours after the prompt event by XMM-Newton. The measured spectral properties are consistent with a column density much higher than that expected from the Galaxy, indicating strong intrinsic absorption. We carried out near-infrared observations 17 hours after the burst with the NTT of ESO, which yielded upper limits. Given the intrinsic absorption, we find that these limits are compatible with a simpl...

  1. How else can we detect Fast Radio Bursts?

    CERN Document Server

    Lyutikov, Maxim

    2016-01-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. Magnetar giant flares, driven by the reconfiguration of the magnetosphere, however, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission; (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds); (iii) a high energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen by the Palomar Transient Factory in a 60-second frame as a transient object of $m=15-20$ magnitude with an expected optical detection rate of about 0.1~hr$^{-1}$, an order of magnitude higher than in radio. EVRYSCOPE could also ...

  2. Physics of gamma-ray bursts

    Science.gov (United States)

    Lamb, D. Q.

    1984-01-01

    Attention is given to the accumulating evidence for the view that gamma-ray bursts come from strongly magnetic neutron stars, discussing the physical properties of the emission region and the radiation processes expected in strong magnetic fields, and emphasizing that the observed burst spectra require that the emission region be optically thin. This entails that the energy of the emitting plasma and/or the plasma itself be continuously replenished during a burst, and that the cooling time scale of the emitting plasma be much shorter than the observed duration of the bursts. This characteristic of the cooling time scale implies that the burst intensity and spectrum can vary on extremely short time scales, and that the burst duration must have a separate explanation. It is emphasized that synchrotron emission is favored as the gamma-ray production mechanism; it is the only mechanism capable of satisfying the optical thinness constraint while producing the observed luminosity.

  3. The Troublesome Broadband Evolution of GRB 061126: Does a Grey Burst Imply Grey Dust?

    CERN Document Server

    Perley, D A; Butler, N R; Pollack, L K; Holtzmann, J; Blake, C H; Kocevski, D; Vestrand, W T; Li, W; Foley, R J; Bellm, E; Chen, H W; Prochaska, J X; Starr, D; Filippenko, A V; Falco, E E; Szentgyorgyi, A H; Wren, J; Wozniak, P R; White, R; Pergande, J

    2007-01-01

    We report on observations of gamma-ray burst (GRB 061126) with an extremely bright (R ~ 12 mag at peak) early-time optical afterglow. The optical afterglow is already fading as a power-law 22 seconds after the trigger, with no detectable prompt contribution in our first exposure, which was coincident with a large prompt-emission pulse. The optical-IR photometric SED is an excellent fit to a power-law but exhibits a moderate red-to-blue evolution in the spectral index at about 500 sec. This color change is contemporaneous with a switch from a relatively fast decay to slower decay. The rapidly decaying early afterglow is broadly consistent with synchrotron emission from a reverse shock, but a bright forward shock component predicted by the intermediate- to late-time X-ray observations under the assumptions of standard afterglow models is not observed. Indeed, despite its remarkable early-time brightness this burst would qualify as a dark burst at later times on the basis of its nearly flat optical-to-X-ray spec...

  4. Fermi LAT Stacking Analysis of Swift Localized Gamma-ray Bursts

    CERN Document Server

    ,

    2016-01-01

    We perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of gamma-ray bursts (GRB) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instrument's field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a burst's prompt gamma-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emi...

  5. GRB 091024A and the nature of ultra-long gamma-ray bursts

    International Nuclear Information System (INIS)

    We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ∼1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (RB ≈ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (≳1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.

  6. GRB 091024A and the nature of ultra-long gamma-ray bursts

    CERN Document Server

    Virgili, F J; Pal'shin, V; Guidorzi, C; Margutti, R; Melandri, A; Harrison, R; Kobayashi, S; Chornock, R; Henden, A; Updike, A C; Cenko, S B; Tanvir, N R; Steele, I A; Cucchiara, A; Gomboc, A; Levan, A; Cano, Z; Mottram, C J; Clay, N R; Bersier, D; Kopac, D; Japelj, J; Filippenko, A V; Li, W; Svinkin, D; Golenetskii, S; Hartmann, D H; Milne, P A; Williams, G; O'Brien, P T; Fox, D B; Berger, E

    2013-01-01

    We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind, Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2-m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and SRO. We also observed the burst with 8- and 10-m class telescopes and determine the redshift to be z = 1.0924 \\pm 0.0004. We find no correlation between the optical and gamma-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (R_B ~ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the Konus-Wind data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission a...

  7. GRB 091024A and the nature of ultra-long gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Virgili, F. J.; Mundell, C. G.; Harrison, R.; Kobayashi, S.; Steele, I. A.; Mottram, C. J.; Clay, N. R. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Pal' shin, V. [Ioffe Physical Technical Institute, St. Petersburg 194021 (Russian Federation); Guidorzi, C. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, I-44122 Ferrara (Italy); Margutti, R.; Chornock, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Melandri, A. [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807 Merate (Italy); Henden, A. [AAVSO, 49 Bay State Road, Cambridge, MA 02138 (United States); Updike, A. C. [Department of Chemistry and Physics, Roger Williams University, Bristol, RI 02809 (United States); Cenko, S. B. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Cucchiara, A. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Levan, A. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Cano, Z., E-mail: F.J.Virgili@ljmu.ac.uk [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, 107 Reykjavik (Iceland); and others

    2013-11-20

    We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ∼1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (R{sub B} ≈ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (≳1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.

  8. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R

    2010-01-19

    We present the results of searches for high-energy muon neutrinos from 41 gamma- ray bursts (GRBs) in the northern sky with the IceCube detector in its 22-string con-figuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 h to +3 haround each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman?Bahcall GRB flux for the prompt emission but calcu- late individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all three time windows the best estimate for the number of signal events is zero. Therefore, we place 90percent CL upper limits on the fluence from the prompt phase of 3.7 x 10-3 erg cm-2 (72TeV - 6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10-3 erg cm-2 (2.2TeV - 55TeV), where the quoted energy ranges contain 90percent of the expected signal events in the detector. The 90percent CL upper limit for the wide time window is 2.7 x 10-3 erg cm-2 (3TeV - 2.8 PeV) assuming an E-2 flux.

  9. SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to +3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10-3 erg cm-2 (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10-3 erg cm-2 (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10-3 erg cm-2 (3 TeV-2.8 PeV) assuming an E -2 flux.

  10. A Comprehensive Study of Gamma-Ray Burst Optical Emission: II. Afterglow Onset and Late Re-Brightening Components

    CERN Document Server

    Liang, En-Wei; Gao, He; Zhang, Bing; Liang, Yun-Feng; Wu, Xue-Feng; Yi, Shuang-Xi; Dai, Zi-Gao; Tang, Qing-Wen; Chen, Jie-Min; Hou-Jun, L; Zhang, Jin; Lu, Rui-Jing; Lian-Zhong, L V; Wei, Jian-Yan

    2012-01-01

    We continue our systematic statistical study of various components in gamma-ray burst (GRB) optical lightcurves. We decompose the early onset bump and the late re-brightening bump with empirical fits and analyze their statistical properties. Among the 146 GRBs that have well-sampled optical lightcurves, the onset and re-brightening bumps are observed in 38 and 27 GRBs, respectively. It is found that the typical rising and decaying slopes for both the onset and re-brightening bumps are $\\sim 1.5$ and in ~1.15, respectively. No early onset bump in the X-ray band is detected to be associated with the optical onset bumps, while an X-ray re-brightening bump is detected for half of the re-brightening optical bumps. The peak luminosity is anti-correlated with the peak time, L_p \\propto t_{p}^{-1.86+/- 0.29} for the onset bumps and L_p\\propto t_{p}^{-1.05+/- 0.16} for the re-brightening bumps. Both $L_p$ and the isotropic energy release of the onset bumps are correlated with E_{gamma, iso}, whereas no similar correla...

  11. Neutron capture and fission reactions on 235U: cross sections, α-ratios and prompt γ-ray emission from fission

    Directory of Open Access Journals (Sweden)

    González-Romero E.

    2013-03-01

    Full Text Available According to the international benchmarks, and as it is mentioned in the NEA High Priority Request List, the 235U(n,γ cross section is of utmost importance for the operation and design of current and advanced nuclear reactors. The required accuracy in this energy region (100 eV to 2.25 keV ranges between 5% and 7%, to be compared with the present differences of 20% between the α-ratios in different evaluations. At n_TOF we have measured this cross section during the summer of 2012 using a fission tagging capture set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4π Total Absorption Calorimeter with a series of MicroMegas fission detectors. The experiment has provided as well very valuable information on the distribution of energies and multiplicities of the γ-rays emitted prompt after capture and fission reactions. The very fresh data from this experiment will be presented for the first time, and their quality and expected results will be discussed in detail

  12. Gamma-Ray Bursts 2012 Conference

    Science.gov (United States)

    It is a pleasure to announce the next combined Fermi/Swift GRB conference covering recent advances in all aspects of gamma-ray burst observations and theory. This conference will be held in Munich, Germany, on 7-11 May 2012, and follows similar previous combined Fermi/Swift meetings in Huntsville (Oct. 2008) and Annapolis (Nov. 2010). Gamma-ray bursts are the most energetic explosions in the Universe and are thought to be the birth signatures of black holes. This is an exciting time in the GRB field as various missions provide a wealth of new data on this still puzzling phenomenon. The Fermi misson provides unprecedented spectral coverage over 7 decades in energy, and among others discovered new spectral components which challenge our standard picture of the prompt emission. The Swift mission continuous to swiftly monitor and locate GRBs in multiple wavebands, providing the basis for all ground-based follow-up observations towards redshift measurements and afterglow and host property investigations. AGILE, INTEGRAL, Suzaku and Konus continue to provide crucial information on GRB properties, and the MAXI mission provides an all sky X-ray monitoring of transients. There is also growing capability for follow-up observations by ground-based telescopes at basically all wavelengths. Besides the classical optical/infrared/radio observations, searches are underway for TeV emission, neutrinos and gravitational waves. Moreover, new experiments are expected to have returned first data, among others POGO on the prompt polarization properties, UFFO on very early optical emission, or ALMA on sub-millimeter properties. And last but not least, the unexpected is bringing us child-like astonishments at least once per year with a "GRB-trigger" which turns out to be not related to GRBs. Complementing all these new observational results, a huge theoretical effort is underway to understand the GRB phenomenon and keep up with the constant new puzzles coming from the data. This conference

  13. TEMPORAL DECONVOLUTION STUDY OF LONG AND SHORT GAMMA-RAY BURST LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, William; Burgess, Michael; Chaplin, Vandiver; Goldstein, Adam; Guiriec, Sylvain [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Kouveliotou, Chryssa; Fishman, Gerald [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Van der Horst, Alexander J.; Meegan, Charles A. [Center for Space Plasma and Aeronomic Research (CSPAR), Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Bissaldi, Elisabetta [Institute of Astro and Particle Physics, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Diehl, Roland; Foley, Suzanne; Greiner, Jochen; Gruber, David [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Fitzpatrick, Gerard [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); Gibby, Melissa; Giles, Misty M. [Jacobs Technology, Inc., Huntsville, AL 35806 (United States); and others

    2012-01-10

    The light curves of gamma-ray bursts (GRBs) are believed to result from internal shocks reflecting the activity of the GRB central engine. Their temporal deconvolution can reveal potential differences in the properties of the central engines in the two populations of GRBs which are believed to originate from the deaths of massive stars (long) and from mergers of compact objects (short). We present here the results of the temporal analysis of 42 GRBs detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope. We deconvolved the profiles into pulses, which we fit with lognormal functions. The distributions of the pulse shape parameters and intervals between neighboring pulses are distinct for both burst types and also fit with lognormal functions. We have studied the evolution of these parameters in different energy bands and found that they differ between long and short bursts. We discuss the implications of the differences in the temporal properties of long and short bursts within the framework of the internal shock model for GRB prompt emission.

  14. The Double Firing Burst

    Science.gov (United States)

    2008-09-01

    this nearly head-on alignment to occur is only about once a decade," added his colleague Cristiano Guidorzi. GRB 080319B was detected by the NASA/STFC/ASI Swift satellite towards the constellation of Boötes, the "Herdsman". A host of ground-based telescopes reacted promptly to study this new object in the sky, including ESO's Very Large Telescope, which was the first to provide the distance of the object, 7.5 billion light-years. The visible light from the burst was detected by a handful of wide-field cameras worldwide that are mounted on telescopes constantly monitoring a large fraction of the sky. One of these was the TORTORA camera mounted on the 0.6-m REM telescope at ESO's La Silla Observatory (ESO 26/07). TORTORA's rapid imaging provides the most detailed look yet at the visible light associated with the initial blast of a gamma-ray burst. "We've been waiting a long time for this one," says TORTORA senior scientist Grigory Beskin of Russia's Special Astrophysical Observatory. The data collected simultaneously by TORTORA and the Swift satellite allowed astronomers to explain the properties of this burst.

  15. GRB 060313: A New Paradigm for Short-Hard Bursts?

    CERN Document Server

    Roming, P W A; Palshin, V D; Pagani, C; Norris, J; Kumar, P; Krimm, H; Holland, S T; Gronwall, C; Blustin, A J; Zhang, B; Schady, P; Sakamoto, T; Osborne, J P; Nousek, J A; Marshall, F E; Mészáros, P; Golenetskii, S V; Gehrels, N; Frederiks, D D; Campana, S; Burrows, D N; Boyd, P T; Barthelmy, S; Aptekar, R L; Roming, Peter W. A.; Berk, Daniel Vanden; Palshin, Valentin; Pagani, Claudio; Norris, Jay; Kumar, Pawan; Krimm, Hans; Holland, Stephen T.; Gronwall, Caryl; Zhang, Bing; Schady, Patricia; Sakamoto, Takanori; Osborne, Julian P.; Nousek, John A.; Marshall, Frank E.; Meszaros, Peter; Golenetskii, Sergey V.; Gehrels, Neil; Frederiks, Dmitry D.; Campana, Sergio; Burrows, David N.; Boyd, Patricia T.; Barthelmy, Scott

    2006-01-01

    We report the simultaneous observations of the prompt emission in the gamma-ray and hard X-ray bands by the Swift-BAT and the KONUS-Wind instruments of the short-hard burst, GRB 060313. The observations reveal multiple peaks in both the gamma-ray and hard X-ray suggesting a highly variable outflow from the central explosion. We also describe the early-time observations of the X-ray and UV/Optical afterglows by the Swift XRT and UVOT instruments. The combination of the X-ray and UV/Optical observations provide the most comprehensive lightcurves to date of a short-hard burst at such an early epoch. The afterglows exhibit complex structure with different decay indices and flaring. This behavior can be explained by the combination of a structured jet, radiative loss of energy, and decreasing microphysics parameters occurring in a circum-burst medium with densities varying by a factor of approximately two on a length scale of 10^17 cm. These density variations are normally associated with the environment of a mass...

  16. Promptness and Academic Performance

    OpenAIRE

    Novarese, Marco; Di Giovinazzo, Viviana

    2013-01-01

    This article uses university administration data to investigate the relation between student behavior (rapid response in finalizing enrolment procedures) and academic performance. It shows how student promptness in enrolling, or lack of it, can prove a useful forecast of academic success. Several explanations can be given, including simply the greater or lesser tendency to procrastinate.

  17. Universal scaling law in long gamma-ray bursts

    CERN Document Server

    Tsutsui, Ryo

    2013-01-01

    Overwhelming diversity of long gamma-ray bursts (LGRBs), discovered after the launch of {\\it Swift} satellite, is a major obstacle to LGRB studies. Recently, it is shown that the prompt emission of LGRBs is classified into three subclasses: Type I, Type II LGRBs populating separate fundamental planes in a 3D space defined by the peak luminosity, the duration, and the spectral peak energy, and outliers not belonging to either of the planes. Here we show that Type I LGRBs (LGRBs I) exhibit different shapes of light curves from Type II LGRBs (LGRBs II). Furthermore, we demonstrate that this classification has uncovered a new scaling law in the light curves of LGRBs II spanning 8 orders of magnitude from the prompt to late X-ray afterglow emission. The scaled light curve has four distinct phases. The first phase has a characteristic time scale while the subsequent three phases exhibit power law behaviors with different exponents. We discuss its possible interpretation in terms of the emission from an optically th...

  18. Early-time observations of gamma-ray burst error boxes with the Livermore optical transient imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G G

    2000-08-01

    Despite the enormous wealth of gamma-ray burst (GRB) data collected over the past several years the physical mechanism which causes these extremely powerful phenomena is still unknown. Simultaneous and early time optical observations of GRBs will likely make an great contribution t o our understanding. LOTIS is a robotic wide field-of-view telescope dedicated to the search for prompt and early-time optical afterglows from gamma-ray bursts. LOTIS began routine operations in October 1996 and since that time has responded to over 145 gamma-ray burst triggers. Although LOTIS has not yet detected prompt optical emission from a GRB its upper limits have provided constraints on the theoretical emission mechanisms. Super-LOTIS, also a robotic wide field-of-view telescope, can detect emission 100 times fainter than LOTIS is capable of detecting. Routine observations from Steward Observatory's Kitt Peak Station will begin in the immediate future. During engineering test runs under bright skies from the grounds of Lawrence Livermore National Laboratory Super-LOTIS provided its first upper limits on the early-time optical afterglow of GRBs. This dissertation provides a summary of the results from LOTIS and Super-LOTIS through the time of writing. Plans for future studies with both systems are also presented.

  19. Testing High Latitude Emission in GRBs

    CERN Document Server

    Genet, F

    2008-01-01

    Most gamma-ray bursts (GRBs) observed by the Swift satellite show an early rapid decay phase (RDP) in their X-ray lightcurve, which is usually a smooth continuation of the prompt gamma-ray emission, strongly suggesting that it is its tail. However, the mechanism behind it is still not clear. The most popular model for this RDP is High Latitude Emission (HLE). While HLE is expected in many models for the prompt GRB emission, such as the popular internal shocks model, there are models in which it is not expected, such as sporadic magnetic reconnection events. Therefore, testing whether the RDP is consistent with HLE can help distinguish between different prompt emission models. We address this question by modeling the prompt emission as the sum of its individual pulses with their HLE tails. Analytic expressions for the observed flux density are obtained for power-law and Band function emission spectra. For internal shocks the observed instantaneous spectrum is very close to the emitted one, and should be well d...

  20. Instabilities in the Gamma Ray Burst central engine. What makes the jet variable?

    OpenAIRE

    Janiuk, Agnieszka; Yuan, ; Ye-Fei; Perna, Rosalba; Di Matteo, Tiziana

    2010-01-01

    Both types of long and short gamma ray bursts involve a stage of a hyper-Eddington accretion of hot and dense plasma torus onto a newly born black hole. The prompt gamma ray emission originates in jets at some distance from this 'central engine' and in most events is rapidly variable, having a form of spikes and subpulses. This indicates at the variable nature of the engine itself, for which a plausible mechanism is an internal instability in the accreting flow. We solve numerically the struc...

  1. The SVOM gamma-ray burst mission

    CERN Document Server

    Cordier, B; Atteia, J -L; Basa, S; Claret, A; Daigne, F; Deng, J; Dong, Y; Godet, O; Goldwurm, A; Götz, D; Han, X; Klotz, A; Lachaud, C; Osborne, J; Qiu, Y; Schanne, S; Wu, B; Wang, J; Wu, C; Xin, L; Zhang, B; Zhang, S -N

    2015-01-01

    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the...

  2. The Second Swift BAT Gamma-Ray Burst Catalog

    Science.gov (United States)

    Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T. N.; Zhang, B.

    2010-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parametert:; measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T90 and T50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs, and that the time-averaged E obs/peak of the BAT GRBs peaks at 80 keV which is significantly lower energy than those of the BATSE sample which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. The observed durations of the BAT high redshift GRBs are not systematically longer than those of the moderate

  3. Can the bump in the composite spectrum of GRB 910503 be an emission line feature of gamma-ray bursts?

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Qin; Fu-Wen Zhang

    2005-01-01

    Appearing in the composite spectral data of BATSE, EGRET and COMPTEL for GRB 910503, there is a bump at around 1600keV. We perform a statistical analysis on the spectral data, trying to find out if the bump could be accounted for by a blue-shifted and significantly broadened rest frame line due to the Doppler effect of an expanding fireball surface. We made an F-test and adopted previously proposed criteria. The study reveals that the criteria are well satisfied and the feature can be interpreted as the blue shifted 6.4 keV line. From the fit with this line taken into account, we find the Lorentz factor of this source to be Γ = 116+9-9 (at the 68% confident level,△X2 = 1) and the rest frame spectral peak energy to be EO,p= 2.96+0.24-0.18 keV. Although the existence of the emission line feature requires other independent tests to confirm, the analysis suggests that it is feasible to detect emission line features in the high energy range of GRB spectra when taking into account the Doppler effect of fireball expansion.

  4. OH Fluorescence and Prompt Emission in comet 103P/Hartley 2 observed by EPOXI mission and expected results for comet 67P/Churyumov-Gerasimenko observed by Rosetta/OSIRIS WAC camera

    Science.gov (United States)

    La Forgia, F.; A'Hearn, M. F.; Lazzarin, M.; Magrin, S.; Bodewits, D.; Bertini, I.; Pajola, M.; Barbier, C.; Sierks, H.

    2014-04-01

    The OH radical, observed in cometary comae, is the direct dissociation product of water. Given the strong A2∑ - X2II (0, 0) emission band in the near-UV at 308.5 nm due to resonance fluorescence, the OH radical has been used, for years, as a tracer of the water parent molecule. Specifically, the OH fluorescence band provides an immediate tool to monitor the water production rate and its variations with the comet's heliocentric distance, rotational period and possible activity changes. Photolysis of water in cometary comae gives rise, with a non negligible branching ratio, to OH fragments in the first electronically excited state (OH*). This state is very unstable, with a lifetime of about 10-6s (Becker and Haaks, 1973), therefore OH* molecules promptly decay to the ground state. This process, generally referred to as prompt emission (PE), is responsible for an emission band in the near-UV ranging approximatelly from 306 to 325 nm. Original studies and tentative detections of OH PE have been put forth by Bertaux (1986), Budzien and Feldman (1991), Bonev et al. (2004), A'Hearn et al. (2007) using ground and space observations. Both from the above mentioned works together with our analysis, this process is expected to be prominent at short distances from the nucleus, where there is high density of water molecules, requiring the need of spacecraft observations to reach the necessary resolution. The hyperactive Jupiter family comet 103P/Hartley 2 has been visited by EPOXI spacecraft on 4 November 2010 at a minimum distance of 694 km, when it was at 1.064 AU from the Sun (A'Hearn et al. 2011). We present the analysis of photometric observations in OH filter acquired by MRI camera onboard EPOXI used to investigate the spatial distribution of OH in the coma of Hartley 2. The data revealed a radial OH structure within 35 km from the nucleus, appearing to be coming directly from the nucleus, in the region of the central waist. A theoretical computation evidencing a strong

  5. Constraints on the inner accretion flow of 4U/MXB 1636-53 (V 801 Arae) from a comparison of X-ray burst and persistent emission

    NARCIS (Netherlands)

    E. Damen; R.A.M.J. Wijers; J. van Paradijs; W. Penninx; T. Oosterbroek; W.H.G. Lewin; F. Jansen

    1990-01-01

    A detailed analysis is presented of the importance of Comptonization in burst and persistent spectra of the low-mass X-ray binary 4U/MXB 1636-53, and from this analysis it is inferred that the inner accretion flow is geometrically thin. It is found that burst spectra of 1636-53 are very nearly Planc

  6. Quark deconfinement in the proto-magnetar model of Long Gamma-Ray Bursts

    CERN Document Server

    Pili, A G; Drago, A; Pagliara, G; Del Zanna, L

    2016-01-01

    We investigate the possible implications of quark deconfinement on the phenomenology of Long Gamma-Ray Bursts focusing, in particular, on the possibility to describe multiple prompt emission phases in the context of the proto-magnetar model. Starting from numerical models of rotating Hadron Stars and Quark Stars in full general relativity we track the electromagnetic spin-down evolution in both the hadronic and quark phase, linking the two families through conservation of baryon number and angular momentum. We give estimates of the timescales and the energetics involved in the spin-down process deriving, in the relevant spin range, the relation between the initial and the final masses and rotational energies, whenever hadron-quark conversion is possible. We show how the results can be used in relevant astrophysical cases such as the double burst GRB 110709B.

  7. Quark deconfinement in the proto-magnetar model of long gamma-ray bursts

    Science.gov (United States)

    Pili, A. G.; Bucciantini, N.; Drago, A.; Pagliara, G.; Del Zanna, L.

    2016-10-01

    We investigate the possible implications of quark deconfinement on the phenomenology of long gamma-ray bursts focusing, in particular, on the possibility to describe multiple prompt emission phases in the context of the proto-magnetar model. Starting from numerical models of rotating Hadron Stars and Quark Stars in full general relativity we track the electromagnetic spin-down evolution in both the hadronic and quark phase, linking the two families through conservation of baryon number and angular momentum. We give estimates of the time-scales and the energetics involved in the spin-down process deriving, in the relevant spin range, the relation between the initial and the final masses and rotational energies, whenever hadron-quark conversion is possible. We show how the results can be used in relevant astrophysical cases such as the double burst GRB 110709B.

  8. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the

  9. What did we learn from gamma-ray burst 080319B?

    International Nuclear Information System (INIS)

    The optical and gamma-ray observations of GRB 080319B allow us to provide a broad-brush picture for this remarkable burst. The data indicate that the prompt optical and gamma-ray photons were possibly produced at the same location but by different radiation processes: synchrotron and synchrotron self-Compton, respectively (but we note that this interpretation of the gamma-ray data faces some difficulties). We find that the burst prompt optical emission was produced at a distance of 1016.3 cm by an ultrarelativistic source moving at Lorentz factor of -500. A straightforward inference is that about 10 times more energy must have been radiated at tens of GeV than that released at 1 MeV. Assuming that the GRB outflow was baryonic and the gamma-ray source was shock-heated plasma, the collimation-corrected kinetic energy of the jet powering GRB 080319B was larger than 1052.3 erg. The decay of the early afterglow optical emission (up to 1 ks) is too fast to be attributed to the reverse-shock crossing the GRB ejecta but is consistent with the expectations for the 'large-angle' emission released during the burst. The pure power-law decay of the optical afterglow flux from 1 ks to 10 d is most naturally identified with the (synchrotron) emission from the shock propagating into a wind-like medium. However, the X-ray afterglow requires a departure from the standard blast-wave model.

  10. What did we learn from gamma-ray burst 080319B?

    Energy Technology Data Exchange (ETDEWEB)

    Panaitescu, Alin [Los Alamos National Laboratory; Kumar, Pawan [UNIV OF TEXAS

    2008-01-01

    The optical and gamma-ray observations of GRB 080319B allow us to provide a broad-brush picture for this remarkable burst. The data indicate that the prompt optical and gamma-ray photons were possibly produced at the same location but by different radiation processes: synchrotron and synchrotron self-Compton, respectively (but we note that this interpretation of the gamma-ray data faces some difficulties). We find that the burst prompt optical emission was produced at a distance of 10{sup 16.3} cm by an ultrarelativistic source moving at Lorentz factor of -500. A straightforward inference is that about 10 times more energy must have been radiated at tens of GeV than that released at 1 MeV. Assuming that the GRB outflow was baryonic and the gamma-ray source was shock-heated plasma, the collimation-corrected kinetic energy of the jet powering GRB 080319B was larger than 10{sup 52.3} erg. The decay of the early afterglow optical emission (up to 1 ks) is too fast to be attributed to the reverse-shock crossing the GRB ejecta but is consistent with the expectations for the 'large-angle' emission released during the burst. The pure power-law decay of the optical afterglow flux from 1 ks to 10 d is most naturally identified with the (synchrotron) emission from the shock propagating into a wind-like medium. However, the X-ray afterglow requires a departure from the standard blast-wave model.

  11. Light curves and spectra from off-axis gamma-ray bursts

    Science.gov (United States)

    Salafia, O. S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F.

    2016-10-01

    If gamma-ray burst prompt emission originates at a typical radius, and if material producing the emission moves at relativistic speed, then the variability of the resulting light curve depends on the viewing angle. This is due to the fact that the pulse evolution time-scale is Doppler contracted, while the pulse separation is not. For off-axis viewing angles θview ≳ θjet + Γ-1, the pulse broadening significantly smears out the light-curve variability. This is largely independent of geometry and emission processes. To explore a specific case, we set up a simple model of a single pulse under the assumption that the pulse rise and decay are dominated by the shell curvature effect. We show that such a pulse observed off-axis is (i) broader, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that a highly variable light curve (as seen on-axis) becomes smooth and apparently single-pulsed (when seen off-axis) because of pulse overlap. To test the relevance of this fact, we estimate the fraction of off-axis gamma-ray bursts detectable by Swift as a function of redshift, finding that a sizeable fraction (between 10 per cent and 80 per cent) of nearby (z < 0.1) bursts are observed with θview ≳ θjet + Γ-1. Based on these results, we argue that low-luminosity gamma-ray bursts are consistent with being ordinary bursts seen off-axis.

  12. The Proto-Magnetar Model for Gamma-Ray Bursts

    CERN Document Server

    Metzger, B D; Thompson, T A; Bucciantini, N; Quataert, E

    2010-01-01

    Long duration Gamma-Ray Bursts (GRBs) originate from the core collapse of massive stars, but the identity of the central engine remains elusive. Previous work has shown that rapidly spinning, strongly magnetized proto-neutron stars (`millisecond proto-magnetars') produce outflows with energies, timescales, and magnetizations sigma_0 (maximum Lorentz factor) that are consistent with those required to produce long GRBs. Here we extend this work in order to construct a self-consistent model that directly connects the properties of the central engine to the observed prompt emission. Just after the launch of the supernova shock, a wind heated by neutrinos is driven from the proto-magnetar. The outflow is collimated into a bipolar jet by its interaction with the star. As the magnetar cools, the wind becomes ultra-relativistic and Poynting-flux dominated (sigma_0 >> 1) on a timescale comparable to that required for the jet to clear a cavity through the star. Although the site and mechanism of the prompt emission are...

  13. Prompting Designers to Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    to prompt designers with their design queries. A method that automatically extracts relationships between concepts is described, along with some examples. The method can be implemented as part of knowledge management system and the relationships are extracted form documents that are indexed within...... the system. The distinctive features of this approach is that all the concepts are elicited from the minds of engineering designers, and the system builds up knowledge as more documents enter the system. The approach is based on an understanding obtained from a number of empirical studies and also from...

  14. All-sky sensitivity of HAWC to Gamma-Ray Bursts

    CERN Document Server

    ,

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a ground-based TeV gamma-ray observatory in the state of Puebla, Mexico at an altitude of 4100 m. Its 22,000 m$^2$ instrumented area, wide field of view ($\\sim$2 sr), and >95% uptime make it an ideal instrument for discovering gamma-ray burst (GRB) emission at $\\sim$100 GeV. Such a discovery would provide key information about the origins of prompt GRB emission as well as constraints on extra-galactic background light (EBL) models and the violation of Lorentz invariance. We will present prospects for discovering GRB emission at $\\sim$100 GeV with a simple, all-sky search algorithm using HAWC data that is most sensitive to short GRBs. The search algorithm presented here can also be used to detect other short transients with timescales and fluxes similar to short GRBs.

  15. The Internal-Collision-Induced Magnetic Reconnection and Turbulence (ICMART) Model of Gamma-Ray Bursts

    CERN Document Server

    Zhang, Bing

    2010-01-01

    The recent Fermi observation of GRB 080916C shows that the bright photosphere emission associated with a putative fireball is missing, which suggests a Poynting-flux-dominated outflow. We propose a model of gamma-ray burst (GRB) prompt emission in the Poynting-flux-dominated regime, namely, the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. It is envisaged that the GRB central engine launches an intermittent, magnetically-dominated wind, and that in the GRB emission region, the ejecta is still moderately magnetized. Similar to the internal shock (IS) model, the mini-shells interact internally at the traditional internal shock radius. Most of these early collision have little energy dissipation, but serve to distort the ordered magnetic field lines. At a certain point, the distortion of magnetic field configuration reaches the critical condition to allow fast reconnection seeds to occur, which induce relativistic MHD turbulence in the interaction regions. The turbulence further...

  16. Bright 30 THz Impulsive Solar Bursts

    CERN Document Server

    Kaufmann, P; Marcon, R; Kudaka, A S; Cabezas, D P; Cassiano, M M; Francile, C; Fernandes, L O T; Ramirez, R F Hidalgo; Luoni, M; Marun, A; Pereyra, P; de Souza, R V

    2015-01-01

    Impulsive 30 THz continuum bursts have been recently observed in solar flares, utilizing small telescopes with a unique and relatively simple optical setup concept. The most intense burst was observed together with a GOES X2 class event on October 27, 2014, also detected at two sub-THz frequencies, RHESSI X-rays and SDO/HMI and EUV. It exhibits strikingly good correlation in time and in space with white light flare emission. It is likely that this association may prove to be very common. All three 30 THz events recently observed exhibited intense fluxes in the range of 104 solar flux units, considerably larger than those measured for the same events at microwave and sub-mm wavelengths. The 30 THz burst emission might be part of the same spectral burst component found at sub-THz frequencies. The 30 THz solar bursts open a promising new window for the study of flares at their origin

  17. Detection, localization and study of spectral properties of high energy gamma bursts observed in the Fermi experiment

    International Nuclear Information System (INIS)

    Gamma-Ray Bursts (GRB) are among the brightest gamma-ray sources in the sky. The current standard framework associates their prompt gamma-ray emission to charged particles accelerated in relativistic jets issued by newly-formed stellar-mass black holes. The radio to X-ray afterglow emission is due to the interaction between these jets and the interstellar medium. The LAT, pair-creation instrument onboard Fermi gamma-ray space telescope, performs unprecedented observation of the gamma-ray sky at energies of 20 MeV to over 300 GeV since its launch in june 2008. Fermi's transient sources detector (GBM) observed prompt emissions of about 450 GRB between 8 keV and 40 MeV. 18 of these GRB were also studied up to GeV energies with the LAT. Accurate GRB localizations and Fermi's synergy with other observatories allows the study of GRB afterglows, and therefore a better interpretation of these observations. The analyses of GRB emissions between 8 keV to GeV energies is presented here. Localizations based on LAT data and their biases are studied. Spectral analyses of combined GBM and LAT data are shown, and their theoretical interpretations explained. An alternative analysis based on a relaxed selection of LAT data is presented and fully characterized. It allows to recover and use low-energy LAT statistics in temporal and spectral analyses of GRB prompt emission. Searches for long-lived high-energy emission from GRB are presented. The analysis of GRB 090510 afterglow emission from eV to GeV energies is described. Finally, Fermi bright GRB prompt emissions are compared to an internal shock model developed at IAP. (author)

  18. Evidence of Bulk Acceleration of the GRB X-Ray Flare Emission Region

    Science.gov (United States)

    Uhm, Z. Lucas; Zhang, Bing

    2016-06-01

    Applying our recently developed generalized version of the high-latitude emission theory to the observations of X-ray flares in gamma-ray bursts (GRBs), here we present clear observational evidence that the X-ray flare emission region is undergoing rapid bulk acceleration as the photons are emitted. We show that both the observed X-ray flare light curves and the photon index evolution curves can be simultaneously reproduced within a simple physical model invoking synchrotron radiation in an accelerating emission region far from the GRB central engine. Such an acceleration process demands an additional energy dissipation source other than kinetic energy, which points toward a significant Poynting flux in the emission region of X-ray flares. As the X-ray flares are believed to share a similar physical mechanism as the GRB prompt emission, our finding here hints that the GRB prompt emission jets may also carry a significant Poynting flux in their emitting region.

  19. Prompting Designers to Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2006-01-01

    Recent research suggest that engineering designers need assistance to understand what information is relevant for their particular design problem. They require guidance in formulating their queries and also to understand what information is relevant for them. This paper presents an approach to...... prompt designers with their design queries. A method that automatically extracts relationships between concepts is described, along with some examples. The method can be implemented as part of knowledge management system and the relationships are extracted form documents that are indexed within the...... system. The distinctive features of this approach is that all the concepts are elicited from the minds of engineering designers, and the system builds up knowledge as more documents enter the system. The approach is based on an understanding obtained from a number of empirical studies and also from...

  20. Prompt neutron multiplicities for the transplutonium nuclides

    International Nuclear Information System (INIS)

    In reponse to a need of the safeguards community, we have begun an evaluation effort to upgrade the values of the prompt neutron emission multiplicity distribution from fission, Psub(upsilon), and its average value . The reported Psub(upsilon) for various transplutonium nuclides have been renormalized via an independent evaluation of . Recommended values and uncertainties are given for the newly evaluated and Psub(upsilon). (author)

  1. The Onset of Gamma-Ray Burst Afterglow

    Science.gov (United States)

    Kobayashi, Shiho; Zhang, Bing

    2007-02-01

    We discuss the reference time t0 of afterglow light curves in the context of the standard internal-external shock model. The decay index of early afterglow is very sensitive to the reference time one chooses. In order to understand the nature of early afterglow, it is essential to take a correct reference time. Our simple analytic model provides a framework for understanding special relativistic effects involved in early afterglow phase. We evaluate light curves of reverse shock emission as well as those of forward shock emission, based on full hydrodynamic calculations. We show that the reference time does not shift significantly even in the thick-shell case. For external shock emission components, measuring times from the beginning of the prompt emission is a good approximation and it does not cause an early steep decay. In the thin-shell case, the energy transfer time from fireball ejecta to ambient medium typically extends to thousands of seconds. This might be related to the shallow decay phases observed in early X-ray afterglow at least for some bursts.

  2. Prompt neutron multiplicities for the transplutonium nuclides

    International Nuclear Information System (INIS)

    The direct determination of the average prompt neutron emission values is reviewed, and a method of comparing different sites of neutron emission multiplicity distribution values is described. Measured and recommended values are tabulated for these nuclides: 241Am, 242Am, 242Cm, 243Cm, 244Cm, 246Cm, 247Cm, 248Cm, 250Cm, 245Cm, 249Bk, 246Cf, 249Cf, 250Cf, 252Cf, 254Cf, 251Cf, 253Es, 254Es, 244Fm, 246Fm, 255Fm, 252No, 254Fm, 256Fm, 257Fm. 59 refs., 24 tabs

  3. Gamma-ray bursts spectral correlations and their cosmological use.

    Science.gov (United States)

    Ghirlanda, Giancarlo

    2007-05-15

    The correlations involving the long-gamma-ray bursts (GRBs) prompt emission energy represent a new key to understand the GRB physics. These correlations have been proved to be the tool that makes long-GRBs a new class of standard candles. Gamma Ray Bursts, being very powerful cosmological sources detected in the hard X-ray band, represent a new tool to investigate the Universe in a redshift range, which is complementary to that covered by other cosmological probes (SNIa and CMB). A review of the Ep-Eiso, Ep-Egamma, Ep-Eiso-tbreak and Liso-Ep-T0.45 correlations is presented. Open issues related to these correlations (e.g. presence of outliers and selection effects) and to their use for cosmographic purposes (e.g. dependence on model assumptions) are discussed. Finally, the relevance of thermal components in GRB spectra is discussed in the light of some of the models recently proposed for the interpretation of the spectral-energy correlations. PMID:17293334

  4. Multiwavelength Gamma-Ray Bursts Observations with ECLAIRs

    CERN Document Server

    Gotz, Diego

    2007-01-01

    ECLAIRs is the next space borne instrument that will be fully dedicated to multi-wavelength studies of Gamma-Ray Bursts (GRBs). It consists of a coded mask telescope with a wide (~2 sr) field of view, made of 6400 CdTe pixels (~1000 cm^2), which will work in the 4-300 keV energy band. It is expected to localise ~80 GRBs/yr, thanks to the on-board real time event processing. The GRBs (and other transients) coordinates will be distributed within a few seconds from the onset of the burst with a typical uncertainty of ~5-10 arcmin. The detection system will also include a soft X-ray camera (1-10 keV) allowing to study in detail the prompt soft X-ray emission and to reduce the error box for about half of the GRBs seen by ECLAIRs to ~30 arcsec. ECLAIRs is expected to be flown in late 2011 and to be the only instrument capable of providing GRB triggers with sufficient localisation accuracy for GRB follow-up observations with the powerful ground based spectroscopic telescopes available by then. We will present the cu...

  5. Extreme ultra-violet burst, particle heating, and whistler wave emission in fast magnetic reconnection induced by kink-driven Rayleigh-Taylor instability

    Science.gov (United States)

    Chai, Kil-Byoung; Zhai, Xiang; Bellan, Paul M.

    2016-03-01

    A spatially localized energetic extreme ultra-violet (EUV) burst is imaged at the presumed position of fast magnetic reconnection in a plasma jet produced by a coaxial helicity injection source; this EUV burst indicates strong localized electron heating. A circularly polarized high frequency magnetic field perturbation is simultaneously observed at some distance from the reconnection region indicating that the reconnection emits whistler waves and that Hall dynamics likely governs the reconnection. Spectroscopic measurement shows simultaneous fast ion heating. The electron heating is consistent with Ohmic dissipation, while the ion heating is consistent with ion trajectories becoming stochastic.

  6. A Small, Rapid Optical-IR Response Gamma-Ray Burst Space Observatory

    CERN Document Server

    Grossan, Bruce; Perley, Daniel; Smoot, George F

    2014-01-01

    Here we propose a new gamma-ray burst (GRB) mission, the Next Generation Rapid-Response GRB Observatory (NGRG). As with Swift, GRBs are initially located with a coded-mask X-ray camera. However, the NGRG has two new features: First, a beam-steering system to begin optical observations within ~ 1 s after location; second, a near-IR (NIR) camera viewing the same sky, for sensitivity to extinguished bursts. These features allow measurement of the rise phase of GRB optical-NIR emission. Thus far, the rise time and transition between prompt and afterglow in the optical and NIR are rarely measured. Rapid-response measurements explore many science topics including optical emission mechanisms (synchrotron vs. SSC, photospheric emission) and jet characteristics (reverse vs. forward shock emission, baryon-dominated vs. magnetic dominated). Rapid optical-NIR response can measure dynamic evolution of extinction due to vaporization of dust, and separate star system and galaxy dust extinction. We discuss these measurements...

  7. A black hole preying on the star for a gamma-ray burst of GRB080503:Evidence for the second event in this new class

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we critically assess GRB080503,a short gamma-ray burst with very bright extended emission(about 30 times the gamma-ray fluence of the initial spike).The light curve of the prompt γ-ray emission of GRB080503 resembles that of GRB 060614 which has been suggested to be due to an event from an intermediate mass black hole(IMBH) preying on a star.We therefore propose that GRB080503 is also due to a similar event;the mass of the IMBH is estimated to be about 4.6×104 solar masses,and the engulfed star had about the same mass and size as the Sun.We also estimate that the total burst energy is about 7.67× 1050 ergs.

  8. New Results on the Spectral Evolution of Magnetar Bright Bursts

    Science.gov (United States)

    Younes, George A.; Kouveliotou, C.; van der Horst, A.; GBM Magnetar Team

    2013-04-01

    Magnetars are isolated neutron stars characterized by long spin periods (2-12 s) and large spin down rates, implying a very strong magnetic field, B>10E14 G. Magnetars exhibit short bursts of hard X-/soft gamma-rays with luminosities ranging from 10E37 to 10E41 erg/s. The magnetar SGR J1550-5418 entered an extremely active bursting episode, starting on 2008 October 03 until 2009 April 17, during which Fermi Gamma-ray Burst Monitor (GBM) observed several hundred bursts from this source. Such wealth of bursts resulted in the largest catalog of detailed temporal and spectral results for SGR J1550-5418. Here, we discuss new results from time-resolved spectral analysis of the brightest bursts from this source. Our analysis, together with the comparison of our results with other magnetar bursts, enabled us to put strong constraints on the theories underlying the magnetar bursts emission mechanism.

  9. Starlight beneath the waves : in search of TeV photon emission from Gamma-Ray Bursts with the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Astraatmadja, Tri Laksmana

    2013-01-01

    At any given time, cosmic rays constantly shower the Earth from all direction. The origin of cosmic rays is still a mystery as their paths are deflected by magnetic fields to random directions. The most likely sources of cosmic rays are Gamma-Ray Bursts (GRB). As the most energetic events known in

  10. Dark gamma-ray bursts: possible role of multiphoton processes

    CERN Document Server

    Perel'man, Mark E

    2009-01-01

    The absence of optical afterglow at some gamma-ray bursts (so called dark bursts) requires analyses of physical features of this phenomenon. It is shown that such singularity can be connected with multiphoton processes of frequencies summation in the Rayleigh- Jeans part of spectra, their pumping into higher frequencies. It can be registered most probably on young objects with still thin plasma coating, without further thermalization, i.e. soon after a prompt beginning of the explosive activity.

  11. Multiwavelength Observations of GRB 110731A: GeV Emission from Onset to Afterglow

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romoli, C.; Roth, M.; Ryde, F.; Sanchez, D. A.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spinelli, P.; Stamatikos, M.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Gruber, D.; Bhat, P. N.; Bissaldi, E.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Foley, S.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; McGlynn, S.; Paciesas, W. S.; Pelassa, V.; Preece, R.; Rau, A.; van der Horst, A. J.; von Kienlin, A.; Kann, D. A.; Filgas, R.; Klose, S.; Krühler, T.; Fukui, A.; Sako, T.; Tristram, P. J.; Oates, S. R.; Ukwatta, T. N.; Littlejohns, O.

    2013-02-01

    We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.

  12. Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves

    CERN Document Server

    Suwa, Yudai

    2009-01-01

    There are the two common candidates as the viable energy source for the central engine of long gamma-ray bursts (GRBs) and hypernovae (HNe), neutrino annihilation and magnetic fields. We investigate gravitational wave (GW) emission accompanied by these two mechanisms. Especially, we focus on GW signals produced by neutrinos from a hyper-accreting disk around a massive black hole. We show that neutrino-induced GWs are detectable for $\\sim$1 Mpc events by LISA and $\\sim$ 100 Mpc by DECIGO/BBO, if the central engine is powered by neutrinos. Simultaneous neutrino detections are also expected, and helpful for diagnosing the explosion mechanism when later electromagnetic observations enable us to identify the source. GW and neutrino observations are potentially useful for probing choked jets that do not produce prompt emission, as well as successful jets. Even in non-detection cases, observations of GWs and neutrinos could lead to profitable implications for the central engine of GRBs and HNe.

  13. Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks

    CERN Document Server

    Lin, Da-Bin; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lv, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-01-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  14. X-Ray Observations of Gamma-Ray Burst Afterglows

    OpenAIRE

    Frontera, Filippo

    2004-01-01

    The discovery by the BeppoSAX satellite of X-ray afterglow emission from the gamma-ray burst which occurred on 28 February 1997 produced a revolution in our knowledge of the gamma-ray burst phenomenon. Along with the discovery of X-ray afterglows, the optical afterglows of gamma-ray bursts were discovered and the distance issue was settled, at least for long $\\gamma$-ray bursts. The 30 year mystery of the gamma-ray burst phenomenon is now on the way to solution. Here I rewiew the observationa...

  15. THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?

    Energy Technology Data Exchange (ETDEWEB)

    Gendre, B.; Cutini, S.; D' Elia, V. [ASI Science Data Center, via Galileo Galilei, I-00044 Frascati (Italy); Stratta, G. [Osservatorio Astronomico di Roma, OAR-INAF, via Frascati 33, I-00040, Monte Porzio Catone (Italy); Atteia, J. L.; Klotz, A. [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Basa, S. [Aix Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Boeer, M. [CNRS, ARTEMIS, UMR 7250, Boulevard de l' Observatoire, BP 4229, F-06304 Nice Cedex 4 (France); Coward, D. M.; Howell, E. J [University of Western Australia, School of Physics, University of Western Australia, Crawley WA 6009 (Australia); Piro, L., E-mail: bruce.gendre@gmail.com [Istituto di Astrofisica e Planetologia Spaziali di Roma, INAF, via fosso del cavaliere 100, I-00133 Roma (Italy)

    2013-03-20

    We present optical, X-ray and gamma-ray observations of GRB 111209A, observed at a redshift of z = 0.677. We show that this event was active in its prompt phase for about 25000 s, making it the longest burst ever observed. This rare event could have been detected up to z {approx} 1.4 in gamma-rays. Compared to other long gamma-ray bursts (GRBs), GRB 111209A is a clear outlier in the energy-fluence and duration plane. The high-energy prompt emission shows no sign of a strong blackbody component, the signature of a tidal disruption event, or a supernova shock breakout. Given the extreme longevity of this event, and lack of any significant observed supernova signature, we propose that GRB 111209A resulted from the core-collapse of a low-metallicity blue supergiant star. This scenario is favored because of the necessity to supply enough mass to the central engine over a duration of thousands of seconds. Hence, we suggest that GRB 111209A could have more in common with population III stellar explosions, rather than those associated with normal long GRBs.

  16. The ultra-long Gamma-Ray Burst 111209A: the collapse of a blue supergiant?

    CERN Document Server

    Gendre, B; Atteia, J L; Basa, S; Boër, M; Coward, D M; Cutini, S; D'Elia, V; Howell, E; Klotz, A; Piro, L

    2012-01-01

    We present optical, X-ray and gamma-ray observations of GRB 111209A, at a redshift of z = 0.677. We show that this event was active in its prompt phase for about 25000 seconds, making it the longest burst ever observed. This rare event could have been detected up to z ~ 1.4. Compared to other long GRBs, GRB 111209A is a clear outlier in the energy-fluence and duration plane. The high-energy prompt emission shows no sign of a strong black body component, as expected if the event was caused by a tidal disruption event or a supernova shock breakout. Given the extreme longevity of this event, and a lack of a supernova signature, we propose that GRB 111209A is a relatively rare stellar collapse of a low metallicity blue super giant star. Only this progenitor can supply mass to the central engine over a duration of thousands of seconds. Hence, GRB 111209A could have more in common with population III stellar explosions, rather than normal long gamma ray bursts.

  17. On the Lack of a Radio Afterglow from Some Gamma-ray Bursts - Insight into Their Progenitors?

    CERN Document Server

    Lloyd-Ronning, Nicole M

    2016-01-01

    We investigate the intrinsic properties of a sample of bright (E_iso > 10^52 erg) gamma-ray bursts, comparing those with and without radio afterglows. We find that the sample of bursts with no radio afterglows has a significantly shorter mean intrinsic duration of the prompt gamma-ray radiation, and the distribution of this duration is significantly different from those bursts with a radio afterglow. Although the sample with no radio afterglow has on average lower isotropic energy, the lack of radio afterglow does not appear to be a result of simply energetics of the burst, but a reflection of a separate physical phenomenon likely related to the circumburst density profile. We also find a weak correlation between the isotropic $\\gamma-$ray energy and intrinsic duration in the sample with no radio afterglow, but not in the sample which have observed radio afterglows. We give possible explanations for why there may exist a sample of GRBs with no radio afterglow depending on whether the radio emission comes from...

  18. Swift Discovery of Gamma-Ray Bursts without Jet Break Feature in their X-Ray Afterglows

    CERN Document Server

    Sato, G; Ioka, K; Sakamoto, T; Takahashi, T; Nakazawa, K; Nakamura, T; Toma, K; Hullinger, D; Tashiro, M; Parsons, A M; Krimm, H A; Barthelmy, S D; Gehrels, N; Burrows, D N; O'Brien, P T; Osborne, J P; Chincarini, G; Lamb, D Q

    2006-01-01

    We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations -- GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10-70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. Thi...

  19. Design and implementation of the UFFO burst alert and trigger telescope

    DEFF Research Database (Denmark)

    Kim, J.E.; Ahmad, S.; Barrillon, P.;

    2012-01-01

    The Ultra Fast Flash Observatory pathfinder (UFFO-p) is a telescope system designed for the detection of the prompt optical/UV photons from Gamma-Ray Bursts (GRBs), and it will be launched onboard the Lomonosov spacecraft in 2012. The UFFO-p consists of two instruments: the UFFO Burst Alert and T...

  20. The First 100 LAT Gamma-Ray Bursts: A New Detection Algorithm and Pass 8

    CERN Document Server

    Vianello, Giacomo

    2015-01-01

    Observations of Gamma-Ray Bursts with the Fermi Large Area Telescope have prompted theoretical advances and posed big challenges in the understanding of such extreme sources, despite the fact that GRB emission above 100 MeV is a fairly rare event. The first Fermi/LAT GRB catalog, published a year ago, presented 28 detections out of ~300 bursts detected by the Fermi Gamma-Ray Burst Monitor (GBM) within the LAT field of view. Building on the results from that work and on recent development in the understanding of the systematic errors on GBM localizations, we developed a new detection algorithm which increased the number of detections by 40 %. Even more recently the development of the new event analysis for the LAT ("Pass 8") has increased the number of detections within the first 3 years of the mission to 45, up 50 % with respect to the published catalog. The second LAT GRB catalog, in preparation, will cover more than 6 years of the mission and will break the barrier of 100 detected GRBs, a more than 20-fold ...

  1. Measuring Ambient Densities and Lorentz Factors of Gamma-Ray Bursts from GeV and Optical Observations

    Science.gov (United States)

    Hascoët, Romain; Vurm, Indrek; Beloborodov, Andrei M.

    2015-11-01

    The Fermi satellite detected GeV flashes from cosmological gamma-ray bursts (GRBs). In two GRBs, an optical counterpart of the GeV flash was detected. Such flashes are predicted by the model of a blast wave running into a medium loaded with copious {e}+/- pairs. Here we examine a sample of seven bursts with the best GeV+optical data and further test the model. We find that the observed light curves are in agreement with the theoretical predictions, which allows us to measure three parameters for each burst: the Lorentz factor of the explosion, its isotropic kinetic energy, and the external density. With the possible exception of GRB 090510 (the only short burst in the sample), the ambient medium is consistent with a wind from a Wolf-Rayet progenitor. The wind density parameter A=ρ {r}2 varies in the sample around 1011 g cm-1. The initial Lorentz factor of the blast wave varies from 200 to 540, and correlates with the burst luminosity. Radiative efficiency of the prompt emission varies between 0.1 and 0.8. For the two bursts with a detected optical flash, GRB 120711A and GRB 130427A, we also estimate the magnetization of the external blast wave. Remarkably, despite its small number of free parameters, the model reproduces the entire optical light curve of GRB 120711A (with its sharp peak, fast decay, plateau, and break) as well as the GeV data. The spectra of GeV flashes are predicted to extend above 0.1 TeV, where they can be detected by ground-based Cherenkov telescopes.

  2. The 999th Swift Gamma-Ray Burst: some like it thermal

    CERN Document Server

    Nappo, F; Oganesyan, G; Ghirlanda, G; Giroletti, M; Melandri, A; Campana, S; Ghisellini, G; Salafia, O S; D'Avanzo, P; Bernardini, M G; Covino, S; Carretti, E; Celotti, A; D'Elia, V; Nava, L; Palazzi, E; Poppi, S; Prandoni, I; Righini, S; Rossi, A; Salvaterra, R; Tagliaferri, G; Testa, V; Venturi, T; Vergani, S D

    2016-01-01

    We present a multiwavelength study of GRB 151027A. This is the 999th GRB detected by the Swift satellite and it has a densely sampled emission in the X-ray and optical band and has been observed and detected in the radio up to 140 days after the prompt. The multiwavelength light curve from 500 s to 140 days can be modelled through a standard forward shock afterglow but requires an additional component to reproduce the early X-ray and optical emission. We present TNG and LBT optical observations performed 19.6, 33.9 and 92.3 days after the trigger which show a bump with respect to a standard afterglow flux decay and are possibly interpreted as due to the underlying SN and host galaxy (of 0.4 uJy in the R band). Radio observations, performed with SRT, Medicina, EVN and VLBA between day 4 and 140, suggest that the burst exploded in an environment characterised by a density profile scaling with the distance from the source (wind profile). A remarkable feature of the prompt emission is the presence of a bright fla...

  3. How Long does a Burst Burst?

    CERN Document Server

    Zhang, Bin-Bin; Murase, Kohta; Connaughton, Valerie; Briggs, Michael S

    2013-01-01

    Several gamma-ray bursts (GRBs) last much longer (~ hours) in gamma-rays than typical long GRBs (~ minutes), and recently it was proposed that these "ultra-long GRBs" may form a distinct population, probably with a different (e.g. blue supergiant) progenitor than typical GRBs. However, Swift observations have suggested that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with XRT observations to investigate GRB central engine activity duration and to check whether ultra-long GRBs are special. We define burst duration t_{burst} based on both gamma-ray and X-ray light curves rather than using gamma-ray observations only. We show that the distribution of t_{burst} peaks at ~ 320s for the entire sample, with 17.6% GRBs having t_{burst} > 10^3 s and 5.4% GRBs having t_{burst} > 10^4 s. The distribution shows a tail at the long t_{burst} end. The existence of a separate population is not ruled ou...

  4. THE ELECTROMAGNETIC MODEL OF SHORT GRBs, THE NATURE OF PROMPT TAILS, SUPERNOVA-LESS LONG GRBs, AND HIGHLY EFFICIENT EPISODIC ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States)

    2013-05-01

    Many short gamma-ray bursts (GRBs) show prompt tails lasting up to hundreds of seconds that can be energetically dominant over the initial sub-second spike. In this paper we develop an electromagnetic model of short GRBs that explains the two stages of the energy release, the prompt spike and the prompt tail. The key ingredient of the model is the recent discovery that an isolated black hole can keep its open magnetic flux for times much longer than the collapse time and thus can spin down electromagnetically, driving the relativistic wind. First, the merger is preceded by an electromagnetic precursor wind with total power L{sub p} Almost-Equal-To (((GM{sub NS}){sup 3}B{sub NS}{sup 2})/c{sup 5}R){proportional_to}(-t){sup - Vulgar-Fraction-One-Quarter }, reaching 3 Multiplication-Sign 10{sup 44} erg s{sup -1} for typical neutron star masses of 1.4 M{sub Sun} and magnetic fields B {approx} 10{sup 12} G. If a fraction of this power is converted into pulsar-like coherent radio emission, this may produce an observable radio burst of a few milliseconds (like the Lorimer burst). At the active stage of the merger, two neutron stars produce a black hole surrounded by an accretion torus in which the magnetic field is amplified to {approx}10{sup 15} G. This magnetic field extracts the rotational energy of the black hole and drives an axially collimated electromagnetic wind that may carry of the order of 10{sup 50} erg, limited by the accretion time of the torus, a few hundred milliseconds. For observers nearly aligned with the orbital normal this is seen as a classical short GRB. After the accretion of the torus, the isolated black hole keeps the open magnetic flux and drives the equatorially (not axially) collimated outflow, which is seen by an observer at intermediate polar angles as a prompt tail. The tail carries more energy than the prompt spike, but its emission is de-boosted for observers along the orbital normal. Observers in the equatorial plane miss the prompt spike

  5. Individual power density spectra of Swift gamma-ray bursts

    CERN Document Server

    Guidorzi, C; Amati, L

    2016-01-01

    Timing analysis is a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of GRBs. Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and to investigate the dominant variability timescales. Because of the limited duration and of the statistical properties, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature. We characterise the individual PDS of GRBs in terms of a stochastic process, and carry out for the first time a systematic search for periodic signals and for a link between the PDS and other observables. We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study 215 bright long GRBs detected with the Swift Burst Alert Telescope from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Two classes of GRBs...

  6. A Study of the Gamma-Ray Burst Fundamental Plane

    CERN Document Server

    Dainotti, Maria; Postnikov, Sergey; Nagataki, Shigehiro; Willingale, Richard

    2016-01-01

    A class of long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obeys a three-dimensional (3D) relation (Dainotti et al. 2016), between the rest-frame time at the end of the plateau, Ta, its corresponding X-ray luminosity, La, and the peak luminosity in the prompt emission, Lpeak. We extended the original analysis with X-ray data from July 2014 to July 2016 achieving a total sample of 183 Swift GRBs with afterglow plateaus and known redshifts. We added the most recent GRBs to the previous 'gold sample' (now including 45 GRBs) and obtained a relation plane with intrinsic scatter compatible within one sigma with the previous result. We compared several GRB categories, such as short with extended emission, X-ray Flashes, GRBs associated with SNe, long-duration GRBs, and the gold sample, composed only by GRBs with light curves with good data coverage and relatively flat plateaus and evaluated their relation planes. We found that they are not statistically different from the fundamental plan...

  7. Gamma-ray burst jets: uniform or structured?

    CERN Document Server

    Salafia, O S; Nappo, F; Ghisellini, G; Ghirlanda, G; Salvaterra, R; Tagliaferri, G

    2015-01-01

    The structure of Gamma-Ray Burst (GRB) jets impacts on their prompt and afterglow emission properties. Insights into the still unknown structure of GRBs can be achieved by studying how different structures impact on the luminosity function (LF): i) we show that low ($10^{46} 10^{50}$ erg/s) luminosity GRBs can be described by a unique LF; ii) we find that a uniform jet (seen on- and off-axis) as well as a very steep structured jet (i.e. $\\epsilon(\\theta) \\propto \\theta^{-s}$ with $s > 4$) can reproduce the current LF data; iii) taking into account the emission from the whole jet (i.e. including contributions from mildly relativistic, off-axis jet elements) we find that $E_{\\rm iso}(\\theta_{\\rm v})$ (we dub this quantity "apparent structure") can be very different from the intrinsic structure $\\epsilon(\\theta)$: in particular, a jet with a Gaussian intrinsic structure has an apparent structure which is more similar to a power law. This opens a new viewpoint on the quasi-universal structured jet hypothesis.

  8. Detection of an optical transient following the 13 March 2000 short/hard gamma-ray burst

    CERN Document Server

    Castro-Tirado, A J; Gorosabel, J; Pata, P; Soldan, J; Hudec, R; Jelinek, M; Topinka, M A; Bernas, M; Sanguino, T J M; De Postigo, A U; Berna, J A; Henden, A A; Vrba, F J; Canzian, B; Harris, H; Delfosse, X; De Pontieu, B; Polcar, J; Sánchez-Fernández, C; De la Morena, B A; Mas-Hesse, J M; Riera, J T; Barthelmy, S D

    2002-01-01

    We imaged the error box of a gamma-ray burst of the short (0.5 s), hard type (GRB 000313), with the BOOTES-1 experiment in southern Spain, starting 4 min after the gamma-ray event, in the I-band. A bright optical transient (OT 000313) with I = 9.4 +/- 0.1 was found in the BOOTES-1 image, close to the error box (3-sigma) provided by BATSE. Late time VRIK'-band deep observations failed to reveal an underlying host galaxy. If the OT 000313 is related to the short, hard GRB 000313, this would be the first optical counterpart ever found for this kind of events (all counterparts to date have been found for bursts of the long, soft type). The fact that only prompt optical emission has been detected (but no afterglow emission at all, as supported by theoretical models) might explain why no optical counterparts have ever been found for short, hard GRBs.This fact suggests that most short bursts might occur in a low-density medium and favours the models that relate them to binary mergers in very low-density enviroments.

  9. CMEs and frequency cutoff of solar bursts

    Science.gov (United States)

    Stanislavsky, Al.; Konovalenko, Al.; Koval, Ar.; Volvach, Y.; Zarka, P.

    2016-05-01

    Radio observations of solar bursts with high-frequency cutoff by the radio telescope UTR-2 (near Kharkiv, Ukraine) at 8-33 MHz on 17-19 August 2012 are presented. Such cutoff may be attributed to the emergence of the burst sources behind limb of the Sun with respect to an observer on the Earth. The events are strongly associated with solar eruptions occurred in a new active region. Ray tracing simulations show that the CMEs play a constructive role for the behind-limb bursts to be detected in ground-based observations. Likely, due to tunnel-like cavities with low density in CMEs, the radio emission of behind-limb solar bursts can be directed towards the Earth.

  10. H.E.S.S. Observations of the Prompt and Afterglow Phases of GRB 060602B

    CERN Document Server

    Aharonian, F; Barresde Almeida, U; Bazer-Bachi, A R; Behera, B; Beilicke, M; Benbow, W; Bernlöhr, K; Boisson, C; Borrel, V; Braun, I; Brion, E; Brucker, J; Buhler, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Chaves, R; Chounet, L M; Clapson, A C; Coignet, G; Cornils, R; Costamante, L; Dalton, M; Degrange, B; Dickinson, H J; Djannati-Atai, A; Domainko, W; O'Connor-Drury, L; Dubois, F; Dubus, G; Dyks, J; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Fussling, M; Gabici, S; Gallant, Y A; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Jung, I; Katarzy, K; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Kh, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Latham, I J; Lenain, J P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, D; McComb, T J L; Moderski, R; Moulin, E; Naumann-Godo, M; De Naurois, Mathieu; Nedbal, D; Nekrassov, D; Nolan, S J; Ohm, S; Olive, J P; De Ona Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, Andreas G; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Ruppel, J; Sahakian, V V; Santangelo, A; Schlickeiser, R; Sch, F M; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Stawarz, L; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2008-01-01

    We report on the first completely simultaneous observation of a gamma-ray burst (GRB) using an array of Imaging Atmospheric Cherenkov Telescopes which is sensitive to photons in the very-high-energy (VHE) gamma-ray range (>~100 GeV). On 2006 June 2, the Swift Burst Alert Telescope (BAT) registered an unusually soft gamma-ray burst (GRB 060602B). The burst position was under observation using the High Energy Stereoscopic System (H.E.S.S.) at the time the burst occurred. Data were taken before, during, and after the burst. A total of 5 hours of observations were obtained during the night of 2006 June 2-3, and 5 additional hours were obtained over the next 3 nights. No VHE gamma-ray signal was found during the period covered by the H.E.S.S. observations. The 99% confidence level flux upper limit (>1 TeV) for the prompt phase (9s) of GRB 060602B is 2.9x10^-9 erg cm^-2 s^-1. Due to the very soft BAT spectrum of the burst compared to other Swift GRBs and its proximity to the Galactic center, the burst is likely ass...

  11. Time-resolved analysis of Fermi gamma-ray bursts with fast- and slow-cooled synchrotron photon models

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J. M.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Goldstein, A.; Bhat, P. N.; Paciesas, W. S.; Xiong, S. [University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Greiner, J.; Gruber, D.; Kienlin, A.; Rau, A. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Kouveliotou, C. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); McGlynn, S. [Exzellence Cluster " Universe," Technische Universitt Mnchen, Boltzmannstrasse 2, D-85748, Garching (Germany); Meegan, C. A. [Universities Space Research Association, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Dermer, C. D. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Iyyani, S. [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Kocevski, D., E-mail: james.m.burgess@nasa.gov, E-mail: Rob.Preece@nasa.gov, E-mail: shabuiyyani@gmail.com, E-mail: baring@rice.edu [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); and others

    2014-03-20

    Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. The GRB spectrum is therefore modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. To produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index α is consistent with a synchrotron component with α = –0.81 ± 0.1. This value lies between the limiting values of α = –2/3 and α = –3/2 for electrons in the slow- and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. In addition, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.

  12. Gamma Ray Burst Follow-Ups with Bootes-4

    Science.gov (United States)

    Guziy, Sergey; Castro-Tirado, Guziy, Alberto J.; Jelinek, Martin; Gorosabel, Javier; Kubanek, Petr; Cunniffe, Ronan; Lara-Gil, Oscar; Tello, Juan C.; Jeong, Soomin; Oates, Samantha R.; Xu, Youdong; Perez-Ramirez, Dolores; Cui, Chenzou; Fan, Yufeng; Wan, Chuanjun; Bai, Jinming; Kheyfets, I.

    The Burst Observer and Optical Transient Exploring System (BOOTES), is a global robotic observatory network, which started in 1998 with Spanish leadership devoted to study optical emissions from gamma ray bursts (GRBs) that occur in the Universe. We present shot history and current status of BOOTES-4 telescope. Some details of 38 GRBs followed-up with BOOTES-4 are discussed.

  13. Extreme Properties Of GRB061007: A Highly Energetic Or A Highly Collimated Burst?

    CERN Document Server

    Schady, P; Page, M J; Vetere, L; Pandey, S B; Wang, X Y; Cummings, J; Zhang, B; Zane, S; Breeveld, A; Burrows, D N; Gronwall, N G C; Hunsberger, S; Markwardt, C; Mason, K O; Mészáros, P; Oates, S R; Pagani, C; Poole, T S; Roming, P W A; Smith, P J; Vanden Berk, D E

    2006-01-01

    GRB061007 is the brightest gamma-ray burst (GRB) to be detected by Swift and is accompanied by an exceptionally luminous afterglow that had a V-band magnitude <11.1 at 80s after the prompt emission. From the start of the Swift observations the afterglow decayed as a power law with a slope of \\alpha_X=1.66+/-0.01 in the X-ray and \\alpha_{opt}=1.64+/-0.01 in the UV/optical, up to the point that it was no longer detected above background in the optical or X-ray bands. The brightness of this GRB and the similarity in the decay rate of the X-ray, optical and gamma-ray emission from 100s after the trigger distinguish this burst from others and present a challenge to the fireball model. The lack of a cooling or jet break in the afterglow up to \\~10^5s constrains any model that can produce the large luminosity observed in GRB061007, which we found to require either an excessively large kinetic energy or highly collimated outflow. Analysis of the multi-wavelength spectral and high-resolution temporal data taken wit...

  14. Extreme Properties Of GRB061007: A Highly Energetic OR Highly Collimated Burst?

    CERN Document Server

    Schady, P; Cummings, J; Page, M J; Pandey, S B; Wang, X Y; Vetere, L; Zhang, B; Zane, S; Breeveld, A; Burrows, D N; Gehrels, N; Gronwall, C; Ger, S H; Markwardt, C; Mason, K O; Mészáros, P; Oates, S R; Pagani, C; Poole, T S; Roming, P W A; Smith, P; Vanden Berk, D E

    2006-01-01

    GRB 061007 is the most energetic gamma-ray burst (GRB) to be detected by \\swift and is accompanied by an exceptionally luminous afterglow that had a $V$-band magnitude $< 11.1$ at 80 s after the prompt emission. From the start of the \\swift observations the afterglow decayed as a power law with a slope of $\\alpha_X=1.66\\pm 0.01$ in the X-ray and $\\alpha_{opt}=1.64\\pm 0.01$ in the UV/optical, up to the point that it was no longer detected above background in the optical or X-ray bands. The brightness of this GRB and the similarity in the decay rate of the X-ray, optical and $\\gamma$-ray emission from 100 s after the trigger, distinguish this burst from others and present a challenge to the fireball model. The lack of a cooling or jet break in the afterglow up to $\\sim 10^{5}$ s constrains any model that can produce the large luminosity observed in GRB 061007, which we found to require either an excessively large kinetic energy or highly collimated outflow. The multi-wavelength spectral and high-resolution t...

  15. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  16. EPISODIC JETS AS THE CENTRAL ENGINE OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Most gamma-ray bursts (GRBs) have erratic light curves, which demand that the GRB central engine launches an episodic outflow. Recent Fermi observations of some GRBs indicate a lack of the thermal photosphere component as predicted by the baryonic fireball model, which suggests a magnetic origin of GRBs. Given that powerful episodic jets have been observed along with continuous jets in other astrophysical black hole systems, here we propose an intrinsically episodic, magnetically dominated jet model for the GRB central engine. Accumulation and eruption of free magnetic energy in the corona of a differentially rotating, turbulent accretion flow around a hyperaccreting black hole lead to ejections of episodic, magnetically dominated plasma blobs. These blobs are accelerated magnetically, collide with each other at large radii, trigger rapid magnetic reconnection and turbulence, efficient particle acceleration, and radiation, and power the observed episodic prompt gamma-ray emission from GRBs.

  17. Stochastic Acceleration Model of Gamma-Ray Burst with Decaying Turbulence

    CERN Document Server

    Asano, Katsuaki

    2015-01-01

    The spectral shape of the prompt emissions of gamma-ray bursts (GRBs) is typically expressed by the Band function: smooth joining of two power-law functions for high-energy and low-energy regions. To reveal the origin of the Band function, we revisit the stochastic acceleration model, in which electrons are accelerated via scattering with turbulent waves in the GRB outflow. The balance between the acceleration and synchrotron cooling yields a narrow energy-distribution similar to the Maxwellian distribution. The synchrotron spectrum becomes consistent with the observed hard photon index for the low-energy region. On the other hand, the narrow electron energy distribution contradicts the power-law spectrum for the high-energy region. We consider an evolution of the electron energy distribution to solve this problem. The turbulence and magnetic field induced by a certain hydrodynamical instability gradually decay. According to this evolution, the typical synchrotron photon energy also decreases with time. The t...

  18. Fermi-LAT Gamma-ray Bursts and Insight from Swift

    Science.gov (United States)

    Racusin, Judith L.

    2011-01-01

    A new revolution in GRB observation and theory has begun over the last 3 years since the launch of the Fermi gamma-ray space telescope. The new window into high energy gamma-rays opened by the Fermi-LAT is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts. In this talk I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by Swift over the last 7 years and how through comparisons between the Swift, GBM, and LAT GRB samples, we can learn about the unique characteristics and relationships between each population.

  19. Closure Relations for Electron-Positron Pair-Signatures in Gamma-Ray Bursts

    CERN Document Server

    Murase, Kohta

    2007-01-01

    We present recipes to diagnose the fireball of gamma-ray bursts (GRBs) by combining observations of electron-positron pair-signatures (the pair-annihilation line and the cutoff energy due to the pair-creation process). Our recipes are largely model-independent and extract information even from the non-detection of either pair-signature. We evaluate physical quantities such as the Lorentz factor, optical depth and pair-to-baryon ratio, only from the observable quantities. In particular, we can test whether prompt emission of GRBs comes from the pair/baryonic photosphere or not. The future-coming Gamma-Ray Large Area Space Telescope (GLAST) satellite will provide us with good chances to use our recipes by detecting pair-signatures.

  20. Constraining the mass of the photon with gamma-ray bursts

    Science.gov (United States)

    Zhang, Bo; Chai, Ya-Ting; Zou, Yuan-Chuan; Wu, Xue-Feng

    2016-09-01

    One of the cornerstones of modern physics is Einstein's special relativity, with its constant speed of light and zero photon mass assumptions. Constraint on the rest mass mγ of photons is a fundamental way to test Einstein's theory, as well as other essential electromagnetic and particle theories. Since non-zero photon mass can give rise to frequency- (or energy-) dependent dispersions, measuring the time delay of photons with different frequencies emitted from explosive astrophysical events is an important and model-independent method to put such a constraint. The cosmological gamma-ray bursts (GRBs), with short time scales, high redshifts as well as broadband prompt and afterglow emissions, provide an ideal testbed for mγ constraints. In this paper we calculate the upper limits of the photon mass with GRB early time radio afterglow observations as well as multi-band radio peaks, thus improve the results of Schaefer (1999) by nearly half an order of magnitude.

  1. A mechanism for fast radio bursts

    CERN Document Server

    Romero, Gustavo E; Vieyro, Florencia L

    2015-01-01

    Fast radio bursts are mysterious transient sources likely located at cosmological distances. The derived brightness temperatures exceed by many orders of magnitude the self-absorption limit of incoherent synchrotron radiation, implying the operation of a coherent emission process. We propose a radiation mechanism for fast radio bursts where the emission arises from collisionless Bremsstrahlung in strong plasma turbulence excited by relativistic electron beams. We discuss possible astrophysical scenarios in which this process might operate. The emitting region is a turbulent plasma hit by a relativistic jet, where Langmuir plasma waves produce a concentration of intense electrostatic soliton-like regions (cavitons). The resulting radiation is coherent and, under some physical conditions, can be polarised and have a power-law distribution in energy. We obtain radio luminosities in agreement with the inferred values for fast radio bursts. The timescale of the radio flare in some cases can be extremely fast, of t...

  2. Spectral evolution in gamma-ray bursts: predictions of the internal shock model and comparison to observations

    CERN Document Server

    Bosnjak, Z

    2014-01-01

    Several trends have been identified in the prompt gamma-ray burst (GRB) emission: e.g. hard-to-soft evolution, pulse width evolution with energy, time lags, hardness-intensity/-fluence correlations. Recently Fermi has significantly extended the spectral coverage of GRB observations and improved the characterization of this spectral evolution. We study how internal shocks can reproduce these observations. In this model the emission comes from the synchrotron radiation of shock accelerated electrons, and the spectral evolution is governed by the evolution of the physical conditions in the shocked regions. We present a comprehensive set of simulations of a single pulse and investigate the impact of the model parameters, related to the shock microphysics and to the initial conditions in the ejecta. We find a general qualitative agreement between the model and the various observations used for the comparison. All these properties or relations are governed by the evolution of the peak energy and photon indices of t...

  3. Modeling Gamma-Ray Burst X-Ray Flares within the Internal Shock Model

    CERN Document Server

    Maxham, Amanda

    2009-01-01

    X-ray afterglow light curves have been collected for over 400 Swift gamma-ray bursts with nearly half of them having X-ray flares superimposed on the regular afterglow decay. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We pay special attention to the time history of central engine activity, internal shocks, and observed flares, but do not calculate the shock dynamics and radiation processes in detail. Using the empirical E_p - E_iso (Amati) relation with an assumed Band function spectrum for each collision and an empirical flare temporal pr...

  4. Fermi Observations of GRB 090510: A Short Hard Gamma-Ray Burst with an Additional, Hard Power-Law Component from 10 keV to GeV Energies

    CERN Document Server

    LAT, The Fermi

    2010-01-01

    We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with $\\Epeak = 3.9\\pm 0.3$\\,MeV, which is the highest yet measured, and a hard power-law component with photon index $-1.62\\pm 0.03$ that dominates the emission below $\\approx$\\,20\\,keV and above $\\approx$\\,100\\,MeV. The onset of the high-energy spectral component appears to be delayed by $\\sim$\\,0.1\\,s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5\\,s before the main pulse. During the prompt phase, the LAT detected a photon with energy $30.5^{+5.8}_{-2.6}$ GeV, the highest ever measured from a short GRB. Observ...

  5. Neutrino Balls and Gamma-Ray Bursts

    CERN Document Server

    Holdom, B

    1994-01-01

    We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

  6. Constraints on Very High Energy Emission from GRB 130427A

    CERN Document Server

    Aliu, E; Barnacka, A; Beilicke, M; Benbow, W; Berger, K; Biteau, J; Buckley, J H; Bugaev, V; Byrum, K; Cardenzana, J V; Cerruti, M; Chen, X; Ciupik, L; Connaughton, V; Cui, W; Dickinson, H J; Eisch, J D; Errando, M; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fleischhack, H; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Håkansson, N; Hanna, D; Holder, J; Hughes, G; Humensky, T B; Johnson, C A; Kaaret, P; Kar, P; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Madhavan, A S; Maier, G; McArthur, S; McCann, A; Meagher, K; Millis, J; Moriarty, P; Mukherjee, R; Nieto, D; de Bhróithe, A O'Faoláin; Ong, R A; Otte, A N; Park, N; Pohl, M; Popkow, A; Prokoph, H; Pueschel, E; Quinn, J; Ragan, K; Rajotte, J; Reyes, L C; Reynolds, P T; Richards, G T; Roache, E; Sembroski, G H; Shahinyan, K; Smith, A W; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Varlotta, A; Vassiliev, V V; Vincent, S; Wakely, S P; Weiner, O M; Weinstein, A; Welsing, R; Wilhelm, A; Williams, D A; Zitzer, B; McEnery, J E; Perkins, J S; Veres, P; Zhu, S

    2014-01-01

    Prompt emission from the very fluent and nearby (z=0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope for ~70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ~71 ks (~20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redsh...

  7. Connecting GRBs and ULIRGs: A Sensitive, Unbiased Survey for Radio Emission from Gamma-Ray Burst Host Galaxies at 0

    CERN Document Server

    Perley, D A; Hjorth, J; Michałowski, M J; Cenko, S B; Jakobsson, P; Krühler, T; Levan, A J; Malesani, D; Tanvir, N R

    2014-01-01

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and the frequency of GRBs in these systems provides an important test of the connection between the gamma-ray burst rate and that of overall cosmic star-formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 31 uniformly-selected GRB host galaxies spanning a redshift range from 0 10 uJy, corresponding to SFR > 50 Msun/yr at z~1 or > 250 Msun/yr at z~2. Similar galaxies contribute approximately 10-30% of all cosmic star-formation, so our results are consistent with a GRB rate which is not strongly biased with respect to the total star-formation rate of a galaxy. However, all four radio-detected hosts have modest stellar masses (~few x 10^10 Msun), significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that GRBs may be suppressed in metal-rich environments but independently are enhanced in intense starbursts, produc...

  8. Prompt nuclear analysis bibliography 1976

    International Nuclear Information System (INIS)

    A prompt nuclear analysis bibliography published in 1974 has been updated to include literature up to the end of 1976. The number of publications has more than doubled since mid-1973. The bibliography is now operated as a computer file and searches can be made on key words and parameters. Tables of references are given for each of the categories: backscattering, ion-ion, ion-gamma, ion-neutron, neutron-gamma, neutron-neutron and gamma-ray-induced reactions

  9. A method to localize gamma-ray bursts using POLAR

    CERN Document Server

    Suarez-Garcia, E; Hajdas, W; Lamanna, G; Lechanoine-Leluc, C; Marcinkowski, R; Mtchedlishvili, A; Orsi, S; Pohl, M; Produit, N; Rapin, D; Rybka, D; Vialle, J -P; 10.1016/j.nima.2010.10.006

    2010-01-01

    The hard X-ray polarimeter POLAR aims to measure the linear polarization of the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts (GRBs). The position in the sky of the detected GRBs is needed to determine their level of polarization. We present here a method by which, despite of the polarimeter incapability of taking images, GRBs can be roughly localized using POLAR alone. For this purpose scalers are attached to the output of the 25 multi-anode photomultipliers (MAPMs) that collect the light from the POLAR scintillator target. Each scaler measures how many GRB photons produce at least one energy deposition above 50 keV in the corresponding MAPM. Simulations show that the relative outputs of the 25 scalers depend on the GRB position. A database of very strong GRBs simulated at 10201 positions has been produced. When a GRB is detected, its location is calculated searching the minimum of the chi2 obtained in the comparison between the measured scaler pattern and the database. This GRB lo...

  10. A Shotgun Model for $\\gamma$ Ray Bursts

    CERN Document Server

    Heinz, S

    1999-01-01

    We propose that gamma ray bursts (GRBs) are produced by a shower of heavy blobs running into circumstellar material at highly relativistic speeds. The gamma ray emission is produced in the shocks these bullets drive into the surrounding medium. The short term variability seen in GRBs is set by the slowing-down time of the bullets while the overall duration of the burst is set by the lifetime of the central engine. A requirement of this model is that the ambient medium be dense, consistent with a strong stellar wind. In contrast to other external shock scenarios, the efficiency of the shock can be close to unity.

  11. SGR J1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Van der Horst, A. J.; Finger, M. H. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, C. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gorgone, N. M. [Connecticut College, New London, CT 06320 (United States); Kaneko, Y.; Goegues, E.; Lin, L. [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Guiriec, S.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A. [University of Alabama, Huntsville, CSPAR, Huntsville, AL 35805 (United States); Granot, J. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Watts, A. L. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Bissaldi, E.; Gruber, D. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, 85748 Garching (Germany); Gehrels, N.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gibby, M. H.; Giles, M. M., E-mail: A.J.VanDerHorst@uva.nl [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2012-04-20

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E{sub peak} and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  12. Prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    We present a new method for calculating the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity anti nu/sub p/ as functions of the fissioning nucleus and its excitation energy. The method is based on standard nuclear evaporation theory and takes into account (1) the motion of the fission fragments, (2) the distribution of fission-fragment residual nuclear temperature, (3) the energy dependence of the cross section sigma/sub c/ for the inverse process of compound-nucleus formation, and (4) the possibility of multiple-chance fission. We use a triangular distribution in residual nuclear temperature based on the Fermi-gas model. This leads to closed expressions for N(E) and anti nu/sub p/ when sigma/sub c/ is assumed constant and readily computed quadratures when the energy dependence of sigma/sub c/ is determined from an optical model. Neutron spectra and average multiplicities calculated with an energy-dependent cross section agree well with experimental data for the neutron-induced fission of 235U and the spontaneous fission of 252Cf. For the latter case, there are some significant inconsistencies between the experimental spectra that need to be resolved. 29 references

  13. A MAD Model for Gamma-Ray Burst Variability

    OpenAIRE

    Lloyd-Ronning, Nicole; Dolence, Joshua C.; Fryer, Christopher L.

    2016-01-01

    We present a model for the temporal variability of long gamma-ray bursts during the prompt phase (the highly variable first 100 seconds or so), in the context of a magnetically arrested disk (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disk. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a cha...

  14. The 3rd Fermi GBM Gamma-Ray Burst Catalog: The First Six Years

    CERN Document Server

    Bhat, P Narayana; von Kienlin, Andreas; Paciesas, William S; Briggs, Michael S; Burgess, J Michael; Burns, Eric; Chaplin, Vandiver; Cleveland, William H; Collazzi, Andrew C; Connaughto, Valerie; Diekmann, Anne M; Fitzpatrick, Gerard; Gibby, Melissa H; Giles, Misty M; Goldstein, Adam M; Greiner, Jochen; Jenke, Peter A; Kippen, R Marc; Kouveliotou, Chryssa; Mailyan, Bagrat; McBreen, Sheila; Pelassa, Veronique; Preece, Robert D; Roberts, Oliver J; Sparke, Linda S; Stanbro, Matthew; Veres, Peter; Wilson-Hodge, Colleen A; Xiong, Shaolin; Younes, George; Yu, Hoi-Fung; Zhang, Binbin

    2016-01-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two gamma-ray bursts (GRB) every three days. Here we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years, through the middle of July 2014. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300~keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBM's low-energy NaI(Tl) detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRB...

  15. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    CERN Document Server

    Dichiara, S; Amati, L; Frontera, F; Margutti, R

    2016-01-01

    The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. We studied the individual power density spectra (PDS) of 123 long gamma-ray bursts with measured redshift, rest-frame peak energy Ep,i of the time-averaged nuFnu spectrum, and well-constrained PDS slope alpha detected with Swift, Fermi and past s...

  16. THE SECOND FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST FOUR YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Von Kienlin, Andreas; Greiner, Jochen; Gruber, David [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Meegan, Charles A.; Bhat, P. N.; Briggs, Michael S.; Burgess, J. Michael; Chaplin, Vandiver; Connaughton, Valerie; Goldstein, Adam [University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Paciesas, William S.; Cleveland, William [Universities Space Research Association, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Bissaldi, Elisabetta [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); Collazzi, Andrew C. [Astrophysics Office, ZP 12, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gibby, Melissa; Giles, Misty [Jacobs Technology, Inc., Huntsville, AL 35806 (United States); Guiriec, Sylvain [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-01

    This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  17. The 2nd Fermi GBM Gamma-Ray Burst Catalog: The First Four Years

    CERN Document Server

    von Kienlin, Andreas; Paciesas, William S; Bhat, P N; Bissaldi, Elisabetta; Briggs, Michael S; Burgess, J Michael; Byrne, David; Chaplin, Vandiver; Cleveland, William; Connaughton, Valerie; Collazzi, Andrew C; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa; Giles, Misty; Goldstein, Adam; Greiner, Jochen; Gruber, David; Guiriec, Sylvain; van der Horst, Alexander J; Kouveliotou, Chryssa; Layden, Emily; McBreen, Sheila; McGlynn, Sinead; Pelassa, Veronique; Preece, Robert D; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen A; Xiong, Shaolin; Younes, George; Yu, Hoi-Fung

    2014-01-01

    This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50 - 300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10 - 1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM sci...

  18. The Second Fermi GBM Gamma-Ray Burst Catalog: The First Four Years

    Science.gov (United States)

    von Kienlin, Andreas; Meegan, Charles A.; Paciesas, William S.; Bhat, P. N.; Bissaldi, Elisabetta; Briggs, Michael S.; Burgess, J. Michael; Byrne, David; Chaplin, Vandiver; Cleveland, William; Connaughton, Valerie; Collazzi, Andrew C.; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa; Giles, Misty; Goldstein, Adam; Greiner, Jochen; Gruber, David; Guiriec, Sylvain; van der Horst, Alexander J.; Kouveliotou, Chryssa; Layden, Emily; McBreen, Sheila; McGlynn, Sinéad; Pelassa, Veronique; Preece, Robert D.; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen A.; Xiong, Shaolin; Younes, George; Yu, Hoi-Fung

    2014-03-01

    This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  19. Lorentz Factor Constraint from the very early external shock of the gamma-ray burst ejecta

    CERN Document Server

    Zou, Yuan-Chuan

    2009-01-01

    While it is generally agreed that the emitting regions in Gamma-Ray Bursts (GRBs) move ultra relativistically towards the observer, different estimates of the initial Lorentz factors, $\\Gamma_0$, lead to different, at times conflicting estimates. We show here that the quiet periods in which the signals goes down below the instrumental thresholds, put strong upper limits on the values of $\\Gamma_0$. According to the standard internal-external shocks model an external shock should develop during the prompt stage. This external shock radiates in the hard X-rays to soft gamma-rays bands and this emission should be seen as a smooth background signal. The observed deep minima indicate that this contribution is negligible. This limits, in turn, $\\Gamma_0$. We obtain upper limits on $\\Gamma_0$ for several bursts with typical values around hundreds. We compare these values with those obtained by the other methods, which typically yield lower limits. The results are marginally consistent leaving only a narrow range of ...

  20. Radio Nondetection of the SGR 1806-20 Giant Flare and Implications for Fast Radio Bursts

    Science.gov (United States)

    Tendulkar, Shriharsh P.; Kaspi, Victoria M.; Patel, Chitrang

    2016-08-01

    We analyze archival data from the Parkes radio telescope, which was observing a location 35.°6 away from SGR 1806-20 during its giant γ-ray flare of 2004 December 27. We show that no fast radio burst (FRB)-like burst counterpart was detected, and set a radio limit of 110 MJy at 1.4 GHz, including the estimated 70 dB suppression of the signal due to its location in the far sidelobe of Parkes and the predicted scattering from the interstellar medium. The upper limit for the ratio of magnetar giant flare radio to γ-ray fluence is η SGR ≲ 107 Jy ms erg-1 cm2. Based on the nondetection of a short and prompt γ-ray counterpart of 15 FRBs in γ-ray transient monitors, we set a lower limit on the fluence ratios of FRBs to be η FRB ≳ 107-9 Jy ms erg-1 cm2. The fluence ratio limit for SGR 1806-20 is inconsistent with all but one of the 15 FRBs. We discuss possible variations in the magnetar-FRB emission mechanism and observational caveats that may reconcile the theory with observations.

  1. A complete sample of bright Swift short Gamma-Ray Bursts

    CERN Document Server

    D'Avanzo, P; Bernardini, M G; Nava, L; Campana, S; Covino, S; D'Elia, V; Ghirlanda, G; Ghisellini, G; Melandri, A; Sbarufatti, B; Vergani, S D; Tagliaferri, G

    2014-01-01

    We present a carefully selected sample of short gamma-ray bursts (SGRBs) observed by the Swift satellite up to June 2013. Inspired by the criteria we used to build a similar sample of bright long GRBs (the BAT6 sample), we selected SGRBs with favorable observing conditions for the redshift determination on ground, ending up with a sample of 36 events, almost half of which with a redshift measure. The redshift completeness increases up to about 70% (with an average redshift value of z = 0.85) by restricting to those events that are bright in the 15-150 keV Swift Burst Alert Telescope energy band. Such flux-limited sample minimizes any redshift-related selection effects, and can provide a robust base for the study of the energetics, redshift distribution and environment of the Swift bright population of SGRBs. For all the events of the sample we derived the prompt and afterglow emission in both the observer and (when possible) rest frame and tested the consistency with the correlations valid for long GRBs. The ...

  2. The faster the narrower: characteristic bulk velocities and jet opening angles of Gamma Ray Bursts

    CERN Document Server

    Ghirlanda, G; Salvaterra, R; Nava, L; Burlon, D; Tagliaferri, G; Campana, S; D'Avanzo, P; Melandri, A

    2012-01-01

    The jet opening angle theta_jet and the bulk Lorentz factor Gamma_0 are crucial parameters for the computation of the energetics of Gamma Ray Bursts (GRBs). From the ~30 GRBs with measured theta_jet or Gamma_0 it is known that: (i) the real energetic E_gamma, obtained by correcting the isotropic equivalent energy E_iso for the collimation factor ~theta_jet^2, is clustered around 10^50-10^51 erg and it is correlated with the peak energy E_p of the prompt emission and (ii) the comoving frame E'_p and E'_gamma are clustered around typical values. Current estimates of Gamma_0 and theta_jet are based on incomplete data samples and their observed distributions could be subject to biases. Through a population synthesis code we investigate whether different assumed intrinsic distributions of Gamma_0 and theta_jet can reproduce a set of observational constraints. Assuming that all bursts have the same E'_p and E'_gamma in the comoving frame, we find that Gamma_0 and theta_jet cannot be distributed as single power-laws...

  3. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils

    OpenAIRE

    Hansen, Mette; Clough, Tim J.; Elberling, Bo

    2014-01-01

    Agricultural soils are a major source of the greenhouse gas nitrous oxide (N2O) to the atmosphere. Increasing frequency and severity of flooding as predicted for large intensively cropped areas may promote temporary denitrification and N2O production but the effect of flooding events on N2O emissions is poorly studied for agricultural systems. The overall N2O dynamics during flooding of an agricultural soil and the effect of pH and NO3− concentration has been investigated based on a combinati...

  4. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1

    Science.gov (United States)

    Krühler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang-Jensen, B.; Nicuesa Guelbenzu, A.; Palazzi, E.; Pian, E.; Piranomonte, S.; Sánchez-Ramírez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.

    2015-09-01

    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 Swift and 76% are at 0.5 2 by ~0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments. Based on observations at ESO, Program IDs: 084.A-0260, 084.A-0303, 085.A-0009, 086.B-0954, 086.A-0533, 086.A-0874, 087.A-0055, 087.A-0451, 087.B-0737, 088.A-0051, 088.A-0644, 089.A-0067, 089.A-0120, 089.D-0256, 089.A-0868, 090.A-0088, 090.A-0760, 090.A-0825, 091.A-0342, 091.A-0703, 091.A-0877, 091.C-0934, 092.A-0076, 092.A-0124, 092.A-0231, 093.A-0069, 094.A-0593.Tables 1-4 and appendices are available in electronic form at http://www.aanda.orgThe reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A125

  5. GRB 140606B / iPTF14bfu: Detection of shock-breakout emission from a cosmological gamma-ray burst?

    CERN Document Server

    Cano, Z; Perley, D; Kruhler, T; Margutti, R; Friis, M; Malesani, D; Jakobsson, P; Fynbo, J P U; Gorosabel, J; Hjorth, J; Sanchez-Ramirez, R; Schulze, S; Tanvir, N R; Thone, C C; Xu, D

    2015-01-01

    We present optical and near-infrared photometry of GRB 140606B ($z=0.384$), and optical photometry and spectroscopy of its associated supernova (SN). The bolometric properties of the SN are: a nickel mass of M$_{\\rm Ni}$=0.4$\\pm$0.2 M$_{\\odot}$, an ejecta mass of M$_{\\rm ej}$=5$\\pm$2 M$_{\\odot}$, and a kinetic energy of E$_{\\rm K}$=2$\\pm1\\times10^{52}$ erg. The uncertain value of M$_{\\rm Ni}$ is primarily due to the poorly constrained rest-frame extinction ($E(B-V)_{\\rm rest}$=0.16$\\pm$0.14 mag). The photospheric velocity of the SN near maximum light is $v_{\\rm ph}\\approx$20,000 km/s. The photospheric velocity and bolometric properties are fully consistent with the statistical averages determined for other GRB-SNe. However, in terms of its $\\gamma$-ray emission, GRB 140606B is an outlier of the Amati relation, and occupies the same region as low-luminosity ($ll$) and short GRBs. The $\\gamma$-ray emission in $ll$GRBs is thought to arise, at least in some events, from a shock-breakout (SBO), rather than from a ...

  6. Global Properties of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by Swift

    CERN Document Server

    Sakamoto, T; Sato, G; Yamazaki, R; Barbier, L; Barthelmy, S D; Cummings, J R; Fenimore, E E; Gehrels, N; Krimm, H A; Lamb, D Q; Markwardt, C B; Osborne, J P; Palmer, D M; Parsons, A M; Stamatikos, M; Tüller, J

    2008-01-01

    We describe and discuss the spectral and temporal characteristics of the prompt emission and X-ray afterglow emission of X-ray flashes (XRFs) and X-ray-rich gamma-ray bursts (XRRs) detected and observed by Swift between December 2004 and September 2006. We compare these characteristics to a sample of conventional classical gamma-ray bursts (C-GRBs) observed during the same period. We confirm the correlation between Epeak_obs and fluence noted by others and find further evidence that XRFs, XRRs and C-GRBs form a continuum. We also confirm that our known redshift sample is consistent with the correlation between the peak energy in the GRB rest frame (Epeak_src) and the isotropic radiated energy (Eiso), so called the Epeak_src-Eiso relation. The spectral properties of X-ray afterglows of XRFs and C-GRBs are similar, but the temporal properties of XRFs and C-GRBs are quite different. We found that the light curves of C-GRB afterglows show a break to steeper indices (shallow-to-steep break) at much earlier times t...

  7. Individual power density spectra of Swift gamma-ray bursts

    Science.gov (United States)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-05-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  8. The Third Fermi GBM Gamma-Ray Burst Catalog: The First Six Years

    Science.gov (United States)

    Narayana Bhat, P.; Meegan, Charles A.; von Kienlin, Andreas; Paciesas, William S.; Briggs, Michael S.; Burgess, J. Michael; Burns, Eric; Chaplin, Vandiver; Cleveland, William H.; Collazzi, Andrew C.; Connaughton, Valerie; Diekmann, Anne M.; Fitzpatrick, Gerard; Gibby, Melissa H.; Giles, Misty M.; Goldstein, Adam M.; Greiner, Jochen; Jenke, Peter A.; Kippen, R. Marc; Kouveliotou, Chryssa; Mailyan, Bagrat; McBreen, Sheila; Pelassa, Veronique; Preece, Robert D.; Roberts, Oliver J.; Sparke, Linda S.; Stanbro, Matthew; Veres, Péter; Wilson-Hodge, Colleen A.; Xiong, Shaolin; Younes, George; Yu, Hoi-Fung; Zhang, Binbin

    2016-04-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two γ-ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [Nai[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  9. Interplanetary Type IV Bursts

    CERN Document Server

    Hillaris, Alexander; Nindos, Alexander

    2016-01-01

    In this work we study the characteristics of moving type IV radio bursts which extend to the hectometric wavelengths (interplanetary type IV or type IV IP bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprised 48 Interplanetary type IV bursts observed by the Wind/WAVES in the 13.825 MHz?20 KHz frequency range. The dynamic spec tra of the RSTN, DAM, ARTEMIS-IV, CULGOORA, Hiraiso and IZMIRAN Radio-spectrographs were used to track the evolution of the events in the low corona; these were supplemented with SXR ?ux recordings from GOES and CME data from LASCO. Positional information for the coronal bursts were obtained by the Nan\\c{c}ay radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs and SXR ?ares. The majority of the events (45) were characterized as compact; their duration was on average 106 min. This type of events were, mostly, associated with M and X class ?ares (40 out of 45) and fast CMEs; 32 of these events had CME...

  10. BROADBAND SPECTRAL INVESTIGATIONS OF SGR J1550-5418 BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lin Lin; Goegues, Ersin; Kaneko, Yuki [Faculty of Engineering and Natural Sciences, Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I Tuzla, Istanbul 34956 (Turkey); Baring, Matthew G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Kouveliotou, Chryssa [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Van der Horst, Alexander; Watts, Anna L. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Gruber, David; Von Kienlin, Andreas [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, D-85748 Garching bei Mnchen (Germany); Younes, George [USRA, National Space Science and Technology Center, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Gehrels, Neil, E-mail: linlin@sabanciuniv.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-09-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  11. Broadband Spectral Investigations of SGR J1550-5418 Bursts

    Science.gov (United States)

    Lin, Lin; Goegues, Ersin; Baring, Matthew G.; Granot, Jonathan; Kouveliotou, Chryssa; Kaneko, Yuki; van der Horst, Alexander; Gruber, David; von Kienlin, Andreas; Younes, George; Watts, Anna L.; Gehrels, Neil

    2012-01-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  12. H-alpha observations of the August 12, 1975 Type III-RS bursts

    Science.gov (United States)

    Labonte, B. J.

    1976-01-01

    We present H-alpha filtergram observations of a number of the Type III-RS (reverse slope) bursts that occurred on August 12, 1975. Solar radio emission was peculiar on that date in that a large number, and proportion, of the usually rare reverse slope bursts were observed (Tarnstrom and Zehntner, 1975). We show that the radio bursts coincide in time with a homologous set of H-alpha flares located at the limbward edge of spot group Mt. Wilson 19598. We propose a model in which the reverse slope bursts are the downward branches of U bursts, whose upward branches are hidden behind the coronal density enhancement over the spot group.

  13. H alpha observations of the 12 August 1975 type 3-RS bursts

    Energy Technology Data Exchange (ETDEWEB)

    Labonte, B.J.

    1976-02-01

    H alpha filtergram observations of a number of the Type III-RS (reverse slope) bursts that occurred on August 12, 1975, are presented. Solar radio emission was peculiar on that date in that a large number, and proportion, of the usually rare reverse slope bursts were observed. The radio bursts are shown to coincide in time with a homologous set of H alpha flares located at the limbward edge of spot group Mt. Wilson 19598. A model is proposed in which the reverse slope bursts are the downward branches of U bursts, whose upward branches are hidden behind the coronal density enhancement over the spot group. (auth)

  14. H alpha observations of the 12 August 1975 type 3-RS bursts

    Science.gov (United States)

    Labonte, B. J.

    1976-01-01

    H alpha filtergram observations of a number of the Type III-RS (reverse slope) bursts that occurred on August 12, 1975 are presented. Solar radio emission was peculiar on that date in that a large number, and proportion, of the usually rare reverse slope bursts were observed. The radio bursts are shown to coincide in time with a homologous set of H alpha flares located at the limbward edge of spot group Mt. Wilson 19598. A model is proposed in which the reverse slope bursts are the downward branches of U bursts, whose upward branches are hidden behind the coronal density enhancement over the spot group.

  15. Lag-luminosity relation in gamma-ray burst X-ray flares

    CERN Document Server

    Margutti, R

    2010-01-01

    In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L_p,iso \\propto t_lag^{-0.95+/-0.23}. The lag-luminosity is proven to be a fundamental law extending 5 decades in time and 5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

  16. The bright gamma-ray burst of 2000 February 10: A case study of an optically dark gamma-ray burst

    DEFF Research Database (Denmark)

    Piro, L.; Frail, D.A.; Gorosabel, J.;

    2002-01-01

    The gamma-ray burst GRB 000210 had the highest gamma-ray peak flux of any event localized by BeppoSAX as yet, but it did not have a detected optical afterglow, despite prompt and deep searches down to R-lim approximate to 23.5. It is therefore one of the events recently classified as dark GRBs, w...

  17. Interplanetary Type IV Bursts

    Science.gov (United States)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  18. Relationships between PROMPT and gene expression

    DEFF Research Database (Denmark)

    Llinares, Marta Lloret; Mapendano, Christophe K; Martlev, Lasse H;

    2015-01-01

    Most mammalian protein-coding gene promoters are divergent, yielding promoter upstream transcripts (PROMPTs) in the reverse direction from their conventionally produced mRNAs. PROMPTs are rapidly degraded by the RNA exosome rendering a general function of these molecules elusive. Yet, levels...... of certain PROMPTs are altered in stress conditions, like the DNA damage response (DDR), suggesting a possible regulatory role for at least a subset of these molecules. Here we manipulate PROMPT levels by either exosome depletion or UV treatment and analyze possible effects on their neighboring genes...

  19. Energy Correlation of Prompt Fission Neutrons

    Science.gov (United States)

    Elter, Zs.; Pázsit, I.

    2016-03-01

    In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  20. Energy Correlation of Prompt Fission Neutrons

    Directory of Open Access Journals (Sweden)

    Elter Zs.

    2016-01-01

    Full Text Available In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  1. A Repeating Fast Radio Burst

    CERN Document Server

    Spitler, L G; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-01-01

    Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and wh...

  2. What can NuSTAR do for X-ray bursts?

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Tomsick, John; Chakrabarty, Deepto;

    2012-01-01

    Unstable thermonuclear burning on the surface of accreting neutron stars is commonly observed as type I X-ray bursts. The flux released during some strong bursts can temporarily exceed the Eddington limit, driving the neutron star photosphere to such large radii that heavy-element ashes of nuclear...... of NuSTAR in hard X-rays will make it possible to study the behavi our of the accretion emission during the bursts, which is an important parameter to constrain the properties of the X-ray burst emission and thermonuclear burning....

  3. What can NuSTAR do for X-ray bursts?

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Tomsick, J.; Chakrabarty, D.;

    Unstable thermonuclear burning on the surface of accreting neutron stars is commonly observed as type I X-ray bursts. The flux released during some strong bursts can temporarily exceed the Eddington limit, driving the neutron star photosphere to such large radii that heavy-element ashes of nuclear...... of NuSTAR in hard X-rays will make it possible to study the behavior of the accretion emission during the bursts, which is an important parameter to constrain the properties of the X-ray burst emission and thermonuclear burning....

  4. X-Ray Bursts from the Transient Magnetar Candidate XTE J1810-197

    Science.gov (United States)

    Kouveliotou, Chryssa; Woods, Peter M.; Gavriil, Fotis P.; Kaspi, Victoria M.; Roberts, Mallory S. E.; Ibrahim, Alaa; Markwardt, Craig B.; Swank, Jean H.; Finger, Mark H.

    2005-01-01

    We have discovered four X-ray bursts, recorded with the Rossi X-ray Timing Explorer Proportional Counter Array between 2003 September and 2004 April, that we show to originate from the transient magnetar candidate XTE 51810-197. The burst morphologies consist of a short spike or multiple spikes lasting approx. 1 s each followed by extended tails of emission where the pulsed flux from XTE 51810-197 is significantly higher. The burst spikes are likely correlated with the pulse maxima, having a chance probability of a random phase distribution of 0.4%. The burst spectra are best fit to a blackbody with temperatures 4-8 keV, considerably harder than the persistent X-ray emission. During the X-ray tails following these bursts, the temperature rapidly cools as the flux declines, maintaining a constant emitting radius after the initial burst peak. The temporal and spectral characteristics of these bursts closely resemble the bursts seen from 1E 1048.1-5937 and a subset of the bursts detected from 1E 2259+586, thus establishing XTE J1810-197 as a magnetar candidate. The bursts detected from these three objects are sufficiently similar to one another, yet si,g&cantly differe2t from those seen from soft gamma repeaters, that they likely represent a new class of bursts from magnetar candidates exclusive (thus far) to the anomalous X-ray pulsar-like sources.

  5. Spectral Lag Evolution among -Ray Burst Pulses

    Indian Academy of Sciences (India)

    Lan-Wei Jia; Yun-Feng Liang; En-Wei Liang

    2014-09-01

    We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given emission episode, possibly due to the longer lasting emission in a lower energy band, and the spectral lag may not be an intrinsic parameter to discriminate the long and short GRBs.

  6. On The Origin Of High Energy Correlations in Gamma-ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel

    2012-04-03

    I investigate the origin of the observed correlation between a gamma-ray burst's {nu}F{sub {nu}} spectral peak E{sub pk} and its isotropic equivalent energy E{sub iso} through the use of a population synthesis code to model the prompt gamma-ray emission from GRBs. By using prescriptions for the distribution of prompt spectral parameters as well as the population's luminosity function and co-moving rate density, I generate a simulated population of GRBs and examine how bursts of varying spectral properties and redshift would appear to a gamma-ray detector here on Earth. I find that a strong observed correlation can be produced between the source frame Epk and Eiso for the detected population despite the existence of only a weak and broad correlation in the original simulated population. The energy dependance of a gamma-ray detector's flux-limited detection threshold acts to produce a correlation between the source frame E{sub pk} and E{sub iso} for low luminosity GRBs, producing the left boundary of the observed correlation. Conversely, very luminous GRBs are found at higher redshifts than their low luminosity counterparts due to the standard Malquest bias, causing bursts in the low E{sub pk}, high E{sub iso} regime to go undetected because their E{sub pk} values would be redshifted to energies at which most gamma-ray detectors become less sensitive. I argue that it is this previously unexamined effect which produces the right boundary of the observed correlation. Therefore, the origin of the observed correlation is a complex combination of the instrument's detection threshold, the intrinsic cutoff in the GRB luminosity function, and the broad range of redshifts over which GRBs are detected. Although the GRB model presented here is a very simplified representation of the complex nature of GRBs, these simulations serve to demonstrate how selection effects caused by a combination of instrumental sensitivity and the cosmological nature of an

  7. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  8. 21 CFR 1401.7 - Prompt response.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Prompt response. 1401.7 Section 1401.7 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY PUBLIC AVAILABILITY OF INFORMATION § 1401.7 Prompt response... determination, the reasons for the denial, and that an appeal may be lodged within the Office of National...

  9. Song Prompts: I Had a Cat

    Science.gov (United States)

    Kenney, Susan Hobson

    2011-01-01

    This article discusses song prompts as a way to encourage children to sing during exploratory play. A song prompt for "I Had a Cat" is included for educators to try in their own classrooms or preschools. Educators are invited to share ideas they have used that encourage children to sing during free play.

  10. 78 FR 5450 - Information Collection; Prompt Payment

    Science.gov (United States)

    2013-01-25

    ...; Prompt Payment AGENCY: Department of Defense (DOD), General Services Administration (GSA), and National... payment. DATES: Submit comments on or before March 26, 2013. ADDRESSES: Submit comments identified by Information Collection 9000- 0102, Prompt Payment, by any of the following methods: Regulations.gov :...

  11. 31 CFR 904.1 - Prompt referral.

    Science.gov (United States)

    2010-07-01

    ... COLLECTION STANDARDS (DEPARTMENT OF THE TREASURY-DEPARTMENT OF JUSTICE) REFERRALS TO THE DEPARTMENT OF JUSTICE § 904.1 Prompt referral. (a) Agencies shall promptly refer to the Department of Justice for... interest and penalties, shall be referred to the Civil Division or other division responsible...

  12. 38 CFR 1.950 - Prompt referral.

    Science.gov (United States)

    2010-07-01

    ... Referrals to Gao, Department of Justice, Or Irs § 1.950 Prompt referral. (a) VA shall promptly refer debts to Department of Justice (DOJ) for litigation where aggressive collection activity has been taken in... may direct, exclusive of interest and other late payment charges, shall be referred to the...

  13. X-Ray Reflection of Thermonuclear Bursts from Neutron Stars: Constraining Flames with RXTE and an Outlook on NICER

    Science.gov (United States)

    Keek, Laurens

    2016-04-01

    Thermonuclear X-ray bursts observed from accreting neutron stars are employed to study, e.g., the nuclear physics of rare isotopes and the dense matter equation of state. Recent observations indicate that bursts strongly affect their accretion environment, and reprocessed burst emission may reflect off the inner accretion disk. The spectra of the short (10-100s) bursts are, however, of insufficient quality to accurately separate the neutron star signal from accretion disk emission and burst reflection. Only for two rare "superbursts" with durations of several hours did RXTE/PCA spectra show burst reflection signatures. We discuss the case of 4U 1636-536, where the reflection signal traced the evolution of the ionization state of the inner disk. Our simulations show that a large reflection fraction may indicate that the disk puffs up due to burst irradiation. After separating the direct burst emission from reflection, we show that the rise of the superburst light curve is shaped by a stalling carbon flame. In the near future, the Neutron Star Interior Composition ExploreR (NICER) will have a band-pass that extends below 2 keV, where reflection dominates the burst spectrum, and which was not probed by RXTE. Therefore, NICER will be able to detect reflection features during the frequent short bursts. NICER will open a new field of studying the interaction of bursts and the accretion environment, which will inform us of which bursts are optimally suited for neutron star mass-radius measurements.

  14. A search for dispersed radio bursts in archival Parkes Multibeam Pulsar Survey data

    CERN Document Server

    Bagchi, Manjari; McLaughlin, Maura

    2012-01-01

    A number of different classes of potentially extra-terrestrial bursts of radio emission have been observed in surveys with the Parkes 64m radio telescope, including "Rotating Radio Transients", the "Lorimer burst" and "perytons". Rotating Radio Transients are radio pulsars which are best detectable in single-pulse searches. The Lorimer burst is a highly dispersed isolated radio burst with properties suggestive of extragalactic origin. Perytons share the frequency-swept nature of the Rotating Radio Transients and Lorimer burst, but unlike these events appear in all thirteen beams of the Parkes Multibeam receiver and are probably a form of peculiar radio frequency interference. In order to constrain these and other radio source populations further, we searched the archival Parkes Multibeam Pulsar Survey data for events similar to any of these. We did not find any new Rotating Radio Transients or bursts like the Lorimer burst. We did, however, discover four peryton-like events. Similar to the perytons, these fou...

  15. A repeating fast radio burst

    Science.gov (United States)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  16. LOFAR tied-array imaging and spectroscopy of solar S bursts

    CERN Document Server

    Morosan, D E; Zucca, P; O'Flannagain, A; Fallows, R; Reid, H; Magdalenic, J; Mann, G; Bisi, M M; Kerdraon, A; Konovalenko, A A; MacKinnon, A L; Rucker, H O; Thide, B; Vocks, C; Alexov, A; Anderson, J; Asgekar, A; Avruch, I M; Bentum, M J; Bernardi, G; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Butcher, H R; Ciardi, B; de Geus, E; Eisloffel, J; Falcke, H; Frieswijk, W; Garrett, M A; Griessmeier, J; Gunst, A W; Hessels, J W T; Hoeft, M; Karastergiou, A; Kondratiev, V I; Kuper, G; van Leeuwen, J; McKay-Bukowski, D; McKean, J P; Munk, H; Orru, E; Paas, H; Pizzo, R; Polatidis, A G; Scaife, A M M; Sluman, J; Tasse, C; Toribio, M C; Vermeulen, R; Zarka, P

    2015-01-01

    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were ob...

  17. Observations of Gamma-ray Bursts with ASTRO-H and Fermi

    CERN Document Server

    Ohno, M; Tashiro, M S; Ueno, H; Yonetoku, D; Sameshima, H; Takahashi, T; Seta, H; Mushotzky, R; Yamaoka, K

    2015-01-01

    ASTRO-H, the sixth Japanese X-ray observatory, which is scheduled to be launched by the end of Japanese fiscal year 2015 has a capability to observe the prompt emission from Gamma-ray Bursts (GRBs) utilizing BGO active shields for the soft gamma-ray detector (SGD). The effective area of the SGD shield detectors is very large and its data acquisition system is optimized for short transients such as short GRBs. Thus, we expect to perform more detailed time-resolved spectral analysis with a combination of ASTRO-H and Fermi LAT/GBM to investigate the gamma-ray emission mechanism of short GRBs. In addition, the environment of the GRB progenitor should be a remarkable objective from the point of view of the chemical evolution of high-z universe. If we can maneuver the spacecraft to the GRBs, we can perform a high-resolution spectroscopy of the X-ray afterglow of GRBs utilizing the onboard micro calorimeter and X-ray CCD camera.

  18. A fundamental plane for gamma-ray bursts with X-ray plateaus

    CERN Document Server

    Dainotti, Maria Giovanna; Hernandez, Xavier; Ostrowski, Michał

    2016-01-01

    A class of long Gamma-Ray Bursts (GRBs) presenting light curves with an extended plateau phase in their X-ray afterglows obeys a correlation between the rest frame end time of the plateau, $T_a$, and its corresponding X-ray luminosity, $L_{a}$, Dainotti et al. (2008). In this work we perform an analysis of a total sample of 176 {\\it Swift} GRBs with known redshifts, exhibiting afterglow plateaus. By adding a third parameter, that is the peak luminosity in the prompt emission, $L_{peak}$, we discover the existence of a new three parameter correlation, a GRB `fundamental plane'. The scatter of data about this plane becomes smaller when a class-specific GRB sample is defined. This sample of 122 GRBs is selected from the total sample by excluding GRBs with associated Supernovae (SNe), X-ray flashes and short GRBs with extended emission. Moreover, we further limit our analysis to GRBs with lightcurves having good data coverage and almost flat plateaus, 40 GRBs forming our `gold sample'. The intrinsic scatter, $\\si...

  19. Spectral Evolutions in Gamma-Ray Burst Exponential Decays Observed with Suzaku WAM

    CERN Document Server

    Tashiro, Makoto S; Yamaoka, Kazutaka; Ohno, Masahiro; Sugita, Satoshi; Uehara, Takeshi; Seta, Hiromi

    2011-01-01

    This paper presents a study on the spectral evolution of gamma-ray burst (GRB) prompt emissions observed with the Suzaku Wide-band All-sky Monitor (WAM). By making use of the WAM data archive, 6 bright GRBs exhibiting 7 well-separated fast-rise-exponential-decay (FRED) shaped light curves are presented and the evaluated exponential decay time constants of the energy-resolved light curves from these FRED peak light curves are shown to indicate significant spectral evolution. The energy dependence of the time constants is well described with a power-law function tau(E) ~ E^gamma, where gamma ~ -(0.34 +/- 0.12) in average, although 5 FRED peaks show consistent value of gamma = -1/2 which is expected in synchrotron or inverse-Compton cooling models. In particular, 2 of the GRBs were located with accuracy sufficient to evaluate the time-resolved spectra with precise energy response matrices. Their behavior in spectral evolution suggests two different origins of emissions. In the case of GRB081224, the derived 1-s ...

  20. Neutrinos from Gamma Ray Bursts in the IceCube and ARA Era

    Directory of Open Access Journals (Sweden)

    Guetta Dafne

    2016-01-01

    I discuss the constraints on the hadronic component of GRBs derived from the search of four years of IceCube data for a prompt neutrino fux from gamma-ray bursts (GRBs and more in general I present the results of the search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2013.

  1. Radio fiber bursts and fast magnetoacoustic wave trains

    CERN Document Server

    Karlický, M; Jelínek, P

    2012-01-01

    We present a model for dm-fiber bursts that is based on assuming fast sausage magnetoacoustic wave trains that propagate along a dense vertical filament or current sheet. Eight groups of dm-fiber bursts that were observed during solar flares were selected and analyzed by the wavelet analysis method. To model these fiber bursts we built a semi-empirical model. We also did magnetohydrodynamic simulations of a propagation of the magnetoacoustic wave train in a vertical and gravitationally stratified current sheet. In the wavelet spectra of the fiber bursts computed at different radio frequencies we found the wavelet tadpoles, whose head maxima have the same frequency drift as the drift of fiber bursts. It indicates that the drift of these fiber bursts can be explained by the propagating fast sausage magnetoacoustic wave train. Using new semi-empirical and magnetohydrodynamic models with a simple radio emission model we generated the artificial radio spectra of the fiber bursts, which are similar to the observed ...

  2. Modeling Gamma-Ray Burst X-Ray Flares Within the Internal Shock Model

    Science.gov (United States)

    Maxham, Amanda; Zhang, Bing

    2009-12-01

    X-ray afterglow light curves have been collected for over 400 Swift gamma-ray bursts (GRBs) with nearly half of them having X-ray flares superimposed on the regular afterglow decay. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge, and spread, producing prompt emission and X-ray flares. We pay special attention to the time history of central engine activity, internal shocks, and observed flares, but do not calculate the shock dynamics and radiation processes in detail. Using the empirical Ep -E iso (Amati) relation with an assumed Band function spectrum for each collision and an empirical flare temporal profile, we calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary central engine activity and compare the model results with the observational data. We show that the observed X-ray flare phenomenology can be explained within the internal shock model. The number, width, and occurring time of flares are then used to diagnose the central engine activity, putting constraints on the energy, ejection time, width, and number of ejected shells. We find that the observed X-ray flare time history generally reflects the time history of the central engine, which reactivates multiple times after the prompt emission phase with progressively reduced energy. The same shell model predicts an external shock X-ray afterglow component, which has a shallow decay phase due to the initial pile-up of shells onto the blast wave. However, the predicted X-ray afterglow is too bright as compared with the observed flux level, unless epsilon e is

  3. MODELING GAMMA-RAY BURST X-RAY FLARES WITHIN THE INTERNAL SHOCK MODEL

    International Nuclear Information System (INIS)

    X-ray afterglow light curves have been collected for over 400 Swift gamma-ray bursts (GRBs) with nearly half of them having X-ray flares superimposed on the regular afterglow decay. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge, and spread, producing prompt emission and X-ray flares. We pay special attention to the time history of central engine activity, internal shocks, and observed flares, but do not calculate the shock dynamics and radiation processes in detail. Using the empirical Ep -Eiso (Amati) relation with an assumed Band function spectrum for each collision and an empirical flare temporal profile, we calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary central engine activity and compare the model results with the observational data. We show that the observed X-ray flare phenomenology can be explained within the internal shock model. The number, width, and occurring time of flares are then used to diagnose the central engine activity, putting constraints on the energy, ejection time, width, and number of ejected shells. We find that the observed X-ray flare time history generally reflects the time history of the central engine, which reactivates multiple times after the prompt emission phase with progressively reduced energy. The same shell model predicts an external shock X-ray afterglow component, which has a shallow decay phase due to the initial pile-up of shells onto the blast wave. However, the predicted X-ray afterglow is too bright as compared with the observed flux level, unless εe is as low

  4. HIGH-ENERGY EMISSION OF GRB 130427A: EVIDENCE FOR INVERSE COMPTON RADIATION

    International Nuclear Information System (INIS)

    A nearby superluminous burst GRB 130427A was simultaneously detected by six γ-ray space telescopes (Swift, the Fermi GLAST Burst Monitor (GBM)/Large Area Telescope, Konus-Wind, SPI-ACS/INTEGRAL, AGILE, and RHESSI) and by three RAPTOR full-sky persistent monitors. The isotropic γ-ray energy release is ∼1054 erg, rendering it the most powerful explosion among gamma-ray bursts (GRBs) with a redshift z ≤ 0.5. The emission above 100 MeV lasted about one day, and four photons are at energies greater than 40 GeV. We show that the count rate of 100 MeV-100 GeV emission may be mainly accounted for by the forward shock synchrotron radiation and the inverse Compton radiation likely dominates at GeV-TeV energies. In particular, an inverse Compton radiation origin is favored for the ∼(95.3, 47.3, 41.4, 38.5, 32) GeV photons arriving at t ∼ (243, 256.3, 610.6, 3409.8, 34366.2) s after the trigger of Fermi-GBM. Interestingly, the external inverse Compton scattering of the prompt emission (the second episode, i.e., t ∼ 120-260 s) by the forward-shock-accelerated electrons is expected to produce a few γ-rays at energies above 10 GeV, while five were detected in the same time interval. A possible unified model for the prompt soft γ-ray, optical, and GeV emission of GRB 130427A, GRB 080319B, and GRB 090902B is outlined. Implications of the null detection of >1 TeV neutrinos from GRB 130427A by IceCube are discussed

  5. Physics of gamma-ray bursts and multi-messenger signals from double neutron star mergers

    Science.gov (United States)

    Gao, He

    My dissertation includes two parts: Physics of Gamma-Ray Bursts (GRBs): Gamma-ray bursts are multi-wavelength transients, with both prompt gamma-ray emission and late time afterglow emission observed by telescopes in different wavelengths. I have carried out three investigations to understand GRB prompt emission and afterglow. Chapter 2 develops a new method, namely, "Stepwise Filter Correlation" method, to decompose the variability components in a light curve. After proving its reliability through simulations, we apply this method to 266 bright GRBs and find that the majority of the bursts have clear evidence of superposition of fast and slow variability components. Chapter 3 gives a complete presentation of the analytical approximations for synchrotron self-compton emission for all possible orders of the characteristic synchrotron spectral breaks (nua, nu m, and nuc). We identify a "strong absorption" regime whennua > nuc, and derive the critical condition for this regime. The external shock theory is an elegant theory to model GRB afterglows. It invokes a limit number of model parameters, and has well predicted spectral and temporal properties. Chapter 4 gives a complete reference of all the analytical synchrotron external shock afterglow models by deriving the temporal and spectral indices of all the models in all spectral regimes. This complete reference will serve as a useful tool for afterglow observers to quickly identify relevant models to interpret their data and identify new physics when the models fail. Milti-messenger signals from double neutron star merger: As the multi-messenger era of astronomy ushers in, the second part of the dissertation studies the possible electromagnetic (EM) and neutrino emission counterparts of double neutron star mergers. Chapter 6 suggests that if double neutron star mergers leave behind a massive magnetar rather than a black hole, the magnetar wind could push the ejecta launched during the merger process, and under

  6. Swift and Fermi observations of the early afterglow of the short Gamma-Ray Burst 090510

    CERN Document Server

    De Pasquale, M; Kuin, N P M; Page, M J; Curran, P A; Zane, S; Oates, S R; Holland, S T; Breeveld, A A; Hoversten, E A; Chincarini, G; Grupe, D

    2009-01-01

    We present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. This is a bright, short burst that shows an extended emission detected in the GeV range. Furthermore, its optical emission initially rises, a feature so far observed only in long bursts, while the X-ray flux shows an initial shallow decrease, followed by a steeper decay. This exceptional behavior enables us to investigate the physical properties of the GRB outflow, poorly known in short bursts. We discuss internal shock and external shock models for the broadband energy emission of this object.

  7. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  8. Prevention and forecasting of rock burst hazards in coal mines

    Institute of Scientific and Technical Information of China (English)

    DOU Lin-ming; LU Cai-ping; MU Zong-long; GAO Ming-shi

    2009-01-01

    Rock bursts signify extreme behavior in coal mine strata and severely threaten the safety of the lives of miners, as well as the effectiveness and productivity of miners. In our study, an elastic-plastic-brittle model for the deformation and failure of coal/rock was established through theoretical analyses, laboratory experiments and field testing, simulation and other means, which perfectly predict sudden and delayed rock bursts. Based on electromagnetic emission (EME), acoustic emission (AE) and microseism (MS) effects in the process from deformation until impact rupture of coal-rock combination samples, a multi-parameter identification of premonitory technology was formed, largely depending on these three forms of emission. Thus a system of classification for forecasting rock bursts in space and time was established. We have presented the intensity weakening theory for rock bursts and a strong-soft-strong (3S) structural model for controlling the impact on rock surrounding roadways, with the objective of laying a theoretical foundation and establishing references for parameters for the weakening control of rock bursts. For the purpose of prevention, key technical parameters of directional hydraulic fracturing are revealed. Based on these results, as well as those from deep-hole controlled blasting in coal seams and rock, integrated control techniques were established and anti-impact hydraulic props, suitable for roadways subject to hazards from rockbursts have also been developed. These technologies have been widely used in most coal mines in China, subject to these hazards and have achieved remarkable economic and social benefits.

  9. Prompt neutrino flux in the atmosphere revisited

    CERN Document Server

    Garzelli, M V; Sigl, G

    2016-01-01

    Prompt neutrino fluxes due to the interactions of high-energy cosmic rays with the Earth's atmosphere are backgrounds in the search for high-energy neutrinos of galactic or extra-galactic origin performed by Very Large Volume Neutrino Telescopes. We summarize our predictions for prompt neutrinos, showing their basic features as emerging from the calculation in a QCD framework capable of describing recent charm data from the Large Hadron Collider.

  10. LOFAR tied-array imaging and spectroscopy of solar S-bursts

    NARCIS (Netherlands)

    Morosan, D.E.; Gallagher, P.T.; Zucca, P.; O'Flannagain, A.; Fallows, R.; Reid, H.; Magdalenic, J.; Mann, G.; Bisi, M.; Bentum, M.J.

    2015-01-01

    Context: The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S burst

  11. LOFAR tied-array imaging and spectroscopy of solar S bursts

    NARCIS (Netherlands)

    D.E. Morosan; P.T. Gallagher; P. Zucca; A. O’Flannagain; R. Fallows; H. Reid; J. Magdalenić; G. Mann; M.M. Bisi; A. Kerdraon; A.A. Konovalenko; A.L. MacKinnon; H.O. Rucker; B. Thidé; C. Vocks; A. Alexov; J. Anderson; A. Asgekar; I.M. Avruch; M.J. Bentum; G. Bernardi; A. Bonafede; F. Breitling; J.W. Broderick; W.N. Brouw; H.R. Butcher; B. Ciardi; E. de Geus; J. Eislöffel; H. Falcke; W. Frieswijk; M.A. Garrett; J. Grießmeier; A.W. Gunst; J.W.T. Hessels; M. Hoeft; A. Karastergiou; V.I. Kondratiev; G. Kuper; J. van Leeuwen; D. McKay-Bukowski; J.P. McKean; H. Munk; E. Orru; H. Paas; R. Pizzo; A.G. Polatidis; A.M.M. Scaife; J. Sluman; C. Tasse; M.C. Toribio; R. Vermeulen; P. Zarka

    2015-01-01

    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S burst

  12. Introduction to Optical Burst Switching

    OpenAIRE

    KERNÁCS János; SZILÁGYI Szabolcs

    2010-01-01

    Optical Burst Switching (OBS) isconsidered a popular switching paradigm for therealization of all-optical networks due to the balance itoffers between the coarse-grained Optical CircuitSwitching (OSC) and fine-grained Optical PacketSwitching (OPS). Given that the data are switched allopticallyat the burst level, Optical Burst Switchingcombines the transparency of Optical CircuitSwitching with the benefits of statistical multiplexingin Optical Packet Switching.

  13. An All-sky Search for Three Flavors of Neutrinos from Gamma-ray Bursts with the IceCube Neutrino Observatory

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-06-01

    We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.

  14. An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schönwald, A; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-01-01

    We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.

  15. Synchrotron masers and fast radio bursts

    CERN Document Server

    Ghisellini, Gabriele

    2016-01-01

    Fast Radio Bursts (FRBs), with a typical duration of 1 ms and 1 Jy flux density at GHz frequencies, have brightness temperatures exceeding 1e33 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Alternatively, we can have maser emission. Under certain conditions, the synchrotron stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light crossing time limits, since there is no simple relation between the actual size of the source and the observed variability timescale.

  16. Discovery of a Cosmological, Relativistic Outburst via its Rapidly Fading Optical Emission

    CERN Document Server

    Cenko, S Bradley; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B; Carpenter, John; Frail, Dale A; Nugent, Peter E; Perley, Daniel A; Gruber, D; Gal-Yam, Avishay; Groot, Paul J; Hallinan, G; Ofek, Eran O; Rau, Arne; MacLeod, Chelsea L; Miller, Adam A; Bloom, Joshua S; Filippenko, Alexei V; Kasliwal, Mansi M; Law, Nicholas M; Morgan, Adam N; Polishook, David; Poznanski, Dovi; Quimby, Robert M; Sesar, Branimir; Shen, Ken J; Silverman, Jeffrey M; Sternberg, Assaf

    2013-01-01

    We report the discovery by the Palomar Transient Factory (PTF) of the transient source PTF11agg, which is distinguished by three primary characteristics: (1) bright, rapidly fading optical transient emission; (2) a faint, blue quiescent optical counterpart; and (3) an associated year-long, scintillating radio transient. We argue that these observed properties are inconsistent with any known class of Galactic transients, and instead suggest a cosmological origin. The detection of incoherent radio emission at such distances implies a large emitting region, from which we infer the presence of relativistic ejecta. The observed properties are all consistent with the population of long-duration gamma-ray bursts (GRBs), marking the first time such an outburst has been discovered in the distant universe independent of a high-energy trigger. We searched for possible high-energy counterparts to PTF11agg, but found no evidence for associated prompt emission. We therefore consider three possible scenarios to account for ...

  17. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    . "It was a bit of luck that the survey included some observations of the sky surrounding the clouds," Narkevic said. It was from those "flanking" observations that the mysterious radio burst appeared in the data. The burst of radio waves was strong by astronomical standards, but lasted less than five milliseconds. The signal was spread out, with higher frequencies arriving at the telescope before the lower frequencies. This effect, called dispersion, is caused by the signal passing through ionized gas in interstellar and intergalactic space. The amount of this dispersion, the astronomers said, indicates that the signal likely originated about three billion light-years from Earth. No previously-detected cosmic radio burst has the same set of characteristics. "This burst represents an entirely new astronomical phenomenon," Bailes said. The astronomers estimate on the basis of their results that hundreds of similar events should occur over the sky each day. "Few radio surveys have the necessary sensitivity to such short-duration bursts, which makes them notoriously difficult to detect with current instruments," added Crawford. The next generation of radio telescopes currently under development should be able to detect many of these bursts across the sky. Although the nature of the mysterious new object is unclear, the astronomers have some ideas of what may cause such a burst. One idea is that it may be part of the energy released when a pair of superdense neutron stars collide and merge. Such an event is thought by some scientists to be the cause of one type of gamma-ray burst, but the only radio emission seen so far from these has been from the long-lived "afterglow" that follows the original burst. Another, more exotic, candidate is a burst of energy from an evaporating black hole. Black holes, concentrations of mass so dense that not even light can escape their powerful gravity, can lose mass and energy through a process proposed by famed British physicist Stephen

  18. Dark Gamma Ray Bursts

    OpenAIRE

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2016-01-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stell...

  19. Photodisintegrated gamma rays and neutrinos from heavy nuclei in the gamma-ray burst jet of GRB 130427A

    CERN Document Server

    Joshi, Jagdish C; Moharana, Reetanjali

    2015-01-01

    Detection of $\\sim$ 0.1-70 GeV prompt $\\gamma$-ray emission from the exceptionally bright gamma-ray burst (GRB) 130427A by the ${\\it Fermi}$-Large Area Telescope provides an opportunity to explore the physical processes of GeV $\\gamma$-ray emission from the GRB jets. In this work we discuss interactions of Iron and Oxygen nuclei with observed keV-MeV photons in the jet of GRB 130427A in order to explain an additional, hard spectral component observed during 11.5-33 second after trigger. The photodisintegration time scale for Iron nuclei is comparable to or shorter than this duration. We find that $\\gamma$ rays resulting from the Iron nuclei disintegration can account for the hard power-law component of the spectra in the $\\sim$ 1-70 GeV range, before the $\\gamma\\gamma \\to e^\\pm$ pair production with low-energy photons severely attenuates emission of higher energy photons. Electron antineutrinos from the secondary neutron decay, on the other hand, can be emitted with energies up to $\\sim$ 2 TeV. The flux of th...

  20. Statistical Analysis of the Parameters of Gamma-Ray Bursts with Known Redshifts and Peaked Optical Light Curves

    CERN Document Server

    Beskin, Gregory; Greco, Giuseppe; Karpov, Sergey

    2015-01-01

    We present the statistical analysis of the properties of gamma-ray bursts with measured host galaxy redshifts and peaked optical light curves in proper frames of reference. The optical transients are classified by comparing the time lag of the optical peak relative to the GRB trigger with the duration of the gamma-ray emission itself. The results of the correlation analysis of all possible pairs of energy, spectral, and temporal characteristics of both gamma-ray and optical emissions are given. We specify the pairs of the parameters with correlation coefficients greater than 50 % at significance levels better than 1 %. The following empirical relations, obtained for the first time, are specifically discussed: a correlation between the peak optical afterglow $R$ band luminosity and redshift $L_{R} \\propto (z+1)^{5.39 \\pm 0.74}$ and a correlation between the peak luminosity of the prompt optical emissions and the time of the peak $L_{R} \\propto T_{\\rm peak}^{-3.85 \\pm 1.22}$. We also analyze the similarity of t...

  1. The potential for detecting gamma-ray burst afterglows from population III stars with the next generation of infrared telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Macpherson, D. [ICRAR, University of Western Australia, Crawley, WA 6009 (Australia); Coward, D. M. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Zadnik, M. G., E-mail: damien.macpherson@icrar.org [Department of Imaging and Applied Physics, Curtin University, Perth, WA 6845 (Australia)

    2013-12-10

    We investigate the detectability of a proposed population of gamma-ray bursts (GRBs) from the collapse of Population III (Pop III) stars. The James Webb Space Telescope (JWST) and Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be able to observe the late time infrared afterglows. We have developed a new method to calculate their detectability, which takes into account the fundamental initial mass function and formation rates of Pop III stars, from which we find the temporal variability of the afterglows and ultimately the length of time JWST and SPICA can detect them. In the range of plausible Pop III GRB parameters, the afterglows are always detectable by these instruments during the isotropic emission, for a minimum of 55 days and a maximum of 3.7 yr. The average number of detectable afterglows will be 2.96× 10{sup –5} per SPICA field of view (FOV) and 2.78× 10{sup –6} per JWST FOV. These are lower limits, using a pessimistic estimate of Pop III star formation. An optimal observing strategy with SPICA could identify a candidate orphan afterglow in ∼1.3 yr, with a 90% probability of confirmation with further detailed observations. A beamed GRB will align with the FOV of the planned GRB detector Energetic X-ray Imaging Survey Telescope once every 9 yr. Pop III GRBs will be more easily detected by their isotropic emissions (i.e., orphan afterglows) rather than by their prompt emissions.

  2. Temporal Study of Magnetar Bursts with Rossi X-ray Timing Explorer

    Science.gov (United States)

    Sasmaz Mus, Sinem; Gogus, Ersin; Kaneko, Yuki

    2016-07-01

    We performed detailed temporal analyses of all bursts observed with the Rossi X-ray Timing Explorer originated from four magnetars: SGR 1806-20, SGR 1900+14, SGR J1550-5418, and AXP 1E 2259+586. We first implemented a Bayesian block algorithm to identify bursts, and constructed Bayesian block representations of all identified bursts from these magnetars. Based on these results, we formed the burst duration distributions, and compared to those previously reported using different approach. We also performed detailed investigation of time lag between various energy intervals in order to uncover any possible time delay between soft and hard X-ray emission components.

  3. $\\gamma$-Ray Bursts the Four Crises

    CERN Document Server

    Tavani, M

    1998-01-01

    We discuss some open problems concerning the origin and the emission mechanism of gamma-ray bursts (GRBs) in light of recent developments. If GRBs originate at extragalactic distances, we are facing four crises: (1) an energy crisis, models have to account for more than 10^{53} ergs of energy emitted in the gamma-ray energy band; (2) a spectral crisis, emission models have to account for the surprising `smoothness' of GRB broad-band spectra, with no indication of the predicted spectral `distorsions' caused by inverse Compton scattering in large radiation energy density media, and no evidence for beaming; (3) an afterglow crisis, relativistic shock models have to explain the complexity of the afterglow behavior, the longevity of optical transients detectable up to six months after the burst, the erratic behavior of the radio emission, and the lack of evidence for substantial beaming as indicated by recent searches for GRB afterglows in the X-ray band; (4) a population crisis, from data clearly indicating that ...

  4. The repeating Fast Radio Burst FRB 121102: Multi-wavelength observations and additional bursts

    CERN Document Server

    Scholz, P; Hessels, J W T; Chatterjee, S; Cordes, J M; Kaspi, V M; Wharton, R S; Bassa, C G; Bogdanov, S; Camilo, F; Crawford, F; Deneva, J; van Leeuwen, J; Lynch, R; Madsen, E C; McLaughlin, M A; Mickaliger, M; Parent, E; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; Tendulkar, S P

    2016-01-01

    We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green Bank Telescope at 2 GHz, and one at 1.4 GHz at the Arecibo Observatory for a total of 17 bursts from this source. All have dispersion measures consistent with a single value ($\\sim559$ pc cm$^{-3}$) that is three times the predicted maximum Galactic value. The 2-GHz bursts have highly variable spectra like those at 1.4 GHz, indicating that the frequency structure seen across the individual 1.4 and 2-GHz bandpasses is part of a wideband process. X-ray observations of the FRB 121102 field with the Swift and Chandra observatories show at least one possible counterpart; however, the probability of chance superposition is high. A radio imaging observation of the field with the Jansky Very Large Array at 1.6 GHz yields a 5$\\sigma$ upper limit of 0.3 mJy on any point-source continuum emission. This upper limit, combined wit...

  5. 伽玛暴宇宙学的研究%Gamma-ray Burst Cosmology

    Institute of Scientific and Technical Information of China (English)

    王发印

    2011-01-01

    伽玛射线暴(简称伽玛暴,gamma-ray burst (GRB))是一种来自宇宙空间中的伽玛射线波段流量突然增亮的现象,最早由Vela卫星在1967年发现.1997年人们通过余辉测得了伽玛暴的红移,从而确定了其宇宙学的起源.伽玛暴宇宙学包括用长暴的标准烛光关系限制暗能量和宇宙学参数,用长暴研究高红移的恒星形成率,研究金属丰度的演化、尘埃及量子引力等.%Gamma-ray bursts (GRBs) are brief flashes of gamma-rays occurring at cosmological distances. GRB was discovered by Vela satellite in 1967. The discovery of afterglows in 1997 made it possible to measure the GRBs' redshifts and confirmed the cosmological origin. GRB cosmology includes utilizing long GRBs as standard candles to constrain the dark energy and cosmological parameters, measuring the high-redshift star formation rate (SFR), probing the metal enrichment history of the universe, dust, quantum gravity, etc. The correlations between GRB observables in the prompt emission and afterglow phases were discovered, so we can use these correlations as standard candles to constrain the cosmological parameters and dark energy, especially at high redshifts. Observations show that long GRBs may be associated with supernovae. So long GRBs are promising tools to measure the high-redshift SFR. GRB afterglows have a smooth continuum, so the extraction of IGM absorption features from the spectrum is very easy. The information of metal enrichment history and reionization can be obtained from the absorption lines.

  6. Supercollapsars and their X-ray Bursts

    CERN Document Server

    Komissarov, S S

    2009-01-01

    The very first stars in the Universe can be very massive, frequently reaching $10^3M_\\odot$. If born in large numbers such massive stars can have strong impact on the subsequent star formation producing strong ionising radiation and contaminating the primordial gas with heavy elements. They would leave behind massive black holes that could act as seeds for growing supermassive black holes of active galactic nuclei. Given the anticipated fast rotation such stars would end their live as supermassive collapsars and drive powerful magnetically-dominated jets. In this letter we investigate the possibility of observing the bursts of high-energy emission similar to the Long Gamma Ray Bursts associated with normal collapsars. We show that during the collapse of supercollapsars, the Blandford-Znajek mechanism can extract up to $10^{56}$erg at a rate of few$\\times10^{52}$erg/s. Due to the higher intrinsic time scale and higher redshift the observed burst duration increases by a factor of $\\simeq 1000$ and can reach one...

  7. Radio flares from gamma-ray bursts

    CERN Document Server

    Kopac, D; Kobayashi, S; Virgili, F J; Harrison, R; Japelj, J; Guidorzi, C; Melandri, A; Gomboc, A

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later opt...

  8. Dark Gamma Ray Bursts

    CERN Document Server

    Brdar, Vedran; Liu, Jia

    2016-01-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p-wave process than for s-wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to Standard Model particles later, the annihilation bu...

  9. Temporal properties of the short gamma-ray bursts

    CERN Document Server

    McBreen, S; McBreen, B; Hanlon, L O; Watson, D

    2001-01-01

    A temporal analysis has been performed on a sample of 100 bright gamma-ray bursts (GRBs) with T902s. The two sub-classes of GRBs appear to have the same emission mechanism which is probably caused by internal shocks. They may not have the same progenitors because of the generic nature of the fireball model.

  10. Observing a Burst with Sunglasses

    Science.gov (United States)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the

  11. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    . "It was a bit of luck that the survey included some observations of the sky surrounding the clouds," Narkevic said. It was from those "flanking" observations that the mysterious radio burst appeared in the data. The burst of radio waves was strong by astronomical standards, but lasted less than five milliseconds. The signal was spread out, with higher frequencies arriving at the telescope before the lower frequencies. This effect, called dispersion, is caused by the signal passing through ionized gas in interstellar and intergalactic space. The amount of this dispersion, the astronomers said, indicates that the signal likely originated about three billion light-years from Earth. No previously-detected cosmic radio burst has the same set of characteristics. "This burst represents an entirely new astronomical phenomenon," Bailes said. The astronomers estimate on the basis of their results that hundreds of similar events should occur over the sky each day. "Few radio surveys have the necessary sensitivity to such short-duration bursts, which makes them notoriously difficult to detect with current instruments," added Crawford. The next generation of radio telescopes currently under development should be able to detect many of these bursts across the sky. Although the nature of the mysterious new object is unclear, the astronomers have some ideas of what may cause such a burst. One idea is that it may be part of the energy released when a pair of superdense neutron stars collide and merge. Such an event is thought by some scientists to be the cause of one type of gamma-ray burst, but the only radio emission seen so far from these has been from the long-lived "afterglow" that follows the original burst. Another, more exotic, candidate is a burst of energy from an evaporating black hole. Black holes, concentrations of mass so dense that not even light can escape their powerful gravity, can lose mass and energy through a process proposed by famed British physicist Stephen

  12. Burst Mode Transmission in GPON

    Institute of Scientific and Technical Information of China (English)

    LI Liang-chuan; ZHANG Yan-gan; LI Ling; XU Da-xiong

    2004-01-01

    In this paper, a newly approved standard G.984 for Gigabit-capable Passive Optical Networks (GPON) is introduced. Technical challenges about high-speed burst-mode data transmission in GPON are discussed and key issues such as Forward Error Correction (FEC), timing to uplink performance of burst mode are high-lighted.

  13. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  14. The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years

    CERN Document Server

    Yu, Hoi-Fung; Greiner, Jochen; Bhat, P Narayana; Bissaldi, Elisabetta; Briggs, Michael S; Cleveland, William H; Connaughton, Valerie; Goldstein, Adam; von Kienlin, Andreas; Kouveliotou, Chryssa; Mailyan, Bagrat; Meegan, Charles A; Paciesas, William S; Rau, Arne; Roberts, Oliver J; Veres, Péter; Wilson-Hodge, Colleen; Zhang, Bin-Bin; van Eerten, Hendrik J

    2016-01-01

    We aim to obtain high-quality time-resolved spectral fits of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. We perform time-resolved spectral analysis with high temporal and spectral resolution of the brightest bursts observed by Fermi GBM in its first 4 years of mission. We present the complete catalog containing 1,491 spectra from 81 bursts with high spectral and temporal resolution. Distributions of parameters, statistics of the parameter populations, parameter-parameter and parameter-uncertainty correlations, and their exact values are obtained and presented as main results in this catalog. We report a criterion that is robust enough to automatically distinguish between different spectral evolutionary trends between bursts. We also search for plausible blackbody emission components and find that only 3 bursts (36 spectra in total) show evidence of a pure Planck function. It is observed that the averaged time-resolved low-energy power-law...

  15. SGR J1550-5418 bursts detected with the Fermi Gamma-ray Burst Monitor during its most prolific activity

    CERN Document Server

    van der Horst, A J; Gorgone, N M; Kaneko, Y; Baring, M G; Guiriec, S; Gogus, E; Granot, J; Watts, A L; Lin, L; Bhat, P N; Bissaldi, E; Chaplin, V L; Connaughton, V; Finger, M H; Gehrels, N; Gibby, M H; Giles, M M; Goldstein, A; Gruber, D; Harding, A K; Kaper, L; von Kienlin, A; van der Klis, M; McBreen, S; Mcenery, J; Meegan, C A; Paciesas, W S; Pe'er, A; Preece, R D; Ramirez-Ruiz, E; Rau, A; Wachter, S; Wilson-Hodge, C; Woods, P M; Wijers, R A M J

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in January 2009, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law with an exponential cutoff (Comptonized model), and two black-body functions (BB+BB). In the spectral fits with the Comptonized model we find a mean power-law index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlati...

  16. Prompt Neutron Lifetime for the NBSR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Diamond, D.

    2012-06-24

    In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.

  17. The Afterglows of Swift-era Gamma-Ray Bursts. II. Type I GRB versus Type II GRB Optical Afterglows

    Science.gov (United States)

    Kann, D. A.; Klose, S.; Zhang, B.; Covino, S.; Butler, N. R.; Malesani, D.; Nakar, E.; Wilson, A. C.; Antonelli, L. A.; Chincarini, G.; Cobb, B. E.; D'Avanzo, P.; D'Elia, V.; Della Valle, M.; Ferrero, P.; Fugazza, D.; Gorosabel, J.; Israel, G. L.; Mannucci, F.; Piranomonte, S.; Schulze, S.; Stella, L.; Tagliaferri, G.; Wiersema, K.

    2011-06-01

    Gamma-ray bursts (GRBs) have been separated into two classes, originally along the lines of duration and spectral properties, called "short/hard" and "long/soft." The latter have been conclusively linked to the explosive deaths of massive stars, while the former are thought to result from the merger or collapse of compact objects. In recent years, indications have been accumulating that the short/hard versus long/soft division does not map directly onto what would be expected from the two classes of progenitors, leading to a new classification scheme called Type I and Type II which is based on multiple observational criteria. We use a large sample of GRB afterglow and prompt-emission data (adding further GRB afterglow observations in this work) to compare the optical afterglows (or the lack thereof) of Type I GRBs with those of Type II GRBs. In comparison to the afterglows of Type II GRBs, we find that those of Type I GRBs have a lower average luminosity and show an intrinsic spread of luminosities at least as wide. From late and deep upper limits on the optical transients, we establish limits on the maximum optical luminosity of any associated supernova (SN), confirming older works and adding new results. We use deep upper limits on Type I GRB optical afterglows to constrain the parameter space of possible mini-SN emission associated with a compact-object merger. Using the prompt-emission data, we search for correlations between the parameters of the prompt emission and the late optical afterglow luminosities. We find tentative correlations between the bolometric isotropic energy release and the optical afterglow luminosity at a fixed time after the trigger (positive), and between the host offset and the luminosity (negative), but no significant correlation between the isotropic energy release and the duration of the GRBs. We also discuss three anomalous GRBs, GRB 060505, GRB 060614, and GRB 060121, in light of their optical afterglow luminosities. Based in part

  18. Bursts de raios gama

    Science.gov (United States)

    Braga, J.

    2003-02-01

    Nos últimos anos, graças principalmente aos dados obtidos pelo Compton Gamma-Ray Observatory e pelo satélite ítalo-holandês BeppoSAX, grandes avanços foram obtidos no nosso conhecimento sobre os fascinantes e enigmáticos fenômenos conhecidos por "bursts"de raios gama. Neste trabalho é feita uma revisão sobre a fenomenologia desses misteriosos objetos e são apresentados os desenvolvimentos recentes nessa área palpitante da astrofísica moderna, ressaltando tanto os resultados observacionais obtidos até o momento quanto os modelos teóricos propostos para explixá-los.

  19. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    Science.gov (United States)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  20. An observational imprint of the Collapsar model of long Gamma Ray Bursts

    CERN Document Server

    Bromberg, Omer; Piran, Tsvi; Sari, Re'em

    2011-01-01

    The Collapsar model provides a theoretical framework for the well known association between long gamma-ray bursts (GRBs) and collapsing massive stars. A bipolar relativistic jet, launched at the core of a collapsing star, drills its way through the stellar envelope and breaks out of the surface before producing the observed gamma-rays. While a wealth of observations associate GRBs with the death of massive stars, as yet there is no direct evidence for the Collapsar model itself. Here we show that a distinct signature of the Collapsar model is the appearance of a plateau in the duration distribution of the prompt GRB emission at times much shorter than the typical breakout time of the jet. This plateau is evident in the data of all three major satellites. These findings provide an evidence that directly supports the Collapsar model. Additionally, it suggests the existence of a large population of choked (failed) GRBs and that the 2 s duration commonly used to separate Collapsars and non-Collapasars is inconsis...

  1. A search for \\textit{Fermi} bursts associated to supernovae and their frequency of occurrence

    CERN Document Server

    Kovacevic, M; Wang, Y; Muccino, M; Della Valle, M; Amati, L; Barbarino, C; Enderli, M; Pisani, G B; Li, L

    2014-01-01

    Context: Observations suggest that the major fraction of long duration gamma-ray bursts (GRBs) are connected with broad-lines supernovae Ib/c, (SNe-Ibc). The presence of GRB-SNe is revealed by rebrightenings emerging from the optical GRB afterglow $10$--$15$ days, in the rest-frame of the source, after the prompt GRB emission. Aims: \\textit{Fermi}-GBM has a field of view (FoV) which is about 6.5 times larger than the FoV of \\textit{Swift}, therefore we expect that a number of GRB-SN connections have been missed due to lack of optical and X-ray instruments on board of \\textit{Fermi}, which are essential to reveal SNe associated with GRBs. This fact has motivated our search in the \\textit{Fermi} catalogue for possible GRB-SN events. Methods: The search for possible GRB-SN associations follows two requirements: (1) SN should fall inside the \\textit{Fermi}-GBM error box of the considered long GRB, and (2) this GRB should occur within $20$ days before the SN event. Results: We have found $5$ cases, within $z<0....

  2. Comprehensive study of the X-ray flares from gamma-ray bursts observed by Swift

    CERN Document Server

    Yi, Shuang-Xi; Yu, Hai; Wang, F Y; Mu, Hui-Jun; Lv, Lian-Zhong; Liang, En-Wei

    2016-01-01

    X-ray flares are generally supposed to be produced by the later central engine activities, and may share the similar physical origin with prompt emission of gamma-ray bursts (GRBs). In this paper, we have analyzed all significant X-ray flares from the GRBs observed by {\\em Swift} from April 2005 to March 2015. The catalog contains 468 bright X-ray flares, including 200 flares with redshifts. We obtain the fitting results of X-ray flares, such as start time, peak time, duration, peak flux, fluence, peak luminosity, and mean luminosity. The peak luminosity decreases with peak time, following a power-law behavior $L_p \\propto T_{peak,z}^{-1.27}$. The flare duration increases with peak time. The 0.3-10 keV isotropic energy of X-ray flares distribution is a lognormal peaked at $10^{51.2}$ erg. We also study the frequency distributions of flare parameters, including energies, durations, peak fluxes, rise times, decay times and waiting times. Power-law distributions of energies, durations, peak fluxes, and waiting t...

  3. The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    Science.gov (United States)

    Schanne, S.; Atteia, J.-L.; Barret, D.; Basa, S.; Boer, M.; Casse, F.; Cordier, B.; Daigne, F.; Klotz, A.; Limousin, O.; Manchanda, R.; Mandrou, P.; Mereghetti, S.; Mochkovitch, R.; Paltani, S.; Paul, J.; Petitjean, P.; Pons, R.; Ricker, G.; Skinner, G.

    2006-11-01

    Gamma-ray bursts (GRB)—at least those with a duration longer than a few seconds—are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore, in 2009 ECLAIRs is expected to be the only space-borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground-based spectroscopic telescopes available by then. A “Phase A study” of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the “Myriade” family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in the 4 50 keV energy band, together with a soft X-ray camera for onboard position refinement to 1 arcmin. The ground-based optical robotic telescopes will detect the GRB prompt/early afterglow emission and localize the event to arcsec accuracy, for spectroscopic follow-up observations.

  4. A SEARCH FOR PULSATIONS IN SHORT GAMMA-RAY BURSTS TO CONSTRAIN THEIR PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Dichiara, S.; Guidorzi, C.; Frontera, F. [Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122 Ferrara (Italy); Amati, L. [INAF-IASF Bologna, via Gobetti 101, I-40129 Bologna (Italy)

    2013-11-10

    We searched for periodic and quasi-periodic signals in the prompt emission of a sample of 44 bright short gamma-ray bursts (GRBs) detected with Fermi/GBM, Swift/BAT, and CGRO/BATSE. The aim was to look for the observational signature of quasi-periodic jet precession, which is expected from black hole (BH)-neutron star (NS) mergers, but not from double NS systems. Thus, this kind of search holds the key to identifying the progenitor systems of short GRBs and, in the interim before gravitational wave detectors become on-lines, represents the only direct way to constrain the progenitors. We tailored our search to the nature of the expected signal by properly stretching the observed light curves by an increasing factor with time, after calibrating the technique with synthetic curves. None of our GRBs showed evidence for periodic or quasi-periodic signals. In particular, for the seven unambiguously short GRBs with the best signal-to-noise ratios, we obtained significant upper limits to the amplitude of the possible oscillations. This result suggests that BH-NS systems do not dominate the population of short GRB progenitors, as described by the kinematic model of Stone et al.

  5. Gravitational wave observations may constrain gamma-ray burst models: the case of GW 150914 - GBM

    CERN Document Server

    Veres, P; Goldstein, A; Mészáros, P; Burns, E; Connaughton, V

    2016-01-01

    The possible short gamma-ray burst (GRB) observed by {\\it Fermi}/GBM in coincidence with the first gravitational wave (GW) detection, offers new ways to test GRB prompt emission models. Gravitational wave observations provide previously unaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW~150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density ($\\sim 10^{-3}$ cm$^{-3}$) and a high Lorentz factor ($\\sim 2000$). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Bl...

  6. Gamma-ray burst polarization reduction induced by the Lorentz invariance violation

    CERN Document Server

    Lin, Hai-Nan; Chang, Zhe

    2016-01-01

    It has been observed that photons in the prompt emission of some gamma-ray bursts (GRBs) are highly polarized. The high polarization is used by some authors to give a strict constraint on the Lorentz invariance violation (LIV). If the Lorentz invariance is broken, the polarization vector of a photon may rotate during its propagation. The rotation angle of polarization vector depends on both the photon energy and the distance of source. It is believed that if high polarization is observed, then the relative rotation angle (denoted by $\\alpha$) of polarization vector of the highest energy photon with respect to that of the lowest energy photon should be no more than $\\pi/2$. Otherwise, the net polarization will be severely suppressed, thus couldn't be as high as what was actually observed. In this paper, we will give a detailed calculation on the evolution of GRB polarization arising from LIV effect duration the propagation. It is shown that the polarization degree rapidly decrease as $\\alpha$ increases, and re...

  7. Gamma-ray burst optical light-curve zoo: comparison with X-ray observations

    CERN Document Server

    Zaninoni, Elena; Margutti, Raffaella; Oates, Samantha; Chincarini, Guido

    2013-01-01

    We present a comprehensive analysis of the optical and X-ray light curves (LCs) and spectral energy distributions (SEDs) of a large sample of gamma-ray burst (GRB) afterglows to investigate the relationship between the optical and X-ray emission after the prompt phase. We collected the optical data from the literature and determined the shapes of the optical LCs. Then, using previously presented X-ray data we modeled the optical/X-ray SEDs. We studied the SED parameter distributions and compared the optical and X-ray LC slopes and shapes. The optical and X-ray spectra become softer as a function of time while the gas-to-dust ratios of GRBs are higher than the values calculated for the Milky Way and the Large and Magellanic Clouds. For 20% of the GRBs the difference between the optical and X-ray slopes is consistent with 0 or 1=4 within the uncertainties (we did it not consider the steep decay phase), while in the remaining 80% the optical and X-ray afterglows show significantly different temporal behaviors. I...

  8. Constraining the Mass of the Photon with Gamma-Ray Bursts

    CERN Document Server

    Zhang, Bo; Zou, Yuan-Chuan; Wu, Xue-Feng

    2016-01-01

    One of the cornerstones of modern physics is Einstein's special relativity, with its constant speed of light and zero photon mass assumptions. Constraint on the rest mass m_{\\gamma} of photons is a fundamental way to test Einstein's theory, as well as other essential electromagnetic and particle theories. Since non-zero photon mass can give rise to frequency-(or energy-) dependent dispersions, measuring the time delay of photons with di?erent frequencies emitted from explosive astrophysical events is an important and model-independent method to put such a constraint. The cosmological gamma-ray bursts (GRBs), with short time scales, high redshifts as well as broadband prompt and afterglow emissions, provide an ideal testbed for m_{\\gamma} constraints. In this paper we calculate the upper limits of the photon mass with GRB early time radio afterglow observations as well as multi-band radio peaks, thus improve the results of Schaefer (1999) by nearly half an order of magnitude.

  9. Gamma-Ray Bursts: A Mystery Story

    Science.gov (United States)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  10. Aspects of the Spectral Evolution of Cosmic Gamma-Ray Bursts.

    Science.gov (United States)

    Ryde, elix

    2000-08-01

    Ever since their discovery at the end of the 1960s, the occasional, short flashes of gamma-rays, denoted gamma-ray bursts (GRBs), have been some of the most enigmatic phenomena to have been encountered in astrophysics. Large resources are being put into the quest to understand these objects and great progress has been made. In particular, during recent years it has become evident that GRBs lie at large, cosmological distances, which implies, from the measured energies, that they are the most powerful explosions in the Universe since its creation. They are detected approximately once per day and occur in an average galaxy probably once every 10 million years. This thesis discusses various aspects of the spectral and temporal behaviour of the gamma-ray emission in long and bright pulses of prompt GRBs. This is studied both by analytical derivations and through the study of data from the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory (CGRO) satellite. A self-consistent formulation of the spectral and temporal evolution during the decay of a GRB pulse is presented and explored. This leads to the finding that the decay of GRB pulses can be described by a particular power-law function and that there is a bimodality in the distribution of the associated power-law index. The importance of studying the temporally resolved spectra during a GRB, and especially during a pulse, is stressed. These spectra have a direct connection with the underlying emission process (possibly affected by relativistic effects due to the outflow emitting the gamma-rays). The time-integrated spectrum, on the other hand, reflects mainly the spectral evolution. Analytical results are given, which connect the properties of the time-integrated spectrum with those of the time-resolved spectra, and are thus useful when studying observed GRB pulse spectra. The correlation between the peak energy of the instantaneous spectrum (as a measure of spectral hardness) and

  11. DETECTION OF JOVIAN RADIO BURSTS AT HIGH ALTITUDES

    Directory of Open Access Journals (Sweden)

    A. SARKAR

    2012-06-01

    Full Text Available In this paper the formation of Jovian magnetosphere has been critically discussed with special emphasis on decametric radio source. Emission of radio signals originating in Jupiter magnetic field and the selection of frequency for detecting the bursts have been considered. The meteorology of the high altitude observing station Darjeeling including the GPS data taken at the observatory has been presented. The Jove receiver used for the reception of radio signals and the technique employed for the detection of bursts are also outlined in this preliminary report.

  12. The ``Christmas burst'' GRB 101225A revisited

    Science.gov (United States)

    Thöne, C. C.; de Ugarte Postigo, A.; Fryer, C. L.; Kann, D. A.

    2015-03-01

    Long GRBs are related to the death of massive stars and reveal themselves through synchrotron emission from highly relativistic jets. The `Christmas Burst' GRB 101225A was an exceptionally long GRB with a thermal afterglow, very different from the standard GRB. Initially, no spectroscopic redshift could be obtained and SED modeling yielded z=0.33. A plausible model was a He-NS star merger where the He-star had ejected part of its envelope in the common envelope phase during inspiral. The interaction between the jet and the previously ejected shell can explains the thermal emission. We obtained deep spectroscopy of the host galaxy which leads to a correction of the redshift to z=0.847. Despite the higher redshift, our model is still valid and theoretically better justified than the alternative suggestion of a blue supergiant progenitor proposed by Levan et al. (2014) for several ``ultra-long'' GRBs.

  13. Prompt gamma-ray activation analysis (PGAA)

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J. [Fribourg Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs.

  14. 45 CFR 1701.5 - Prompt response.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Prompt response. 1701.5 Section 1701.5 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL COMMISSION ON LIBRARIES AND... Saturdays, Sundays and legal public holidays) of the receipt of a request, the Associate Director...

  15. Prompt radiation detectors to monitor target conditions

    DEFF Research Database (Denmark)

    Barnhart, T. E.; Engle, J. W.; Valdovinos, H. F.;

    2012-01-01

    Lessons learned by basic scientists in the study of experimental nuclear physics can often go unnoticed by cyclotron operator’s intent on meeting a demanding schedule of tracer production. Prompt neutrons and gammas are the signature that the desired reaction is occurring, providing a robust meas...

  16. Prompt radiation detectors to monitor target conditions

    DEFF Research Database (Denmark)

    Barnhart, T. E.; Engle, J. W.; Valdovinos, H. F.;

    2012-01-01

    Lessons learned by basic scientists in the study of experimental nuclear physics can often go unnoticed by cyclotron operator’s intent on meeting a demanding schedule of tracer production. Prompt neutrons and gammas are the signature that the desired reaction is occurring, providing a robust...

  17. Drought prompts government to close nuclear plant

    CERN Multimedia

    2003-01-01

    "A nuclear power plant was shut down Sunday because a record drought left insufficient water to cool down the reactor. The plant supplies more than 10 percent of Romania's electricity and closure prompted fears of a price hike" (1/2 page).

  18. Engaging Young Students in Scientific Investigations: Prompting for Meaningful Reflection

    Science.gov (United States)

    Wilson, Travis; Perry, Michelle; Anderson, Carolyn J.; Grosshandler, Dean

    2012-01-01

    This study examined the verbal prompts a tutor used to promote reflection and young students' responses to these prompts. Seven children (ages 8-12) participated in 260 min of one-on-one tutoring to learn scientific concepts related to gear movement; the tutor spontaneously provided these students with 763 prompts for reflection. Prompts reliably…

  19. Concept for LEU Burst Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    Design and performance of a proposed LEU burst reactor are sketched. Salient conclusions reached are the following: size would be ~1,500 kg or greater, depending on the size of the central cavity; internal stresses during burst require split rings for relief; the reactor would likely require multiple control and safety rods for fine control; the energy spectrum would be comparable to that of HEU machines; and burst yields and steady-state power levels will be significantly greater in an LEU reactor.

  20. Numerical models of black body dominated GRBs: II. Emission properties

    CERN Document Server

    Cuesta-Martínez, Carlos F; Mimica, Petar; Thöne, Christina C; de Ugarte-Postigo, Antonio

    2014-01-01

    We extend an existing theoretical model to explain the class of Black-Body Dominated (BBD) gamma-ray bursts (GRBs), long lasting events characterized by the presence of a significant thermal component trailing the GRB prompt emission, and also by an absence of a traditional afterglow. GRB 101225A, the Christmas Burst, is a prototype of such class. It has been suggested that BBD-GRBs could be observed after a merger in a binary system consisting of a neutron star and a Helium core of a main sequence star. Using detailed relativistic hydrodynamic numerical simulations we model the propagation of ultrarelativistic jets through the environments created by such mergers. In this paper we focus on explaining the emission properties of the jet evolution computing the whole radiative signature (both thermal and non-thermal) of the jet dynamical evolution. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic spectra and light curves are compared with the observational data...

  1. Narrowband Gyrosynchrotron Bursts: Probing Electron Acceleration in Solar Flares

    CERN Document Server

    Fleishman, Gregory D; Kontar, Eduard P; Gary, Dale E

    2016-01-01

    Recently, in a few case studies we demonstrated that gyrosynchrotron microwave emission can be detected directly from the acceleration region when the trapped electron component is insignificant. For the statistical study reported here, we have identified events with steep (narrowband) microwave spectra that do not show a significant trapped component and at the same time show evidence of source uniformity, which simplifies the data analysis greatly. Initially, we identified a subset of more than 20 radio bursts with such narrow spectra, having low- and high-frequency spectral indices larger than 3 in absolute value. A steep low-frequency spectrum implies that the emission is nonthermal (for optically-thick thermal emission, the spectral index cannot be steeper than 2), and the source is reasonably dense and uniform. A steep high-frequency spectrum implies that no significant electron trapping occurs; otherwise a progressive spectral flattening would be observed. Roughly half of these radio bursts have RHESSI...

  2. High-Energy Non-Thermal and Thermal Emission from GRB141207A detected by Fermi

    CERN Document Server

    Arimoto, Makoto; Ohno, Masanori; Veres, Péter; Axelsson, Magnus; Bissaldi, Elisabetta; Tachibana, Yutaro; Kawai, Nobuyuki

    2016-01-01

    The bright long gamma-ray burst GRB 141207A was observed by the {\\it Fermi Gamma-ray Space Telescope} and detected by both instruments onboard. The observations show that the spectrum in the prompt phase is not well described by the canonical empirical Band function alone, and that an additional power-law component is needed. In the early phase of the prompt emission, a modified blackbody with a hard low-energy photon index ($\\alpha$ = +0.2 -- +0.4) is detected, which suggests a photospheric origin. In a finely time-resolved analysis, the spectra are also well fitted by the modified blackbody combined with a power-law function. We discuss the physical parameters of the photosphere such as the bulk Lorentz factor of the relativistic flow and the radius. We also discuss the physical origin of the extra power-law component observed during the prompt phase in the context of different models such as leptonic and hadronic scenarios in the internal shock regime and synchrotron emission in the external forward shock....

  3. Ultra High-Energy Cosmic Ray Production by Turbulence in Gamma-Ray Burst Jets and Cosmogenic Neutrinos

    CERN Document Server

    Asano, Katsuaki

    2016-01-01

    We propose a novel model to produce ultra-high-energy cosmic-rays (UHECRs) in gamma-ray burst (GRB) jets. After the prompt gamma-ray emission, hydrodynamical turbulence is excited in the GRB jets at or before the afterglow phase. The mildly relativistic turbulence stochastically accelerates protons. The acceleration rate is much slower than the usual first-order shock acceleration rate, but in this case it can be energy-independent. The resultant UHECR spectrum is so hard that the bulk energy is concentrated in the highest energy range, resulting in a moderate requirement for the typical cosmic ray luminosity of $\\sim 10^{53.5}~\\mbox{erg}~\\mbox{s}^{-1}$. In this model, the secondary gamma-ray and neutrino emissions initiated by photopion production are significantly suppressed. Although the UHECR spectrum at injection shows a curved feature, this does not conflict with the observed UHECR spectral shape. The cosmogenic neutrino spectrum in the $10^{17}$--$10^{18}$ eV range becomes distinctively hard in this mo...

  4. Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves and neutrinos

    International Nuclear Information System (INIS)

    There are the two common candidates as the viable energy source for the central engine of long gamma-ray bursts (GRBs) and hypernovae (HNe), neutrino annihilation and magnetic fields. We investigate gravitational wave (GW) emission accompanied by these two mechanisms. Especially, we focus on GW signals produced by neutrinos from a hyper-accreting disk around a massive black hole. We show that neutrino-induced GWs are detectable for ∼1 Mpc events by LISA and ∼100 Mpc by DECIGO/BBO, if the central engine is powered by neutrinos. The GW signals depend on the viewing angle and they are anticorrelated with neutrino ones. But, simultaneous neutrino detections are also expected, and helpful for diagnosing the explosion mechanism when later electromagnetic observations enable us to identify the source. GW and neutrino observations are potentially useful for probing choked jets that do not produce prompt emission, as well as successful jets. Even in nondetection cases, observations of GWs and neutrinos could lead to profitable implications for the central engine of GRBs and HNe.

  5. Spectral catalogue of bright gamma-ray bursts detected with the BeppoSAX/GRBM

    Science.gov (United States)

    Guidorzi, C.; Lacapra, M.; Frontera, F.; Montanari, E.; Amati, L.; Calura, F.; Nicastro, L.; Orlandini, M.

    2011-02-01

    Context. The emission process responsible for the so-called "prompt" emission of gamma-ray bursts is still unknown. A number of empirical models fitting the typical spectrum still lack a satisfactory interpretation. A few GRB spectral catalogues derived from past and present experiments are known in the literature and allow to tackle the issue of spectral properties of gamma-ray bursts on a statistical ground. Aims: We extracted and studied the time-integrated photon spectra of the 200 brightest GRBs observed with the Gamma-Ray Burst Monitor which flew aboard the BeppoSAX mission (1996-2002) to provide an independent statistical characterisation of GRB spectra. Methods: The spectra have a time-resolution of 128 s and consist of 240 energy channels covering the 40-700 keV energy band. The 200 brightest GRBs were selected from the complete catalogue of 1082 GRBs detected with the GRBM (Frontera et al. 2009), whose products are publicly available and can be browsed/retrieved using a dedicated web interface. The spectra were fit with three models: a simple power law, a cut-off power law or a Band model. We derived the sample distributions of the best-fitting spectral parameters and investigated possible correlations between them. For a few, typically very long GRBs, we also provide a loose (128-s) time-resolved spectroscopic analysis. Results: The typical photon spectrum of a bright GRB consists of a low-energy index around 1.0 and a peak energy of the ν F_ν spectrum Ep ≃ 240 keV in agreement with previous results on a sample of bright CGRO/BATSE bursts. Spectra of ~ 35% of GRBs can be fit with a power law with a photon index around 2, indicative of peak energies either close to or outside the GRBM energy boundaries. We confirm the correlation between Ep and fluence, in agreement with previous results, with a logarithmic dispersion of 0.13 around the power law with index 0.21 ± 0.06. This is shallower than its analogous in the GRB rest-frame, the Amati relation

  6. Comparison of Simultaneous Prompting and No-No Prompting in Two-Choice Discrimination Learning with Children with Autism

    Science.gov (United States)

    Leaf, Justin B.; Sheldon, Jan B.; Sherman, James A.

    2010-01-01

    This study compared no-no prompting procedures to simultaneous prompting procedures for 3 children with autism. Using a parallel treatments design, researchers taught rote math skills, receptive labels, or answers to "wh-" questions with both prompting systems. Results indicated that no-no prompting was effective in teaching all skills. By…

  7. Slewing Mirror Telescope optics for the early observation of UV/optical photons from Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Jeong, S.; Nam, J. W.; Ahn, K. B.;

    2013-01-01

    We report on design, manufacture, and testing of a Slewing Mirror Telescope (SMT), the first of its kind and a part of Ultra-Fast Flash Observatory-pathfinder (UFFO-p) for space-based prompt measurement of early UV/optical light curves from Gamma-Ray Bursts (GRBs). Using a fast slewing mirror of ...

  8. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Kim, J. E.; Lim, H.; Nam, J. W.;

    2013-01-01

    The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utiliz...

  9. A universal energy distribution function for repeating fast radio bursts?

    CERN Document Server

    Lu, Wenbin

    2016-01-01

    Assuming: fast radio bursts (FRBs) are produced by neutron stars at cosmological distances; FRB rate tracks core-collapse supernova rate; and all FRBs repeat with a universal energy distribution function (EDF) dN/dE ~ E^(-beta) with a high-end cutoff at burst energy E_max. We find that observations so far are consistent with a universal EDF with a power-law index 1.5 30 and normalization N_0 < 2 per day; where N_0 is the integrated rate above the reference burst energy E_0 = 1.2e39 f_r^(-1) erg (f_r is the radio emission efficiency). Implications of such an EDF are discussed.

  10. Relativistic Precessing Jets and Cosmological $\\gamma$ Ray Bursts

    CERN Document Server

    Blackman, E G; Field, G B; Blackman, Eric G.; Yi, Insu; Field, George B.

    1996-01-01

    We discuss the possibility that gamma-ray bursts may result from cosmological relativistic blob emitting neutron star jets that precess past the line of sight. Beaming reduces the energy requirements, so that the jet emission can last longer than the observed burst duration. One precession mode maintains a short duration time scale, while a second keeps the beam from returning to the line of sight, consistent with the paucity of repeaters. The long life of these objects reduces the number required for production as compared to short lived jets. Blobs can account for the time structure of the bursts. Here we focus largely on kinematic and time scale considerations of beaming, precession, and blobs--issues which are reasonably independent of the acceleration and jet collimation mechanisms. We do suggest that large amplitude electro-magnetic waves could be a source of blob acceleration.

  11. SWIFT and BATSE bursts' classification

    CERN Document Server

    Horvath, I; Balazs, L G; Tusnady, G; Veres, P

    2009-01-01

    Two classes of gamma-ray bursts were identified in the BATSE catalogs characterized by their durations. There were also some indications for the existence of a third type of gamma-ray bursts. Swift satellite detectors have different spectral sensitivity than pre-Swift ones for GRBs. Therefore in this paper we analyze the bursts' duration distribution and also the duration-hardness bivariate distribution, published in The First BAT Catalog. Similarly to the BATSE data, to explain the BAT GRBs' duration distribution three components are needed. Although, the relative frequencies of the groups are different than they were in the BATSE GRB sample, the difference in the instrument spectral sensitivities can explain this bias in a natural way. This means theoretical models may have to explain three different type of gamma-ray bursts.

  12. FERMIGBRST - Fermi GBM Burst Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — This table lists all of the triggers observed by a subset of the 14 GBM detectors (12 NaI and 2 BGO) which have been classified as gamma-ray bursts (GRBs). Note...

  13. Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy

    Science.gov (United States)

    Roemer, K.; Pausch, G.; Bemmerer, D.; Berthel, M.; Dreyer, A.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Rohling, H.; Thirolf, P.; Wagner, A.; Wagner, L.; Weinberger, D.; Fiedler, F.

    2015-10-01

    Particle therapy in oncology is advantageous compared to classical radiotherapy due to its well-defined penetration depth. In the so-called Bragg peak, the highest dose is deposited; the tissue behind the cancerous area is not exposed. Different factors influence the range of the particle and thus the target area, e.g. organ motion, mispositioning of the patient or anatomical changes. In order to avoid over-exposure of healthy tissue and under-dosage of cancerous regions, the penetration depth of the particle has to be monitored, preferably already during the ongoing therapy session. The verification of the ion range can be performed using prompt gamma emissions, which are produced by interactions between projectile and tissue, and originate from the same location and time of the nuclear reaction. The prompt gamma emission profile and the clinically relevant penetration depth are correlated. Various imaging concepts based on the detection of prompt gamma rays are currently discussed: collimated systems with counting detectors, Compton cameras with (at least) two detector planes, or the prompt gamma timing method, utilizing the particle time-of-flight within the body. For each concept, the detection system must meet special requirements regarding energy, time, and spatial resolution. Nonetheless, the prerequisites remain the same: the gamma energy region (2 to 10 MeV), high counting rates and the stability in strong background radiation fields. The aim of this work is the comparison of different scintillation crystals regarding energy and time resolution for optimized prompt gamma detection.

  14. Chimera states in bursting neurons

    OpenAIRE

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2015-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e. disorder), coherent, chimera and multi-chimera states. Surprisingly, we find that chimera and multi-chimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is i...

  15. Disinhibition Bursting of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Collin J Lobb

    2011-05-01

    Full Text Available Substantia nigra pars compacta (SNpc dopaminergic neurons receive strong tonic inputs from GABAergic neurons in the substantia nigra pars reticulata (SNpr and globus pallidus (GP, and glutamatergic neurons in the subthalamic nucleus. The presence of these tonic inputs raises the possibility that phasic disinhibition may trigger phasic bursts in dopaminergic neurons. We first applied constant NMDA and GABAA conductances onto a two-compartment single cell model of the dopaminergic neuron (Kuznetsov et al., 2006. The model exhibited disinhibition bursting upon stepwise removal of inhibition. A further bifurcation analysis suggests that disinhibition may be more robust than excitation alone in that for most levels of NMDA conductance, the cell remains capable of bursting even after a complete removal of inhibition, whereas too much excitatory input will drive the cell into depolarization block. To investigate the network dynamics of disinhibition, we used a modified version of an integrate-and-fire based model of the basal ganglia (Humphries et al., 2006. Synaptic activity generated in the network was delivered to the two-compartment single cell dopaminergic neuron. Phasic activation of the D1-expressing medium spiny neurons in the striatum (D1STR produced disinhibition bursts in dopaminergic neurons through the direct pathway (D1STR to SNpr to SNpc. Anatomical studies have shown that D1STR neurons have collaterals that terminate in GP. Adding these collaterals to the model, we found that striatal activation increased the intra-burst firing frequency of the disinhibition burst as the weight of this connection was increased. Our studies suggest that striatal activation is a robust means by which disinhibition bursts can be generated by SNpc dopaminergic neurons, and that recruitment of the indirect pathway via collaterals may enhance disinhibition bursting.

  16. New measurements of Ωm from gamma-ray bursts

    Science.gov (United States)

    Izzo, L.; Muccino, M.; Zaninoni, E.; Amati, L.; Della Valle, M.

    2015-10-01

    Context. Data from cosmic microwave background radiation (CMB), baryon acoustic oscillations (BAO), and supernovae Ia (SNe-Ia) support a constant dark energy equation of state with w0 ~ -1. Measuring the evolution of w along the redshift is one of the most demanding challenges for observational cosmology. Aims: We discuss the existence of a close relation for gamma-ray bursts (GRBs), named Combo-relation, based on characteristic parameters of GRB phenomenology such as the prompt intrinsic peak energy Ep,i, the X-ray afterglow initial luminosity L0 and the rest-frame duration τ of the shallow phase, and the index of the late power-law decay αX. We use it to measure Ωm and the evolution of the dark energy equation of state. We also propose a new calibration method for the same relation, which reduces the dependence on SNe Ia systematics. Methods: We have selected a sample of GRBs with 1) a measured redshift z; 2) a determined intrinsic prompt peak energy Ep,i; and 3) a good coverage of the observed (0.3-10) keV afterglow light curves. The fitting technique of the rest-frame (0.3-10) keV luminosity light curves represents the core of the Combo-relation. We separate the early steep decay, considered a part of the prompt emission, from the X-ray afterglow additional component. Data with the largest positive residual, identified as flares, are automatically eliminated until the p-value of the fit becomes greater than 0.3. Results: We strongly minimize the dependency of the Combo-GRB calibration on SNe Ia. We also measure a small extra-Poissonian scatter of the Combo-relation, which allows us to infer from GRBs alone ΩM = 0.29+0.23-0.15 (1σ) for the ΛCDM cosmological model, and ΩM = 0.40+0.22-0.16, w0 = -1.43+0.78-0.66 for the flat-Universe variable equation of state case. Conclusions: In view of the increasing size of the GRB database, thanks to future missions, the Combo-relation is a promising tool for measuring Ωm with an accuracy comparable to that exhibited

  17. A Type II Radio Burst without a Coronal Mass Ejection

    CERN Document Server

    Su, W; Ding, M D; Chen, P F; Sun, J Q

    2015-01-01

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only with a C2.4 class flare and narrow jet. However, in the extreme-ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we find a wave-like structure that propagated at a speed of $\\sim$ 600 km s$^{-1}$ during the burst. The relationship between the type II radio burst and the wave-like structure is in particular explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure (DEM) method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The ...

  18. Unintegrated parton distributions and prompt photon hadroproduction

    CERN Document Server

    Kimber, M A; Ryskin, M G

    2000-01-01

    We introduce a general expression which enables the parton distribution, unintegrated over the parton transverse momentum, to be obtained from the conventional parton densities. We use the formalism to study the effects of the transverse momentum q_t of the incoming partonic system on the calculation of the transverse momentum spectra of prompt photons produced in high energy pp and p\\bar{p} collisions. For the purposes of illustration, we use the double logarithm approximation. For large q_t we calculate the effect directly from the perturbative formalism, whereas for small q_t we bound the effect using two extreme hypotheses. In both q_t domains we find that the shapes of the prompt photon spectra are not significantly modified, although the cross sections are enhanced.

  19. Prompt alpha eigenvalue calculations with Tripoli-4

    Science.gov (United States)

    Zoia, Andrea; Brun, Emeric; Malvagi, Fausto

    2014-06-01

    Monte Carlo criticality analyses aimed at determining reactor parameters have been historically based on iterative algorithms whose outcome is the effective multiplication coefficient (keff), i.e., the fundamental eigenvalue of the transport equation. Less attention has been comparatively paid to Monte Carlo algorithms for the estimation of the so-called (prompt) α eigenvalues, which provide information about the (prompt) time evolution of the system. In recent years, this issue has witnessed a renewed interest, mostly due to increased computer power, allowing for reliable and stable search strategies for assessing the fundamental α eigenvalue. In this work, we revisit the theory behind α eigenvalues and propose a Monte Carlo iterative algorithm for the development version of Tripoli-4. In order toillustrate the algorithm, some significant examples are finally discussed.

  20. Prompts, feedback, positive reinforcement, and potty training.

    Science.gov (United States)

    Halligan, Sarah M; Luyben, Paul D

    2009-01-01

    Two parents were concerned because their two young girls were delayed in learning to use the potty. In this study we obtained data on the frequency of wet diapers and use of the potty at home. Following baseline, an intervention was implemented that involved increased intake of liquids and salty foods, prompting, and positive reinforcement. Once a substantial decrease in wet diapers was achieved, together with an increase in use of the potty, the girls were offered the opportunity to wear "Princess Underwear!" as an even more powerful prompt and reinforcer. An ABC design was used with each girl. The results showed significant increases in their use of the potty and decreased incidents of wet diapers when the intervention was in effect. Although this design does not rule out possible effects of coincidences, the data are consistent with the hypothesis that the intervention produced improvements in potty training.

  1. Gravitational waves and neutrinos from gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher Lee [Los Alamos National Laboratory

    2010-01-01

    Gamma-Ray Bursts (GRBs) are not only strong sources of gammaray emission, but also of neutrinos and gravitational waves (GWs). Observat.ions of these particles can provide a good deal of insight into the progenitor and engine behind these outbursts. But to do so, these particles must be detected . Here we review the different phases of GW and neutrino emission from a range of GRB progenitors, outlining the features and detectability of these phases. Unfortunately, except for a few cases, the detection of non-photon emission is very difficult. But the potential gain from any detection make understanding these sources critically important.

  2. Neutrinos from Gamma Ray Bursts in the IceCube and ARA Era

    Science.gov (United States)

    Guetta, Dafne

    2016-07-01

    In this review I discuss the ultra-high energy neutrinos (UHEN) originated from Cosmic-Rays propogation (GZK neutrinos) and from Gamma Ray Bursts (GRBs), and discuss their detectability in kilometers scale detectors like ARA and IceCube. While GZK neutrinos are expected from cosmic ray interactions on the CMB, the GRB neutrinos depend on the physics inside the sources. GRBs are predicted to emit UHEN in the prompt and in the later "after-glow" phase. I discuss the constraints on the hadronic component of GRBs derived from the search of four years of IceCube data for a prompt neutrino fux from gamma-ray bursts (GRBs) and more in general I present the results of the search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2013.

  3. Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts

    CERN Document Server

    Wheeler, J C; Höflich, P; Wang, L; Yi, Insu; Hoeflich, Peter; Wang, Lifan

    1999-01-01

    We outline the possible physical processes, associated timescales, and energetics that could lead to the production of pulsars, jets, asymmetric supernovae, and weak gamma-ray bursts in routine circumstances and to a magnetar and perhaps stronger gamma-ray burst in more extreme circumstances in the collapse of the bare core of a massive star. The production of a LeBlanc-Wilson MHD jet could provide an asymmetric supernova and result in a weak gamma-ray burst when the jet accelerates down the stellar density gradient of a hydrogen-poor photosphere. The matter-dominated jet would be formed promptly, but requires 5 to 10 s to reach the surface of the progenitor of a Type Ib/c supernova. During this time, the newly-born neutron star could contract, spin up, and wind up field lines or turn on an $\\alpha-\\Omega$ dynamo. In addition, the light cylinder will contract from a radius large compared to the Alfvén radius to a size comparable to that of the neutron star. This will disrupt the structure of any organized di...

  4. Monte Carlo Simulations and prompt gamma measurement for online control of ion therapy

    International Nuclear Information System (INIS)

    During the treatment of a tumor with light ions, the Bragg peak location must be accurately known. A significant fraction of the incident ions undergo nuclear collisions with the target nuclei leading to the prompt emission of particles which may carry information on the ion path. This work, which focuses on prompt gamma, shows that the depth profile of these emissions is highly correlated to the ions path and the measured counting rates allow to consider a realistic imaging system, operating in real time. For that purpose, we performed experiments at GANIL and at GSI with a collimated detector placed perpendicular to the beam axis and the time of flight technique was used in order to reduce the noise induced by neutrons and charged particles. Geant4 simulations were performed for the experimental design and data interpretation. A qualitative agreement between simulations and experiment is observed for the amount of energy deposited in the detector and the shape of the time of flight spectrum. However, discrepancies appear for the prompt gamma yield and the depth distribution of gamma detected. These discrepancies are discussed, mainly in terms of nuclear physics models that must be improved. After selecting the physical models which lead to the best agreement between simulations and measurements, studies on the location of prompt gamma emission and on the influence of diffusion in the target were performed to determine the impact on the correlation with the ion path. (author)

  5. Unveiling the population of orphan Gamma Ray Bursts

    CERN Document Server

    Ghirlanda, G; Campana, S; Vergani, S D; Japelj, J; Bernardini, M G; Burlon, D; D'Avanzo, P; Melandri, A; Gomboc, A; Nappo, F; Paladini, R; Pescalli, A; Salafia, O S; Tagliaferri, G

    2015-01-01

    Gamma Ray Bursts are detectable in the gamma-ray band if their jets are oriented towards the observer. However, for each GRB with a typical theta_jet, there should be ~2/theta_jet^2 bursts whose emission cone is oriented elsewhere in space. These off-axis bursts can be eventually detected when, due to the deceleration of their relativistic jets, the beaming angle becomes comparable to the viewing angle. Orphan Afterglows (OA) should outnumber the current population of bursts detected in the gamma-ray band even if they have not been conclusively observed so far at any frequency. We compute the expected flux of the population of orphan afterglows in the mm, optical and X-ray bands through a population synthesis code of GRBs and the standard afterglow emission model. We estimate the detection rate of OA by on-going and forthcoming surveys. The average duration of OA as transients above a given limiting flux is derived and described with analytical expressions: in general OA should appear as daily transients in o...

  6. PROMPT: a protein mapping and comparison tool

    Directory of Open Access Journals (Sweden)

    Frishman Dmitrij

    2006-07-01

    Full Text Available Abstract Background Comparison of large protein datasets has become a standard task in bioinformatics. Typically researchers wish to know whether one group of proteins is significantly enriched in certain annotation attributes or sequence properties compared to another group, and whether this enrichment is statistically significant. In order to conduct such comparisons it is often required to integrate molecular sequence data and experimental information from disparate incompatible sources. While many specialized programs exist for comparisons of this kind in individual problem domains, such as expression data analysis, no generic software solution capable of addressing a wide spectrum of routine tasks in comparative proteomics is currently available. Results PROMPT is a comprehensive bioinformatics software environment which enables the user to compare arbitrary protein sequence sets, revealing statistically significant differences in their annotation features. It allows automatic retrieval and integration of data from a multitude of molecular biological databases as well as from a custom XML format. Similarity-based mapping of sequence IDs makes it possible to link experimental information obtained from different sources despite discrepancies in gene identifiers and minor sequence variation. PROMPT provides a full set of statistical procedures to address the following four use cases: i comparison of the frequencies of categorical annotations between two sets, ii enrichment of nominal features in one set with respect to another one, iii comparison of numeric distributions, and iv correlation of numeric variables. Analysis results can be visualized in the form of plots and spreadsheets and exported in various formats, including Microsoft Excel. Conclusion PROMPT is a versatile, platform-independent, easily expandable, stand-alone application designed to be a practical workhorse in analysing and mining protein sequences and associated annotation

  7. Prompt neutron multiplicity distribution for 235U(n,f) at incident energies up to 20 MeV

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Jing; LIU Ting-Jin

    2011-01-01

    For the n+U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy (A) and the total average energies E(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities ν and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.

  8. The supercritical pile gamma-ray burst model: The GRB afterglow steep decline and plateau phase

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, J. [Mathematics Department, Faculty of Science, University of Malta, Msida MSD2080 (Malta); Kazanas, D. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mastichiadis, A., E-mail: joseph.sultana@um.edu.mt [Department of Physics, University of Athens, Panepistimiopolis, GR 15783 Zografos (Greece)

    2013-12-10

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the 'supercritical pile' GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E {sub pk} ∼ m{sub e}c {sup 2}. We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Γ to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (∼25%) decrease in Γ at a radius that is smaller (depending on conditions) than the deceleration radius R{sub D} . Because of this reduction, the kinematic criticality criterion of the 'supercritical pile' is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by ∼m{sub p} /m{sub e} than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R{sub D} , the RBW internal energy continues to drive the RBW expansion at a constant (new) Γ and its X-ray luminosity remains constant until R{sub D} is reached, at which point it resumes its more conventional decay, thereby completing the 'unexpected' XRT light curve phase. If this transition occurs at R ≅ R{sub D} , the steep decline is followed by a flux decrease instead of a 'plateau,' consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R ≅ R{sub D} , thus providing novel insights into GRB phenomenology.

  9. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    Science.gov (United States)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  10. A Small, Rapid Optical-IR Response Gamma-Ray Burst Space Observatory Concept: The NGRG

    Science.gov (United States)

    Grossan, B.; Kumar, P.; Perley, D.; Smoot, G. F.

    2014-10-01

    After Swift, there is no sure plan to furnish a replacement for the rapidly disseminated, high-precision GRB positions it provides, nor a new type of observatory to probe new GRB parameter space. We propose a new GRB mission concept, the Next Generation Rapid Optical-NIR (near infrared) Response GRB Observatory (NGRG) concept, and demonstrate, through analysis of Swift BAT data, studies of new GRB samples, and extinction predictions, that a relatively modest size observatory will produce valuable new measurements and good GRB detection rates. As with Swift, GRBs are initially located with a coded-mask X-ray camera. However, the NGRG has two distinguishing features: first, a beam-steering system to begin optical observations within ~1 s after location; second, in addition to the optical camera, a separate near-IR (NIR) camera viewing the same field, greatly increasing sensitivity to extinguished bursts. These features yield the unique capability of exploring the rise phase of GRB optical-NIR emission. Thus far, among GRBs with optical afterglow detections, a peak is measured in only ~26-40% of the light curves. The rise time for prompt, or pre-afterglow, optical emission is rarely measured, as is the transition to afterglow emission. Prompt or pre-afterglow NIR emission is even less frequently measured. Rapid-response measurements give new tools for exploration of many science topics, including optical emission mechanisms (synchrotron vs. SSC, photospheric emission) and jet characteristics (reverse vs. forward shock emission, baryon-dominated vs. magnetic dominated). The rapid-response capability also allows measurement of dynamic evolution of extinction due to vaporization of progenitor system dust. This dynamic dust measurement is the only tool we know of to separate the effects of star-system-scale dust and galactic-structure-scale dust; it is remarkable that this probe of small-scale phenomena can be used at the high redshifts where GRBs are observed. In this

  11. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered.

    Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  12. Swift/BAT and Fermi/GBM observations of SGR J1935+2154 bursts

    Science.gov (United States)

    Lin, Lin

    2016-07-01

    SGR J1935+2154 is a new member of the magnetar family. It was discovered from a short burst which triggered Swift/BAT on 2014 July 5. In 2015 February, the source was detected in the burst active episode again which lasted for about 11 days. We searched for magnetar burst using Bayesian Blocks method through Swift/BAT and Fermi/GBM observations, and totally found 27 events including 3 in 2014 and 24 in 2015. In this talk we will present the result of our detailed analysis of the temporal and spectral properties of these short bursts, and briefly discuss the connection between burst activity and the persistent emission of the source.

  13. Broadband Spectral Study of Magnetar Bursts

    Science.gov (United States)

    Kirmizibayrak, Demet; Gogus, Ersin; Sasmaz Mus, Sinem; Kaneko, Yuki

    2016-07-01

    Magnetar bursts occur sporadically on random occasions, and every burst-active episode carries unique information about the bursting magnetar. Therefore, in-depth spectral and temporal analyses of each of the magnetar bursts provide new insights into the bursting and radiation mechanisms. There have been a number of studies over the last decade, investigating the spectral and temporal properties of magnetar bursts. The spectra of typical magnetar bursts were generally described with the Comptonized model or the sum of two blackbody functions. However, it was recently shown that the actual spectral nature of these bursts can be conclusively determined if the spectral analysis is performed on a wide energy coverage. We present the results of in-depth systematic broadband (2 - 250 keV) spectral analysis of a large number of bursts originated from three magnetars: SGR 1806-20, SGR 1900+14, and SGR J1550-5418, observed with the Rossi X-ray Timing Explorer.

  14. A systematic description of shocks in gamma-ray bursts - I. Formulation

    Science.gov (United States)

    Ziaeepour, Houri

    2009-07-01

    Since the suggestion of relativistic shocks as the origin of gamma-ray bursts (GRBs) in the early 1990s, the mathematical formulation of this process has stayed at a phenomenological level. One of the reasons for the slow development of theoretical works has been the simple power-law behaviour of the afterglows hours or days after the prompt gamma-ray emission. It was believed that they could be explained with these formulations. Nowadays, with the launch of the Swift satellite and implementation of robotic ground follow-ups, GRBs and their afterglow can be observed at multi-wavelengths from a few tens of seconds after trigger onwards. These observations have led to the discovery of features unexplainable by the simple formulation of the shocks and emission processes used up to now. Some of these features can be inherent in the nature and activities of the GRBs' central engines which are not yet well understood. On the other hand, the devil is in the detail and others may be explained with a more detailed formulation of these phenomena and without ad hoc addition of new processes. Such a formulation is the goal of this work. We present a consistent formulation of the kinematics and dynamics of the collision between two spherical relativistic shells, their energy dissipation and their coalescence. It can be applied to both internal and external shocks. Notably, we propose two phenomenological models for the evolution of the emitting region during the collision. One of these models is more suitable for the prompt/internal shocks and late external shocks, and the other for the afterglow/external collisions as well as the onset of internal shocks. We calculate a number of observables such as flux, lag between energy bands and hardness ratios. One of our aims has been a formulation complex enough to include the essential processes, but simple enough such that the data can be directly compared with the theory to extract the value and evolution of physical quantities. To

  15. Signs of magnetic acceleration and multi-zone emission in GRB 080825C

    CERN Document Server

    Moretti, Elena

    2016-01-01

    One of the major results from the study of gamma-ray bursts with the Fermi Gamma-ray Space Telescope has been the confirmation that several emission components can be present in the energy spectrum. Here we reanalyse the spectrum of GRB 080825C using data from the Fermi LAT and GBM instruments. Although fairly weak, it is the first gamma-ray burst detected by the Fermi-LAT. We improve on the original analysis by using the LAT Low Energy (LLE) events covering the 30-00 MeV band. We find evidence of an additional component above the main emission peak (modelled using a Band function) with a significance of 3.5 $\\sigma$ in 2 out of the 4 time bins. The component is well fitted by a Planck function, but shows unusual behaviour: the peak energy increases in the prompt emission phase, reaching energies of several MeV. This is the first time such a trend has been seen, and implies that the origin of this component is different from those previously detected. We suggest that the two spectral components likely arise i...

  16. Neutrinos and gravitational waves from cosmological gamma-ray bursts

    CERN Document Server

    Auriemma, G

    2003-01-01

    Cosmological gamma ray bursts are very likely powerful sources of high energy neutrinos and gravitational waves. The aim of this paper is to review and update the current predictions about the intensity of emission in this two forms to be expected from GRB's. In particular a revised calculation of the neutrino emission by photohadronic interaction at the internal shock is obtained by numerical integration, including both the resonant and the hadronization channels. The detectability of gravitational waves from individual bursts could be difficult for presently planned detectors if the GRB's are beamed, but it is possible, as we have proposed in a paper two years ago, that the incoherent superimposition of small amplitude pulse trains of GW's impinging on the detector, could be detected as an excess of noise in the full VIRGO detector, integrating over a time of the order of one year.

  17. Millisecond solar radio bursts in the metric wavelength range

    CERN Document Server

    Magdalenić, J; Zlobec, P; Vršnak, B; 10.1063/1.2347982

    2010-01-01

    A study and classification of super-short structures (SSSs) recorded during metric type IV bursts is presented. The most important property of SSSs is their duration, at half power ranging from 4-50 ms, what is up to 10 times shorter than spikes at corresponding frequencies. The solar origin of the SSSs is confirmed by one-to-one correspondence between spectral recordings of Artemis-IV1 and high time resolution single frequency measurements of the TSRS2. We have divided the SSSs in the following categories: 1. Broad-Band SSSs: They were partitioned in two subcategories, the SSS-Pulses and Drifting SSSs; 2. Narrow-band: They appear either as Spike-Like SSSs or as Patch-Like SSSs; 3. Complex SSS: They consist of the absorption-emission segments and were morphologically subdivided into Rain-drop Bursts (narrow-band emission head and a broad-band absorption tail) and Blinkers.

  18. Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows

    Science.gov (United States)

    Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi

    2015-11-01

    We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.

  19. Prompt photon production in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Krzysztof

    2010-03-15

    This thesis presents measurement of the production of prompt photons in photoproduction with the H1 experiment at HERA. The analysis is based on the data taken in the years 2004-2007, with a total integrated luminosity of 340 pb{sup -1}. The main difficulty of the measurement comes from the high background of neutral mesons decaying into photons. It is accounted for with the help of multivariate analysis. Prompt photon cross sections are measured with the low negative four-momentum transfer squared Q{sup 2} < 1GeV{sup 2} and in the inelasticity range 0.1 < y < 0.7 for photons with a transverse energy 6 < E{sub T}{sup {gamma}} < 15GeV and in the pseudorapidity range.1.0 < {eta}{sup {gamma}} < 2.4 as a function of photons transverse energy and its pseudorapidity. Cross sections for prompt photon events with an additional hadronic jet are measured as a function of the transverse energy and pseudorapidity of the jet and of the momentum fractions x{sub {gamma}} and x{sub p} of the incident photon and proton carried by the constituents participating in the hard scattering process. Additionally, the transverse correlation between the photon and the jet is studied. The results are compared with predictions of a next-to-leading order calculation and a calculation based on the k{sub T} factorisation approach. Neither of calculations is able to describe all the aspects of the measurement. (orig.)

  20. Prompt photon production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashish; /SUNY, Stony Brook

    2009-07-01

    Prompt photon production has been studied by the CDF and D0{sup -} experiments at the Fermilab Tevatron collider in p{bar p} collisions at the centre of mass energy of {radical}s = 1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavor jet, and diphoton production cross sections are discussed. The analyses use data sample corresponding to integrated luminosity between 0.2 fb{sup -1} and 1.02 fb{sup -1}. The results are compared to the next to leading order (NLO) perturbative QCD (pQCD) calculations.